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Abstract

This paper attempts to give a better understanding of the facial structure of previously separately in-
vestigated polyhedra. It introduces the notion of transitive packing and the transitive packing polytope.
Polytopes that turn out to be special cases of the transitive packing polytope are, among others, the node
packing polytope, the acyclic subdigraph polytope, the bipartite subgraph polytope, the planar subgraph
polytope, the clique partitioning polytope, the partition polytope, the transitive acyclic subdigraph poly-
tope, the interval order polytope, and the relatively transitive subgraph polytope. We give cutting plane
proofs for several rich classes of valid inequalities of the transitive packing polytope, in this way intro-
ducing generalized cycle, generalized clique, generalized antihole, generalized antiweb, and odd partition
inequalities. These classes subsume several known classes of valid inequalities for several of the special
cases and give also many new inequalities for several other special cases. For some of the classes we also
prove a lower bound for their Gomory-Chvdtal rank. Finally, we relate the concept of transitive packing
to generalized (set) packing and covering as well as to balanced and ideal matrices.

1 Introduction

Various types of packing problems and related polyhedra play a central role in combinatorial optimization.
Due to both a large variety of practical applications and interesting structural properties they have found
considerable attention in the literature, see, e. g., [BP76, Pad79] for an overview. One of the classic examples
is the node packing problem in graphs and the associated node packing polytope. (Alternative names are
vertex packing, stable set, coclique, anticlique, or independent set problem and polytope, respectively.) The
node packing problem on a finite, undirected, loopless graph G with node weights is the problem of finding
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affiliated with the Department of Mathematics of the Berlin University of Technology.
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a subset of mutually non-adjacent nodes of G such that the total weight of the selected subset is maximal. If
we denote by A the edge-node incidence matrix of the graph G, it can be formulated as

maximize cx

subject to Ax< < I (1.1)

X E {O, 1}

where c is an arbitrary vector of weights, and denotes (here and henceforth) the all-one vector of compati-
ble dimension. The node packing polytope is defined as the convex hull of feasible solutions to (1.1) and has
been studied, among others, in [Pad73, NT74, Tro75, GLS88].

The node packing problem can be extended to hypergraphs where it reads

maximize cx

subject to Ax < PA - 1 (1.2)

Xu E {, 1}

and A is now an arbitrary 0/1 matrix (the edge-node incidence matrix of the hypergraph), and the i-th
component of the vector PA gives the number of positive entries in row i of the matrix A. If A does not
contain a zero row, the undominated rows of A can be interpreted as the incidence vectors of the circuits of
an independence system. Hence problem (1.2) can be seen as the problem of finding an independent set of
maximum weight. The convex hull of incidence vectors of independent sets (solutions to (1.2)) is known
as the independence system polytope. Much work has been done to find classes of valid inequalities for the
independence system polytope, mainly based on the study of special configurations of the family of circuits.
Among them are, to name a few,

* the acyclic subdigraph polytope [GJR85b, Jin85],

* the bipartite subgraph polytope [BGM85],

* the planar subgraph polytope [JM93].

We refer the reader to [EJR87, Lau89] and [BN89a, BN89b, CS89, NS89, Sas89] for the study of the facial
structure of the independence system polytope in general.

In Section 2, we introduce an extension of the node packing problem in hypergraphs, called transitive
packing, by taking a kind of transitive elements into account. The problems we consider can be described as

maximize cx

subject to Ax < PA - 1 (1.3)

x, E {O, 1}

where A is now an arbitrary 0/ 1 matrix and the i-th component of the vector PA gives the number of
positive entries in row i of the matrix A. Many combinatorial optimization problems can be modeled as
transitive packing problems. We do not (and cannot) list all problems that fit with this novel framework but
name a few of them we are going to revisit later. Indeed, besides those that can be interpreted as finding an
independent set of maximum weight there are

* the clique partitioning problem [GW89, GW90, ORS95],
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* the partition problem [CR93],

* the transitive acyclic subdigraph problem [Mii196],

* the interval graph completion problem [MS95, Sch96, MS99],

* the relatively transitive subgraph problem [KL89, Sha89, SB].

One of our main purposes is to derive broad classes of valid inequalities for the transitive packing poly-
tope, the convex hull of feasible solutions to (1.3). In Section 4, we present generalized cycle, generalized
clique, generalized antihole, generalized antiweb, and odd partition inequalities, which are valid for the
transitive packing polytope. These classes explain and classify many known inequalities for polytopes that
fit with this general framework. Thereby, we emphasize the relations between, and the common structure
of (inequalities for) different, formerly independently studied polyhedra, and we provide new insights as
well as new inequalities for some of the special polytopes that arise from certain hypergraphs and choices of
transitive elements. We show how the knowledge of structural properties of the transitive packing polytope
makes possible to derive results for these special problems.

We derive most of the inequalities for the transitive packing polytope by integer rounding. This provides
cutting plane proofs for many of the known inequalities for special polytopes that do not seem to be observed
before. It may also be seen as a guide for using certain patterns of the (initial) constraint matrix A to obtain
new inequalities in a systematic way. The latter property might be of some importance for solving general
0/1 integer programs. Moreover, the derivation of the inequalities may be seen as a guide-line to generalize
each valid inequality for the node packing polytope whose cutting plane proof is known.

Section 5 is concerned with an interesting subclass of the transitive packing polytopes formed by those
whose corresponding hypergraph is actually a graph. In Section 6, we discuss the separation problem asso-
ciated with the classes of inequalities introduced before. Finally, in Section 8 we recall the strong relation
between set covering and independence system polytopes, point out its extension to generalized set covering
and transitive packing polytopes, translate our results into this context, and briefly discuss the relation of our
work to 0/ 1 matrices that are balanced or ideal.

Subsequently to the original introduction of transitive packing [Sch96, MS96], Bornddrfer and Weis-
mantel [Bor98, BW97] introduced another, quite elegant scheme that also helps to explain and classify
inequalities within the context of a packing polytope, and to get cutting-plane proofs. We refer to [Sch] for
a thorough discussion of similarities and differences with transitive packing.

2 The Transitive Packing Polytope

A hypergraph is an ordered pair (N, JC) where N is a finite ground set, the set of nodes, and 2C is a collection
of distinct subsets of N, the set of (hyper)edges. We only deal with hypergraphs without loops, i. e., we
always assume that HI > 2 for all H E -. We refer to [Ber73] for a thorough introduction to hypergraphs.
Here, we are interested in hypergraphs with additional node subsets associated with each edge.

Definition 2.1. Let (N, -C) be a hypergraph, and let tr: C -+ 2N be a mapping from the set of edges to
the powerset of N with the property that tr(H) C N \ H. We call the ordered triple (N, 2-C, tr) an extended
hypergraph, and tr(H) the set of transitive elements associated with the edge H.

In the special case that tr(H) = 0 for all H C C, we often simply write (N, 2-C) instead of (N, , tr). We
are interested in packing nodes of an extended hypergraph whereby the restrictions imposed by the edges
may be compensated by picking transitive elements. This is made precise by the following definition.
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Definition 2.2. Let (N, SC, tr) be an extended hypergraph. A subset S of the nodes is a transitive packing (in
(N, If, tr)) if, for every H E C such that H C S, there exists a node u E Sn tr(H).

In other words, a transitive packing S is a set of nodes that contains an edge only if S contains at least one
node from the set of transitive elements associated with that edge. Given in addition to (N, SC, tr) a weight
function c: N -+ Q, the (maximum weight) transitive packing problem consists of finding a transitive packing
S C N of maximum weight c(S). As indicated in the introduction, the maximum weight transitive packing
problem is equivalent to the integer linear programming problem

maximize cx

subject to x(H)- x(tr(H)) < HI - 1 for all H E C (2.4)

x < n (2.5)

x > (2.6)

x E ZN (2.7)

Note that the constraint matrix of the inequalities (2.4) is the edge-node incidence matrix of the hypergraph
(N, -C), with additional -l's for the transitive elements of the edge represented by the particular row. We
call the inequalities (2.4) transitivity constraints.

In the following, we study the transitive packing polytope PT(N, -C,tr) of the extended hypergraph
(N, C, tr) which is defined as the convex hull of the incidence vectors of transitive packings in (N, C,tr),
i. e.,

PTp(N,9-C,tr) := conv{Xs E Nv :S transitive packing in (N, -C,tr)}

So P (N, , tr) is equal to the integer hull of the feasible solutions to (2.4) - (2.6). At this point, it seems
reasonable to introduce a few examples to illustrate later the applicability of the results to be presented. Of
course, if tr(H) = 0 and HI = 2 for all edges H E 9-C, a transitive packing reduces to an ordinary node
packing in the graph (N, 9-). But to motivate hypergraphs and transitive elements we show now that the
acyclic subdigraph polytope as well as the clique partitioning polytope and the partition polytope can be
obtained by special choices of the hypergraph and the transitive elements. Other examples will be discussed
in Section 7.

The Acyclic Subdigraph Polytope. An instance of the acyclic subdigraph problem consists of a directed
graph D = (V,A) and a weight function c: A -+ Q. The objective is to determine a set of arcs B C A such that
the digraph (V, B) is acyclic, i. e., does not contain a directed cycle, and such that c(B) is as large as possible.
The acyclic subdigraph polytope is the convex hull of incidence vectors of acyclic arc subsets of A. It was
studied by Gr6tschel, Jiinger, and Reinelt, see [GJR85b, GJR85a, Jun85], and Goemans and Hall [GH96]. If
we choose the arc set A of the digraph D as the node set of the hypergraph, if we declare the directed cycles
in D as the edges of this hypergraph, and if we let tr(H) = 0 for all H E 9-C, the acyclic subdigraph polytope
appears as a special transitive packing polytope.

The Clique Partitioning Polytope. An instance of the clique partitioning problem consists of an undi-
rected graph G = (V, E) and a weight function c: E -4 Q. A set F C E of edges is called a clique partitioning
of G if there is a partition of V into nonempty, disjoint sets W1, W2,..., Wk such that the subgraph induced
by each Wi is a clique and such that F = Uil{{u, v}: u, v E Wi, u Z v}. Equivalently, a clique partitioning
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is a subrelation of the symmetric relation represented by G that is an equivalence relation, i. e., in particular
transitive. The weight of such a clique partitioning F is c(F). The task is to determine a clique partitioning
of minimum weight. (Of course, since we do not restrict the objective function we could have written that we
want to find a clique partitioning of maximum weight as we always do in the context of transitive packing.
However, for historical reasons we chose this variant.) The clique partitioning polytope is the convex hull
of the incidence vectors of all clique partitionings in G. It was introduced and studied by Gr6tschel and
Wakabayashi [GW89, GW90] and has recently been further investigated by Oosten, Rutten, and Spieksma
[ORS95]. To show that it is an instance of a transitive packing polytope it is sufficient to deal with a graph
instead of a hypergraph. Indeed, we take as the set N of nodes the edges of G, and two nodes are adjacent
(form a hyperedge) if and only if the associated edges are incident in the original graph G. That is, the
extended hypergraph we consider is precisely the line graph of G and the transitive element that we attach
to a pair of incident edges {u, v}, {v, w} in G is the edge {u, w}, if it exists.

The Partition Polytope. An instance of the graph partitioning problem consists of an undirected, con-
nected graph G = (V,E), a weight function c: E -4 Q, and an integer r < IV[. An r-partition of the node
set V is a set of node subsets N 1,N2,... ,Nr such that Ni n Nj = 0 (for all i j) and UlINi = V. Some of
the subsets Ni may be empty. The weight of an r-partition is the total weight of the edges with end points in
two different subsets. The goal is to determine an r-partition of minimum weight. Chopra and Rao [CR93]
have studied polytopes for several variations of this problem. We consider one of them here. This case arises
when r = IVI. For a complete graph G this problem is equivalent to the clique partitioning problem. For
arbitrary graphs G, Chopra and Rao define the partition polytope as the convex hull of the incidence vectors
of all sets of edges in G which are not cut by an r-partition. It follows from [CR93, Lemma 2.2] that the
partition polytope arises as a transitive packing polytope by taking the edges of G as the set N and by letting
every (C I - )-cardinality subset of edges of a cycle C in G be the edges of the hypergraph SC. The transitive
set related to such an hyperedge contains exactly the missing edge from the cycle C.

Before starting the study of the transitive packing polytope we shall discuss an algorithmic aspect of
the concept of transitive packings. How is (N, , tr) given? Having in mind problems like the acyclic
subdigraph problem, it does not seem to be satisfactory to assume that it is given as a list of hyperedges and
its transitive elements. Indeed, the number of directed cycles in a digraph can be exponential in the number
of nodes. From the point of view of polyhedral combinatorics, it rather seems to be reasonable to assume
that the linear programming problem arising from (2.4) - (2.7) by dropping the integrality constraint (2.7)
is solvable in time polynomially bounded in NI and the input size of c. This means, given a point x C QN

which is contained in the unit hypercube, we assume that the separation problem formed by x and the class of
inequalities (2.4) is solvable in polynomial time. In particular, this guarantees that the decision version of the
transitive packing problem belongs to the class NP. Since the node packing problem on graphs is NP-hard
the same holds for the transitive packing problem.

Let us continue with the study of the transitive packing polytope. Since the empty set as well as all
singletons of N are transitive packings, we immediately obtain the following result.

Proposition 2.3. Let (N, SC, tr) be an extended hypergraph.

(a) The transitive packing polytope PT(N, UC, tr) C 11N is full dimensional, i. e., dim(PTp(N, CX, tr)) = NI.

(b) The nonnegativity constraint x, > O defines a facet of P (N, , tr) for each node u E N.

Because of the transitive elements, it is more difficult to characterize the facet defining inequalities of
type x,, < 1 for u E N. Clearly, all these inequalities are facet defining if HI > 3 for all edges H E aSC. But
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as soon as {u, v} E 9- and tr({u, v}) = 0, for instance, the face induced by x, < 1 is properly contained in
the facet defined by x,v O. But even if tr({u, v}) $ 0, it may happen that whenever u is chosen, we cannot
choose another element. While it is possible to give a concise characterization in the absence of transitive
elements, we are content with a sufficient condition in the general case.

Lemma 2.4. Let PT(N, X-C, tr) be the transitive packing polytope associated with the extended hypergraph
(N, -C, tr).

(a) If tr(H) is the empty set for all edges H E -C such that HI = 2, then an inequality xu < 1 with u E N
defines a facet of PTP(N, -C, tr) if and only if IHI > 3 for all edges H E 9C that contain u.

(b) Let u E N. If there exists for all edges {u, v} E -C a node w E tr({u, v}) such that neither {u, w} E X,
{v, w} E -C nor {u, v, w} E X, then the inequality xu < 1 defines a facet of PTp(N, 9, tr).

Proof. In case (a) the incidence vectors of the transitive packings {u} and {u, v} for all v E N \ {u} provide
the needed set of linearly independent vectors. In case (b), we proceed as follows. Besides {u}, we first
choose a set {u, w} such that {u, w} ' . (Notice that our assumptions imply the existence of such a node
w.) Then, by taking {u, v,w} we collect all nodes v E N such that {u, v} E X, w E tr({u, v}), {v, w} 0 X,
and {u, v, w} J-C. Now, we may forget these nodes v and the node w and continue with the remaining nodes
in the same manner. Since {u, v} GE for the nodes v above they cannot occur in the role of w. Hence, the
incidence vectors of the constructed transitive packings are linearly independent. EJ

We illuminate Lemma 2.4 by applying it to the node packing, the acyclic subdigraph, the clique partition-
ing, and the partition polytope. For the node packing polytope of a graph G, part (a) says that an inequality
xU, < 1 is facet defining for a node u if and only if u is isolated, i. e., if G does not contain an edge incident
to u. This is a special case of the well-known fact that a clique inequality defines a facet if and only if the
clique is maximal [Pad73]. Given a digraph D = (V,A) and an arc (u, v) E A, part (a) of Lemma 2.4 implies
that xuv < 1 defines a facet of the acyclic subdigraph polytope of D if and only if (v, u) ' A. This was shown
before by GrOtschel, JRinger, and Reinelt [GJR85b]. If G is a graph without isolated edges, the assumption
of part (b) of Lemma 2.4 is never met by an edge of the clique partitioning polytope of G. Indeed, Gr6tschel
and Wakabayashi [GW90] proved that no upper bound constraint defines a facet of this polytope. Finally,
part (b) of Lemma 2.4 tells us also that xe < 1 defines a facet of the partition polytope if the edge e does not
belong to any cycle of length 3.

We conclude this first section on the transitive packing polytope by observing that a transitivity constraint
x(H') -x(tr(H')) < IH'I- 1 is dominated by x(H) -x(tr(H)) < HI - I if H C H' and tr(H) C tr(H').

3 The Independence System Polytope

So far we mentioned only in the introduction that the transitive packing problem subsumes independent set
problems. This section intends to recall the needed definitions and to explain the relation in detail. An
independence system is a pair (N, 3) with ground set N and a family 9 of subsets of N that contains the empty
set and is closed under set inclusion, i. e., for any set I E 3 every subset I' C I belongs also to 9. The elements
of 9 are called independent sets. A subset of N that does not belong to 9 is called dependent, and the minimal
dependent sets (with respect to set inclusion) are the circuits of the independence system. The collection of
circuits forms a clutter, i. e., a family of sets such that no two of them are comparable with respect to set
inclusion. Since a subset of N is independent if and only if it does not contain a circuit, an independence
system is fully characterized by the family of its circuits. Conversely, every clutter e C 2N determines
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a unique independence system with ground set N and {I C N : C I for all C E e} as the family of its
independent sets. The independence system polytope is defined as the convex hull of all incidence vectors of
independent sets. It coincides with the transitive packing polytope PT(N, X) where tr(H) = 0 for all H E C,
and X is the set of circuits. (To be accurate, this is only true when we make the standard assumption that all
singletons are independent. Remember that we defined the transitive packing polytope only for hypergraphs
without loops.) In the following we will sometimes speak of independent sets instead of transitive packings,
of circuits instead of edges, and of circuit constraints instead of transitivity (or packing) constraints when
dealing with the special case formed by transitive packing problem instances without transitive elements.
As an example of an independence system we may consider the one defined by the acyclic arc subsets of a
digraph. The dicycles are one-to-one with the circuits and the independence system polytope is the acyclic
subdigraph polytope.

Given a hypergraph (N, S) we define its upper closure CX+ and its reduction X- as CX+ := {H' C N:
there exists an H E -C such that H C H'} and C- := {H E C: there exists no H' E XC such that H' C H},
respectively. Notice that PTp(N, SC+) = P(N, -C) = PTp(N, XC-). These notions prove useful for characteriz-
ing the facet defining packing constraints. Observe that for clutters, for instance the circuits of independence
systems, we have 9C = X-.

Theorem 3.1. Let (N, C) be a hypergraph. For H E SC the inequality x(H) < HI - defines a facet of
PT(N, X) if and only if H E X- and for all u E N \ H there exists an H' C H with IH'I = HI - 1 such that
H'U{u} CX+.

Proof. Necessity of the stated condition is obvious, otherwise the face under consideration would be the
intersection of some other faces. To show sufficiency we take first the incidence vectors of all HI subsets
of H of size HI - 1. According to the assumption, for each node u E N \ H there exists a subset H' of H of
size HI - 1 such that H' U {u} is independent. Adding the corresponding incidence vectors to our former set
completes the proof. C

Theorem 3.1 implies in particular that all dicycle inequalities of the acyclic subdigraph polytope are facet
defining. A direct proof of this result is given in [GJR85b].

Subclasses of the classes of valid inequalities that we introduce in the next section for the transitive
packing polytope have been presented earlier for the independence system polytope; generalized cycle, gen-
eralized clique, and generalized antihole inequalities by Euler, Jiinger, and Reinelt [EJR87] and generalized
antiweb inequalities by Laurent [Lau89]. It will turn out that our inequalities are more general even if we
restrict ourselves to the independence system polytope. Nevertheless, in order to keep the terminology sim-
ple we will give them the same names and point out the restrictions that lead to the known inequalities,
respectively. So far, no cutting plane proofs have been presented for the formerly known inequalities.

4 Valid Inequalities

Let P C RN be a rational polyhedron, for instance the initial relaxation of PTp(N, aC,tr) defined by (2.4) -
(2.6). One way to produce a characterization of the integer hull P, of P by means of linear inequalities is inte-
ger rounding. For a thorough discussion of this topic, its history and its applications to integer programming
and combinatorial optimization we refer the reader to the textbooks of Cook, Cunningham, Pulleyblank,
and Schrijver [CCPS98, Chapter 6.7] and of Nemhauser and Wolsey [NW88, Chapter II. 1], and to Schrijver
[Sch86, Chapter 23]. Here, we briefly review the basic definitions that will be needed later on.
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If we set

P' := {x E P: ax < P for all a E ZN,p E Z, and max{ax :x E P} < 13 1}

then P' can be seen as obtained from P by one step of rounding. In particular, if P = {x C IRN : Ax < b} for
an integer matrix A and integer right-hand side b, then

P' = {x E IJ: Ax < LXbJ for all vectors X > 0 with A E N} .

Obviously, the integer hull Pi of P, i. e., the convex hull of the integral points in P is contained in P'.
Furthermore P' = P if and only if P = P. If we define P(0) := P and, recursively, p(t+l) := (p(t))l for all
nonnegative integers t, then PI C P(t) for all nonnegative integers t. Schrijver [Sch80] showed that P' is again
a polyhedron and that there is a nonnegative integer t such that p(t) = P. The (Gomory-Chvdtal) rank of
P is the smallest t such that p(t) = P. Let ax < 3 be a valid inequality for P,. Its depth relative to P is the
smallest d such that ax < 13 is valid for p(d). Therefore the rank of P equals the maximum depth, relative to
P, of an inequality valid for Pi.

Let Ax < b be a system of linear inequalities, and let cx < 6 be an inequality. Moreover, let l x <
1, C2X < 62,... , CmX < m be a sequence of linear inequalities such that each vector ci, i = 1,... ,m, is

integral, cm = c, 8m = 6, and for i = 1,..., m the inequality ci x 6 is a nonnegative linear combination of
the inequalities Ax < b, cl x < 81,... , ci-_ x < 6 i-1 for some 6$ with 6J I< 8i. Such a sequence is called a
cutting plane proof of cx < 6 from Ax < b, and m is the length of this proof. The depth of the final inequality
cx < 6 is the depth of the proof. Every integer solution of Ax < b satisfies cx < 8. Let P = {x: Ax < b}.
Since p(t) = Pi for some t the converse is true as soon as Pi is nonempty. That is, every inequality cx < 6
with c integral and valid for P has a cutting plane proof from Ax < b. Clearly, the length of a cutting plane
proof of a valid inequality for P is at least its depth; however, the length can be significantly bigger (see,
e. g., [CCH89]).

The idea of deriving cutting planes by rounding based on exploitation of problem structure can in partic-
ular be used to obtain valid inequalities for the transitive packing polytope. Thereby, we also show that many
inequalities valid for the polytopes which arise from PT(N, , tr) by certain choices of (N, , tr) have short
and insightful cutting plane proofs from the initial relaxation (2.4) - (2.6).

4.1 Generalized Cycle Inequalities

We first use cycles of the hypergraph (N, J-C) to obtain a class of valid inequalities for the transitive packing
polytope each of which has a cutting plane proof from (2.4) - (2.6) of length 1. Recall that a cycle in a
hypergraph is a sequence of vertices and of edges of the form (ul, HI, u2, H2, .., Uk, Hk, Uk+l) such that the
vertices ul,... , uk are distinct, uk+l = u1, the edges Hi,... , Hk are distinct, and for i = 1,... ,k both ui and
ui+l are contained in Hi. We start, however, with a few more assumptions.

Definition 4.1. Let (N, -C) be a hypergraph, and let q, s, and r be positive integers such that q > 2 and
1 < r < q - 1. For convenience, we set k := sq + r. Let Nl, ... ,Nk be a sequence of pairwise disjoint
nonempty subsets of N. For i = 1,..., k, let Hi E X be an edge such that Uiq- 'Nj C Hi. (Indices greater than

k are taken modulo k+ 1 and shifted by +1.) We denote by C the union of all these edges Hi, C := Uk Hi,
and by m(u) the multiplicity of a node u E C in this edge collection, i. e., m(u) := I{i E {1,... ,k}: u E Hi}l.
We assume that m(u) < q for all nodes u C. Then we call the hypergraph (C, {Hi: i = 1,2,... ,k}) a
generalized (k, q)-cycle (contained in (N, -)).
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Figure 1: A generalized (10, 4)-cycle with C = UIk=1N i.

Figure 2: Two generalized (5,2)-cycles. The second one il-
lustrates the case C D U 1k=N i.
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To illuminate this definition, Figures 1 and 2 show a generalized (10, 4)-cycle and two generalized (5, 2)-
cycles, respectively. Observe that every generalized cycle is a cycle of the hypergraph, but not vice versa.
In fact, the name is a concession to the literature where already a substructure of the one just introduced
got this name, see [EJR87]. We now develop an inequality supported by a generalized cycle and its set of
transitive elements. So let (C, {Hi: i = 1,2,... , k}) be a generalized (k,q)-cycle in (N, , tr) and assume
that the set tr(C) := UI= tr(Hi) of transitive elements does not interact with C itself, i. e., tr(Hi) n C = 0 for
i = 1,... ,k. To simplify the notation we denote by n(u) := I{i E {1,... ,k}: u E tr(Hi)}l the multiplicity of
a node u E N \ C with respect to the transitive sets of the edges of the cycle. Furthermore, we let Fotl q be the
smallest integer that is bigger than or equal to the scalar as well as divisible by q.

Adding the transitivity constraints associated with the edges of the generalized (k, q)-cycle,

, xu- Xu Hil -1 for i = 1,... ,k,
uEHi uEtr(Hi)

an appropriate multiple of upper bound constraints,

k

(q-m(u)) xu < q-m(u) for u C C \ Ni,
i=l

as well as an appropriate multiple of nonnegativity constraints,

-([n(u)lq-n(u))xu < 0 for u E tr(C) with n(u) 0 modq,

and dividing the result by q we obtain

[n(u)lqx < CI-k
uEC uEtr(C) q q

Rounding down the right-hand side completes the proof of the following result.

Theorem 4.2. Let (N, C, tr) be an extended hypergraph, and let, for k > q, k 0 0 mod q, the hypergraph
(C, {Hi: i = 1,2,... , k}) be a generalized (k, q)-cycle in (N, J) such that tr(Hi) n C = 0 for i = I,... , k.
Then, the generalized (k, q)-cycle inequality

- , [n(u)lq < -k (4.8)
uCC uEtr(C) qq

is valid for the transitive packing polytope PTp(N, S, tr).

We now relate this first class of inequalities for the transitive packing polytope P,T(N, 5, tr) to the four
selected examples. For the node packing polytope we obtain exactly the odd cycle inequalities introduced
by Padberg [Pad73]. This is true because all edges of the (hyper)graph have size 2 and hence all sets Ni have
to be singletons. If C is the set of nodes of an odd cycle in a graph G then the associated odd cycle inequality
reads

ICI-1
x(C) < 2

The Miibius ladder inequalities form a quite prominent class of facet defining inequalities for the acyclic
subdigraph polytope. The support of any of these inequalities is defined as follows.
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Figure 3: A 9-Mobius ladder.

Definition 4.3. [GJR85b] Let C1, C2, ... , Ck be a sequence of different dicycles in a digraph D = (V,A) such
that the following holds:

(1) k 3 and k odd.

(2) Ci and Ci+l, i E { 1,2, ... , k - 1 } have a directed path Pi in common, C1 and Ck have a directed path Pk
in common.

(3) Given any dicycle Cj, j E {1,2,... ,k}, set Ij := {1,2,... ,k}r n ({j- 2, j- 4, j - 6,...} U {j + 1, j +
3, j + 5,... }). (Indices greater than k are taken modulo k + 1 and shifted by +1, indices less than 0
are first shifted by -1 and then taken modulo k + 1.) Then every set (U 1k= Ci ) \ {ai : i E Ij} contains
exactly one dicycle (namely Cj), where ai, i E Ij, is any arc contained in the dipath Pi.

(4) The largest acyclic arc set in U k= C i has cardinality UIk=1Cil k 2 -1

Then the arc set M := UI= Ci is called a (k-)Mibius ladder.

From Axiom (4) follows that for any k-Mobius ladder M contained in a digraph D the MObius ladder
inequality

k+l
x(M) < IMI- 2 (4.9)

is valid for the acyclic subdigraph polytope of D. Axioms (3) and (4) of Definition 4.3 seem to be rather un-
handy. There exists a large subclass, however, where these conditions are naturally satisfied. Let C 1, C2, ... , Ck,
k > 5, be a sequence of directed cycles satisfying (1) and (2). If no two different dicycles Ci and Cj with
j 7 i - 1, i + 1 share a node, Grotschel, Juinger, and Reinelt [GJR85b] observed that the union of these di-
cycles forms a Mobius ladder. Such a situation is depicted in Figure 3. We now prove that this subclass is
contained in the class of generalized cycle inequalities as has essentially been shown in the context of the
independence system polytope by Euler, Jinger, and Reinelt [EJR87].

Theorem 4.4. Let D be a digraph, and let, for k > 5, C1, C2,..., Ck be a sequence of different dicycles in D
satisfying conditions (1) and (2) of Definition 4.3. If no two different dicycles Ci and Cj with j i - 1, i + I
have a node in common (i, j = 1,2,... , k), the Mibius ladder inequality (4.9) is contained in the class of
generalized (k, 2)-cycle inequalities for the acyclic subdigraph polytope of D.
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Proof. We make use of the notation introduced in the discussion of the generalized cycle inequalities. We
choose q = 2 and let k be the number of dicycles. The sets Ni, i = 1,2,..., k, are defined by the arcs forming
the dipaths Pi, respectively. For i = 1,2,... , k, the arc sets Ni and Ni+l are contained in the hyperedge given
by the dicycle Ci+l. Observe that each arc in M = Uk= Ci does not occur in more than two dicycles. The
claim now follows from Theorem 4.2. [

Theorem 4.4 throws some light on the Mobius ladder inequalities. The way we derived the generalized
cycle inequalities explains in particular why the sequence of dicycles should be odd as was already observed
by Gr6tschel, JRinger, and Reinelt: "For even k, the construction does not give anything interesting" [GJR85b,
Page 34]. Notice that Theorem 4.4 remains true for those M6bius ladders where each triple of the dicycles
Cl, C2 ,... , Ck does not have a common arc.

In the case of the clique partitioning polytope, we are obviously restricted to generalized (k, 2)-cycles as
the underlying hypergraph is actually a graph, the line graph of the given graph G = (V, E). Nevertheless,
this class contains two known classes of valid inequalities. Both are facet defining if G is a complete graph.
The first class is formed by the 2-chorded odd cycle inequalities introduced by Grotschel and Wakabayashi
[GW90]. Let C = {el,e2,... ,ek} be the set of edges of an odd cycle in G, say ei = {ui, ui+l}, and let
tr(C) = {{ui, ui+2} E : i = 1,2,... ,k} be its set of 2-chords (transitive elements). (As before, indices
greater than k are taken modulo k + 1 and shifted by + 1.) By observing that C n tr(C) = 0 we may apply
Theorem 4.2 and obtain the 2-chorded odd cycle inequality

k k k-1
X{uiUi+} - E X{Uii+2} 2

i= 1 i1
{ui,ui+ 2 EE

But even structures that are not cycles in G lead to generalized (k, 2)-cycle inequalities. For k > 3
odd, assume that G contains the star formed by the sequence {v, ui}, i = 1,2,... ,k of incident edges. Let
tr(C) denote the associated set of 2-chords, i. e., tr(C) = {{ui,ui+l} E : i = 1,2,... ,k}. Again we have
tr(C) n c = 0 and Theorem 4.2 implies that the odd wheel inequality

k k k-I
X{FUi}- E X{Ui,Ui+} 2

~i=l ~ i=l
{uiui+ I }EE

is valid for the clique partitioning polytope. It was introduced and shown to be facet defining if G is complete
by Chopra and Rao [CR93].

There are other structures that may form generalized (k, 2)-cycles in the line graph of G, see, for instance,
Figure 4. We can summarize our observations as follows.

Theorem 4.5. The class of generalized (k, 2)-cycle inequalities for the clique partitioning polytope properly
contains all 2-chorded odd cycle inequalities and all odd wheel inequalities.

The odd wheel inequalities remain valid and facet defining for the partition polytope [CR93], where they
also form a subclass of the generalized (k, 2)-cycle inequalities. In fact, it is immediate that they can be
generalized such that the spokes of the wheel are paths instead of single edges. Moreover, from the class of
generalized cycle inequalities we get what we may call q-chorded cycle inequalties, a generalization of the
2-chorded odd cycle inequalities of the clique partitioning polytope. Consider a cycle of length k in G, with
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Figure 4: Generalized (5, 2)-cycles for the clique partitioning polytope. The
first is a 2-chorded odd cycle, the second is an odd wheel. The third is none of
both. The dotted edges indicate existing transitive edges (i. e., coefficient -1
in the associated inequalities).

nodes 1,..., k. Assume that G also contains the edges {i, i + q}, i = 1,..., k. Then we define the q-chorded
cycle inequality as

X{i,i+ } - XX{i,i+iq} kk-
i=:1 i= q

Again, the edges {i, i + 1} may be replaced by paths.
We return to the study of the transitive packing polytope, in general. Under different types of weak

assumptions it is possible to show that the generalized cycle inequality (4.8) has depth 1, relative to (2.4) -
(2.6). We present one of these that turns out to be widely applicable. We still use the notation introduced
during the definition of a generalized cycle.

Lemma 4.6. Let (N, C, tr) be an extended hypergraph, let k > q, k ~ 0 mod q, and let H 1, .. , Hk be the
sequence of edges of a generalized (k, q)-cycle with node set C in (N, SC). Assume that tr(Hi) n C = 0 for
i = 1,2,..., k. If one of the following two conditions is satisfied, then the depth of the generalized (k, q)-cycle
inequality (4.8) relative to (2.4) - (2.6) is 1.

(a) Every edge H EC C \ {H1,... ,Hk} with H C C satisfies Itr(H) n cl C> 2.

(b) The generalized cycle satisfies C = Uik= Ni and IN I = 1 for i= 1,2,..., k, and every edge H E 9C \
{Hi,..., Hk} with H C C satisfies HI = q.

Proof. The same proof works for both cases. For i = 1,..., k we let ui be an arbitrary representative of the
node subset Ni, i. e., ui E Ni. We define the point x E IRN as follows:

q ifu {ul,... uk},

XU = 1 ifuCC\{ul, .. ,uk},

0 O otherwise.

Whereas x belongs to the initial linear relaxation of PTp(N, C,tr), i. e., it satisfies the inequalities (2.4) -
(2.6), it violates inequality (4.8). Hence this inequality is not implied by the initial system. [

Notice that condition (b) is satisfied in case of the node packing and the clique partitioning polytope.
Euler, Jinger, and Reinelt [EJR87] introduced generalized cycle inequalities for the independence system

polytope, and showed that they are facet defining for the independence system induced by the edges of the
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generalized cycle. The generalized cycles presented here, restricted to independence systems, extend theirs,
since they assumed that the nodes of C \ Uk= l Ni are arranged in a certain sequence corresponding to that of
the sets Ni.

Finally, we introduce a class of inequalities also supported by generalized cycles, which are in general
weaker than the generalized cycle inequalities. It arises from the class of generalized cycle inequalities
when we do not take care of repetitions of transitive elements. We call this class of valid inequalities weak
generalized cycle inequalities. For ease of referencing, we state this as a lemma.

Lemma 4.7. Let (N, C, tr) be an extended hypergraph, and let, for k > q, k - 0 mod q, the hypergraph
(C, {Hi : i = 1,2,... ,k}) be a generalized (k,q)-cycle in (N,9-C) such that tr(Hi) n C = 0 for i = 1,... ,k.
Then, the weak generalized (k, q)-cycle inequality

u, xu- , n(U)xu < C-T-1 (4.10)
uEC uEtr(C) q

is validfor the transitive packing polytope PT(N, -C,tr).

Clearly, in case n(u) < 1 for all nodes u E N a generalized (k, q)-cycle inequality and its weak version
coincide.

4.2 Generalized Clique Inequalities

A second well-known class of valid inequalities for the node packing polytope are clique inequalities, see,
e. g., [Pad73]. Such an inequality is supported by a clique C in the given graph and is of the form

x(C) 1

It defines a facet if and only if the clique is maximal (with respect to set inclusion). We now describe how
the clique inequalities can be extended to the transitive packing polytope.

Definition 4.8. Let (N, C) be a hypergraph, and let N 1,... , Nk, for integers k > q > 2, be a collection of mu-
tually disjoint nonempty subsets of the node set N. For each q-element subset {il,... ,iq} C {1,... ,k}

of indices we let Hil,..,iq E C be an edge such that Uql N C Hil,...,iq. We assume that the edges in
any collection of intersecting edges all have one common index. Let C be the union of these edges,
C := Ulil <i2<...<iq<kHil,.· ,iq. Then, we call the hypergraph

(C, {H i,, ,iq : 1 < i < i2 < ... < iq < k})

a generalized (k, q)-clique (contained in (N, C)).

Figure 5 depicts a generalized (4, 2)-clique. Observe that the class of generalized (3, 2)-cliques coin-
cides with that of generalized (3, 2)-cycles. Whenever we deal with generalized cliques in the context of
extended hypergraphs we assume that C and its set tr(C) := U1il<i2<...<iq<ktr(Hil ...,iq) of transitive ele-
ments are disjoint, i. e., tr(Hil,...,iq) n C = 0 for all 1 < ii < i2 < - < iq < k. We denote by mtr(C) the
multiset that arises from the union of the transitive elements tr(Hi,. ,iq). In other words, the multiplicity of
a node u C mtr(C) is precisely the number of edges Hi,... ,iq of which u is a transitive element.
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Figure 5: A (4, 2)-clique. The points indi-
cate other nodes of the clique.

Theorem 4.9. Let (N, -C, tr) be an extended hypergraph, and let, for k > q > 2, the hypergraph (C, {Hi,,...,iq :
1 i < i2 < <... iq < k}) be a generalized (k,q)-clique in (N, C) such that tr(Hi,,...iq) n = 0 for
1 < il < i2 < ' < iq < k. Then, the generalized (k, q)-clique inequality

x(C) - x(mtr(C)) CI-k+q-1 (4.11)

is valid for P, (N, JC, tr).

Proof. The proof is by induction on the size k of the generalized clique. Observe that for k = q inequality
(4.11) coincides with a transitivity constraint. In order to show its validity for k > q we consider all (e)

generalized (, q)-cliques that are induced by the g-element subsets of {(N,..., Nk}, for := k(q- ) j + 1. If
we take the sum of their corresponding generalized (, q)-clique inequalities we obtain an inequality whose
support coincides with C U tr(C). Due to the assumptions on the relation of edges, a node u E Ni for some
i E {1,... ,k} has coefficient (-l). The coefficient of a node u E C\ Uk I Ni is less than or equal to (k-).
The coefficient of each element in the multiset mtr(C) is (e-q). In order to bring these coefficients into a

line we add suitable multiples of the upper bound inequalities x < 1 for nodes u E C \ U 1Ni and of the
nonnegativity constraints xu 0 for u mtr(C). The resulting inequality then becomes

(- :) L(x(C)-x(mtr(C))) < ( ) IC + (q-e-1) 

Dividing this new inequality by (e-l) results in

k-e
x(C) -x(mtr(C)) < ICI -k+q- 1 + e (q- 1)

and by the choice of e we can truncate the last term of the right-hand side to 0. []

Observe that in case q = 2 the size of the generalized cliques to be considered in the proof of Theo-
rem 4.9 is = [k+l . This implies that the depth of the presented cutting plane proof is at most log(k- 1)1.
After drawing some conclusions from Theorem 4.9 for the acyclic subdigraph polytope and the clique parti-
tioning polytope we show that this bound is almost best possible.

Again, if we consider the case of independence systems the definition of generalized cliques given above
is slightly more general than the one of Euler, Juinger, and Reinelt [EJR87]. They assumed that a node
u E C\ Uk=l Ni cannot be contained in more than (k-l) -1 edges (with common subindex) of the generalized
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(k, q)-clique. They showed that the corresponding generalized clique inequalities are facet inducing for the
independence system with ground set C and circuits Hil,,..,iq'

Euler, Jinger, and Reinelt also observed that in case of the acyclic subdigraph polytope the simple k-
fence inequalities are contained in the class of generalized clique inequalities. We now show that even the k-
fence inequalities (not necessarily simple) are contained in the class of generalized (k, 2)-clique inequalities.

A simple k-fence (k > 3) is a digraph that is isomorphic to the digraph F = (U,B 1UB2) on 2k nodes
U = {ul,u 2,... , U2k} where

B1 = {(Ui,Uk+i): i= 1,...,k},
k

B2 = U{(Uk+i,v) VE {Ul,...,Uk}\{Ui))
i=l

Adopting the notation of [GJR85b], we call the arcs in B1 pales and the arcs in B2 pickets. A k-fence is
a digraph which arises from a simple k-fence by repeated subdivision of arcs, i. e., an arc (u, v) may be
replaced by (u, w) and (w, v) where w is a new node, and so on. To keep the notation simple, we assume
that F = (U, B1 UB2) is a k-fence and call the arcs on the directed paths from ui to uk+i pales and those on
the directed paths from uk+i to v, v $4 ui, pickets as well. If D is a digraph that contains the k-fence F, the
k-fence inequality

x(Bi UB 2) < BI U B 2 - k + 1 (4.12)

defines a facet of the acyclic subdigraph polytope of D, see [GJR85b].

Theorem 4.10. Let D be a digraph, and let F = (U, B1 U B2) be a k-fence contained in D. Then the k-fence
inequality (4.12) is contained in the class of generalized (k, 2)-clique inequalities for the acyclic subdigraph
polytope of D.

Proof. We continue to use the notation introduced when we defined generalized cliques. We set Ni to be the
set of pales on the path from ui to uk+i, for i = 1,2,.. , k. Furthermore, for 1 < i < j < k, we define Hij to
be the dicycle in F formed by the set of pales on the paths from ui to uk+i and from uj to uk+j as well as the
pickets on the paths from uk+i to uj and uk+j to ui. Thus the k-fence F defines a generalized (k, 2)-clique
and its k-fence inequality coincides with the corresponding generalized (k, 2)-clique inequality. []

Whereas the class of generalized (k, q)-clique inequalities for the acyclic subdigraph polytope is richer
than the class of k-fence inequalities, the class of generalized (k, 2)-clique inequalities turns out to be pre-
cisely the class of (1, k)-2-partition inequalities for the clique partitioning polytope of a graph G = (V, E).
(Here, q > 2 is not possible.) The latter inequalities are due to Grdtschel and Wakabayashi [GW90] and are of
the following form. Let v, ul, u2,... ., uk E V be a set of k + 1 vertices such that {ui, v} E , for i = 1,2,... ,k.
Then the inequality

k

X{i,v}- E X{UiUi} 1 (4.13)
i= 1 1<i<j< k

{ui,Uj}EE

is valid for the clique partitioning polytope. It is facet defining if G is complete, see [GW90].

Theorem 4.11. The class of generalized (k, 2)-clique inequalities for the clique partitioning polytope of a
graph G coincides with the class of (1, k)-2-partition inequalities.
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Proof Let us first consider a (1,k)-2-partition inequality (4.13). Since the edges {ui, v} and {uj, v}, for
i, j = 1,2, ... , k, i 4 j, form a hyperedge and since the transitive edges of these hyperedges are distinct from
the edges {ui, v} c E, for i = 1,2,..., k, this inequality is a generalized (k, 2)-clique inequality. On the other
hand, a generalized (k, 2)-clique of the line graph of G always leads to the support of a (1, k)-2-partition
inequality: since all participating edges in G have to be pairwise incident they either share one common node
or we have k = 3. In the former case they form the support of a (1, k)-2-partition inequality. The latter case
contradicts the assumption that the generalized clique and its transitive elements do not intersect. [1

For the partition polytope, there can exist generalized (k, q)-clique inequalities, for any q.
We are now about to show that the depth of the generalized (k, 2)-clique inequalities tends to infinity

with k.

Theorem 4.12. Let (C, {Hij : 1 < i < j < k}) be a generalized (k, 2)-clique of the extended hypergraph
(N,-C, tr). Assume that Ni = (i<j<k Hij) n (nlyj<iHji), for i = 1,2,... ,k, and that each edge H E C
such that H C C satisfies Ni U Nj C H for some i, j E { 1,2, ... , k}, i j. Then the depth of the generalized
(k, 2)-clique inequality (4.11) relative to (2.4) - (2.6) is at least log k - 1.

In order to prove this theorem we make use of the following lemma of Chvital, Cook, and Hartmann
[CCH89].

Lemma 4.13. [CCH89] Let P be a rational polyhedron in N. Let y and z be points in IN, and let
P1 ,#2,... ,Pd be positive numbers. Furthermore, for t = 0, 1,... , d set

x(t) = y - z .
i=1 i

Ify E P and if, for all t = 1,..., d, every inequality ax < validfor P n ZN with a E ZN and a z < Pt satisfies
ax(t) , then x(t) E p(t) for all t = 0, 1,..., d.

Proof of Theorem 4.12. For i = 1 ,..., k let ui be an arbitrary representative of the node subset Ni, i. e., ui E Ni.
Let C1 be the union of these nodes ui, C := U=l{ui}. Moreover, denote by C2 the rest of the generalized
(k, 2)-clique C, that is C2 := C \ C 1. For a nonnegative integer t we define

X( t ) := C 2 + 2-(t+l) XC1

If t < logk - I then

(t) (C) - x(t)(mtr(C)) = XC2 XC2 + 2-(t+1)x Cl C = C -k + 2-(t+l)k > C -k + 1 ,

and so x(t) fails to satisfy the generalized (k, 2)-clique inequality (4.11). It remains to show that x(') E p(t) for
all t. For this we use Lemma 4.13 with y := XC2 + XC, Z := XCI and pt := 2 t+ l . Observe that y is a solution
to (2.4) - (2.6). Now consider an arbitrary inequality ax < j valid for P(N, 9C, tr) and such that a E ZN and
aXC < Pt. We need to verify that ax(t) < f. Whereas this is obvious if aXC' < 0, in case aXC > O we have

ax(t) = ac2 + -aX C < aZ+2 1 < a(X + X
Pt

for a representative ui such that aui > 1. The last inequality follows from XC2 + X{ui} E P, (N, , tr). O

Theorem 4.12 was proven before for the special instances formed by the clique inequalities of the
node packing polytope [Chv73] and by the simple k-fence inequalities of the acyclic subdigraph polytope
[CCH89]. Notice that the assumption of Theorem 4.12 is also satisfied by the k-fence inequalities since each
dicycle contained in a fence uses pales between at least two different pairs of nodes. Moreover, Theorem 4.12
also applies to the (1, k)-2-partition inequalities of the clique partitioning polytope.
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Figure 6: A generalized (3, 2)-antihole (with O = U7l 1Ni).

4.3 Generalized Antihole Inequalities

Another class of valid inequalities for the node packing polytope is supported by odd antiholes. An odd
antihole in a graph is the complement of an odd cycle of length at least five without a chord. Let O denote
the set of vertices of an odd antihole. Then the odd antihole inequality associated with O is

x(O) 2.

Again, it turns out that these inequalities form a special case of a more general principle.

Definition 4.14. Let (N, Sf) be a hypergraph, and let q and s be integers such that s > q > 2. For convenience,
we set k := qs + 1. Let N1, N 2,..., Nk be a sequence of mutually disjoint nonempty subsets of the node set N.
Moreover, for each e E { 1,2,... ,k} and for every q-element set of indices {il, i2,... ,iq} C {, e + 1,... , +
s - i} (where indices greater than k are taken modulo k+ 1 and shifted by +1) we let the set Hi2 ,.. be an

edge such that Uq=l Nij C Hi2,.,i In addition, we assume, for each e E { 1,2,..., k}, that the edges in any

collection of intersecting edges of type H, i2. i all have one common (sub)index. We denote by O0 the union

of these edges, OI := Uetii<i2<**<iqsi H/l, .if, · and by O the union of all these edges, O : Uk=l O e.

Moreover, let ii(u) := l{ E {1, 2,... ,k} : u C Of} I for a node u E O. We assume that (u) < s for all nodes
u E O. Then the hypergraph

(O, {H.,i q- : i < i2 < < iq e+S- 1 for some E C{1,2,... ,k}})

is called a generalized (s, q)-antihole (contained in (N, C)).

Figure 6 depicts a generalized (3,2)-antihole. Notice that it may happen that the same edge wears
different names. For instance, if O = Uk Ni and q < s, then H e = H e+ l Given

H+s-q,... ,+s-1 +s-q,... ,t+s-1G
a generalized antihole that is contained in a given extended hypergraph we define i(u) to be the mul-
tiplicity of a node u contained in the transitive sets associated with that generalized antihole, i. e.,
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(U) := [{Hi ,i2...iq : uE tr(Hi i2,i ) for somee E 1,2,... ,k},f < il < i2 < .. < iq< + S - 1I} Thus,
if the same edge occurs more often under different names we count the number of names. We set

tr(O) := Ue=l (Uei <i2<...<iqe+s-l tr(Hi,...,i )

Theorem 4.15. Let (N, , tr) be an extended hypergraph, and let the hypergraph (0, {Hii2... ,i q : e il <
i2 < . . < iq < e + s - I for some e C {1,2,... , k}}) be a generalized (s, q)-antihole in (N, ) such that
tr(O) n o = 0. Then, the generalized (s, q)-antihole inequality

E xu- E f(u)] xu J< 0I-q(s-q+ 1)-1 (4.14)Er;(u)1s (4.14)
uEO uEtr(O)

is valid for PT(N, C,tr). It has a cutting plane proof from (2.4) -(2.6) of depth at most [log(s - 1)1 + 1.

Proof Let Ni,N 2 ,... ,Nk be the sequence of nodes underlying the generalized (s,q)-antihole. Notice that
for every e E {1,2,..., k} the edges {H,·· f < i l < i2 < < iq e +s- 1} induce a generalized

(s, q)-clique. Each set Ni is contained in precisely s of these k cliques. By adding up the k associated (s, q)-
clique inequalities, the appropriate number of upper bound constraints xu < 1 for u E 0 \ U= Ni (namely
s - i(u) many), as well as the appropriate number of nonnegativity constraints for each element u E tr(O)
(namely Fr(u)]s - a(u)), we obtain that

s Ixu- [ [(u)lsxu slOI-k(s-q+ 1) (4.15)
uEO uEtr(O)

is valid for PTp(N, X, tr). Division by s and taking the floor of the right-hand side gives the desired inequality.
The bound on the depth of its cutting plane proof follows immediately from the one for the generalized clique
inequalities. E]

To see that we indeed derive from Theorem 4.15 the usual odd antihole inequalities for the node pack-
ing polytope of a graph G we proceed as follows. Let O be the node set of an odd antihole in G, O =
{ul,u2,... ,uk}, and assume that ue and ue+, as well as ue and ue+s+l are not adjacent, for e = 1,2,... ,k.
We now relate this to a generalized antihole. Clearly, q = 2 and hence l01 = k = 2s + 1. It remains to
identify the edges. For e E { 1,2,..., k} we take as edges H the edges of the clique induced by the nodes
ue, ue+l, ... , U+-1. Notice that several edges in G are taken more than once but under different names.
Finally, observe that the right-hand side of (4.14) simplifies to 2.

Since line graphs do not contain odd antiholes (with more than five nodes) there do not exist generalized
antihole inequalities for the clique partitioning polytope when we assume that s > 3 and that ue and ue+s as
well as ue and ue++ I are not linked by an hyperedge, for each e = 1,2,..., k. Others may well exist, see for
instance Figure 7. We record this as a lemma.

Lemma 4.16. Let G = (V,E) be a graph, and let v, ul, U2,..., uk E V be distinct nodes such that {v, ui} E E,
for i = 1,2,..., k, for k = 2s + 1 and s _ 2. Define the set T:= {{ui, uj} E : i < j + s- 1 for some E
{ 1,2,..., k} }. The inequality

k
Y, f u,- •uj} < 2

i=l {ui,uj}ET

is valid for the clique partitioning polytope of G. (Again, indices greater than k are taken modulo k + 1 and
shifted by +1.)

We note that generalized (2,2)-antihole inequalities of the transitive packing polytope coincide with
generalized (5,2)-cycle inequalities. So far, antihole inequalities have not been exploited for the acyclic
subdigraph polytope or the partition polytope.
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Figure 7: From left to right: A generalized cycle, a generalized antihole, and a generalized
clique with associated transitive elements in case of the clique partitioning problem.

4.4 Generalized Antiweb Inequalities

The main idea in the derivation of the generalized antihole inequalities was to combine generalized clique
inequalities in a manner oriented on the cutting plane proof of generalized cycle inequalities. This can
be generalized and leads for the node packing polytope to the antiweb inequalities [Tro75]. For integers
1 < s < k, a (k,s)-antiweb is a graph with node set W = {ul,u2,... ,Uk} such that each node ui is adjacent
to all other nodes but not to the max{O0, k - 2s + 1} nodes ui+s, ui+s+1,..., ui+k-s (again, indices greater than
k are taken modulo k + 1 and shifted by +1). The associated antiweb inequality is

We proceed by introducing special hypergraphs that we call generalized antiwebs.

Definition 4.17. Let (N, C) be a hypergraph, and let k, s, and q be integers such that k > s q > 2.
Let N 1,N 2 ,... ,Nk be a sequence of mutually disjoint nonempty subsets of the node set N. For each e E
{1,2,... ,k} and each q-element set of indices {i1,i 2 ,... iq} C {e,e+ 1,... ,e + s- 1} (where indices are
taken modulo k + 1 and shifted by + ) we let Hi2 E XC be an edge such that Uq=Nij C H . In
addition, we assume, for each e E { 1,2,..., k}, that the edges in any collection of intersecting edges of type
Hi all have one common (sub)index. For each e we denote by We the union of the associated edges,

We := Ueil <i 2 <..<iq.e+s-1 H. e · , Moreover, we let W denote the union of all these edges, W := U = We.

Again, for u C W we let in(u) be the multiplicity of u with respect to its occurrence in We, e = 1,2,..., k,
i. e., mi(u)= I{ E {1,2,... k} : u E Wl}. If ii(u) < s for all u E W, then we call the hypergraph

(W,{Hi, ,iq: e il <i2 < ... < iq < e+s- for some E {1,2,... ,k}})

a generalized (k, s, q)-antiweb (contained in (N, -)).

Theorem 4.18. Let (N, f1, tr) be an extended hypergraph, and let the hypergraph (W, {H,i2, ,i e il <
i2 < .

< iq < + s - 1 for some E {1,2,... ,k}}) be a generalized (k,s,q)-antiweb in (N, j) such that
tr(W) n W = 0. Then, the generalized (k, s, q)-antiweb inequality

xu- E ri(u)Xu s LsIWI -k(s-q+ 1) (4.16)
UEW uEtr(W) S

C-

.- \'--- : "
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is valid for PT(N, fC,tr). It has a cutting plane proof from (2.4) - (2.6) of depth at most log(s - 1)1 + 1.

Here, tr(W) := U=l (Ue£i<i 2<...<iqe+s_- tr(Hii2...,iq)) and (u) := I{H, 2,...,i : u E tr(Hi2 iq) for some g E
{1,2,... ,k}, < ii 2 < ". < iq < +s- 1}.

Proof The cutting plane proof goes along the line of the proof of the validity of generalized antihole in-
equalities (Theorem 4.15) and is therefore omitted. IZ

It follows from their construction that generalized (k, s, q)-antiweb inequalities subsume all the former
classes of inequalities for the transitive packing polytope PT(N, f, tr). In fact,

* if q = s and if s does not divide k, we obtain the class of generalized (k, q)-cycle inequalities,

* if s = k, the class of generalized antiweb inequalities contains the class of generalized (k, q)-clique
inequalities,

* if k = qs + 1, we have the class of generalized (s, q)-antihole inequalities.

Already Laurent [Lau89] extended antiwebs to the independence system polytope; however, the inequal-
ities (4.16) restricted to this setting are more general. Laurent used one-element sets Ni and edges that are
precisely the union of q of these. She showed that such an inequality is facet defining for the polytope
associated with the independence system defined by the circuits of her antiweb.

4.5 Odd Partition Inequalities

In this section, we introduce another new class of inequalities for the transitive packing polytope. It is
an extension of a class of inequalities recently proposed by Caprara and Fischetti [CF96] for the acyclic
subdigraph polytope.

Assume that we are given an extended hypergraph (N, §, tr). Let H 1,..., Hk be a collection of distinct
edges of JC, and let m(u) and n(u) denote the multiplicity of a node u E N in this collection and the associ-
ated one of transitive elements, respectively. That is, m(u) := I{i E {1,... ,k}: u E Hi}l and n(u) := I{i c
{ 1,... ,k}: u E tr(Hi)}I. We denote the difference of these two numbers by d(u), d(u) := m(u) - n(u). Let
W be the union of all the nodes involved, W := Uik=l(Hi U tr(Hi)), and let Wodd be the set of those nodes
that occur either in an odd number of edges Hi or in an odd number of transitive sets tr(Hi), but not both,
W°dd := {u E W: d(u) odd}. Furthermore, let (W dd, W2d) be a partition of W°

dd such that Ck= IHi + IWd I- k
is odd. (Wa dd = 0 or W2ds = 0 is possible.)

Taking the sum of the constraints

I XU- I xu <IHi-1 for i = ,...,k,
uEHi uEtr(Hi)

XU < 1 for u E Wdd,

-x, < 0 for u E Wdd,

and dividing the result by 2 we obtain

d(u + d(u) + I1 d(u)-l I IHil + WlddI-k
w-Xu · + C X /l w< ` (4.17)

UEW\Wodd uEWdd UEWodd 2 2 (
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Rounding down the right-hand side gives the following inequality that is valid for the transitive packing
polytope PTp(N, X, tr),

d(u) d(u) + 1 d(u)-l X k IHi + W d- k -(4.18)

uEW\Wodd uEWpdd uEEW2 dd 2EW

We call inequalities of type (4.18) odd partition inequalities. We continue by pointing out some special
cases in which inequality (4.18) is dominated by other inequalities as well as some other cases in which it
has depth 1, relative to (2.4) - (2.6), and is therefore interesting.

Lemma 4.19. Let (N, X, tr) be a hypergraph with associated transitive elements, and let Hi, ... , Hk be a

collection of distinct edges of -C. If (Hk U tr(Hk)) n Uik- (Hi U tr(Hi)) = 0 then the odd partition inequality

(4.18)for Hi,..., Hk is implied by the initial inequalities (2.4) - (2.6) and inequality (4.18) for Hi,..., Hk- 1.

Proof. Observe first that Hk U tr(Hk) C W°dd. Thus the left-hand side of inequality (4.18) can be expressed
as follows,

d(u) d(u)+ + 1A 2 -x + Z 2
uEW\Wodd uEW dd\(HkUtr(Hk)) 2

+ d(u)-lI -
uEW2dd\(HkUtr(Hk)) uEHknW1

° dd
uEtr(Hk)nW2dd

Notice that the first three terms precisely form the left-hand side of inequality (4.17) for H,... ,Hk-I
(where we use the natural restriction of Wodd and W2dd). We continue by distinguishing three cases, namely

(a) (Hkn W2) u (tr(Hk)n w ) | / 2,

(b) I(Hk n Wr dd) U (tr(Hk) n W1dd) = 1, and, finally,

(c) I(Hkn W2dd) u (tr(Hk) n W dd) = o.

In case (a) we add to inequality (4.17) for H, ... , Hk-1 the inequalities

Xu < I for u E Hk nWfdd and -xu < 0 for u E tr(Hk) n wdd

Then the left-hand side of the resulting inequality coincides with that of inequality (4.18). The nominator of
the right-hand side is

k-1

IHi- + IWfdd \ (HkU tr(Hk)) - k + 1 + 2 Hk n WIdd
i=l

k

= IHi| + WIoddlI-k+ 1- ( Hkfn w2 dl + tr(Hk) nfldd)
i=l

which is because of the assumption (a) less than or equal to

k

JHil + IWddl - k- 1
i=l
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which is the nominator of the right-hand side of inequality (4.18) for Hi, .. , Hk. Hence in this case inequal-
ity (4.18) has depth 0 relative to (2.4) - (2.6).

Since we assumed i = IHiI + IWlddI - k to be odd in order to derive inequality (4.18), the assumption in
case (b) guarantees the nominator of the right-hand side of inequality (4.17) for Hi,..., Hk-_ to be odd, too.
Hence the following inequality is valid for PT(N, JC, tr) which is inequality (4.18) for H1,..., Hkl,

d(u) d(u) 1
A' 2 xU + d 2 u)

uEW\Wodd uEWldd\(HkUtr(Hk)) 2

±- -- Zd(u) - 1 E- IHI + IW dd\(HkUtr(Hk))I -k

uEW2dd\(HkUtr(Hk)) 2 

By adding to this inequality the inequalities

XU < 1 for u Hk n wld and -xu O for u E tr(Hk) n W 2 dd

we obtain inequality (4.18) that is therefore implied by (4.18) for H 1,... ,Hk_ and the bound constraints
(2.5) and (2.6).

In case (c) we simply add the transitivity constraint (2.4) for Hk to inequality (4.17) for Hi,..., Hk_l. It
follows that inequality (4.18) has again depth 0, relative to system (2.4) - (2.6). 0

Lemma 4.19 reflects in particular the trivial fact that we cannot hope to obtain a stronger inequality by
adding inequalities with mutually disjoint support. We now present a condition that is sufficient to ensure
that inequality (4.18) has depth 1 which leads us back to cycles in the hypergraph (N, C).

Lemma 4.20. Let (N, YC, tr) be an extended hypergraph, and let H,... , Hk be a collection of distinct edges
in S, k > 2. Let the sets W° d , Wdd, and W2d® be defined as before. Assume that tr(Hj) n Uk=l Hi = 0 for
j= 1,... ,k. If

· there exist k distinct nodes Ul,..., uk C N such that ui E Hi n Hi+l but ui u Hj for j Z i, i + 1,

· the transitive set tr(H) of an edge H Hi (i = 1,... ,k) that satisfies H C Uk=l Hi intersects UIk= Hi
either in at least one node different from ul,... , Uk or in at least two nodes from ul,... , uk, and

* Wdd C (U=lHi)\{UlU2 ,...,Uk},

then the depth of the odd partition inequality (4.18) relative to (2.4) - (2.6) is 1.

Proof Define the point x E IRN as follows:

- if u C{ul,... ,k},

XU:= 1 if u C (U=lHi) \{ul,...,uk},

0 otherwise.

Whereas x belongs to the initial linear relaxation of PTp(N, 9-C,tr), i. e., it satisfies the inequalities (2.4) -
(2.6), it violates inequality (4.18). Hence this inequality is not implied by the initial system. [l
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As mentioned before, Caprara and Fischetti [CF96] introduced the odd partition inequalities for the
acyclic subdigraph polytope in order to show that a subclass of the M6bius ladder inequalities can be derived
from the initial relaxation by a cutting plane proof of length 1 where all coefficients used are either 0 or .
Indeed, if (C, {Hi: i = 1,2,..., k}) is a generalized (k, 2)-cycle we obtain the associated generalized (k, 2)-
cycle inequality as an odd partition inequality by setting Wid := {u E C: m(u) odd} and W2dd := {U C tr(C):
n(u) odd}. In Section 4.1, we showed that the subclass of Mobius ladder inequalities where each triple of
participating dicycles has empty intersection is contained in the class of generalized (k, 2)-cycle inequalities
for the acyclic subdigraph polytope. This implies Caprara and Fischetti's result.

5 Transitive Packing in Graphs

An important subproblem of the transitive packing problem is formed by the instances where the given hy-
pergraph is actually a graph. This section is devoted to discuss the polytopes associated with these instances
in more detail. To avoid confusions we still use the notation (N, , tr) but assume throughout this section
that IHI = 2 for all H E -C. We call the triple (N, C, tr) an extended graph. The transitive packing polytope
is then given as

PTP(NHC,tr) = conv{x C {0, 1)N : X +V- E Xw < 1 for {u, v E } .
wEtr({u,v})

Recall that both the node packing polytope and the clique partitioning polytope are of this flavor. For
the node packing polytope, it is known that all facet defining inequalities with right-hand side 1 are clique
inequalities, see [Pad73]. This remains true for the transitive packing polytope of the following extended
graphs.

Theorem 5.1. Let (N, HC,tr) be an extended graph such that for every clique C in (N,-C) the following
condition is satisfied:

Each node u E tr(C) is associated with exactly one edge {v, w} induced by C and satisfies either

- {u, v}, {u, w} ¢ , or

- {u,v} ¢ Cx, {u,w} E HC, and v E tr({u, w}), or

- {u, w} fX, , {uv} E , and w E tr({u, v}), or

- {u, v}, {u, w} E , and v E tr({u, w}) and w E tr({u, v}).

Then, any facet defining inequality cx < 1 (with c integral) of the transitive packing polytope PTp(N, -C, tr) is
either of the form x,, < 1 or is a generalized (k, 2)-clique inequality.

Proof. Since every singleton is a transitive packing, the coefficients of the vector c have value at most 1. If
c has exactly one coefficient with value 1, indexed by, say, u E N, then c = x {U}. Otherwise cx < 1 would be
dominated by xu < 1. So we may assume from now on that the number of coefficients of c with value 1 is
at least two. Let C be the set of nodes u such that cu = 1. Since cx < 1 is valid, the nodes in C have to be
pairwise adjacent, i. e., they induce a clique in (N, -C). From the validity also follows that tr(C) n C = 0. It
remains to be observed that the coefficient cu of a transitive element u E tr(C) is not zero. This follows from
the assumptions with respect to transitive elements and the validity of cx < 1 for PT,(N, -C, tr). We just need
to observe that the node set formed by u and the pair of nodes v, w E C such that u E tr({v, w}) is a transitive
packing in (N, C, tr). []
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The assumptions made in Theorem 5.1 are satisfied, for instance, by the extended graphs corresponding
to instances of the clique partitioning problem. Hence, if a graph G has no isolated edges, (1, k)-2-partition
inequalities are the only facet defining inequalities with right-hand side 1 of the clique partitioning polytope
of G. The latter observation was independently made in [ORS95].

Notice that the assumptions of Theorem 4.12 are always satisfied for transitive packing problems in
graphs. Consequently, the generalized (k, 2)-clique inequalities have depth at least log k - 1, relative to
(2.4) - (2.6).

If the transitive elements of a clique C do not interact with C itself the clique and its transitive elements
form the support of valid inequalities where the nodes of the cliques have coefficients greater than one.

Theorem 5.2. Let (N, SC, tr) be an extended graph, and let C be the node set of a generalized (k, 2)-clique
in (N, ) such that tr(C) n c = 0. Moreover, let t > 1 be an integer Then, the t-reinforced generalized
(k, 2)-clique inequality

t(t + 1)
tx(C) -x(mtr(C)) < 2 (5.19)

is valid for the transitive packing polytope PT(N, -C, tr).

Proof Let x be the incidence vector of a transitive packing in (N, C, tr) and assume that x(C) = p. Conse-
quently, x(mtr(C)) P (,- 1). Thus the left-hand side of inequality (5.19) is less than or equal to tp- (1 1)2
Since

(- 1) + t(t + 1) (t-p)(t - + 1)
2 2 2

and the last term is nonnegative, x satisfies inequality (5.19). l

The proof of Theorem 5.2 implies immediately that the faces of two nonempty face defining t-reinforced
generalized (k, 2)-clique inequalities with the same support but different values of t in general contain differ-
ent sets of incidence vectors of transitive packings. The proof also implies a range on t in order to ensure that
the intersection of the transitive packing polytope and the hyperplane defined by a t-reinforced generalized
(k, 2)-clique inequality is nonempty.

Corollary 5.3. Let (N, X-, tr) be an extended graph, and let C be the node set of a generalized (k, 2)-clique
in (N, ) such that tr(C) n C = 0. Let t > 1 be an integer. If the t-reinforced generalized (k, 2)-clique
inequality (5.19) defines a nonemptyface of the transitive packing polytope PT(N, -C, tr), then t ICIl.

The bound on t can be strengthened if we assume that the t-reinforced generalized (k, 2)-clique inequal-
ity is facet defining.

Lemma 5.4. Let (N, UC, tr) be an extended graph, and let C be the node set of a generalized (k, 2)-clique
in (N, C) such that tr(C) n C = 0. Let t > 1 be an integer If the t-reinforced generalized (k, 2)-clique
inequality (5.19) induces afacet of the transitive packing polytope PTp(N, -C, tr), then t < ICI- 2.

Proof. The proof is by contradiction. Because of Corollary 5.3 we are left with the cases t = CI and t =
CI - 1. In the former case each point x contained in the facet under consideration would satisfy x(C) =
ICI. Hence this facet would be contained in all faces induced by the upper bound constraints xu < 1 for
u E C, a contradiction. In the latter case the (ICI - )-reinforced generalized (k, 2)-clique inequality (5.19)
turns out to be the sum of all the transitivity constraints induced by pairs of nodes of the clique C, again a
contradiction. E]
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One might ask whether there exist transitive packing polytopes of extended graphs such that the t-
reinforced generalized (k, 2)-clique inequalities are facet defining. This is indeed the case. Oosten, Rutten,
and Spieksma [ORS95] showed that the t-reinforced generalized (k, 2)-clique inequalities define facets of
the clique partitioning polytope of a complete graph, for t < k - 2 of course.

One appealing aspect of our suggestion to treat suitable problems in the transitive packing context is the
possibility to use knowledge that is available, not only for the transitive packing polytope itself but also for
some of its special cases. We illuminate this by considering a simple example. Let us assume that the under-
lying graph G of a clique partitioning problem is bipartite. This implies for the associated extended graph
(N, OC, tr) that tr(H) = 0 for all edges H E SC. In other words, the transitive packing (clique partitioning)
polytope of G coincides with the node packing polytope of its line graph (N, -C). Since node packings in
line graphs correspond one-to-one with matchings in the original graphs, we obtain the following result.

Lemma 5.5. Let G = (V, E) be a bipartite graph. The clique partitioning polytope of G is completely char-
acterized by the following linear inequalities:

Xe 0 for all edges e E E,
x(C) 1 for all sets C C E of pairwise incident edges.

It also follows that the clique partitioning problem on bipartite graphs reduces to a matching problem and
can hence be solved in polynomial time. This example is, as already indicated, an instance of a more general
point of view. Whenever we can interpret a given problem as a transitive packing problem, and whenever
the extended graph (or even hypergraph) of an instance of this problem does not have transitive elements
but does have a structure such that the corresponding node packing (independence system) polytope can
explicitly be described by linear inequalities the same holds for the polytope associated with the original
problem.

6 Separation

After introducing several classes of valid inequalities for the transitive packing polytope, one question that
arises is whether we can use these inequalities efficiently in cutting plane algorithms for attacking the tran-
sitive packing problem. This topic is discussed in this section. We concentrate on generalized cycle and odd
partition inequalities.

Given an integer polyhedron P1 = conv{x E Zn: Ax b}, where A E Zm x n and b E Zm , a {0, }-Gomory-
Chvtal cut is a valid inequality for P of the form XAx < LXb] with X E {, 1}m and A E Zn. In other
words, a {0, }-Gomory-Chvtal cut has a cutting plane proof of length 1 from Ax < b and the coefficients
in the corresponding linear combination belong to {0, 2 } only. Caprara and Fischetti [CF96] showed that the
separation problem for any point y E Q' and the class of {0, }-Gomory-Chvtal cuts is solvable in time
polynomially bounded in the input size of A, b, and y, assuming that A has, at most, two odd coefficients in
each row. For 0/1 polytopes P this remains true for a relaxation {x E IRn : A'x < b'} of {x E Rn : Ax < b}
where A'x < b' is obtained from Ax < b by adding systematically lower bound constraints xu > 0 and upper
bound constraints xu < 1 such that A' has, at most, two odd coefficients in each row. More precisely, we may
replace each inequality Lu aiuxu < bi with more than three odd coefficients by

aivxv +aixw + aiuxu + - (aiu - )xu + (ai + 1)xu < bi + I U
u : aiu even uEL uUi
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for all elements v, w with odd coefficients and for all (including trivial) partitions (Li, Ui) of {u E { 1,2,... , n} \
{v, w}: ai, odd}, for i = 1,2,..., m. Although this leads in general to an exponential number of rows, the
separation problem associated with the {0, ½}-Gomory-,Chvital cuts of this relaxation can still be solved
in polynomial time, see [CF96]. Observe that a weak generalized (k, 2)-cycle inequality can be derived as
a {0, ½ }-Gomory-Chvital cut of such a relaxation when Hil = 2 for all edges Hi of the supporting cycle
(C, {Hi : i = 1,2,... , k}). (Indeed, we do not need the upper bound constraints here.)

Theorem 6.1. There exists a polynomial time algorithm that, for any extended hypergraph (N, , tr) and
for any point y E Q, either asserts that y satisfies all weak generalized (k, 2)-cycle inequalities supported
by cycles (C, {Hi: i = 1,2,... ,k}) such that Hil = 2, i = 1,2,... ,k, orfinds an inequality violated by yfrom
a class of valid inequalities for Pw(N, , tr) that contains all weak generalized (k, 2)-cycle inequalities
supported by cycles (C, {Hi : i = 1,2,... ,k}) such that IHil = 2, i= 1,2,..., k.

Notice that this captures in particular all transitive packing problems in graphs. It covers, for instance, the
2-chorded odd cycle inequalities and the odd wheel inequalities for the clique partitioning and the partition
polytope. The separation problem for the former class has previously been solved in [CF96, Mii193], the
latter one in [DGL92].

For the odd partition inequalities we make use of both lower and upper bound constraints. Let us assume
that H 1,H 2,... ,Hk is the underlying collection of edges and that d(u) odd implies that either m(u) = 1
and n(u) = 0 or m(u) = 0 and n(u) = 1 for all nodes u E N. For a given partition (W2dd,W2dd) of Wodd the
corresponding odd partition inequality can be obtained as a {0, }-Gomory-Chvital cut from the relaxed
system

lXu- C X+ E XU- E Xu IHil+I(HiUtr(Hi)) n wlddl - 1
uEH uEtr(Hi) uG(HiUtr(Hi))nW~'dd uE(HiUtr(Hi))nW2 dd

for i = 1,2,..., k. For fixed K, we denote by Ce the class of odd partition inequalities such that IHil < K, such
that d(u) odd implies that either m(u) = 1 and n(u) = 0 or m(u) = 0 and n(u) = 1 for all nodes u E N, and
such that I (Hi U tr(Hi)) \ W°ddl < 2 for i = 1,2,... , k. The next observation follows again from Caprara and
Fischetti's result.

Theorem 6.2. There exists a polynomial time algorithm that, for any extended hypergraph (N, Y, tr), for
any fixed constant Kc and for any point y E TQ, either asserts that y satisfies all odd partition inequalities in
eO, or finds an inequality violated by y from a class of valid inequalities for P,(N, , tr) that contains the
class eC of certain odd partition inequalities.

7 Special Polytopes

In this section, we discuss two more polytopes that arise from the transitive packing polytope by special
choices of hypergraphs and transitive elements. The detailed discussion of a third one, the interval order
polytope, which inspired the introduction and the study of the transitive packing polytope is content of an-
other paper, see [MS99] (and [Sch96, Chapter 5]). The insights obtained for the acyclic subdigraph polytope
as well as for the clique partitioning and the partition polytope have been stated during the treatment above.
We will not repeat it here. We also do not review special independence system polytopes since this model
is known for years. We rather concentrate on two recently introduced polytopes that deal with transitive
elements.



28

7.1 The Transitive Acyclic Subdigraph Polytope
An instance of the transitive acyclic subdigraph problem (or poset problem) consists of a directed graph
D = (V,A) and a weight function c A - Q. The goal is to determine a set of arcs B C A such that the
digraph (V, B) is acyclic and transitively closed, i. e., such that it represents a partially ordered set, and such
that c(B) is as large as possible. The transitive acyclic subdigraph polytope (or partial order polytope) of D
is the convex hull of 0/1 incidence vectors of all transitive and acyclic arc sets of D. Equivalently, it is the
integer hull of the polytope defined by

Xuv >0 for all arcs (u, v) E A, (7.20)
xv < 1 for all arcs (u,v) E A, (7.21)

xV + v 1 Ifor all pairs (u, v), (v, u) E A, (7.22)
xUV + xvw• Ifor all (u, v), (v, w) E A such that (u, w) V A, (7.23)

xaV~ + XVW -x 1 l Ifor (u, v), (v, w), (u, w) A. (7.24)
The transitive acyclic subdigraph polytope was introduced by MUller [M5193]. It arises as a transitive packing
polytope of an extended graph (N, , tr) defined as follows: the arc set A of the digraph D forms the node set
N, and two nodes (u, v ), (2, v2) A are said to be adjacent if vl = 2 or ul = v2 (or both). The transitive
element that we associate with a pair of adjacent arcs (u, v), (v, w) E A is the arc (u, w), if it exists.

It has already been shown in [M193] that the transitive acyclic subdigraph polytope is full-dimensional,
that the nonnegativity constraints (7.20) are facet defining, and that an upper bound constraint (7.21) Xv < 1
defines a facet if and only if for all w V with (w, u) E A (or (v,w) C A) also (w,v) A (respectively
(u, w) E A). The latter condition is precisely the translation of the assumption made in Lemma 2.4 (b). The
only known non-trivial class of facet defining inequalities is associated with odd dicycles in D [M193]. If
(u, u2), (2, 3 ),., (uk- l,uk), (k,ul) forms an odd dicycle in D, its cycle inequality is

k k k-I
ZXUiUi+l- XiUi+2 < - -

-= 1 2
(uiui+2 )EA

These cycle inequalities obviously belong to the class of generalized (k, 2)-cycle inequalities. However,
there is no reason to restrict to cycles in the digraph D. Figure 8 shows an arc configuration that defines a
generalized cycle in the extended graph defined above but is no dicycle in D. Hence, we can present a much
larger class of valid inequalities for the transitive acyclic subdigraph polytope.

Lemma 7.1. Let D = (V,A) be a digraph. Fork 3 odd, let al,a2,... ,ak be a sequence of arcs in A such
that ai, ai+ are adjacent, i = 1,2, ... , k. The inequalities

k Fn(a)12 k-I k k k-I
I-i or- ({ Xa< 2 2 nd Xai- Xtr({a i,ai+}) 2 (7.25)i =I aet r({aiai+]} ) 2 2 2

for some i

are valid for the transitive acyclic subdigraph polytope of D. Here, n(a) {i E { 1,2,... , k} : a tr( {ai,ai+l }) .
The latter class of inequalities is contained in a class of valid inequalities for the transitive acyclic subdi-
graph polytope of D for which the corresponding separation problem is solvable in polynomial time.

We note that there do not exist generalized (k, 2)-cliques in case of the transitive acyclic subdigraph
polytope, for k > 4. We close this section on the transitive acyclic subdigraph polytope with the observa-
tion that the transitive acyclic subdigraph polytope of a digraph D whose underlying graph is bipartite is
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Figure 8: Two digraphs which are generalized (7,2)-cycles
in the extended graphs corresponding to the transitive acyclic
subdigraph problem. The numbers indicate the chosen se-
quence, respectively.

completely described by (7.20) - (7.23). We may argue as follows. First observe that there do not exist
transitive arcs. Let black and white be the two color classes of the underlying bipartite graph. The extended
graph induced by D is also bipartite. Its color classes are the arcs directed from black to white and the arcs
from white to black, respectively. Since it is known that the node packing polytope of a bipartite graph is
completely described by the nonnegativity, the upper bound, and the edge constraints, our claim follows.

7.2 The Relatively Transitive Subdigraph Polytope

A digraph D = (V,A) is said to be transitively closed, or just transitive, whenever the presence of two arcs
(u, v), (v,w) E A implies the presence of the arc (u,w) in A. A subdigraph (V,B) of a digraph D = (V,A) is
called relatively transitive if for every dipath from u to v in (V, B), either (u, v) E B, or (u, v) is not in A. We
define the relatively transitive subdigraph polytope of D as the convex hull of the incidence vectors of all
relatively transitive subdigraphs of D, or equivalently, as the integer hull of the polytope defined by

Xuv 0 for all arcs (u, v) E A, (7.26)

Xuv < 1 for all arcs (u, v) E A, (7.27)

X Xa-Xuv IPI - for all (u, v) E A and for all dipaths p E P, (7.28)
aep

where jPFD is the set of dipaths from u to v in D. The size IpI of such a dipath p is the number of its arcs.
Shallcross and Bland [SB] (see also [Sha89]) studied the convex hull of 0/1 points x whose complements
x = - x satisfy (7.26) - (7.28). If D is transitively closed, these points represent the independent sets of the
transitivity antimatroid of D. Shallcross and Bland were motivated by a question raised by Korte and Lovisz
[KL89] whether the convex hull of these incidence vectors has a (computationally) nice description. Shall-
cross and Bland present some conditions on D such that their polytope and therefore the relatively transitive
subdigraph polytope is completely described by (7.26) - (7.28). They also point out that maximizing a linear
function over the relatively transitive subdigraph polytope is NP-hard in general, thereby answering Korte
and Lovdsz's question to the negative.

The way we introduced the relatively transitive subdigraph polytope suspects it to be a certain transitive
packing polytope. To be precise, let the arc set A of the given digraph D = (V,A) be the node set N of the
extended hypergraph to be defined. The hyperedges are formed by the arcs of dipaths from node u to node
v, for all u, v E V such that (u, v) E A. Finally, the transitive element associated with such a hyperedge is
clearly the arc (u, v). Now, we may translate all the inequalities presented for the transitive packing polytope
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into this context, by that answering a question of Shallcross and Bland for other valid inequalities for the
(complement of the) relatively transitive subdigraph polytope.

8 Concluding Remarks

Notice that the inequalities presented above remain valid when we allow for hypergraphs with loops. Then,
we cover, for instance, the cut polytope (see, e.g., [BM86, DL97]) and the Boolean quadric polytope (e.g.,
[Pad89]) as well.

It is well-known (see [Edm62]) that every set packing problem

maximize cx

subject to Ax < 1 (8.29)

Xu E {0, 1}

where A is a matrix of zeros and ones, can be transformed into an equivalent node packing problem on the
intersection graph of A. Every column becomes a node and two nodes u and v are joined by an edge if
and only if the matrix A contains a row with entry 1 in columns u and v. In other words, the convex hull
of feasible solutions to (8.29) (the set packing polytope of A) is identical to the node packing polytope of
the intersection graph of A. Hence transitive packing covers set packing as well since it subsumes node
packing. However, generalized set packing polytopes [CC95] do not immediately occur as special instances
of transitive packing polytopes. In fact, given a 0/ 1 matrix A and the vector nA whose components count
the number of negative entries in the corresponding rows of A, Conforti and Cornu6jols defined (the integer
hull of) {x: Ax < - nA, 0 < x < I} to be a generalized set packing polytope.

On the other hand, as already pointed out, the transitive packing polytope of an extended hypergraph with
no transitive elements reduces to an independence system polytope. There is a close relation between inde-
pendence system polytopes and set covering polytopes (see, e. g., [Lau89, NS89]). A set covering polytope
is of the form conv{y E {0, 1 }n: Ay > 11} where A is a 0/1 matrix. The points y in the set covering polytope
and the points x in the independence system polytope of the circuit system defined by the undominated rows
of A are related by the affine transformation x = - y. Explicitly,

x E conv{x E {0, l }n: Ax < PA - 1} if and only if - x conv{y E {0, 1 }n: Ay 1 .

Consequently, set covering polytopes and independence system polytopes are equivalent - modulo the above
transformation. An implication is that any result stated for the independence system polytope can be trans-
lated to the set covering polytope, and vice versa. Thus the work of Balas and Ng [BN89a, BN89b], of
Cornu6jols and Sassano [CS89], Nobili and Sassano [NS89], as well as Sassano [Sas89] on the set covering
polytope can be seen as a contribution to the knowledge of the independence system polytope. For instance,
the inequalities for the set covering polytope associated with complete (q, s)-roses of order k [Sas89] turn
out to be equivalent to the generalized (k, s, q)-antiweb inequalities of Laurent [Lau89]. This implies espe-
cially that our extension of the class of antiweb inequalities for the independence system polytope extends
the known rose inequalities for the set covering polytope, too.

If we apply the complementing of variables to the transitive packing polytope PTp(N, -C, tr) = conv{x E
{0, 1 }N : Ax PA - 1} where the 0/ ± 1 matrix A is the extended edge-node incidence matrix of the ex-
tended hypergraph (N, 9-C,tr), it turns out to be equivalent (modulo this affine transformation) to the poly-
tope Q(A) := conv{x E {0, 1}N Ax > - nA}. The natural linear relaxation of the polytope Q(A) has been
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introduced by Conforti and Cornujols [CC95] in the context of balanced 0/ ± 1 matrices as the (fractional)
generalized set covering polytope. Conforti and Cornujols [CC95] as well as Nobili and Sassano [NS95]
characterize when the fractional generalized set covering polytope is integral, i. e., when it coincides with
the generalized set covering polytope. Our work can be seen as a contribution to the study of the generalized
set covering polytope when it is properly contained in the corresponding fractional one. Recall that a 0/ 1
matrix is balanced if, in every submatrix with exactly two nonzero entries per row and per column, the sum
of the entries is a multiple of four [Tru82]. We refer to Conforti, Cornujols, Kapoor, Vusk6vi6, and Rao
[CCK+94] for a survey of balanced matrices and related concepts. Conforti and Comujols showed that a
0/ + 1 matrix A is balanced if and only if the fractional generalized set covering (or packing) polytope is
integral, for each submatrix of A. An extension of the concept of balanced 0/ 1 matrices are ideal matrices.
A 0/ 1 matrix A is ideal if its fractional generalized set covering polytope is integral, or, equivalently, if
its fractional transitive packing polytope is integral. It would be very interesting for problems that can be
interpreted as transitive packing problems, to characterize when the extended edge-node incidence matrices
of their associated extended hypergraphs are ideal. Little is known so far about ideal 0/ + 1 matrices, see
[CCK+94, NS95].

The way we introduced the transitive packing model, and the name we gave to it reflects how we discov-
ered it but may hide its full generality. To highlight and to slightly extend the generality of our model, we
finally provide another presentation. A directed hypergraph is a pair (N, C) consisting of a finite set N of
nodes and of a set of directed hyperedges (hyperarcs). A hyperarc (H +, H-) C SC consists of two (possibly
empty) disjoint subsets of N. For a survey of directed hypergraphs the reader is referred to [GLPN93]. Now,
consider for x {0, 1 }N the following "directed hypergraph covering" constraints

x(H+) + x(H-) > 1 for all hyperarcs (H+,H- ) E C,

where x = - x is the complement of the 0/1 vector x. Observe that this is equivalent to the transitivity
constraints (2.4) with H+ = H and H- = tr(H). In particular, this form emphasizes the symmetry of the
role of hyperedges and their associated transitive sets. For example, reversing the direction of the hyperarcs
simply amounts to exchanging x and .

Acknowledgements. The authors are grateful to Maurice Queyranne for suggesting the interpretation of
transitive packing in terms of directed hypergraphs.
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