8 research outputs found

    Human face recognition under degraded conditions

    Get PDF
    Comparative studies on the state of the art feature extraction and classification techniques for human face recognition under low resolution problem, are proposed in this work. Also, the effect of applying resolution enhancement, using interpolation techniques, is evaluated. A gradient-based illumination insensitive preprocessing technique is proposed using the ratio between the gradient magnitude and the current intensity level of image which is insensitive against severe level of lighting effect. Also, a combination of multi-scale Weber analysis and enhanced DD-DT-CWT is demonstrated to have a noticeable stability versus illumination variation. Moreover, utilization of the illumination insensitive image descriptors on the preprocessed image leads to further robustness against lighting effect. The proposed block-based face analysis decreases the effect of occlusion by devoting different weights to the image subblocks, according to their discrimination power, in the score or decision level fusion. In addition, a hierarchical structure of global and block-based techniques is proposed to improve the recognition accuracy when different image degraded conditions occur. Complementary performance of global and local techniques leads to considerable improvement in the face recognition accuracy. Effectiveness of the proposed algorithms are evaluated on Extended Yale B, AR, CMU Multi-PIE, LFW, FERET and FRGC databases with large number of images under different degradation conditions. The experimental results show an improved performance under poor illumination, facial expression and, occluded images

    Face Recognition Using Ensemble String Matching

    Full text link

    Face Recognition: A Comparative Approach from Traditional to Recent Trends

    Get PDF
    Face recognition, an important biometric method used extensively by researchers, has become more popular recently due to development of mobile applications and frequent usages of facial images in social media. A major development is attained in facial recognition methods due to the emergence of deep learning methods. As a result, the performance of face recognition systems reached a matured state. The objectives of this research are to improve the accuracy rate of both traditional and modern methods of face recognition system under illumination variation by applying various preprocessing techniques. In the proposed face recognition approach, various preprocessing methods like SQI, HE, LTISN, GIC and DoG are applied to the Local Binary Pattern (LBP) feature extraction method and by using the Weighted Entropy based method to fuse the output of classifiers on FERET database, we have shown improvement in recognition accuracy of as high as 88.2 % can be obtained after applying DoG . In a recently used approach, deep CNN model is suggested. The Experiments are conducted in Extended Yale B and FERET Database. The suggested model provides good accuracy rates. To improve the accuracy rates further, preprocessing methods like SQI, HE, LTISN, GIC and DoG are applied to both the models. As a result, higher accuracy rates are achieved in deep CNN model both in Extended Yale B Database and FERET Database. Extended Yale B Database provides the highest accuracy rate of 99.8% after the application of SQI and an accuracy rate of 99.7% is achieved by applying HE

    Human Face Recognition

    Get PDF
    Face recognition, as the main biometric used by human beings, has become more popular for the last twenty years. Automatic recognition of human faces has many commercial and security applications in identity validation and recognition and has become one of the hottest topics in the area of image processing and pattern recognition since 1990. Availability of feasible technologies as well as the increasing request for reliable security systems in today’s world has been a motivation for many researchers to develop new methods for face recognition. In automatic face recognition we desire to either identify or verify one or more persons in still or video images of a scene by means of a stored database of faces. One of the important features of face recognition is its non-intrusive and non-contact property that distinguishes it from other biometrics like iris or finger print recognition that require subjects’ participation. During the last two decades several face recognition algorithms and systems have been proposed and some major advances have been achieved. As a result, the performance of face recognition systems under controlled conditions has now reached a satisfactory level. These systems, however, face some challenges in environments with variations in illumination, pose, expression, etc. The objective of this research is designing a reliable automated face recognition system which is robust under varying conditions of noise level, illumination and occlusion. A new method for illumination invariant feature extraction based on the illumination-reflectance model is proposed which is computationally efficient and does not require any prior information about the face model or illumination. A weighted voting scheme is also proposed to enhance the performance under illumination variations and also cancel occlusions. The proposed method uses mutual information and entropy of the images to generate different weights for a group of ensemble classifiers based on the input image quality. The method yields outstanding results by reducing the effect of both illumination and occlusion variations in the input face images

    TOPOLOGICAL PROPERTIES OF A NETWORK OF SPIKING NEURONS IN FACE IMAGE RECOGNITION

    Get PDF
    We introduce a novel system for recognition of partially occluded and rotated images. The system is based on a hierarchical network of integrate-and-fire spiking neurons with random synaptic connections and a novel organization process. The network generates integrated output sequences that are used for image classification. The network performed satisfactorily given appropriate topology, i.e. the number of neurons and synaptic connections, which corresponded to the size of input images. Comparison of Synaptic Plasticity Activity Rule (SAPR) and Spike Timing Dependant Plasticity (STDP) rules, used to update connections between the neurons, indicated that the SAPR gave better results and thus was used throughout. Test results showed that the network performed better than Support Vector Machines. We also introduced a stopping criterion based on entropy, which significantly shortened the iterative process while only slightly affecting classification performance

    Analysis of the image moments sensitivity for the application in pattern recognition problems

    Get PDF
    Momenti slike su numerički deskriptori koji sadrže informaciju o svojstvima invarijantnim na translaciju, rotaciju, promjenu skale i neke oblike distorzije, a njihova analiza je jedna od metoda koje se često koriste pri analizi slika i raspoznavanju uzoraka. U okviru ove radnje razvijeni su algoritmi za računanje geometrijskih, Legendreovih, Zernikeovih, Fourier – Mellinovih te tri tipa Fourier – Jacobijevih momenata, kao i iz njih definiranih invarijanti slike u programskom jeziku MatLab uz rješavanje inverznog problema rekonstrukcije početnog ulaza. Za sve tipove momenata osim najjednostavnijih geometrijskih definirani su vektori osjetljivosti na rotaciju i promjenu skale čije su komponente oni članovi skupa koji nose značajnije informacije o ulaznoj slici. Primjenom novih deskriptora na klasifikaciju rukom pisanih slova i identifikacijskih fotografija osoba pokazano je da je relevantna informacija o ulazu na taj način sačuvana, a njihov je izračun znatno brži i jednostavniji uz zadržanu sposobnost jednoznačnog raspoznavanja uzoraka. Korištenjem momenata slike i vektora osjetljivosti analizirani su znakovi s dvaju glagoljskih spomenika te utvrđeno postojanje mješavine znakova trokutastog i okruglog modela glagoljice. Metoda je primijenjena i na klasifikaciju tragova puzanja ličinki mutanata vinske mušice za potrebe proučavanja odgovora živčanog sustava na različite podražaje.Image moments are numerical descriptors invariant to translation, rotation, change of scale and some types of image distortion and their analysis is one of the most often used methods in image processing and pattern recognition. In this work, algorithms for calculation of geometric, Legendre, Zernike, Fourier – Mellin and three types of Fourier – Jacobi moments were implemented in MatLab. Hu's, affine and blur invariants were also obtained as well as inverse problem of input image reconstruction solved. For each type of image moments exept geometric ones the set of sensitivity vectors for rotation and scale were defined. Their components are those image moments which describe more important features of the input image. These new descriptors were applied for classification of handwritten letters and identifying personal photos. It was shown that the process of such descriptor calculation is much faster and simpler while preserving all the relevant information about input image. Using this method, the signs carved in two glagolitic inscriptions were analyzed and the mixture of triangular and round glagolitic letters found. The method was also applied to classification of the mutant fruit fly larvae crawling trails which is needed in studying responses of the nervous system to different stimuli

    Analysis of the image moments sensitivity for the application in pattern recognition problems

    Get PDF
    Momenti slike su numerički deskriptori koji sadrže informaciju o svojstvima invarijantnim na translaciju, rotaciju, promjenu skale i neke oblike distorzije, a njihova analiza je jedna od metoda koje se često koriste pri analizi slika i raspoznavanju uzoraka. U okviru ove radnje razvijeni su algoritmi za računanje geometrijskih, Legendreovih, Zernikeovih, Fourier – Mellinovih te tri tipa Fourier – Jacobijevih momenata, kao i iz njih definiranih invarijanti slike u programskom jeziku MatLab uz rješavanje inverznog problema rekonstrukcije početnog ulaza. Za sve tipove momenata osim najjednostavnijih geometrijskih definirani su vektori osjetljivosti na rotaciju i promjenu skale čije su komponente oni članovi skupa koji nose značajnije informacije o ulaznoj slici. Primjenom novih deskriptora na klasifikaciju rukom pisanih slova i identifikacijskih fotografija osoba pokazano je da je relevantna informacija o ulazu na taj način sačuvana, a njihov je izračun znatno brži i jednostavniji uz zadržanu sposobnost jednoznačnog raspoznavanja uzoraka. Korištenjem momenata slike i vektora osjetljivosti analizirani su znakovi s dvaju glagoljskih spomenika te utvrđeno postojanje mješavine znakova trokutastog i okruglog modela glagoljice. Metoda je primijenjena i na klasifikaciju tragova puzanja ličinki mutanata vinske mušice za potrebe proučavanja odgovora živčanog sustava na različite podražaje.Image moments are numerical descriptors invariant to translation, rotation, change of scale and some types of image distortion and their analysis is one of the most often used methods in image processing and pattern recognition. In this work, algorithms for calculation of geometric, Legendre, Zernike, Fourier – Mellin and three types of Fourier – Jacobi moments were implemented in MatLab. Hu's, affine and blur invariants were also obtained as well as inverse problem of input image reconstruction solved. For each type of image moments exept geometric ones the set of sensitivity vectors for rotation and scale were defined. Their components are those image moments which describe more important features of the input image. These new descriptors were applied for classification of handwritten letters and identifying personal photos. It was shown that the process of such descriptor calculation is much faster and simpler while preserving all the relevant information about input image. Using this method, the signs carved in two glagolitic inscriptions were analyzed and the mixture of triangular and round glagolitic letters found. The method was also applied to classification of the mutant fruit fly larvae crawling trails which is needed in studying responses of the nervous system to different stimuli
    corecore