78 research outputs found

    Merge-and-shrink abstractions for classical planning : theory, strategies, and implementation

    Get PDF
    Classical planning is the problem of finding a sequence of deterministic actions in a state space that lead from an initial state to a state satisfying some goal condition. The dominant approach to optimally solve planning tasks is heuristic search, in particular A* search combined with an admissible heuristic. While there exist many different admissible heuristics, we focus on abstraction heuristics in this thesis, and in particular, on the well-established merge-and-shrink heuristics. Our main theoretical contribution is to provide a comprehensive description of the merge-and-shrink framework in terms of transformations of transition systems. Unlike previous accounts, our description is fully compositional, i.e. can be understood by understanding each transformation in isolation. In particular, in addition to the name-giving merge and shrink transformations, we also describe pruning and label reduction as such transformations. The latter is based on generalized label reduction, a new theory that removes all of the restrictions of the previous definition of label reduction. We study the four types of transformations in terms of desirable formal properties and explain how these properties transfer to heuristics being admissible and consistent or even perfect. We also describe an optimized implementation of the merge-and-shrink framework that substantially improves the efficiency compared to previous implementations. Furthermore, we investigate the expressive power of merge-and-shrink abstractions by analyzing factored mappings, the data structure they use for representing functions. In particular, we show that there exist certain families of functions that can be compactly represented by so-called non-linear factored mappings but not by linear ones. On the practical side, we contribute several non-linear merge strategies to the merge-and-shrink toolbox. In particular, we adapt a merge strategy from model checking to planning, provide a framework to enhance existing merge strategies based on symmetries, devise a simple score-based merge strategy that minimizes the maximum size of transition systems of the merge-and-shrink computation, and describe another framework to enhance merge strategies based on an analysis of causal dependencies of the planning task. In a large experimental study, we show the evolution of the performance of merge-and-shrink heuristics on planning benchmarks. Starting with the state of the art before the contributions of this thesis, we subsequently evaluate all of our techniques and show that state-of-the-art non-linear merge-and-shrink heuristics improve significantly over the previous state of the art

    An Analysis of Merge Strategies for Merge-and-Shrink Heuristics

    Get PDF
    The merge-and-shrink framework provides a general basis for the computation of abstraction heuristics for factored transition systems. Recent experimental and theoretical research demonstrated the utility of non-linear merge strategies, which have not been studied in depth. We experimentally analyze the quality of state-of-the-art merge strategies by comparing them to random strategies and with respect to tie-breaking, showing that there is considerable room for improvement. We finally describe a new merge strategy that experimentally outperforms the current state of the art

    Merge-and-Shrink Heuristics for Classical Planning: Efficient Implementation and Partial Abstractions

    Get PDF
    Merge-and-shrink heuristics are a successful class of abstraction heuristics used for optimal classical planning. With the recent addition of generalized label reduction, merge-and-shrink can be understood as an algorithm framework that repeatedly applies transformations to a factored representation of a given planning task to compute an abstraction. In this paper, we describe an efficient implementation of the framework and its transformations, comparing it to its previous implementation in Fast Downward. We further discuss partial merge-and-shrink abstractions that do not consider all aspects of the concrete state space. To compute such partial abstractions, we stop the merge-and-shrink computation early by imposing simple limits on the resource consumption of the algorithm. Our evaluation shows that the efficient implementation indeed improves over the previous one, and that partial merge-and-shrink abstractions further push the efficiency of merge-and-shrink planners

    Strengthening Canonical Pattern Databases with Structural Symmetries

    Get PDF
    Symmetry-based state space pruning techniques have proved to greatly improve heuristic search based classical planners. Similarly, abstraction heuristics in general and pattern databases in particular are key ingredients of such planners. However, only little work has dealt with how the abstraction heuristics behave under symmetries. In this work, we investigate the symmetry properties of the popular canonical pattern databases heuristic. Exploiting structural symmetries, we strengthen the canonical pattern databases by adding symmetric pattern databases, making the resulting heuristic invariant under structural symmetry, thus making it especially attractive for symmetry-based pruning search methods. Further, we prove that this heuristic is at least as informative as using symmetric lookups over the original heuristic. An experimental evaluation confirms these theoretical results

    Simplified Planner Selection

    Get PDF
    There exists no planning algorithm that outperforms all oth- ers. Therefore, it is important to know which algorithm works well on a task. A recently published approach uses either im- age or graph convolutional neural networks to solve this prob- lem and achieves top performance. Especially the transforma- tion from the task to an image ignores a lot of information. Thus, we would like to know what the network is learning and if this is reasonable. As this is currently not possible, we take one step back. We identify a small set of simple graph features and show that elementary and interpretable machine learning techniques can use those features to outperform the neural network based approach. Furthermore, we evaluate the importance of those features and verify that the performance of our approach is robust to changes in the training and test data

    Explainable Planner Selection

    Get PDF
    Since no classical planner consistently outperforms all oth ers, it is important to select a planner that works well for a given classical planning task. The two strongest approaches for planner selection use image and graph convolutional neu ral networks. They have the drawback that the learned mod els are not interpretable. To obtain explainable models, we identify a small set of simple task features and show that el ementary and interpretable machine learning techniques can use these features to solve as many tasks as the approaches based on neural networks

    Formally Verified Compositional Algorithms for Factored Transition Systems

    Get PDF
    Artificial Intelligence (AI) planning and model checking are two disciplines that found wide practical applications. It is often the case that a problem in those two fields concerns a transition system whose behaviour can be encoded in a digraph that models the system's state space. However, due to the very large size of state spaces of realistic systems, they are compactly represented as propositionally factored transition systems. These representations have the advantage of being exponentially smaller than the state space of the represented system. Many problems in AI~planning and model checking involve questions about state spaces, which correspond to graph theoretic questions on digraphs modelling the state spaces. However, existing techniques to answer those graph theoretic questions effectively require, in the worst case, constructing the digraph that models the state space, by expanding the propositionally factored representation of the syste\ m. This is not practical, if not impossible, in many cases because of the state space size compared to the factored representation. One common approach that is used to avoid constructing the state space is the compositional approach, where only smaller abstractions of the system at hand are processed and the given problem (e.g. reachability) is solved for them. Then, a solution for the problem on the concrete system is derived from the solutions of the problem on the abstract systems. The motivation of this approach is that, in the worst case, one need only construct the state spaces of the abstractions which can be exponentially smaller than the state space of the concrete system. We study the application of the compositional approach to two fundamental problems on transition systems: upper-bounding the topological properties (e.g. the largest distance between any two states, i.e. the diameter) of the state spa\ ce, and computing reachability between states. We provide new compositional algorithms to solve both problems by exploiting different structures of the given system. In addition to the use of an existing abstraction (usually referred to as projection) based on removing state space variables, we develop two new abstractions for use within our compositional algorithms. One of the new abstractions is also based on state variables, while the other is based on assignments to state variables. We theoretically and experimentally show that our new compositional algorithms improve the state-of-the-art in solving both problems, upper-bounding state space topological parameters and reachability. We designed the algorithms as well as formally verified them with the aid of an interactive theorem prover. This is the first application that we are aware of, for such a theorem prover based methodology to the design of new algorithms in either AI~planning or model checking

    Homomorphisms of Lifted Planning Tasks: The Case for Delete-free Relaxation Heuristics

    Get PDF

    Online Planner Selection with Graph Neural Networks and Adaptive Scheduling

    Get PDF
    Automated planning is one of the foundational areas of AI. Since no single planner can work well for all tasks and domains, portfolio-based techniques have become increasingly popular in recent years. In particular, deep learning emerges as a promising methodology for online planner selection. Owing to the recent development of structural graph representations of planning tasks, we propose a graph neural network (GNN) approach to selecting candidate planners. GNNs are advantageous over a straightforward alternative, the convolutional neural networks, in that they are invariant to node permutations and that they incorporate node labels for better inference. Additionally, for cost-optimal planning, we propose a two-stage adaptive scheduling method to further improve the likelihood that a given task is solved in time. The scheduler may switch at halftime to a different planner, conditioned on the observed performance of the first one. Experimental results validate the effectiveness of the proposed method against strong baselines, both deep learning and non-deep learning based. The code is available at \url{https://github.com/matenure/GNN_planner}.Comment: AAAI 2020. Code is released at https://github.com/matenure/GNN_planner. Data set is released at https://github.com/IBM/IPC-graph-dat

    On the expressive power of non-linear Merge-and-Shrink representations

    Get PDF
    We prove that general merge-and-shrink representations are strictly more powerful than linear ones by showing that there exist problem families that can be represented compactly with general merge-and-shrink representations but not with linear ones. We also give a precise bound that quantifies the necessary blowup incurred by conversions from general merge-and-shrink representations to linear representations or BDDs/ADDs. Our theoretical results suggest an untapped potential for non-linear merging strategies and for the use of non-linear merge-and-shrink-like representations within symbolic search
    corecore