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Abstract

Discriminant feature analysis is crucial in the design of a satisfactory

pattern recognition system. Usually it is problem dependent and re-

quires specialized knowledge of the specific problem itself. However,

some of the principles of statistical analysis may still be used in the

design of a feature extractor, and how to develop a general procedure

for effective feature extraction always remains an interesting and also

challenging problem.

In this thesis we have investigated the limitations of traditional feature

extraction algorithms like Fisher’s linear discriminant (FLD) and de-

vised new methods that overcome the shortcomings of FLD. The new

algorithm termed recursive cluster-based Bayesian linear discriminant

(RCBLD) has a number of advantages: it has a Bayesian criterion

function in the sense that the Bayes error is confined by a coherent

pair of error bounds and the maximization of the criterion function

is equivalent to minimization of one of the error bounds; it can deal

with complex class distributions as unions of Gaussian distributions;

it also has no feature number limitation and can fully extract all dis-

criminant information available; the solution of the algorithm can be

easily obtained without resorting to some gradient-based methods.

Since the proposed algorithms are designed as general-purpose feature

extraction tools, they have been applied to a wide variety of pattern

classification problems such as face recognition and brain-computer-

interface (BCI) applications. The experimental results have verified

the effectiveness of the proposed algorithms.
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Chapter 1

Introduction

1.1 Overview

Pattern recognition is the study of how machines can learn to observe the en-

vironment, distinguish patterns of interest from others, and make sound and

reasonable decisions about the category of the pattern.

Automatic (machine) recognition of patterns is an important subject in a vari-

ety of engineering and scientific disciplines such as biology, psychology, marketing,

computer vision, and artificial intelligence. From automated speech recognition,

fingerprint identification, optical character recognition, DNA sequence identifica-

tion, and much more, it is clear that reliable and accurate pattern recognition by

machine would be immensely useful. Moreover, by designing systems for accom-

plishing such tasks, we gain deeper understanding and appreciation for pattern

recognition systems in the natural world—most particularly in humans. For some

problems, such as speech and visual recognition, our design efforts may in fact be

influenced by knowledge of how these are solved in nature, both in the algorithm

we employ and in the design of special-purpose hardware.

As the task of a pattern recognition system is to observe the environment

and distinguish patterns of interest, a complete pattern recognition system typ-

ically includes four main stages: sensing, pre-processing, feature extraction and

classification. This conceptual decomposition of a pattern recognition system

is illustrated in Figure 1.1. The sensor captures the input, which are a set of

measurements or observations of the environment, which are referred to as the

1



1.1 Overview

input patterns. Pre-processing is sometimes performed on the input pattern,

e.g., low-pass-filtering of a signal, image segmentation, etc. The input pattern

is then usually represented as a d-dimensional feature vector. Feature extraction

does discriminant analysis and extracts discriminant information from the input

features and classifier does the actual job of labeling the input patterns with

one of the possible classes, relying on the set of extracted features. Usually, the

type of sensors are determined by the application and the initial pre-processing

and feature vector representation is defined by the designer taking into account

the characteristics of the sensor. In such cases, the pattern recognition process

starts with feature extraction task and may be considered as a direct application

of machine learning or statistics methods. The design of the classifier is closely

tied to the feature extraction stage. A good classifier should be designed such

that it can effectively exploit the embedded information in the extracted features

and make sensible decisions. The arrows linking the various components of the

pattern recognition system in Figure 1.1 indicate that these components are not

independent in the design of the whole system. Depending on the results, one

may go back to re-design other components in order to improve the overall per-

formance. Also note that the conceptual boundary between pre-processing and

feature extraction, and between feature extraction and classification is somewhat

arbitrary. For instance, an ideal feature extractor would yield a representation

that makes the job of the classifier trivial; conversely, an omnipotent classifier

would not need the help of a sophisticated feature extractor. This thesis focuses

on the feature extraction component of the system, or in other words, discrimi-

nant feature analysis for pattern recognition.

Figure 1.1: The basic components of a typical pattern recognition system

-

2



1.2 Discriminant Feature Analysis for Pattern Recognition

1.2 Discriminant Feature Analysis for Pattern

Recognition

Discriminant feature analysis plays a crucial role in the design of a satisfactory

pattern recognition system. Although the original d-dimensional input feature

vector captured by the sensor could be directly fed into a classifier, it is usually

not the case. Instead, discriminant feature analysis is performed on the raw fea-

tures due to several compelling reasons. First of all, discriminant feature analysis

could improve the performance of the system by extracting useful information

and discarding irrelevant information such as noise from the set of input features.

Second, the efficiency of the system can be greatly improved. Discriminant fea-

ture analysis reduces the feature dimension and allows subsequent processing

of features to be done efficiently. For instance, Gaussian maximum-likelihood

classification time increases quadratically with the dimension of feature vectors.

Increasing the dimension of feature vectors leads to a disproportionate increase

in cost. Therefore, the reduction of dimension by discriminant feature analysis

could save the computational and memory cost significantly. For applications

involving high-dimensional features, such as hyper-spectral imaging, and bioin-

formatics etc, analysis of high-dimensional data is often computationally and

memory too expensive to be practically feasible. Discriminant feature analysis is

an indispensable step for such applications. Third, discriminant feature analy-

sis reduces the complexity of the classification model and thus it can potentially

improve the classification accuracy in the lower-dimensional space. Due to the

small sample size and curse of dimensionality problem as discussed below, an

over-complex model may be selected as a result of over-training. The complexity

of the classification model could strongly affect its stability and performance on

new test data. By reducing the number of features and removing noises from the

features, the performance of the classification model can be more robust with a

reduced complexity. Because the decision of the classifier is based on the set of

features provided by the feature extractor, discriminant feature analysis is crucial

for the performance of the whole pattern recognition system.

3



1.2 Discriminant Feature Analysis for Pattern Recognition

1.2.1 The Issues in Discriminant Feature Analysis

In practice, the issues we encounter in designing the feature extraction component

is usually domain or problem-specific, and their solution will depend upon the

knowledge and insights about the particular problem. Nevertheless, there are

some problems that may be commonly-encountered, difficult, and important.

Some of the important issues regarding discriminant feature analysis are presented

below.

1.2.1.1 Noise

For pattern recognition, the term “noise” may refer generally to any form of

component in the sensed pattern that is not generated from the true underlying

model of the pattern. All pattern recognition problems involve noise in some

form. An important problem is knowing somehow whether the variation in some

signal is noise or instead because of the complex underlying model. How then

can we use this information to improve the classification performance?

1.2.1.2 The Problem of Sample Size

The small sample size (SSS) problem is encountered when there are only limited

number of training samples compared to the high dimension of the input patterns.

The small sample size problem is almost always encountered due to the fact of

limited samples for real-world applications. Due to insufficiency of samples, the

estimated models may be far from the true underlying models. Also the evaluation

of the system’s performance based on a small set of samples is not reliable. One

technique for the SSS problem is to incorporate knowledge of the problem domain.

1.2.1.3 The Problem of Dimension

The problem of dimension involves learning from few data samples in a high-

dimensional feature space. Therefore, this problem is coupled with the SSS prob-

lem. Intuitively one may think that, the more features we have, the better we can

make the system’s performance, since more information is present. However, it

has been observed in practice that addition of features beyond a certain point may

4



1.2 Discriminant Feature Analysis for Pattern Recognition

actually lead to a higher probability of error, as indicated in [14]. This behavior

is known in pattern recognition as the curse of dimensionality [14, 32, 61, 62],

and it is caused by the finite number of samples. The curse of dimensionality

requires the number of training samples to be an exponential function of the

feature dimension.

Therefore, a feature extraction/selection stage is needed to reduce the num-

ber of features. The extraction/selection of relevant features for classification is

crucial for a successful pattern recognition system.

1.2.1.4 Model Selection

In the designing of a pattern recognition system, we often need to use some models

to describe the objects of interest, for example, a particular form of distribution

of a class, or a particular form of representation of a pattern. If the models we

selected to use differs significantly from the true model, we can’t expect good

performance from the resulting system.

Traditionally, the performance of a pattern recognition system is affected from

the data modeling perspective by the interplay between size of training set, dimen-

sion of feature vector, and complexity of model. In building a pattern recognition

system, one may be tempted to increase the complexity of the model to obtain

good performance on the set of training data. For example, the decision bound-

ary of a classifier can be made arbitrary complex so that all the training samples

are correctly classified. Obviously, this model is too complex compared to the

true underlying model.

Conventional wisdom holds that simpler models built from larger sets of train-

ing data, while usually less accurate on the training data, are better able to main-

tain their training data level of performance when subjected to new test data.

It is a well-understood phenomenon that a prediction model built from large

number of features and a relatively small sample size can be quite unstable [53].

This paradoxical relationship between the model complexity and performance is

well known, appearing in things ranging from simple regression analysis (the lin-

ear function, while hitting none of the given training points, far better predicts

the new points than some high-degree polynomial specifically designed to pass

5
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through the training points) to modern neural network analysis (where perfor-

mance drop-off on test data due to complexity, overtrained models is a major

problem).

The complexity of model thus should be selected by considering factors includ-

ing the sample size, the feature dimension, and also the nature of the problem.

One of the most important areas of research in statistical pattern classification is

determining how to adjust the complexity of the model — not so simple that it

cannot explain the differences between the categories, yet not so complex as to

give poor classification on novel patterns. Simple models are often favored, es-

pecially for cases where sample size is small. Complex models are only advisable

for situations where there are sufficient training data.

1.2.1.5 Generalization and Overfitting

In building a pattern recognition system, the system is trained to classify accu-

rately a set of known samples, or training samples. However, the final goal of a

pattern recognition system is to be able to classify a novel pattern correctly. The

ability of the system to be able to correctly classify novel patterns by training on

a set of known patterns is called the generalization ability of the system.

Apparently, one wants to design a pattern recognition system that can perform

well on the training data as well as the test data. Without a good performance on

the training data, there is no chance of descent performance in the real world. The

system should also be able to transfer, or generalize its performance on training

data to novel data in the real world.

As a result, the performance of a pattern recognition system can be measured

by two different accuracies: training accuracy and test accuracy. Training ac-

curacy is obtained on the training samples, which are known to the system and

are used to tune the parameters of the system. Test accuracy is a measure of

the system’s ability to correctly classify new test samples which are not known

to the system. The goal of the designer is to make the two accuracies as high as

possible.

However, these two accuracies are usually conflicting with each other. For

instance, if the decision boundary of a classifier is overly complex, it seems to
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1.3 Scope and Organization

be “tuned” to the particular training samples, rather than the true underlying

characteristics. This situation is known as overfitting. As discussed above, it is

usually the case that very simple models perform poorly on training data but

have good generalization ability, while complex models perform well on training

data but are more likely to suffer from poor generalization to test data.

1.2.1.6 Computational Complexity

Computational complexity is one of the major concerns in real-time applications.

In some cases we know we can design an excellent recognizer, but the recognizer

may not be practically feasible due to high computational complexity. One may

also be concerned how the computational complexity of an algorithm scales as

a function of the feature dimension, the size of training data, or the number of

classes. In practice, we often need to face tradeoff between computational cost

and performance. We are typically less concerned with the complexity of learning,

which is done in the laboratory, than with the complexity of classification, which

is done with the fielded application.

1.3 Scope and Organization

My research work has been primarily focused on discriminant feature analysis in

the feature extraction component for a pattern recognition system. The thesis

contains two parts: algorithm development and applications.

The first part describes the algorithmic development for discriminant feature

extraction. First, background review of some popular discriminant feature anal-

ysis techniques is given in Chapter 2. The proposed algorithms, termed recursive

modified linear discriminant (RMLD), recursive cluster-based linear discriminant

(RCLD), and recursive Bayesian linear discriminant (RBLD), are presented in

Chapter 3, 4, and 5, respectively. The advantages of these three methods are

then integrated and the new algorithm is named recursive cluster-based Bayesian

linear discriminant (RCBLD), which is described in Chapter 6. The new algo-

rithms are proposed to overcome some of the drawbacks of existing algorithms
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1.3 Scope and Organization

described in Chapter 2 and address some of the common issues in designing a

pattern recognition system as identified above.

The second part tests the effectiveness of the proposed algorithms on various

pattern recognition tasks: a range of patten recognition problems from the UCI

Machine Learning Repository in Chapter 7, face recognition problems in Chapter

8, and brain signal analysis problems in Chapter 9.

At last, some conclusions are drawn in Chapter 10.
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Part I

Algorithm Development
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Chapter 2

Background Review

Discriminant feature analysis plays an important role in pattern recognition. As

discussed in Chapter 1, it can reduce the complexity of the classification model

and potentially improve the classification performance by obtaining discriminant

features and discarding useless components like noise from an input feature vec-

tor. It also saves computational load and memory requirement for subsequent

processing. The problem of “curse of dimensionality” is alleviated and the un-

derlying models or parameters can be simplified and estimated more accurately

which may lead to better classification performance. Reduction of dimension is

sometimes a necessary step for problems with high dimensional samples and for

hardware implementation of a pattern recognition system.

Although there is some extra computational effort spent for discriminant fea-

ture analysis, this extra computational effort mainly reside in the training stage,

which can be done off-line. Once the training is done, the classification can be

performed with very little additional computation.

Many algorithms have been proposed for feature extraction. In the following,

some popular feature extraction algorithms are briefly introduced.

2.1 Principal Component Analysis (PCA)

One of the earliest methods used for feature extraction is principal component

analysis (PCA). PCA was invented in 1901 by Karl Pearson [57] and has become a

popular technique in pattern recognition to reduce feature dimension. Depending
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2.1 Principal Component Analysis (PCA)

on the field of application, it is also named the discrete Karhunen-Loève transform

(KLT), the Hotelling transform.

PCA is a feature extraction method that is best for representation in the sense

of minimal squared reconstruction error. It is an unsupervised linear feature

extraction method that is largely confined to dimension reduction.

Suppose that we have a set of N d-dimensional samples x1, . . . , xN belonging

to C different classes with Ni samples in the subset Di labeled ωi, i = 1, · · · , C.

PCA seeks a projection matrix W that minimizes the squared error function:

JPCA(W ) =
N∑
k=1

||xk − yk||2 (2.1)

where yk = W (W Txk) is obtained after projection of xk by W . The solution is

the eigenvector of the total scatter matrix defined as:

ST =
N∑
k=1

(xk − µ)(xk − µ)T (2.2)

where µ is the mean of all the samples:

µ =
1

N

N∑
k=1

xk. (2.3)

The main properties of PCA are: approximate reconstruction, orthonormality

of the basis, and decorrelated principal components. That is to say,

x ≈ Wy (2.4)

W TW = I (2.5)

Y Y T = D (2.6)

where Y is a matrix whose kth column is yk, and D is a diagonal matrix.

Usually, the columns of W associated with significant eigenvalues, called the

principal components (PCs), are regarded as important, while those components

with the smallest variances are regarded as unimportant or associated with noise.
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2.2 Fisher’s Linear Discriminant (FLD)

2.2 Fisher’s Linear Discriminant (FLD)

Although PCA is efficient for data representation, it may not be good for class

discrimination. Fisher’s linear discriminant (FLD) has recently emerged as a

more efficient approach for many pattern classification problems than traditional

PCA. Although FLD is not as popular as PCA for extracting discriminating fea-

tures until late 90s, FLD is by no means a new technique. On the contrary, it is a

“classical” technique whose history can be traced back to as early as 1936 when

Fisher first suggested it to deal with the taxonomic problems [20]. The original

FLD was proposed to deal with two-class problems and was naturally generalized

to deal with multi-class problems that is well described in various standard text-

books on pattern classification such as [14, 23, 52]. Many interesting applications

of FLD have also appeared in the literature. Cheng and co-workers suggested a

method of applying FLD for face recognition where features were acquired from

polar quantization of the shape [10], while Cui and colleagues applied it to hand

sign recognition [12]. A theory on pattern rejection was developed by Baker and

Nayar based upon the two-class linear discriminant [2]. And around the same

year of 1997, comparison studies between FLD and PCA on face recognition

problem were reported independently by numerous authors including Belhumeur,

Hespanha and Kriegman [3], Etemad and Chellappa [16], and Swets and Weng

[73]. It was consistently demonstrated that FLD outperforms PCA significantly

for face recognition problems. These successful applications of FLD have drawn

lots of attention on this subject and ensuing years witnessed a burst of research

activities on this issue [8, 47, 47, 51, 77, 85].

To find a feature vector w that separates classes, FLD maximizes the following

criterion function,

JFLD(w) =
wTSBw

wTSWw
(2.7)

where the between-class scatter matrix SB, and the within-class scatter matrix

SW are defined as follows:

SB =
C∑
i=1

Ni(µi − µ)(µi − µ)T =
1

N

∑
i<j

NiNj(µi − µj)(µi − µj)
T (2.8)
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2.3 Other Variants of FLD

SW =
C∑
i=1

Si, where Si =
∑
x∈Di

(x− µi)(x− µi)
T (2.9)

where µi is the sample mean of class i.

It is easy to show that a vector w that maximizes (2.7) must satisfy

SBw = λSWw (2.10)

If SW is non-singular we can obtain a conventional eigenvalue problem by

writing

S−1
W SBw = λw (2.11)

Unfortunately, in real applications, SW is very often singular because the

number of training samples is much smaller than the dimension of the samples.

This problem is called the small sample size problem and is very common for

pattern recognition problems. To address this issue, a typical approach [3] is to

employ PCA to reduce the feature dimension so that SW is non-singular.

It is obvious that the at most C − 1 features may be extracted from above

procedure simply because the rank of SB is at most C − 1.

2.3 Other Variants of FLD

Although most of the research results have consistently established the superiority

of FLD over PCA for extracting features for pattern classification problems, there

are some drawbacks and limitations of FLD and various variants of FLD have

been proposed to improve its performance. The following sub-sections describe

some of these variants.

2.3.1 Recursive FLD (RFLD)

One serious limitation of FLD is that the total number of features available from

FLD is limited to C − 1, where C is the number of classes. This cap on the

total number of features is rooted in the mathematical treatment of FLD. The

number of non-zero eigenvectors of (2.11) is equal to the rank of SB, which is

at most C − 1. If the number of classes is large as is the case for face identity
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2.3 Other Variants of FLD

recognition problems, this limitation may not arise as a visible obstacle. However,

it may pose as a bottleneck if the number of classes is small. For instance, for

the glasses-wearing recognition problem treated in [3], the number of classes is

two, and hence the number of features resulting from FLD is only one. Although

it was demonstrated there that even one FLD feature could beat PCA for this

particular case, it may not be the case for other two-class classification problems

since it is too naive to believe that only one FLD feature would suffice for all.

Therefore it is essential to eliminate this constraint completely if possible such

that FLD can be applied to a much wider class of pattern classification problems.

It is for this purpose that recursive FLD (RFLD) was proposed by Xiang, et

al. [81] to overcome the feature number constraint using a recursive procedure.

The basic idea of RFLD may be roughly described as follows. The first feature

extracted from RFLD is exactly the same as that of the FLD, but the procedure

of calculating other features by RFLD, as well as the resulting feature vectors will

be significantly different from FLD. While the feature vectors can be computed

from a conventional eigenvalue problem once and for all by FLD, the feature

vectors will be obtained recursively, step by step, by RFLD, i.e., at every step,

the calculation of a new feature vector will be based upon all the feature vectors

obtained from earlier iterations. More specifically, at each step when a new

feature vector is computed, the training data has to be pre-processed such that

all the information represented by those “old” features extracted previously will

be eliminated. And then the problem of extracting the new feature most efficient

for classification based upon the pre-processed database will be formulated in the

same fashion as that of FLD.

Because only one feature is extracted per iteration, RFLD has the drawback

of high computational complexity compared to traditional approaches.

2.3.2 LDA Based on Null Space of SW

Another drawback of FLD is that it cannot extract discriminatory information

from null space of SW due to the non-singular requirement for SW . From (2.11),

we can see that if SW is singular, then its inverse does not exist and the solution

to FLD is not well posed. To make SW non-singular, a typical approach is to
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2.3 Other Variants of FLD

use PCA to reduce the feature dimension, which means that the null space of

SW is discarded before FLD is applied. However, this null space also contains

discriminatory information as SB is non-zero in this subspace. To utilize infor-

mation from the null space of SW , LDA based on null space of SW was proposed

by Chen et al. [8]. Let F denote the feature space which is spanned by all feature

samples. And we use F̄ to denote the null space of the feature space. In practice,

F can be estimated by the subspace spanned by the non-trivial eigenvectors of

the total scatter matrix ST , which is the sum of between-class scatter matrix SB

and within-class scatter matrix SW : ST = SB +SW . Let FW denote the principal

subspace of SW , which is spanned by the non-trivial eigenvectors of SW . The fea-

ture space can be decomposed as F = FW ∪F̄W , where F̄W is called the null space

of SW . LDA based on null space of SW maximizes between-class scatter in the

space F̄W , as the most discriminatory information is contained in this subspace.

The shortcoming of this method is that it can only utilize information from F̄W .

In order to use all the discrimination information available, Fisher’s criterion

was extended to MFLD [35] as shown below.

2.3.3 Modified Fisher Linear Discriminant (MFLD)

MFLD modifies the Fisher’s criterion function by replacing SW in the denomina-

tor of (2.7) by ST . The modified criterion function is

J(w) =
wTSBw

wTSTw
=

wTSBw

wTSBw + wTSWw
(2.12)

It is easy to prove that the modified criterion (2.12) is equivalent to the original

criterion (2.7) in the case that SW is nonsingular. However, if SW is singular,

then all the vectors from F̄W would maximize criterion (2.12) giving the maximal

possible value of one to J(w). This implies that all information from both FW

and F̄W may be possibly utilized by MFLD. Unfortunately, the maximal number

of features can be extracted by MFLD is also C − 1 due to the same reason as

for FLD. Note that the dimension of F̄W is C− 1 and features from F̄W are most

discriminant, the C−1 features extracted by MFLD actually span F̄W . Therefore,

MFLD is only able to utilize information from F̄W and fails to take advantage of

FW .
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2.3 Other Variants of FLD

We can conclude that:

• in the case of singular SW (small sample size), MFLD actually fails to utilize

information from FW . It only uses information from F̄W , as LDA based on

null space of SW does.

• in the case of non-singular SW (sample size is large compared to feature

dimension), MFLD is equivalent to FLD.

2.3.4 Direct FLD (DFLD)

Previously, the feature space F is decomposed as F = FW ∪ F̄W , another way to

decompose F is F = FB ∪ F̄B, where FB and F̄B denote the principal subspace

of SB and its complementary null space. DFLD [85] is based on the idea that

since different classes are not separated in F̄B, F̄B contains no discriminatory

information for classification. Therefore, instead of discarding F̄W , which contains

the most discriminative information, DFLD discards F̄B. DFLD then searches a

W from FB that minimizes the within-class scatter.

Although the basic idea of DFLD – F̄B contributes nothing to the separability

of classes and thus should be discarded – seems correct, but actually it is not. To

illustrate this point, a two-class problem with idealized distribution is shown in

Figure 2.1.

In the figure, the means of class 1 and class 2 are at (3, 0) and (−3, 0). DFLD

would discard the projection vector along y-axis and retain only x-axis, since SB

is zero along y-axis. However, the best projection axis that separates these two

classes is along the line y = −x, which contains component from null space of

SB. From this simple example, we can see that although the null space does not

have any information about class separability, it does help to separate classes by

reducing the within-class scatter.

2.3.5 Regularized LDA

Linear discriminant analysis (LDA) like FLD has been applied for applications

where the sample sizes are small and the number of measurement variables is

large. One drawback of FLD that has been recognized is that it requires relatively
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Figure 2.1: A simple examples that illustrates the deficiency of DFLD.

-

large training sample size per class, compared to PCA, for good generalization

[51], a typical symptom of over-fitting.

One remedy to alleviate this over-fitting problem is first proposed by Fried-

man [22]. For applications with small sample size and high-dimensional samples,

the estimation of the within-class scatter matrix SW by maximum-likelihood esti-

mates incurs large variance, especially for the low-variance subspace spanned by

small eigenvalues of SW . This low-variance subspace is strongly affected by noise.

By introducing a small bias, called the regularization term, the variance can be

significantly reduced and the performance of LDA may be improved significantly:

S∗
W = SW + γI (2.13)

where γ is a real scalar and I is the identity matrix.

2.3.6 Chernoff-based Discriminant Analysis

Although FLD and its many extensions have demonstrated their success in various

applications [3, 8, 16, 35, 46, 47, 51, 73, 77, 81, 85], FLD may not deal well with

data having very different covariance matrices for different classes because of the

homoscedastic property of FLD.
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Chernoff distance provides a measure of class separability and takes into con-

sideration the orientation mismatch between the classes, which Mahalanobis dis-

tance based FLD fails to do. Chernoff bound forms a tight upper bound on the

Bayes error for two-class problems:

P ∗
e ≤ P s

2P
1−s
1 exp(−dch(f1, f2; s)), 0 ≤ s ≤ 1 (2.14)

where P ∗
e is the minimal probability of error, or the Bayes error, for two classes

with a priori probabilities P1 and P2, and conditional probability density functions

f1 and f2; and

dch(f1, f2; s) = − log

∫
f s
2 (x)f

1−s
1 (x)dx (2.15)

is the Chernoff distance between f1 and f2. Some people refer to (2.15) as Chernoff

distance only when s maximizes (2.15). If s = 1/2, Chernoff distance given by

(2.15) becomes Bhattacharya distance.

If we assume the data are Gaussian with the PDF given by

f(x|µi,Σi) =
1√

det(2πΣ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2.16)

for class i, we can obtain the Chernoff distance between two Gaussian classes in

closed-form:

dch(f1, f2; s) =
s(1− s)

2
∆µTΣ−1∆µ+

1

2
log

(
|Σ|

|Σ1|s|Σ2|1−s

)
, (2.17)

Chernoff-based discriminant analysis algorithms aim to minimize the Chernoff

bound in (2.14). Loog and Duin (LD) developed an FLD like criterion based on

Chernoff distance in the original space [48]. The LD criterion function for two-

class case is:

JLD2(W ) = (W TSWW )−1{
W T

[
SB − S

1
2
W

P1 log(S
− 1

2
W S1S

− 1
2

W ) + P2 log(S
− 1

2
W S2S

− 1
2

W )

p1p2
S

1
2
W

]
W

}
. (2.18)
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The generalization of (2.18) to multi-class case is as follows:

JLD(W ) =
∑
i<j

PiPj(W
TSWW )−1

{
W TS

1
2
W

[
(S

− 1
2

W SWijS
− 1

2
W )−

1
2S

− 1
2

W SEijS
− 1

2
W (S

− 1
2

W SWijS
− 1

2
W )−

1
2+

1

πiπj

(
log(S

− 1
2

W SWijS
− 1

2
W )− πi log(S

− 1
2

W SiS
− 1

2
W )− πj log(S

− 1
2

W SjS
− 1

2
W )

)]
S

1
2
WW

}
,

(2.19)

where SEij = (µi − µj)(µi − µj)
T , πi =

Pi

Pi+Pj
, and SWij = πiSi + πjSj.

Rueda and Herrera (RH) proposed a criterion function that incorporates Cher-

noff distance in the transformed space [63]:

JRH2(W ) = P1P2W
TSBW (W TSWW )−1+

log(W TSWW )− P1 log(W
TS1W )− P2 log(W

TS2W ) (2.20)

The generalization of (2.20) to multi-class case is done in the same way as LD

method:

JRH(W ) =
∑
i<j

dch(fi, fj;πi). (2.21)

For RH methods and its extensions, a gradient descent algorithm is employed to

seek the optimal solution to the criterion function [63, 75].

2.4 Nonparametric Discriminant Analysis (NDA)

As FLD calculates the between class scatter matrix by the means of every classes,

it implicitly makes the assumption that the underlying distributions of each class

are uni-modal, which is often not the case for real-world problems. This problem is

due to the parametric nature of FLD. To overcome this problem, a nonparametric

approach, named nonparametric discriminant analysis (NDA), was first proposed

by K. Fukunaga in [23] for the case of two-class problems. NDA is generalized

for multi-class problems by Bressan and Vitria in [6], and Li and his colleagues

in [45]. It is worth mentioning that NDA does not have the constraint of total

number of features available.
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NDA also uses Fisher’s criterion function as defined above in (2.7), but it

re-defines SB in a nonparametric way. For FLD, SB is defined using the mean of

each class as a representative of that class. This kind of definition for SB is only

suitable if the distributions of classes are uni-modal Gaussian. The nonparametric

definition for SB was first proposed by K. Fukunaga [23] for two-class problems.

It is defined as:

SN
B =

n∑
i=1

W (i)(xi −mk(xi))(xi −mk(xi))
T (2.22)

where xi is the ith data sample, mk(xi) denotes the mean of the k nearest neigh-

bors of xi that doesn’t belong to the class of xi, W (i) is the weight of xi defined

by

W (i) =
min{dα(xi,mk(xi)), d

α(xi,mk(xi))}
dα(xi,mk(xi)) + dα(xi,mk(xi))

(2.23)

where mk(xi) denotes the mean of the k nearest neighbors of xi that are from

the same class as xi. d(v1, v2) is the distance between two vectors v1 and v2. α is

a control parameter that can be selected between zero and infinity. This sample

weight is introduced in order to emphasize samples near class boundaries. The

weight has a property that for samples near class boundaries it approaches 0.5

and drops off to zero if the samples are far away from the boundaries.

To generalize to multi-class case, Li et al. [45] used the following definition:

SN
B =

c∑
i=1

c∑
j=1,j ̸=i

Ni∑
t=1

W (i, j, t)(xi
t −mj(x

i
t))(x

i
t −mj(x

i
t))

T (2.24)

and the sample weight is changed accordingly

W (i, j, t) =
min{dα(xi

t,mk(x
i
t)), d

α(xi
t,m

j
k(x

i
t))}

dα(xi
t,mk(xi

t)) + dα(xi
t,m

j
k(x

i
t))

(2.25)

where mj
k(x

i
t) is the mean of the k nearest neighbors of xi

t that are from class j.

Bressan and Vitria [6] used a different definition for SN
B . For each sample,

all samples that are not from the same class as that sample are pulled together

and treated as a single class. Thus, the multi-class problem could be treated as

a 2-class problem and then definition of SN
B in (2.22) for 2-class problem is used.
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When the number of considered neighbors reaches the total number of avail-

able class samples and the sample weights are ignored, the definition of SB by

NDA is essentially the same as that of FLD. So NDA can be considered as a non-

parametric extension of FLD. Notice that by the nonparametric definition of SB,

NDA is able to perform well for multi-modal class distributions and it captures

the boundary structure of classes effectively. It also breaks the feature number

limitation of FLD as SN
B is generally full rank.

2.5 Locality Preserving Projection (LPP)

LPP [28] is an unsupervised learning algorithm but seems to have discriminating

power. It aims to find a linear subspace that best preserves local structure and

detects the essential face manifold structure. The objective function of LPP is as

follows:

min
∑
ij

(yi − yj)
2Sij (2.26)

where yi is the one-dimensional representation of xi and Sij is similarity matrix,

which can be defined by:

Sij =

{
exp(−||xi − xj||2/t), ||xi − xj||2 < ε
0 otherwise

(2.27)

or

Sij =


exp(−||xi − xj||2

/
t), if xi is among k nearest neighbors of xj

or xj is among k nearest neighbors of xi

0 otherwise
(2.28)

where ϵ is small positive value, and t is some suitable constant. Here, ϵ defines

the radius of the local neighborhood. In other words, ϵ defines the “locality”.

The objective function with the symmetric weights Sij incurs a heavy penalty

if neighboring points xi and xj are mapped far apart, i.e., if (yi − yj)
2 is large.

Therefore, minimizing it is an attempt to ensure that, if xi and xj are close,

then yi and yj are close as well. After some simple algebraic manipulations, the

transformation vector w that minimizes the objective function is given by the
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2.5 Locality Preserving Projection (LPP)

minimum eigenvalue solution to the following generalized eigenvalue problem:

XLXTw = λXDXTw (2.29)

where X = [x1, x2, · · · , xn], and D is a diagonal matrix; its entries are column (or

row since S is symmetric) sums of S. L = D−S is the Laplacian matrix [11]. D

provides a natural measure on the data points. The bigger the value Dii is, the

more important is yi.

The overall procedure of the LPP algorithm is stated as follows:

1. Dimension reduction by PCA. The original high dimension of image sample

vectors is reduced to a lower dimension by throwing away principal compo-

nents whose corresponding eigenvalues are zero, as these components don’t

carry any information about the sample distributions.

2. Constructing the nearest-neighbor graph. Let G denote a graph with each

node represents a sample image. We put an edge between two nodes if they

are close, i.e. Sij is not equal to zero.

3. Choosing the weights. If node i and j are connected, put

Sij = exp(−||xi − xj||2
/
t)

Otherwise, put Sij = 0.

4. Eidgemap. Compute the eigenvectors for the generalized eigenvector prob-

lem of (2.29). The projection vectors extracted by LPP are the set of

eigenvectors corresponding to the smallest eigenvalues.

Notice that as D is full rank, and L is generally full rank. So the two matrices

XLXT and XDXT are also generally full rank. Hence, LPP does not have the

feature number limitation problem as FLD.
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Chapter 3

Recursive Modified Linear

Discriminant (RMLD)

In the previous chapter, a few popular feature extraction algorithms have been

presented. Among them, FLD has gained its popularity probably due to its

relevance to classification: it extracts features that maximize the between-class

scatter and meanwhile minimize the within-class scatter. However, FLD also suf-

fers several major limitations. And a number of enhanced or improved versions of

FLD have been proposed in the past to overcome the limitations of FLD, for ex-

ample, RFLD, MFLD, and DFLD, as discussed in the previous chapter. However,

there are still some issues that need to be addressed. In this chapter and the rest

chapters of the first part of my thesis, I will try to identify these issues and pro-

pose new algorithms that conquer them. The first algorithm, which is described

in this chapter, is termed recursive modified linear discriminant (RMLD).

3.1 Objectives of RMLD

RMLD is proposed to overcome two shortcomings of FLD: 1) feature number

limitation; and 2) utilize discriminant information from both FW (principal sub-

space of SW ) and F̄W (null space of SW ). These two shortcomings have also been

attempted by RFLD and MFLD, respectively, as discussed in Chapter 2.
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3.2 RMLD Algorithm

3.2 RMLD Algorithm

To fulfill the objectives, RMLD optimizes the criterion function of MFLD and

employs a recursive strategy which is similar to RFLD. However, RMLD differs

from RFLD by the following two points:

• RMLD uses the modified Fisher’s criterion as defined in (2.12) in order to

utilize discriminant information from both FW and F̄W . Notice that MFLD

actually fails to utilize discriminant information from both FW and F̄W

although it also uses the modified Fisher’s criterion. Nevertheless, RMLD

is truly able to extracting discriminant information from both subspaces

since it can extract more than C − 1 features by using more than one

iteration.

• RMLD extracts C − 1 features per iteration rather than just one feature as

RFLD, thus reducing the computational load significantly.

For a training set of N independent d-dimensional samples (N ≪ d), the in-

trinsic dimensionality or degree-of-freedom is N −1 after the mean is subtracted.

In other words, the sample distribution resides in a N − 1-dimensional subspace.

Dimensionality reduction techniques like PCA can be used to save computa-

tional load and memory requirement while ensuring it is information lossless if

all non-trivial principal components are retained. As RMLD aims to utilize all

the information contained in the training sample set, it first uses PCA to reduce

the dimension of the samples from d to N − 1 such that no information is lost

and the intrinsic structure of the training samples is not changed. Notice that in

the case of FLD (or RFLD), the dimension of samples have to be reduced to at

least N − c instead of N − 1 in order to make SW non-singular. The dimension

reduction to N − c or less implies that the distribution of the training samples is

modified and some information is lost. More specifically, information from F̄W is

discarded after dimension reduction for FLD.

After the dimension reduction, ST is non-singular. And RMLD can extract

the first set of C−1 discriminant features in the same way as MFLD. As what we

have already showed in the subsection on MFLD, these C − 1 features constitute

the null space of SW . After the first iteration, information already extracted,
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3.2 RMLD Algorithm

which constitute the null space of SW , is discarded and then another set of C− 1

features are extracted. For subsequent iterations, all information extracted by

previous iterations will be eliminated before going to the next iteration, just as the

procedure of RFLD. The features extracted from the second iteration onwards are

from the principal space of SW . Thus, RMLD can extract discriminant features

from both the null and principal space of SW . Because there are C − 1 features

extracted at each iteration and all the extracted information are removed before

going to the next iteration, the rank of ST is reduced by C−1 after every iteration.

So PCA is employed to reduce the dimension of the sample space by C − 1 at

each iteration so that the re-calculated ST based on the reduced subspace is

non-singular. The algorithm for RMLD is outlined as follows.

1. Use PCA to reduce the dimension of the original sample space to n− 1, so

that ST is non-singular.

2. For the first iteration, use MFLD to extract the first C − 1 discriminative

feature vectors.

3. Discard the extracted information from all samples, i.e., the projections of

the sample vectors on those “old” features will be eliminated.

x
(k)
i = x

(k−1)
i − (W T

k−1x
(k−1)
i )Wk−1 (3.1)

where the superscript of xi and the subscript of W denote which iteration xi

and W come from, and W is the transformation matrix whose columns are

the projection vectors extracted by each iteration. PCA is then employed

to reduce the dimension of the sample space by C−1. Re-calculate SB and

ST .

4. Use MFLD to extract another set of C − 1 discriminative feature vectors.

5. If needed, go through the iteration from step 3 again to extract more feature

vectors.

The dimension reduction by PCA and re-calculation of SB and ST in step

3 are computationally expensive. A much more efficient way is to use the null

space of the extracted feature vectors and the revised algorithm for RMLD is as

follows:
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3.3 Summary

1. Use PCA to reduce the dimension of the original sample space to n− 1, so

that ST is non-singular.

2. For the first iteration, use MFLD to extract the first C − 1 discriminative

feature vectors. Denote this set of C − 1 features by W1.

3. For the kth iteration, get the null space of the extracted feature vectors,

denoted as W k−1.

4. Discard information from extracted features by projecting SB and ST into

the null space W k−1

S ′
B = W

T

k−1SBW k−1 (3.2)

S ′
T = W

T

k−1STW k−1 (3.3)

where S ′
B and S ′

W represents the new version of SB and SW .

5. Use MFLD to extract another set of C − 1 discriminative feature vectors,

denoted by wk.

6. Concatenate the newly extracted set of features wk with the previous fea-

tures: Wk = [Wk−1,W k−1 × wk].

7. If needed, go through steps 3-6 for one more iteration to extract more

feature vectors. The recursive procedure terminates when desired number

of features have been extracted.

3.3 Summary

In summary, RMLD uses the modified criterion function of MFLD and a novel

recursive strategy to over come the feature number limit and exploit discriminant

information from both FW (principal subspace of SW ) and FW (null space of

SW ). The novel recursive strategy extracts a set of C − 1 features instead of

only 1 feature per iteration. Thus it requires less number of iteration to extract

the desired number of features. The novel recursive strategy of RMLD removes

the extracted information by projecting SB and SW into the null space W k of
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3.3 Summary

the concatenated extracted features Wk. This avoids the re-computation of SB

and SW after projecting all samples by the null space. Due to the computational

efficiency, this novel recursive strategy of RMLD is employed in my other proposed

algorithms presented in the following chapters.
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Chapter 4

Recursive Cluster-based Linear

Discriminant (RCLD)

One major problem with traditional FLD is that it makes an implicit assump-

tion that the underlying distribution for each class is uni-modal. This implicit

assumption is made due to the mathematical formulation for SB as defined in

(2.8) and SW as defined in (2.9), where class means µi are used as representatives

of their respective classes. This parametric definition of SB and SW assumes

that classes have a uni-modal distribution. However, the uni-modal assumption

is often too strong to fit the real situation. For example, in the case of identity

recognition, the variations of a person’s image may be caused by illumination,

pose and expression etc., and the distribution for one person probably contains

multiple clusters, with each cluster corresponding to one particular variation.

The situation of multiple clusters in each class is especially true for other face

recognition tasks like facial expression recognition and glasses-wearing recogni-

tion, where each class contains images from different persons and the images from

the same person are very likely to cluster together. In general, it is not unusual

that the underlying classes may have a complex distribution function rather than

an ideal Gaussian distribution.

It is not surprising that FLD cannot perform well if the true underlying dis-

tributions of samples are more complex than uni-modal Gaussian. This problem

of FLD with multi-modal distribution of underlying classes is demonstrated by a

simple 2D example as shown in Figure 4.1. In the example, there are two classes
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4.1 Objectives of the Cluster-based Approach

and class 2 has three clusters. The direction extracted by PCA maximizes the

variances but one cluster of class 2 is mixed with class 1 after projection. FLD

also fails to separate the two classes as it treats class 2 as a single cluster.

Instead of a simple uni-modal Gaussian distribution, a complex distribution

function can be more appropriately approximated as a union of Gaussian distri-

butions, or multi-modal Gaussian distributions. Therefore, instead of treating

each class as a single entity, a cluster-based approach (CLD) is developed in

[9, 80]. However, it will be shown later that the cluster-based approach in [9, 80]

is appropriate only for cases where clusters are well formed. In the following,

we propose a fuzzy-cluster-based approach, which also takes into account cases

where clusters are not well-formed. The proposed fuzzy-cluster-based approach

is able to perform well no matter how well clusters are formed.

4.1 Objectives of the Cluster-based Approach

Since it is more appropriate to model real-world class distribution as a union

of Gaussian clusters, the objectives of the cluster-based approach, as defined in

[9, 80], are to:

• maximize the distances between clusters belonging to different classes;

• minimize the distances of samples within the same clusters to keep clusters

compact;

• put no constraint on clusters belonging to the same class.

To realize the above objectives of the cluster-based approach, the form of the

Rayleigh quotient of SB and SW of FLD can be used, but the definition of the two

scatter matrices should be modified to be cluster-based. There are two important

steps that need to be implemented: (a) a cluster-based definition of SB and SW ,

and (b) determination of clusters.
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4.2 Cluster-based Definition of SB and SW

4.2 Cluster-based Definition of SB and SW

First, there is one or more than one clusters in a class and we assume that we

know the cluster where each sample belongs to. The definition of SB and SW

should now be changed to take into account the relationship between different

clusters as well as different classes so that the objectives of the cluster-based

approach stated above can be achieved.

SB CLD =
1

N

C−1∑
i=1

C∑
l=i+1

Ci∑
j=1

Cl∑
h=1

NijNlh(µij − µlh)(µij − µlh)
T (4.1)

SW =
C∑
i=1

Ci∑
j=1

∑
s

(xs − µij)(xs − µij)
T (4.2)

where µij is the mean of the jth cluster in the ith class, Nij is the number of

samples in the jth cluster of the ith class, Ci is the number of clusters in the ith

class, and N is the total number of training samples. One point to note is that

the definition for SB above is not the same as the original one in [9], which was

defined as,

SB CLD =
C−1∑
i=1

C∑
l=i+1

Ci∑
j=1

Cl∑
h=1

(µij − µlh)(µij − µlh)
T (4.3)

The reason for adding the weighting element NijNlh/N as shown in (4.1) is to

take into account the different sizes of the clusters.

The effectiveness of the cluster-based approach is illustrated in Figure 4.1. In

the 2D example, CLD (the cluster-based approach) works as it takes care of the

existence of multiple clusters in a class.

4.3 Determination of Clusters

The calculation of cluster-based SB and SW requires that the number of clusters

for each class and the cluster membership of each sample to be known beforehand.

So a pre-requisite for this cluster-based approach is clustering analysis. There

are a variety of clustering methods. Generally speaking, the various clustering

methods available can be broadly put into two categories: crisp clustering and
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4.3 Determination of Clusters

Figure 4.1: Comparison of different projection directions extracted by:

PCA, FLD (or RFLD) and the cluster-based approach (CLD). -
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4.3 Determination of Clusters

fuzzy clustering. In crisp clustering, every sample is assigned to exactly one

cluster. On the other hand, in fuzzy clustering, samples are assigned with a

gradual membership to the clusters.

The ideas of crisp clustering and fuzzy clustering can be taken into account

by the definition of SW . We modify the definition of the cluster-based SW and

use SWW to denote this new definition of SW hereafter.

SWW =
C∑
i=1

Ci∑
j=1

N∑
n=1

mn
ij(xn − µij)(xn − µij)

T (4.4)

where mn
ij denotes the relationship of sample xn to cluster j of class i, which is

represented by its mean µij, defined by

µij =
N∑

n=1

mn
ijxn. (4.5)

For crisp clustering, mn
ij is a binary function:

mn
ij =

{
1 if xn ∈ Xij.
0, otherwise.

(4.6)

where Xij denotes the set of samples that comprise the jth cluster of the ith

class.

For fuzzy clustering, mn
ij’s are no longer constrained to be equal to 0 or 1.

Instead, they can take any value in the interval [0, 1]. mn
ij indicates the degree to

which sample xn belongs to the cluster Xij. The greater the mn
ij, the larger the

degree of the belongness of xn to Xij. Clustering is done for each class separately

such that

Ci∑
j=1

mn
ij = 1 for L(xn) = i, and mn

ij = 0 for L(xn) ̸= i (4.7)

where L(xn) means the class label of sample xn.

With fuzzy clustering, samples close to the center of a cluster have a higher

weight. A proper selection of the degree of fuzziness is important for a good

performance of the cluster-based approach. If clusters are well formed, then

less fuzziness should be selected. But if clusters are not well formed, then more
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4.3 Determination of Clusters

fuzziness should be used. With high degree of fuzziness used for the clustering

process, mn
ij’s will tend to be close to each other for all samples of the same class.

This means that SWW will be close to the SW of traditional FLD. Correspondingly,

if less fuzziness is chosen for the clustering process, then mn
ij will be close to either

1 or 0, and SWW will be close to SWW of crisp clustering.

Fuzzy clustering is more advantageous compared to crisp clustering especially

in the case where clusters are not well formed. To confirm this, simple experiments

can be designed. Two toy data sets are created. To make it easy to analyze and

visualize, the samples in the two data sets are 2D samples, and there are only 2

classes. For the first data set, clusters are close to each other. For the second data

set, clusters are far from each other, i.e., clusters are well formed. The results of

applying fuzzy clustering based approach, crisp clustering based approach, and

traditional FLD, are plotted in Figure 4.2 and Figure 4.3.
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Figure 4.2: Comparison of different projection directions extracted by

FLD, crisp clustering based approach and fuzzy clustering based ap-

proach on toy data set 1. -

From the two figures, we can see that crisp clustering based approach could

not extract good feature for data set 1 and FLD does not perform well for data

set 2. This means that crisp clustering based approach could not perform well
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4.4 Determination of Cluster Number
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Figure 4.3: Comparison of different projection directions extracted by

FLD, crisp clustering based approach and fuzzy clustering based ap-

proach on toy data set 2. -

when clusters are not well formed, and FLD does not perform well when there are

well formed clusters in a class. Fuzzy clustering based approach can extract good

features for both data sets. It exhibits a more robust performance compared to

FLD and crisp clustering based approach.

4.4 Determination of Cluster Number

Most clustering algorithms require the number of clusters to be known before-

hand. In our experiments, we used K-means clustering and fuzzy C-means clus-

tering [82] for crisp and fuzzy clustering, respectively. Both of them require the

number of clusters as an input parameter. The number of clusters specified af-

fects the clustering process and therefore also affects the performance of CLD.

One straightforward way to determine the number of clusters for every class is

to project the samples into a 2D or 3D space, where the scattering of samples

can be visualized. The low dimensional space can be determined by PCA. After

projecting to the low dimensional space, the number of clusters can be visually
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4.4 Determination of Cluster Number

inspected.

The drawback of the above method is that the 2D or 3D PCA subspace is

often too low to adequately represent the scattering of the data samples. Further-

more, the subspace extracted by CLD is very different from the PCA subspace.

In addition to these adversities, the number of clusters may not be easily deter-

mined by subjective visual assessment when clusters are not well separated. This

problem is illustrated in Figure 4.4 for facial expression recognition problem on

Yale face database. From the figure, it is very hard to tell how many clusters

are contained in each class. Take the class on the bottom right of the figure for

example, it seems that no well-separated cluster is formed and the number of

clusters could not be well determined. So this PCA subspace method may not

be appropriate for the determination of cluster numbers.

Figure 4.4: Sample distribution of Yale database in the 2D principal

subspace extracted by PCA. From left to right, up to down, the dis-

tributions correspond to facial expressions: normal, wink, happy, sad,

sleepy, and surprise. -

A more effective way using self-organizing map (SOM) [40, 65] to determine
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4.5 Incorporation of a Recursive Strategy

the cluster number is proposed here. All data samples from all classes in the

training set are used to train the SOM network. After training, close samples

within a class will be form clusters in the transformed space defined by SOM.

Therefore, the number of clusters in a class is the number of clusters of that class

in the trained SOM.

An example of using SOM to determine the number of clusters in each class is

shown by Figure 4.5. The example is a facial expression recognition problem. The

samples used for training the SOM is from The Japanese Female Facial Expression

(JAFFE) Database [49]. There are seven expressions, i.e., seven classes, in this

database. Figure 4.5 shows the resulted structure of the trained SOM. In the

figure, there is a number on each unit of the trained SOM. This number is the

class number that the respective unit is assigned during a labeling procedure after

training is completed. This type of training is called supervised training of SOM

[39, 40, 41]. The number of clusters for each class is obtained by counting the

number of clusters in the trained SOM. For example, in the figure there are two

clusters for class 1. So the number of clusters for class 1 is two.

According to our experience, cluster numbers determined using SOM are very

close to the optimal number of clusters which results in the highest classification

accuracy. The number of clusters determined using SOM can serve as an starting

point. Further fine-tuning of this starting point by one or two number of clusters

can be done to obtain better performance.

4.5 Incorporation of a Recursive Strategy

To relax the constraint on the number of features, we apply the recursive strategy

of RMLD. RCLD adopts the redefined formula (4.1) and (4.4) for SB and SW by

doing clustering analysis first and obtains ST = SB + SW . Then it follows the

same procedure as that of RMLD.
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4.5 Incorporation of a Recursive Strategy

Figure 4.5: Determination of cluster number by SOM. After training of

the SOM, the number of clusters in a class is the number of clusters of

that class in the trained SOM. -
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Chapter 5

Recursive Bayesian Linear

Discriminant (RBLD)

In the previous two chapters, we have addressed several obvious limitations of

FLD. However, there is another more subtle issue which is related to the relation

between the criterion function and the classification error.

Since the goal of a pattern recognition system is to recognize a pattern cor-

rectly, an intuitive measure of “goodness” of the extracted features is the prob-

ability of classification error, i.e. the extracted set of features should be the one

with which the classification result is as close to the minimum probability of

classification error, or the Bayes error, as possible.

However, popular feature extraction algorithms do not extract features based

on a criterion that is directly related to the probability of classification error. For

example, PCA extracts features that are most efficient for representation, FLD

maximizes the between-class scatter and meanwhile minimizes the within-class

scatter, and ICA extracts statistically independent features. Although FLD is

more pertinent to classification, its criterion function is not directly related to

the classification performance and the maximization of its criterion function only

leads to the minimal classification error under very special conditions, which are

going to be shown later in this chapter.

The novel linear discriminant, coined Recursive Bayesian Linear Discriminant

(or RBLD), is devised to aim at approaching the Bayes error. In the following,

the new criterion function is first derived for two-class problems. Then it is
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5.1 The Criterion Based on the Bayes Error

generalized to multi-class problems. It will be shown that the maximization of

the Bayesian criterion function is equivalent to the minimization of one of two

coherent error bounds that confine the Bayes error, under certain assumptions

and approximations.

5.1 The Criterion Based on the Bayes Error

The probability of classification error, Pe, can be expressed as:

Pe =
C∑
i=1

Piei (5.1)

where Pi is the a priori probability of class i, and ei is the probability of error

from class i, defined as:

ei =

∫
R̄i

pi(x)dx (5.2)

where R̄i is the region assigned to all other classes except class i, and pi(x) is the

conditional probability density function of class i.

To derive our Bayesian criterion function, we first derive the functional form of

Bayes error for the simplest case: two homoscedastic normally distributed classes

with equal a priori probabilities. The two-class Bayes criterion function is then

extended for general multi-class problems.

5.1.1 Two-class Bayes criterion function

Figure 5.1 shows the probability density functions of two normal classes with

equal covariance matrices and equal a priori probabilities after projection onto

feature vector direction w, y = wTx. The probability of classification error after

projection onto w can be expressed as follows:

F (w) = P1

∞∫
y0−µ′1

σ

1√
2π

exp(−y2

2
)dy + P2

∞∫
µ′2−y0

σ

1√
2π

exp(−y2

2
)dy (5.3)

where µ′
i and σ2 is the mean and variance of class i after projection onto w:

µ′
i = wTµi (5.4)
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5.1 The Criterion Based on the Bayes Error

σ2 = wTΣw (5.5)

where µi and Σ are the mean and covariance matrix of class i in the original

space. Note that we used µ′
i and σ instead of µ′

i(w) and σ(w) in order to make

the notation as simple as possible, although they are dependent on w. For the

same reason, we used the notation y0 and Σ′ instead of y0(w) and Σ′(w) later on

although the notations appended with “(w)” explicitly indicate the dependence

of the variable on w. Without loss of generality, we assumed µ′
1 ≤ µ′

2 in (5.3).
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Figure 5.1: Minimum classification error by Bayes rule for the simplest

case: two normal classes with equal covariance and equal a priori prob-

abilities. -

From Figure 5.1, it is obvious that classification error depends on the posi-

tion of the decision boundary y0. From Bayesian decision theory [14], y0 that

minimizes (5.3) is determined by:

P1
1√
2πσ2

exp(−1

2

(y0 − µ′
1)

2

σ2
) = P2

1√
2πσ2

exp(−1

2

(y0 − µ′
2)

2

σ2
) (5.6)

which can be simplified to

y0 =
µ′
1 + µ′

2

2
−

σ2 ln P2

P1

(µ′
2 − µ′

1)
(5.7)

Introducing (5.7) for y0 into (5.3), the Bayes error F (w) can then be written in

the following form:

F (w) =
1

2
−1

2

{
P1erf

(
µ′
2 − µ′

1√
8σ

− σ ln (P2/P1)√
2(µ′

2 − µ′
1)

)
+P2erf

(
µ′
2 − µ′

1√
8σ

+
σ ln (P2/P1)√
2(µ′

2 − µ′
1)

)}
(5.8)

40



5.1 The Criterion Based on the Bayes Error

where erf(·) is the error function of the normal distribution and is defined as:

erf(y) =
2√
π

∫ y

0

e−t2dt (5.9)

If we let

J(w) = 2(1− F (w))− 1, (5.10)

minimizing the Bayes error F (w) in (5.8) is thus equivalent to maximizing J(w),

which can be written as

J(w) = P1erf

(
µ′
2 − µ′

1√
8σ

− σ ln (P2/P1)√
2(µ′

2 − µ′
1)

)
+ P2erf

(
µ′
2 − µ′

1√
8σ

+
σ ln (P2/P1)√
2(µ′

2 − µ′
1)

)
(5.11)

where J(w) + 1 is actually two times the probability of correct classification.

Therefore, the criterion function J(w) represents a measure of the probability of

correct classification.

Assuming equiprobable classes (P1 = P2), eq. (5.11) gives

J(w) = erf

(
µ′
2 − µ′

1√
8σ

)
(5.12)

which can be written as

J(w) = erf

(
h′
12√
8

)
, (5.13)

where h′
12 is the Mahalanobis distance between the two class means in the pro-

jection subspace

h′
12 =

√
(wTµ1 − wTµ2)(wTΣw)−1(wTµ1 − wTµ2) =

µ′
2 − µ′

1

σ
. (5.14)

5.1.1.1 Comments

While some high dimensional data may not be Gaussian, often its low dimensional

projection may become more Gaussian by the virtue of the central limit theorem.

For situations where the covariance matrices of the two classes are different, the

decision boundary is a curve in the original space by Bayes decision theory, and

it is not easy to derive simple closed-form expression like (5.8) or (5.13). If

the covariance matrices of the two classes do not differ a lot, which is true for

some real-world applications, the assumption of equal covariances could still be

appropriate and F (w) in (5.8) (or equivalently J(w) in (5.13)) is an approximation

of the Bayes error that has a reasonable credit.
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5.1 The Criterion Based on the Bayes Error

5.1.2 Multi-class Generalization of the Bayes Criterion

Function

The generalization of the criterion function J(w) to multi-class is not trivial

because the probability of error Pe is not simply equal to the sum of the errors

generated by each pair of classes when there are more than two classes. The

situation of multi-class problems is usually too complex to derive a nice and

simple expression like (5.13) for the Bayes error. To solve this problem, we first

consider two extreme scenarios where simple expressions can be derived. These

two extreme scenarios are then used to derive lower and upper bounds of the

Bayes error since real situations are usually in between of these two extreme

scenarios. The two extreme scenarios and the derivation of the lower and upper

error bounds are described in the following.

Let Rj|i denote the region that is assigned to class j by the Bayes rule when

considering only the two classes i and j, ej|i denote the probability of samples from

class i being misclassified to class j by the Bayes decision rule when considering

only the two classes i and j. For example, R2|1 and e2|1 for the two classes in

Figure 5.1 is the region on the right side of y0 and the probability of samples from

class 1 being misclassified to class 2 by Bayes rule for the two classes, respectively.

Lemma 1. If R̄i =
∑

j ̸=iRj|i then ei =
∑
j ̸=i

ej|i.

Proof. Because R̄i =
∑

j ̸=iRj|i and ej|i =
∫
Rj|i

pi(x)dx, we have

ei =

∫
R̄i

pi(x)dx =
∑
j ̸=i

∫
Rj|i

pi(x)dx =
∑
j ̸=i

ej|i (5.15)

Since R̄j = ∪j ̸=iRj|i, it is evident that R̄i =
∑

j ̸=i Rj|i is equivalent to Rj|i ∩
Rk|i = ϕ ∀k ̸= j, i.e., there is no intersection between the regions where class

i is misclassified to other classes. Under this condition, the probability of error

from class i is equal to the sum of the probability of class i being classified to

every other class individually.
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5.1 The Criterion Based on the Bayes Error

Let Pj|i denote the a priori probability of class j after class i is taken out of

consideration, i.e., Pj|i =
Pj

1−Pi
since all classes are assumed to be independent of

each other. We have the following lemma.

Lemma 2. If R̄i = Rj|i∀j ̸= i, then ei =
∑
j ̸=i

Pj|iej|i.

Proof. Because R̄i = Rj|i∀j ̸= i, we have R̄i =
∑
j ̸=i

Pj|iRj|i. It follows that

ei =

∫
R̄i

pi(x)dx =
∑
j ̸=i

Pj|i

∫
Rj|i

pi(x)dx =
∑
j ̸=i

Pj|iej|i (5.16)

Since R̄i = Rj|i∀j ̸= i is equivalent to Rj|i = Rk|i ∀k ̸= j, it means the region

where class i is misclassified to class j overlaps completely with misclassified

regions for every other class k. Under this condition, the probability of error

from class i is equal to the sum of the probability of class i being classified to

every other class j multiplied with Pj|i.

The above two lemmas describe two extreme scenarios: no overlapping and

complete overlapping. In real situations, partial overlapping is most likely.

Lemma 3. If R̄i ̸=
∑

j ̸=iRj|i and R̄i ̸= Rj|i ∃j ̸= i, then
∑
j ̸=i

Pj|iej|i < ei <
∑
j ̸=i

ej|i.

Proof. For partial overlapping ofRj|i’s, we have
∑
j ̸=i

Pj|iRj|i < R̄i <
∑
j ̸=i

Rj|i. There-

fore
∑
j ̸=i

Pj|iej|i < ei =
∫
R̄i

pi(x)dx <
∑
j ̸=i

ej|i

Then Pe in (5.1) is bounded as follows:∑
i

∑
j ̸=i

PiPj|iej|i ≤ Pe ≤
∑
i

∑
j ̸=i

Piej|i (5.17)

Using the fact that
∑
i

∑
j ̸=i

aij =
∑
i<j

(aij + aji), (5.17) can be rewritten as

∑
i<j

(PiPj|iej|i + PjPi|jei|j) ≤ Pe ≤
∑
i<j

(Piej|i + Pjei|j). (5.18)

Denoting the Bayes error from classifying the two classes i and j by ei,j, it is

ei,j =
Pi

Pi + Pj

ej|i +
Pj

Pi + Pj

ei|j. (5.19)
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5.1 The Criterion Based on the Bayes Error

We have

(Pi + Pj)ei,j = Piej|i + Pjei|j, (5.20)

and

PiPjei,j =
P 2
i Pj

Pi + Pj

ej|i+
PiP

2
j

Pi + Pj

ei|j <
P 2
i Pj

Pi − P 2
i

ej|i+
PiP

2
j

Pj − P 2
j

ei|j = PiPj|iej|i+PjPi|jei|j.

(5.21)

Using (5.18), (5.20), and (5.21), it follows that∑
i<j

PiPjei,j < Pe ≤
∑
i<j

(Pi + Pj)ei,j. (5.22)

Since the two-class Bayes error ei,j in (5.22) is estimated by F (w) defined in

(5.8) or equivalently (1− J(w))/2 from (5.13), the minimization of the two error

bounds is equivalent to the maximization of the following two criterion functions:

J(w) =
∑
i<j

PiPjerf

(
h′
ij√
8

)
(5.23)

or

J(w) =
∑
i<j

(Pi + Pj)erf

(
h′
ij√
8

)
(5.24)

5.1.2.1 Comments

We have derived lower and upper bounds of Bayes error in eq. (5.22) for multi-

class problems, under certain assumptions and approximations. One natural

question is “how ‘tight’ are the bounds given in (5.22), taken into account the

further weakening in (5.21)?” Typically one would like to choose bounds that are

asymptotic or very tight. Unfortunately, it is very difficult to know whether if

the two bounds in (5.22) are asymptotic or to evaluate their tightness. However,

if we compare the two bounds, we can see that they have similar forms with the

only difference being the multiplier before ei,j. The multiplies PiPj and Pi + Pj

results in a nice property between the two error bounds: the two bounds are

coherent, in the sense that a decrease in the value of one bound usually couples

with a decrease in the value of the other bound. The minimization of one bound

probably makes the other bound near its minimal value. In the special case of
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5.2 Maximization of the Bayesian Criterion Function

Pi = Pj for all j ̸= i, these bounds become equivalent to each other, with the

minimization of one bound ensuring the minimization of the other bound. Similar

observations can be made on criterion functions (5.23) and (5.24).

Although it is a common way to choose the upper error bound for minimiza-

tion, we argue that the lower bound can also be used to make Pe small since

the coherence property as discussed above. One can choose either one of the

two criterion functions (5.23) and (5.24). In this paper, we deliberately selected

(5.23) for the derivation of our Bayesian criterion function. The reason we se-

lected (5.23) instead of (5.24), which may be the common choice, is that we will

show later FLD can been seen as a special case of our Bayesian criterion function

if (5.23) is used.

5.2 Maximization of the Bayesian Criterion Func-

tion

In the sequel, the a priori probability of class i is estimated by Ni/N where Ni

and N is the number of samples in class i and the total number of samples,

respectively. To maximize (5.23), we take the derivative ∂J(w)
∂w

and set it equal to

0. Thus it is

∂J(w)

∂w
=

∑
i<j

NiNj

N2 ∂erf(
h′
ij√
8
)

∂w
=

∑
i<j

2√
π

NiNj

N2

∂

∂w

∫ h′ij√
8

0

e−x2

dx

=
1√

2πN2

∑
i<j

(NiNj)e
−

h′2ij
8
∂h′

ij

∂w
=

1√
8πN2

∑
i<j

e−
h′2ij
8 (h′

ij)
−1

(NiNj)∂h
′2
ij

∂w
= 0

(5.25)

Since it is very difficult to derive a closed-form solution for (5.25), the following

approximation is used:

1√
8πN2

∑
i<j

e−
h′2ij
8 (h′−1

ij )
(NiNj)∂h

′2
ij

∂w
≈ 1√

8πN2

∑
i<j

e−
h2ij
8 (h−1

ij )
(NiNj)∂h

′2
ij

∂w
= 0

(5.26)

where the projected Mahalanobis distance h′
ij in the coefficients of the derivatives

is replaced by the original Mahalanobis distance hij.
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5.2 Maximization of the Bayesian Criterion Function

To avoid problems related to limited sample size, it is a common practice to

estimate a single common covariance matrix for all classes instead of C different

covariance matrices, one for each class. The covariance matrix estimated by

samples from all classes is called pooled covariance matrix. The pooled covariance

matrix is actually the same as SW up to a scaling factor, i.e., Σ = SW/N . So the

squared Mahalanobis distance h′2
ij after projection onto w can be estimated as

(NiNj)h
′2
ij = (NiNj)(µ

′
i − µ′

j)(w
TΣw)−1(µ′

i − µ′
j) =

wT (NiNj)(µi − µj)(µi − µj)
Tw

wT (SW/N)w
= N

wTSijw

wTSWw
(5.27)

where Sij is given by

Sij = NiNj(µi − µj)(µi − µj)
T (5.28)

So (5.26) can be written as:

1√
8πN2

∑
i<j

e−
h2ij
8 (h−1

ij )
N∂

(
wTSijw

wTSWw

)
∂w

=
1√
8π

∂
(

wTSB RBLDw
wTSWw

)
∂w

= 0 (5.29)

where

SB RBLD =
1

N

∑
i<j

SBij , (5.30)

and

SBij = e−
h2ij
8 (h−1

ij )Sij . (5.31)

and Sij is defined above in (5.28).

The solution of (5.29) is obvious. It is similar to the one for the FLD criterion

function. The Bayesian approach maximizes

J(w) =
wTSB RBLDw

wTSWw
. (5.32)

5.2.1 Comparison of RBLD to FLD

Compared to FLD, RBLD’s criterion function (5.32) have the same form as (2.7).

The difference lies in the definition for SB:
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5.2 Maximization of the Bayesian Criterion Function

For FLD,

SB =
1

N

∑
i<j

Sij (5.33)

For RBLD,

SB RBLD =
1

N

∑
i<j

SBij =
1

N

∑
i<j

e−
h2ij
8 (h−1

ij )Sij. (5.34)

Comparing the formulation of SB of BLD to that of FLD, we can observe that

BLD puts a weighting factor for Sij. The weighting factor has the property that

it decreases as the Mahalanobis distance between class centers hij increases, as

can be seen in Figure 5.2(b). This means that the weighting factor suppresses

the influence of far distant classes, or in other words, they put more emphasis

on close classes. This makes sense intuitively since close classes are more likely

to generate classification errors and therefore require more attention than distant

classes.

To see the effect of the weighting factor, a simple 2D classification problem is

shown in Figure 5.2(a). This simple 2D classification problem illustrates that fea-

tures extracted by FLD is over-influenced by far apart classes, while the Bayesian

linear discriminant pays more attention on close classes.

Mathematically speaking, FLD maximizes the sum of squared Mahalanobis

distances between class means in the transformed feature space. Hence, the

feature directions w extracted by FLD are over-influenced by far apart classes.

In contrast, BLD finds w that minimizes one of the two error bounds. We can

see that FLD is a special case of the Bayesian linear discriminant: for two-class

problems, FLD is equivalent to BLD; for multi-class problems, FLD is equivalent

to BLD only when all classes are equally separated (The Mahalanobis distances

hij are the same for all classes).

5.2.2 Summary

To make clear the assumptions and approximations we have made in the deriva-

tion of the Bayesian criterion function (5.32), we summarize them here:

• Pi = Pj. It is a valid assumption when the a priori probabilities of different

classes are not very much different.
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5.2 Maximization of the Bayesian Criterion Function

(a) (b)

Figure 5.2: (a) Left: A simple 2D example that shows: FLD is over-influenced

by class pairs that are far apart; RBLD is able to extract good features by paying

more attention to close classes; (b) Right: The weighting factor as a decreasing

function of Mahalanobis distance.

• Classes have equal covariance matrices in the transformed feature space.

• The Bayesian criterion function (5.32) is derived from the minimization of

the error bound in (5.22).

• The mahalanobis distance in the original space is used in place of that in

the transformed feature space in (5.26) to derive a closed-form solution to

(5.25).

The validity of the assumption “classes are normal with equal a priori prob-

abilities and equal covariance matrices.” depends on the specific application at

hand. The Bayesian criterion function (5.32) is derived by minimizing one of the

two error bounds that are coherent. The mahalanobis distance in the original

space is used as a rough approximation of that in the transformed feature space.

Usually classes that are closer in the original space remain closer in the trans-

formed space. This means the use of original mahalanobis distance may still be a

good approximation as more attention (larger weights) are paid to closer classes.

In spite of the weakening of BLD due to the assumptions and approximations, it

is still possible for BLD to achieve good results even for applications with strong

violation of assumption due to two reasons: (1) the summation in the criterion

function may cancel out the adverse effect of each individual deviation from the
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assumption; (2) the number of samples available for training is usually quite lim-

ited and as a result simple models with less parameters are usually favored. The

assumption of equal covariance matrices may lead to improved results for some

applications since there are less parameters to estimate. The above two reasons

are discussed extensively in the literature for algorithms like the naive Bayes clas-

sifier to account for its superior performance in spite of its strong assumptions

[27].

5.3 Incorporation of a Recursive Strategy

To conquer the feature number limitation inherent in FLD, the same recursive

strategy as described in Chapter 3, where a set of C−1 features can be extracted

per iteration, is adopted.
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Chapter 6

Recursive Cluster-based Bayesian

Linear Discriminant (RCBLD)

Since the cluster-based approach and the Bayesian approach have been described

in the previous chapters, we are now ready to integrate the idea of the cluster-

based approach and the Bayesian approach so that the resulted algorithm aims

at approaching minimal classification error and is capable of handling complex

class distributions. This integration and the resulted algorithm, called cluster-

based Bayesian linear discriminant (CBLD), is shown in Section 6.1. After the

presentation of CBLD, the integration of CBLD with RMLD is then brought up

in Section 6.2 and the new algorithm is termed recursive CBLD (RCBLD).

6.1 Cluster-based Bayesian Linear Discriminant

(CBLD)

In order to have a Bayesian criterion function, the idea of weighting factor by the

Bayesian approach for each pair of classes is adapted to each pair of clusters, and

the resulting criterion function is as follows:

SB CBLD =
1

N

C−1∑
i=1

C∑
l=i+1

Ci∑
j=1

Cl∑
h=1

Sijlh (6.1)
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6.1 Cluster-based Bayesian Linear Discriminant (CBLD)

where Sijlh is defined as:

Sijlh = e−
h2ijlh

8 h−1
ijlhNijNlh(µij − µlh)(µij − µlh)

T (6.2)

where hijlh is the Mahalanobis distance between the means of cluster j of class i

and cluster h of class l:

hijlh = N(µij − µlh)
TS−1

WW (µij − µlh) (6.3)

where SWW/N is the pooled covariance matrix of the clusters and is estimated

using the within-cluster scatter matrix (defined in (4.4)) divided by the total

number of samples N .

The definition for SWW remains the same as that of RCLD, which is defined

in (4.4).

Note that if we simply use the within-cluster scatter matrix SWW in the

denominator of the criterion function, SWW must be non-singular so that its

inverse exists. As a result, discriminant information from the null space of SWW

can not be extracted. To overcome this limitation, SWW can be replaced by ST ,

as in the case of RMLD discussed previously in Chapter 3. However, ST can not

be simply calculated in the traditional way as in (6.4) for FLD:

ST =
N∑
i=1

(xi − µ)(xi − µ)T . (6.4)

This is because SB CBLD and SWW are calculated with weights. We can use the

decomposition of total scatter matrix ST CBLD for CBLD as follows:

ST CBLD = SB CBLD + SWB + SWW

=
1

N

∑
i<l

Ci∑
j=1

Cl∑
h=1

e−
h2ijlh

8 h−1
ijlhNijNlh(µij − µlh)(µij − µlh)

T

+
1

N

C∑
i=1

∑
1≤j<h≤Ci

e−
h2ijih

8 h−1
ijihNijNih(µij − µih)(µij − µih)

T

+
1

N

C∑
i=1

Ci∑
j=1

N∑
n=1

mn
ij(xn − µij)(xn − µij)

T (6.5)
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6.1 Cluster-based Bayesian Linear Discriminant (CBLD)

where SWB denotes the within-class between-cluster scatter that is not contained

in SB CBLD or SWW .

Now the criterion function of CBLD has the form

J(w) =
wTSB CBLDw

wTSTw
=

wTSB CBLDw

wT (SB CBLD + SWB + SWW )w
(6.6)

where

SWB =
1

N

C∑
i=1

SWBi (6.7)

and

SWBi =
∑

1≤j<h≤Ci

e−
h2ijih

8 h−1
ijihNijNih(µij − µih)(µij − µih)

T (6.8)

The denominator of J(w) has been changed from SWW to a sum which also

takes into account the within-class between-cluster scatter SWB.

In our implementation, PCA is employed to reduce the sample dimension to

N − 1 instead of N − C, as typically done to make SW non-singular. This is

possible as the denominator of our new criterion function (6.6) is non-singular

with dimension N − 1. The dimension reduction to N − 1 for N samples is

information loss-less. Discriminant information from both inside and outside the

null space of SW can be extracted now.

We also adopted a regularization technique proposed by Friedman [22] to

alleviate over-learning due to the small sample size problem. An identity ma-

trix multiplied with a small value γ, called the regularization term, is added

to ST CBLD. And the feature vector w can be found by solving the following

eigenvalue problem:

(SB CBLD + SWB + SWW + γI)−1SB CBLDw = λw. (6.9)

The value of γ is usually empirically determined. One can also use a validation

set and select the value that gives the best result on the validation set.
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6.2 Recursive CBLD (RCBLD)

To remove the feature number constraint, RMLD is integrated with CBLD, and

the resulting algorithm is coined recursive cluster-based Bayesian linear discrim-

inant, or RCBLD. As more than C ′ − 1 features can be extracted by RCBLD,

where C ′ is the number of clusters, the modified RCBLD is now truly able to

extract discriminant information from both FW and FW .

The steps of RCBLD are described as follows:

1. The first iteration is exactly the same as CBLD and extracts C ′−1 features

and C ′ is the total number of clusters from all classes. Let W1 be the set

of C ′ − 1 features.

2. For the kth iteration, extract the null space of Wk−1, denoted as W k−1.

3. Discard information from extracted features by projecting SB CBLD, SWB,

and SWW into the null space W k−1.

S ′
B CBLD = W

T

k−1SB CBLDW k−1 (6.10)

S ′
WB = W

T

k−1SWBW k−1 (6.11)

S ′
WW = W

T

k−1SWWW k−1 (6.12)

where S ′
B CBLD, S

′
WB, and S ′

WW represent the new version of SB CBLD, SWB,

and SWW .

4. Extract a new set of C ′−1 number of features using CBLD, denoted as wk.

5. Concatenate the new extracted features into the previous features by Wk =

[Wk−1,W k−1 · wk]

6. Go through Steps 2-5 for one more iteration to extract another set of C ′ −
1 features. The recursive procedure terminates when desired number of

features have been extracted.

The determination of the desired number is usually done in the training stage

by selecting the one leading to the minimal classification error on a validation

set.
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6.3 Summary

The main characteristics of RCBLD can be briefly summarized as follows:

• RCBLD maximizes a Bayesian criterion function (6.6), which aims at ap-

proaching the minimal classification error, the Bayes error.

• RCBLD works with complex class distributions, which are modeled as a

union of Gaussian distributions, or multi-modal Gaussian distribution.

• The estimation of SWW , SWB, and SB CBLD requires clustering analysis.

Fuzzy clustering analysis is preferred over crisp clustering for the estimation

of SWW . The number of clusters can be selected by supervised training of

SOM.

• A recursive approach is used to extract as many features as desired. In

each iteration, a set of C ′ − 1 features are extracted, where C ′ is the total

number of clusters from all classes. More features can be extracted by going

through more than one iteration.

Although RCBLD relaxes the requirement of uni-modal class distribution for

RBLD, it still suffers from limitation inherited from RBLD due to its strong

assumptions: (1) equal a priori probabilities of clusters; (2) equal covariances of

clusters. These two assumptions are very strong and are violated in almost any

real-world applications. But we believe that RCBLD can still lead to good results

for situations that do not deviate a lot from the two assumptions. And for the

same reason as explained for RBLD in Section 5.2.2, RCBLD may still be able

to achieve good performance even when the assumptions are severely violated.

In the following sections of this thesis, we are going to assess the performance

of the proposed algorithms. To evaluate the applicability of the algorithms, we

have selected various pattern recognition problems. In Chapter 7 a range of dif-

ferent pattern recognition problems from the UCI Machine Learning Repository

[56] are selected; in Chapter 8, different face recognition tasks including identity

recognition and facial expression recognition are experimented; and in Chapter 9

an application for brain-computer-interface (BCI) problem is tested.
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Applications

55



Chapter 7

Experiments on UCI Machine

Learning Repository

To evaluate the performance of the proposed algorithms, we first selected databases

from the UCI Machine Learning Repository, which contains databases for various

pattern recognition problems and has been widely used by the machine learning

and pattern recognition community. The databases are intentionally selected

with sizes ranging from about 100 samples to more than 5,000 samples. Before

presenting the experimental work on the UCI databases, we will first give a brief

description of the selected UCI databases.

7.1 UCI Databases

The UCI Machine Learning Repository [56] is a collection of databases, domain

theories, and data generators that are used by the machine learning community

for the empirical analysis of machine learning algorithms.

There are 187 data sets in the UCI repository. Among these data sets, we

have intentionally selected 7 multi-class databases with various sizes ranging from

small to large to test different algorithms’ performance on databases with varying

sizes. The 7 databases chosen are wine, vehicle, glass, optdigits, segmentation, zoo

and iris. The iris database is perhaps the best known database to be found in the

pattern recognition literature. Fisher’s paper [20] is a classic in the field and is

referenced frequently to this day. (See [14], for example.) The number of classes
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varies from 3 to 10. The sizes of each data set are listed in Table 7.1. In the table,

the number of attributes (or feature dimensions), and the number of classes are

also listed. [56] has more detailed information on each data set and the machine

learning repository.

7.2 Experimental Setup

Except for data sets segmentation and optdigits, which contain separated training

and test set, the other data sets have only one single set. The division of one

data set into training and test set have been somewhat arbitrary by different

researchers. In our experiments, the “leave-one-out” strategy [3, 14] is employed

for wine, zoo and iris databases; “stratified 5-fold cross validation” for glass, and

“stratified 9-fold cross validation” for vehicle. In “leave-one-out”, each time one

sample is taken out as the test sample and the rest used to train the system.

Every sample is used as the test sample once and the classification error rate is

the ratio of the misclassified samples over the total number of samples. In “k-fold

cross validation”, the whole data set is divided into k subsets of equal size. Each

subset is chosen once as the test set to test the system while the rest used to train

the system. The classification error rate is the average of the error rates over the k

subsets. Stratification ensures that each class is represented with approximately

equal proportions in training and test sets. For segmentation and optdigits, as

there are two separated training and test set, we just used the training set for

training and test set for performance evaluation.

7.2.1 Classifier

Because the objective of the experiments is to evaluate the ability of our algo-

rithms to extract discriminatory features, a simple classifier is selected such that

the classification performance is determined by the feature extraction algorithm

as much as possible. If the selected classifier is very powerful, good performance

may still be achieved even when the feature extraction algorithm does not do well.

Due to this consideration, we used the nearest-neighbor classifier with Euclidean

distance as the similarity metric in our experiments. Our proposed algorithms can
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be readily combined with other more advanced classifiers such as neural networks

or SVM to achieve better classification performance.

7.3 Experimental Results

The classification error rates are tabulated in Table 7.1. Note that the results

on FLD were not listed in the table, this is because the first iteration of RFLD

is actually FLD, and hence the results of RFLD are always superior or at least

equal to that of FLD. It is thus not necessary to list the results of both FLD and

RFLD in the table.

Table 7.1: Classification error rates on 7 UCI data sets(%). The last three columns

are some characteristics of the data sets: NC is the number of Classes, NF the

number of features, and N the number of samples.

Databases RFLD RBLD RCBLD NC NF N

wine 1.1 1.1 0 3 13 178

zoo 3.0 1.0 0 7 16 101

iris 3.3 3.3 0 3 4 150

vehicle 21.9 21.9 19.6 4 8 946

glass 40.2 40.2 33.2 6 9 214

optdigits 7.0 6.6 2.2 10 64 5620

segmentation 11.9 11.0 7.0 7 19 2310

7.3.1 Discussion of Results

Comparing the results of the three different algorithms, we can see that RBLD

generally outperforms RFLD. This fact verifies the effectiveness of the Bayesian

criterion. It can also be observed that RCBLD achieves the best results for all the

seven databases. This means that the combination of the cluster-based approach
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and the Bayesian criterion does improve the classification performance further.

The results on the UCI databases verify that RCBLD has superior performance

over RFLD as well as RBLD on databases with a range of sizes varying from small

database with about 100 samples to large databases with over 1000 samples.

In the following, the performance of RCBLD is also compared to other state-

of-the-art algorithms that have reported results on one or more than one of the

7 data sets in recent years.

7.3.1.1 Discussion of Results on Wine Database

Each pattern in the wine database describes 13 chemical constituents found in

each of the three types of wines.

The wine data was used in [1] for comparing various classifiers: Only RDA

(regularized linear discriminant analysis) has achieved 0% classification error rate;

QDA (quadratic discriminant analysis) achieves 0.6%, FLD 1.1%, and 1NN (1-

nearest-neighbor) 3.9%. In comparison, RCBLD also achieves 0% error rate. This

shows that only RCBLD and RDA succeed in classifying the linearly separable

problem.

In [34], 10 runs of 10-fold cross validation is performed with random partitions

to evaluate kNN classifiers for which the training data is edited by neural network

ensembles. The error rate on wine database is 3.95%.

7.3.1.2 Discussion of Results on Zoo Database

Zoo is a simple database containing 17 Boolean-valued attributes.

Frank et al. [21] used ensembles of nested dichotomies for multi-class prob-

lems. They showed that ensembles of nested dichotomies produce more accurate

classifiers than pairwise classification if both techniques are used with C4.5 as

base learners, and comparable results for logistic regression. The classification

performance is estimated based on 50 runs of the stratified hold-out method, in

each run using 66% of the data for training and the rest for testing. They achieved

6.69% by their END (ensembles of nested dichotomies) with C5.4 as base learner

and 4.75% with logistic regression as base learner.
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Jiang et al. [34] also selected zoo for their experiments with experimental

setups as described in discussion on wine database. They achieved 5.52% error

rate, which is also higher than mine although the experimental setup is different.

7.3.1.3 Discussion of Results on Iris Database

The data set contains 3 classes of 50 instances each, where each class refers to a

type of iris plant.

In [15] Genetic Programming is used to evolve decision trees for data classifi-

cation. The lowest error rate achieved in [15] is 2.1%, which is higher than 0% of

mine. However, in their experiments they used “10-fold cross validation” instead

of “leave-one-out”.

Frank [21] achieved 6.04% with C5.4 and 4.27% with logistic regression as

base learner. As mentioned in the discussion on zoo database, their experimental

setup is different from mine.

Jiang et al. [34] also selected iris for their experiments with experimental

setups as described in discussion on wine database. They achieved 4.53% error

rate, which is also higher than ours although the experimental setup is different.

7.3.1.4 Discussion of Results on Vehicle Database

Each pattern in the database is a set of features extracted from a given silhouette

used to classify a given silhouette as one of four types of vehicle: Opel, Saab, Bus,

and Van.

[74] incorporates the inter-class relationships as relevance weights into the

estimation of the overall within-class scatter matrix in order to improve the per-

formance of the basic FLD method and some of its improved variants. [74] used

“10-fold cross validation” instead of “9-fold cross validation”. Only a subset of

846 samples out of the total 946 samples are used in their experiments. The

lowest classification error rates achieved are 21.75% for FLD, 21.64% for both

WLDR (relevance-weighted linear dimension reduction algorithm) and EWLDR

(evolution-based WLDR). Compared to our results, it can be seen that result of
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Tang’s FLD (21.75%) is slightly better than mine 21.9%. Despite that the re-

sult of our version of FLD is slightly worse than theirs, RCBLD can improve the

performance to 19.6%, which outperforms that of WLDR and EWLDR (21.64%).

Frank [21] achieved 26.52% with C5.4 and 19.97% with logistic regression as

base learner. As mentioned in the discussion on zoo database, their experimental

setup is different from mine.

7.3.1.5 Discussion of Results on Glass Database

Motivated by criminological investigation, the type of glass is to be classified for

the database.

Frank [21] achieved 29.33% with C5.4 and 35.81% with logistic regression as

base learner. As mentioned in the discussion on zoo database, their experimental

setup is different from mine.

Jiang et al. [34] also selected glass for their experiments with experimental

setups as described in discussion on wine database. They achieved 32.06% error

rate.

7.3.1.6 Discussion of Results on Optdigits Database

The patterns in optdigits database are obtained from a total of 43 people, 30

contributed to the training set and different 13 to the test set.

Frank [21] achieved 2.76% with C5.4 and 3.0% with logistic regression as base

learner. As mentioned in the discussion on zoo database, their experimental setup

is different from mine.

[74] also did experiments on optdigits data set. Classification error rates of

6.12% for FLD, 6.07% for WLDR, and 5.9% for EWLDR, are achieved in [74].

Compared to our results, it can be observed that the performance of Tang’s

implementation of FLD (error rate = 6.12%) achieves better result than our

implementation (RFLD’s error rate = 7.0%). Despite the better implementation

of FLD by Tang, his best result for EWLDR 5.9% is worse than our 2.2% by

RCBLD.
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7.3.1.7 Discussion of Results on Image Segmentation Database

The image segmentation database consists of 2310 patterns, each corresponding

to a 3× 3 region drawn randomly from a database of 7 outdoor images. It has 19

continuous attributes. The problem is classify the pattern into one of the seven

classes: brickface, cement, foliage, grass, path, sky, and window. There are 210

patterns in the training set and 2100 patterns in the test set (each class has 300

test patterns). In [84], Kwok extended the use of moderated outputs to SVM

by making use of a relationship between SVM and the evidence framework. In

his experiments, the error rate of nearest-neighbor classifier is 12.3%; the error

rate by maximum a posteriori (MAP) decision rule is 9.8%; and the error rate

by moderated SVM is 8.6%. In our experiments, the same experimental setup is

used and a better error rate of 7.0% is obtained.
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Chapter 8

Applications to Face Recognition

To assess the performance of the proposed algorithms for more challenging pat-

tern recognition tasks, we applied our algorithms to face recognition problems.

We selected face recognition to test our algorithms because face recognition has

become one of the hottest research topics in pattern recognition community and

its difficulty is well acknowledged. In the following, we will first give an overview

of face recognition. And next, the databases chosen for the experiments are

described. Finally the experimental setup and results are given.

8.1 Overview of Face Recognition

Face perception is an important part of the capability of human perception sys-

tem and is a routine task for humans, while building a similar machine system is

still an on-going research area. The research on face recognition has an interdis-

ciplinary nature, tied to many research fields, such as pattern recognition, image

processing, computer vision, computer graphics, statistical computing, and ma-

chine learning. In addition, automatic face recognition designs are often guided

by the psychophysical and neural studies.

The earliest work on face recognition can be traced back at least to the 1950s

in psychology [7] and to the 1960s in the engineering literature [5]. During the

early and mid-1970s, geometrical feature based approaches, which use measured

attributes of features (e.g., the distances between important points) in faces or

face profiles, were used [36, 37]. During the 1980s, work on face recognition

63



8.1 Overview of Face Recognition

remained largely dormant. Since the early 1990s, research interest in face recog-

nition has grown significantly [3, 8, 16, 31, 42, 47, 81, 83]. One main reason that

accounts for the increased interest in face recognition is the wide range of com-

mercial and law enforcement applications. For example, at present, one needs

to create and remember a password to get cash from an ATM, to log into a

computer, to access the internet, and so on. Although very reliable methods

of biometric personal identification exists, for example, fingerprint analysis and

retinal or iris scans, these methods rely on the cooperation of the participants,

whereas a personal identification system based on analysis of face images is of-

ten effective without the participant’s cooperation or knowledge. Some of the

advantages/disadvantages of different biometrics are described in Philips et al

[60].

8.1.1 Face Recognition Problems

Depending on the nature of the applications, there are various types of face recog-

nition problems, such as identity recognition, facial expression recognition, gender

recognition, race recognition, and glass-wearing recognition, etc. we have applied

the proposed feature extraction algorithms on three types of face recognition

problems: identity recognition, facial expression recognition, and glass-wearing

recognition. The problem of identity recognition can be stated as: given an input

image, either in the form of a static image like a photo, or image sequences from

a video, the task is to identify the person in the image. On the other hand, the

task of facial expression recognition is to identify the type of facial expressions

that the person in the image possesses. The task of glass-wearing recognition is a

two-class problem: whether the subject is wearing glasses or not. If not specified,

the term “Face Recognition” usually refers to “identity recognition”, as it is the

most commonly encountered task. Here, the term “identity recognition” is used

to differentiate it from other face recognition problems.

Generally speaking, automatic face recognition is a difficult task, which is

afflicted by the usual difficulties faced in pattern recognition and computer vi-

sion tasks, coupled with face specific problems. Although a fully automatic face
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recognition system typically involves tasks including face detection, segmenta-

tion, normalization, feature extraction, and recognition, our work mainly focuses

on extracting discriminant features for the problem of recognizing identities and

facial expressions of faces in still images.

8.1.2 Holistic (Global) Matching and Component (Local)

Matching

A wide range of techniques from image processing, computer vision, and pattern

recognition, have been applied on face recognition applications. One can gener-

ally put a face recognition system into one of the two categories: holistic matching

methods and component matching methods. The two categories are sometimes

referred to as global and local matching methods. In holistic/global matching the

whole face region is used as a single entity for analysis. On the contrary, com-

ponent/local matching methods first locate several facial features (components),

and then classify the faces by comparing and combining the corresponding local

statistics. Careful comparative studies of different options in a holistic recogni-

tion system have been reported in [64]. A similar comparative study for local

matching approach is given in [88]. Heisele et al. compared component (local)

and global (holistic) approaches in [29].

Although several psychophysical experiments suggest that human face recog-

nition is a holistic process, some researchers e.g. Zou [88] believe that at the

current state of the art, local region matching is more appropriate for machine

face recognition. The main advantage of local matching approach is its robust-

ness to pose variation and partial occlusion. However, the improved performance

of local matching approach requires reliable detection and selection of local facial

features, which are challenging issues by itself. For example, Feng et al. obtained

an error rate of 23% [17] for facial expression recognition with LBP features

from a manually selected set of fiducial points and a coarse-to-fine classification

scheme. The error rate rises to 30.1% when the feature points are automatically

located by a modified Active Appearance Model (AAM) [18]. The reliability of

the extraction of local features has a significant influence on the performance
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of the local matching methods. Unfortunately, treatment of local facial feature

detection is still rudimentary.

8.1.3 Feature Extraction for Face Recognition

Whether it’s global or local matching approach, discriminant feature analysis is

usually employed to extract discriminant features for the succeeding classifier.

In global matching, a single set of discriminant features is extracted from the

whole face region, whereas in local matching, an individual set of local features

is usually extracted from each individual component (or local patch). There are

two schemes to combine the extracted local features to reach a final decision:

(1) put all the local features into a single feature vector and then classify it by

a single classifier; (2) classify each set of local features by a base classifier and

then combine all the decisions from all base classifier to determine the final class

label of the input pattern. One can select either different algorithms or a single

general feature extraction algorithm for the discriminant analysis of global and

local matching approaches.

To test the effective of the proposed algorithms, we employed the global

matching scheme and applied our algorithms to identity and facial expression

recognition problems. One reason for me to select the global matching scheme

is that most feature extraction algorithms have been applied with the global

matching scheme. The most well known example could be eigenfaces [38, 76]and

fisherfaces [3, 16], which have been proved to be effective in experiments with large

databases. Many local matching approaches are extensions of their corresponding

global approaches. For instance, Pentland extended the eigenface to eigenmod-

ules, such as eigeneyes, eigennoses, and eigenmouths [58]. Another reason for

selecting global approach is that the implementation of global matching is rela-

tively simple and straight forward. It is obvious that one should select some well

known benchmark algorithms for comparative analysis. And should the selected

benchmark algorithms be simple to implement, the comparison between different

algorithms could be as fair as possible. This is because implementation details can

affect the results of a face recognition system significantly. Experimental results
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of the same algorithm on the same database could vary significantly due to dif-

ferent implementations. For example, different implementations of a PCA-based

face recognition algorithm were compared in [54]. This effect of implementation

details will also be experimentally demonstrated later in section 8.4.

8.2 Databases for Face Recognition

Four publicly available databases are used in our experiments to evaluate the per-

formance of different feature extraction algorithms: Yale [3], Yale B [25], ORL

(Olivetti Research Laboratory), and JAFFE (Japanese Female Facial Expres-

sion) databases [49]. Yale, Yale B, and ORL databases were used for identity

recognition. Yale and JAFFE were selected for facial expression recognition be-

cause these two databases pose the problem of recognizing expressions against

variations of different face appearance, illumination conditions, and face acces-

sories etc. with limited training sample size. For glass-wearing recognition, Yale

and ORL databases were used. So for each type of face recognition problem,

there are at least two different databases used to test the performance of various

algorithms.

8.2.1 Yale Face Database and Its Pre-processing

There are 165 images in Yale database, which is made up of 15 different per-

sons (14 males and 1 female) with 11 images for each person. The 11 images of

each person are labeled by facial expressions, lighting conditions or whether wear-

ing glasses or not: “normal”, “happy”, “sad”, “sleepy”, “surprise”, “wink”, “left

light”, “central light”, “right light”, “without glasses”, and “with glasses”. There

are 6 facial expressions for Yale database: “normal”, “happy”, “sad”, “sleepy”,

“surprise”, and “wink”. For those images not labeled by expression, their expres-

sions are usually “normal”. Images from Yale database are cropped manually to

eliminate most of the background and some part of hair and chin. The size of

images changes from 320 × 243 to 124 × 147. Figure 8.1 shows images of one

person from Yale face database.
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Figure 8.1: Sample images of one person from Yale face database. -

8.2.2 Yale B Face Database and Its Pre-processing

The Yale face database B consists of 5760 single light source images of 10 subjects

with varying pose and illuminations and is built to test the performance of iden-

tity recognition algorithms against illumination and pose variations. Images of

each individual were acquired under 576 viewing conditions: 64 different lighting

conditions in 9 poses (a frontal pose, five poses at 12◦, and three poses at 24◦

from the camera axis). Of the 64 images per person in each pose, 45 were used

in our experiments. In other words, our experiments used 4050 images from the

database. The images from each pose were divided into 4 subsets (12◦,25◦,50◦,

and 77◦) according to the angle that the light source makes with the camera’s

axis. Subset 1 (respectively, 2,3,4) contains 70 (respectively, 120,120,140) images

per pose. Figure 8.2 shows sample images with frontal illumination and frontal

pose of the 10 persons from the Yale B database. Figure 8.3 shows the 9 poses

of a person under frontal illumination. And Figure 8.4 shows 4 sample images of

a person under different illuminations with frontal pose. During the use of this

database, we have also found some ‘bad’ quality images, an example of which are

shown in Figure 8.5.
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Figure 8.2: Sample images with frontal illumination and frontal pose of

the 10 persons from the Yale face database B. -

Figure 8.3: Sample images of the 9 poses under frontal illumination of

a person from Yale face database B. -
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Figure 8.4: Sample images under 4 illuminations of frontal pose of a

person from Yale face database B. - a and e above each figure represents the

azimuth and elevation angle of the light source under which the respective photo

was taken.

Figure 8.5: A sample image of ‘bad’ quality from the Yale face database

B. - This image is corrupted by gray strips.

The original size of the images is 640 × 480. In the experiments, all images

were manually cropped to 270× 280 to include only the face region with as little

hair and background as possible. Each frontal pose image was aligned by an affine

transformation so that the eyes lie at a fixed distance apart (equal to four sevenths

of the cropped window width) and on an imaginary horizontal line. Furthermore,

the face was centered along the vertical direction so that two imaginary horizontal

lines passing through the eyes and mouth were equidistant from the center of the

cropped window. This alignment was performed in order to remove any bias

from the recognition results due to the association of a particular scale, position,

or orientation to a particular face. Only the frontal pose images were aligned

because the eyes’ and mouth coordinates information are given for the frontal

images only. The images in the other eight poses were only aligned by the two

eyes’ coordinates, since only the eyes’ coordinates are available. After cropping,

the images are down-sampled by 2 and have a resolution of 135× 140.

Besides spatial normalization, i.e., cropping and alignment, gray level normal-

ization is also performed using histogram equalization. Each face image is first
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divided equally into two: the left half and the right half. Histogram equalization

is then performed separately on every half face image. This separate histogram

equalization of left and right half image is used due to the symmetrical nature

of a face image under frontal illumination condition. The left and right half of a

face image would have the same gray level histogram under frontal illumination

condition, but this is not, in general, the case for lighting conditions that are not

frontal. Obviously, histogram equalization on the whole face image could not cor-

rect this problem. Figure 8.6, 8.7, and 8.8 show the sample images corresponding

to Figure 8.2, 8.3, and 8.4 after this histogram equalization scheme.

Figure 8.6: Histogram equalized sample images with frontal illumination

and frontal pose of the 10 persons from the Yale face database B. -

8.2.3 ORL Face Database and Its Pre-processing

ORL database consists of 40 different individuals with 10 images for each individ-

ual. The images from ORL database were also cropped from 112× 92 to 81× 72.

Some sample images from the ORL database are shown in Figure 8.9

8.2.4 JAFFE Face Database and Its Pre-processing

JAFFE database comprises images of 10 Japanese females. Each person has 7

facial expressions: “happy”, “sad”, “surprise”, “angry”, “disgust”, “fearful”, and

“neutral”. There are 3 or 4 images for each facial expression of each person.
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Figure 8.7: Histogram equalized sample images of the 9 poses under

frontal illumination of a person from Yale face database B. -

Figure 8.8: Histogram equalized sample images under 4 illuminations of

frontal pose of a person from Yale face database B. -

Figure 8.9: Some sample images from ORL face database. -
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The resolution of each image is 256 × 256. Some sample images are shown in

Figure 8.10. The JAFFE images are not cropped to remove background and hair

region, i.e., original images are used. We did this on purpose in order to check

the robustness of the algorithms in the adversity of background disturbance and

imperfect face alignment.

Figure 8.10: Sample images of one subject from JAFFE face database.

- The seven expressions from left to right are “happy”, “sad”, “surprise”, “angry”,

“disgust”, “fearful”, and “neutral”.

8.3 Experimental Setup for Training and Test-

ing

The identity recognition error rate is determined by “leaving-one-out” strategy

[3, 14]: to classify one particular image, all the rest of the images are pooled

together to form the training data set. Each image is used as the test image once

and the error rate is computed as the ratio of misclassified images over the total

number of images in the database.

To evaluate the performance of the different feature extraction algorithms for

facial expression recognition, a person independent cross validation strategy was

adopted. The images from the database is partitioned into groups by identities so

that each group consists of images from one person. The evaluation is carried out

by taking one identity out as the test set, and all other identities as the training

set each time. This process is repeated over all the identities so that each group

is used as the test set for one time. The recognition error rate is then averaged

over all groups.

This kind of “leave-one-person-out” cross validation was adopted in the exper-

iments so that the recognition of an expression is face appearance independent.
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In other words, the facial expression recognition system does not have any image

of the person from the test set, and therefore the classification of the expression

of the test image is not affected by the appearance of the face. This kind of

scheme for training and testing tries to evaluate objectively test the ability of a

classification system to recognize an expression.

There are 6 facial expressions for Yale database: “normal”, “happy”, “sad”,

“sleepy”, “surprise”, and “wink”. As mentioned before, there are 11 images

for each person in Yale database. They are labeled by facial expressions, lighting

conditions or whether wearing glasses or not: “normal”, “happy”, “sad”, “sleepy”,

“surprise”, “wink”, “left light”, “ center light”, “right light”, “without glasses”

and “with glasses”. For those images not labeled by expression, their expressions

are usually “normal”. Thus all images are used for facial expression recognition

for Yale database, instead of just a subset of the database.

For JAFFE database, there are 7 expressions: “happy”, “sad”, “surprise”,

“angry”, “disgust”, “fearful”, and “wink”. All the 7 expressions are included in

the experiments.

Like facial expression recognition, the “leave-one-person-out” cross validation

is adopted in the experiments for glasses-wearing recognition.

8.3.1 Classifiers

Because the objective here is to evaluate the ability of our algorithms to extract

discriminatory features in comparison with other peer feature extraction algo-

rithms, we selected a simple classifier such that the classification performance

is determined by the feature extraction algorithm as much as possible. If the

selected classifier is very powerful, good performance may still be achieved even

when the feature extraction algorithm does not do well. Due to this consideration,

we used the nearest-neighbor classifier with Euclidean distance as the similarity

metric in our experiments. Our proposed algorithms can be readily combined

with other more advanced classifiers such as neural networks or SVM to achieve

better classification performance.
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8.4 Experimental Results

8.4.1 Experimental Results on RMLD

To make comparative analysis, RMLD and six other feature extraction algorithms

have been implemented and compared:

• The first method uses PCA to reduce the high-dimensional images into

lower-dimensional ones, but no discriminant analysis is performed after-

wards.

• The second method is FLD. To solve the small sample size problem, PCA

is used first to reduce the sample dimension so that the within-class scatter

matrix SW is non-singular.

• The third method, Enhanced FLD Model (EFM) [47], is the same as FLD

except that EFM selects a different sub-eigenspace, which is more optimal

for subsequent FLD process. EFM aims to seek a proper number of PCA

features that balance between the need to keep enough spectral energy of

raw data and the requirement that the eigenvalues of within-class scatter

in the reduced PCA space are not too small, for the tiny eigenvalues are

associated with noise that make FLD over-fitting while exposed to new

data. Unfortunately, no quantitative criterion for measuring the adequacy

of energy and the smallness of eigenvalues of within-class scatter is currently

available and hence the cut-off point for the number of PCA components

to retain has to be obtained through trial and error. In our experiments,

the optimal number of PCA features is the one leads to the lowest error

rate, and is found through simple exhaustive search rather than analyzing

the spectrum of the eigenvalues as suggested in [47].

• The fourth method is RFLD. Like FLD, RFLD also employs PCA to reduce

the sample dimension so that SW is non-singular.

• The fifth method is RMLD which uses the full eigenspace extracted by PCA

as discussed before.
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• The sixth feature extraction method compared is Nonparametric Discrim-

inant Analysis (NDA) which is also free of the feature number limitation

and supposed to deal with multi-modal class distributions. As described

in Chapter 2, NDA is very similar to FLD except that it adopts a non-

parametric definition for SB. The implementation of NDA, as suggested in

[45], is more straightforward, and hence adopted in the experiments for the

comparative studies.

• The last method is Locality Preserving Projection (LPP), which is also

described in Chapter 2. LPP is not an extension of FLD. Instead, it is

an unsupervised learning algorithm that aims to find a linear subspace

that best preserves local structure and detects the essential face manifold

structure.

The lowest recognition error rates achieved by these methods are shown in

Table 8.1, 8.2, and 8.3 for identity recognition, facial expression recognition, and

glass-wearing recognition respectively. We can observe several interesting points

by comparing the experimental results of these different methods for the three

face recognition problems:

• The performance of PCA and LPP is generally much worse than other meth-

ods. This is not surprising since PCA and LPP are unsupervised learning

algorithms which do not utilize class information to extract discriminant

features.

• NDA achieves comparable performance as compared to FLD.

• RFLD improves the recognition performance of FLD by going through more

than one iteration to extract more features.

• The performance of RMLD is generally better than that of RFLD because

RMLD can extract discriminatory features from the null space F̄W .

• EFM generally achieves good results. However, it requires exhaustive search

of the optimal cut-off point for the number of PCA components. RMLD

can obtain comparable results without the exhaustive search for optimal

PCA components.
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Table 8.1: Comparative experiments for RMLD: identity recognition results

Yale Database ORL Database

Methods Lowest Error Number of Lowest Error Number of

Rate (%) Features Rate (%) Features

PCA 17.6 20 8.5 59

FLD 0.6 14 4.3 39

EFM 0 14 1.5 39

RFLD 0.6 14 2.0 41

RMLD 0 31 1.5 69

NDA 0.6 14 4.3 39

LPP 15.2 149 8.8 325

Table 8.2: Comparative experiments for RMLD: facial expression recognition

results

Yale Database JAFFE Database

Methods Lowest Error Number of Lowest Error Number of

Rate (%) Features Rate (%) Features

PCA 50.9 38 66.7 62

FLD 35.8 5 54.3 6

EFM 30.3 5 51.4 6

RFLD 32.7 32 50.5 9

RMLD 32.1 29 49.5 10

NDA 32.7 71 54.3 9

LPP 43.0 143 55.7 97
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Table 8.3: Comparative experiments for RMLD: glasses-wearing recognition re-

sults

Yale Database ORL Database

Methods Lowest Error Number of Lowest Error Number of

Rate (%) Features Rate (%) Features

PCA 29.7 16 39 57

FLD 17.0 1 16.3 1

EFM 13.3 1 15.3 1

RFLD 13.3 2 16.3 1

RMLD 14.0 3 16.3 1

NDA 16.4 16 16.3 1

LPP 23.6 96 27.8 35

Table 8.4 compares classification performance of RMLD on original and nor-

malized data for identity and facial expression recognition problems. Each face

image is represented as a matrix of intensity values and this matrix can be con-

catenated into a feature vector. The normalized is done to make the vector have

unit magnitude. This normalization reduces variations caused by different illu-

mination. The results in Table 8.4 show that implementation details could affect

the algorithm’s performance.

Table 8.4: Results of RMLD on original and normalized data. The number in

the bracket indicates the number of features corresponding to the respective error

rate.

Recognition Task Identity Recognition Expression Recognition
Method

Databases Yale ORL Yale Jaffe

Original 0 (31) 1.5 (69) 32.1 (29) 49.5 (10)
RMLD

Normalized 0 (21) 1.5 (49) 31.5 (27) 48.1 (8)
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Table 8.5: Comparative experiments for RBLD: identity recognition results

Yale Database ORL Database

Methods Lowest Error Number of Lowest Error Number of

Rate (%) Features Rate (%) Features

EFM 0 14 1.5 39

RMLD 0 31 1.5 69

RBLD 0 36 1.0 20

Table 8.6: Comparative experiments for RBLD: facial expression recognition re-

sults

Yale Database JAFFE Database

Methods Lowest Error Number of Lowest Error Number of

Rate (%) Features Rate (%) Features

EFM 30.3 5 51.4 6

RMLD 32.1 29 49.5 10

RBLD 30.9 26 49.0 8

8.4.2 Experimental Results on RBLD

Table 8.5 and 8.6 compare the recognition results of RBLD to RMLD on identity

and facial expression recognition problems. The results of EFM are also listed

in the two tables. The results show that RBLD improves the performance of

RMLD.

Table 8.7 compares classification performance of RBLD on original and nor-

malized data for identity and facial expression recognition problems. The results

in Table 8.7 again show that implementation details could affect algorithms’ per-

formance.

8.4.3 Experimental Results on RCBLD

8.4.3.1 Identity Recognition on Yale Face Database B

To evaluate the performance of RCBLD for identity recognition on Yale B database,

the classification performance of RCBLD in comparison with PCA, RMLD, and

79



8.4 Experimental Results

Table 8.7: Results of RBLD on original and normalized data. The number in the

bracket indicates the number of features corresponding to the respective error rate.

Recognition Task Identity Recognition Expression Recognition
Methods

Databases Yale ORL Yale Jaffe

Original 0 (14) 1.3 (38) 30.9 (26) 49.5 (8)
RBLD

Normalized 0 (21) 1.5 (21) 30.3 (7) 47.6 (8)

RBLD are listed in Table 8.8. The results in the table show that all the tested

feature extraction algorithms can achieve perfect recognition result on subset 2.

This suggests that subset 2 is rather easy a classification task, which matches the

fact that subset 2 is the most similar set to the training set. Obviously, subset

2 is too easy for the purpose of comparing the strength of different feature ex-

traction algorithms. The difference with respect to the training set increases for

Subset 3 and 4. Correct classification of these two sets are then more difficult.

From the table, we see that there are some difference between the performance

of different algorithms on subset 3, and the difference is significant on subset

4. This result suggests that the performance of PCA is significantly affected by

illumination variation between the training and test set. RMLD, RBLD, and

RCBLD are more robust to illumination variation. The result of RBLD is better

than RMLD, which confirms the effectiveness of the Bayesian criterion function.

From the table, we can also see that RCBLD outperforms all other algorithms,

which shows that RCBLD further improves the results of RMLD and RBLD by

integrating the strength of the Bayesian criterion and the cluster-based approach.

We can also observe that the lowest error rates on subset 4 is obtained with 277

features. This shows that recognition performance can be improved by extract-

ing more discriminating features. This is also shown in Figure 8.11 which plots

the classification error rates of RCBLD with respect to the number of features

extracted. The error rate decreases with more numbers of features and reaches

minimum at 277 features.

Besides the classification error rate, the cumulative matching score with the

number of features corresponding to the lowest error rate on subset 4 is also

plotted in Figure 8.12. From the cumulative matching score, we can see that
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RCBLD always achieves better accuracy with different ranks. It can achieve

perfect recognition with rank 2.

Table 8.8: Identity recognition results on Yale face database B

Subset 2 Subset 3 Subset 4

Methods Lowest Error Number of Lowest Error Number of Lowest Error Number of
Rate (%) Features Rate (%) Features Rate (%) Features

PCA 0 27 6.4 475 34.0 369

RFLD 0 5 0.4 9 6.2 10

RBLD 0 7 0.1 14 6.0 17

RCBLD 0 12 0 62 1.4 277

Note that the error rates reported in Table 8.8 are for illumination subsets of

all poses. Figure 8.13 and Table 8.9, on the other hand, show the break-down of

the results of RCBLD on Subset 4 for different poses.

Table 8.9: Identity recognition results of RCBLD on Yale face database B subset

4

Poses 1 2 3 4 5 6 7 8 9 2-6 7-9 all poses

Error rates 0 0 2.9 2.1 1.8 2.1 1.4 0 3.6 1.6 1.7 1.4

Discussion on Identity Recognition Experiments

The Yale face database B was constructed and first used by Georghiades, et al.

in [25]. We compare our results to those reported in [25]. Although the same

set of 4050 images out of the 5760 images were used in their experiments, the

experimental framework is different. Besides, the pre-processing methods of face

images are also not exactly the same. So the comparison cannot be completely

fair. In order to make the comparison as fair as possible, we will compare only the

results where the experimental setup is similar to ours. In their experiments, they

performed two sets of experiments against variation in illumination and pose. In
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the first set of experiments, extrapolation in illumination is tested, where only

the 450 frontal pose images (10 faces x 45 illuminations) are used for training

and testing. The lowest error rates are all 0 for the 3 subsets. In comparison

with our method, the lowest error rates are 0 for the first 2 subsets, but 1.4,

which is a bit higher than 0, for subset 4. However, our experiments used all the

9 poses, including 4050 images instead of 450 images. So a higher error rate is

expected with more poses and images included. If we decompose the results for

subset 4 into poses, the error rate for frontal pose on Subset 4 is also 0. In the

second set of experiments by Georghiades, all 9 poses are used to test recognition

performance under variation in pose and lighting. Their proposed method, called

Cones Approximation, achieves 2.9%, 7.4%, and 12.6% on Subset 4 for frontal

pose, 12◦(poses2, 3, 4, 5, 6), and 24◦(poses7, 8, 9), respectively. In comparison, the

error rates of RCBLD are 0%, 1.6%, and 1.7%, as shown in Table 8.9, which are

substantially better.

8.4.3.2 Facial Expression Recognition

For facial expression recognition, radial encoding [55] is applied on all face images

from Yale and JAFFE databases as a pre-processing technique for representing

the face image. We selected radial encoding prior to the feature extraction stage

to emulate the retina sampling in the human vision system. Another desirable

characteristic of radial encoding is that it under-samples face images. The en-

coded face images usually have a much lower dimension than the original images.

The mechanism of radial encoding is illustrated in Figure 8.14. It converts

the traditional discretization of an image in Euclidean coordinate system into

a discretization in polar coordinate system. In the experiments, each image is

divided into 30×10 regions (30 angular, 10 radial divisions). The average of gray

levels of one region is used to represent the gray value of that region.

Table 8.10 lists the lowest recognition error rates of RCBLD and several related

feature extraction algorithms. Experiments on both Yale and JAFFE databases

show that RCBLD achieves superior recognition results compared to other meth-

ods. The lowest recognition error rate of 26.7% and 37.1% for Yale and JAFFE
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Figure 8.14: Radial encoding of the face image. - The face image is divided

by a radial grid and the average of gray levels of each region is used to represent

the gray level of that region.

databases by RCBLD is obtained with 55 and 10 number of features, respec-

tively. This indicates again that classification performance can be improved by

extracting more features for discrimination by the recursive approach. The exper-

imental results obtained from the two databases on facial expression recognition

unanimously confirm the advantage of RCBLD.

Table 8.10: Facial expression recognition results: comparative experiments for

RCBLD.

Yale Database JAFFE Database

Methods Lowest Error Number of Lowest Error Number of
Rate (%) Features Rate (%) Features

PCA 50.9 38 66.7 62

RMLD 32.1 29 49.5 10

RCLD 30.4 31 45.2 88

RCBLD 26.7 55 37.1 10

Discussion on Facial Expression Recognition Experiments

We searched the literature for reported experiments that also used the same Yale

and JAFFE databases in a similar way to ours and compared them to our results
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here. Jerez et al. used a four layer neural net that combined a local receptive field

with a modified Hebbian rule and a modular network [33]. An error rate of 17.1%

is obtained. Although the error rate is considerably lower than our 26.7%, they

tested on a subset of Yale database: 14 faces and 4 expressions: neutral, happy,

sad and surprise. In our experiments, we used all the 15 faces and 6 expressions.

The JAFFE database has been a popular database for evaluating the per-

formance of facial expression recognition systems. But the way the database is

used is different for different researchers. There are mainly three ways. The first

way is to divide the whole database randomly into several equal-sized groups,

and then use cross validation [19, 70, 86]. The second way is to take one image

as the test set and all other images as the training set each time. It repeats

over all images and takes the average as the recognition accuracy. This way of

using JAFFE database is called “leave-one-image-out” [87]. The third way is to

divide the database into groups corresponding to identities and is called “leave-

one-person-out”. The “leave-one-person-out” strategy is used in our experiments

and its detail is described above. We adopted this strategy because it assesses

how system generalizes on new faces. To compare the results on JAFFE database

using the “leave-one-person-out” strategy, one needs to take note that only a sub-

set of the database was used in some results. For example, Lyons et al. [49, 50]

and Shinohara et al. [71] used only 9 faces and reported an error rate of 25%

and 30.6%, respectively. The face whose expressions are most difficult to tell is

excluded from the experiments. Feng et al. used the same subset of 9 faces, and

obtained an error rate of 23% [17] with LBP features from a manually selected set

of fiducial points and a coarse-to-fine classification scheme. The error rate rises

to 30.1% when the feature points are automatically located by a modified Active

Appearance Model (AAM) [18]. This shows that pre-processing of face images

by some manual assistance affects the performance of the facial expression recog-

nition system significantly. [87] and [24] used only 6 expressions, excluding the

“neutral” expression, and reported error rates of 22.95% and 37.22%, respectively.

In [87] manual selection of facial geometric points was required. Horikawa [30]

used the full database, i.e., 10 faces and 7 expressions, and reported an error rate

of 33.0%. But note that they manually take the center region of 200×200 pixels of

the face region and then resized it to 20×20 in the pre-processing stage. A linear
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normalization is also carried out to make the 20×20 pixel data have a zero mean

and unit standard deviation. In contrast, our method was applied directly on the

256 × 256 full face images with some background included. Besides the feature

extraction method, the performance of a facial expression recognition system is

also significantly affected by a careful design of the pre-processing technique, the

classifier and classification scheme, and the implementation detail. Considering

that only simple pre-processing technique and the simplest 1-nearest-neighbor

classifier is used in our facial expression recognition system, we think that the

performance of our method is comparable to the aforementioned recent results on

JAFFE database. The performance of our method can be boosted by carefully

designing the pre-processing stage (manual face cropping, alignment, normaliza-

tion, Gabor wavelet decomposition etc), more advanced classifiers (SVM, neural

net), and a more complicated classification scheme that takes into account face-

specific properties.
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Chapter 9

Application to Brain Computer

Interface

Since our proposed algorithms are developed as general-purpose feature extraction

algorithms, they are also applied to brain-computer interface problem, which will

be described in the following sections.

9.1 Introduction

A brain-computer interface (BCI), sometimes called a direct neural interface or

a brain-machine interface, is a direct communication pathway between a human

or animal brain (or brain cell culture) and an external device.

Began in the 1970s, BCI research has attracted a surge of interest in recent

years due to advances in computer technology and neuroscience [13, 44, 68, 79].

Since 2001 there have been four BCI competitions that aim to validate signal

processing and classification methods for BCI systems [4, 66]. Many people who

suffer from amyotrophic lateral sclerosis, cerebral palsy, spinal cord injury and

other diseases will disrupt the neuromuscular channels where the brain commu-

nicates with the external environment. The main focus for BCI research is to

fulfill the potential of BCI systems which is to provide assistance to people with

these disabilities.

BCI systems can be broadly classified into three types based on the placement

of the electrodes used to detect and measure neurons firing in the brain: invasive,
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partially-invasive, and non-invasive.

9.1.1 Invasive BCIs

Invasive techniques require recording electrodes to be implanted either in the

cerebral cortex (microelectrode arrays or neurotropic electrode) or on the cortical

surface (electrocorticography or ECoG). As they rest in the grey matter, invasive

devices have the characteristics such as stability of location, freedom from muscle

movement artifacts, higher signal-to-noise ratio, and better spatial resolution and

produce the highest quality signals of BCI devices. But as probes are implanted

into the brain, there are risks related to surgery. Furthermore, they are prone

to human immune responses, tissue encapsulation and the structural changes in

vivo, causing the signal to become weaker or even lost as the body reacts to a

foreign object in the brain [67, 69].

9.1.2 Partially-invasive BCIs

Partially invasive BCI devices are implanted inside the skull but rest outside the

brain rather than within the grey matter. They produce better resolution signals

than non-invasive BCIs (see below) where the bone tissue of the cranium deflects

and deforms signals and have a lower risk of forming scar-tissue in the brain than

fully-invasive BCIs [69, 72].

One partially-invasive technique is Electrocorticography (ECoG), which mea-

sures the electrical activity of the brain taken from electrodes that are embedded

in a thin plastic pad and placed above the cortex, beneath the dura mater. ECoG

technologies were first tried in humans in 2004 by Eric Leuthardt and Daniel

Moran from Washington University in St Louis. In a later trial, the researchers

enabled a teenage boy to play Space Invaders using his ECoG implant. This

research indicates that it is difficult to produce kinematic BCI devices with more

than one dimension of control using ECoG.
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9.1.3 Non-invasive BCIs

Non-invasive techniques detects the brain signals from the surface of the skull.

Although they are easy to wear, non-invasive implants produce low signal-to-

noise ratio and poor spatial resolution because the skull attenuates the signals,

dispersing and blurring the electromagnetic waves created by the neurons. Al-

though the waves can still be detected it is more difficult to determine the area

of the brain that created them or the actions of individual neurons. Extensive

training is usually required for non-invasive BCI systems.

Electroencephalography (EEG) is the most studied potential non-invasive in-

terface, mainly due to its fine temporal resolution, ease of use, portability and low

set-up cost. It measures electrical potentials on the scalp and generates a record

of the electrical activity of the brain. The electrical activity measured may be

from the firing of the neurons of the brain due to the subject performing a task

or thinking of performing a task (mental task) [13]. With this thought in mind,

the EEG can be used in a number of systems and devices with the intention to

provide motor or sensory function.

The theoretical basis for BCI devices such as EEG and ECoG is dependent

on how well we are able to detect the neural signals and translate these signals

into something we can understand. Firstly, one has to realize that every ’action’

results in a pattern in the neural signal and this pattern have to be recognized

by the BCI system. It is only after this pattern is recognized that it can be used

as a control signal for external devices including computers, robotic arms, and

other complex machines. EEG and ECoG signals contain transient, time-domain

signals phase-locked to events such as the P300 and motor potentials. These field

potentials contain many frequency-domain signals such as the µ rhythm and they

can help in classifying the type of task being performed by a subject [72].

In 1997, Pfurtscheller et al. demonstrated the feasibility of using EEG to

differentiate between imagination of left and right hand movement [59]. Recently,

motor imagery has become the focus of BCI research. In the following, a data

set on motor imagery is also selected for evaluation of the performance of our

algorithms.
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9.2 Experiments

To detect and translate the brain signal into something we can understand, a typ-

ical BCI system needs to include four stages: signal acquisition, pre-processing,

feature extraction, and classification.

9.2.1 Experimental Data

The data selected to evaluate the applicability of our feature extraction algorithms

for BCI applications is data set I from BCI competition III, ’Motor imagery in

ECoG recordings, session-to-session transfer’ [78]. During the BCI experiment,

a subject had to perform imagined movements of either left small finger or the

tongue. The time series of the electrical brain activity was picked up during

these trials using a 8 × 8 ECoG platinum electrode grid which was placed on

the contralateral (right) motor cortex. Every trial was recorded for 3 seconds

duration with a sampling rate of 1000Hz. A detailed description of the data

collection can be found in [43]. Training data set and test data set were recorded

with about 1 week in between. There are 278 trials in training set, and 100 trials

in test set.

The measured brain signals are usually high-dimensional and the activities

specific to the tasks (left or right finger movement) are usually overwhelmed by

spontaneous EEG and other non-task activities. Proper method to extract the

important information for recognition is therefore necessary and crucial for good

performance. In the following two different approaches for classifying the brain

signals are presented: The first approach, called channel-based approach, analyzes

individual channels separately. Pre-processing and feature extraction methods

discussed preciously are applied on each channel separately. The recognition of

the brain activities is by the use of a single channel; Another approach determines

the type of mental activities based on discriminatory information extracted from

all channels. It needs to pre-filter (or select) useful time-frequency components

from all channels of the signal and then concatenate all the selected components,

after which feature extraction is applied on the concatenated components. The

details of the two approaches and their experimental results are described below.
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9.2.2 Classification Based on Single Channel

Since only a small part of the brain cortex are associated with task, signals from

only a small number of channels are actually useful for recognition. The problem

is then to identify the useful channels and use only them for the recognition task.

The channel-based approach classifies signals based on each individual channel

and selects the one that gives rise to the best recognition result.

9.2.2.1 Pre-processing and Feature Extraction

Low-pass-filtering and down-sampling It is believed that important infor-

mation about cognitive activity of the brain mainly reside in these frequency

bands: θ(4 − 8Hz),α(8 − 12Hz), β(12 − 16Hz), and γ(30 − 44Hz) [26]. The

range of the frequency bands are in the range of 0 to 50Hz. However, the orig-

inal sampling frequency is 1000Hz, which is more than enough for interpreting

the brain signal. Low-pass-filtering (LPF) is employed to reduce the sampling

rate and also remove high-frequency noise. Therefore the original signal is low

pass filtered at 50Hz and down-sampled at 100Hz. Figure 9.1 shows the LPF

filter used prior to the down-sampling. After down-sampling, the power spectral

density (PSD) is estimated. An example of the down-sampled signal in time and

frequency domain is shown in Figure 9.2.
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Figure 9.1: Low pass filter used before down-sampling. - Left:The impulse

response of the LPF filter; Right: The frequency response of LPF filter.
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Figure 9.2: One sample of the signal from dataset I of BCI competition

III after down-sampling - Left: the signal in time domain; Right: the power

spectral density of the signal.

Normalization After down-sampling, three different methods are tried to re-

duce the difference between different samples: normalization of each channel,

normalization of each trial, common average referencing (CAR). The purpose of

normalization of each channel is to reduce difference between different channels.

Each channel is normalized to be zero mean and unit variance. Normalization

of each trial does the same normalization, i.e., zero mean and unit variance, but

on each trial instead of each channel. In CAR, the mean of all channels is sub-

tracted from each channel. These normalization methods are tried on both time

and frequency representations of the signals. Experimental results were obtained

with both time domain and frequency domain.

Feature extraction In the first part, RMLD is selected as the feature ex-

traction method for all pre-processed data both in time and frequency domain:

down-sampled data, channel-normalized data, trial-normalized data, and CAR

data. The pre-processing method that gives the best result is then selected for

further experiments. RMLD is selected for its relative simplicity compared to

RCBLD and superiority in performance compared to FLD. As for the application

on face recognition, the simple nearest-neighbor classifier with Euclidean norm

as the similarity measurement is employed.

It will be presented in the following that channel-normalized data in the fre-

quency domain results in the best classification performance with RMLD. There-

fore, the channel-normalized data in the frequency domain is selected in the
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subsequent experiment to evaluate the performance of RCBLD in comparison to

RMLD. The experimental results are shown below.

9.2.2.2 Experimental Results

For each pre-processed data in time and frequency representations, the classifi-

cation accuracy is obtained based on each individual channels. That is to say,

for each channel, the classification system is trained with signals of that channel,

and classification accuracy is obtained for test samples of the same channel. This

training and testing are repeated over all channels and the channel with low-

est classification error rate is selected. The lowest classification error rates with

different pre-processing techniques are shown in Table 9.1. In the table, the cor-

responding error rates of FLD are also given for comparison. It can be observed

that lowest classification error rate of FLD is 28%, while the lowest error rate of

RMLD is 14% by extracting one more feature. The improvement by RMLD over

FLD is significant.

Table 9.1: Lowest classification error rates (%) for data with different normaliza-

tion methods in both time and frequency domain.

Time Domain

down-sampled channel normalized trial normalized CAR

FLD 36 38 35 38

RMLD 31 31 33 31

Channel 14 14 14 4

Frequency Domain

down-sampled channel normalized trial normalized CAR

FLD 29 28 19 32

RMLD 18 14 19 19

Channel 29 40 38 21

95



9.2 Experiments

Comparing the classification error rates for time domain and frequency do-

main, one can observe that the error rates for frequency domain are significantly

lower than those for time domain for all the pre-processed data. This means clas-

sification of motor imagery ECoG signals is better dealt with in frequency domain

rather than in time domain. It seems that frequency description is more revealing

for the characteristics of motor imagery ECoG signals. Comparing results for dif-

ferent pre-processed data in frequency domain, channel-normalized data results

in the lowest error rate. Therefore, it is selected in subsequent experiment to test

the performance of RCBLD in comparison to RMLD.

The experimental results of RCBLD as well as FLD and RMLD are shown in

Table 9.2. From the table, one can see that RCBLD outperforms RMLD. The

results for RBLD is not listed here because RBLD is actually the same as RMLD

for 2-class problems. The experimental results here again confirm the advantage

of RCBLD over FLD and RMLD.

Table 9.2: Lowest classification error rates (%) based on channel-normalized data

in frequency domain.

FLD RMLD RCBLD

Lowest error rate (%) 28 14 12

Channel 40 40 38

To further improve the recognition performance, another classifier is applied in

place of nearest-neighbor classifier on the best channel with best pre-processing

method, that is, channel 38 after channel-normalization in frequency domain.

One major shortcoming of nearest-neighbor classifier is its susceptibility to noisy

attributes and noisy instances. One remedy to this is to take a majority vote over

the k nearest neighbors, and the resulting classifier is termed k-NN (k-nearest-

neighbor) classifier. However, one major issue of k-NN classifier is the selection

of k. One solution is to weight the vote of each instance by the distance of that

instance to the test sample. The classifier can be defined as follows

L(x) = max
i

{
∑
xj∈i

f(d(x, xj))} (9.1)
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where L(x) is the assigned class label of test sample x, and f(d) is the weighted

vote from sample xj, which is a decreasing function of distance between two

instances x and xj, e.g., f(d) = 1/d2 or f(d) = exp(−d). Note that all samples

from the ith class are used in the summation for determining the class label of

the test sample. This way there is no need to select a suitable k , as for the k-NN

classifier. With f(d) = 1/d2 adopted as the weight function, the lowest error

rates are further reduced as shown in Table 9.3.

Table 9.3: Lowest classification error rates (%) obtained by nearest-neighbor

classifier and weighted k-NN classifier based on channel 38 (channel-normalization

& frequency domain).

classifier RCBLD

nearest-neighbor 12

weighted k-NN 10

9.2.3 Classification Based on All Channels

One drawback of the channel-based approach is that exhaustive search is required

to find the channel and the pre-processing method that give rise to the best

performance. In real-world applications one does not know which channel and

which pre-processing method to choose in order to get the best performance

possible. One can solve this problem by collecting a validation set and use it for

the selection of best channels and pre-processing methods. Another approach is

to treat all the channels as a single entity, which does not require beforehand

channel-selection. In the following a method based on all channels is presented.

The new method first selects “useful” time and frequency components from all the

channels, using some objective measurements. The selection process can be done

manually or automatically. After the selection process, discriminant features are

extracted from the set of “useful” time-frequency components selected from all

the channels. Finally, classification is performed using the extracted features.
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9.2.3.1 Spectrogram

To select useful time-frequency components, the spectrogram for each channel

of each sample is first estimated by short time Fourier transform (STFT)). A

spectrogram is 2D PSD map P (f, t) that decomposes a temporal signal along

time and frequency axes. The window size used in STFT is 0.5s with 0.25s

overlap. As a result, the number of time and frequency components are:

NT = (3s− 0.25s)/(0.5s− 0.25s) = 11

NF = (0.5s× 100Hz)/2 + 1 = 26

The spectrogram of one channel is visualized below in Figure 9.3. It is also

shown in Figure 9.4 in dB scale. The two sub-figures on the left show two training

samples, while the other two sub-figures on the right show two test samples. In

the figure, color is used to indicate the magnitude of the spectrogram. Cold colors

like blue indicate small values while warm colors like red indicate big values. The

colorbar used for Figure 9.3 is shown in Figure 9.5.

9.2.3.2 Quantitative Measure of Discrimination Power

Before one can select the time-frequency component from the spectrogram of

a signal, the discrimination power of the time-frequency component should be

measured so that components with high discrimination power could be selected.

One quantitative measure of the discrimination power is the Fisher ratio, defined

as

r =
tr{SB}
tr{SW}

(9.2)

Fisher-ratio map describes the discrimination power of each time-frequency

component of a signal. The Fisher-ratio maps for the training and test data

are computed respectively. The Fisher-ratio maps of one channel is visualized

in Figure 9.6 and in Figure 9.7 in dB scale. The Fisher-ratio map on the right

is computed on the test samples. It is shown in the figure just for comparison

to that for training samples. Only the Fisher-ratio map for the training samples

are used for the selection of time-frequency in the experiments. One can see that

frequency components around 10Hz are more discriminative in general.
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Figure 9.3: Spectrogram of a Channel -
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Figure 9.4: Spectrogram of a Channel in dB scale -

Figure 9.5: Colorbar used for the spectrum as shown in Figure 9.3 -
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Figure 9.6: Fisher-Ratio Map of a Channel. - Left: Fisher-ratio map com-

puted on the training data; Right: Fisher-ratio map computed on the test data.
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Figure 9.7: Fisher-Ratio Map of a Channel in dB Scale. - Left: Fisher-

ratio map computed on the training data; Right: Fisher-ratio map computed on

the test data.

101



9.2 Experiments

The histogram of the Fisher-ratios of time-frequency components from all

channels and all data samples are plotted in Figure 9.8. One can see from the

figure that most of time-frequency components have very small discrimination

power, and are not related to the task. Only a small portion of the time-frequency

component should be selected for the classification task.
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0
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histogram of Fisher ratio for all channels and time instances of training samples

Fisher ratio

Figure 9.8: Histogram of Fisher-ratio values of all time-frequency com-

ponents from all channels and all data samples. -

9.2.3.3 Time-frequency Component Selection from All Channels

Time-frequency components are selected in blocks which contains high discrim-

ination power. The time-frequency components are selected independently for

each individual channel. Therefore, each channel has its very own selected time-

frequency blocks. Some channel may have a block with size 0 × 0. This means

that no component of the channel is considered to be useful for classification and

therefore this channel is dismissed from the classification task.

One can select the time-frequency blocks manually. Another way is to find

proper time-frequency blocks automatically. The following algorithm is devised

to automatically find the time-frequency blocks:

1. Threshold the Fisher-ratio map by the median value

2. Find connected objects. If the area of an object is small, discard it.

3. Find bounding box of each object. Check the 4 sides of the bounding box, if

most of parts of one side are below the threshold, remove that side. Repeat
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9.2 Experiments

this process until no side needs to be removed or the area of the box is too

small.

The time-frequency blocks selected automatically by the above algorithm for

training data are shown in Figure 9.9, 9.10, 9.11, and 9.12. For visual comparison,

the time-frequency blocks selected by the same process for test samples are also

shown in Figure 9.13, 9.14, 9.15, and 9.16. The location of the blocks should be

similar for training and test samples if good classification performance is expected.

2.5

Channel 2

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50
Channel 3

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50
Channel 4

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

2.5

Channel 6

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50
Channel 7

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50
Channel 8

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

2.5

Channel 10

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50
Channel 11

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50
Channel 12

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

2.5

Channel 14

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50
Channel 15

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50
Channel 16

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

Figure 9.9: Automatically selected time-frequency blocks for channels

1-16 for training samples -

9.2.3.4 Experimental Results

The same feature extraction methods and classifiers, as in the experiments based

on single channels, are applied on the set of selected time-frequency components.

The lowest classification error rates of RMLD on data by manual and automatic

selection of time-frequency blocks with different pre-processing techniques are

shown in Table 9.4.
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Figure 9.10: Automatically selected time-frequency blocks for channels

17-32 for training samples -
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Figure 9.11: Automatically selected time-frequency blocks for channels

33-48 for training samples -
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Figure 9.12: Automatically selected time-frequency blocks for channels

49-64 for training samples -

2.5

Channel 2

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50
Channel 3

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50
Channel 4

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

2.5

Channel 6

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50
Channel 7

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50
Channel 8

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

2.5

Channel 10

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50
Channel 11

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50
Channel 12

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

2.5

Channel 14

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50
Channel 15

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50
Channel 16

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

Figure 9.13: Automatically selected time-frequency blocks for channels

1-16 for test samples -
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Figure 9.14: Automatically selected time-frequency blocks for channels

17-32 for test samples -
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Figure 9.15: Automatically selected time-frequency blocks for channels

33-48 for test samples -
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Figure 9.16: Automatically selected time-frequency blocks for channels

49-64 for test samples -

Table 9.4: Lowest classification error rates (%) of RMLD on data obtained

by manual and automatic selection time-frequency components for different pre-

processing methods.

Block Selection down-sampled channel normalized trial normalized CAR

manual 30 12 19 30

auto 35 12 22 26

Comparing the error rates by manual and automatic selection, one can see

that their performances are comparable with the lowest error rates being 12% for

both selection methods. This indicates that the automatic process does well in

finding good time-frequency blocks.

Another interesting fact one can observe from the comparison is that the

pre-processing method that gives rise to the best classification performance is

normalization of channel for both block-selection methods. This observation also

conforms with results from the channel-based approach.
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9.2 Experiments

To compare the performance of RCBLD and RMLD, channel-normalization

and automatic time-frequency selection are selected as the pre-processing method

and the experimental results are list in Table 9.5. From the table, one can see

that RCBLD achieves better results than RMLD with either nearest-neighbor or

weighted k-NN classifier.

Table 9.5: Lowest classification error rates (%) on data pre-processed by channel-

normalization and automatic time-frequency selection.

classifier RMLD RCBLD

nearest-neighbor 12 10

weighted k-NN 12 10

Comparing the lowest error rate of the channel-based approach and the au-

tomatic time-frequency selection approach, one can see that the time-frequency

selection from all channels approach achieves the same level of performance on

channel-normalized data. However, the channel-based approach requires the

knowledge of the usefulness of individual channels beforehand. The advantage of

time-frequency selection approach is that it can be done automatically.

The competition results on data set I is available at [78]. Compared to others’

results, the lowest error rate of our system are nearly the same as the winner’s

9% error rate.
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Chapter 10

Conclusion

Automatic (machine) recognition of patterns is an important task in a wide vari-

ety of real-world applications. The designing of a satisfactory pattern recognition

system usually requires a good feature extraction algorithm, which plays a cru-

cial role for the performance the pattern recognition system. It is often problem

dependent and requires specialized knowledge of the specific problem itself to de-

vise a competent feature extraction algorithm and the development of a general

procedure for effective feature extraction always remains an interesting and also

challenging problem.

This dissertation focuses on one of the most important problems in the re-

search field of pattern recognition: discriminant feature analysis for pattern recog-

nition. The objective of this thesis is to develop general-purpose feature extrac-

tion tools that could be applied to a wide variety of pattern recognition problems.

The algorithmic development is presented in Part I of this thesis. Before

introducing the proposed algorithms for discriminant feature extraction, a number

of popular feature extraction algorithms are briefly reviewed in Chapter 2. Among

the various feature extraction algorithms, FLD has probably become one of the

most popular feature extraction algorithms due to its relevance to classification:

it finds features that maximize the between-class scatter and meanwhile minimize

within-class scatter. However, FLD also suffers from several major limitations.

The limitations or shortcomings of FLD that are analyzed and identified in the

chapters of Part I are listed below:
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• The total number of features that can be extracted by FLD is at most C−1,

where C is the number of classes.

• Discriminant information from FW , the null space of SW , cannot be ex-

ploited by FLD, as FLD requires SW to be non-singular in the computation

of its solution.

• FLD implicitly assumes uni-modal Gaussian distributions for the underlying

class. This is due to its parametric formulation for the between-class and

within-class scatter matrices. The assumption is often too strong to fit the

real-world applications.

• Although FLD extracts discriminating information by maximizing the between-

class scatter and minimizing the within-class scatter at the same time, the

criterion function it optimizes is not directly related to the classification

performance. The optimization of its criterion function thus does not nec-

essarily mean a good classification performance.

In Chapter 3, RMLD is proposed to use a recursive strategy and the modified

criterion function of MFLD to eliminate the feature number constraint and ex-

tract discriminant information from both the principal space of SW and the null

space of SW . The recursive method used by RMLD is, however, computationally

more efficient than the one used by RFLD. RMLD avoids the re-computation of

SB and SW by projecting them into the null space W k and extracts C−1 features

instead of only one feature per iteration.

In Chapter 4, RCLD is proposed to handle complex class distributions that

cannot be well approximated as uni-modal Gaussian distributions. Due to the

parametric definition of SB and SW , FLD implicitly assumes a uni-modal Gaus-

sian distribution for the underlying classes. Thus it may not work well when the

underlying class distributions cannot be well approximated by uni-modal Gaus-

sian distributions. To solve this problem, RCLD employs a cluster-based ap-

proach to approximate complex class distributions as unions of uni-modal Gaus-

sian distributions. A fuzzy-clustering based RCLD works well no matter how well

the clusters are formed.
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The issue of selecting proper number of clusters and degree of fuzziness of

clusters for each class is essential for achieving good performance with RCBLD.

We proposed a way of determining cluster numbers using SOM. The selection of

degree of fuzziness for fuzzy clustering is problem dependent and has been carried

out by trial and error in our experiments.

In Chapter 5, RBLD is proposed to relate the criterion function to the clas-

sification performance. The Bayesian criterion function of RBLD is derived as

an approximation of one of the two coherent error bounds that confine the Bayes

error. The optimization of the criterion function would make the two coherent

error bands small and as a result the classification error small. The solution to

the approximated Bayesian criterion function is obtained without resorting to

some gradient-based method.

In Chapter 6, the ideas of RMLD, RCLD, and RBLD are integrated and

the resulted algorithm, termed RCBLD, combines the different strength of the

Bayesian criterion function of RBLD, the cluster-based idea of RCLD, and the

recursive procedure of RFLD. It has following main advantages over FLD and its

variations:

• It has a Bayesian criterion function in the sense that the Bayes error is

confined by a coherent pair of error bounds and the maximization of the

criterion function is equivalent to minimization of one of the error bounds.

Compared to FLD, RCBLD’s criterion function is not dominated by far

apart classes. Instead, it pays more attention to close classes.

• The solution of the Bayesian criterion function can be easily obtained with-

out resorting to gradient-based methods.

• Capability of handling complex class distributions as unions of Gaussian

distributions.

• Use of fuzzy clustering based definition of SW which makes the algorithm

performs well no matter how well clusters are formed.

• Elimination of feature number constraint by adopting a recursive procedure.

111



• Less computational expensive than RFLD by calculating C ′ − 1 features at

each iteration instead of only one, where C ′ corresponds to the total number

of clusters. Computational cost is also reduced by use of the null space W k

to avoid the re-computation of SB and SW , as required by RFLD.

• Full utilization of all discriminant information available by replacing within-

class scatter matrix by the total scatter matrix in the criterion function.

In spite of the strong assumptions of equal a priori probability and equal

covariances, RCBLD may still be able to obtain good results due to two reasons:

(1) the summation in the criterion function may cancel out the adverse effect

of each individual deviation from the assumptions; (2) the number of samples

available for training is usually quite limited and as a result simple models with

less parameters are usually favored.

Part II of this thesis presents the experimental work that assesses the per-

formance of the proposed algorithms. Since the new algorithms are designed as

general feature extraction tools, they have been applied to various pattern clas-

sification problems from UCI Machine Learning Repository in Chapter 7, face

recognition problems in Chapter 8, and BCI applications in Chapter 9.

In Chapter 7, 7 multi-class databases with sizes ranging from about 100 sam-

ples to more than 5,000 samples are selected to test the performance of the pro-

posed algorithms in dealing with different pattern recognition problems with dif-

ferent training sample size.

To test the algorithms’ ability in classifying more challenging pattern recog-

nition problems, different face recognition tasks including identity recognition,

facial expression recognition, and glass-wearing recognition have been experi-

mented in Chapter 8. Although only simple pre-processing techniques and sim-

ple classifiers like nearest neighbor classifier are used in our system, our proposed

algorithms demonstrate classification performance comparable to some recently

reported results.

To further test the algorithms’ ability as a general-purpose feature extrac-

tion methods, they are applied to BCI applications in Chapter 9. Two different

approaches have been tried: one based on single channel; the other based on all

channels. The approach based on single channel requires the selection of channels
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beforehand. It can also be used to identify the region of cortex that is related to

the mental activity. The approach based on automatic selection of time-frequency

components from all channels does not require any expertise or user intervention.

The experimental results have verified the effectiveness of the new algorithms.

It is my strong belief that improvement can also be expected for other pattern

recognition problems such as iris recognition, hand gesture recognition, etc.

One price paid for the superior performance of RCBLD is that it is compu-

tationally more intensive. However, the training stage of RCBLD is done off-line

and therefore is not critical for some applications.

There are several directions that the proposed RCBLD method can be ex-

tended:

• The method can be extended to be nonlinear by adopting a kernel approach,

or by a hybrid network where the first hidden layer implements the non-

linear transformation and the second hidden layer implements the RCBLD

method.

• Chernoff distance can be used instead of Mahalanobis distance for the cri-

terion function such that better results may be achieved for heteroscedastic

normal distributions.

• Classifier other than the nearest-neighbor classifier can be used with the

proposed method, which is likely to improve the classification performance.
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