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Abstract

The merge-and-shrink framework provides a general basis for
the computation of abstraction heuristics for factored transi-
tion systems. Recent experimental and theoretical research
demonstrated the utility of non-linear merge strategies, which
have not been studied in depth. We experimentally analyze
the quality of state-of-the-art merge strategies by comparing
them to random strategies and with respect to tie-breaking,
showing that there is considerable room for improvement. We
finally describe a new merge strategy that experimentally out-
performs the current state of the art.

Introduction
Heuristic search is a common approach for finding short-
est paths in large state spaces, for example in optimal
classical planning. Several recently proposed heuristics
use the merge-and-shrink framework (Dräger, Finkbeiner,
and Podelski 2006; 2009; Helmert, Haslum, and Hoffmann
2007; Helmert et al. 2014), where atomic abstractions of a
planning task are incrementally combined (merging two ab-
stract transition systems) and simplified (shrinking an ab-
stract transition system) until a single abstraction is left,
whose goal distances then induce a heuristic for the plan-
ning task. Throughout the paper, we assume basic familiar-
ity with classical planning and the merge-and-shrink frame-
work. A self-contained introduction to the most recent evo-
lution of the merge-and-shrink framework is provided by
Sievers, Wehrle, and Helmert (2014).

An important aspect of merge-and-shrink is the merge
strategy, which determines which two intermediate abstrac-
tions to combine in each merge step. We will use the fol-
lowing terminology: A merge strategy for a task is defined
by a binary tree over the state variables of the task. If this
tree degenerates to a list, the merge strategy is called linear,
otherwise non-linear (Fig. 1). More generally, when speak-
ing of a merge strategy from the literature, we refer to the
specific (domain-independent) algorithm that generates the
merge strategies for the given planning tasks. Such an al-
gorithm is called a linear merge strategy if and only if the
merge strategies it produces are linear for all planning tasks.
In other words, non-linear merge strategy algorithms are not
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Figure 1: Linear (left) and non-linear (right) merge strategy
for a planning task with five state variables.

constrained to produce linear merge trees for all tasks, but
still may produce linear merge trees for some tasks.

Early merge-and-shrink heuristics in planning used linear
merge strategies because only these could be implemented
efficiently. This has only changed recently with the intro-
duction of generalized label reduction (Sievers, Wehrle, and
Helmert 2014), which led to the proposal of several non-
linear merge strategies, most notably DFP (Sievers, Wehrle,
and Helmert 2014), MIASM (Fan, Müller, and Holte 2014)
and a framework for enhancing existing merge strategies
based on symmetries (Sievers et al. 2015). All these ex-
perimentally outperformed the earlier best linear strategies.
Moreover, Helmert, Röger, and Sievers (2015) proved that
non-linear merge strategies are more powerful than linear
ones in the sense that compiling non-linear strategies into
linear ones incurs an unavoidable super-polynomial blowup
of runtime and memory usage for certain problems.

These experimental and theoretical results motivate a
deeper investigation of merge strategies in general, which
are currently quite poorly understood. For example, the lit-
erature contains no systematic study of merge strategies, no
comparison to simple baselines, and no investigation of tie-
breaking effects. We make the following contributions.

Firstly, we compare state-of-the-art merge strategies to all
merge strategies on a small planning task and to a large set of
random merge strategies on the IPC benchmark set, show-
ing that the current state of the art leaves significant room
for improvement. Secondly, we show that the DFP strategy
is highly sensitive to tie-breaking, which can change its be-
havior from mostly linear to highly non-linear. Thirdly, we
introduce a simple merge strategy based on the same prin-
ciples as the complex MIASM strategy and show that it of-
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fers comparable (slightly worse) performance to MIASM.
Finally, we define a simple new merge strategy that outper-
forms previous merge strategies.

Throughout the paper, the only aspect of the merge-and-
shrink heuristic we vary is the merge strategy. All experi-
ments use the existing implementation of merge-and-shrink
in the Fast Downward planner (Helmert 2006), the state-of-
the-art bisimulation-based shrink strategy by Nissim, Hoff-
mann, and Helmert (2011) with a size limit of 50 000 states
per abstraction, and exact generalized label reduction.1 Un-
less noted otherwise, we use a 30 minute time limit and 2
GiB memory limit. The benchmark set used for all experi-
ments stems from IPCs 1998–2014 with 1667 tasks in total.

Evaluating Merge Strategies
One deficiency of the current merge-and-shrink literature is
that all existing evaluations of merge strategies are relative
comparisons of the form “strategy X solves more tasks than
Y” or “strategy X requires fewer expansions than Y”. While
certainly useful, this tells us little about the quality of X and
Y in absolute terms. Is X strong and Y poor? Is Y strong,
but X even stronger? Can we do better than X?

The only “baseline comparison” of merge strategies we
could find is an experiment reporting coverage results for a
single random linear merge strategy, which is shown to be
worse than state-of-the-art strategies (Sievers et al. 2015).
We found no information on random non-linear strategies or
on the variance of performance with random merges.

We consider the linear merge strategies CGGL (causal
graph/goal/level), RL (reverse level) and L (level), the non-
linear merge strategies DFP and MIASM, and all symmetry-
enhanced variants SYMM of these strategies. CGGL
(Helmert, Haslum, and Hoffmann 2007) and RL (Nissim,
Hoffmann, and Helmert 2011) are the linear merge strate-
gies that have been recommended in the literature; L is the
inverse order to RL. These are all based on variations on the
idea of topologically sorting causal graphs (Knoblock 1994);
we refer to the original papers for details. We describe
DFP and MIASM in more detail in the following sections,
which focus on these two strategies. The SYMM-variants of
the merge strategies stem from the symmetry-enhancement
framework by Sievers et al. (2015), which prefers merging
transition systems so that factored symmetries arise (to in-
crease information-preserving shrinking based on full bisim-
ulation) whenever the task exhibits such symmetries, and
falling back onto the original merge strategy otherwise.2

Table 1 shows overall coverage (number of tasks solved)
for the five merge strategies and their symmetry-enhanced
variants (SYMM, second row; they correspond to the con-
figurations “symm” of Sievers et al. (2015)) on the bench-
mark set.3 Despite the large overall difference, no strategy

1Changing the shrink strategy or even only its parameters
clearly can have an impact on the results reported in this paper,
but varying shrink strategies goes beyond the scope of this paper.

2Note that this modification makes only limited sense for stati-
cally precomputed merge strategies such as MIASM (see also foot-
note 2 in the paper by Sievers et al. (2015)).

3Per-domain results for this and all further coverage tables are

CGGL DFP L MIASM RL
Coverage 710 745 704 757 725
SYMM CGGL DFP L MIASM RL
Coverage 747 752 742 749 749

Table 1: Coverage for merge strategies from the literature.
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Figure 2: Expansions until last f -layer for Zenotravel #5
with all 1587600 possible merge strategies.

dominates another when considering per-domain coverage.

Considering All Merge Strategies
In our first experiment, we consider small planning tasks
where we can compare the strategies from the literature to all
possible merge strategies. This is only feasible for tasks with
up to 8 state variables (which already give rise to 1587600
merge strategies). Most such tasks are so simple that all
merge strategies result in a perfect heuristic, but there are
exceptions. Here, we report results for Zenotravel #5.

Figure 2 shows the quality of all merge strategies for this
instance as a cumulative distribution function. For exam-
ple, a data point at (62, 83.0%) means that 83% of all merge
strategies require 62 or fewer expansions to reach the final
f -layer of an A∗ search. The curve starts at (0, 50.2%),
showing that 50.2% of all merge strategies reach the final
f -layer immediately. Given this, the results for the merge
strategies from the literature may appear somewhat disap-
pointing: only CGGL, MIASM and MIASM-SYMM have
0 expansions until the final f -layer; DFP, RL and all other
SYMM-variants require 4, and L requires 21.

Sampling Random Merge Strategies
For larger planning tasks, evaluating all merge strategies is
infeasible. However, it is still possible to assess how strong
a given merge strategy is in absolute terms by sampling a
large subset of random merge strategies. We conducted ex-
periments with 1000 merge strategies per task on the entire
benchmark set. This showed that the existing merge strate-
gies are quite well suited for many planning domains: The
expected coverage of random merge strategies is 680.107,

reported in a technical report (Sievers, Wehrle, and Helmert 2016).



worse than any strategy from the literature we consider.
Moreover, we found 72 tasks in 19 domains which were
solved by at least one merge strategy from the literature but
by none of the 1000 random merge strategies.

However, interestingly, we also found 21 tasks in 9 do-
mains solved by at least one random merge strategy but
by no strategy from the literature. For example, in the
NoMystery-2011 domain, only 18 tasks are solved by ex-
isting strategies, but all 20 tasks are solved by some random
strategy. Moreover, solving these tasks is not a rare occur-
rence, with most of them solved by all 1000 random strate-
gies and the hardest one solved by 26.4%. Another domain
with clear room for improvement is Elevators-2008, where
only 18 tasks are solved by any of the existing strategies, but
22 tasks are solved by some random strategy.

In these two domains, we performed additional experi-
ments with the merge strategies from the literature with no
time limit and a 64 GiB memory limit in order to determine
how much better the good random strategies (with the regu-
lar limits of 2 GiB and 30m) are compared to the state of the
art. Figures 3 and 4 show the results (again as cumulative
distribution function of expansions) for two of these tasks.4
For example, we see that in NoMystery-2011 #9, the best ex-
isting merge strategies require roughly 1000 times as many
expansions as the best random ones. The results look simi-
lar for other instances of these two domains (not shown). In
particular, the best random merge strategy always performs
strictly better on all non-trivial tasks which are not perfectly
solved by any merge strategy.

The experiment also showed that in 8 of the 11 tasks
that the RL strategy can solve in Elevators-2008, its heuris-
tic quality is equal to the worst of the 1000 random merge
strategies. Similarly damning, the L strategy is consis-
tently as bad as the worst 5% of random strategies in the
NoMystery-2011 domain.

The DFP Merge Strategy
We now take a closer look at the merge strategy introduced
by Dräger, Finkbeiner, and Podelski in the original papers on
merge-and-shrink for model checking (Dräger, Finkbeiner,
and Podelski 2006; 2009). Dräger et al. consider a pro-
cess model and describe a “composition strategy” used for
merging processes. This strategy has been adopted and im-
plemented by Sievers, Wehrle, and Helmert (2014) as the
first non-linear merge strategy in planning (called the DFP
strategy in the planning setting). To date, DFP is a state-of-
the-art merge strategy, outperformed only by the much more
complex MIASM strategy (see next section) among the five
(non-symmetry enhanced) merge strategies we consider.

Whenever DFP is asked to select the next two abstract
transition systems to merge, it computes a score for every
possible merge (i.e., for every pair of two transition sys-
tems). It then performs the merge with the best score. A

4The y-axis only goes up to 28% (19%) because only 278 (192)
out of 1000 random merge strategies solved these instances. How-
ever, also note that none of the considered merge strategies from
the literature (except DFP-SYMM in Elevators-2008 #7) can solve
these instances within the regular time and memory limits.
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Figure 3: Expansions for NoMystery-2011 #9 with 1000
random merge strategies and those from the literature.
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Figure 4: Expansions for Elevators-2008 #7 with 1000 ran-
dom merge strategies and those from the literature.

potential merge receives a good score if there exist labels
(operators) that are relevant for both transition systems and
that occur in transitions close to the abstract goal states.
However, it turns out that there are frequently many pos-
sible merges that score perfectly, with synchronization re-
quired right at transitions reaching goal states. In this case,
a tie-breaking criterion is needed to choose among the best-
scoring merges, and we found that this tie-breaking criterion
has significant impact. The conceptual description of DFP
in the planning literature does not include any tie-breaking
criteria. In the following, when talking about DFP’s tie-
breaking, we refer to the particular implementation of the
DFP merge strategy in the Fast Downward planning system.

Table 2 shows the result of an experiment with various tie-
breaking strategies. Prefer atomic prefers atomic transition
systems for breaking ties, while Prefer composite prefers
composite transition systems. Each of these additionally
use a variable ordering to break ties further. These are
the RL and L orderings that we also considered as linear
merge strategies, and a random ordering RND. Finally, Ran-
dom breaks ties fully randomly, preferring neither atomic
nor composite transition systems. The combination Prefer



Prefer atomic Prefer composite Ran-
RL L RND RL L RND dom

Coverage 726 760 723 745 729 697 706
Cons. (avg) 60.1 61.4 65.0 60.4 89.1 74.9 60.2
Lin ord (%) 10.8 10.9 10.6 81.7 86.5 84.3 13.2
50th perc: 6776 2862 7340 3324 4008 13760 15873
75th perc: 596k 274k 536k 390k 488k 1332k 1370k

Table 2: Results for DFP merge strategy. Reported are: cov-
erage, average heuristic construction time (sec), fraction of
tasks for which the construction of the abstraction finished
and the merge strategy is linear, and 50th percentile (me-
dian) and 75th percentile of number of expansions to reach
the last f -layer. Best performance in bold, worst in italics.

composite / RL corresponds to the implementation of DFP
as reported in the literature.

The table shows a huge variability in performance, rang-
ing from 697–760 solved tasks, from worse than the worst
merge strategies in the literature to better than the best. The
strategies that prefer merging composites result in a lin-
ear merge strategy in the vast majority (more than 80%)
of cases where the abstraction computation completes. The
reason for this is that after the initial merge (which necessar-
ily merges two atomic transition systems), Prefer composite
tends to repeatedly include the only existing composite in
the next merge, which leads to a linear merge strategy. In
contrast, the Prefer atomic or purely random tie-breaking
strategies very rarely lead to linear merge strategies.

These results clearly indicate that there is more to the DFP
merge strategy than initially meets the eye and that a better
understanding of the approach is needed.

The MIASM Merge Strategy
To complete our discussion of existing merge strategies, we
turn to MIASM (Fan, Müller, and Holte 2014). MIASM is a
rather complex merge strategy whose main aim is to perform
merges that allow a high amount of pruning in the result-
ing product systems. (After each merge, merge-and-shrink
prunes so called “unnecessary ” abstract states, i.e. abstract
states that do not lie on any path from the abstract initial
state to any abstract goal state.) Roughly speaking, MIASM
partitions the planning task’s variable set based on a search
in the space of sets of variable subsets. In contrast to DFP,
MIASM is a static non-linear merge strategy in the sense
that the merge tree is precomputed entirely before the actual
computation of the merge-and-shrink abstractions starts.

To provide a baseline for MIASM, we implemented a
much simpler strategy, DYN-MIASM, which follows per-
haps the simplest possible approach to facilitate “merge to
prune”. Like DFP, DYN-MIASM computes a score for ev-
ery candidate merge and performs a merge with maximal
score. The score of a candidate merge is simply the per-
centage of states in the resulting product system that can be
immediately pruned. As in DFP, identical scores are quite
common (e.g., in some domains no pruning ever occurs), al-
though somewhat less common than in DFP. We consider
the same tie-breaking strategies as in the previous section.

Prefer atomic Prefer composite Ran-
RL L RND RL L RND dom

Coverage 743 746 745 747 724 730 726
Cons. (avg) 137.5 143.0 141.9 194.1 236.9 234.0 169.0
Lin ord (%) 10.4 10.5 11.9 45.2 53.2 51.2 11.8
50th perc: 383 412 641 67 370 397 1282
75th perc: 231k 231k 231k 185k 231k 279k 359k

Table 3: DYN-MIASM, a dynamic version of MIASM. Re-
sults reported in the same way as in Table 2.

The results in Table 3 show similar trends as for DFP, but
linear strategies with Prefer composite are somewhat less
common (45%–53%) because there are more cases where
merging is driven by differences in scores rather than tie-
breaking. Note that DYN-MIASM requires (tentatively) per-
forming all possible merges in order to compute the prun-
ing ratios, and therefore the time to compute the heuristic
is much higher than for other merge strategies. Still, results
show that this effort is usually not prohibitive. The best vari-
ant of DYN-MIASM achieves a coverage of 747, close to the
757 achieved by the full MIASM strategy (Table 1). We be-
lieve that these results show that simple, score-based merge
strategies still offer much potential for further research.

A New Merge Strategy
For our final experiment, we introduce a new merge strategy
that combines some ideas of the existing approaches while
also hinting at some avenues for future investigation.

All current merge strategies are linked to the concept of
the causal graph of a planning task (Knoblock 1994). This
is true for the linear merge strategies as discussed earlier, but
it also applies to DFP and MIASM. With DFP, only transi-
tion systems that require non-trivial synchronization of tran-
sitions can be candidates for merging. For atomic transition
systems, this can only be the case if they occur together in
some operator. Similarly, in DYN-MIASM, transition sys-
tems that are unrelated in the causal graph cannot lead to
pruning and hence receive the worst possible score.

However, while both DFP and DYN-MIASM indirectly
incorporate information from the causal graph, they are
fairly myopic in the sense that they do not plan ahead to
maximize the amount of causal relatedness that they can
capture. They are both based on greedy maximization of
scores and do not look beyond the next merge.

The new merge strategy we suggest combines a more
global picture of the causal graph with the score maximiza-
tion of DFP. It works as follows. First, we compute the
strongly connected components (SCCs) of the causal graph.
Secondly, for each SCC, we apply the DFP merge strategy
to the atomic transition systems in this SCC, resulting in one
transition system per SCC. Finally, we merge these transi-
tion systems by again applying the DFP merge strategy.

Table 4 shows the results of this merge strategy, which we
call SCC-DFP. We again use the same tie-breaking strategies
as previously. Considering each SCC separately leads to a
larger fraction of non-linear merge strategies than with DFP.
(Note that SCC-DFP can never produce a linear merge strat-



Prefer atomic Prefer composite Ran-
RL L RND RL L RND dom

Coverage 751 760 732 776 751 741 736
Cons. (avg) 61.7 61.7 66.5 59.8 86.0 73.8 60.7
Lin ord (%) 8.2 8.4 8.2 58.2 58.7 61.6 11.5
50th perc: 2252 1796 2649 350 1410 2288 2352
75th perc: 349k 258k 370k 221k 362k 409k 410k

Table 4: SCC-DFP, a strategy using SCCs of the causal
graph. Results reported in the same way as in Table 2.
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Figure 5: Expansions until last f -layer for the best SCC-
DFP strategy (Prefer composite/RL) and MIASM.

egy for a planning task which has at least two SCCs consist-
ing of at least two variables. However, a considerable num-
ber of planning tasks has strongly connected causal graphs,
in which case SCC-DFP becomes DFP.)

In terms of coverage, all variants are at least as good as
the corresponding DFP variant (Table 2), and in most cases
they are considerably better. Coverage ranges from 732–776
for SCC-DFP compared to 697–760 for DFP. In particular,
the best result of 776 solved tasks is better than any other
merge strategy reported in earlier work or in this paper.

To compare the new best variant against the previous best
merge strategy, MIASM, Figure 5 shows a scatter plot of the
expansions for those two strategies. We observe that SCC-
DFP and MIASM have orthogonal strengths, showing that
there is room for further improvements of either strategy.

Conclusion
Merge strategies for merge-and-shrink heuristics are an un-
derexplored topic. Keeping all other aspects of merge-and-
shrink invariant, we have compared current merge strategies
to all (for one small example task) and to random merge
strategies (on a larger set of tasks), showing that there is
considerable scope for improvement.

We have seen that DFP, a state-of-the-art merge strategy,
is strongly susceptible to tie-breaking and that the perfor-
mance of the complex state-of-the-art MIASM strategy can
nearly be reached with a much simpler greedy approach.
We also introduced a new strategy that integrates a simple

“global analysis” (partitioning the causal graph into SCCs)
with DFP, setting a new high water mark for merge-and-
shrink heuristic performance.

The swings in performance between good and bad tie-
breaking can be dramatic for the studied merge strategies,
in particular for DFP. On the negative side, this means that
these strategies are fragile. On the positive side, this means
that there is still considerable room for stronger merge-and-
shrink heuristics and that investigating better merge strate-
gies appears to be a fruitful direction for future research.
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