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Abstract
There exists no planning algorithm that outperforms all oth-
ers. Therefore, it is important to know which algorithm works
well on a task. A recently published approach uses either im-
age or graph convolutional neural networks to solve this prob-
lem and achieves top performance. Especially the transforma-
tion from the task to an image ignores a lot of information.
Thus, we would like to know what the network is learning
and if this is reasonable. As this is currently not possible, we
take one step back. We identify a small set of simple graph
features and show that elementary and interpretable machine
learning techniques can use those features to outperform the
neural network based approach. Furthermore, we evaluate the
importance of those features and verify that the performance
of our approach is robust to changes in the training and test
data.

1 Introduction
Planning is concerned with finding a sequence of actions that
leads from some initial state to a goal. Over the last decades
researchers invented a zoo of different algorithms. All of
those exhibiting different strengths and weaknesses. No sin-
gle algorithm excels on all tasks. To combine the strengths
of multiple planning algorithms, in the further course called
planners, the idea of having a portfolio of planners to solve
a task has emerged. The most common type of portfolios is
based on the idea that a planner solves a task either quickly
or not at all. Thus, if a planner is not quickly finding a so-
lution, then we could try another planner. Those portfolios
posses a set of complementing planners and for each planner
they predefined how long the planner runs and in which or-
der they are executed (Helmert et al. 2011; Seipp et al. 2015;
Howe et al. 1999). The disadvantage of this approach is that
it splits the available time among the planners in its portfo-
lio. It can happen that for some tasks no planners in a port-
folio can quickly solve the task. In this case, it would be
better to choose the single planner with the highest chance
to solve the task and let it run for all the available time. A
second portfolio approach has a collection of planners and
predicts for a given task how long each planner requires for
solving the task or how confident the model is that a plan-
ner will solve the task. Then, a single planner is selected
and executed. The main obstacle in this approach is finding

a good representation of the task for the predicting model.
Fawcett et al. (2014) gathered a large set of handcrafted fea-
tures. They trained models on those features to predict for
some planners how long the planners require to solve a given
task. To avoid handcrafting features and potentially ignoring
important features Sievers et al. (2019a) translated a given
task into a graph which can potentially be translated back
into the original task. They interpreted the adjacency ma-
trix of the graph as image, scale the image down to 128x128
pixels, and train a convolutional neural network (CNN) to
predict which planner will solve the given task. The idea is
that the neural network detects automatically good features.
The success of their approach is astonishing. The interpreta-
tion of the graph as an 128x128 pixel image ignores a lot of
information. Many entries of the adjacency matrix are com-
bined in the same pixel and the information which type a
node has is discarded. The success of their CNN shows that
the remaining information in the image are sufficient for the
planner selection. In a succeeding paper, the input transfor-
mation from a graph to an image was eliminated by using
graph convolution networks (GCN) (Kipf and Welling 2017)
and feeding the graph directly into the neural network (Ma et
al. 2020). This caused a modest performance improvement
and implies that the images contains sufficient information.

The obvious questions are: What could be the features the
neural networks are learning from these graphs resp. im-
ages? Can we use those features in combination with sim-
pler machine learning techniques and achieve similar or even
better performance? Neural networks are complex function
approximators (Cybenko 1989). Today, we are not able to
understand which features they have learned. We modify the
questions and show that we can find simple features in the
graphs such that simple machine learning techniques outper-
form the neural network based approach. We evaluate how
important our features are and verify that our models are ro-
bust to changes in the training and test data.

The rest of the paper is structured as follows. Section 2
provides background on planning and on the graph encod-
ings we are working with. Section 3 explains the training
setup of our experiments. The experiments and their results
are described in section 4 and we summarize our findings in
section 5.
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2 Background
A PDDL task ΠPDDL (McDermott et al. 1998) is defined as
a tuple (P,A,ΣC ,ΣO, I, G). P is a set of first-order pred-
icates. A is a set of action schemas. ΣC is a set of constant
objects, ΣO is a set of non-constant objects. Σ = ΣC ∪ΣO.
An action schema a ∈ A with the parameters p1, ..., pn is
a triple (prea , adda, dela) with prea ⊆ P , adda ⊆ P , and
dela ⊆ P and all variables in prea, adda, and dela are in
ΣC ∪ {p1, ..., pn}. I is the initial state and G the goal. Both
are sets of atomic statements over P using Σ.

Any PDDL task can be translated into a SAS+ task
(Bäckström and Nebel 1995). A SAS+ task is a tuple
(V,A, s0, s∗) with V is a set of variables. Each variable
v ∈ V has a finite domain dom(v). A fact is a pair (v, v′)
with v ∈ V and v′ ∈ dom(v). A state assigns every vari-
able v ∈ V a value from its domain. A partial assignment
assigns every variable in a subset of V a value from their
domains. A is the set of actions with each action a ∈ A is
a pair (prea, eff a) and prea, eff a are partial states. s0 is a
state which is called the initial state, and s∗ is a partial as-
signment which is called the goal.

We use the previous formalisms to define graph encodings
that describe a given task. The problem description graph
(PDG) (Pochter, Zohar, and Rosenschein 2011) is an undi-
rected graph which contains for every fact and variable one
node and for every action two nodes (one representing the
preconditions and one representing the effects of the action).
For every value in the domain of a variable the associated
node is connected to the node of the variable. Every precon-
dition and effect node associated to the same operator are
connected. The nodes associated to the facts in the precon-
dition of an action are connected to the precondition node
of an action. The same is done for the facts in the effect of
an action. Additionally, we add two special nodes, one is
connected to all nodes representing facts that are true in the
initial state; the other is connected to all nodes representing
facts that are true in the goal.

The second encoding is based on the abstract structure
graph (ASG) of the task (Sievers et al. 2019b). An abstract
structure is defined as either a symbol (specific elements are
symbols), as a list of abstract structures, or as a set of ab-
stract structures. For a given PDDL file, each object and
variables becomes a symbol, but also further elements of
the PDDL task become symbols. The more complex parts
of the PDDL are constructed from those symbols. E.g. the
fact on(a, b) is constructed as a list containing the symbols
on, a, and b. The abstract structure of a PDDL file is written
as graph by creating a node for every symbol and every ab-
stract structure and adding a directed edge X → Y between
two nodes X and Y if X requires for its definition Y. A PDDL
description of a planning task can be directly translated into
an ASG and the ASG can be translated back into the same
PDDL description.

3 Training
To make our results comparable Ma et al. (2020), we per-
form all experiments on the data set published by Ferber
et al. (2019) which extends the data produced by Katz et

al. (2018). Our code, new data sets, and experimental results
are online available(Ferber 2020).

The data set contains tasks from the classical planning
tracks of the International Planning Competitions (IPC) un-
til 2018. Additionally, it includes the domains BRIEFCASE-
WORLD, FERRY, and HANOI from the IPP benchmark col-
lection (Köhler 1999), the domain GEDP (Haslum 2011),
domains from the conformant-to-classical planning compi-
lation (T0) (Palacios and Geffner 2009), and the domain
FSC (Bonet, Palacios, and Geffner 2009).

For each task the runtimes of 29 optimal planners are mea-
sured. The measurements were limited to 30 minutes and at
most 7744MiB of memory. We restrict ourselves to the sub-
set of 17 planners that Ma et al. (2020) used. Those are 16
Fast Downward (Helmert 2006) configurations. All config-
urations are using A* search (Hart, Nilsson, and Raphael
1968) and strong stubborn sets (Wehrle and Helmert 2014).
Each of the following eight heuristics is used twice, once
with structural symmetries pruning (Shleyfman et al. 2015)
using DKS (Domshlak, Katz, and Shleyfman 2012) and
once with structural symmetries pruning using orbital space
search (OSS) (Domshlak, Katz, and Shleyfman 2015): blind
heuristic, LM-cut (Helmert and Domshlak 2009), iPDB
(Haslum et al. 2007), a zero-one cost partitioning pattern
data base (01-PDB) using a genetic algorithm to compute
the pattern (Edelkamp 2006), and four Merge & Shrink
(M&S) heuristics (Dräger, Finkbeiner, and Podelski 2006;
Helmert et al. 2014; Sievers 2017) using bisimulation (BS)
(Nissim, Hoffmann, and Helmert 2011), full pruning (Siev-
ers 2017), Θ-combinability (Sievers, Wehrle, and Helmert
2014), partial abstractions (Sievers 2018), DFP (Sievers,
Wehrle, and Helmert 2014), and merging based on either
strongly connected components (SCC) of the causal graph
(Sievers, Wehrle, and Helmert 2016), maximum intermedi-
ate abstraction size minimizing (MIASM) (Fan, Müller, and
Holte 2014), or score-based MIASM (sbMIASM) (Sievers,
Wehrle, and Helmert 2016). The 17th planner is SymBA*
(Torralba et al. 2014). Every planner except for 2 M&S con-
figurations use h2 mutex detection (Alcázar and Torralba
2015).

We removed all tasks from the data set that were not
solved by any of the selected planners. 2,439 tasks remain;
145 of those tasks belong to the IPC 2018. For each task the
data set contains its PDG, called grounded, and its encoding
as ASG, called lifted. Because our machine learning tech-
niques do not work on graphs, we extract the following 21
basic properties from every graph:
• the number of nodes
• the number of edges

• the graph density ( #edges
#nodes∗(#nodes−1) )

• the number of connected components
• the size of the largest connected component
• the minimum, mean, median, and maximum eccentricity

of its nodes (the eccentricity of a node is its maximum
distance to any other node; the minimum eccentricity of a
graph is called radius, the maximum eccentricity is called
diameter)



LR RF MLP Delfi

0 0.1 1 2 5 50 3 5 CNN GNN

Binary 57.0(0.8) 86.2(0.0) 82.1(0.0) 84.8(0.0) 88.3(0.0) 69.9(4.3) 76.6(8.2) 77.4(8.2) 73.1 80.7
Log 62.8(0.0) 67.6(0.0) 89.0(0.0) 80.7(0.0) 81.4(0.0) 66.6(2.4) 64.8(0.0) 64.2(1.9) – –
Time 56.4(0.7) 55.2(0.0) 55.2(0.0) 52.4(0.0) 55.2(0.0) 72.1(3.1) 68.3(4.6) 67.4(2.0) – –

LR RF MLP Delfi

0 0.1 1 2 5 50 3 5 CNN GNN

Binary 65.5(0.0) 66.2(0.0) 70.3(0.0) 64.8(0.0) 61.4(0.0) 70.9(4.5) 61.4(0.0) 61.4(0.0) 86.9 87.6
Log 58.6(0.0) 69.7(0.0) 69.7(0.0) 69.7(0.0) 70.3(0.0) 73.7(3.5) 65.2(1.0) 64.8(0.0) – –
Time 65.5(0.0) 74.5(0.0) 71.0(0.0) 69.7(0.0) 70.3(0.0) 79.6(5.3) 67.9(5.9) 70.3(4.6) – –

Table 1: Mean coverage and standard deviation (in %) on the IPC 2018 tasks which are solved by at least one planner. Linear
regression (LR) uses L1 regularization weights from 0 to 5; random forest (RF) have 50 trees; and the multi-layer perceptrons
(MLP) have 3 resp. 5 hidden layers. The last column shows the published performance of the image (CNN) resp. graph (GCN)
based versions of Delfi on binary labels. Top: Performance on the grounded graphs. Bottom: Performance on the lifted graphs.

• the minimum, mean, median, and maximum degree of its
nodes

• the minimum, mean, median, and maximum in-degree of
its nodes

• the minimum, mean, median, and maximum out-degree
of its nodes

We selected those properties because they are easy to un-
derstand and fast to compute. The values of some properties
can greatly differ, e. g. the number of nodes in the grounded
graphs vary between 6 and 87,000. Thus, we augment our
set of features, by adding the logarithm of each property (
given that the property is always non-zero) and by normaliz-
ing each property into the range of 0 to 1. Finally, for every
graph we obtain a feature vector with 60 elements. For the
runtime, we have the same issues as we had for some prop-
erties. The scale of the runtime can vary between fractions
of a second and up to half an hour. Therefore, we train the
models with three different label transformations: With the
original runtime, with the logarithm of the runtime, and with
the binary information whether a planner was able to solve
a task within the resource limits.

We train plain linear regression models (Galton 1886) and
models with L1 regularization (Tibshirani 1996). Linear re-
gression learns for every feature (each property and their
transformations) a weight. The output is the weighted sum
of the features. L1 regularization adds the L1 norm of the
weights as penalty to the optimization process. This causes
unnecessary large feature weights to decrease and can filter
out irrelevant features. The L1 norm can be scaled with a
parameter to make the filtering weaker or stronger.

Second, we train random forests (Breiman 2001). Those
are ensembles of decision trees. During training, we opti-
mize each decision tree individually. The final output of the
random forest is an averaged decision over all its trees.

The last kind of models we train are multi-layer percep-
tron. Those are simple neural network consisting of multi-

ple layers of neurons. Each layer is densely connected to
the next layer. The value for each neuron is the weighted
sum of the neurons connected to it (c. f. linear regression).
The value of the neuron is modified by a non-linear function
(e. g. ReLU(x) = max(0, x)) and is forwarded to the next
neurons. We use the Adam optimizer (Kingma and Ba 2015)
with a learning rate of 0.001 to optimize the weights of the
network.

4 Experiments
First, we evaluate how good our simple techniques are at
choosing a single planner to solve a given task and compare
our results to previous work. Then, we investigate which
features have been used and how important those features
are. Next, we examine which planners were actually chosen
by our models, and we end by evaluating whether our tech-
niques are robust to changes in the data.

One of our feature augmentations normalizes the values of
the graph properties. The test data was not used for finding
the normalization parameters. All training configurations are
run 10 times and their mean coverage as well as their stan-
dard deviation are reported. The experiments are run with 3
GB of memory on a single core of an Intel Xeon E5-2660
CPU. The linear regression models finished training in at
most 13 seconds, the random forest models in at most 48
seconds, and the neural networks in at most 20 minutes.

Performance on IPC 2018 Tasks
First, we evaluate how good simple machine learning tech-
niques are at choosing a planner to solve a given task. Like
Ma et al. (2020) we use the tasks from the IPC 2018 as test
data and all other tasks for training. Neither linear regression
nor random forests support validation data, thus, we do not
use validation data for the multi-layer perceptrons either.

We train 5 linear regression configurations with L1 regu-
larization weights from 0 to 5, a single random forest with
50 trees, and 2 neural network configurations with 3 resp. 5



hidden layers and 30 neurons in each layer. We use the sig-
moid activation function and the cross-entropy loss to train
the networks which make binary decisions. For all other net-
works we use the ReLU activation function and the mean
squared error loss.

Table 1 shows the performance of all models on the fea-
tures of the grounded (top) and lifted (bottom) graphs. The
two simplest baselines are selecting a random planner for
each task which has a coverage of 60.6% and selecting al-
ways the planner which performed best on the training data
which has a coverage of 64.8%. Most of our trained mod-
els outperform both of those baselines. This shows that even
simple models can learn useful information. In the grounded
setting, linear regression outperforms all other techniques if
it is trained on binary or logarithmically transformed labels;
on the true labels it is not able to learn anything and per-
forms even worse than the random baseline. Notable, linear
regression with our features is even outperforming the Delfi
baselines. This does not mean that Delfi is approximating
our features, but, it shows that even simple machine learn-
ing techniques with understandable features obtain top per-
formances.

The lifted setting is more difficult for linear regression. Its
performance is worse in general. In this setting our best per-
forming models are random forests, but even those are not
able to outperform the Delfi baselines on the lifted graphs.
This means the neural networks of Delfi on the lifted graphs
are able to exploit some features that we do not know about.
It is an advantage of Delfi that the user does not need to de-
fine a set of properties.

Feature Reduction
Now that we have well performing models, the questions
arise which features are required by the models and how im-
portant are those features? The answers help us to under-
stand which properties of the graphs describe useful infor-
mation and which properties can be skipped to speed up the
predictions.

Linear regression models allow us to easily investigate
their learned weights, thus, we will take a look into the best
performing linear regression models for grounded and for
the lifted graphs. Additionally, we add the best grounded
configuration with binary labels and the lifted configuration
with logarithmically transformed labels and and L1 weight
of 1 to the comparison. We cannot interpret the magnitude
of a weight as importance, because the magnitude of our
features varies greatly. Instead, for every feature we sum up
how often it has been used by the models. For each config-
uration we have trained 10 models and each model has in-
ternally one linear regression model for each of the 17 plan-
ners. Thus, the maximum number of times a feature can be
used is 170. The more frequently a feature has been used
the more beneficial we can expect it to be. Table 2 shows
those sums. Our first observation is that many configurations
do not use any normalized feature and rarely use a logarith-
mically scaled feature. Those transformed features are good
candidates to be exclude from training to speed up the pre-
dictions.

Upon closer inspection we see that the more precise we

Grounded Lifted

Features Binary Log Log Time

#nodes 0 170 170 170
#edges 170 170 170 170
density 0 0 0 0

#conn. comp. 0 0 0 170
max(|conn. comp|) 170 170 170 170

radius 80 150 170 170
mean eccentricity 50 0 160 170

median eccentricity 20 20 40 170
diameter 50 20 110 170

min. degree 0 0 0 142
mean degree 0 20 0 169

median degree 0 0 0 117
max. degree 110 170 160 170

min. in-degree 0 0 0 0
mean in-degree 0 0 0 79

median in-degree 0 0 0 0
max. in-degree 40 150 160 170

min. out-degree 0 0 0 0
mean out-degree 0 0 0 31

median out-degree 0 0 0 140
max. out-degree 130 140 170 170

log(#nodes) 0 0 0 170
log(#edges) 0 20 0 140
log(density) 0 50 0 160

log(#conn. comp.) 0 0 0 160
log(max(|conn. comp|)) 0 140 0 160

log(radius) 0 0 0 170
log(mean eccentricity) 0 0 0 170

log(median eccentricity) 0 0 0 170
log(diameter) 0 0 0 170

log(min. degree) 0 0 0 140
log(mean degree) 0 0 0 90

log(median degree) 0 0 0 170
log(max. degree) 0 0 0 140

log(max. in-degree) 0 0 0 169
log(mean out-degree) 0 0 0 50

log(median out-degree) 0 0 0 140
log(max. out-degree) 0 10 140 170

norm(#nodes) 0 0 0 66
norm(#edges) 0 0 0 170
norm(density) 0 0 0 170

norm(#conn. comp.) 0 0 0 120
norm(max(|conn. comp|)) 0 0 0 104

norm(radius) 0 0 0 152
norm(mean eccentricity) 0 0 0 102

norm(median eccentricity) 0 0 0 152
norm(diameter) 0 0 0 152

norm(min. degree) 0 0 0 170
norm(mean degree) 0 0 0 170

norm(median degree) 0 0 0 170
norm(max. degree) 0 0 0 110

norm(mean in-degree) 0 0 0 110
norm(max. in-degree) 0 0 0 152

norm(mean out-degree) 0 0 0 118
norm(median out-degree) 0 0 0 137

norm(max. out-degree) 0 0 0 10

Table 2: Feature usages for linear regression configurations.
The lifted log configuration uses the same L1 weight as
the grounded log configuration. All other configurations use
their best L1 weight. Four unused features are omitted.



Features Grounded Lifted

#nodes 1 A
#edges 2 A
density 3 B

#conn. comp. 4 C
max(|conn. comp|) 1 A

radius 5 A
mean ecc. 5 A

median ecc. 5 A
diameter 5 A
min. deg. 6 D

mean deg. 7 E
median deg. 8 F

max. deg. 9 G
min. indeg. 10 H

mean indeg. 7 E
median indeg. 11 I

max. indeg. 12 G
min. outdeg. 13 J

mean outdeg. 7 E
median outdeg. 14 K

max. outdeg. 9 G

Table 3: Groups of features with a high (> 0.95) positive or
negative Pearson Correlation.

Feature Group Grounded Feature Group Lifted

1 -2.8% A 9.0%
2 -6.2% B -0.7%
3 0.0% C 0.0%
4 0.0% D 0.0%
5 0.0% E -5.5%
6 0.0% F -1.4%
7 -2.8% G -4.8%
8 0.0% H 0.0%
9 -18.6% I 0.0%

10 0.0% J 0.0%
11 0.0% K 0.0%
12 -4.8%
13 0.0%
14 0.0%

Baseline 89.0% 74.5%

Table 4: Performance degradation for the best grounded and
lifted linear regression configuration, if a group of highly
correlated features is removed.

want to predict the runtimes, the more features the linear
regression is using. For the prediction of a binary label the
models do not use any transformed feature. To predict the
logarithm of the runtimes, some transformed features are
used. And to predict the actual runtime, almost all features
are used. This trend could be seen in multiple configurations
and is independent of using the grounded or the lifted en-
coding.

A final, less obvious observation is that there are some
groups of features for which a trained regressor is only se-
lecting some members of each group. This can be especially
well seen with the features radius, mean eccentricity, me-
dian eccentricity, and diameter. Experiments have shown
that removing one of those features has close to no impact
on the performance. It turned out that some properties of
the graph are strongly linearly correlated. We calculated for
each pair of features their Pearson correlation and grouped
features together which have an absolute Pearson correlation
greater than 0.95. Table 3 shows for both encodings which
features are grouped together.

To understand how important each feature group is for
the final performance, we retrain the models but withhold a
single feature group. Table 4 shows how much the perfor-
mance of an model changes if a feature group is left out. For
the grounded graphs, the most important feature is by far
the maximum degree in the graph, the second most impor-
tant feature is the number of edges. For the lifted graphs, the
features ’mean degree’, ’mean in-degree’, and ’mean out-
degree’ are the most important. But nearly as important are
the features ’maximum degree’ and ’maximum out-degree’.
Some features groups can be removed without any impact
on the test performance and removing feature group ’A’ even
improves the coverage. Ideally, the L1 regularization would
assign those features a weight of zero. This might not hap-
pen for two reasons. First, the test tasks - from the IPC 2018
- come from a different data distribution than the training
tasks. Thus, features useful for the training tasks might not
be useful on the test tasks. Secondly, the loss optimized by
the linear regression is not the metric we are comparing. The
models try to optimize their prediction for every planner, we
are only interested in selecting a single planner to solve the
task.

Planner choices
To better understand how the models obtain peak perfor-
mance, we examine which planners are chosen. We want to
understand whether those models have learned to choose the
right planner for a task. The models do not predict planners
at random, because their coverage is not close to the random
baseline.

Table 5 shows how often a planner was selected by the
best grounded and the best lifted linear regression model.
For each planner it shows additionally their coverage on all
test tasks (CovT) and their coverage on those tasks for which
they were selected (CovC). For both configurations we see
that the models chose their predictions from a subgroup of
(mostly) good planners. We have trained 15 linear regression
configuration for the grounded and again 15 configurations
for the lifted graph encoding. Could it be that by chance
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SymBA*
h2 + DKS + LM-cut
h2 + OSS + LM-cut
h2 + DKS + iPDB
h2 + DKS + M&S-BS-sbMIASM
h2 + DKS + M&S-BS-SCC-DFP
h2 + OSS + iPDB
h2 + OSS + 01-PDB
h2 + DKS + M&S-SCC-DFP

Figure 1: Shows for each task in the test data which planner was selected by the best linear regression configuration for the
lifted and grounded graphs. All tasks are sorted by domains and within their domains by name.

Usage CovT CovC Planner (grounded)

39.3% 82.1% 94.7% SymBA*
24.8% 64.8% 91.7% h2 + DKS + LM-cut
21.4% 70.3% 80.6% h2 + OSS + iPDB
10.3% 59.3% 80.0% h2 + OSS + 01-PDB

1.4% 70.3% 100.0% h2 + DKS + iPDB
1.4% 52.4% 100.0% h2 + DKS + M&S-SSC-DFP
1.4% 64.8% 50.0% h2 + OSS + LM-cut

Usage CovT CovC Planner (lifted)

28.3% 82.1% 73.2% SymBA*
22.5% 64.8% 66.3% h2 + OSS + LM-cut
15.9% 70.3% 100.0% h2 + DKS + iPDB
15.2% 65.5% 63.6% h2 + DKS + M&S-BS-SCC-DFP

9.2% 64.8% 62.7% h2 + DKS + LM-cut
6.2% 69.7% 77.8% h2 + DKS + M&S-BS-sbMIASM
2.8% 70.3% 100.0% h2 + OSS + iPDB

Table 5: Distribution of how often a planner was selected
(Usage), the fraction of tasks, the planner solves from the
test tasks (CovB), and the fraction of tasks the planner solves
when being chosen (CovC) by the best grounded (top) resp.
lifted (bottom) linear regression model.

some models found a subgroup of good planners and ran-
domly chooses planners from its subgroup? If this would be
the case, then for each selected planner the coverage on the
tasks it was selected for should be approximately the same
as its coverage on all test tasks. We see that this is clearly
not the case. The models have learned to predict for a task
which planner is good. Especially in the grounded setting, if
the model selects a planner for a task, then the probability of
the planner to solve the task is much higher than the planners
coverage probability on all test tasks.

A model that has learned which planner is good for a task
should assign the same planner to similar tasks. This means,
especially within the same domain it should reliably select
the same planner. As each domain contains tasks of vary-
ing difficulty, it might happen that within the same domain
multiple planners are selected, but this should be noticeably
different from randomly choosing a planner. Figure 1 shows
for every task of the test set which planner was selected. The
tasks are grouped by domains and within domains ordered as
defined in the IPC 2018. We see that for many domains the
models select a single planner. There are also some domains
in which the models start with one planner and at one point
switch to another planner.

We can conclude that the models have detected some
structure in the features of each task and learned to exploit
this to select a good subset of planners and to predict a good
planner for a task or even for a set of similar tasks.

Robustness
Until now all experiments have been performed on the same
training and test data. One might argue that our results are
by chance and with different data the results look different.
Thus, we end with two experiments which show that our
findings are robust even with changes in the data.

To verify that our performance on the test data does not
change significantly with different training data, we split the
training data into 10 folds, but enforce that all tasks of the
same domain will be assigned to the same fold. Every con-
figuration is trained 10 times, but each time a different fold is
ignored. If our approach is robust to changes in the training
data, then the performance should not change much. Table 6
shows that indeed the configurations still perform similarly



LR RF MLP

0 0.1 1 2 5 50 3 5

Binary 60.6(5.5) 81.8(6.1) 82.0(5.3) 82.6(5.4) 84.6(5.7) 70.4(3.8) 75.6(7.8) 73.9(7.9)
Log 63.1(5.7) 67.2(6.3) 81.1(8.1) 78.5(6.4) 79.8(6.0) 68.8(5.7) 64.8(0.2) 67.0(3.4)
Time 60.0(4.9) 56.1(5.0) 56.0(4.8) 55.5(5.1) 57.3(5.3) 71.5(5.9) 68.7(5.2) 68.8(5.5)

LR RF MLP

0 0.1 1 2 5 50 3 5

Binary 63.6(4.0) 70.3(4.7) 70.6(3.5) 70.7(5.2) 66.1(6.0) 73.4(5.1) 63.2(3.7) 64.7(6.4)
Log 58.5(3.8) 69.8(3.1) 68.8(2.9) 69.6(3.0) 70.3(1.8) 74.1(6.0) 64.8(0.0) 64.8(0.0)
Time 63.7(3.7) 73.2(3.8) 70.3(2.9) 69.7(3.2) 70.6(3.6) 77.4(6.1) 66.3(2.4) 69.0(4.1)

Table 6: Mean coverage and standard deviation (in %) on the IPC 2018 tasks. The training data is split into 10 folds such that
all tasks of the same domain are in the same fold. For each experiment repetition a different fold is ignored. Top: Performance
on the grounded graphs. Bottom: Performance on the lifted graphs.

LR RF MLP

0 0.1 1 2 5 50 3 5

Binary 85.6(8.3) 77.3(17.5) 76.3(17.2) 76.0(17.0) 76.6(18.0) 83.4(6.5) 76.8(17.2) 79.7(16.8)
Log 86.7(7.8) 85.9(8.4) 82.4(8.5) 78.2(15.6) 77.8(16.2) 83.4(9.5) 83.8(8.6) 84.8(6.5)
Time 86.3(8.5) 84.2(8.5) 84.3(8.6) 84.5(9.0) 84.3(8.8) 79.2(17.7) 84.9(4.4) 83.3(6.5)

LR RF MLP

0 0.1 1 2 5 50 3 5

Binary 81.5(4.1) 75.8(15.4) 75.6(16.5) 74.1(15.2) 73.4(15.4) 77.6(13.3) 72.7(16.1) 72.2(16.1)
Log 81.0(9.9) 73.8(15.5) 82.3(7.8) 82.5(7.8) 82.7(7.8) 75.9(13.6) 82.2(8.5) 82.2(8.5)
Time 82.4(5.6) 78.7(10.6) 74.4(15.6) 74.6(16.8) 74.4(16.7) 78.9(13.2) 81.5(7.7) 78.9(9.0)

Table 7: Mean coverage and standard deviation (in %) on a random test fold. The data set - including the tasks from the IPC
2018 - is split into 10 folds such that all tasks of the same domain are in the same fold. For each experiment repetition a
different fold is selected as test set. The other folds are used for training. Top: Performance on the grounded graphs. Bottom:
Performance on the lifted graphs.



well. The performance might have decreased a bit, because
1/10th of the training data was ignored. The standard devia-
tion shows us that depending on which part of the training
data is ignored the coverage can moderately vary.

Finally, we also change the test data. We split the whole
data set into 10 folds, still keeping tasks from the same do-
main in the same fold. We train for each configuration 10
models. Each model uses a different fold as test data and
trains on the remaining nine folds. Table 7 shows that our
coverage increases. This might be because the tasks in the
IPC 2018 were quite different from those tasks of previous
IPCs, thus, learning from tasks of previous IPCs to select
planners for tasks of the IPC 2018 is a difficult challenge.
Changing the test data could make the learning easier. An-
other reason could be that planners in the data set were se-
lected because they are good planners and their goodness
could have been measured by using the old tasks of the IPC.

5 Summary and Future Work
We have shown that we can use simple machine learning
techniques like linear regression to predict for a given tasks
which planner to run to solve the task. In the grounded set-
ting this even outperformed the image resp. graph convolu-
tion based baselines. Thus, we can have explainable deci-
sions while still keeping top performance. At the same time
this is not a justification to forget the image resp. graph con-
volution approaches. In the lifted setting those perform still
better and have the advantage that the user does not need to
come up with a set of good features, but the neural networks
learn those features themselves.

Additionally to training those models, we studied which
features are relevant for the predictions and how important
they are. In the grounded setting the maximum degree of
the graph was the most important information. On the other
hand in the lifted setting there was no single feature with a
similarly large impact. Finally, we verified that the models
learned which planners to run for a domain.

Some future work is to use more fine grained features of
the graph, e.g. number of operator nodes, such that we can
reason which properties of the task instead of which property
of the graph determine the planner choices.
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