16 research outputs found

    Polyhedral techniques in combinatorial optimization II: computations

    Get PDF
    Combinatorial optimization problems appear in many disciplines ranging from management and logistics to mathematics, physics, and chemistry. These problems are usually relatively easy to formulate mathematically, but most of them are computationally hard due to the restriction that a subset of the variables have to take integral values. During the last two decades there has been a remarkable progress in techniques based on the polyhedral description of combinatorial problems. leading to a large increase in the size of several problem types that can be solved. The basic idea behind polyhedral techniques is to derive a good linear formulation of the set of solutions by identifying linear inequalities that can be proved to be necessary in the description of the convex hull of feasible solutions. Ideally we can then solve the problem as a linear programming problem, which can be done efficiently. The purpose of this manuscript is to give an overview of the developments in polyhedral theory, starting with the pioneering work by Dantzig, Fulkerson and Johnson on the traveling salesman problem, and by Gomory on integer programming. We also present some modern applications, and computational experience

    Transitive Packing: A Unifying Concept in Combinatorial Optimization

    Get PDF
    This paper attempts to give a better understanding of the facial structure of previously separately investigated polyhedra. It introduces the notion of transitive packing and the transitive packing polytope. Polytopes that turn out to be special cases of the transitive packing polytope are, among others, the node packing polytope, the acyclic subdigraph polytope, the bipartite subgraph polytope, the planar subgraph polytope, the clique partitioning polytope, the partition polytope, the transitive acyclic subdigraph polytope, the interval order polytope, and the relatively transitive subgraph polytope. We give cutting plane proofs for several rich classes of valid inequalities of the transitive packing polytope,in this way introducing generalized cycle, generalized clique, generalized antihole, generalized antiweb, and odd partition inequalities. These classes subsume several known classes of valid inequalities for several of the special cases and give also many new inequalities for several other special cases. For some of the classes we also prove a lower bound for their Gomory-Chvdtal rank. Finally, we relate the concept of transitive packing to generalized (set) packing and covering as well as to balanced and ideal matrices

    Polyhedral techniques in combinatorial optimization II: computations

    Get PDF

    Generating facets for the independence system

    Get PDF
    In this paper, we present procedures to obtain facet-defining inequalities for the independence system polytope. These procedures are defined for inequalities which are not necessarily rank inequalities. We illustrate the use of these procedures by der iving strong valid inequalities for the acyclic induced subgraph, triangle free induced subgraph, bipartite induced subgraph, and knapsack polytopes. Finally, we derive a new family of facet-defining ineq ualities for the independence system polytope by adding a set of edges to antiwebs.© 2009 Society for Industrial and Applied Mathematics

    Polyhedral techniques in combinatorial optimization II: applications and computations

    Get PDF
    The polyhedral approach is one of the most powerful techniques available for solving hard combinatorial optimization problems. The main idea behind the technique is to consider the linear relaxation of the integer combinatorial optimization problem, and try to iteratively strengthen the linear formulation by adding violated strong valid inequalities, i.e., inequalities that are violated by the current fractional solution but satisfied by all feasible solutions, and that define high-dimensional faces, preferably facets, of the convex hull of feasible solutions. If we have the complete description of the convex hull of feasible solutions at hand all extreme points of this formulation are integral, which means that we can solve the problem as a linear programming problem. Linear programming problems are known to be computationally easy. In Part 1 of this article we discuss theoretical aspects of polyhedral techniques. Here we will mainly concentrate on the computational aspects. In particular we discuss how polyhedral results are used in cutting plane algorithms. We also consider a few theoretical issues not treated in Part 1, such as techniques for proving that a certain inequality is facet defining, and that a certain linear formulation gives a complete description of the convex hull of feasible solutions. We conclude the article by briefly mentioning some alternative techniques for solving combinatorial optimization problems

    Polyhedral techniques in combinatorial optimization

    Get PDF

    Polyhedral techniques in combinatorial optimization

    Get PDF
    Combinatorial optimization problems appear in many disciplines ranging from management and logistics to mathematics, physics, and chemistry. These problems are usually relatively easy to formulate mathematically, but most of them are computationally hard due to the restriction that a subset of the variables have to take integral values. During the last two decades there has been a remarkable progress in techniques based on the polyhedral description of combinatorial problems. leading to a large increase in the size of several problem types that can be solved. The basic idea behind polyhedral techniques is to derive a good linear formulation of the set of solutions by identifying linear inequalities that can be proved to be necessary in the description of the convex hull of feasible solutions. Ideally we can then solve the problem as a linear programming problem, which can be done efficiently. The purpose of this manuscript is to give an overview of the developments in polyhedral theory, starting with the pioneering work by Dantzig, Fulkerson and Johnson on the traveling salesman problem, and by Gomory on integer programming. We also present some modern applications, and computational experience

    Polyhedral techniques in combinatorial optimization

    Get PDF
    corecore