44 research outputs found

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Body-Area Capacitive or Electric Field Sensing for Human Activity Recognition and Human-Computer Interaction: A Comprehensive Survey

    Full text link
    Due to the fact that roughly sixty percent of the human body is essentially composed of water, the human body is inherently a conductive object, being able to, firstly, form an inherent electric field from the body to the surroundings and secondly, deform the distribution of an existing electric field near the body. Body-area capacitive sensing, also called body-area electric field sensing, is becoming a promising alternative for wearable devices to accomplish certain tasks in human activity recognition and human-computer interaction. Over the last decade, researchers have explored plentiful novel sensing systems backed by the body-area electric field. On the other hand, despite the pervasive exploration of the body-area electric field, a comprehensive survey does not exist for an enlightening guideline. Moreover, the various hardware implementations, applied algorithms, and targeted applications result in a challenging task to achieve a systematic overview of the subject. This paper aims to fill in the gap by comprehensively summarizing the existing works on body-area capacitive sensing so that researchers can have a better view of the current exploration status. To this end, we first sorted the explorations into three domains according to the involved body forms: body-part electric field, whole-body electric field, and body-to-body electric field, and enumerated the state-of-art works in the domains with a detailed survey of the backed sensing tricks and targeted applications. We then summarized the three types of sensing frontends in circuit design, which is the most critical part in body-area capacitive sensing, and analyzed the data processing pipeline categorized into three kinds of approaches. Finally, we described the challenges and outlooks of body-area electric sensing

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Human Action Recognition from Various Data Modalities:A Review

    Get PDF
    Human Action Recognition (HAR), aiming to understand human behaviors and then assign category labels, has a wide range of applications, and thus has been attracting increasing attention in the field of computer vision. Generally, human actions can be represented using various data modalities, such as RGB, skeleton, depth, infrared sequence, point cloud, event stream, audio, acceleration, radar, and WiFi, etc., which encode different sources of useful yet distinct information and have various advantages and application scenarios. Consequently, lots of existing works have attempted to investigate different types of approaches for HAR using various modalities. In this paper, we give a comprehensive survey for HAR from the perspective of the input data modalities. Specifically, we review both the hand-crafted feature-based and deep learning-based methods for single data modalities, and also review the methods based on multiple modalities, including the fusion-based frameworks and the co-learning-based approaches. The current benchmark datasets for HAR are also introduced. Finally, we discuss some potentially important research directions in this area

    Robust human locomotion and localization activity recognition over multisensory

    Get PDF
    Human activity recognition (HAR) plays a pivotal role in various domains, including healthcare, sports, robotics, and security. With the growing popularity of wearable devices, particularly Inertial Measurement Units (IMUs) and Ambient sensors, researchers and engineers have sought to take advantage of these advances to accurately and efficiently detect and classify human activities. This research paper presents an advanced methodology for human activity and localization recognition, utilizing smartphone IMU, Ambient, GPS, and Audio sensor data from two public benchmark datasets: the Opportunity dataset and the Extrasensory dataset. The Opportunity dataset was collected from 12 subjects participating in a range of daily activities, and it captures data from various body-worn and object-associated sensors. The Extrasensory dataset features data from 60 participants, including thousands of data samples from smartphone and smartwatch sensors, labeled with a wide array of human activities. Our study incorporates novel feature extraction techniques for signal, GPS, and audio sensor data. Specifically, for localization, GPS, audio, and IMU sensors are utilized, while IMU and Ambient sensors are employed for locomotion activity recognition. To achieve accurate activity classification, state-of-the-art deep learning techniques, such as convolutional neural networks (CNN) and long short-term memory (LSTM), have been explored. For indoor/outdoor activities, CNNs are applied, while LSTMs are utilized for locomotion activity recognition. The proposed system has been evaluated using the k-fold cross-validation method, achieving accuracy rates of 97% and 89% for locomotion activity over the Opportunity and Extrasensory datasets, respectively, and 96% for indoor/outdoor activity over the Extrasensory dataset. These results highlight the efficiency of our methodology in accurately detecting various human activities, showing its potential for real-world applications. Moreover, the research paper introduces a hybrid system that combines machine learning and deep learning features, enhancing activity recognition performance by leveraging the strengths of both approaches
    corecore