2,765 research outputs found

    Sparse multinomial kernel discriminant analysis (sMKDA)

    No full text
    Dimensionality reduction via canonical variate analysis (CVA) is important for pattern recognition and has been extended variously to permit more flexibility, e.g. by "kernelizing" the formulation. This can lead to over-fitting, usually ameliorated by regularization. Here, a method for sparse, multinomial kernel discriminant analysis (sMKDA) is proposed, using a sparse basis to control complexity. It is based on the connection between CVA and least-squares, and uses forward selection via orthogonal least-squares to approximate a basis, generalizing a similar approach for binomial problems. Classification can be performed directly via minimum Mahalanobis distance in the canonical variates. sMKDA achieves state-of-the-art performance in terms of accuracy and sparseness on 11 benchmark datasets

    Effective Discriminative Feature Selection with Non-trivial Solutions

    Full text link
    Feature selection and feature transformation, the two main ways to reduce dimensionality, are often presented separately. In this paper, a feature selection method is proposed by combining the popular transformation based dimensionality reduction method Linear Discriminant Analysis (LDA) and sparsity regularization. We impose row sparsity on the transformation matrix of LDA through 2,1{\ell}_{2,1}-norm regularization to achieve feature selection, and the resultant formulation optimizes for selecting the most discriminative features and removing the redundant ones simultaneously. The formulation is extended to the 2,p{\ell}_{2,p}-norm regularized case: which is more likely to offer better sparsity when 0<p<10<p<1. Thus the formulation is a better approximation to the feature selection problem. An efficient algorithm is developed to solve the 2,p{\ell}_{2,p}-norm based optimization problem and it is proved that the algorithm converges when 0<p20<p\le 2. Systematical experiments are conducted to understand the work of the proposed method. Promising experimental results on various types of real-world data sets demonstrate the effectiveness of our algorithm

    Kernel Fisher Discriminant Analysis Based on a Regularized Method for Multiclassification and Application in Lithological Identification

    Get PDF
    This study aimed to construct a kernel Fisher discriminant analysis (KFDA) method from well logs for lithology identification purposes. KFDA, via the use of a kernel trick, greatly improves the multiclassification accuracy compared with Fisher discriminant analysis (FDA). The optimal kernel Fisher projection of KFDA can be expressed as a generalized characteristic equation. However, it is difficult to solve the characteristic equation; therefore, a regularized method is used for it. In the absence of a method to determine the value of the regularized parameter, it is often determined based on expert human experience or is specified by tests. In this paper, it is proposed to use an improved KFDA (IKFDA) to obtain the optimal regularized parameter by means of a numerical method. The approach exploits the optimal regularized parameter selection ability of KFDA to obtain improved classification results. The method is simple and not computationally complex. The IKFDA was applied to the Iris data sets for training and testing purposes and subsequently to lithology data sets. The experimental results illustrated that it is possible to successfully separate data that is nonlinearly separable, thereby confirming that the method is effective

    A Review of Codebook Models in Patch-Based Visual Object Recognition

    No full text
    The codebook model-based approach, while ignoring any structural aspect in vision, nonetheless provides state-of-the-art performances on current datasets. The key role of a visual codebook is to provide a way to map the low-level features into a fixed-length vector in histogram space to which standard classifiers can be directly applied. The discriminative power of such a visual codebook determines the quality of the codebook model, whereas the size of the codebook controls the complexity of the model. Thus, the construction of a codebook is an important step which is usually done by cluster analysis. However, clustering is a process that retains regions of high density in a distribution and it follows that the resulting codebook need not have discriminant properties. This is also recognised as a computational bottleneck of such systems. In our recent work, we proposed a resource-allocating codebook, to constructing a discriminant codebook in a one-pass design procedure that slightly outperforms more traditional approaches at drastically reduced computing times. In this review we survey several approaches that have been proposed over the last decade with their use of feature detectors, descriptors, codebook construction schemes, choice of classifiers in recognising objects, and datasets that were used in evaluating the proposed methods

    Discriminant feature analysis for pattern recognition

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore