12 research outputs found

    Development of a Modular Urban Electric Vehicle

    Get PDF
    As urban centers continue to grow, cities will benefit from introducing urban vehicles as an alternative to large personal vehicles. The Mechatronics Vehicle System Laboratory has developed an urban electric vehicle with a novel modular approach that fulfills the many needs of the urban commuters. This thesis focuses of on the development of the urban vehicle platform, which is used to support the designed corner module system for complete vehicle control. The vehicle was completed by first developing a set of high level constraints to narrow the scope of the project into an achievable goal. Next, the detailed design of the modular components was completed and the vehicle was manufactured, largely in-house. After manufacturing, the vehicle was commissioned and tested for simple functionality on university property. The Mechatronics Vehicle Systems Laboratory Urban Vehicle integrates two different styles of corner modules; has a weight of 500 kg; powertrain output of 30 kW continuous, 90 kW burst, regenerative braking enabled; 77 V nominal, 4.62 kWh high voltage battery delivering 52 kW burst; hydraulic system supplying 2 GPM continuous, 100 GPM burst fluid at 2000 PSI; drive-by-wire; independent mechanical brake, anti-lock brake system capable; skateboard style steel tube frame; and controlled with a decentralized processor network communicating over controller area network. Testing showed that all developed systems work as intended and come together to form a fully functional modular urban vehicle. The successful functionality of the vehicle validates the developed corner modules and other unique technology required to operate the system

    Sobre a aplicação de técnicas de controlo em redes industriais com falhas

    Get PDF
    Doutoramento em Engenharia EletrotécnicaThe performance of real-time networks is under continuous improvement as a result of several trends in the digital world. However, these tendencies not only cause improvements, but also exacerbates a series of unideal aspects of real-time networks such as communication latency, jitter of the latency and packet drop rate. This Thesis focuses on the communication errors that appear on such realtime networks, from the point-of-view of automatic control. Specifically, it investigates the effects of packet drops in automatic control over fieldbuses, as well as the architectures and optimal techniques for their compensation. Firstly, a new approach to address the problems that rise in virtue of such packet drops, is proposed. This novel approach is based on the simultaneous transmission of several values in a single message. Such messages can be from sensor to controller, in which case they are comprised of several past sensor readings, or from controller to actuator in which case they are comprised of estimates of several future control values. A series of tests reveal the advantages of this approach. The above-explained approach is then expanded as to accommodate the techniques of contemporary optimal control. However, unlike the aforementioned approach, that deliberately does not send certain messages in order to make a more efficient use of network resources; in the second case, the techniques are used to reduce the effects of packet losses. After these two approaches that are based on data aggregation, it is also studied the optimal control in packet dropping fieldbuses, using generalized actuator output functions. This study ends with the development of a new optimal controller, as well as the function, among the generalized functions that dictate the actuator’s behaviour in the absence of a new control message, that leads to the optimal performance. The Thesis also presents a different line of research, related with the output oscillations that take place as a consequence of the use of classic co-design techniques of networked control. The proposed algorithm has the goal of allowing the execution of such classical co-design algorithms without causing an output oscillation that increases the value of the cost function. Such increases may, under certain circumstances, negate the advantages of the application of the classical co-design techniques. A yet another line of research, investigated algorithms, more efficient than contemporary ones, to generate task execution sequences that guarantee that at least a given number of activated jobs will be executed out of every set composed by a predetermined number of contiguous activations. This algorithm may, in the future, be applied to the generation of message transmission patterns in the above-mentioned techniques for the efficient use of network resources. The proposed task generation algorithm is better than its predecessors in the sense that it is capable of scheduling systems that cannot be scheduled by its predecessor algorithms. The Thesis also presents a mechanism that allows to perform multi-path routing in wireless sensor networks, while ensuring that no value will be counted in duplicate. Thereby, this technique improves the performance of wireless sensor networks, rendering them more suitable for control applications. As mentioned before, this Thesis is centered around techniques for the improvement of performance of distributed control systems in which several elements are connected through a fieldbus that may be subject to packet drops. The first three approaches are directly related to this topic, with the first two approaching the problem from an architectural standpoint, whereas the third one does so from more theoretical grounds. The fourth approach ensures that the approaches to this and similar problems that can be found in the literature that try to achieve goals similar to objectives of this Thesis, can do so without causing other problems that may invalidate the solutions in question. Then, the thesis presents an approach to the problem dealt with in it, which is centered in the efficient generation of the transmission patterns that are used in the aforementioned approaches.Em resultado de várias tendências que têm afetado o mundo digital, o desempenho das redes de comunicação em tempo-real está continuamente a ser melhorado. No entanto, tais tendências não só introduzem melhorias, como também introduzem uma série de não idealidades, tais como a latência, o jitter da latência de comunicação e uma maior probabilidade de perda de pacotes. Esta tese tem o seu cerne em falhas de comunicação que surgem em tais redes, sob o ponto de vista do controlo automático. Concretamente, são estudados os efeitos das perdas de pacotes em redes de controlo, bem como arquitecturas e técnicas óptimas de compensação das mesmas. Primeiramente, ´e proposta uma nova abordagem para colmatar os problemas que surgem em virtude de tais perdas. Essa nova abordagem ´e baseada no envio simultâneo de vários valores numa única mensagem. Tais mensagens podem ser de sensor para controlador, caso em que as mesmas são constituídas por um conjunto de valores passados, ou de controlador para actuador, caso em que tais mensagens contˆem estimativas de futuros valores de controlo. Uma série de testes revela as vantagens de tal abordagem. A abordagem acima explanada ´e seguidamente expandida de modo a acomodar o controlo óptimo. Contudo, ao contrário da abordagem acima apresentada, que passa pelo não envio deliberado de certas mensagens com vista a alcançar um uso mais eficiente dos recursos de rede; no presente caso, as técnicas são usadas para reduzir os efeitos da perda de pacotes. Em seguida são estudadas abordagens de controlo óptimo que em situações de perda de pacotes empregam formas generalizadas da aplicação de valores de saída. Este estudo culmina com o desenvolvimento de um novo controlador óptimo, bem como a função, entre as funções generalizadas do funcionamento do actuador, que conduz o sistema a um desempenho óptimo. É também apresentada uma linha de investigação diferente, relacionada com a oscilação da saída que ocorre em consequência da utilização de técnicas e algoritmos clássicos de co-desenho de controlo e redes industriais. O algoritmo proposto tem como finalidade permitir que tais algoritmos clássicos possam ser executados sem causar oscilações de saída, oscilações que por sua vez aumentam o valor da função de custo. Tais aumentos da função do custo, podem, em certas circunstâncias, por em causa os benefícios da aplicação das técnicas de co-desenho clássico. Numa outra linha de investigação, foram estudadas formas, mais eficientes que as contemporâneas, de geração de sequências de execuções de tarefas que garantam que pelo menos um dado número de tarefas activadas serão executadas por cada conjunto contíguo composto por um número predefinido de activações. Esta técnica poderá, no futuro, ser aplicada na geração dos padrões de envio de mensagens que ´e empregue na abordagem de utilização eficiente dos recursos de rede acima referida. A técnica proposta de geração de tarefas é melhor que as anteriores no sentido em que a mesma é capaz de escalonar sistemas que não são escalonáveis pelas técnicas clássicas. A tese também apresenta um mecanismo que permite fazer o encaminhamento multi-caminho em redes de sensores sem fios com falhas sem causar a contagem em duplicado. Assim sendo a mesma técnica melhora o desempenho das redes de sensores sem fios, tornando as mesmas mais maleável as necessidades do controlo aum´atico em redes sem fios. Como foi referido acima, a tese foca-se em t´ecnicas de melhoria de desempenho de sistemas de controlo distribu´ıdo em que os v´arios elementos de controlo encontram-se interligados por meio de uma rede industrial que pode estar sujeita a perda de pacotes. As primeiras três abordagens cingemse a este tema, sendo que primeiras duas olham para o problema sob um ponto de vista arquitetural, enquanto que a terceira olha sob um ponto de vista mais teórico. A quarta abordagem garante que outras propostas que podem ser encontradas na literatura e que visam atingir resultados semelhantes aos que se pretendem atingir nesta tese, possam fazˆe-lo sem causar outros problemas que invalidem as soluções em questão. Seguidamente, é apresenta-se uma abordagem ao problema proposto nesta tese que foca-se na geração eficiente de padrões para subsequente utilização nas abordagens acima referidas. E por fim, apresentar-se-a uma técnica de optimização do funcionamento de redes sem fios que promete melhorar o controlo em tais redes

    Distributed Real-time Systems - Deterministic Protocols for Wireless Networks and Model-Driven Development with SDL

    Get PDF
    In a networked system, the communication system is indispensable but often the weakest link w.r.t. performance and reliability. This, particularly, holds for wireless communication systems, where the error- and interference-prone medium and the character of network topologies implicate special challenges. However, there are many scenarios of wireless networks, in which a certain quality-of-service has to be provided despite these conditions. In this regard, distributed real-time systems, whose realization by wireless multi-hop networks becomes increasingly popular, are a particular challenge. For such systems, it is of crucial importance that communication protocols are deterministic and come with the required amount of efficiency and predictability, while additionally considering scarce hardware resources that are a major limiting factor of wireless sensor nodes. This, in turn, does not only place demands on the behavior of a protocol but also on its implementation, which has to comply with timing and resource constraints. The first part of this thesis presents a deterministic protocol for wireless multi-hop networks with time-critical behavior. The protocol is referred to as Arbitrating and Cooperative Transfer Protocol (ACTP), and is an instance of a binary countdown protocol. It enables the reliable transfer of bit sequences of adjustable length and deterministically resolves contest among nodes based on a flexible priority assignment, with constant delays, and within configurable arbitration radii. The protocol's key requirement is the collision-resistant encoding of bits, which is achieved by the incorporation of black bursts. Besides revisiting black bursts and proposing measures to optimize their detection, robustness, and implementation on wireless sensor nodes, the first part of this thesis presents the mode of operation and time behavior of ACTP. In addition, possible applications of ACTP are illustrated, presenting solutions to well-known problems of distributed systems like leader election and data dissemination. Furthermore, results of experimental evaluations with customary wireless transceivers are outlined to provide evidence of the protocol's implementability and benefits. In the second part of this thesis, the focus is shifted from concrete deterministic protocols to their model-driven development with the Specification and Description Language (SDL). Though SDL is well-established in the domain of telecommunication and distributed systems, the predictability of its implementations is often insufficient as previous projects have shown. To increase this predictability and to improve SDL's applicability to time-critical systems, real-time tasks, an approved concept in the design of real-time systems, are transferred to SDL and extended to cover node-spanning system tasks. In this regard, a priority-based execution and suspension model is introduced in SDL, which enables task-specific priority assignments in the SDL specification that are orthogonal to the static structure of SDL systems and control transition execution orders on design as well as on implementation level. Both the formal incorporation of real-time tasks into SDL and their implementation in a novel scheduling strategy are discussed in this context. By means of evaluations on wireless sensor nodes, evidence is provided that these extensions reduce worst-case execution times substantially, and improve the predictability of SDL implementations and the language's applicability to real-time systems

    Optoelectronics – Devices and Applications

    Get PDF
    Optoelectronics - Devices and Applications is the second part of an edited anthology on the multifaced areas of optoelectronics by a selected group of authors including promising novices to experts in the field. Photonics and optoelectronics are making an impact multiple times as the semiconductor revolution made on the quality of our life. In telecommunication, entertainment devices, computational techniques, clean energy harvesting, medical instrumentation, materials and device characterization and scores of other areas of R&D the science of optics and electronics get coupled by fine technology advances to make incredibly large strides. The technology of light has advanced to a stage where disciplines sans boundaries are finding it indispensable. New design concepts are fast emerging and being tested and applications developed in an unimaginable pace and speed. The wide spectrum of topics related to optoelectronics and photonics presented here is sure to make this collection of essays extremely useful to students and other stake holders in the field such as researchers and device designers

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017

    An intelligent intrusion detection system for external communications in autonomous vehicles

    Get PDF
    Advancements in computing, electronics and mechanical systems have resulted in the creation of a new class of vehicles called autonomous vehicles. These vehicles function using sensory input with an on-board computation system. Self-driving vehicles use an ad hoc vehicular network called VANET. The network has ad hoc infrastructure with mobile vehicles that communicate through open wireless channels. This thesis studies the design and implementation of a novel intelligent intrusion detection system which secures the external communication of self-driving vehicles. This thesis makes the following four contributions: It proposes a hybrid intrusion detection system to protect the external communication in self-driving vehicles from potential attacks. This has been achieved using fuzzification and artificial intelligence. The second contribution is the incorporation of the Integrated Circuit Metrics (ICMetrics) for improved security and privacy. By using the ICMetrics, specific device features have been used to create a unique identity for vehicles. Our work is based on using the bias in on board sensory systems to create ICMetrics for self-driving vehicles. The incorporation of fuzzy petri net in autonomous vehicles is the third contribution of the thesis. Simulation results show that the scheme can successfully detect denial-of-service attacks. The design of a clustering based hierarchical detection system has also been presented to detect worm hole and Sybil attacks. The final contribution of this research is an integrated intrusion detection system which detects various attacks by using a central database in BusNet. The proposed schemes have been simulated using the data extracted from trace files. Simulation results have been compared and studied for high levels of detection capability and performance. Analysis shows that the proposed schemes provide high detection rate with a low rate of false alarm. The system can detect various attacks in an optimised way owing to a reduction in the number of features, fuzzification

    Holistic Control for Cyber-Physical Systems

    Get PDF
    The Industrial Internet of Things (IIoT) are transforming industries through emerging technologies such as wireless networks, edge computing, and machine learning. However, IIoT technologies are not ready for control systems for industrial automation that demands control performance of physical processes, resiliency to both cyber and physical disturbances, and energy efficiency. To meet the challenges of IIoT-driven control, we propose holistic control as a cyber-physical system (CPS) approach to next-generation industrial automation systems. In contrast to traditional industrial automation systems where computing, communication, and control are managed in isolation, holistic control orchestrates the management of cyber platforms (networks and computing platforms) and physical plant control at run-time in an integrated architecture. Specifically, this dissertation research comprises the following primary components. Holistic wireless control: The core of holistic wireless control is a holistic controller comprising a plant controller and a network controller cooperating with each other. At run-time the holistic controller generates (1) control commands to the physical plant and (2) network reconfiguration commands to wireless networks based on both physical and network states. This part of dissertation research focused on the design and evaluation of holistic controllers exploiting a range of network reconfiguration strategies: (1) adapting transmission redundancy, (2) adapting sampling rates, (3) self-triggered control, and (4) dynamic transmission scheduling. Furthermore, we develop novel network reconfiguration protocols (NRP) as actuators to control network configurations in holistic control. Holistic edge control: This part of dissertation research explores edge computing as a multitier computing platform for holistic control. The proposed switching multi-tier control (SMC) dynamically switches controllers located on different computation platforms, thereby exploiting the trade-off between computation and communication in a multi-tier computing platform. We also design the stability switch between local and edge controllers under information loss from another perspective, based on co-design of edge and local controllers that are designed via a joint Lyapunov function. Real-time wireless cyber-physical simulators: To evaluate holistic control, we extend the Wireless Cyber-Physical Simulator (WCPS) to integrate simulated physical plants (in Simulink) with real wireless networks (WCPS-RT) and edge computing platforms (WCPS-EC). The real-time WCPS provides a holistic environment for CPS simulations that incorporate wireless dynamics that are challenging to simulate accurately, explore the impacts and trade-off of computation and communication of multi-tier platforms, and leverage simulation support for controllers and plants

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-
    corecore