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This study aimed to construct a kernel Fisher discriminant analysis (KFDA) method from well logs for lithology identification
purposes. KFDA, via the use of a kernel trick, greatly improves the multiclassification accuracy compared with Fisher discriminant
analysis (FDA).The optimal kernel Fisher projection of KFDA can be expressed as a generalized characteristic equation. However, it
is difficult to solve the characteristic equation; therefore, a regularizedmethod is used for it. In the absence of amethod to determine
the value of the regularized parameter, it is often determined based on expert human experience or is specified by tests. In this paper,
it is proposed to use an improved KFDA (IKFDA) to obtain the optimal regularized parameter by means of a numerical method.
The approach exploits the optimal regularized parameter selection ability of KFDA to obtain improved classification results. The
method is simple and not computationally complex. The IKFDA was applied to the Iris data sets for training and testing purposes
and subsequently to lithology data sets. The experimental results illustrated that it is possible to successfully separate data that is
nonlinearly separable, thereby confirming that the method is effective.

1. Introduction

China’s tight clastic rock reservoir is considerably wide,
containing sediments that were deposited during the Car-
boniferous, Permian, Triassic, and Jurassic periods.The reser-
voirs in Western Sichuan and Erdos are more representative.
The West Sichuan depression is located in the Western
Sichuan Basin, which belongs to the western depression belt
that is located in Yangtze Platform or Longmenshan Fault
Zone. A tight gas reservoir was discovered in the Xujiahe
and Shaximiao formations that occur in this area. Tight
clastic reservoirs are noted for their low porosity, because of
their dense, multilayered stacking and strong heterogeneous
characteristics that are caused by their complexity and par-
ticularity. These characteristics complicate the identification
of the lithology, which would enable the prediction of the
properties of a reservoir. Previous research [1, 2] identified the
reservoir lithology consisting of mudstone, sandstone, and
siltstone in the AC area of western Sichuan. The cross plot

of sandstone and siltstone shows that these rock types overlap
and aremixed together, which is a linearly nonseparable case.
The cross plot and mathematical models have been applied
extensively in lithology identification in previous studies. For
example, Hsieh et al. constructed a fuzzy lithology system
from well logs to identify the formation lithology [3], while
Shao et al. applied an improved BP neural network algorithm,
based on a momentum factor, to lithology recognition [4].
Zhang et al. used Fisher discrimination to identify volcanic
lithology using regular logging data [5]. However, it is very
difficult to identify the lithology of tight clastic rock reservoirs
with the above method.Thus, this paper proposes the Kernel
Fisher discriminant analysis (KFDA) for tight clastic rock
lithology identification.

The KFDA has its roots in Fisher discriminant analysis
(FDA) and is the nonlinear scheme for two-class and mul-
ticlass problems [6]. KFDA functions by mapping the low-
dimensional sample space into a high-dimensional feature
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space, in which the FDA is subsequently conducted. The
KFDA study focuses on applied and theoretical research.
Billings et al. replaced the kernel matrix with its submatrix in
order to simplify the computation [7, 8]; Liu et al. proposed
a new criterion for KFDA to maximize the uniformity of
class-pair separabilities that was evaluated by the entropy
of the normalized class-pair separabilities [9]; Wang et al.
considered discriminant vectors to be linear combinations of
“nodes” that are part of the training samples and therefore
proposed a fast kernel Fisher discriminant analysis technique
[10, 11]. Wang et al. proposed the nodes to be the most
representative training samples [12]. Optimal kernel selection
is one of the areas of theoretical research that has been
attracting considerable attention. Fung et al. have developed
an iterative method based on a quadratic programming
formulation of FDA [13]. Khemchandani et al. considered
the problem of finding the data-dependent “optimal” kernel
function via second-order cone programming [14]. The use
of KFDA in combination with strong nonlinear feature
extraction ability is becoming a powerful tool for solving
identification or classification problems. Hence, it has been
applied widely and successfully in many areas. Examples of
the application of KFDA are face recognition, fault diagnosis,
classification, and the prediction of the existence of hydrocar-
bon reservoirs [15–20].

The principle that underlies KFDA is that input data are
mapped into a high-dimensional feature space by using a
nonlinear function, after which FDA is used for recognition
or classification in feature space. KFDA requires factorization
of the Grammatrix into the kernel within-class scattermatrix
𝐾
𝑤
and the between-class scattermatrix𝐾

𝑏
. KFDA can finally

be attributed to the solution of a generalized eigenvalue
problem 𝐾

𝑏
𝛼 = 𝜆𝐾

𝑤
𝛼. As the matrix 𝐾

𝑤
is often singular, a

regularized method is often used to solve the problem, which
is transformed into a general eigenvalue problem by choosing
a smaller positive number 𝜇, in which case 𝐾

𝑤
is replaced

with 𝐾
𝑤
+ 𝜇𝐼. Previous studies have shown the classification

ability of KFDA to depend on the value of 𝜇; therefore, the
appropriate values for KFDA are very important. In many
practical applications, the parameter 𝜇 is specified according
to experience or experimental results.

This paper proposes a new approach for the selection of
the regularized parameter 𝜇 to gain the best classification
results, and KFDA is improved for both Iris data sets
and lithology data sets. The paper is organized as follows.
Section 2 summarizes kernel Fisher discriminant analysis.
In Section 3, a numerical method for finding an optimal
parameter𝜇 is proposed by introducing a regularizedmethod
for KFDA. The experimental results are given in Sections 4
and 5, while Section 6 presents the concluding remarks.

2. Kernel Fisher Discriminant Analysis

Let 𝑆 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
} be the data set that contains𝐾 classes

in the 𝑑-dimensional real space 𝑅𝑑. Let 𝑁𝑖 samples belong
to the 𝑗th class, (𝑁 = 𝑁

1
+ 𝑁
2
+ ⋅ ⋅ ⋅ + 𝑁

𝑘
). FDA is used for

lithology identification by searching the optimal projection
vectors 𝑤, and then a different class of lithology samples has
minimumwithin-class scatter. FDA is given by the vector𝑤 ∈
𝑅
𝑑 that maximizes the Fisher discriminant function as

𝐽 (𝑊) =
𝑤
𝑇

𝑆
𝑏
𝑤

𝑤𝑇𝑆
𝑤
𝑤
, (1)

where 𝑆
𝑤
is the within-class scatter matrix and 𝑆

𝑏
is the

between-class scatter matrix. FDA is essentially a linear
method, which makes it very difficult to separate the nonlin-
ear separable sample.

KFDA significantly improves the classification ability for
the nonlinear separable sample of FDA via the use of a kernel
trick. To adapt to nonlinear cases, 𝜑(𝑥) is mapped from
the lower dimensional sample space into a high-dimensional
feature space. Note that 𝜙(𝑥𝑗

𝑖
) (𝑖 = 1, 2, . . . , 𝑁

𝑗
, 𝑗 =

1, 2, . . . , 𝐾) represents the 𝑖th projection value in the class 𝜔
𝑗
.

Let 𝑚𝜙 be the mean vector of the population, and let 𝑚𝜙
𝑗
be

the mean vector of class 𝜔
𝑗
. In the feature space 𝐹, the total

scatter matrix 𝑆
𝑡
, the within-class scatter matrix 𝑆

𝑤
, and the

between-class scatter matrix 𝑆
𝑏
can be defined as

𝑆
𝜙

𝑡
=
1

𝑁

𝑁

∑

𝑖=1

(𝜙 (𝑥
𝑖
) − 𝑚
𝜙

) (𝜙 (𝑥
𝑖
) − 𝑚
𝜙

)
𝑇

,

𝑆
𝜙

𝑤
=
1

𝑁

𝐾

∑

𝑗=1

𝑁𝑗

∑

𝑖=1

(𝜙 (𝑥
𝑗

𝑖
) − 𝑚

𝜙

𝑗
) (𝜙 (𝑥

𝑗

𝑖
) − 𝑚

𝜙

𝑗
)
𝑇

,

𝑆
𝜙

𝑏
=

𝐾

∑

𝑗=1

𝑁
𝑗

𝑁
(𝑚
𝜙

𝑗
− 𝑚
𝜙

) (𝑚
𝜙

𝑗
− 𝑚
𝜙

)
𝑇

.

(2)

Lithology identification by KFDA can be attributed to the
optimization of kernel Fisher criterion function as follows:

𝐽 (V) =
V𝑇𝑆𝜙
𝑏
V

V𝑇𝑆𝜙
𝑤
V
, (3)

where V represents the different optimal projection vector.
Thehigh dimension of feature space𝐹 and the infinite dimen-
sion make it impossible to directly calculate the optimal
discriminant vector V. A solution for this problem is to use
the kernel trick as follows:

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = (𝜙 (𝑥

𝑖
) , 𝜙 (𝑥

𝑗
)) . (4)

According to the theory of reproducing a kernel [6],
any solution V must lie in the feature space 𝐹, which spans
𝜙(𝑥
1
), 𝜙(𝑥), . . . , 𝜙(𝑥

𝑁
) as follows:

V =
𝑁

∑

𝑖=1

𝛼
𝑖
𝜙 (𝑥
𝑖
) . (5)
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Figure 1: Scatter gram plots of Iris data: red (C1, setosa); green (C2, virginica); blue (C3, versicolor).

In 𝐹, any test samples can be projected into 𝑤 to give the
following equation:

V𝑇𝜙 (𝑥) =
𝑁

∑

𝑖=1

𝛼
𝑖
(𝜙 (𝑥) , 𝜙 (𝑥

𝑖
))

= 𝛼
𝑇

((𝜙 (𝑥) 𝜙 (𝑥
1
)) , (𝜙 (𝑥) , 𝜙 (𝑥

2
)) , . . . ,

(𝜙 (𝑥) , 𝜙 (𝑥
𝑁
)))

= 𝛼
𝑇

(𝐾 (𝑥, 𝑥
1
) , 𝐾 (𝑥, 𝑥

2
) , . . . , 𝐾 (𝑥, 𝑥

𝑁
)) .

(6)

In 𝐹, the kernel within-class scatter matrix 𝐾
𝑤

and the
between-class scatter matrix𝐾

𝑏
can be defined as

𝜇
0
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𝐾
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∑
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) (𝜉
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− 𝜇
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)

𝑇

, (10)

𝐽 (V) =
V𝑇𝑆𝜙
𝑏
V

V𝑇𝑆𝜙
𝑤
V
=
𝛼
𝑇

𝐾
𝑏
𝛼

𝛼𝑇𝐾
𝑤
𝛼
= 𝐽 (𝛼) . (11)

According to the properties of the generalized Rayleigh
quotient, the optimal solution vector 𝑤 is obtained by max-
imizing the criterion function in (11) by setting it equivalent
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to the solution of the generalized characteristic equation as
follows:

𝐾
𝑏
𝛼 = 𝜆𝐾

𝑤
𝛼. (12)

3. Choosing the Regularized Parameter

If 𝐾
𝑤

is a nonsingular matrix, then optimal vectors 𝛼,
obtained by maximizing (11), are equivalent to the feature
vectors corresponding to the top 𝑚 largest eigenvalues [12,
21]. Equation (12) can be described as

(𝐾
𝑤
)
−1

𝐾
𝑏
𝛼 = 𝜆𝛼. (13)

The solution of practical problems requires the use of 𝑛
training samples to estimate the variance of 𝑛-dimensional
structure; therefore, 𝐾

𝑤
is a singular matrix. This means that

it is often not possible to use (13). However, it is possible
to promote the stability of the numerical method by using
regularized method as follows:

(𝐾
𝑤
)
𝜇
= 𝐾
𝑤
+ 𝜇𝐼, (14)

where 𝜇 is a small, positive number, and 𝐼 is the identity
matrix. Then, (12) can be expressed as

(𝐾
𝑤
+ 𝜇𝐼)
−1

𝐾
𝑏
𝛼 = 𝜆𝛼. (15)

When KFDA is used to solve problems of an applied nature,
parameter 𝜇 is determined according to the experience or the
result of the experiment.This paper uses a numerical analysis
method to solve the parameter; hence, the determinant of the
value of 󵄨󵄨󵄨󵄨𝐾𝑤 + 𝜇𝐼

󵄨󵄨󵄨󵄨 can be regarded as a function of 𝜇:

𝑓 (𝜇) =
󵄨󵄨󵄨󵄨𝐾𝑤 + 𝜇𝐼

󵄨󵄨󵄨󵄨 . (16)

When function 𝑓 is stable and the value of the function
tends to zero (17), the parameter 𝜇 is the best classification
parameters

lim
𝜇→0

𝑓 (𝜇) 󳨀→ 0. (17)

4. Experiments

4.1. Experiments Settings. The Iris data set is often used to
test the discriminant analysis algorithm [22–24].This data set
is divided into three classes, which represent three different
varieties of the Iris flower: C1, Iris setosa, C2, Iris versicolor,
and C3, Iris virginica, which takes petal length, petal width,
sepal length, and sepal width as four-dimensional variables.
The three classes represent three different varieties of Iris
flowers. There are 150 samples in this data set, and there are
50 samples in each class. The results are plotted as scatter
grams (Figure 1) and show that classes C1 and C2 and classes
C1 and C3 are linearly separable and classes C2 and C3 are
nonlinearly separable. The aim was to address this problem
by using the KFDAwith different values of 𝜇 for classification
purposes [25].

The following experiments involve a comparative study
of the different selection schemes of 𝜇. In this study,

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

1.2

𝜇

×10−41

Va
lu

e o
f t

he
 d

et
er

m
in

an
tK

w
+
𝜇
∗
I

Figure 2: Value of the determinant versus the value of regularized
𝜇.

the Iris data set is used to conduct algorithm training. Thus,
the three sets of samples (based on petal length, petal width,
sepal length, and sepal width) were chosen with each of these
sets comprising 30 samples. The kernel function employs in
KFDA the Gauss kernel function (18), for which the kernel
parameter 𝜎 is set to be the norm of the covariance matrix of
the training samples

𝐾(𝑥, 𝑦) = exp(−
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

2𝜎
) . (18)

4.2. Experimental Results and Discussions. The experiment
was processed within a MATLAB 7.0 environment running
on a PC powered by a Pentium 3.3GHzCPU.The experimen-
tal results are shown in Figures 2 and 3. The optimal value of
regularized 𝜇 is identified in Figure 1, which shows that the
function𝑓(𝜇) = 󵄨󵄨󵄨󵄨𝐾𝑤 + 𝜇𝐼

󵄨󵄨󵄨󵄨 has an obvious inflexion point and
that the value of the function 𝑓(𝜇) approaches zero when the
parameter is equal to 0.09.

This is further illustrated in Figure 3, which shows the
classification performance when the parameter 𝜇 has dif-
ferent values. A simulation was conducted by selecting 30
data points from each of the three classes and the results
were constructed in the form of scatter plots that show
the distribution of the data by using KFDA. The optimal
regularized parameter (𝜇 = 0.09) guaranteed separation of
classes C2 andC3.However, when the value of the regularized
parameter (𝜇 = 0.18) increased, it impacted negatively the
classification effect.

5. Application to Lithology Data Sets

5.1.TheGeological Settings of the ACRegion. TheAC region is
located in the central segment of theWest Sichuan depression
and was formed during Upper Triassic and Jurassic periods.
The Triassic-Jurassic stratum is the part of the thick entity
of the Western Sichuan foreland basin, with a total thickness
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Figure 3: Classification results with different value of regularized 𝜇.

of 6500m. The AC region is located in a large uplift belt of
the West Sichuan depression, which shows NEE trend [1, 2].
This paper uses KFDA for logging parameters identification
of lithology, and the purpose of the study horizon is Xujiahe
formation. The Xujiahe formation in Chengdu, Deyang, and
JiangYou is a typical tight rock formation characterized by
low porosity, because of its dense, multilayered stacking and
strong heterogeneity. The formation has a typical thickness
of 400–700m, and the thickness of the formation in Anxian
county in front of Longmenshan thickness is up to 1000m.

The Xujiahe formation consists of alternating layers of
sandstone, siltstone, mudstone, shale, and coal series, in

which the rock types aremore complex. According to logging
data obtained from wells and the extraction of the physical
parameters, the rock in the Xujiahe formation can be divided
intomudstone, siltstone, and sandstone based on the physical
intersection diagram and histogram analysis of rocks.

5.2. Logging Parameters Lithological Identification. Logging
parameters provide a comprehensive reflection of lithology,
and their sensitivity is different for lithology identification.
The sensitivity of these parameters for lithology identification
was studied using the method of correlation analysis and
finally determined acoustic (AC), natural gamma ray (GR),
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Figure 4: Cross-sectional plots of the logging parameters: green O (sandstone); red (siltstone); blue (mudstone).

density (DEN), and compensated neutron logging (CNL) as
the characteristic variables. Training and testing sets in the
standard layer, each of which contained 50 samples, were
obtained. The cross-sectional plot is displayed in Figure 4.
A comparison of Figures 1 and 4 reveals the characteristics
that are similar to both, namely, in which the sandstone and
siltstone sample data cannot be separated.

In the following experiments, FDA and KFDA are com-
pared on logging attribute data sets.The FDAmethod is used
to extract the optimal and suboptimal discriminant vector
of the training sets, and then the testing sets of sample are
projected onto vectors (Figure 5). As can be seen in Figure 5,
the mudstone can be separated from the sandstone and
siltstone. The latter two rock types were still mixed together
with respect to the siltstone and sandstone data, although the
separation degree is higher than indicated by cross plot.

Experiments were conducted on logging attribute sets
using IKFDA.The kernel function employed in IKFDA is the
Gaussian kernel function, and a numerical method was used
to obtain the optimal value of parameter 𝜇 = 0.06. IKFDA

was used to obtain the first and second kernel feature vectors,
following which the cross plot of the test sets was obtained
(Figure 6). As can be seen in Figure 6, it is possible to obtain
a good separation between the three types of samples, with
each sample forming its own cluster center.The experimental
results show that the performance of IKFDA is superior to
that of FDA for lithology identification purposes.

6. Conclusion

The optimal kernel Fisher projection of KFDA can be
expressed as a generalized characteristic equation by using
a regularized method. For multiclass problems, the value of
the regularized parameter is a key factor in the application
effect, which is largely influenced by human experience. This
paper proposes a novel method to optimize the regularized
parameter using a numerical method. Thus, by selecting
an optimal value for the regularized parameter, it becomes
possible to solve the generalized characteristic equation,
thereby eliminating the human factor. The effectiveness of
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the IKFDA was demonstrated by applying it to the nonlin-
early separable Iris and lithology data sets. The experimental
results indicated that successful separation was achieved.

In this paper, the selection of the regularized parameter
depended on the numerical method.We analyzed the applied
validity of the improved Kernel Fisher discriminant analysis
without performing deep theoretical analysis. This needs to
be addressed by conducting further research in the future.
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