77,386 research outputs found

    Convergence of a cell-centered finite volume discretization for linear elasticity

    Get PDF
    We show convergence of a cell-centered finite volume discretization for linear elasticity. The discretization, termed the MPSA method, was recently proposed in the context of geological applications, where cell-centered variables are often preferred. Our analysis utilizes a hybrid variational formulation, which has previously been used to analyze finite volume discretizations for the scalar diffusion equation. The current analysis deviates significantly from previous in three respects. First, additional stabilization leads to a more complex saddle-point problem. Secondly, a discrete Korn's inequality has to be established for the global discretization. Finally, robustness with respect to the Poisson ratio is analyzed. The stability and convergence results presented herein provide the first rigorous justification of the applicability of cell-centered finite volume methods to problems in linear elasticity

    Integer polyhedra for program analysis

    Get PDF
    Polyhedra are widely used in model checking and abstract interpretation. Polyhedral analysis is effective when the relationships between variables are linear, but suffers from imprecision when it is necessary to take into account the integrality of the represented space. Imprecision also arises when non-linear constraints occur. Moreover, in terms of tractability, even a space defined by linear constraints can become unmanageable owing to the excessive number of inequalities. Thus it is useful to identify those inequalities whose omission has least impact on the represented space. This paper shows how these issues can be addressed in a novel way by growing the integer hull of the space and approximating the number of integral points within a bounded polyhedron

    The structure of the infinite models in integer programming

    Get PDF
    The infinite models in integer programming can be described as the convex hull of some points or as the intersection of halfspaces derived from valid functions. In this paper we study the relationships between these two descriptions. Our results have implications for corner polyhedra. One consequence is that nonnegative, continuous valid functions suffice to describe corner polyhedra (with or without rational data)
    corecore