228 research outputs found

    Rice Seed Varieties Identification based on Extracted Colour Features using Image Processing and Artificial Neural Network (ANN)

    Get PDF
    Determination of rice seed varieties is very important to ensure varietal purity in the production of high-quality seed. To date, manual seed inspection is carried out to separate foreign rice seed varieties in rice seed sample in the laboratory as there is lack of an automatic seed classification system.  This paper describes a simple approach of using image processing technique and artificial neural network (ANN) to determine rice seed varieties based on extracted colour features of individual seed images. The experiment was conducted using 200 individual seed images of two Malaysian rice seed varieties namely MR 219 and MR 269. The acquired seed images were processed using a set of image processing procedure to enhance the image quality. Colour feature extraction was carried out to extract the red (R), green (G), blue (B), hue (H), saturation (S), value (V) and intensity (I) levels of the individual seed images. The classification using ANN was carried out by dividing the data sets into training (70% of data), validation (15%) and testing (15%) dataset respectively. The best ANN model to determine the rice seed varieties was developed, and the accuracy levels of the classification results were 67.5% and 76.7% for testing and training data sets using 40 hidden neurons

    Real Time Face Detection And Recognition Using Hybrid Method

    Get PDF
    Over the last few decades, the advancement in computer technology has made it possible to work Biometric systems with very high efficiency in real life scenario. Various efforts have been made to minimize pre-processing time. In this paper, the application developed here includes human face detection and recognition system using hybrid techniques. The hybrid technique is basically a combination of skin grabbing, Gabor filter and PCA. The whole system is divided into two sections. Firstly, real time detection of faces using various skin grabbing techniques. Secondly, a face recognition system using Gabor filter and PCA method. Hybrid technique for face detection and recognition guarantees accuracy

    Improving Human Face Recognition Using Deep Learning Based Image Registration And Multi-Classifier Approaches

    Get PDF
    Face detection, registration, and recognition have become a fascinating field for researchers. The motivation behind the enormous interest in the topic is the need to improve the accuracy of many real-time applications. Countless methodologies have been acknowledged and presented in the past years. The complexity of the human face visual and the significant changes based on different effects make it more challenging to design as well as implementing a powerful computational system for object recognition in addition to human face recognition. Using supervised learning often requires extensive training for the computer which results in high execution times. It is an essential step in the face recognition to apply strong preprocessing approaches such as face registration to achieve a high recognition accuracy rate. Although there are exist approaches do both detection and recognition, we believe the absence of a complete end-to-end system capable of performing recognition from an arbitrary scene is in large part due to the difficulty in alignment. Often, the face registration is ignored, with the assumption that the detector will perform a rough alignment, leading to suboptimal recognition performance. In this research, we presented an enhanced approach to improve human face recognition using a back-propagation neural network (BPNN) and features extraction based on the correlation between the training images. A key contribution of this paper is the generation of a new set called the T-Dataset from the original training data set, which is used to train the BPNN. We generated the T-Dataset using the correlation between the training images without using a common technique of image density. The correlated T-Dataset provides a high distinction layer between the training images, which helps the BPNN to converge faster and achieve better accuracy. Data and features reduction is essential in the face recognition process, and researchers have recently focused on the modern neural network. Therefore, we used using a classical conventional Principal Component Analysis (PCA) and Local Binary Patterns (LBP) to prove that there is a potential improvement even using traditional methods. We applied five distance measurement algorithms and then combined them to obtain the T-Dataset, which we fed into the BPNN. We achieved higher face recognition accuracy with less computational cost compared with the current approach by using reduced image features. We test the proposed framework on two small data sets, the YALE and AT&T data sets, as the ground truth. We achieved tremendous accuracy. Furthermore, we evaluate our method on one of the state-of-the-art benchmark data sets, Labeled Faces in the Wild (LFW), where we produce a competitive face recognition performance. In addition, we presented an enhanced framework to improve the face registration using deep learning model. We used deep architectures such as VGG16 and VGG19 to train our method. We trained our model to learn the transformation parameters (Rotation, scaling, and shifting). By leaning the transformation parameters, we will able to transfer the image back to the frontal domain. We used the LFW dataset to evaluate our method, and we achieve high accuracy

    Computational Mechanisms of Face Perception

    Get PDF
    The intertwined history of artificial intelligence and neuroscience has significantly impacted their development, with AI arising from and evolving alongside neuroscience. The remarkable performance of deep learning has inspired neuroscientists to investigate and utilize artificial neural networks as computational models to address biological issues. Studying the brain and its operational mechanisms can greatly enhance our understanding of neural networks, which has crucial implications for developing efficient AI algorithms. Many of the advanced perceptual and cognitive skills of biological systems are now possible to achieve through artificial intelligence systems, which is transforming our knowledge of brain function. Thus, the need for collaboration between the two disciplines demands emphasis. It\u27s both intriguing and challenging to study the brain using computer science approaches, and this dissertation centers on exploring computational mechanisms related to face perception. Face recognition, being the most active artificial intelligence research area, offers a wealth of data resources as well as a mature algorithm framework. From the perspective of neuroscience, face recognition is an important indicator of social cognitive formation and neural development. The ability to recognize faces is one of the most important cognitive functions. We first discuss the problem of how the brain encodes different face identities. By using DNNs to extract features from complex natural face images and project them into the feature space constructed by dimension reduction, we reveal a new face code in the human medial temporal lobe (MTL), where neurons encode visually similar identities. On this basis, we discover a subset of DNN units that are selective for facial identity. These identity-selective units exhibit a general ability to discriminate novel faces. By establishing coding similarities with real primate neurons, our study provides an important approach to understanding primate facial coding. Lastly, we discuss the impact of face learning during the critical period. We identify a critical period during DNN training and systematically discuss the use of facial information by the neural network both inside and outside the critical period. We further provide a computational explanation for the critical period influencing face learning through learning rate changes. In addition, we show an alternative method to partially recover the model outside the critical period by knowledge refinement and attention shifting. Our current research not only highlights the importance of training orientation and visual experience in shaping neural responses to face features and reveals potential mechanisms for face recognition but also provides a practical set of ideas to test hypotheses and reconcile previous findings in neuroscience using computer methods

    Efficient Design, Training, and Deployment of Artificial Neural Networks

    Get PDF
    Over the last decade, artificial neural networks, especially deep neural networks, have emerged as the main modeling tool in Machine Learning, allowing us to tackle an increasing number of real-world problems in various fields, most notably, in computer vision, natural language processing, biomedical and financial analysis. The success of deep neural networks can be attributed to many factors, namely the increasing amount of data available, the developments of dedicated hardware, the advancements in optimization techniques, and especially the invention of novel neural network architectures. Nowadays, state-of-the-arts neural networks that achieve the best performance in any field are usually formed by several layers, comprising millions, or even billions of parameters. Despite spectacular performances, optimizing a single state-of- the-arts neural network often requires a tremendous amount of computation, which can take several days using high-end hardware. More importantly, it took several years of experimentation for the community to gradually discover effective neural network architectures, moving from AlexNet, VGGNet, to ResNet, and then DenseNet. In addition to the expensive and time-consuming experimentation process, deep neural networks, which require powerful processors to operate during the deployment phase, cannot be easily deployed to mobile or embedded devices. For these reasons, improving the design, training, and deployment of deep neural networks has become an important area of research in the Machine Learning field. This thesis makes several contributions in the aforementioned research area, which can be grouped into two main categories. The first category consists of research works that focus on designing efficient neural network architectures not only in terms of accuracy but also computational complexity. In the first contribution under this category, the computational efficiency is first addressed at the filter level through the incorporation of a handcrafted design for convolutional neural networks, which are the basis of most deep neural networks. More specifically, the multilinear convolution filter is proposed to replace the linear convolution filter, which is a fundamental element in a convolutional neural network. The new filter design not only better captures multidimensional structures inherent in CNNs but also requires far fewer parameters to be estimated. While using efficient algebraic transforms and approximation techniques to tackle the design problem can significantly reduce the memory and computational footprint of neural network models, this approach requires a lot of trial and error. In addition, the simple neuron model used in most neural networks nowadays, which only performs a linear transformation followed by a nonlinear activation, cannot effectively mimic the diverse activities of biological neurons. For this reason, the second and third contributions transition from a handcrafted, manual design approach to an algorithmic approach in which the type of transformations performed by each neuron as well as the topology of neural networks are optimized in a systematic and completely data-dependent manner. As a result, the algorithms proposed in the second and third contributions are capable of designing highly accurate and compact neural networks while requiring minimal human efforts or intervention in the design process. Despite significant progress has been made to reduce the runtime complexity of neural network models on embedded devices, the majority of them have been demonstrated on powerful embedded devices, which are costly in applications that require large-scale deployment such as surveillance systems. In these scenarios, complete on-device processing solutions can be infeasible. On the contrary, hybrid solutions, where some preprocessing steps are conducted on the client side while the heavy computation takes place on the server side, are more practical. The second category of contributions made in this thesis focuses on efficient learning methodologies for hybrid solutions that take into ac- count both the signal acquisition and inference steps. More concretely, the first contribution under this category is the formulation of the Multilinear Compressive Learning framework in which multidimensional signals are compressively acquired, and inference is made based on the compressed signals, bypassing the signal reconstruction step. In the second contribution, the relationships be- tween the input signal resolution, the compression rate, and the learning performance of Multilinear Compressive Learning systems are empirically analyzed systematically, leading to the discovery of a surrogate performance indicator that can be used to approximately rank the learning performances of different sensor configurations without conducting the entire optimization process. Nowadays, many communication protocols provide support for adaptive data transmission to maximize the data throughput and minimize energy consumption depending on the network’s strength. The last contribution of this thesis proposes an extension of the Multilinear Compressive Learning framework with an adaptive compression capability, which enables us to take advantage of the adaptive rate transmission feature in existing communication protocols to maximize the informational content throughput of the whole system. Finally, all methodological contributions of this thesis are accompanied by extensive empirical analyses demonstrating their performance and computational advantages over existing methods in different computer vision applications such as object recognition, face verification, human activity classification, and visual information retrieval

    A Novel Feature Maps Covariance Minimization Approach for Advancing Convolutional Neural Network Performance

    Full text link
    We present a method for boosting the performance of the Convolutional Neural Network (CNN) by reducing the covariance between the feature maps of the convolutional layers. In a CNN, the units of a hidden layer are segmented into the feature/activation maps. The units within a feature map share the weight matrix (filter), or in simple terms look for the same feature. A feature map is the output of one filter applied to the previous layer. CNN search for features such as straight lines, and as these features are spotted, they get reported to the feature map. During the learning process, the convolutional neural network defines what it perceives as important. Each feature map is looking for something else: one feature map could be looking for horizontal lines while the other for vertical lines or curves. Reducing the covariance between the feature maps of a convolutional layer maximizes the variance between the feature maps out of that layer. This supplements the decrement in the redundancy of the feature maps and consequently maximizes the information represented by the feature maps

    Advanced user authentification for mobile devices

    Get PDF
    Access to the full-text thesis is no longer available at the author's request, due to 3rd party copyright restrictions. Access removed on 28.11.2016 by CS (TIS).Metadata merged with duplicate record ( http://hdl.handle.net/10026.1/1101 - now deleted) on 20.12.2016 by CS (TIS).Recent years have witnessed widespread adoption of mobile devices. Whereas initial popularity was driven by voice telephony services, capabilities are now broadening to allow an increasing range of data orientated services. Such services serve to extend the range of sensitive data accessible through such devices and will in turn increase the requirement for reliable authentication of users. This thesis considers the authentication requirements of mobile devices and proposes novel mechanisms to improve upon the current state of the art. The investigation begins with an examination of existing authentication techniques, and illustrates a wide range of drawbacks. A survey of end-users reveals that current methods are frequently misused and considered inconvenient, and that enhanced methods of security are consequently required. To this end, biometric approaches are identified as a potential means of overcoming the perceived constraints, offering an opportunity for security to be maintained beyond pointof- entry, in a continuous and transparent fashion. The research considers the applicability of different biometric approaches for mobile device implementation, and identifies keystroke analysis as a technique that can offer significant potential within mobile telephony. Experimental evaluations reveal the potential of the technique when applied to a Personal Identification Number (PIN), telephone number and text message, with best case equal error rates (EER) of 9%, 8% and 18% respectively. In spite of the success of keystroke analysis for many users, the results demonstrate the technique is not uniformly successful across the whole of a given population. Further investigation suggests that the same will be true for other biometrics, and therefore that no single authentication technique could be relied upon to account for all the users in all interaction scenarios. As such, a novel authentication architecture is specified, which is capable of utilising the particular hardware configurations and computational capabilities of devices to provide a robust, modular and composite authentication mechanism. The approach, known as IAMS (Intelligent Authentication Management System), is capable of utilising a broad range of biometric and secret knowledge based approaches to provide a continuous confidence measure in the identity of the user. With a high confidence, users are given immediate access to sensitive services and information, whereas with lower levels of confidence, restrictions can be placed upon access to sensitive services, until subsequent reassurance of a user's identity. The novel architecture is validated through a proof-of-concept prototype. A series of test scenarios are used to illustrate how IAMS would behave, given authorised and impostor authentication attempts. The results support the use of a composite authentication approach to enable the non-intrusive authentication of users on mobile devices.Orange Personal Communication Services Ltd

    Machine Learning and Notions of the Image

    Get PDF

    感性推定のためのDeep Learning による特徴抽出

    Get PDF
    広島大学(Hiroshima University)博士(工学)Doctor of Engineeringdoctora
    corecore