184 research outputs found

    Emotional responses to taste and smell stimuli: Self-reports, physiological measures, and a potential role for individual and genetic factors

    Get PDF
    Taste and olfaction elicit conscious feelings by direct connection with the neural circuits of emotions that affects physiological responses in the body (e.g., heart rate and skin conductance). While sensory attributes are strong determinants of food liking, other factors such as emotional reactions to foods may be better predictors of consumer choices even for products that are equally-liked. Thus, important insights can be gained for understanding the full spectrum of emotional reactions to foods that inform the activities of product developers and marketers, eating psychologist and nutritionists, and policy makers. Today, self-reported questionnaires and physiological measures are the most common tools applied to study variations in emotional perception. The present review discusses these methodological approaches, underlining their different strengths and weaknesses. We also discuss a small, emerging literature suggesting that individual differences and genetic variations in taste and smell perception, like the genetic ability to perceive the bitter compound PROP, may also play a role in emotional reactions to aromas and foods

    The Expression of Anger as a Function of Self-Esteem

    Get PDF
    This study investigated the relationship between level of self-esteem and anger expression. Fifty female and 36 male university students completed the Tennessee Self-Concept Scale and the Anger Self-Report. A 3 x 2 AVOVA showed a significant relationship between self-esteem and the ASR scales of Anger Awareness, Guilt, Mistrust, and Total Anger. In addition, women were found to experience significantly more anger-related guilt than men, while verbal and physical anger expression were both characteristic of men. The results further indicate that men experience greater mistrust and suspicion of others These finding suggest that low self-esteem individuals report more anger, but have fewer expressive outlets than do individuals with more favorable self-concepts. Furthermore, low self-esteem females tend to internalize their angry feelings, while low self-esteem males convert their anger into outer-directed hostility. Treatment implications and future research directions were discussed

    The transmission of music into the human uterus and the response to music of the human fetus and neonate

    Get PDF
    The aim of this study was to investigate whether music influences human life before birth. In order to determine the existence and character of music in the uterine acoustic environment, a study was conducted involving the insertion of a hydrophone through the cervix, next to the fetal head. The investigation was conducted on eight women in early labour. The average residual uterine sound of the eight subjects was measured at 65 dBA (A-weighted) re 20 µ.Pa in a 1 O KHz band, RMS averaged over 32-second records. Above this emerged the maternal voice, an external female voice and a male voice presented at approximately 65 dB (linear weighted). Pure tones between 50 Hz and 1 O KHz and orchestral music, all presented at 80 dB (linear weighted), were also shown to emerge above the residual uterine sound. Attenuation of external sound was observed to vary as a function of frequency, with less attenuation of lower frequencies. It was determined that the music was transmitted into the uterus without sufficient distortion to significantly alter the recognisable characteristics of the music. The fetal heart rate (FHA) response to a music stimulus (MS) and a vibroacoustic stimulus (VS) was measured in 40 subjects. Gestational age of the fetuses ranged from 32 to 42 weeks. The study included a control period with no acoustic stimulation; a period with the presentation of 5 music stimuli; and a period with the presentation of 5 vibroacoustic stimuli. A change in the FHA of 15 beats per minute or greater, lasting 15 seconds and occurring within 15 seconds of at least 2 of the 5 stimuli (or a tachycardia of greater than 15 beats per minute above the resting baseline, sustained for one minute or longer) was considered to be a positive response. The MS elicited a positive response in 35 of the fetuses (the 5 non-responses occurring in a period of low FHA variability) and all 40 fetuses responded to the VS (regardless of arousal state). In the third study, mothers attending childbirth education classes volunteered to listen to a prescribed music excerpt twice daily from the 34th week of pregnancy. Ten neonates (all clinically normal) were tested betw~en the 2nd and 5th day after birth. Investigators observed the effect of two music sti:Tiuli, the prescribed stimulus and a non-prescribed stimulus, on neonatal sucking of a non-nutritive nipple. A five-minute control period with no stimulation was compared with a ten-minute period during which two music stimuli were presented. By random allocation, either the prescribed music stimulus (PM) or the nonprescribed music (NM) was presented contingent upon sucking pressure. If a sucking burst was initiated, the PM stimulus was activated. On cessation of sucking, the NM stimulus was activated. Randomly, the procedure would be reversed for some of the subjects, where initiation of sucking activated the NM stimulus and cessation of sucking activated the PM stimulus. It was determined that the inter-burst intervals during the music period were significantly extended when coinciding with the PM stimulus and significantly shortened when coinciding with the NM stimulus.The studies indicated that music is transmitted into the uterus with insufficient distortion to alter the character of the music; that the normal fetus responds to a music stimulus from at least the 32nd week of gestation; and that the neonate alters the normal sucking pattern to activate longer periods of a music stimulus which has been repeatedly presented during the intrauterine stage and shorter periods of a novel music stimulus

    Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

    Get PDF
    This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective

    Neuromodulation in Experimetal Animal Models of Epilepsy

    Get PDF
    Epilepsy is the most common serious brain disorder affecting 0.5-1% of the general population. This neurological disorder consists of recurrent seizures, resulting from excessive, uncontrolled electrical activity in the brain. Despite the pharmacological development of new treatments, still one third of the epilepsy patients does not respond sufficiently to anti-epileptic drugs (AED) and are called refractory patients. Hence, there is a constant impetus to search for other treatment strategies like epilepsy surgery, vagus nerve stimulation and deep brain stimulation. Besides the ongoing research on the efficacy of anti-epileptic treatments in suppressing seizures (anti-seizure effect), we want to seek for therapies that can lead to plastic changes in the epileptic network and in this way have a modulating effect. The impact of such therapies cannot be overlooked, because they may slow down processes underlying epilepsy, might prevent or even cure epilepsy. Neuropharmacological therapy with levetiracetam (LEV) and vagus nerve stimulation (VNS) are two novel treatments for refractory epilepsy. Acute application of both treatment options can be very effective. LEV can act rapidly on seizures in both animals and humans. In addition, preclinical studies suggest that LEV may have anti-epileptogenic and neuroprotective effects, with the potential to slow or arrest disease progression. VNS as well can have an immediate effect on seizures in animals and patients with in addition a cumulative effect after prolonged treatment. Studies in man are hampered by the heterogeneity of patient populations (age, course of the epilepsy, type of epilepsy, AED regime and genetic background) and the difficulty to study therapy-related effects in a systematic way. Therefore, investigation was performed utilizing two models mimicking epilepsy in humans. They are both chronic models with seizures evolving from true, genetically-driven epileptogenesis. Genetic absence epilepsy rats from Strasbourg (GAERS) have inborn absence epilepsy and Fast rats have a genetically determined sensitivity for electrical amygdala kindling, which is an excellent model of temporal lobe epilepsy. Our findings support the hypothesis that these treatments can be considered as neuromodulatory: changes are induced in central nervous system function or organization as a result of influencing and initiating neurophysiological signals

    Goal-Directed Resilience in Training (GRIT): A Biopsychosocial Model of Self-Regulation, Executive Functions, and Personal Growth (Eudaimonia) in Evocative Contexts of PTSD, Obesity, and Chronic Pain

    Get PDF
    abstract: This paper presents a biopsychosocial model of self-regulation, executive functions, and personal growth that we have applied to Goal-Directed Resilience in Training (GRIT) interventions for posttraumatic stress disorder (PTSD), obesity, and chronic pain. Implications of the training for the prevention of maladaptation, including psychological distress and health declines, and for promoting healthy development are addressed. Existing models of attention, cognition, and physiology were sourced in combination with qualitative study findings in developing this resilience skills intervention. We used qualitative methods to uncover life skills that are most salient in cases of extreme adversity, finding that goal-directed actions that reflected an individual’s values and common humanity with others created a context-independent domain that could compensate for the effects of adversity. The efficacy of the resilience skills intervention for promoting positive emotion, enhancing neurocognitive capacities, and reducing symptoms was investigated in a randomized controlled trial with a veteran population diagnosed with PTSD. The intervention had low attrition (8%) and demonstrated improvement on symptom and wellbeing outcomes, indicating that the intervention may be efficacious for PTSD and that it taps into those mechanisms which the intervention was designed to address. Feasibility studies for groups with comorbid diagnoses, such as chronic pain and PTSD, also showed positive results, leading to the application of the GRIT intervention to other evocative contexts such as obesity and chronic pain

    The role of interoception in cognition, and its application to autism spectrum disorders

    Get PDF
    Traditionally a distinction was drawn between cognitive and sensorimotor processes, with little consideration of communication between the two. However, many findings are incompatible with this separation (e.g. Lebedev & Wise, 2002; Patel, Fleming & Kilner, 2012). One particular domain where this is evidenced is interoception. Interoception has been defined as the sensing of the physiological condition of the body (Craig, 2002). While it has long been clear that interoception is of fundamental importance for homeostasis, it is increasingly being recognised as integral for multiple domains of cognition, including emotion. For example, those with greater access to their interoceptive states experience emotions more intensely (e.g. Wiens, Mezzacappa, & Katkin, 2000). These findings bare on our understanding of autism. For some time, exteroceptive sensory abnormalities has been recognised in autism, with such symptoms now included in the diagnostic criteria. Far less research has considered how interoception is implicated in autism. The reports of autistic people and their caregivers, in addition to a few empirical investigations, suggest that interoceptive processing is altered in autism. It is therefore possible that these interoceptive alterations are implicated in the cognitive symptoms of autism. In this PhD I conducted a series of experiments to test the hypothesis that afferent signals from the body, including interoceptive sensations, are involved in cognition, and that the processing of these signals is altered in autism. More specifically, I tested the role of bodily afferents in metacognition, movement, anxiety, and emotion. I also sought to determine if there are interoceptive differences in the three domains of interoception delineated by Garfinkel and colleagues (Garfinkel & Critchley, 2013; Garfinkel, Seth, Barrett, Suzuki, & Critchley, 2015) in autistic children and adolescents, having previously only been evaluated previously in autistic adults. Finally, I investigated whether differences in emotion processing in autism were related to interoception

    A Behavioral and Anatomical Analysis of Conditioned Taste Aversion in C57BL/6J and DBA/2J Mice

    Get PDF
    Conditioned taste aversion (CTA) has been commonly used as a model of learning and memory. Traditionally, CTA approaches have used a paradigm that follows the model of classical conditioning. This involves presentation of a novel tastant, such as sucrose (conditioned stimulus, CS), followed by an intraperitoneal injection of lithium chloride that induces gastric malaise (unconditioned stimulus, US), which results in the aversion of sucrose (conditioned response, CR). However, a more natural classical conditioning paradigm involves the consumption, rather than injection, of the US by using a self‑administration paradigm that allows for time‑dependent analysis of formation, generalization, and extinction of CTA as it would occur naturally. An appreciation of the anatomy of the taste pathway is critical in understanding CTA, as the learning is dependent on salient gustatory cues. Taste information begins with taste buds on the tongue and is sent to the brainstem via three cranial nerves: facial, glossopharyngeal, and the vagus. The first synapse of these cranial nerves is in the nucleus of the solitary tract, where gustatory and visceral information are processed separately. From here, taste information is sent to the parabrachial nucleus, where gustatory and visceral information have been shown to overlap. Therefore, the parabrachial nucleus is a key site of investigation concerning CTA, as it may be the first area where taste and gastrointestinal cues converge, leading to a learning event. Electrophysiology and immunohistochemistry techniques have been used to show changes in neuronal activity in taste nuclei in conditioned taste aversion, including the use of c‑Fos as a method of labeling neurons that respond to a specified behavior. The use of inbred strains of mice, specifically the common strains C57BL/6J (B6) and DBA/2J (D2), allows for the investigation of phenotypic variation and specific genes underlying the various components of CTA. B6 and D2 mice have previously been characterized in terms of various ingestive behaviors, making these mice ideal for this study. Learning‑based differences between B6 and D2 mice have been seen in various tasks, including types of conditioning. Therefore, the following studies investigated the hypothesis that these two strains differ in various aspects of CTA, a form of learning and memory. First, we hypothesized that D2 mice will make a stronger association between the taste and malaise compared to B6 mice, and that such strain differences would be evident in both a behavioral and anatomical analysis. Second, we hypothesized that any strain differences seen in behavior will also be evident in c‑Fos labeling following a CTA. The following experiments tested the hypothesis that D2 mice would condition a stronger taste aversion than B6 mice, and that this strain difference would be evident in behavioral measures as well as in patterns of neuronal activation. We used a self‑administration paradigm to condition a taste aversion to lithium chloride, and then tested the CTA the following day, where the CTA generalized to sodium chloride. More alterations in measures of licking behavior were seen in D2 mice as a result of a CTA, suggesting D2 mice conditioned a stronger aversion than B6 mice. Using c‑Fos as a neuronal marker, we then compared patterns of activation in the parabrachial nucleus between the strains following various types of stimulation (visceral, gustatory, or combination). Results showed no strain differences except following the generalization test, where D2 showed overall more c‑Fos than B6, and specifically showed more c‑Fos in the external medial nucleus, which has been associated with aversive stimuli. These results suggest that NaCl, a previously palatable stimulus, had shifted to an aversive stimulus due to a CTA, but only in D2 mice

    Evolution and functional characterisation of uncoupling proteins in vertebrates

    Get PDF
    The evolution of UCP1 in vertebrates – a summary This thesis unravels the evolution of UCP1, a crucial protein for heat generation recruited during adaptive NST. In eutherian mammals UCP1 uncouples the respiratory chain from ATP synthesis to dissipate proton motive force as heat but the question of when the protein emerged during evolution and what its original function was, has not been resolved. In the initial studies we show that standard molecular techniques are insufficient to detect UCP1 (Jastroch et al. 2004a, Chapter I) but the phylogeny of UCPs suggests an ancient origin of UCP1 (Jastroch et al. 2004b, Chapter II). The presence of UCP1 in fish demonstrates the emergence of UCP1 before the divergence of ray-finned and lobe-finned vertebrate lineages 420 MYA (Jastroch et al. 2005, Chapter III). UCP1 gene regulation in the common carp, Cyprinus carpio, indicates a physiological role other than heat production but biochemical studies suggests that carp UCP1 is a functional uncoupling protein with broadly the same activatory and inhibitory characteristics as eutherian UCP1 (Jastroch et al. 2007, Chapter IV). Studies in marsupials, which separated from eutherians 150 MYA, demonstrate that in these species transcriptional control targets UCP1 expression to adipose tissue (Jastroch et al. in preparation, Chapter V). In the gray short-tailed opossum, Monodelphis domestica, UCP1 is transiently expressed and restricted to the early development, similar to observations in larger eutherian neonates. In the fat-tailed dunnart, Sminthopsis crassicaudata, UCP1 is expressed during adulthood and is elevated in response to cold exposure. Although these experiments suggest the presence of UCP1-mediated NST, UCP1-dependent thermogenesis in the animal has yet to be shown in marsupials. However, the identification of a BAT-like tissue provides the molecular basis to reinvestigate adaptive NST in marsupials. In the phylogenetically ancient afrotherian rock elephant shrew, Elephantulus myurus, a species that diverged from modern eutherians about 100 MYA, we demonstrate the presence of functional BAT (Mzilikazi, Jastroch, Meyer, and Klingenspor, submitted, Chapter VI). Although NST, BAT and UCP1 are found in E. myurus, NST does not appear to be adaptive as demonstrated in modern eutherians. While adaptivity of NST seems not to be required in our experiments, the significance of NST during the seasons of the mild natural habitats of South Africa remains to be investigated in further studies. The focus of the thesis is the evolution of UCP1 but I also investigated if UCP3 might have a thermogenic role in the yellow-footed Antechinus, Antechinus flavipes, a marsupial lacking BAT (Jastroch et al., in preparation, Chapter VII). A thermogenic function of UCP3, as found for UCP1, can be excluded by measurements of uncoupling activity in myotubular mitochondria. However, I found evidence that mild uncoupling mediated by the ANT (adenine nucleotide translocase) occurs in myotubular mitochondria of cold-acclimated A. flavipes and may play a role in protection from oxidative stress during cold exposure. The search for UCPs in vertebrates has resulted in the identification of UCP2 and UCP3 in different vertebrate groups and might assist to resolve their physiological roles. By comparing phylogenetic branch lengths and gene regulation, I suggest that in contrast to UCP1, the function of UCP2 and UCP3 may be well conserved in all vertebrates. Finally, in order to compare different UCP orthologues and paralogues, we have established cell lines ectopically expressing mouse UCP1. In isolated mitochondria of this cell system, we demonstrate native function of mouse UCP1 (Jastroch et al. 2007, BBA, Chapter VIII and Results and Discussion). This cell system will serve in future studies to compare different UCPs in the presence of an identical mitochondrial and genetical background

    An Exploration of Service Needs for Adults who Live with Fetal Alcohol Spectrum Disorder

    Get PDF
    Families who care for children with disabilities feel that supports are essential. However, little is known about the support needs of adults who live with Fetal Alcohol Spectrum Disorders, and few specialized services exist to meet their needs. This study examined caregivers\u27 perceived support needs for their children when they grow into adults. Sixteen caregivers of children aged 10 years or older with FASD participated in telephone interviews. Participants provided responses to the following two questions: “What do caregivers need to help young adults live as independently as possible?” and “What services would help young adults live as independently as possible?” All responses provided to the interview questions were independently grouped together by caregivers, and their grouping data was analyzed with multi-dimensional scaling and cluster analysis (Trochium, 1989). The first question focused on caregiver needs and resulted in a six-concept map including: 1) Structural Supports, 2) Practical Supports, 3) Caregiver Support, 4) Ideals, 5) Address Long-Term Development Concerns, and 6) Incorporation into Daily Living. The second question targeted service needs and resulted in a six-concept map including: 1) A Slider, 2) Ensuring a Future, 3) Help with the Adulthood Transition, 4) Financial Relief, 5) Encouraging Autonomy, and 6) Legal and Emotional Support. Findings were compared and contrasted with the literature
    • …
    corecore