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Abstract

TOPOLOGICAL PROPERTIES OF A NETWORK OF SPIKING NEURONS
IN FACE IMAGE RECOGNITION

By Joo-Heon Shin, Ph.D.

A dissertation submitted in partial fulfillment of the requirements for the degree of Degree 
of Doctor of Philosophy in Engineering (Computer Science track) at Virginia 

Commonwealth University.

Virginia Commonwealth University, 2010

Major Director:  Krzysztof J. Cios
Professor and Chair, Department of Computer Science

We introduce a novel system for recognition of partially occluded and rotated 

images. The system is based on a hierarchical network of integrate-and-fire spiking 

neurons with random synaptic connections and a novel organization process. The network

generates integrated output sequences that are used for image classification. The network   

performed satisfactorily given appropriate topology, i.e. the number of neurons and 

synaptic connections, which corresponded to the size of input images. Comparison of 

Synaptic Plasticity Activity Rule (SAPR) and Spike Timing Dependant Plasticity (STDP) 

rules, used to update connections between the neurons, indicated that the SAPR gave better 

results and thus was used throughout. Test results showed that the network performed 

better than Support Vector Machines. We also introduced a stopping criterion based on 

entropy, which significantly shortened the iterative process while only slightly affecting 

classification performance.
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CHAPTER 1 Introduction

In this chapter the main objective of this research along with its motivation and 

significance are explained.

1.1 Research Objectives

The main objective of this work is to develop a Network of Spiking Neurons 

(NSN) for image classification and study its dynamics in the task of face recognition. The 

work is an extension of previous research in dynamic synaptic plasticity and image 

segmentation with NSN. The outcome is a novel recognition system that consists of 

integrate-and-fire spiking neurons and its application to face recognition in gray scale 

images. Specifically, the system solves computationally challenging task of recognizing 

partially occluded and rotated images. Computational experiments enable investigating the 

dynamics of the system performance in the task of image classification by specifying 

minimum number of excitatory neurons and minimum number of synaptic connections 

needed for acceptable (user-specified) accuracy of classification. Moreover, an effective 

stopping criterion is also presented. 
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1.2 Research Methods

We present a novel image recognition system designed as a network of integrate-

and-fire spiking neurons that uses the Synaptic Activity Plasticity Rule (SAPR) (Swiercz et 

al., 2006) and the Spike Timing Dependent Plasticity (STDP) (Song et al., 2000) learning 

rules. The system consists of three layers of neurons including the input layer, the feature 

extraction layer, and the recognition layer (Swiercz et al., 2006, 2007). The latter layer 

consists of excitatory neurons that have random synaptic connections to neurons from the 

feature extraction layer. We address the usage of spiking neurons in the recognition layer 

for the purpose of decision making, which is a challenging task (Wang, 2002). In designing 

our system we were inspired by organization (formation) of neural circuits and retrieval of 

neural memories in a primate’s hippocampus (Yanike et al., 2004). 

Many of the neuron connections in the brain appear during initial brain growth and 

later are continuously organized/reorganized. These changes are due to repeated 

experiences such as seeing similar images many times (Rosenblatt, 1958; Tsodyks and 

Gilbert, 2004). Visual input is transported to visual and entorhinal cortex for processing. 

The results are forwarded to hippocampus where new memories are formed. With time the 

new memories are transferred to cerebral cortex for long term storage (Kandel et al., 1996). 

Once the long term memory connections are established, the brain is able to immediately 

“recall” what the new input image is by comparing it with the stored information, which is 

exploited in our system. As a result, relatively little processing is required to make a 

recognition decision.
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We evaluate our system using gray scale images of human faces. To make the 

recognition task more difficult (although this would not make it much more difficult for a 

human) we use occluded images that are presented at a random angle/rotation. Upon 

presentation of the images, the system forms unique signature patterns that correspond to a

person’s face in a way vaguely similar to the above described “organization” phenomenon 

in the brain. When a new face exemplar is presented to the system, the system “recalls” the 

corresponding person’s face “signature” and thus is able to correctly recognize it relatively 

quickly.

One of the challenges is to decide whether a new image is truly similar (or 

dissimilar) to the image(s) seen during the organization phase. In our previous work we 

explored different metrics to perform these comparisons (Cios and Shin, 1995). In this

work, however, we design a new similarity measure that operates on the firing patterns of 

the recognition layer neurons rather than on pixels from the original image. The new image 

similarity measure, named the “threshold comparator,” combines information concerning 

spike timing and the corresponding transmembrane potential. 

1.3 Motivation and Significance

Digital image databases grow exponentially as a result of advances in imaging 

hardware/software and its proliferation in commercial, medical, and military systems. 

Unfortunately, the value of such data is not yet fully realized due to relatively slow 

advancements in automated image recognition, recall, and understanding. Organizations 
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such as the Defense Advanced Research Projects Agency, after spending millions of 

dollars on research in this area, have come to the conclusion that image recognition 

performed by a human is far better (in terms of speed and accuracy) than that of the best 

automatic recognition systems (Chellappa et al., 1995; Samal and Lyengar, 1992). For 

instance, humans are much quicker in recognizing previously seen objects even if they are

partially occluded and rotated. Solving challenging image distortions, such as occlusions 

and rotations, via automated means calls for development of systems that combine several 

computational approaches (Kanan et al., 2008; Tan et al., 2005). More specifically, one of 

the basic problems in image analysis is the underlying assumption of a certain

mathematical decomposition hypothesis, say, assuming that different causes of distortions

are independent and can be isolated. For instance, assuming that occlusion and rotation are 

independent, we can first solve the occlusion problem and later address the problem of the 

rotation, or the other way round. In practice, however, such independency cannot be 

proven, and therefore such sequential solutions could potentially fail.

Manual analysis of large and ever growing image databases is impractical which 

motivates research in automated image recognition. Unfortunately, automating this process 

is difficult and poses many challenges. Recognizing the fact that computer systems will not 

be on par with humans for some time to come, we propose an approach that may lead to 

design of systems that improve over the existing solutions. We observe that a relatively 

low speed of information transmission between biological neurons, when compared with 

transmission speeds of computers, is compensated by a “smart” organization of the brain’s 

neural circuits that enables the remarkable ability of humans to perform complex image 
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recognition tasks. This fact motivated us to design a system that attempts to model some 

brain operations, while being fully aware that this attempt is a simplistic approximation of 

how the brain’s neural circuits truly operate.

1.4 Literature Review

Networks of spiking neurons (NSN) have shown to be great modeling tools in 

fields like neuroinformatics and computational biology (Buzsaki, 2004; Deco and Rolls, 

2004; Delorme and Thorpe, 2001; Gerstner and Kistler, 2003; Gold and Shadlen, 2001; 

Hagmann et al., 2008; Izhikevich, 2006, 2007; Izhikevich et al., 2003; Izhikevich and 

Edelman, 2008; Markram, 2006; Masquelier and Thorpe, 2007; Mel, 1997; Morgan and 

Soltesz, 2008; Muller-Linow et al., 2008; Mutch and Lowe, 2006; Olshausen et al., 1993; 

Serre et al., 2007). Advancements in neuron modeling (Hodgkin and Huxley, 1952; 

Lovelace and Cios, 2008; MacGregor, 1993), network topology (Cios et al., 2004; 

Izhikevich, 2006; Sala and Cios, 1998, 1999; Swiercz et al., 2006, 2007), 

learning/plasticity rules (Konorski and Garry, 1948; Song et al., 2000; Swiercz et al., 2006), 

and simulators (Delorme and Thorpe, 2003) made it possible to accurately model some 

biological phenomena (Buzsaki, 2004; Deco and Rolls, 2004; Gold and Shadlen, 2001; 

Hagmann et al., 2008; Izhikevich, 2007; Izhikevich and Edelman, 2008; Markram, 2006; 

Morgan and Soltesz, 2008; Muller-Linow et al., 2008; Swiercz et al., 2007) as well as 

solve practical problems (Bohte et al., 2002; Cios et al., 2004; Delorme and Thorpe, 2001; 

Sala and Cios, 1998, 1999; Swiercz et al., 2006; Wysoski et al., 2008). These 
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improvements even allow for building models that exhibit brain-like behavior (Izhikevich 

and G.M. Edelman, 2008; Markram, 2006; Morgan and Soltesz, 2008).

In the previous work a dynamic learning rule, the Synaptic Plasticity Activity Rule 

(SAPR) was developed based on studies of the CA3 region of hippocampus and later used 

in a network of spiking neurons for image edge detection (Swiercz et al., 2006). The rule 

exhibited the same kind of image segmentation effects that were also reported in 

(Buhmann et al., 2005; Choe and R. Miikkulainen, 1998; Delorme and S.J. Thorpe, 2001; 

Wu et al., 2007). Using a similar network topology with the SAPR rule the epileptic 

bursting of neurons in the CA3 hippocampal region were successfully modeled (Swiercz et 

al., 2007).

Understanding cognitive object recognition tasks in biological systems resulted in 

many interpretations by computational neuroscientists. Many theories and experiments of

object recognition have been performed in the areas of computational neuroscience (Rolls 

and Deco, 2002; Deco and Rolls, 2002; Lee and Seung, 1999; Riesenhuber and Poggio, 

1999, 2000; Stringer and Rolls, 2002; Plebe, 2007, 2008; Plebe and Domenella, 2006, 

2007; Miikkulainen et al., 2005). Two well-known visual recognition models are Rolls and 

Deco's Visnet, and Riesenhuber and Poggio's modified Neocognitron, which have been 

tested on face recognition resulting to desirable invariance with respect to rotation (Rolls 

and Deco, 2002; Deco and Rolls, 2004; Riesenhuber and Poggio, 1999, 2000). While 

Riesenhuber and Poggio's modified Neocognitron provides a feedforward model by using 

max-like operation, Visnet is a neurophysiological model for invariant visual object 

recognition using the top-down approach. Lee and Seung proposed an interesting 
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mathematical approach for learning the parts of objects by nonnegative matrix 

factorization (Lee and Seung, 1999). They showed its formulation as a method of 

decomposing images and a neural network implementation for parts-based representation 

of objects. 
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CHAPTER 2 Design Issues in a Network of Spiking Neurons

The design of any type of neural networks requires selection of a neuron model to 

be used in computations, a learning rule for updating the weights/synapses between 

neurons, and a topology that determines how the neurons are arranged and interconnected.

The first two elements must be specified a priori, while the topology can be either 

static (likewise defined a priori) or can be dynamically modified later by adding neurons 

and/or layers as needed to solve a problem. If the latter approach is used, the networks are 

referred to as ontogenic (Cios et al., 2007; Cios and Sztandera, 1997; Fiesler and Cios, 

1997).

2.1 Artificial Spiking Neuron Models

All neuron models resemble the biological neurons to some degree, and this 

resemblance is an important distinguishing factor between different models. The most

biophysically accurate neuron models mimic almost all key characteristics of biological 

neurons, resulting in reproduction of their rich firing patterns (their temporal spiking 

nature). The features include: membrane potential; sodium, potassium, and calcium 

channels; threshold accommodation; refractory periods; and multi-compartmental structure 
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(dendrites, soma, axon) etc. While having great applicability, using a highly detailed 

neuron model is characterized by very high computational cost. However, for accurate 

modeling it is crucial to preserve the representation of the spiking nature of biological 

neurons. Biological neurons, both excitatory (those that help other neurons to fire) and 

inhibitory (those that prevent other neurons from firing), generate a series of action 

potentials (also called a train of spikes, or just spikes) in response to a stimulus input. The 

response duration and discharge frequency depend both on the character and strength of 

the stimulus. There are several types of spiking neuron models; the conductance models 

(e.g., Hodgkin and Huxley, 1952; FitzHugh and Nagumo, 1961, 1962; Morris and Lecar,

1981; Hindmarsh and Rose, 1982, 1984), leaky integrate-and-fire (e.g., MacGregor, 1993),

the Izhikevich model (Izhikevich, 2003, 2004), spike response model (Gerstner and 

Kistler, 2002), etc. 

2.1.1 Conductance-based Neuron Model

Conductance-based neuron models are the biophysical representation of a neuron 

with the conductances and currents depending on the membrane potential. One of the most 

well known important models in computational neuroscience is the Hodgkin-Huxley (HH) 

model of the giant squid axon (Hodgkin and Huxley, 1952; Izhikevich, 2007). The basic 

components of the HH model are shown in Figure 2.1. Note that, in Figure 2.1, 

NaNa gR 1 is membrane sodium conductance, KK gR 1 is membrane potassium 
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conductance, ll gR 1 is membrane leak conductance, NaE is sodium resting potential, 

KE is potassium resting potential, lE is membrane resting potential, NaI is sodium current, 

KI is potassium current, lI is a small leakage current made up by chloride and other ions, 

and MC is the membrane capacity (Hodgkin and Huxley, 1952).

2.1.2 Integrate and Fire Neuron Model

Integrate-and-fire neuron models provide some simplification of spike generation, 

as compared with conductance models, while accounting for the membrane potential and 

other neuron properties. MacGregor’s model closely represents the behavior of a biological 

Figure 2.1: Membrane electrical circuit of the Hodgkin-Huxley model (Hodgkin and 
Huxley, 1952).  
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neuron in terms of its membrane potential, potassium channel response, refractory 

properties, and adaptation to stimuli. However, instead of modeling each individual 

channel (except for potassium), this model imitates the resulting neuron’s excitatory and 

inhibitory properties. For accurate time modeling, it is crucial to preserve representation of 

the spiking nature of the biological neurons. The modified McGregor integrate-and-fire 

model is described by the equations given below in Table 2.1, while Figure 2.2 illustrates 

its operation. Note that, in Figure 2.2, E is membrane potential, Th is threshold, and GK is 

potassium channel conductance.

Table 2.1: MacGregor’s modified neuron model

The neuron model’s membrane potential changes according to the timing of 

incoming spikes. Spikes influence the neuron through synaptic connections, thereby, 

increasing the synaptic conductance. This results in postsynaptic potential changes. There 

are two types of synaptic connections: excitatory and inhibitory with type depending upon 

Spike generation 







h

h

TE

TE
S

  if       0

  if       1

                                                                                                    (2.1)

Refractory 
properties GK

KK

T

SBG

dt

dG 


                                                                               
                                                                                                    (2.2)

Threshold 
accommodation

 
th

hhh

T

EcTT

dt

dT 
 0

                                                                        
                                                                                                    (2.3)

Transmembrane 
potential

     
mem

iieeKK

T

NSCNEEGEEGEEGE

dt

dE 


      
                                                                                                    (2.4)



12

the presynaptic neuron connected. The weighted sum of all excitatory and inhibitory 

synaptic conductances yields the excitatory or inhibitory stimulus values, respectively. If 

the excitatory stimulus is too weak or the inhibitory stimulus is too strong, the membrane 

potential cannot reach the threshold and the neuron does not fire. If the stimulus is strong 

enough for the membrane potential to reach the threshold, the neuron fires (generates a 

spike train traveling along its axon). For a short time immediately after the spike 

generation, the neuron is incapable of responding to any additional stimulation. This time 

interval is referred to as the absolute refractory period. Following the absolute refractory 

period is an interval known as the relative refractory period, during which the neuron can 

only respond to very strong stimulation. 

Figure 2.2: Neuron responses to an external artificial stimulation (SCN), where E is 
membrane potential, Th is threshold, and Gk is potassium channel conductance.
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2.1.3 Izhikevich Neuron Model

The Izhikevich neuron model (Izhikevich, 2003) is almost as realistic at generating 

firing patterns as Hodgkin-Huxley but in addition it is computationally very simple. The 

dynamics of the model are based on a two-dimensional system of ordinary differential 

equations:

 ,
140504.0 2

ubvau

Iuvvv




                            (2.5)

with the auxiliary after-spike resetting equation being:









,

 then  mV,30  if
duu

cv
v                   (2.6)

where v is the membrane potential of the neuron and  u is a membrane recovery variable 

based on the activation levels of sodium Na and potassium K ionic currents. 

Depending upon dimensionless parameters cba ,, and d , the dynamic of the neuron model 

can mimic several neuro-computational properties, as shown in Figure 2.3. 
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2.2 Synaptic Plasticity (Learning) Rules

The concept of synaptic plasticity rules was stated first by Konorski (Konorski, 

1948) and then by Hebb (Hebb, 1949). In short, the relative activity between pre- and post-

Figure 2.3: Examples of Izhikevich neuron model and its modeling of several 
properties (The figure and reproduction permission are available at 
http://vesicle.nsi.edu/users/izhikevich). 
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synaptic neurons is critical for the synaptic changes; adjustment of the strength of synaptic 

connections between neurons takes place every time the postsynaptic neuron fires. If firing 

occurs, the synaptic weight values are updated according to the postsynaptic potential 

value between the connected neurons with the learning rate. Arrival of the action potential 

at the synaptic connection changes the synaptic conduction that elicits synaptic current 

alteration and thus results in the postsynaptic potential (PSP) modification. The two types 

of learning rules are Spike-Timing Dependent Plasticity (STDP) (Song et al., 2000), and 

the Synaptic Activity Plasticity Rule (SAPR) (Swiercz et al., 2006).

2.2.1 Spike-Timing Dependent Plasticity (STDP)

The relative activity between pre- and post- synaptic neurons is critical. Adjustment 

of the strength of synaptic connections between neurons takes place every time the 

postsynaptic neuron fires (Song et al., 2000). If firing occurs, the synaptic weight values 

are updated according to eq. (2.7). The learning rate α controls the amount of adjustment; it 

can assume any value, with 0 meaning that there is no learning. To keep the synaptic 

connection strength bounded, a sigmoid function is used to produce a smoothly shaped 

learning curve:

      ,1 tPSPtwsigtw ijijij                                             (2.7)

where t is time; wij is the synaptic weight between neurons i and j; α+− is the learning rate, 

which has different values for positive and negative adjustments; PSPij is the postsynaptic 

potential value for the connection between neurons i and j; and sig(x) is a sigmoid function. 
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Arrival of the action potential at the synaptic connection changes the synaptic conduction, 

which elicits synaptic current alteration and thus results in the postsynaptic potential (PSP) 

modification. The PSP can be either excitatory (EPSP) or inhibitory (IPSP) and is 

proportional to the synaptic conductance change. These changes directly affect the 

neuron’s membrane potential.

Various types of learning rules have been extensively studied (Bi and Poo, 1998; 

Fusi, 2002; Fusi et al., 2000; Lengyel et al., 2005; Sala and Cios, 1998; Song et al., 2000; 

Swiercz et al., 2006). All but one of the learning rules for spiking neuron networks use 

artificial functions to evaluate the amount of the synaptic strength adjustment. The prime 

example is the Synaptic Time-Delayed Plasticity (STDP) rule that is specified by eq. (2.8)

and illustrated in Figure 2.4(b): 

   
 












,0  if     exp

0  if        exp

Δtt

Δtt
tSTDP




                (2.8)

where ∆t=(tpost−tpre) is the time delay between the postsynaptic spike and the presynaptic 

spike; α+− is the learning rate; and τ+− is the time constant (Song et al., 2000). The STDP 

rule embodies Konorski/Hebb-type plasticity using the concept of relative timing, as can 

be seen in eq. (2.7).

2.2.2 Synaptic Activity Plasticity Rule (SAPR)

In contrast to the above rules, the Synaptic Activity Plasticity Rule (SAPR) 

(Swiercz et al., 2006) uses the actual synaptic dynamics to decide amount of adjustment; it 
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Figure 2.4: Learning functions used in the SAPR (a) and in the STDP (b).

also follows Konorski/Hebb-type plasticity. When modification of the synaptic weight 

between the pre- and post-synaptic neurons occurs, the SAPR adjusts the synaptic weight 

depending on the particular synapse type and its recent actual activity. There is no explicit 

equation or function shape for the synaptic strength adjustment in the SAPR. The 

adjustment only approximates possible function using a PSP shape (Swiercz et al., 2006). 

Figure 2.4(a) shows just one example of a learning function using a general PSP shape for 

excitatory and inhibitory synapses. The actual shape varies depending on the particular 

synapse parameters, current synaptic strength, and learning rate used. In contrast to the 

STDP function, the SAPR function is continuous, has a finite range of values, and is 

dynamic (i.e., it changes from experiment to experiment while the STDP function is static)

(Swiercz et al., 2006). Similar to the STDP, the polarity of weight change in the SAPR 
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generally matches the phase of spike times, although it has been shown that this is not 

necessarily correct since polarity might exhibit frequency dependence (Lisman and 

Spruston, 2005). In general, frequency dependence of spike timing dependent plasticity is a 

complex phenomenon that depends on the precise frequency of stimulation, presynaptic 

depression and postsynaptic desensitization, the amplitude and duration of the neuronal 

calcium transient determined by calcium-dependent calcium release, calcium buffering, 

and calcium transport capacities, and the relative sensitivities of CAMKII and 

calcineurin. At this point, there is not enough information concerning these processes to 

permit adequate modeling of the frequency dependence of the SAPR.

The advantage of the SAPR is that instead of using an artificial function, as used in 

the STDP, it uses the actual value present in each synapse. Modification of the synaptic 

weights between pre- and postsynaptic neurons takes place every time the postsynaptic 

neuron fires. When the firing occurs, all of the neuron’s incoming synapses are evaluated 

and their synaptic strengths are adjusted depending on the particular synapse type and 

recent activity. The amount of the adjustment is proportional to the contribution of a 

particular synapse to the neuron’s firing. If a particular excitatory presynaptic neuron spike 

arrives before the postsynaptic neuron fires, then the related synapse is assumed to have a 

positive contribution, and thus its synaptic strength increases by an amount proportional to 

the current postsynaptic potential (PSP) value. When an excitatory presynaptic neuron’s 

spike arrives after the postsynaptic neuron fires, it has no contribution to the recent firing 

and thus its strength is decreased by an amount proportional to the current PSP value.
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2.3 Network Topology

To design a computational model that is biologically accurate it is important not 

only to use realistic models of neurons and dynamic plasticity rules but also have structure 

similar to the way the nervous system does. Thus, realistic computer models of the nervous 

system process information in stages before it is projected onto a higher neuronal structure. 

This hierarchical processing of information is achieved via designing appropriate network 

topology. Many researchers used hierarchical structure, composed of both excitatory 

(75~80%) and inhibitory (20~25%) neurons, to keep the same ratio as present in the brain,

to mimic biologically meaningful information processing (Cios et al., 2004; Dehaene et al., 

2003; Grill-Spector et al., 2006; Makeig  et al., 2002; Risenhuber and Poggio, 1999, 2000; 

Rybak et al., 1997; Sala and Cios, 1998; Silver et al., 2007; Swiercz, 2006, 2007). 

However, it is difficult to determine how synaptic connections among neurons in a laminar 

structure are made, so the randomness of connections plays an important role in a given 

topology. These, as well as additional features can be modeled using a realistic multilayer 

network topology, in which each layer deploys both excitatory and inhibitory neurons as 

well as uses concepts of randomness, ultimately to produce a realistic model of 

information processing.
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CHAPTER 3 Recognition of Partially Occluded and Rotated Images

In this chapter, we introduce a novel recognition system that is capable of 

recognizing partially occluded and rotated images. The system is based on a hierarchical 

network of integrate-and-fire spiking neurons, with random synaptic connections, and a 

novel organization process similar to the one observed in biological systems. The network

generates integrated output sequences that are used for image classification. The network 

uses a fixed number of neurons in the recognition layer, corresponding to a given image 

size, to obtain good classification performance of the system. 

3.1 Methods

As mentioned in Chapter 2, the design of any type of a neural network requires the 

neuron model used for computations, the learning rule used to update the weights/synapses, 

and the topology of a network that determines how the neurons are arranged and 

interconnected. We use the MacGregor’s modified integrate-and-fire (I&F) neuron model 

for designing the network topology, and the STDP and SAPR learning rules. 
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3.1.1 MacGregor’s Modified Neuron Model and Its Parameter Settings

There are several types of artificial spiking neuron models, as mentioned in Section 

2.1. We use the modified MacGregor I&F model because it strives to achieve a balance 

between a detailed biologically-inspired model and a highly abstracted mathematical

model. Table 3.1 shows the model and its parameter settings.

Table 3.1: MacGregor’s modified neuron model and its parameter settings

Spike generation 







h

h

TE

TE
S

  if       0

  if       1

                                                                                                    (3.1)

Refractory 
properties
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KK
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SBG

dt

dG 


                                                                               
                                                                                                    (3.2)
amplitude of the postfiring potassium conductance decay B=20,
potassium conductance time constant TGK=15 msec

Threshold 
accommodation

 
th

hhh

T

EcTT

dt

dT 
 0

                                                                        
                                                                                                    (3.3)
amplitude of the threshold C=0.5,
resting threshold of the cell Th0=10 mV, 
time constant for decay of threshold Tth=30 mV

Transmembrane
potential

     
mem

iieeKK

T

NSCNEEGEEGEEGE

dt

dE 


      
                                                                                                    (3.4)
equilibrium potential of the potassium conductance Ek=−12 mV,
equilibrium potential of the excitatory conductance Ee=80 mV,
equilibrium potential of the inhibitory conductance Ei=−10 mV,
membrane time constant Tmem=25 msec

SCN is an external input current injected to the neuron. GK, Ge and Gi represent the 
activity of potassium, excitatory and inhibitory synaptic conductances, respectively.



22

3.1.2 Learning/Plasticity Rules

The dynamic SAPR rule (Swiercz et al., 2006 & 2007) that uses actual post-

synaptic potentials vs. a pre-defined function like the one used in the Spike-Timing-

Dependent Plasticity (STDP) rule (Song et al., 2000) is used as the plasticity rule in the 

network. We used both SAPR and STDP rules for the comparison purposes, see Figure 3.1.

Note that, in Figure 3.1, ∆t=(tpost−tpre) is the time delay between the postsynaptic spike and 

the presynaptic spike. For STDP, we used α+− =1 and τ+−=20 ms.

Figure 3.1: Learning functions used in the system using the SAPR (a) and the STDP 
(b).
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3.1.3 Network Topology

Many methods of computational neuroscience are based on the observation that the 

brain uses a hierarchical structure in performing cognitive tasks (Riesenhuber and Poggio, 

1999, 2000), although details of this structure are yet to be fully understood. Our network 

also uses a hierarchical organization, from the sensory input layer to the recognition layer.

The network topology for the image recognition system consists of three layers, (i) the 

sensory/receptive layer, which consists of only excitatory neurons; (ii) the feature 

Figure 3.2: Topology of the network: (a) high-level block diagram; (b) recurrent 
synaptic connections between the excitatory neurons in the feature extraction layer; and 
(c) synaptic connections between  the excitatory neurons in the sensory/feature 
extraction layer and the inhibitory neurons in the feature extraction layer.
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extraction layer, which consists of both excitatory and inhibitory neurons; and (iii) the 

recognition layer, which consists of excitatory neurons (see Figure 3.2(a)). The recognition 

layer uses the output of the feature extraction layer to generate sequences of firings that are 

applied as specific signatures to recognize new images. 

The sensory and feature extraction layers draw on our previous work concerning 

application of networks of spiking neurons in image recognition (Cios and Shin, 1995; 

Swiercz et al., 2006). Each sensory layer’s dimension is three times larger (i.e., the 

corresponding area is nine times larger) than the size of the processed image to allow for 

overlapping between neurons in the sensory layer. The number of excitatory neurons in the 

feature extraction layer is also three times larger than the number of pixels in the input

image, while the number of inhibitory neurons in this layer is equal to the number of pixels 

in the image (Swiercz et al., 2006). This results in the 9:1 ratio of excitatory to inhibitory 

neurons, which is consistent with estimates based on hippocampus (Traub and Miles, 

1991). The inhibitory neurons provide negative feedback to prevent the network from 

becoming extremely excited (Kandel et al., 1996). Figure 4.2 demonstrates the importance 

of using inhibitory neurons in the feature extraction layer; the face shown there is more 

clearly outlined using inhibition than without using it. The connections from the sensory to 

the feature extraction layers are shown in Figure 3.2(c). Excitatory neurons in the sensory 

and feature extraction layers have the same dimension, 3n×3m, which means that each

excitatory neuron in the sensory layer is connected to the corresponding (i.e., located at the 

same position) excitatory neuron in the feature extraction layer. However, since inhibitory 

neurons in the feature extraction layer are organized as an n×m matrix, each inhibitory 



25

Figure 3.3: Illustration of formation of the “signature” vectors in the recognition layer.

neuron in the feature extraction layer is connected to the corresponding 3×3 matrix of

neurons in the sensory layer; see Figure 3.2(c).

The feature extraction layer includes three types of synaptic connections. Similar to 

the connections from the excitatory neurons in the sensory layer to the inhibitory neurons 

in the feature extraction layer, each inhibitory neuron is connected to a 3×3 matrix of

excitatory neurons within the feature extraction layer, see Figure 3.2(c), and vice versa. 

This layer also includes recurrent connections between its excitatory neurons, where each 
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neuron is connected to the eight neighboring excitatory neurons (Swiercz et al., 2006), as 

shown in Figure 3.2(b). 

The recognition layer, which consists of only excitatory neurons, collects the 

information coming from the feature extraction layer. It is constructed by randomly (and 

evenly) partitioning the total number of excitatory neurons in the feature extraction layer. 

Thus, for r neurons in the recognition layer and n×m size of the input images, each neuron 

in the recognition layer is randomly connected to (3n×3m)/r excitatory neurons in the 

feature extraction layer. Figure 3.3 shows the relation between the number of recognition 

neurons, r, and the number of synaptic connections, c (the number of synaptic connections 

to a neuron in the recognition layer from (3n×3m)/r neurons in the feature extraction layer). 

The relation is 9nm=rc, and Table 3.2 shows values of r and c used.

Table 3.2: Number of neurons in the recognition layer and the corresponding synaptic 

connections from the feature extraction layer to the recognition layer for 3232 image

Number of 
neurons (r) in 
the recognition 
layer

9 18 36 72 144 288 576 1152 2304 4608 9216

Number of 
synaptic
connections
(c)

1024 512 256 128 64 32 16 8 4 2 1

The best results are obtained using the shaded number of recognition neurons that 
correspond to the image size (see Figure 4.1(a) and (b)). 
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The recognition layer, which consists of spiking neurons, is an important part of the 

network. It takes input from the excitatory neurons in the feature extraction layer and 

summarizes the features extracted by this layer. The system tracks the excitation of 

neurons in the recognition layer over a short period of simulation time (300 ms) to generate 

and store an “organization/signature” pattern that is later used to identify similar images. 

The latter operation constitutes the “recall.”

The “signature” pattern of a recognition neuron is a vector of its transmembrane 

potentials (E) recorded whenever the neuron fired (see Table 3.1). Neurons that did not fire

in the recognition layer, based on their inputs from the feature extraction layer, do not form 

“signature” patterns. 

The recognition layer of the system performs a decision making role based on the 

formed organization/signature pattern, separately for each class. Notice that the way in 

which the layer operates vaguely resembles population coding (Gerstner and Kistler, 2002; 

Dayan and Abbott, 2005). 

During training (or organization) phase the system creates an index of the 

organization patterns that correspond to an image class; see Table 3.3 for the pseudo-code. 

When presented with a new image, the system passes it through the network and compares 

the outcome pattern to the “recall” table in which the previously identified “organizations” 

are stored. The comparison is based on a similarity measure which is defined below.
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3.1.4 Image Similarity Measure

We have experimented with several image similarity measures (Yen and Cios, 

2008), including the Image Similarity Measure (ISM) (Cios and Shin, 1995), Euclidean 

and Hamming distances, as well as spiking information. Since none of them performed 

well in our application, we propose a new similarity measure named the “threshold 

comparator,” in which the vector is the transmembrane potential value of the neurons that 

fired in the recognition layer. The MacGregor’s modified neuron model used here (see 

Table 3.1) fires a spike of the same absolute voltage when the transmembrane potential (eq. 

(3.4)) reaches the threshold (eq. (3.3)). Thus, the model is different in this aspect from the 

Hodgkin-Huxley neuron model, which can vary its spiking voltage due to rate effects and 

has no threshold value. Therefore, instead of spike voltages, we use transmembrane 

potential values in the comparator. That is, the comparator uses both the spike timing

information (a discrete value) and the corresponding transmembrane potential (a

continuous value) (Ohno-Shosaku et al., 2001; Wilson and Nicoll, 2001). The comparator 

“matches” a new image with the closest “organization” (signature) stored in the recall table, 

much like a new sensory input will influence a given brain region dedicated to processing 

the input, see Figure 3.4. Note that only the E values of neurons that fired are used. Eth is 

the threshold value used for finding the best match.

Given a new input image, Ninput, the threshold comparator finds the best match after

the recognition layer generates its output. When the output for the new input image is 

generated, the comparator compares the transmembrane potential of the neurons that have 
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Figure 3.4: Illustration of how the network recognizes an image using the threshold 
comparator. 

fired with the signature vectors stored in the recall table. If the difference between the two 

is less than threshold Eth, namely: 

th
N

jiji EEE input  ,, ,                               (3.5)

where E is the transmembrane potential, 1 ≤ i ≤ r and 1 ≤ j ≤ k, then a match is found. 

After the match is found, the matching score is calculated by dividing all the matches by 

the total number of neurons in the recognition layer (for simulation time=300 ms)

  ,
300

matchesof#

r
M j 

                                                       (3.6)

so that Mj  [0, 1]. The winning class for the input Ninput is:

j
kj

input MN   max  arg    class winning
1 

 .                   (3.7)

Figure 3.4 illustrates the operation of the threshold comparator.
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3.2 Datasets

Four image datasets were used to test the performance of the network. Each dataset 

has different characteristics, illustrated via a few representative images given in Figure 3.5. 

The Japanese Female Facial Expression (JAFFE) dataset (Lyons et al., 1998) contains 213 

images of 7 facial expressions which include 6 basic facial expressions and 1 neutral 

expression posed by 10 Japanese models. The faces are of 256×256 resolutions. The ORL 

(or AT&T) dataset (Samaria and Harter, 1994) contains face images of 40 people. Each 

Figure 3.5: Examples of the Original and Occlusion & Rotation images.
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Figure 3.6: Generation of an occlusion. 

picture is taken at a different time, with slightly varied lighting, different angles, 

open/closed eyes, glasses/no-glasses, and smiling/non-smiling facial details. The faces are 

of 92×112 resolutions and are represented using gray scale (one byte per resolution). The 

CMU dataset (Mitchell, 1997) contains 640 face images of 20 people. This dataset is

characterized by varying the pose (straight, left, right, up), expression (neutral, happy, sad, 

angry), eyes (wearing sunglasses or not) and resolution. Although this set includes three 

different scale-resolutions for each image, we used the 128×120 full-resolution images. 

The UMIST dataset (Graham and Allinson, 1998) consists of 564 face images of 20 people. 
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It covers a wide range of different angles of poses with variations of race, sex, and 

appearance. The faces are at the 92×112 resolutions.

For each data set, we prepared its occluded and rotated version by introducing 

occlusions into 50% of images according to the procedure shown in Figure 3.6 and by 

rotating 25% of images by 90, 180 and 270 degrees each in the clockwise direction. Note 

that, in Figure 3.6, n is # of vertical pixels, m is # of horizontal pixels, occ(x,y) is a random 

occlusion point, occheight is a random height of occlusion rectangle where n∕3 ≤ occheight ≤ 

2n∕3, and occwidth is a random width of occlusion rectangle where m∕3 ≤ occwidth ≤ 2m∕3.

Random numbers are distributed uniformly in the range of random height/width. While 

Figure 3.5 shows 10 example images for one model from each dataset, the complete 

Occlusion & Rotation datasets can be found in Appendix B.

3.3 Network Simulation: Organization and Recall

Given an input image Ninput the network organizes through the sequence of the 

following three steps, (i) the excitatory neurons in the sensory layer are stimulated; (ii) the 

excitatory and inhibitory neurons in the feature extraction layer are activated; and (iii) 

excitatory neurons in the recognition layer are activated. 

The grey image pixel values entering the sensory layer are normalized to provide 

proper firings of neurons, and then a sinusoidal function with amplitude of the normalized 

pixel intensity and a period of 300 ms in simulation time is used to stimulate the sensory 

layer (see Tr.4 in Table 3.3) (Barrionuevo and Brown, 1983; Swiercz et al., 2006). 
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The sensory layer receives the input image and passes the signal to the feature 

extraction layer to extract visual features in terms of the excitatory neurons that fired. Then 

the recognition layer neurons fire in a certain pattern according to the input image. Each 

input image is presented to the network for 300 ms of simulation time. For each simulation, 

the current state of the recognition layer is recorded (the actual membrane potential (E))

for the neurons that fired.

During the organization/training phase, each input image generates its own 

signature vector in the recognition layer. An average of each recognition neuron’s output is 

used to form a signature vector, for all image presentations from every class (see line Tr.13 

in Table 3.3). After an input image is processed, we keep only the synapses strengths that 

exceed a certain threshold (i.e., 4), see line Tr.12 in Table 3.3. If synapses of some neurons 

did not have their values above the threshold then they are set to 0. Then, the next image in 

the training data is processed, etc. The formation of the signature vector is based on the 

spiking activity of neurons in the recognition layer. Basically, if we kept the synapses 

strengths after the signature vector was formed by presenting the first image to the 

network, then the neurons which spiked would be the only ones spiking even when other 

very different images were input because their synaptic strengths were set to a very high 

value. Thus, resetting the synaptic strength values to zero allows other neurons in the 

recognition layer to spike when presented with new images. This is done in order to allow 

all images to contribute to the formation of the signature vector; otherwise, only the first 

input image would form this vector. A storage needed for saving the signature vectors 



34

depends on the number of r recognition neurons. For each recognition neuron, we have 

about 19 doubles, 4 double arrays, and 2 booleans (see Table 3.1). 

During the recall/testing phase, the output of the neurons in the recognition layer 

for a given input image is used to find the best match with the signature vectors stored in 

the recall table by using the threshold comparator (see line Tt.3 in Table 3.3). The pseudo

code for the two phases with actual parameter values is provided in Table 3.3.
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Table 3.3: Pseudo code of an algorithm to compute "signature" patterns

Organization: Computing signature vectors E = [Er,k]
Input:   - an image training data set Ttra = {(xi, yi) | xi  Rnm, i=1,···,Ntra } with yi  {1,···,k}, 
                   where xi stands for an image in n× m resolution
            - a number of recognition neurons r  
            - a choice of synaptic plasticity such as STDP or SAPR               
Output:   a signature vector for each class E = [Er,k]
Tr.1    Initialize E = [Er,k];
Tr.2    Initialize the network based on the topology 
              - Arrange the sensory, feature extraction and recognition layers based on the topology explained in Fig. 3.2
               - Initialize synapses in the processor 
                      From sensory to feature extraction layer with fixed synapses of 1.4

    In the feature extraction layer with random synapses in [0.6, 2.5] 
    From the feature extraction to recognition layer with random synapses in [0.6, 2.5]

Tr.3    For i 1 to Ntra

Tr.4         For time 1 to 300       
                     - Stimulation of the sensory layer
                      Normalize the intensity of pixels in the image from [0, 255] to [35, 61]

       Get stimuli for each sensory neuron at the time by a positive-valued sinusoid with amplitude of the normalized 
                             pixel intensity and a period of 300ms
                     - Activation of the feature extraction layer
                    - Activation of the recognition layer
Tr.5              For j 1 to r
Tr.6                 If ( jth recognition neuron fired a spike )
Tr.7           Ei[time× r + j] = transmembrane potential value;
Tr.8       End If
Tr.9             End For
Tr.10         Apply synaptic plasticity by  pqpqpq PSPwsigw

dt

d
  between neurons p and q,

                       where PSPpq is the postsynaptic potential value for the connection between neurons p and q,
                       and sig(x) is a sigmoid function
Tr.11       End For
Tr.12      Save only synapses that are over 4  
Tr.13       Update [Er,k] = average of [Er,k] and [Ei

r,k];
Tr.14   End For
Tr.15   Return E = [Er,k];

Recall: Performance of the system
Input: an image testing data set Ttest = {(xi, yi) | xi  Rnm, i=1,···,Ntest }  and  E = [Er,k]
Output: a performance of the system in terms of Accuracy, Precision, Recall, and HM
Tt.1    For Ninput 1 to Ntest

Tt.2        Generate E Ninput based on the steps 3 through 11 in Organization
Tt.3        Identify image with Threshold Comparator
                  - Calculate 

th

N

jiji EEE input  ,,
, where Eth=10

- Calculate the match scores 
rM j  300

matchesof#

- Select winning class by
j

kj
input MN   max  arg    class winning

1 


Tt.4    End For
Tt.5    Evaluate the performance of the system based on eq. (4.1)
Tt.6   Return the performance of the system
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CHAPTER 4 Experimental Results and Discussion

This chapter presents experimental results and discusses the system introduced in 

Chapter 3. 

4.1 Evaluation

We evaluated the performance of the system using 10-fold cross-validation (10-

FCV) as follows. The entire dataset is randomly partitioned into 10 subsets; 9 subsets are 

used for training and the remaining one is used for testing. This procedure is repeated 10 

times, and the results are averaged. 10-FCV is used on both the Original images (JAFFE, 

ORL, CMU and UMIST) and the same sets of images after we modified them to the 

Occlusion & Rotations images. 

The results of 10-FCV are analyzed using performance measures specified in eq. 

(4.1), where TP denotes true positive, TN true negative, FP false positive, and FN false 

negative predictions.

RecallPrecision

RecallPrecision
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                              (4.1)
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The harmonic mean, which ranges between 0 and 1, is an evenly weighted harmonic mean 

of precision and recall.

4.2 Results and Discussion

The system is tested using two different settings for the four image datasets (see 

Section 3.2). For computational efficiency the images are compressed into 32×32 (in 

pixels) size. The results reported below are based on two experiments. One compares

performance of the system using different number of neurons in the recognition layer, with 

the SAPR and STDP rules. The second compares the results while using only the SAPR

(because it performed better) with a recognition system implemented using Support Vector 

Machine (SVM). The SVM-based solution was used since this classifier was previously 

shown to provide accurate results on the JAFFE and ORL datasets (Amine et al., 2009; 

Shih et al., 2008).

4.2.1 Experiment 1: Comparison of Designs with Different Number of Neurons 
in the Recognition Layer using the SAPR and STDP rules

The network was tested with different numbers of neurons in the recognition layer 

for each dataset. Figure 4.1 only shows the trend of performance of the system in terms of

accuracy.

During the organization phase, the network processes instances of faces and 

monitors the “signature” vectors generated at the output of the recognition layer. Next, the 
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network is tested using unseen face instances. As described in Section 3.1.4, we use the 

threshold comparator (with Eth=10) to measure similarity between the outputs of the 

recognition layer.

We observe that increasing the number of the recognition neurons up to a certain 

level leads to improved performance for both the SAPR and STDP rules; see Figure 4.1(a) 

and (b). For certain combinations of the number of recognition neurons and the number of 

synaptic connections they receive from the feature extraction layer, the system performs 

well. This agrees with the hypothesis that the “brain” allocates different neurons (using a 

fixed number) for processing a recognition task. This idea is similar to the idea of 

polychronization (Izhikevich, 2006), or neural Darwinism, embodied in the Theory of 

Neuronal Group Selection (TNGS) (Edelman, 1987). Figure 4.1(a) and (b) also show that 

the best results are obtained using the number of synaptic connections between c=4 and 

c=16. The sharp drop in performance from the number of recognition neurons r=2304 to 

r=4608 is caused by too few synaptic connections (c=2 and c=1, respectively) to the 

recognition layer (see Table 3.2). We also observe that the designed network is 

characterized by a relatively good performance for r between 72 and 2304, especially for 

the Original images processed with the SAPR rule, which would allow for computationally 

efficient implementations that use smaller number of neurons.

The performance comparison while using the SAPR and STDP rules is shown in 

Figure 4.1(c). This is done separately for the Original images and the Occlusion & 

Rotation images. The average and standard deviation of the difference between using the 

SAPR and STDP are calculated for each recognition neuron. In general, the SAPR 
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performs better than the STDP, in particular on the Occlusion & Rotation images. The 

differences are between −0.84% and 36.02% for the Original images and between 1.5% 

and 23.15% for the Occlusion & Rotation images. Although for r between 144 and 2304

using the Original images both plasticity rules give comparable results (differences are less 

than 1%), in case of the Occlusion & Rotation images the network using SAPR is always 

better. Although we do not fully understand why the SAPR performs better than the STDP 

in our application, we argued that it was more biologically relevant because it relied purely

on the PSPs (Swiercz et al., 2006). The significant difference between the two rules is that 

the SAPR is continuous around zero (see Figure 2.4 and 3.1), which was the reason for its 

development; we were looking for a synaptic plasticity rule that would not allow for big 

changes (STDP(∆t) >> SAPR(∆t) at ∆t→0) for small time differences. Figure 4.2 shows the 

quality of the extracted key face features with and without inhibitory neurons in the feature 

extraction layer. The excitatory neuron firings are shown in red at the output of the feature 

extraction layer. SAPR is less prone to saturate in areas of low contrast/information than 

STDP (columns Figure 4.2(a) through (c)). Adjusting the synaptic strength by a small 

amount (according to SAPR, as opposed to STDP) when pre- and post-synaptic neurons 

fire very closely in time results in better recognition for the Occlusion & Rotation images.

Thus, in all subsequent tests we use only the SAPR learning.
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Figure 4.1: Performance of the system in terms of accuracy with different number of 
neurons in the recognition layer using 10-FCV: (a) using SAPR, (b) using STDP, and 
(c) comparison of the SAPR and STDP rules on the Original (black bars) and the 
Occlusion & Rotation (gray bars) images.
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4.2.2 Experiment 2: Comparison with SVM

In this experiment, the system that applies the SAPR is compared with the SVM on 

the (a) Original and (b) Occlusion & Rotation datasets, without any preprocessing except 

for rescaling to the 32×32 size, see Figure 4.3(a) and (b). 

The Occlusion & Rotation datasets were prepared as described in Section 3.2.

However, in order to calculate the standard deviation error for Figure 4.3(b) we generated 

Figure 4.2: Graphical comparison of the results generated on the feature extraction 
layer using the SAPR and STDP rules on one of the images, with inhibition (columns 
(a) and (b)) and without inhibition (column (c)). 
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Figure 4.3: Comparison of the network performance in terms of accuracy using the 
SAPR and the SVM.

ten different variations of the data (Shin et al., 2010). Note that there are no error bars for 

the Original images because the results shown in Figure 4.3(a) are based on the 10-FCV.

We used 1152 neurons in the recognition layer in all experiments. To encode the 

images as inputs to the SVM, we converted each image into the 1024-dimentional (which 

corresponds to the total number of pixels) intensity vector. 10-FCV was performed on each 

dataset. We report the SVM result for the 2nd degree polynomial kernel with the value of 

the complexity constant C=1. This kernel provides favorable predictive performance when 

compared with the 1st and 3rd degree polynomial and Radial Basis Function kernels. 

As shown in Figure 4.3, SVMs perform slightly better on all Original datasets,

except the CMU. However, in the case of the more challenging Occlusion & Rotation 

datasets, the system using the SAPR outperforms the SVMs in terms of accuracy. Results 

for other performance measures are provided at Appendix B.
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To achieve good performance using the SVM on occluded datasets, it has been 

known that several preprocessing tasks were performed (Déniz et al., 2003; Heisele et al., 

2003). In contrast, our system does not require any preprocessing of the images. One of the 

key challenges in object recognition is to achieve invariance to object transformations. The 

especially challenging case concerns objects that are transformed in a non-linear way, 

which is characteristic of the Occlusion & Rotation images that are considered here. We 

attribute better than SVM performance of our network on the Occlusion & Rotation images 

to its randomly generated synaptic connections between the feature extraction layer and the 

recognition layer.
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CHAPTER 5 Stopping Criterion

This chapter introduces a criterion for stopping iteration process in the designed 

system. The criterion, well- suited for real-time implementation, is based on information 

entropy and allows to significantly reduce the number of iterations while only slightly 

decreasing accuracy of recognition. 

This chapter is organized as follows: we first describe an issue on the iteration 

process of the network in Section 5.1, the entropy based stopping criterion in Section 5.2,

and the simulation results and comparison of results in Section 5.3.      

5.1 Issue in Iteration Process

In the previous chapter, we focused on the practical problem of face recognition for 

partially occluded and rotated images. One of the issues related to the network is the

iteration process. To stimulate a neuron, neurophysiologists inject current through an 

electrode to the transmembrane and record its potential change (Izhikevich et al., 2003; 

MacGregor, 1993). Depending on the shape or duration of the input currents, it has been 

shown that there are different spiking patterns of neurons (Aubie et al., 2009; Izhikevich, 

2006; Izhikevich et al., 2003). The network for face recognition also follows similar 

stimulation. The input currents to the sensory layer in the network for face recognition are 
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based on the grayscale intensities, which are rescaled within a defined range (see tr.4 in 

Table 3.3). Given the input currents/information to the sensory layer, neurons in each layer 

generate spikes in response, and then the spike information is passed to the recognition 

layer and used to perform the classification task. Therefore, this mechanism causes several 

iteration processes corresponding to the length of input currents. We address this problem 

by introducing simple and effective criterion to reduce computational time. 

The new stopping criterion is based on information entropy calculated from spike 

responses in the network. Neurons at each layer generate spike responses that carry neural 

representations in multiple stages of information processing. To quantify the information 

transmission, information theory has been often used (Borst and Theunissen, 1999; Nelken 

and Chechik, 2007). The stopping criterion for face recognition network is based on 

information entropy calculated at the recognition layer when it reaches the peak point 

during the iteration process. Based on this stopping criterion, the full iteration process of 

the network requires much less computation while only slightly affecting accuracy of 

recognition (specifically, less than 5% reduction in performance for threefold reduction of

computation time).

5.2 Entropy-based Stopping Criterion

As mentioned Chapter 4, the network topology for face recognition is hierarchical 

and consists of the sensory/receptive layer, feature extraction layer, and the recognition 

(decision making) layer.
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Figure 5.1: The network topology and its corresponding neuronal spike responses: (a) 
the network topology and its output of the feature extraction layer for an input image in 
32×32 resolution, and (b) one example of neuronal spike responses with SAPR rule in 
the sensory (s/e), feature extraction (f/e and f/i) and recognition (r/e) layers.

Given an input image to the sensory layer of the network, neurons in each layer are 

activated during a period of 300 ms of simulation time.  Figure 5.1(b) shows one example 

of neuronal spike responses with SAPR rule in the sensory (s/e), feature extraction (f/e and 

f/i) and recognition (r/e) layers for one input image. One point which should be noticed in 

Figure 5.1(b) is that the spike responses of the feature extraction layer are concentrated in 

time/iteration steps that are between 50 and 125 ms, out of a total simulation time/steps of 

300 ms. Note that, in Figure 5.1, s/e stands for excitatory neurons in the feature extraction 
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layer, f/e and f/i stand for excitatory and inhibitory neurons in the feature extraction layer, 

and r/e stands for excitatory neurons in the recognition layer.

Neurons in each layer generate spike responses which carry neural representations 

in multiple stages of information processing. Information theory has been widely used to 

quantify information transmission (Borst and Theunissen, 1999; Nelken and Chechik, 

2007). As illustrated in Figure 5.1(b), the concentration of a response is an important 

characteristic of the network. The neurons in each layer generate spike responses during a 

period of 300 ms of simulation time (iteration process). The spiking information of the 

neurons in the recognition layer is used only for forming a signature vector for each class. 

To measure this information content we use Shannon’s entropy 





n

i
iientropy ppE

1
2 ,log                                                                                         (5.1)

where n is the number of neurons, and pi is the probability for the neuron i spike (pi = 

number of spikes ∕ simulation time).

Based on the entropy, we experimentally show that entropy decreases as the 

information is processed in the hierarchical network for each simulation time (iteration 

process). Figure 5.2 shows performance of the network (Figure 5.2(c)) according to the 

changes of entropies (Figure 5.2(d)) for one (JAFFE  (Lyons et al., 1998)) dataset while 

the spiking responses (Figure 5.2(a)) and the changes of organization of excitatory 

neuronal spike patterns through simulation time (Figure 5.2(b)) are based on one image. 

Note that, in Figure 5.2, s/e stands for excitatory neurons in the feature extraction layer, f/e
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Figure 5.2: Relationship between an entropy variation and a performance of the 
network for JAFFE data in 32×32 resolution using SAPR; (a) neuronal spike responses 
in the sensory (s/e), feature extraction (f/e and f/i) and recognition layers (r/e), (b) the 
changes of organization of excitatory neuronal spike patterns through simulation time in 
the sensory (s/e) and feature extraction layer (f/e), (c) an entropy variation at hierarchy 
through simulation time, and (d) a performance of the network through simulation time. 

and f/i stand for excitatory and inhibitory neurons in the feature extraction layer, r/e stands 

for excitatory neurons in the recognition layer, and i=80 and j=20.

Entropy at each layer first increases and then decreases (after a certain amount of 

simulation time). An interesting observation is that the accuracy of the network also 

stabilizes at the point when entropies start to decrease, with the exception of the sensory 

layer. Note that information entropy becomes smaller as it passes through the network such
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that at the recognition layer it is the smallest (see Figure 5.2(c)), while at the same time 

preserving enough information for classification purpose (see Figure 5.2(d)).

Based on the above, we introduce a more efficient stopping criterion based on 

spiking entropy, which reduces the number of iterations while only slightly affecting 

accuracy. The algorithm for the stopping criterion is shown in Table 5.1.

Table 5.1: Pseudo code of an algorithm for the stopping criterion

Organization:  Computing signature vectors E = [Er,k] and a stopping time
Input:   - an image training data set Ttra = {(xi, yi) | xi  Rnm, i=1,···,Ntra } with yi  {1,···,k}, 
                   where xi stands for an image in n× m resolution
            - a number of recognition neurons 9·2r   
            - a choice of synaptic plasticity such as STDP or SAPR               
Output:   - a signature vector for each class E = [Er,k]
               - a stopping time
Tr.1    Initialize E = [Er,k]; Entropy (r/e) = 0; stopping time = 0;
Tr.2   Initialize the network based on the topology 
Tr.3    While Entropy (r/e) does not reach maximum 
Tr.4        For i 1 to Ntra

Tr.5            - Stimulation of the sensory layer, activation of the feature extraction layer, and activation of the recognition layer 
Tr.9            For j 1 to 9·2r  
Tr.10      If ( jth recognition neuron fired a spike )
Tr.11          Ei[simulation time× 9·2r + j] = transmembrane potential value;
Tr.12      End If
Tr.13 End For
Tr.14          Apply synaptic plasticity 
Tr.16      End For
Tr.18      Update [Er,k] = average of [Er,k] and [Ei

r,k];
Tr.19      simulation time = simulation time + 1;
Tr.20  End While
Tr.21  Return E = [Er,k]; stopping time = simulation time;

Recall:  Testing the system
Input: an image testing data set Ttest = {(xi, yi) | xi  Rnm, i=1,···,Ntest }  and  E = [Er,k]
Output: a performance of the system in terms of Accuracy, Precision, Recall, and HM
Tt.1  For Ninput 1 to Ntest

Tt.2        Generate E Ninput based on the steps 9 through 16 in Organization until the simulation time reaches the stopping time
Tt.3        Identify image with Threshold Comparator defined as follows:

                   - Calculate match as
th

N
jiji EEE input  ,,

, where Eth=10

- Calculate the match scores rM j  300
matchesof#

- Select winning class by
j

kj
input MN   max  arg    class winning

1 


Tt.4    End For
Tt.5    Evaluate the performance of the system based on eq. (4.1)
Tt.6    Return the performance of the system
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5.3 Results and Discussion

Simulations results are presented in this section. Four different sets of image 

datasets (JAFFE (Lyons et al., 1998), ORL (or AT&T) (Samaria and Harter, 1994), CMU

(Mitchell, 1997) and UMIST (Graham and Allinson, 1998)) that have been rotated and 

partially occluded are used to test the performance of the network (see the entire datasets in 

the Appendix A). The images are compressed into 32×32 (in pixels) size for computational 

efficiency. We choose 576 neurons in the recognition layer because that much number 

belongs to the medium performance range (from 576 to 2304 neurons in the recognition 

layer) of the system. In reporting all results, we use 10-fold cross-validation. All 

simulations are performed on a computer with a 2.2-GHz Core 2 Duo E4500 processor 

with 2GB of RAM. 

The results shown below are for the SAPR and STDP learning rules. During the 

simulations, accuracies of the system, changes of computational time (in minutes and in an 

absolute time unit), and changes of total entropies for each layer are recorded. Because 

there are no spike responses from neurons in the recognition layer before a certain amount 

of simulation time (iterations) all results are reported from the simulation/iteration time 80s

until 300s. 

The key characteristics of the system are described below.  

− The dynamics of the system performance can be divided into three stages: silent, 

oscillating, and stable (see Figure 5.3). At the beginning of simulation (iterations) 
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no recognition neurons fired because neurons in the sensory and feature extraction 

layers did not fire either. In the silent stage, the neurons in the recognition layer 

start becoming organized, but none of them exceeded threshold to generate a spike. 

Once neurons in the sensory layer start responding to the input stimuli, they trigger 

the neurons in the feature extraction layer to fire, causing the neurons in the 

recognition layer to also start firing spikes. Since majority of the neurons in the 

recognition layer still compete with each other to fire a spike, the system is in the 

unstable oscillating stage. Eventually only a small number of recognition neurons 

will keep firing and thus the system converges into a stable stage. The three stages 

are identified based on the simulation (iteration) experiments. In Figure 5.3, we 

show the three stages when using either the SAPR or the STDP plasticity rule. For 

the SAPR (Fig. 5.3(a)), we have the silent stage between occurring 0 and 90 

iterations, the oscillating stage between 90 and 120 iterations, and the stable stage 

from 120 to 300 iterations.  Similarly,  for the STDP rule (Fig. 5.3(b)), the three 

stages are; 0 to 100 for the silent stage, 100 to  130 for the oscillating stage, and 

130  to 300 for the stable stage. Let us note that the system reaches the stable stage 

with the SAPR rule faster than with the STDP rule.
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Figure 5.3: Performance of the system with accuracy; (a) with SAPR, and (b) with 
STDP.
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− Figure 5.4 shows changes of entropy (average and standard deviation) for the eight 

datasets, with both SAPR and STDP. For each simulation (iteration) step we 

observe that entropy of the sensory layer is greater than the entropy of the feature 

extraction layer, which is still greater than the entropy of the recognition layer. This 

shows that neural firings at multiple stages of hierarchical information processing 

become more compact as measured by entropy. An interesting observation is that 

the entropy at each layer of the network initially increases before it becomes 

decreased. However, the entropy of the sensory layer decreases significantly more 

slowly than of the other layers. These phenomena are clearly seen when we look at 

the neuronal spike responses shown in Figure 5.2(a). Note that the average and the 

standard deviation of total entropies for all eight datasets are shown in Figure 5.4.
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Figure 5.4: Changes of entropy in the sensory (s/e), feature extraction (f/e and f/i) and 
recognition layers (r/e); (a) with SAPR, and (b) with STDP. 
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− Third, the computational time increases linearly as shown in Figures 5.5 and 5.6. 

Figure 5.5 depicts changes of the total CPU time (in minutes) for the eight datasets, 

while using either SAPR (Figure 5.5(a)) or STDP (Figure 5.5(b)) rules. In addition, 

Figure 5.6 illustrates changes of the total computational time (in an absolute unit), 

while using either SAPR (Figure 5.6(a)) or STDP (Figure 5.6(b)) rules. Because of 

different number of images in each of the eight datasets the computational times in 

CPU are different (see Figure 5.5). However, when normalized to 300 iteration 

steps and averaged over all datasets it shows that the computational times increase 

linearly (see Figure 5.6). We can easily identify a stopping point for iterations as 

corresponding to the maximum value of entropy at the recognition layer; see Figure

5.4. For the SAPR it is at 90 iterations step, and for the STDP it is 100. The 

implications of this result are very significant as we can save much time and still be 

able to identify the images without a significant decrease in performance. For 

example (Figure 5.6), the total computational time can be reduced by 2/3 for 

application of both SAPR and STDP rules. Note that the average and the standard 

deviation of total computational time in an absolute unit for all eight datasets are 

shown in the Figure 5.6.
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Figure 5.5: Changes of the total CPU time in minutes; (a) with SAPR, and (b) with 
STDP.
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Figure 5.6: Changes of the total computational time in an absolute unit; (a) with SAPR, 
and (b) with STDP.
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From Figures 5.3, 5.4, 5.5 and 5.6, we identify a stopping point of the simulation 

time as the one when entropy of the recognition layer reaches maximum; 90 for SAPR and 

100 for STDP (based on the simulations). However, this holds true for all datasets in terms 

of absolute computational time unit without much degradation of error/performance. 

Therefore, the total computational time can be reduced to 0.329 ± 0.001 for SAPR and 

0.369 ± 0.010 for STDP, out of 1.00 (for simulation time = 300), respectively. This is the 

most important characteristic of the network because the simulation time because we can 

reduce the number of iterations steps, and thus time three-fold (as it does not need to 

continue until it reaches 300) to achieve good performance system without compromising 

accuracy. 
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CHAPTER 6 Conclusions

In spite of the ever-increasing computational power (both in speed and memory) 

there exist many difficult computational problems, such as weather prediction,  

optimization problems, genomics, proteomics and neuroinformatics problems, and image 

recognition, that still are not easily solved by the existing computational tools. One of the 

reasons is that conventional solving methods are limited in their sequential solving power 

when they assume that different causes of distortions are independent and can be isolated. 

For instance, given that an assumption that the occlusion and rotation are independent, we 

can first solve the first problem and later address the second. However, such independency 

often cannot be proven, and therefore such sequential solutions fail. 

We focused on a difficult task of recognizing partially occluded and rotated images 

and borrowed the ideas from neuroscience for designing a new classifier. We have shown 

that a satisfactory performance of the system was achieved using a limited number of 

resources, in terms of a specific number of recognition neurons and synaptic connections,

for a given input image size.
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6.1 Summary

We have developed a novel image recognition system, based on a network of 

spiking neurons, for solving computationally challenging task of recognizing partially 

occluded and rotated face images. The developed network is hierarchical and consists of 

three layers: input, feature extraction, and recognition. During organization/training phase, 

the system generates signature vectors and saves them in the recall table. During the 

recall/testing phase, the new output is matched with the stored signature vectors. The 

matching is performed using the introduced image similarity measure, the threshold 

comparator, based on the transmembrane potential values of neurons that generated spikes.

Although it is known that information transfer between the neurons in the brain is 

much slower than that in modern computers, its organization allows for superior human 

performance in difficult tasks like image recognition. Thus, we designed our network using 

simple clues from the still limited knowledge of how the brain processes information. They 

included hierarchical organization, random synaptic connections, and the biologically 

plausible learning rules.    

Using the system we compared performance of the SAPR and STDP synaptic 

plasticity rules on the Original face images and on the more difficult Occlusion & Rotation 

images. The results showed that the SAPR performed better on both types of images. We 

attributed it to its continuity around zero that resulted in small adjustments in contrast to 

big adjustments when using STDP. We have also shown that a satisfactory performance of 

the system could be achieved using a specific network topology (i.e., a specific number of 
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the recognition neurons and a specific number of synaptic connections), given an image 

size.

Next, we compared the system with the SVM classifier. The SVM performed 

negligibly better on three out of four Original images. However, our system significantly 

outperformed SVM, between 5% to 10% in terms of accuracy, on the challenging 

Occlusion & Rotation images. The results showed that it was beneficial to borrow the 

ideas/mechanisms of how brains process information for designing our system. At the 

same time we do not claim biological plausibility of our system. 

We also introduced a stopping criterion for iterations based on entropy. It 

efficiently reduced the number of required iterations while only slightly affecting 

classification performance. The entropy-based stopping criterion significantly shortened 

iterative process and thus improved computational performance. The criterion is well-

suited for real-time implementation in designing classification systems.

The dynamics of the system’s performance were divided into the silent, oscillating, 

and stabilizing periods. The information entropy decreased as the information was

processed in the hierarchical structure of the network. The information was compressed 

during hierarchical processing so that at the last, recognition layer, the entropy was smaller 

than at the preceding layer, while preserving enough information to perform accurate 

classification. An important fact was that the performance of the network was stabilized at 

the point when entropies start to decrease, except for the sensory layer. 



62

The most important characteristic of the new entropy-based stopping criterion was

that the simulation time could be reduced three-fold without compromising accuracy. This 

is important for other applications where it is important to make a quick decision.

We have shown that our network of spiking neurons was successfully applied to a 

difficult task of recognizing partially occluded and rotated images. Although we do not 

claim any biological plausibility, we have shown that mimicking the way of how the brain 

processes information and designing an automated system helped in achieving good 

recognition results that outperformed state-of-the-art machine learning methods.

The main contributions of the system are its novel hierarchical topology, a new

image similarity measure, and an entropy-based stopping criterion. 

We think that our general approach can help in solving other difficult engineering 

and computational problems, such as weather prediction, optimization problems, problems 

in bioinformatics, and image understanding that still are not easily solved by existing 

computational tools.

6.2 Future Work

We plan to perform experiments on more datasets with different parameter settings 

for generating occluded and rotated datasets. Several issues in object recognition, such as

scale, rotation and position invariance, will be also deeply studied. Moreover, we plan to 

further investigate the role of inhibitory neurons to know how crucial their presence is in 

the feature extraction layer or recognition layer for the performance of the system. 
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There are many issues which have not been solved, for example, whether inhibitory 

neurons update their weights.

Possible improvement of the system is its computational time efficiency. It could 

be improved by using multithreaded implementations or other simple spiking neuron 

models. 

It would be also interesting to see if the computational time of the network could be 

minimized by using other probability functions in the entropy based stopping criteria.

Although the presented results were good a detailed study of all aspects of the 

network is planned to fully understand fundamental principles governing its behavior. 
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APPENDIX A Occlusion and Rotation Datasets 

Simulations in this dissertation were performed with four different sets of image

datasets; JAFFE, ORL (or AT&T), CMU and UMIST.  For each data set, we prepared its 

occluded and rotated version by introducing occlusions into 50% of images according to 

the procedure shown in Figure 3.6 and by rotating 25% of images by 90, 180 and 270 

degrees each in the clockwise direction (explained in Section 3.2). We generated ten 

different variations of the occluded and rotated data. One of the entire variations is shown 

below.
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Figure A.1: The Occlusion & Rotation images of JAFFE dataset.
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Figure A.2: The Occlusion & Rotation images of ORL dataset.
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Figure A.3: The Occlusion & Rotation images of CMU dataset.
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Figure A.4: The Occlusion & Rotation images of UMIST dataset.
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APPENDIX B Other Performance Measures

The appendix B provides performance results for other measures; precision, recall 

and F-measure.

Figure B.1: Performance of the system in terms of precision with different number of 
neurons in the recognition layer using 10-FCV: (a) using SAPR, (b) using STDP, and 
(c) comparison of the SAPR and STDP rules on the Original (black bars) and the 
Occlusion & Rotation (gray bars) images.
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Figure B.2: Performance of the system in terms of recall with different number of 
neurons in the recognition layer using 10-FCV: (a) using SAPR, (b) using STDP, and 
(c) comparison of the SAPR and STDP rules on the Original (black bars) and the 
Occlusion & Rotation (gray bars) images.
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Figure B.3: Performance of the system in terms of Harmonic mean with different 
number of neurons in the recognition layer using 10-FCV: (a) using SAPR, (b) using 
STDP, and (c) comparison of the SAPR and STDP rules on the Original (black bars) 
and the Occlusion & Rotation (gray bars) images.
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Figure B.4: Comparison of the network performance in terms of precision using the 
SAPR and the SVM.

Figure B.5: Comparison of the network performance in terms of recall using the SAPR
and the SVM.
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Figure B.6: Comparison of the network performance in terms of Harmonic mean using 
the SAPR and the SVM.
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