

IMPROVING HUMAN FACE RECOGNITION USING

DEEP LEARNING BASED IMAGE REGISTRATION

AND MULTI-CLASSIFIER APPROACHES

Mohannad Abuzneid

Under the Supervision of Dr. Ausif Mahmood

DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

AND ENGINEERING

THE SCHOOL OF ENGINEERING

UNIVERSITY OF BRIDGEPORT

CONNECTICUT

December, 2018

ii

IMPROVING HUMAN FACE RECOGNITION USING DEEP

LEARNING BASED IMAGE REGISTRATION AND MULTI-

CLASSIFIER APPROACHES

Mohannad Abuzneid

Under the Supervision of Dr. Ausif Mahmood

Approvals

iii

IMPROVING HUMAN FACE RECOGNITION USING DEEP

LEARNING BASED IMAGE REGISTRATION AND MULTI-

CLASSIFIER APPROACHES

© Copyright by Mohannad Abuzneid 2018

iv

IMPROVING HUMAN FACE RECOGNITION USING DEEP

LEARNING BASED IMAGE REGISTRATION AND MULTI-

CLASSIFIER APPROACHES

ABSTRACT

Face detection, registration, and recognition have become a fascinating field for

researchers. The motivation behind the enormous interest in the topic is the need to

improve the accuracy of many real-time applications. Countless methodologies have been

acknowledged and presented in the past years. The complexity of the human face visual

and the significant changes based on different effects make it more challenging to design

as well as implementing a powerful computational system for object recognition in

addition to human face recognition. Using supervised learning often requires extensive

training for the computer which results in high execution times. It is an essential step in

the face recognition to apply strong preprocessing approaches such as face registration to

achieve a high recognition accuracy rate. Although there are exist approaches do both

detection and recognition, we believe the absence of a complete end-to-end system

capable of performing recognition from an arbitrary scene is in large part due to the

difficulty in alignment. Often, the face registration is ignored, with the assumption that

the detector will perform a rough alignment, leading to suboptimal recognition

v

performance.

In this research, we presented an enhanced approach to improve human face

recognition using a back-propagation neural network (BPNN) and features extraction

based on the correlation between the training images. A key contribution of this paper is

the generation of a new set called the T-Dataset from the original training data set, which

is used to train the BPNN. We generated the T-Dataset using the correlation between the

training images without using a common technique of image density. The correlated T-

Dataset provides a high distinction layer between the training images, which helps the

BPNN to converge faster and achieve better accuracy. Data and features reduction is

essential in the face recognition process, and researchers have recently focused on the

modern neural network. Therefore, we used using a classical conventional Principal

Component Analysis (PCA) and Local Binary Patterns (LBP) to prove that there is a

potential improvement even using traditional methods. We applied five distance

measurement algorithms and then combined them to obtain the T-Dataset, which we fed

into the BPNN. We achieved higher face recognition accuracy with less computational

cost compared with the current approach by using reduced image features. We test the

proposed framework on two small data sets, the YALE and AT&T data sets, as the ground

truth. We achieved tremendous accuracy. Furthermore, we evaluate our method on one

of the state-of-the-art benchmark data sets, Labeled Faces in the Wild (LFW), where we

produce a competitive face recognition performance.

In addition, we presented an enhanced framework to improve the face registration

using deep learning model. We used deep architectures such as VGG16 and VGG19 to

train our method. We trained our model to learn the transformation parameters (Rotation,

vi

scaling, and shifting). By leaning the transformation parameters, we will able to transfer

the image back to the frontal domain. We used the LFW dataset to evaluate our method,

and we achieve high accuracy.

vii

ACKNOWLEDGEMENTS

My thanks are wholly devoted to God, who has helped me complete this work

successfully. I owe a debt of gratitude to my family, my parents, my lovely wife, and my

kids Fahad and Feras for their understanding and encouragement. I am very grateful to

my father for raising me and encouraging me to achieve my goal. I could have never

achieved this without their support.

I would like to express special thanks to my supervisor Dr. Ausif Mahmood for

his constant guidance, comments, and valuable time. The door to Prof. Mahmood office

was always open whenever I ran into a trouble spot or had a question about my research

or writing. My appreciation also goes my committee members Dr. Miad Faezipou, Dr.

Xingguo Xiong, Dr. Sarosh Patel and Dr. Akram Abu-aisheh for their valuable time and

suggestions. I also would like to thank my brother Abdel-shakour Abuzneid for his

support.

TABLE OF CONTENTS

ABSTRACT .. iv

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS .. viii

ABBREVIATIONS .. xi

LIST OF TABLES ...xiii

LIST OF FIGURES ... xiv

CHAPTER 1: INTRODUCTION .. 1

1.1 Research Problem and Scope .. 1

1.2 Motivation behind the Research ... 3

1.3 Potential Contributions of the Proposed Research ... 4

CHAPTER 2: LITERATURE SURVEY ... 8

2.1 Preprocessing and Image Registration .. 9

2.2 Feature Extraction for Face Recognition ... 11

2.2.1 Appearance-Based Feature Extraction Approach ... 12

2.2.2 Feature-Based Feature Extraction Approach .. 15

2.3 Classification .. 17

2.4 Neural Network .. 18

2.5 Deep Learning Background .. 22

2.6 Convolutional Neural Network .. 23

2.6.1 Convolutional Layer ... 24

ix

2.6.2 Pooling Layer .. 26

2.6.3 Fully Connected Layer .. 28

2.7 Literature Review for Face Registration .. 28

2.7.1 Speed-Up Robust Features (SURF) .. 28

2.7.2 Minimized Cost Function ... 30

2.7.3 Random Sample Consensus (RANSAC) .. 30

CHAPTER 3: RESEARCH PLAN AND SYSTEM ARCHITECTURE 32

3.1 Human Face Datasets .. 32

3.1.1 ORL Dataset .. 32

3.1.2 Yale Dataset .. 33

3.1.3 Labeled Faces in the Wild ... 34

3.2 Classical Face Recognition System ... 34

3.2.1 Principle Component Analysis.. 38

3.2.2 Local Binary Patterns Histogram (LBPH) .. 40

3.2.3 Similarity Measurements Methods ... 43

3.3 Face Recognition using PCA and NN Proposed System ... 45

3.3.1 Proposed Method .. 45

3.4 Face Recognition using LBPH and NN Proposed System ... 50

3.4.1 Proposed Method .. 50

3.5 Face Registration Based on a Minimalized Cost Function ... 54

3.5.1 Proposed Method .. 54

3.6 Deep Learning Face Registration ... 56

3.6.1 Obtaining the Training Dataset ... 57

3.6.2 VGGNet Model ... 58

3.6.3 Residual Neural Network (ResNet) Model ... 59

x

3.6.4 Proposed Method Configurations ... 61

CHAPTER 4: RESULTS ... 63

4.1 Classical Face Recognition System Result .. 63

4.1.1 Classical Face Recognition Using PCA and KNN Result .. 63

4.1.2 Classical Face Recognition Using LBPH and KNN Result .. 65

4.2 Proposed Face Recognition System Result .. 67

4.2.1 Proposed Face Recognition Result Using the PCA and NN ... 67

4.2.2 Proposed Face Recognition Result Using the LBPH and NN 68

4.3 Face Registration Based on a Minimalized Cost Function Result .. 70

4.4 Deep Face Registration Result ... 71

CONCLUSIONS ... 74

REFERENCES .. 75

APPENDIX .. 86

ABBREVIATIONS

BPNN Back-propagation Neural Network

2DPCA 2- Dimensional Principal Component Analysis

BGD Batch Gradient Descent

BRIEF Binary Robust Independent Elementary Feature

CNN Convolutional Neural Networks

DBN Deep Belief Network

DCT Discrete Cosine Transform

DWT Discrete Wavelet Transform

FFT Fast Fourier Transform

ICA Independent component analysis

KNN K-Nearest-Neighbor

LBP Local Binary Patterns

LDA Linear discriminant analysis

LFW Labeled Faces in the Wild

MLP Multi-Layer Perceptron

NN Neural Network

ORL Olivetti Research Laboratory Dataset

PCA Principal Component Analysis

RANSAC Random Sample Consensus

https://en.wikipedia.org/wiki/Multilayer_perceptron

xii

ReLU Rectified Linear Unit

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RR Recognition Rate

SA Stacked Autoencoder

SGD Stochastic Gradient Descent

SIFT Scale-Invariant Feature Transform

SRS Square-Root of the Sum

SSE Sum-Squared-Error

SURF Speeded-Up Robust Features

SVM Support Vector Machines

xiii

LIST OF TABLES

Table 1.1 The optimal match scenario 5

Table 1.2 The partially match scenario 6

Table 1.3 The complete mismatch scenario 6

Table 3.1 An example of how to obtain the new training data (column

6) and the expected out (column 7) for one of the training

images (image X)

48

Table 4.1 Experiment results using PCA + KNN 63

Table 4.2 Experiment results using LBPH + KNN 65

Table 4.3 Experiment results using PCA + NN with 50% training set

and 50% testing set

67

Table 4.4 Experiment results using LBPH + NN with 50% training set

and 50% testing set

69

Table 4.5 Comparison between the proposed framework and the other

existing methods

70

Table 4.6 Registration error rate for variant matching point number 71

Table 4.7 Deep face registration result. 72

xiv

LIST OF FIGURES

Figure 1.1 Same person with variant facial expression 2

Figure 1.2 Under variant lighting environments, the face can look different

for the same person based on the light source

2

Figure 1.3 Transformation Image 2

Figure 1.4 Face Recognition System Process 3

Figure 2.1 Classical image registration 10

Figure 2.2 Feature Extraction categories 11

Figure 2.3 Three layers neural network 18

Figure 2.4 The typical structure of a CNN 24

Figure 2.5 Convolution operation 26

Figure 2.6 Max pooling in CNN 27

Figure 3.1 Sample of the ORL dataset 33

Figure 3.2 Sample images of Yale dataset 34

Figure 3.3 Sample images of LFW dataset.

35

Figure 3.4 Classical face recognition system using The PCA and KNN

classifier methods

36

Figure 3.5 Classical face recognition system using the LBPH and KNN

classifier method

36

Figure 3.6 Example of Prepressing Methods including cropping, resizing

and Histogram
37

xv

Figure 3.7 Example of the matching case and mismatching case image

using KNN with Mahalanobis distance
38

Figure 3.8 An example of PCA (a) Original data. (b) Correlated data 39

Figure 3.9 (a) Original faces (b) Corresponding Eigen-faces 41

Figure 3.10 Original LBP Operator 42

Figure 3.11 Face description with local binary patterns 43

Figure 3.12 Proposed recognition system using PCA and NN classifier

methods
49

Figure 3.13 Proposed recognition system using LPBH and NN classifier

method
53

Figure 3.14 The proposed image registration method 54

Figure 3.15 Key-points for Lena with variant threshold. (a) Threshold

=100. (b) Threshold =50. (3)Threshold =20
55

Figure 3.16 Matching points with false matching points 55

Figure 3.17 Matching points after eliminating the false points 56

Figure 3.18 Example of image registration. (a) Source and target images

with two matching points. (b) Registered image
56

Figure 3.19 Reference Image. 57

Figure 3.20 The 6 facial landmarks associated with the eye. 58

Figure 3.21 VGGNet model architecture. 59

Figure 3.22 A residual block. 60

Figure 3.23 ResNet50 model architecture. 60

Figure 3.24 Proposed method using a simple CNN. 61

Figure 3.25 Proposed method using VGG16 and VGG19. 62

Figure 3.26 Proposed method using ResNet50. 62

Figure 4.1 Experiment results using PCA + KNN for the Yale data-set. 64

xvi

Figure 4.2 Experiment results using PCA +KNN for ORL data-set 64

Figure 4.3 Experiment results using LBPH + NN for the Yale data-set 66

Figure 4.4 Experiment results using LBPH + NN for the ORL data-set 66

Figure 4.5 Experiment results using PCA + NN with 50% training set and

50% testing set
68

Figure 4.6 Experiment results using LBPH + NN with 50% training set

and 50% testing set
69

Figure 4.7 Registration error rate for variant matching point number on

Lena image
71

Figure 4.8 Models loss curve. 72

Figure 4.9 Example for registered faces: (a) Original face (b) Predicted

registered face (c) Expected registered face.
73

1

CHAPTER 1: INTRODUCTION

1.1 Research Problem and Scope

Human face recognition is a challenging task because of the variability of the facial

expression, personal appearance, variant poses, and the various illumination as shown in

Figure 1.1 [1-4]. Also, due to the variability in lighting intensity, the number of sources,

direction, and the camera orientation as illustrated in Figure 1.2, it is a challenging task to

design a face recognition system in the real-time with high accuracy recognition rate.

Image transformation by rotation, scaling, and a translation is one of the most challenging

tasks to solve and has a significant influence on the image recognition as shown in Figure

1.3. The changes in the human face personality should have less effect compared to the

pose variation and illumination [5]. Reducing the image dimension is necessary to improve

the classification processing time since the object recognition system requires an enormous

volume for the computing process. PCA and LBP are one of the popular conventional

approaches; both used for robust data representation, as well as histograms, for features

reduction [6-13]. Higher accuracy can be achieved by finding a strong representation of

the human face by retaining the most dissimilarities in the image data after reducing the

dimensionality of the image.

2

 Classical human face recognition systems are divided into three phases as shown

in Figure 1.4: The first step is preprocessing, which consists of many types of operations,

Figure 1.2. Under variant lighting environments, the face can look different for the same person based on the

light source.

Figure 1.1. Same person with variant facial expression.

Figure 1.3. Transformation Image.

3

such as image registration, scaling, face normalization, reducing the effect of background

noise, detection and resizing, all of which affect the face recognition accuracy. Feature

extraction is the second phase, which can be achieved by using powerful transformation

approaches. The image dimension can be reduced to a smaller dimension by retaining

significant features [12-13]. The final phase is the classification which is using powerful

classifiers such as deep neural networks and the fully connected neural networks [14-16].

In this research, we focused on the preprocessing phase and the feature extraction phase

which they have a potential improvement.

1.2 Motivation behind the Research

There are many existing algorithms handle the human face recognition. The

purpose of these algorithms to achieve an optimal recognition rate or near optimal

Figure 1.4. Face Recognition System Process.

4

recognition rate in real-time processing time. However, none of the algorithms achieved a

100% recognition rate. Therefore, human face recognition is an incredibly exciting field

for researchers. The neural network classifier is relying on the strong features extraction

methods. Neural network performs well with low error rate by feeding strong distinction

patterns and features.

This research is motivated by the drawbacks and limitations of existing systems.

Existing methods relays on simple preprocessing methods such as face detection and

simple image registration. Therefore, we felt that there is a potential improvement can be

achieved by implementing a strong image registration based on deep learning approach

and a strong features extraction approach which can provide strong distinction patterns and

features based on the existing feature extraction methods such as PCA and LBP.

1.3 Potential Contributions of the Proposed Research

In this dissertation, we introduce an enhanced human face recognition framework

with a high recognition rate. This improvement based on improving the features extraction

approach and improving the image registration based on active shape model deep learning.

The proposed framework is suitable for different features extraction methods such as PCA

and LBP which we used in this research, and it can be extended to other algorithms such

as a deep neural network.

The contribution of the features extraction approach emanated from the first

experiment. After we had obtained the training dataset based on the five distance methods,

we noticed three scenarios. The first scenario is the optimal matching as shown in Table

5

1.1. All the distance methods were able to find the right match image of the person 1 which

is the image 3 of the person 1. The second scenario is partially matching as shown in Table

1.2. Euclidean, Manhattan, and Mahalanobis methods been able to find the right match for

person 1 image which was image 2. However, Correlation and Canberra found the wrong

match which was the image belong to person 28. The last scenario is the complete

mismatching as shown in Table 1.3. All the distance methods failed to find the right image

for person 1. Combining the five distance methods using equation (1.1) makes the system

more robust and the recognition rate higher since the training dataset will be more

significant for the neural network.

√∑ 𝐷𝐼𝑆𝑖
25

𝑖=1 (1.1)

Table 1.1. The optimal match scenario.

 Correlation Euclidean Canberra Manhattan Mahalanobis

Person

1

Picture1 0.22 0.24 0.71 0.32 0.56

Picture2 0.12 0.19 0.67 0.25 0.47

Picture3 0.06 0.14 0.58 0.21 0.47

Picture4 0.12 0.19 0.64 0.27 0.48

Person

2

Picture1 1 0.7 0.83 0.69 0.73

Picture4 0.97 0.74 0.82 0.56 0.77

 …..

Person

40

Picture1 0.38 0.43 0.75 0.47 0.54

Picture4 0.59 0.67 0.9 0.7 0.66

6

Table 1.2. The partially match scenario.

 Correlation Euclidean Canberra Manhattan Mahalanobis

Person

1

Picture1 0.39 0.24 0.71 0.34 0.56

Picture2 0.31 0.14 0.67 0.21 0.36

Person

28

Picture1 1 0.7 0.83 0.69 0.66

Picture2 0.24 0.51 0.71 0.44 0.64

Picture3 0.72 0.54 0.85 0.48 0.79

Picture4 0.4 0.77 0.61 0.56 0.74

 …..

Person

40

Picture1 0.41 0.73 0.78 0.41 0.71

Picture4 0.39 0.54 0.92 0.69 0.69

Table 1.3. The complete mismatch scenario.

 Correlation Euclidean Canberra Manhattan Mahalanobis

Person 1

Picture1 0.39 0.34 0.71 0.34 0.56

Picture2 0.31 0.32 0.67 0.42 0.49

Picture3 0.41 0.28 0.77 0.29 0.39

Picture4 0.29 0.29 0.64 0.27 0.48

Person 5
Picture3 0.72 0.54 0.85 0.48 0.79

Picture4 0.19 0.77 0.61 0.56 0.32

 …..

Person

21
Picture2 0.34 0.41 0.57 0.32 0.74

Person

27
Picture1 0.51 0.57 0.74 0.21 0.64

Person

40

Picture1 0.41 0.27 0.78 0.41 0.71

Picture4 0.39 0.54 0.92 0.69 0.69

7

On the other hand, we are trying to achieve higher accuracy by improving the face

registration approach which will lead to a robust end-to-end face recognition system. Since

the classical face registration is outdated, we are working on the deep learning based face

registration, and we decided to build our deep learning system based on the deep learning

concept. We used VGG16, VGG19 and ResNet50 architectures to build our model then we

applied the model on one of the State-of-Art datasets such as LFW.

8

CHAPTER 2: LITERATURE SURVEY

The humans can easily and successfully perform face recognition task using their

eyes. However, the automatic human face recognition still far from optimal and the

researchers with a variant background such as pattern recognition, computer vision, and

neural network consider it an area which can be improved. Therefore, the literature survey

on human face recognition is diverse. In this survey, a detailed view of the human face

recognition methods is presented. Researchers introduced variant algorithms with different

accuracy and sometimes inconsistent results comparing to each other. The objective of this

survey is to provide an overview of the face recognition process. We focused on the popular

categories of feature extraction methods and face registration since the features

characterize the whole image [17]. The main purpose of the features extraction is to reduce

the image dimension by selecting the most significant features with retaining the relevant

information and should be diverse enough among classes for good classification

performance. However, the strength of the features extraction methods relies on strong

preprocessing approaches like the face registration. The extracted features can be used to

classify and to recognize patterns that are present in the source images. Therefore, the face

registration and feature extraction process are the key point of the classification

performance and thus, in the overall human face recognition.

9

2.1 Preprocessing and Image Registration

Image registration is an essential method used in the image processing systems such

as face and object recognition [18-22], object detection, motion estimation [19], and

medical application [20]. The information inherited from two related images for the same

scene is different. Therefore, they need a proper registration to make the two images

uniform and transfer them to the same coordinate system. The classical steps of the image

registration are divided into four phases as shown in Figure 2.1 [21]. The first step is to

extract the most significant features of the source image and the target image such as edges,

corners, and intersections, etc. The key points can be found using methods such as

Gaussians difference algorithm [23], segmentation methods [24], representations of

general line segments or elongated anatomic structures [25], virtual circles [26], and local

curvature discontinuities detected using the Gabor wavelets [27]. These algorithms are

recommended if the image contains detectable objects.

On the other hand, the medical images usually have one object and considered as a

lake of details. Fast Fourier transform (FFT) used to extract the features in the frequency

domain and obtain the parameters based on cross-correlation [28]. The discrete wavelet

transform is another method used for feature extraction with root mean square error

(RMSE) method [29]. The second step is to find the matching features between the two

images from the features which we extracted in step one. Obtaining the corresponding

points between the images has been a motivation of many invariant algorithms such as the

Scale-Invariant Feature Transform (SIFT) [23], Speeded-Up Robust Features (SURF) [30-

32], and Binary Robust Independent Elementary Feature (BRIEF) [33]. Even with these

10

methods, it is still a challenge to obtain the appropriate matches. The RANSAC method is

used to eliminate all the mismatching points by finding the best fitting on random subsets

of the matches then select the best fitting subset. RANSAC [34] is robust to mismatches

but finds a sub-optimal estimation, where LMedS [35] is a more accurate estimation,

however, requires at least 50% correct matches. The third step is to find the affine

transformation parameters such as translation, scaling, reflection, rotation, and shearing

using some of the methods such as the minimized cost function. The last step is

transforming the target image to the source image coordinate system using the affine

transformation parameters which obtained from the third step.

The researchers moved toward a deep learning based image registration approaches

because of the classical image registration limitation. P. Gadde et al. [87] proposed an

Image registration with artificial neural networks using spatial and frequency features. In

their study, the registration of images is investigated with two novel neural network based

approaches, namely, SIFT-DCT and SIFT-DWT. Scale-invariant Feature Transform

(SIFT), Discrete Cosine Transform (DCT), and Discrete Wavelet Transform (DWT) are

employed in these approaches. Both new approaches combine features in the spatial

domain (SIFT) and frequency domain (DCT or DWT) to provide more robust feature

Figure 2.1. Classical image registration.

11

extraction methods for image registration. The learning ability and nonlinear mapping

ability of artificial neural network provide a flexible and intelligent tool for data fusion on

feature matching and transform model parameter estimation. However, this proposed

method obtain the training data using original methods not based on deep learning.

2.2 Feature Extraction for Face Recognition

Feature extraction can be accomplished using numerous mathematical models,

image processing techniques, and intelligent computational tools such as neural networks

or fuzzy logic. The approaches divided into four categories feature-based, appearance-

based, and template-based and part-based approaches as shown in Figure 2.2. In our

research, we focused on the feature-based and appearance-based.

Feature Extraction categories

Appearance-based

* PCA

*LDA

*ICA

Feature-based

* LBP

*Gabor

Template-based

Part-based

* SIFT

*Component based

Figure 2.2. Feature Extraction categories

12

2.2.1 Appearance-Based Feature Extraction Approach

Appearance-based approaches also known as holistic-based methods identify faces

using global features based on the whole image instead of local features of the human face.

The new reduced dimension representation of the face obtain by applying some

transformation on the entire image. However, the feature-based method obtains the

information from some detected fiducial points like eyes, noses, and lips, etc. The fiducial

points are usually determined from domain knowledge and discard other information.

However, the feature obtained from statistics in the appearance-based methods by

performing transformations on the entire face. Holistic-based methods took the most

attention against other approaches for the past 3 decades. In this section, we will present

an overview of Eigen-face [12] based on the PCA, fisher face based on the LDA, and

independent component analysis (ICA). More methods can be found in [36] and [37].

A) Karhunen-Loeve expansion, also known as PCA is one of the popular common

approaches, which is wildly used for data representation and features reduction

[38]. A solid representation of the human face is achieved by retaining the most

variations in the image data after reducing the dimensionality of the image. The

concept of the PCA is to translate the human face into a smaller set of features data

and keep the variations in the image data-characteristic, which is called Eigen-

Faces and they are the principal components of the initial training set of the human

face images. The unknown face image in the recognition testing process is

projected into a reduced-dimension human face space obtained by the Eigen Faces

then classified by distance classifiers or statistical method. Sirovich and Kirby

13

efficiently represent pictures of human faces in 1978 using the PCA. In 1991 Turk

and Pentland [12], proposed the popular Eigen-faces method for face recognition.

PCA uses the Eigen-Faces to represents human face images as a subset of their

Eigen Vectors. Many methods proposed in the computer vision field based on the

PCA such as Diagonal PCA [38], and Curvelet-based PCA [39]. Yang et al. [40]

proposed Kernel PCA and Kernel FLD for human face recognition, which they

called Kernel Fisher-face and Kernel Eigen-face methods. The modular PCA [41]

approach has achieved the high accuracy of PCA in cases of extreme change of

pose variations, illumination, and expressions. The 2- Dimensional principal

component analysis (2DPCA) was introduced as a new approach for feature

extraction and representation by Yang et al. [42]. The 2DPCA has numerous

advantages over conventional PCA, and it is more straightforward than the PCA

to use for face image extraction because 2DPCA regarding the image matrix.

Based on Yang method, the 2DPCA is better than conventional PCA in terms of

recognition accuracy and is computationally more efficient than conventional PCA

therefore; it can improve the process time of image feature extraction significantly.

On the other hand, the conventional PCA based image representation is more

efficient than the 2DPCA-based image representation regarding storage space

because 2DPCA needs more coefficients for face representation.

B) Lu et al. [43] in 2003 and Martinez et al. [44] in 2001 proposed the Fisher‘s linear

discriminant analysis (LDA) as a better alternative to the PCA. LDA successfully

applied to face recognition area in the past few years. LDA explicitly provides

discernment among the classes, while the PCA deals with the input image as entire

14

without paying any attention to the principal structure. The main objective of the

LDA is to find a base vector which is providing the best discrimination between

the classes to help to maximize the differences between the classes and minimizing

the differences within the same classes. The classes are represented by the

corresponding scatter matrices Sb and Sw while the ratio is the derivative of | Sb | /|

Sw |has to be maximized. LDA outperform the PCA and provide robust

classification performances only when a wide training set is an available base on

some results discussed by Martinez and Kak which is confirm this thesis and it

called the SSS (Small Sample Size) problem. Belhumeur et al., 1997 considered

the PCA as an initial step in order to reduce the dimensionality of the input space

then LDA is applied to the resulting space in order to perform the real

classification. However, Chen et al., 2000; Yu and Yang, 2001 applied LDA

directly on the input space and claimed that combining the PCA and LDA,

discriminant information together with redundant one is discarded. Lu et al. (2003)

proposed a hybrid between the Direct LDA and the Fractional LDA, a variant of

the LDA, in which weighed functions are used to avoid that output classes, which

are too close, can induce a misclassification of the input.

C) Generalization of PCA called Independent Component Analysis (ICA) was

introduced by Bartlett et al. [45] and Draper et al. [46]. They assumed a better basis

of the human face images might be found by methods which are sensitive to these

high-order statistics. Moghaddam [47] claimed that the ICA-based approach does

not provide a significant advantage over the PCA-based method. Yang [48]

showed that the Kernel PCA method outperforms the classical PCA method by

15

applying the Kernel PCA for human face feature extraction and recognition.

However, Kernel PCA and ICA are both computationally more expensive than

PCA.

2.2.2 Feature-Based Feature Extraction Approach

Feature-based methods exploit more ideas from image processing, computer vision,

and domain knowledge from a human face. However, appearance-based methods rely more

on statistical learning and analysis. We compared the differences between holistic based

methods and feature-based methods and in this section, we discuss two outstanding features

for face recognition, the Gabor wavelet feature and the local binary pattern.

A) Local Binary Pattern (LBP) is one of the feature descriptor widely used in face

recognition systems. The original LBP operator was introduced by Ojala et al.

[49] and was proved a powerful means of texture description. The most

important properties of LBP features are the tolerance against illumination

changes. LBP is one of the best accomplishment descriptors as it contains the

microstructure as well as macro-structure of the face image. Despite its

popularity, the LBP approach has some shortcomings, including sensitivity to

noise, scale changes, and rotation in the image. The LBP assigns an 18 label to

every pixel of an image by thresholding the 3x3-neighborhood of each pixel

with the center pixel value, resulting in a binary number [50]. Ahonen et al. [6]

applied the LBP on the FERET dataset show good robust performance using

one sample per person for training. Besides LBP, other features that widely used

in computer vision field can also be used in face recognition, such as fractal

16

features. For example, Komleh et al. [51] presented a method based on fractal

features for expression invariant face recognition. Their method is tested on the

MIT face database with 100 subjects. One image per subject was used for

training while 10 images per subject with different expressions for testing.

Experimental results show that the fractal features are robust against expression

variation.

B) The Gabor filters represent a powerful tool in image processing and image

coding based on the capability of capturing important visual features, such as

spatial localization, spatial frequency, and orientation selectivity. In most cases,

the Gabor filters are used to extract the main features from the face images. The

application of Gabor wavelet for face recognition is pioneered by Lades et al.’s

work [52]. They used an elastic graph matching framework to find feature

points, build the face model and to perform distance measurement, while the

Gabor wavelets are used for extracting local features at these feature points, and

a set of complex Gabor wavelet coefficients for each point is called a jet. Lades

et al. used a simple rectangular graph to model faces in the database while each

vertex is without the direct object meaning on faces. In the database building

stage, the deformation process mentioned above is not included, and the

rectangular graph is manually placed on each face, and the features are extracted

at individual vertices. When a new face I comes in, the distance between it and

all the faces in the database are required to calculate, that means if there are

totally N face samples are present in the database, we have to construct N graphs

17

for I based on each face sample. This matching process is very computationally

expensive, especially for a large database.

2.3 Classification

The simplest method for matching feature vectors is using the nearest neighborhood

classifier. It calculates the distance between the source image vector to be classified and

the dataset of images vectors, and then assigns the probe the class label of its nearest

neighbor in the dataset. If the distance is zero, then the image matched are exactly the same.

The distance measure can be converted to a similarity measure simply by negating it, such

that the chosen match is the one with the maximum similarity value. The choice of distance

metric depends on the type of task, such as Euclidean distance, cosine distance, and chi-

square similarity. For an analysis of nearest neighbor pattern classification, see the article

by Cover et al. [53]. The advantage of the NN-classifier is that it does not require any

training stage and that it naturally extends to multi-class classification. Training other

classifiers such as support vector machines (SVM’s) [54] and neural networks [14-16] is

often computationally demanding for high-dimensional data with many examples. Even

though they may increase matching performance by accounting for non-linearity in the

data, training would have to be done every time the gallery is altered.

18

2.4 Neural Network

Computer vision needs powerful classification methods to achieve a high

recognition system rate with low computing time and resource. Neural network

classification is widely used for training the neural network since NN is simple, efficient

to compute the gradient descent, and straightforward to implement. Determine the size of

the neural network, the number of samples and the weights is a challenging task, and it is

important to fit the neural network output. The NN is divided into three layers which are

training input layer, hidden layer (one or more), and the expected output layer as shown in

Figure 2.3.

 One popular training method is the backpropagation algorithm that uses a gradient

descent algorithm [55] to update the parameters of deep learning. In order for gradient

descent to map the arbitrary inputs to the target outputs in an accurate manner, gradient

descent has to find parameters such as weights 𝑤 and biases 𝑏 that minimize loss function.

Figure 2.3. Three layers neural network.

19

The input data forward through the network layers to calculate the outputs to compare them

with the expected outputs and compute the error of the loss function. The gradient of the

loss function computes during the back-forward to update the parameters that minimize the

loss function.

The common backpropagation algorithm can be described as the following:

1. The weights 𝑤𝑖𝑗
[𝑙]

 and the thresholds 𝜗𝑗
[𝑙]

 , randomly initialize let n=l.

2. Calculate the output of all layers according to equation (2.1) after feeding the

prepared training dataset 𝑰𝒑 and the output dataset 𝑶𝒑 to the NN.

 𝒚𝒋𝒑
[𝒍+𝟏]

= 𝒇(∑ 𝒘𝒊𝒋
[𝒍+𝟏]𝑵𝟏

𝒊=𝟏 𝒚𝒊𝒑
[𝒍]

+ 𝝑𝒋
[𝒍+𝟏]

) (2.1)

3. In each layer, compute the square root error as follows:

Equation (2.2) used to calculate the square error at the output layer:

 𝒆𝒓𝒋𝒑
[𝑳]

= 𝒇′(𝒏𝒆𝒕𝒋𝒑
[𝑳]

)(𝒅𝒑 − 𝒚𝒋𝒑
[𝑳]

) (2.2)

 In the ith hidden layer (i=L-1, L-2 ... i):

 𝒆𝒓𝒋𝒑
[𝒍]

= 𝒇′(𝒏𝒆𝒕𝒋
[𝒍]

) ∑ 𝒆𝒓𝒌𝒑
[𝒍+𝟏]𝑵𝒍+𝟏

𝒌=𝒍 𝒘𝒋𝒌
[𝒍+𝟏]

 (2.3)

4. The change in the weights between the input and the output will be calculated

based on equation (2.4) and (2.5).

 𝝑𝒊𝒋
[𝒍](𝒏 + 𝟏) = 𝝑𝒊

[𝒍](𝒏) + 𝜼. 𝒆𝒋𝒑
[𝒍]

 (2.4)

20

 𝒘𝒊𝒋
[𝒍](𝒏 + 𝟏) = 𝒘𝒊𝒋

[𝒍](𝒏) + 𝜼. 𝒆𝒋𝒑
[𝒍]

. 𝒚𝒊𝒑
[𝒍−𝟏]

 (2.5)

5. Go back to step 2 if the mean-squared error more than the threshold otherwise stop

and print the weight value.

There is many of neuron activation function used in the neural network, and

the sigmoidal function is what we used in our proposal system which is shown in

equation (2.6).

 𝒇(𝒙) =
𝟏

𝟏+𝒆−𝒙 (2.6)

 Sigmoidal function derivative is:

 𝒇′(𝒙) = 𝒇(𝒙)(𝟏 − 𝒇(𝒙)) (2.7)

J. Toms in 1990 improved the backpropagation algorithm using the hybrid

neuron because in the big size neural network system was difficult to reach to the

minimum mean-squared-error using the sigmoidal activation function compared to

the small size neural network which the patterns of the input images are normally

classified.

 𝒇(𝒙) = 𝝀. 𝒔(𝒙) + (𝟏 − 𝝀). 𝒉(𝒙) (2.8)

Where h(x) is the hard-limiting function which is defined in equation (2.9) and the

derivatives of the hybrid neuron is defined in equation (2.10)

 𝒉(𝒙) = {
𝟏 𝒙 ≥ 𝟎
𝟎 𝒙 < 𝟎

 (2.9)

21

 𝒇′(𝒙) = 𝝀𝒔(𝒙)(𝟏 − 𝒔(𝒙)) 𝝀 ≠ 𝟎 (2.10)

PBN often trapped into the local minimum and the learning speed is updated

according to equation (2.11) where ESS is the Sum-Squared-Error. To make the NN faster

and reach to zero error by adding a coefficient α to the steepness of the sigmoidal function

as defined in Equation (2.12).

𝝀(𝒏) = 𝒆−𝟏/𝑺𝑺𝑬 (2.11)

 𝒇(𝒙) =
𝟏

𝟏+𝒆−𝜶𝒙 (2.12)

Its derivative is:

 𝒇′(𝒙) = 𝜶. 𝒇(𝒙)(𝟏 − 𝒇(𝒙)) (2.13)

Algorithm (1.1) highlights the essential steps of SGD with mini-batch in iteration 𝑘.

Algorithm 1.1. Stochastic Gradient Descent with mini-batch at iteration 𝑘

1: Input: Learning rate 𝜖 , initial parameters 𝑤, 𝑏 , mini-batch size (𝑚′)

2: While stopping criterion not met do

3: Pick a random mini-batch with size 𝑚′ from the training set (𝑥 (1), … … …., 𝑥 (𝑚))

4: with corresponding outputs 𝑦(𝑖)

5: Compute gradient for 𝑤:

6: Compute gradient for 𝑏:

7: Apply update for: 𝑤 = 𝑤 − 𝜖. ∇𝑤

8: Apply update for: 𝑏 = 𝑏 − 𝜖. ∇𝑏

9: end while

22

Gradient descent can be categorized into Stochastic Gradient Descent (SGD) and

Batch Gradient Descent (BGD). The difference between the two algorithms is how to

handle the input data. BGD updates the gradient based on the entire training dataset in each

iteration which is considered as a disadvantage, and it could be slow and expensive.

However, the convergence is smoother, and the termination is more easily detectable. On

the other hand, SGD is less expensive because the gradient computed for each training

example and suffers from noisy steps and its frequent updates can make the loss function

heavily fluctuate [56].

2.5 Deep Learning Background

Deep learning in the machine learning field achieved numerous performance in the

computer vision and the processing of human language applications [57-61]. Deep learning

is driven by understanding how the human brain processes information. The brain is

organized as a deep architecture with several layers that process the information among

many levels of non-linear transformation and representation [62]. Deep learning learns the

hierarchy, structure, and pattern of the features from the lower level features using multi-

level of hidden layers of non-linear transformations [60]. Very complex functions can be

learned with enough such transformations. The higher layers of representation increase

aspects of the inputs that are important for discrimination and suppress irrelative variation

for any object recognition. For human face recognition, higher layers of representation

amplify features of the inputs that are significant for discrimination and subdue irrelative

features [63]. The first layer learns the low-level features such as curves, edges, and point

from the image pixels. The low-level features are combined in the following layers to

23

produce higher features; for example, points and combined into lines and curves then they

combined into shapes and more complex shapes. Once this is done, the deep neural network

delivers a probability that these high-level features contain a particular object or scene. The

main goal of deep learning is to automatically learn the most discriminative features from

the raw data without human involvement. Convolutional Neural Networks (CNN) Stacked

Auto-encoder (SA), Recurrent Neural Network (RNN), and Deep Belief Network (DBN)

are the popular models for deep learning. [64, 65].

2.6 Convolutional Neural Network

CNN is a class of deep, feed-forward artificial neural networks, most commonly

applied to analyzing visual imagery that takes advantage of the spatial construction of the

inputs. A CNN consists of an input and an output layer, as well as multiple hidden layers.

CNN consist of alternating convolutional layers followed sometime by pooling

layers and dropout layers to avoid the overfitting issue. The network end with few of fully-

connected layers followed by classifier layer such as soft-max classifier or regression

classifier as shown in Figure 2.4.

The CNNs gain the advantage by learning features representation automatically

without depending on human-crafted features using end-to-end system starting from raw

pixels to classifier outputs [61, 66]. Since 2012, researchers focus on improving the

performance of CNNs architecture and methods such as layer design, activation function,

and regularization, and exploring the performance in different fields [67, 68]. Resnet50,

https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Multilayer_perceptron#Layers

24

Inception v4 and FaceNet are some of the existing models which they can be used to train

a dataset on different domain issue.

2.6.1 Convolutional Layer

The convolutional layer is the core building block of a CNN. The convolutional

layer's parameters comprised of a set of learnable kernels (or filters). The convolutional

layer extracts local features from the input by sliding a filter over the input and computing

the dot product and producing a 2-dimensional activation map of that filter as shown in

Figure 2.5. The feature maps connected to a small region of the input called receptive field,

and the new feature map is generated by convolution operation and followed by a non-

linear activation function as shown in Equation (2.14) to introduce non-linearity into the

model.

𝑥𝑓
(𝑙)

= 𝑓(∑ 𝑥(𝑙−1)
𝑆,𝑆 ∗ 𝑤𝑓

(𝑙)
+ 𝑏𝑓

(𝑙)
) (2.14)

Figure 2.4. The typical structure of a CNN.

25

Where the f is non-linear activation function, 𝑏𝑓
(𝑙)

is shared bias of the feature map,

𝑥(𝑙−1) is the output of the previous layer, * is convolution operation, and 𝑤𝑓
(𝑙)

 is convolution

filter with size S × S.

CNN compute the gradient of the loss function with respect to the weights (𝑤) and

biases (𝑏) of the respective layer in the backward phase as follows:

∇𝑤𝑓
(𝑙)

𝑙 = ∑ (∇x𝑓
(𝑙+1)

𝑙)
𝑆,𝑆

(𝑥𝑆,𝑆
(𝑙)

∗ 𝑤𝑓
(𝑙)

)𝑆,𝑆 (2.15)

∇𝑏𝑓
(𝑙)

𝑙 = ∑ (∇x𝑓
(𝑙+1)

𝑙)
𝑆,𝑆

(𝑥𝑆,𝑆
(𝑙)

∗ 𝑏𝑓
(𝑙)

)𝑆,𝑆 (2.16)

All units share the same weights (filters) among each feature map. The advantage

of sharing weights is the reduced number of parameters and the ability to detect the same

feature, regardless of its location in the inputs [69]. The hyper-parameters of each

convolutional layer must be chosen carefully in order to generate desired outputs such as e

filter size, the number of learnable filters, and stride.

Numerous nonlinear activation functions are existing, such as sigmoid, tanh, and

ReLU. However, ReLU is preferable because it makes training faster relative to the others

[70, 71]. The filter size and stride decides the output features map size (WxW) based on

the input image with a size of (H × H) over a filter with a size of (F × F) and a stride of (S)

as:

𝑊 = ⌊
𝐻−𝐹

𝑆
⌋ + 1 (2.17)

26

2.6.2 Pooling Layer

Typically the pooling layers (down-sampling layer) applied after the convolutional

layers to reduce the resolution of the previous feature maps and preserve most relevant

feature. Pooling provides a fixed size output, which is important for classification. Pooling

produces invariance to a small transformation and/or distortion. Pooling splits the inputs

into disjoint regions with a size of (R × R) to produce one output from each region [72].

Two pooling are exist: Max-pooling and Average-pooling and the output size will be

obtained from the input with a size of (W × W) by:

Figure 2.5. Convolution operation

27

𝑃𝑜𝑜𝑙𝑖𝑛𝑔 = ⌊
𝑊

𝑅
⌋ (2.18)

We are losing global information about locality, and where in image something

happened by applying a max-pooling in CNN [55, 73]. However, we are keeping

information about whether the most important feature appeared in the image or not.

The maximum value of non-overlapping blocks from the previous feature map

(𝑙−1) is calculated during the forward phase as follows:

𝑥(𝑙) = 𝑚𝑎𝑥𝑅,𝑅(𝑥(𝑙−1))
𝑅,𝑅

 (2.19)

There are no any learnable parameters in the Max pooling. Therefore, the gradient

from the next layer is passed back only to the neuron that achieved the max value and all

of the other neurons receive zero gradient. Figure 2.6 shows how the max-pooling works.

Figure 2.6. Max pooling in CNN.

28

2.6.3 Fully Connected Layer

The CNN ends with one or more of the fully connected layers that connect every

neuron in one layer to every neuron in another layer and has the only number of neurons

hyper-parameter. It is in principle the same as the traditional multi-layer perceptron neural

network (MLP). Fully connected layer purpose is to extract the global features of the

inputs, and the output is computed by Equation (2.20):

𝑥(𝑙) = 𝑓((𝑤(𝑙))𝑇. 𝑥(𝑙−1) + 𝑏(𝑙)) (2.20)

Where is the (𝑙), (𝑙), and (𝑙) are the input, weights, and biases of the current layer

(l), x (l-1) is the output of the previous layer, is a dot product, and 𝑓 is the non-linear

activation function. The last layer is the classifier layer such as soft-max classifier and

regression classifier.

2.7 Literature Review for Face Registration

2.7.1 Speed-Up Robust Features (SURF)

The Speeded-up Robust Features (SURF) is a method to obtain the local features

which will be used to align two related images which are taken at a different time or a

different position. SURF process includes feature detection, feature description, and

feature matching. The SURF steps are:

1) Find the integral image (IΣ) based on the input image I to achieve fast

computation of the convolution filters. The value for each point P =(x, y) is

represented by the sum of all pixels in the input image I. Then we calculate the

https://en.wikipedia.org/wiki/Multilayer_perceptron

29

sum of the intensities within a rectangular region formed by the origin and P

using equation (2.21).

𝛴 = 𝐼𝛴(𝐶) − 𝛴(𝐵) − 𝛴(𝐷) + 𝛴(𝐴) (2.21)

2) Find the interesting points using hessian matrix by finding the maximum

hessian matrix corresponding to a point P =(x, y).

3) Subtract the adjacent Gaussian images to obtain the difference of Gaussian

images by repeatedly convolved with Gaussians.

4) Optimize the key-points after obtaining image gradients using three methods to

obtain the descriptor.

5) Finding the orientation Assignment: using the pixel differences, we compute

orientation θ(x, y) and gradient magnitude M(x, y) for each image sample L(x,

y).

𝑀(𝑥, 𝑦) = √𝐴2 + 𝐵2 (2.22)

6) Obtaining Key-point descriptors: 64 element vector obtain by combining all the

orientation histogram entries.

7) Perform the k-nearest-neighbor (KNN) on the feature values to find the distance

between the features using four steps:

i. Compute the Euclidean distance on the obtained features.

ii. Descending sort of the labeled example.

iii. Based on root mean square deviation (RMSE), find the optimal K of the

KNN.

iv. Represent the image based on these KNN.

30

2.7.2 Minimized Cost Function

Matrix equation (2.23) is used to minimize the cost of the image registration

(without shear) when the related points in two images X and Y are identified. Summation

indicates the sum over all points in an image. We used in our implementation the sigmoidal

function as the neuron activation functions.

 (2.23)

To find the optimal transformation that will align image 2 to image 1, take the

partial derivatives of the above cost with respect to a, b, t1 and t2 and set these to 0 (∂C/∂a

= 0, ∂C/∂b = 0, ∂C/∂t1 = 0, ∂C/∂t2 = 0). We express the four resulting equations in matrix

form as is shown in equation (2.24).

 (2.24)

After calculating the sum over all points for the 4x4 matrix and the right-hand 4x1

vector in equation (2.24), we can compute the required transformation by:

Matrix Ainv = A.Inverse and Matrix Res = Ainv * B.

2.7.3 Random Sample Consensus (RANSAC)

Fischer et al. introduced the RANSAC algorithm in 1981. RANSAC is one of the

most suitable algorithms to eliminate the false matched points in the source and target

31

images in the presence of noise [17]. Some of the disadvantages of RANSAC are

computing time, correct matches count, and the dependency of mismatches removal on the

amount of threshold value. RANSAC algorithm is divided into four steps. The first step is

to select a suitable model based on the transformation model. Equation (2.25) is used to

calculate the number of related points which are required to calculate the transformation

parameters. q is the minimum number of the related points and p is the number of the

parameters need to calculate.

𝑞 =
𝜌

2
 (2.25)

The second step is selecting the best model in a specified iterations. In each

iteration, the minimum number of the related points randomly selected to estimate the

transformation parameters based on equation (2.26) for 6 parameters a, b, c, d, e, and f.

 (2.26)

The third step is to calculate the distance between the source image and the

transformed image. We consider a point is a right match if the distance is less than the

threshold. Otherwise, we eliminate the point since it is not a true match. In the last step, for

each iteration, we count the numbers of the true match, and if they are more than the desired

value, or reaches the predetermined maximum number of iterations, then the algorithm

stops. Transformation model selected which has the highest matching count.

32

CHAPTER 3: RESEARCH PLAN AND SYSTEM

ARCHITECTURE

This research aims to achieve a higher human face recognition with less

computation processing time. Image registration and feature extraction are the key points

of improving face recognition. Therefore, we implemented our system based on multiple

classification methods. To compare our results with the existing face recognition systems,

we applied our frameworks on two of the well-known human face image databases, Yale

and Olivetti Research Laboratory Human Face Datasets. We implemented some of the

existing face recognition systems to compare our testing results to their results. We

randomly obtain the training set and the testing set with different scenarios. Different size

of dataset applied to like 90% of the picture as training and 10% as a testing set or 70% to

30%. Our goal is to achieve higher accuracy of the 50% to 50% scenario. Finally,

recognition rate (RR) is calculated using equation (3.1) after the system finishes training

the NN then test the testing set.

𝑅𝑅(%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑎𝑡𝑐ℎ

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡
*100 (3.1)

3.1 Human Face Datasets

3.1.1 ORL Dataset

Olivetti Research Laboratory Dataset (ORL) [74]. ORL dataset represents images

of 40 different persons with ten different pictures for each person. A total of 400 face

33

images used for training and testing the system. The 400 images are in grayscale, and the

size is 92X112 pixels with variant expressions, timing, pose, and gender. Figure 3.1 shows

a sample of the ORL dataset.

3.1.2 Yale Dataset

The Yale face dataset has a total of 165 face images which represent 15 different

persons with 11 images per person [75]. Different facial expression, gender, light

configuration, and with or without wearing eyeglasses. The 165 images are in a grayscale

Figure 3.1. Sample of the ORL dataset.

34

domain and images resized to 92x112 pixels after we cropped the face only. Figure 3.2

shows Yale sample images.

3.1.3 Labeled Faces in the Wild

The data set contains more than 13,000 images of faces collected from the web.

Each face has been labeled with the name of the person pictured. 1680 of the people

pictured have two or more distinct photos in the data set. The only constraint on these faces

is that they were detected by the Viola-Jones face detector. The images are in color scale,

and the size is 250x250 pixels with variant expressions, timing, pose, and gender. Figure

3.3 shows a sample of the LFW dataset.

3.2 Classical Face Recognition System

We implemented the classical face recognition system as a baseline for our

research. First, we used the PCA and the KNN classifier [1] only as shown in Figure 3.4.

Figure 3.2. Sample images of Yale dataset.

35

The goal of the PCA is to reduce the face image dimension by using only the highest K

Eigen-values and their corresponding Eigen-vectors with losing minimal information,

which helps to reduce the computation process. Second, we used LBPH and the KNN

classifier as shown in Figure 3.5. The goal of the LBPH is to reduce the face image

dimension by dividing the image into small regions called cell and represent each cell by

59 dimensions with losing minimal information. We used five different distance classifiers

to measure the similarity between the source image and the test image to show how

accuracy is different between the methods, which lead us to combine them in the proposed

framework to achieve higher accuracy.

Figure 3.3. Sample images of LFW dataset.

36

Figure 3.4. Classical face recognition system using The PCA and KNN classifier methods.

Figure 3.5. Classical face recognition system using the LBPH and KNN classifier methods.

37

We reduced the computation time in both frameworks by preprocessing the face

images using different methods as needed. The preprocessing starts with resizing the

image to a reasonable size followed by cropping the face only to eliminate the face

background effect. Reducing the noise and the illumination by converting the face images

to grayscale images and histogram equalization to build a robust face recognition system,

Figure 3.6 shows some of the preprocessing methods. The new face representation is

obtained from the PCA or the LBPH which present the face image in a smaller dimension.

Finally, using one of the classifier measurements we calculate the similarity between the

source image and the target image and we consider the matching occurs only if the lowest

KNN neighbor matches the source as shown in Figure 3.7(a) otherwise it will be considered

as a mismatch as shown in Figure 3.7(b). Then, we calculate the recognition rate for the

whole system using equation (3.1).

Figure 3.6. Example of Prepressing Methods including cropping, resizing and Histogram.

38

3.2.1 Principle Component Analysis

Image recognition and detection need a massive resource of storage and powerful

system to reduce the computation processing time and cost. Therefore, the dimension

reduction and image re-representation are needed as the first step in any face recognition

systems. PCA is one of the popular statistical transform methods. PCA reduces the image

dimension by analyzing the image and identifying distinction patterns which can be used

as a new representation of the image without losing an enormous information content from

the image. Face dimension reduction is obtained by applying the PCA and finding the

highest K Eigen-Values and their corresponding Eigen-Vectors. The face image can be re-

represented using only 15% of the Eigen-Values with a minimal losing of information [76].

PCA is relying on the variance-covariance matrix. Therefore, the images are not a

significant comparison to the number of face images in the training dataset. The advantages

Figure 3.7. Example of the matching case and mismatching case image using KNN with Mahalanobis
distance. (a) Test image (b) Matching case. (c) Mismatching case.

39

of the PCA are low noise sensitivity, eliminating the data redundancy by providing the

orthogonal components and reducing the image complexity. The disadvantages of the PCA

methods are evaluating the variance-covariance matrix and capturing the invariance.

Evaluating the variance-covariance matrix in an accurate manner and capturing the

invariance is difficult unless the training dataset explicitly provides the information. Figure

3.7 shows an example of the PCA methodology. Figure 3.8(a), the face data are randomly

distributed, and Figure 3.8(b) shows the correlated data grouped in the same coordinate

face space.

The PCA process starts with standardizing the image scale by obtaining the same

face size vector 𝛤𝑖 for all of the training images I1, I2… IM. The training data-set of M

faces written as I = (I1, I2, IN) and the average image 𝛹 is obtained by equation (3.2).

𝛹 =
1

𝑀
∑ 𝛤𝑖𝑀

𝑖=1 (3.2)

Figure 3.8. An example of PCA (a) Original data. (b) Correlated data

40

Then centralize each training image by subtracting the mean, which is the average

across all dimensions from each image and finds the vector 𝛷 = 𝛤𝑖 − 𝛹𝑖 . PCA uses

equation (3.3) to calculate the covariance-matrix C, which is used to find the Eigen-Value.

𝐶 =
1

𝑀
∑ 𝛷𝑚𝛷𝑚𝑇𝑀

𝑀=1 = 𝐴𝐴𝑇 (𝑀2𝑥𝑀2 𝑚𝑎𝑡𝑟𝑖𝑥) (3.3)

𝑊ℎ𝑒𝑟𝑒 𝐴 = [Φ1Φ2 … … … Φ𝑀] (𝑁2𝑥𝑀 𝑚𝑎𝑡𝑟𝑖𝑥).

We can calculate the Eigen-Values 𝜇𝑖 and the Eigen-Vectors 𝑣𝑖 from the covariance

matrix since the matrix is square using equation (3.4).

𝐴𝑇𝐴𝜈𝑖 = 𝜇𝑖 𝜈𝑖 (3.4)

PCA significantly orders the Eigen-Values from highest to lowest. We then ignore

low significance Eigen-Values to reduce the face domain, and we obtain the corresponding

Eigen-Vectors. PCA loses some of the information from the image. However, this will not

affect the recognition since most of the data discrepancy exists in the first 15% of the face

dimension. We obtain the Eigen-Faces by transpose the Eigen-Vectors then multiply them

by the original faces dataset. Eigen-Faces appears as ghostly faces in Figure 3.9.

Eigen-Faces = (Original data-set) X (Eigen-Vectors)

3.2.2 Local Binary Patterns Histogram (LBPH)

Correlation methods require substantial computation time and enormous amounts

of storage. Therefore, features reduction and face representation are needed in the face

recognition system. LBPH is usually a preferred method in computer vision, image

processing, and pattern recognition; it is appropriate for the feature because it describes the

texture and structure of an image. We represent the face image and reduce the image

41

dimension by applying the LBPH method, extracting the features texture of the image by

dividing the image into local regions and extracting the binary pattern for each local region.

The original LBP operator, which works on eight neighbors of a pixel, was introduced by

Ojala et al. [49]. The image is divided into small regions called the cell. Each pixel in the

cell is compared with each of its eight neighbors. The center pixel value will be used as the

threshold value [6-11]. The eight-neighbors-pixel will be set to one if its value is equal to

or greater than the center pixel; otherwise, the value is set to zero. Accordingly, the LBP

code for the center pixel is generated by concatenating the eight neighbor pixel values (ones

or zeroes) into a binary code, which is converted to a 256-dimensional decimal for

convenience as a texture descriptor of the center pixel. The original LBP operator is shown

in Figure 3.10.

Figure 3.9. (a) Original faces (b) Corresponding Eigen-faces.

42

The mathematical formulation of LBP operator is given by:

𝐿𝐵𝑃(𝑥) = ∑ 𝑠(𝐺(𝑥𝑖8
𝑖=1) − 𝐺(𝑥))2𝑖−1 (3.5)

𝑠(𝑡) = {
1 𝑡 ≥ 0
0 𝑡 < 0

 (3.6)

We used a modified LBP operator called a uniform pattern. The pattern is the

number of bitwise transitions from 1 to 0 or vice versa. The LBP is called uniform if its

uniformity measure is at most 2. For example, the patterns 11111111 (0 transitions),

01111100 (2 transitions) and 11000111 (2 transitions) are uniform, while the patterns

10001000 (3 transitions) and 11010011 (4 transitions) are not. For dimension reduction,

we used the histogram to reduce the image features from a 256-dimensional decimal to a

59- dimensional histogram, which contains information about the local patterns. The

histogram uses a separate bin for each uniform pattern, and one separate bin for all non-

uniform patterns. In the 8-bit binary number, we have 58 uniform patterns; therefore, we

Figure 3.10. Original LBP Operator.

43

used 58 bins for them and one bin for all non-uniform patterns. The global description of

the face image is obtained by concatenating all regional histograms. The overall value of

LBPH can be represented in a histogram as (3.7):

𝐻(𝑘) = ∑ ∑ 𝑓(𝐿𝐵𝑃𝑃,𝑅(𝑖, 𝑗), 𝑘), 𝑘 ∈ [0, 𝑘]𝑚
𝑗=1

𝑛
𝑖=0 (3.7)

Where P is the sampling points, and R is the radius.

Figure 3.11 shows the process of getting the feature vector for each image, which

will be fed to the classifier.

3.2.3 Similarity Measurements Methods

The K-Nearest-Neighbors (KNN) is one of the methods used in the computer

vision. Most of the KNN use the Euclidean distances. However, it produces less accurate

results than the other methods. Each distance method provides different levels of accuracy

based on the problem domain. Therefore, the first contribution is to combine some of them

Figure 3.11. Face description with local binary patterns.

44

to improve the face recognition accuracy. Mahalanobis distance measurement provides

more accurate result than Minimum Distance depending on the covariance matrix between

the two vectors in the (3.8) [77].

Mahalanobis(x, y) = √(xi − yi)TS−1
(xi − yi) (3.8)

Where 𝑺−𝟏 is the covariance matrix inverse.

Correlation distance classifier was introduced by Székely, Rizzo, and Bakirov in

2007 [78]. A valuable property is the measure of dependence equal zero and is sensitive to

a linear relationship between two vectors.

Correlation(x, y) =
Cov(x,y)

σx σy
 (3.9)

Where Cov is the covariance and 𝛔𝐱 and 𝛔𝐲 are the standard deviations of x and y.

Euclidean distance method is considered the basis of many measures of similarity

and dissimilarity. We use (3.10) to calculate the Euclidean distance between corresponding

elements of the two vectors space.

Euclidean(x, y) = √∑ (xi − yi)2M
i=1 (3.10)

The Canberra distance classifier is a numerical measure of the distance between

two points in a vector space, which is presented in (3.11):

Canberra(x, y) = ∑
|xi−yi|

|xi|+|yi|
M
i=1 (3.11)

https://en.wikipedia.org/wiki/Vector_space

45

The Manhattan distance classifier is another method to measure the distance

between two vectors and is introduced in (3.12):

Manhattan(x, y) = ∑ |xi − yi|M
i=1 (3.12)

We used different distance classifier methods to provide a variant dataset to

improve the training of the neural network.

3.3 Face Recognition using PCA and NN Proposed System

3.3.1 Proposed Method

We proposed in this paper an enhanced Face Recognition Framework Based on

Correlated Images and Back- Propagation Neural Network. The main contributions of our

work are:

 Using five distance methods and combining them will provide a clear

pattern which helps the NN to converge faster and more accurate.

 Obtaining the T-Set based on the correlation between the training dataset

will provide robust data which we used as an input of the NN.

 Each distance method performs well in a different direction. Therefore,

adding a strength factor helps to improve the accuracy rate.

The proposed framework is divided into five steps as shown in Figure 3.12

1) Preprocessing step: Face recognition needs huge storage and CPU

resources. Therefore, we applied a few of the preprocessing operations

to reduce the computing time as shown in Figure 3.5. Haar-cascade

46

detection is used to detect the face then we cropped the face to reduce

the background effect. We converted the images to a gray-scale image

then we applied a histogram equalizer to reduce the noise effect. Finally,

we resized the images to the size we preferred.

2) Features extraction: We used the PCA algorithm to reduce the

dimensionality of the images by eliminating the redundant data between

the training images while retaining the variation between them. The

PCA is transforming the dataset into a new set of variables which called

the principal components (PCs). The first PC retains the maximum

variation in the dataset. The PCA sorts the Eigen-Vectors and selects to

top K values to reduce the dimensions. The training dataset must be

scaled, and the complexity of calculating the covariance matrix are

some of the drawbacks of the PCA. However, we used the PCA to prove

that there is a potential accuracy improvement using the traditional

methods by adding an extra step (step 3) to obtain the T-Set based on

the correlated training dataset images.

3) Obtaining the T-Set: We added this step to obtain a correlated dataset

which we called the T-Set and use it as an input of our NN. The T-Set

has strong distinction patterns which improved the overall accuracy rate

of the face recognition system. The next steps are applied to each of the

training images to obtain the T-Set:

a. Based on the reduced dimension of each training image from

step 2 and using Mahalanobis, Manhattan, Correlation, Canberra

47

and Euclidean distance methods; we separately computed the

distance between each training image and all other images.

b. First, we trained our NN using each method individually, and we

achieved different accuracy rates as shown in Table 4.1.

Therefore, we decided to combine the five distance methods

using equation (3.13).

𝐷𝑆𝑆 = √∑ 𝐷𝐼𝑆𝑖
25

𝑖=1 (3.13)

Where DISi is one of the distance methods.

c. However, based on the classical face recognition experiment,

each distance algorithm has an advantage over the other

algorithms in different dimensions. Therefore, we modified

(3.13) to (3.14) by adding a strength factor α to improve the

accuracy result in the final scenario. Table 4.1 shows that the

Mahalanobis and Manhattan distances have an advantage over

the other distance methods. Therefore, we assign the strength

factors as: Mahalanobis and Manhattan = 0.3, Canberra = 0.2,

Correlation and Euclidean = 0.1.

𝐷𝑆𝑆𝛼 = √∑ 𝛼𝑖𝐷𝐼𝑆𝑖
25

𝑖=1 (3.14)

Where ∑ 𝛼𝑖
5
𝑖=1 = 1

48

 The KNN method is used to find the expected output for each training image,

and we selected K=1 to avoid majority voting, which leads to incorrect votes

since the dataset has identical or nearly identical images. Our decision is based

on the nearest neighbor, and we considered a match to have occurred if the

nearest neighbor matches the source image.

Table 3.1 shows an example of how to obtain the T-Dataset (column 6) and the

expected output (column 7) for one of the training images (image X). We assume the

training dataset has 200 images that represent 40 persons.

Table 3.1. An example of how to obtain the new training data (column6) and the expected output

(column 7) for one of the training images (imageX).

 Column1 Column2 Column3 Column4 Column5 Column6 Column7

 Distance

Between

image X

and

Using

Correlation

Using

Euclidean

Using

Canberra

Using

Manhattan

Using

Mahalanobis

Combine the result

using:𝑅𝑆𝑆𝛼 =

√∑ 𝛼𝑖𝐷𝐼𝑆𝑖
25

𝑖=1

expected

Output

Based on the

KNN (K=1)

person1

Image1 0.39 0.34 0.71 0.34 0.56
1.091

1 (best

match)

Image2 0.31 0.32 0.67 0.42 0.49 1.033

Image3 0.41 0.28 0.77 0.29 0.39 1.037

Image4 0.29 0.29 0.64 0.27 0.48 1.533

Image5 0.72 0.54 0.85 0.48 0.79 1.544

Person2 Image6 0.19 0.77 0.61 0.56 0.32 1.190 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 Image198 0.51 0.57 0.74 0.21 0.64 1.259

Image199 0.41 0.27 0.78 0.41 0.71 1.233

Image200 0.39 0.54 0.92 0.69 0.69 1.497

49

4) Set up and train the NN: We start the training after we set up the NN

parameters such as the number of the hidden layers, the number of the

neurons of each layer, number of the iteration, threshold value, setup the

input matrix and finally, setup the output matrix.

5) Testing the system: We found the reduced data of the testing image

using the Eigen-Vectors which we obtained from step 2. Then, we fed

the testing image the trained NN to calculate the predicted output label.

We computed the accuracy based on comparing the predicted label and

the expected label. Finally, we calculated the overall accuracy rate of

the framework.

Figure 3.12. Proposed recognition system using PCA and NN classifier methods.

50

3.4 Face Recognition using LBPH and NN Proposed System

3.4.1 Proposed Method

We proposed in this work an enhanced human face recognition using LBPH

descriptors, multi-KNN, and BPNN neural network. Figure 3.13 shows the proposed

framework in detail. Our main contribution is based on the fact that obtaining a robust T-

Dataset will help the BPNN to converge quickly with improved accuracy. We gathered a

robust T-Dataset relying on the correlation between the training images, not the density of

images. Our method is divided into five steps. In step one, we applied some of the

preprocessing methods on the raw training images, including resizing and cropping using

Haar-cascade detection, to eliminate the face background effect. Noise and illumination

were reduced by converting the images to grayscale images and using histogram

equalization to build a robust face recognition system; Figure 3.6 shows some of the

preprocessing methods.

In Step 2, we extracted the most significant local features from each image using

the 𝐿𝐵𝑃8,2
𝑈2 descriptor and combined them into a global description using the histogram

method.

Here is how it is done:

 We divided the images into 25 small cells after we tried different grid sizes.

We found that the 5x5 grid gives us better performance with a reasonable

time. Smaller grid sizes such as 4x4 provide fewer features (4 x 4 x 59 =

944) compared to (5 x5 x 59 = 1475 features), which leads to less accuracy

51

and perhaps to an under-fitting problem with the neural network training. A

larger grid size provides more features; however, it increases the computing

time with a slight improvement in accuracy.

 We applied the LBP method on image pixels by thresholding the 3 x 3

neighborhood of each pixel with the center value and considering the result

as a binary number.

 Finally, we applied the histogram method to concatenate the new cells

description and obtain a new representation (25 cell * 59 dimensions =1475)

for each training image, which helps to reduce the computation time.

Step 3 was added as an extra step to obtain a robust T-Dataset, which we used as

an input to our BPNN instead of using the LBPH descriptor of each training image. As

mentioned earlier, the T-Dataset is gathered based on the correlation between the new

representations of all training images.

 Based on the LBPH presentation of each image, which we obtained from step

2, we calculated the distance between each training image with all other

training images using five distance methods (Correlation, Euclidean,

Canberra, Manhattan, and Mahalanobis).

 We tried different scenarios to achieve higher accuracy. First, we trained the

BPNN using each distance method separately, and we achieved variant

accuracy as shown in table 4.2. In another scenario, we combined the five

52

distances using the square-root of the sum of the squares (SRS) (23) to provide

a robust distinction T-Dataset in a reduced dimension.

 However, based on the classical face recognition experiment, each distance

algorithm has an advantage over the other algorithms in different dimensions.

Therefore, we modified (3.13) to (3.14) by adding a strength factor α to

improve the accuracy result in the final scenario. Table 4.1 shows that the

Mahalanobis and Manhattan distances have an advantage over the other

distance methods. Therefore, we assign the strength factors as Mahalanobis

and Manhattan = 0.3, Canberra = 0.2, Correlation and Euclidean D 0.1.

 The KNN method is used to find the expected output for each training image,

and we selected K=1 to avoid majority voting, which leads to incorrect votes

since the dataset has identical or nearly identical images. Our decision is based

on the nearest neighbor, and we considered a match to have occurred if the

nearest neighbor matches the source image.

Table 3.1 shows an example of how to obtain the T-Dataset (column 6) and the

expected output (column 7) for one of the training images (image X). We assume the

training dataset has 200 images that represent 40 persons.

In Step 4, the BPNN parameters are set up then the training begins. Our BPNN

architecture contains an input layer followed by two fully connected hidden layers,

followed by a soft-max classification layer.

 Set the number of layers and neurons.

53

 Set the number of iterations and set the threshold value.

 Set the input matrix and the expected output from the previous step.

 Randomly initialize the weights and bias then strat the training.

Finally, we test the accuracy of the system by Applying steps 1 to 3 for each

testing image.

 Feeding the testing image data to the trained BPNN and obtaining the

predicted output.

 Based on the image label, we know whether the prediction is correct.

 Finally, the overall system accuracy is calculated.

Figure 3.13. Proposed recognition system using LBPH and NN classifier method.

54

3.5 Face Registration Based on a Minimalized Cost Function

3.5.1 Proposed Method

In this experiment, we applied our proposed method to a 256x256 pixels Lena

image. Image registration objective to align two images of the same object to the same

coordinator. Suppose we obtain two images for the same parson I1 and I2 which are

acquired at a different angle or distance. In image I1 (x, y) is a point and (x’, y’) is a related

point in the image and the transformation model between the two images include scale,

rotation, and translation which can be expressed in equation (3.15).

 (3.15)

Where tx and ty are horizontal, vertical translation parameters, s is the scale

parameter, is the rotation angle parameter. Our purpose is to find these key-points then

the matching points, calculate the affine transformation parameters, then align two images

as is shown in Figure 3.14.

Step1 •Preprocessing

Step2 •Extracting the key-points using SURF detector

Step3 •Finding the matching points using SURF descriptor

Step4 •Eliminating the false matching using RANSAC

Step5 •Selecting some of the matching points

Step6 •Finding the affine transformation parameters using the Minimized cost function

Step7 •Transforming the target image using the affine transformation parameters

Figure 3.14. The proposed image registration method.

55

We used the SURF algorithm in our proposed method to find the key-points for

both source and target images. We choose a high threshold to reduce the number of the

key-points since we are looking for a few of the matching points to register the image using

the minimized cost function. Figure 3.15 shows the key-points for an image with a different

threshold (100, 50 and 20).

After we obtain the key-points, we used the SURF descriptor to find the matching

points. With a large number of key-points, we found some of the false matching points

which we have to eliminate to achieve higher registration accuracy. Figure 3.16 shows the

matching points between two images with some of the false matching points. Then, we

used the RANSAC algorithm to eliminate all the false matching points as shown in Figure

3.17.

Figure 3.15. Key-points for Lena with variant threshold. (a) Threshold =100. (b) Threshold

=50. (3)Threshold =20.

Figure 3.16. Matching points with false matching points.

56

The next step is to find the affine transformation parameters using the minimized

cost function with few matching points. We have been able to achieve the lowest error with

only two matching points. Figure 3.18 shows the registration example with only two

matching points.

3.6 Deep Learning Face Registration

The software engineering is nowadays moving in the direction of machine

intelligence. Machine Learning has become essential in every segment as a way of making

machines intelligent. More simply, Machine Learning is a set of algorithms that analyze

data, learn from them, and then apply what they’ve learned to make intelligent decisions.

In this proposed method, we are trying to take advantage of the deep learning to build a

robust face registration system based on the transfer learning from pre-trained models.

Figure 3.18. Example of image registration. (a) Source and target images with two matching points.

(b) Registered image.

Figure 3.17. Matching points after elemintaing the fasle points.

57

3.6.1 Obtaining the Training Dataset

Based on our survey, we could not find a dataset used to the face registration

problem. Therefore, we had to build our face registration dataset based on one of the

existing datasets. We decided to go with the labeled faces in the wild dataset which we

described in section 3.1.3.

We selected one of the LFW images as a reference image for all other images in

the dataset. The reference image is centered and has a frontal face with the assumption that,

no any transformation (rotation, scaling and shifting) applied to the reference image. Figure

3.19 shows our reference image which we used to find the transformation parameters.

Next, we applied the haar-cascade face detection algorithm on the reference image

to find the face boundary. Then, we detected the 6 facial landmarks associated with each

eye based on the haar-cascade algorithm as it is shown in Figure 3.20. In addition to the

reference image, we apply the same method to all images in the dataset. Each eye is

represented by 6 (x, y)-coordinates, starting at the left-corner of the eye (as if you were

Figure 3.19. Refrenace Image.

58

looking at the person), and then working clockwise around the remainder of the region.

The total of points we will use to calculate the transformation parameter is 12 points, and

we will eliminate any image has less than that from the training dataset.

To find the transformation parameters for an image, we passed the 12 points of the

reference image and the 12 points of the target image to the minimized cost function

method which we described in section 3.5. Minimized cost function will return the

transformation parameters (Rotation, Scaling shifting). We obtained our training dataset

by applying the same method on all images.

3.6.2 VGGNet Model

VGG is a convolutional neural network model proposed by K. Simonyan and A.

Zisserman from the University of Oxford in the paper “Very Deep Convolutional Networks

for Large-Scale Image Recognition” [57]. The model achieves 92.7% top-5 test accuracy

in ImageNet, which is a dataset of over 14 million images belonging to 1000 classes. VGG

shows that a significant improvement on the prior-art configurations can be achieved by

Figure 3.20. The 6 facial landmarks associated with the eye.

59

increasing the depth to 16-19 weight layers, which is substantially deeper than what has

been used in the prior art. To reduce the number of parameters in such very deep networks,

VGG use very small 3×3 filters in all convolutional layers (the convolution stride is set to

1). However, VGGNet consists of 138 million parameters, which can be a bit challenging

to handle. Figure 3.21 shows the general VGG model architecture.

3.6.3 Residual Neural Network (ResNet) Model

Residual Network was possibly the most groundbreaking work in the computer

vision/deep learning community in the last few years. ResNet makes it possible to train up

to hundreds or even thousands of layers and still achieves engrossing performance.

Increasing network depth does not work by simply stacking layers together. Deep networks

are hard to train because of the infamous vanishing gradient problem — as the gradient is

back-propagated to earlier layers, repeated multiplication may make the gradient

Figure 3.21. VGGNet model architecture.

60

infinitively small. As a result, as the network goes deeper, its performance gets saturated

or even starts degrading rapidly.

The main idea of ResNet is introducing a so-called “identity shortcut connection”

that skips one or more layers, as shown in Figure 3.22. The authors of the ResNet argue

that stacking layers shouldn’t degrade the network performance, because we could simply

stack identity mappings (layer that doesn’t do anything) upon the current network, and the

resulting architecture would perform the same. This indicates that the deeper model should

not produce a training error higher than its shallower counterparts. They hypothesize that

letting the stacked layers fit a residual mapping is easier than letting them directly fit the

desired under-laying mapping. And the residual block above explicitly allows it to do

precisely that. Figure 3.23 shows the ResNet model architecture.

Figure 3.23. ResNet50 model architecture.

Figure 3.22. A residual block.

61

3.6.4 Proposed Method Configurations

Our implementation for deep face registration evaluated few models architectures.

We started with a simple CNN network with few convolution layers followed by

MaxPooling layer and batch normalization (BN) right after each convolution and before

activation, and we did not use dropout. In the classification layers, we used two fully-

connected layers one with 128 neurons and one with 64 neurons followed with the. We

randomly initialize the weights, and we use the Relu activation function. We used Adam

optimizer with a mini-batch size of 32. We used the default learning rate which is 0.001,

and the model was trained up to 80 epochs. Figure 3.24 shows the model architecture.

In the second model, we went deeper and used the VGGNet. Ones with 16 layers

(VGG16) and the second one with 19 layers (VGG19) as Figure 3.25 shows. We added

two fully-connected layers one with 128 neurons and one with 64 neurons followed with

the output layers with four neurons at the end to fit our problem. We used Adam optimizer

Figure 3.24. Proposed method using a simple CNN.

62

with a mini-batch size of 32. However, we changed to the learning rate to 0.0001, and the

model was trained up to 100 epochs.

The last model, we used the ResNet50 model. We added a drop out layer before the

fully-connected layers to make the model generalized. We used the same fully-connected

and the output layers as the VGGNet model. We used Adam optimizer with a mini-batch

size of 32. We used the default learning rate which is 0.001, and the model was trained up

to 80 epochs. Figure 3.26 shows the ResNet50 model.

Figure 3.25. Proposed method using VGG16 and VGG19.

Figure 3.26. Proposed method using ResNet50.

63

CHAPTER 4: RESULTS

4.1 Classical Face Recognition System Result

4.1.1 Classical Face Recognition Using PCA and KNN Result

In the PCA and KNN experiment, the variant recognition rate is achieved based on

different distance methods. Table 4.1 show the results for three scenarios, 50% to 50%,

70% to 30% and 90% to 10%. In the 50% to %50 scenario, Manhattan distance

outperforms the other distance methods by mismatching only 5 images with 94.4%

accuracy in the YALE dataset and Mahalanobis distance mismatch 9 images and achieved

95.5% accuracy for the ORL dataset. In the second scenario, Mahalanobis and Canberra

methods achieved 100% accuracy in the YALE dataset, and Manhattan achieved 95.8%

accuracy for the ORL dataset. Finally, we achieved a higher accuracy in the last scenario

since we left only one image for testing. The comparison between the three scenarios is

shown in Figure 4.1 and Figure 4.2.

Table 4.1. Experiment results using PCA + KNN

 Recognition Rate (%)

Method 50% 50% 70% 30% 90% 10%

PCA +KNN Using: Yale ORL Yale ORL Yale ORL

Euclidean Distance 87.8 89 95.6 93.3 100 90

Correlation Distance 88.8 91 97.8 91.7 100 95

Canberra Distance 90 92.5 100 93.3 93.3 97.5

Manhattan Distance 92.2 93.5 95.6 95.8 100 97.5

Mahalanobis Distance 93.3 94 100 95.8 100 97.5

64

Figure 4.1. Experiment results using PCA + KNN for the Yale data-set.

9
2

.2 9
3

.3

9
3

.3 9
4

.4

9
3

.3

9
5

.6

9
7

.8

1
0

0

9
5

.6

1
0

0

1
0

0

1
0

0

9
3

.3

1
0

0

1
0

0

E U C L I D E A N
D I S T A N C E

C O R R E L A T I O N
D I S T A N C E

C A N B E R R A
D I S T A N C E

M A N H A T T A N
D I S T A N C E

M A H A L A N O B I S
D I S T A N C E

R
EC

O
G

N
IT

IO
N

 R
A

TE
 (

%
)

DISTANCE METHOD

Recognition Rate (%) 50% 50% Yale Recognition Rate (%) 70% 30% Yale

Recognition Rate (%) 90% 10% Yale

9
1

9
2

.5

9
4

9
5 9

5
.5

9
3

.3

9
1

.7

9
3

.3

9
5

.8

9
5

.8

9
0

9
5

9
7

.5

9
7

.5

9
7

.5

E U C L I D E A N
D I S T A N C E

C O R R E L A T I O N
D I S T A N C E

C A N B E R R A
D I S T A N C E

M A N H A T T A N
D I S T A N C E

M A H A L A N O B I S
D I S T A N C E

R
EC

O
G

N
IT

IO
N

 R
AT

E
(%

)

DISTANCE METHOD

Recognition Rate (%) 50% 50% ORL Recognition Rate (%) 70% 30% ORL

Recognition Rate (%) 90% 10% ORL

Figure 4.2. Experiment results using PCA +KNN for ORL data-set.

65

4.1.2 Classical Face Recognition Using LBPH and KNN Result

In the LBPH and KNN experiment, the variant recognition rate is achieved based

on different distance methods. Table 4.2 show the results for three scenarios, 50% to 50%,

70% to 30%, and 90% to 10%. In the 50% to %50 scenario, Manhattan distance

outperforms the other distance methods by mismatching only 5 images with 94.4%

accuracy in the YALE dataset and Mahalanobis distance mismatch 6 images and achieved

97% accuracy for the ORL dataset. In the second scenario, Mahalanobis and Canberra

methods achieved 100% accuracy in the YALE dataset and Mahalanobis achieved 97.5%

accuracy for the ORL dataset. Finally, we achieved a higher accuracy in the last scenario

since we left only one image for testing. The comparison between the three scenarios is

shown in Figure 4.3 and Figure 4.4.

Table 4.2. Experiment results using LBPH + KNN.

 Recognition Rate (%)

Method 50% 50% 70% 30% 90% 10%

LBP +KNN Using: Yale ORL Yale ORL Yale ORL

Euclidean Distance 88.8 90 95.6 93.3 100 94

Correlation Distance 90 92.5 97.8 94.5 100 95

Canberra Distance 91.1 93.5 100 96 93.3 98

Manhattan Distance 93.3 94 95.6 97.3 100 99

Mahalanobis Distance 94.4 95 100 97.5 100 98

66

Figure 4.3. Experiment results using LBP-HOG + NN for the Yale data-set.

9
1

.1

9
0

9
1

.1

9
4

.4

9
4

.49
5

.6

9
7

.8

1
0

0

9
5

.6

1
0

0

1
0

0

1
0

0

9
3

.3

1
0

0

1
0

0

E U C L I D E A N
D I S T A N C E

C O R R E L A T I O N
D I S T A N C E

C A N B E R R A
D I S T A N C E

M A N H A T T A N
D I S T A N C E

M A H A L A N O B I S
D I S T A N C E

R
EC

O
G

N
IT

IO
N

 R
A

TE
 (

%
)

DISTANCE METHOD

Recognition Rate (%) 50% 50% Yale Recognition Rate (%) 70% 30% Yale

Recognition Rate (%) 90% 10% Yale

9
3

9
4

9
5

9
6

.5 9
7

9
3

.3

9
4

.5

9
6

9
7

.3

9
7

.5

9
4

9
5

9
8

9
9

9
8

E U C L I D E A N
D I S T A N C E

C O R R E L A T I O N
D I S T A N C E

C A N B E R R A
D I S T A N C E

M A N H A T T A N
D I S T A N C E

M A H A L A N O B I S
D I S T A N C E

R
EC

O
G

N
IT

IO
N

 R
AT

E
(%

)

DISTANCE METHOD

Recognition Rate (%) 50% 50% ORL Recognition Rate (%) 70% 30% ORL

Recognition Rate (%) 90% 10% ORL

Figure 4.4. Experiment results using LBPH + NN for the ORL data-set.

67

4.2 Proposed Face Recognition System Result

4.2.1 Proposed Face Recognition Result Using the PCA and NN

In the second experiment, based on the fact which we concluded from the first

experiment, combining the distance methods will allow us to achieve a higher recognition

rate. In the proposed framework using multi-classifier PCA and NN, we achieved higher

accuracy using equation (3.13) then equation (3.14). We achieved 97.7% accuracy in the

Yale database with only 2 mismatching of 165 images and 97.5% with 5 mismatching of

200 testing images in 50% training set and 50% testing scenario. Table 4.3 and Figure 4.5

shows the result in details.

 Table 4.3. Experiment results using PCA + NN with 50% training set and 50% testing set.

Method

PCA + NN using:

Recognition Rate

(%)

Yale ORL

Canberra Distance 88.9 80

Euclidean Distance 75.6 79.5

Correlation
Distance

89.9 85.5

Manhattan Distance 87.8 89.5

Mahalanobis
Distance

94.4 95.5

Proposed:

√∑ 𝑫𝑰𝑺𝒊
𝟐𝟓

𝒊=𝟏

96.6

96.5

Proposed:

√𝛂 ∑ 𝑫𝑰𝑺𝒊
𝟐𝟓

𝒊=𝟏

97.7

97.5

68

4.2.2 Proposed Face Recognition Result Using the LBPH and NN

In the proposed framework using multi-classifier LBPH and NN, we achieved

higher accuracy using equation (3.13) then equation (3.14). We achieved 97.7% accuracy

in the Yale dataset with only 2 mismatching of 165 images and 98% with 4 mismatching

of 200 testing images in 50% training set and 50% testing scenario. Table 4.4 and Figure

4.6 shows the result in details. Table 4.5 shows the comparison between the proposed

framework and the other existing methods on the ORL.

Figure 4.5. Experiment results using PCA + NN with 50% training set and 50% testing set.

88.9

75.6

89.9 87.8

94.4
96.7 97.7

80 79.5

85.5
89.5

95.5 96.5 97.5

0

20

40

60

80

100

120

Canberra Euclidean Correlation Manhattan Mahalanobis Proposed 1: Proposed 2:

R
ec

o
gn

it
io

n
 R

at
e

(%
)

Method

Recognition Rate (%) Yale Recognition Rate (%) ORL

69

Table 4.4. Experiment results using LBPH + NN with 50% training set and 50% testing set.

Method

PCA + NN using:

Recognition Rate

(%)

Yale ORL

Canberra Distance 91.1 93.5

Euclidean Distance 91.1 95

Correlation Distance 92.2 95.5

Manhattan Distance 94.4 96

Mahalanobis
Distance

95.4 96.5

Proposed:

√∑ 𝑫𝑰𝑺𝒊
𝟐𝟓

𝒊=𝟏

96.6

97.5

Proposed:

√𝛂 ∑ 𝑫𝑰𝑺𝒊
𝟐𝟓

𝒊=𝟏

97.7

98

Yale

ORL

86

88

90

92

94

96

98

Euclidean
Distance

Correlation
Distance

Canberra
Distance

Manhattan
Distance

Mahalanob
is Distance

Proposed1 Proposed2

Yale 91.1 91.1 92.2 96.6 95.6 96.7 97.7

ORL 93.5 95 95.5 96.5 97 97.5 98

R
R

Methods

Figure 4.6. Experiment results using LBPH + NN with 50% training set and 50% testing set.

70

 Table 4.5. Comparison between the proposed framework and the other existing methods.

4.3 Face Registration Based on a Minimalized Cost Function

Result

In this experiment, we applied our proposed method to a 256x256 pixels Lena

image. After converting Lena image to gray-scale image and adding some noise, we

applied some transformation to Lena image such as 0.2 scaling, 0.2 rotation, -15 translation

tx, and -5 translation ty. We achieved a high registration accuracy with the lowest error by

using few matching points. We tried variant matching point scenarios, and we achieved a

steady error rate. The main contribution in this paper is registering the images with only

two sufficient matching points. Table 4.6 shows the error rate for affine parameters with

variant matching point number. This table shows the proposed algorithm achieved the

lowest passable error rate with few matching points. The proposed methods can be applied

to the human face images as shown in Figure 4.7.

Reference Year Method

Number of

Training Images

per person

%Accuracy

[79] 2015 PCA+BPNN N/A 88

[80] 2015 LDA 5 89.5

[81] 2015 Gabor + NMF 5 95

[82] 2014 PCA,LDA,DCT,ICA 5 85.5,88.5,91.5,87.5

[83] 2013 FKNN 5 87

[84] 2012 WT+PCA 8 95

[85] 2012 CASNN,FFNN 5 86.5,80

[86] 2011
PCA-DCT-Corr-

PIFS
N/A 86.8

Proposed 2017
LBPH, multi-KNN,

and BPNN
5 98

71

Table 4.6. Registration error rate for variant matching point number.

4.4 Deep Face Registration Result

In this experiment, we applied our proposed method on the LFW dataset. All the

images resized to 224x224 and no preprocessing methods applied to them. All images

normalized between [0, 1]. The dataset randomly split to 67% as a training dataset and 33%

as a testing dataset. We evaluated 4 of the deep network models and we achieved a high

accuracy. In the simple CNN model, we achieved %98.18 accuracy. However, when we

use a deeper model we achieved a higher accuracy. The accuracy using the ResNet50 is

Number of

Matching Points

Scaling

Error

Rotation

Error

tx

Error

ty

Error

30 0.007 0.066 0.34 2.21

20 0.01 0.067 0.4 2.5

10 0.012 0.07 0.45 2.43

5 0.015 0.064 1.37 0.9

3 0.017 0.07 1.4 1.7

2 0.019 0.065 0.86 1.09

0

0.5

1

1.5

2

2.5

3

30 20 10 5 3 2

Er
ro

r
R

at
e

Number of matching points

Scaling Error

Rotation Error

tx Error

ty Error

Figure 4.7. Registration error rate for variant matching point number on Lena image.

72

98.55% and 98.42% for VGG19 and VGG16 provided the highest accuracy which is

98.40%. Deeper networks takes more training time which is not critical since the network

will be trained off line. The networks predicts the output in a real time miner which is with

0.009 second. Table 4.7 shows the accuracy, training time and the prediction time of the

output. Figure 4.8 shows all the models converged smoothly.

Table 4.7. Deep face registration result.

Model Accuracy
Training

time

Prediction

time

Total

parameters

Simple CNN 98.18 2.6 Hours 0.004 Second 3 million

VGG16 98.42 6.6 Hours 0.009 Second 134 million

VGG19 98.40 7.6 Hours 0.01 Second 140 million

ResNet50 98.55 5.5 Hours 0.007 Second 23 million

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Lo
ss

Epoch

Loss

Simple CNN VGG16 VGG19 ResNet50

Figure 4.8. Models loss curve.

73

Figure 4.9. Example for registered faces: (a) Original face (b) Predicted registered face

(c) Expected registered face.

74

CONCLUSIONS

In this thesis, we have proposed an improving human face recognition using deep

learning based image registration and multi-classifier approaches. In our dissertation, we

started with improving the recognition face system by improving the features extraction

approach. The framework can work with different types of feature extraction methods. We

used the Principal component analysis (PCA) for the first proposed system then the Local

binary patterns (LBP) for the second proposed system. The main contribution is to provide

training data with distinction patterns which will help the NN to converge faster and more

accurate. We achieved this contribution by combining five distance methods since each

distance methods has an advantage over the other methods and by combining them we

added strength to the whole system. Experimental results showed that we achieved a higher

accuracy, and we reduced the computation time. Also, we outperformed the existing

frameworks. We can use the proposed framework with a robust feature extraction

algorithms such as Support Vector Machine (SVM) and deep neural network which have

some advantage over the LPB and PCA. Also, we proposed a deep face registration which

can lead to a robust overall face recognition system. We achieved high accuracy using deep

models such as VGGNet and ResNet models. Our deep face registration dataset and the

deep models will be available for the public after we publish our result.

75

REFERENCES

[1] R. Chellappa, C. Wilson, and S. Sirohey, “Human and machine recognition of faces:

A survey,” Proceedings of the IEEE, vol. 83, pp. 705–740, 1995.

[2] H. Fang, N. Parthalain, A. J. Aubrey, G. K. L. Tam, R. Borgo, P. L. Rosin, P. W.

Grant, D. Marshall, and M. Chen, “Facial expression recognition in dynamic

sequences: An integrated approach,” Pattern Recognition, pp. 740–748 , 2014.

[3] Z. Zeng, M. Pantic, G. Roisman, and T. Huang, “A survey of affect recognition

methods: Audio, visual, and spontaneous expressions,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, 31(1):39–58, 2009.

[4] M. Chihaoui, A. Elkefi, W. Bellil, and C. B. Amar, “A Survey of 2D Face

Recognition Techniques,” MDPI Computers, vol. 5, 2016.

[5] P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces versus fisherfaces:

Recognition using class specific linear projection,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 19, pp. 711–720, 1997.

[6] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face recognition with local binary

patterns,” European Conference on Computer Vision. Lecture Notes in Computer

Science, Springer, Berlin, vol. 3021, pp. 469–481, 2004.

[7] T. Chen, X. Zhao, L. Dai, L. Zhang, and J. A. Wang, “Novel Texture Feature

Description Method Based on the Generalized Gabor Direction Pattern and

Weighted Discrepancy Measurement Model,” MDPI Symmetry , vol. 8, 109, 2016.

76

[8] Y. Xiao, J. Wu, J. Yuan, “CENTRIST: A multi-channel feature generation

mechanism for scene categorization,” IEEE Transaction on Image Processing, vol.

23, no. 2, pp. 823–836, 2014.

[9] C. K. Heng, S. Yokomitsu, Y. Matsumoto and H. Tamura, “Shrink boost for selecting

multi-LBP histogram features in object detection,” IEEE Conference on Computer

Vision and Pattern Recognition, Providence, RI, pp. 3250-3257, 2012.

[10] X. Zhao and S. Zhang, “Facial Expression Recognition Based on Local Binary

Patterns and Kernel Discriminant Isomap,” Sensors, vol. 11, no. 10, pp. 9573-9588,

2011.

[11] L. Huang, C. Chen, W. Li, and Q. Du, "Remote sensing image scene classification

using multi-scale completed local binary patterns and Fisher vectors", Remote Sens.,

vol. 8, no. 6, pp. 483, 2016.

[12] M. Turk, and M. Pentland, “Eigenfaces for Recognition,” J. Cogn. Neuroscience, vol.

3, pp. 71–6, 1991.

[13] S. Wang, and P. Liu, “A New Feature Extraction Method Based on the Information

Fusion of Entropy Matrix and Covariance Matrix and Its Application in Face

Recognition,” MDPI Entropy, vol. 17, pp. 4664-4683, 2015.

[14] H. Boughrara, M. Chtourou, C. Amar, and L. Chen, “Face recognition based on

perceived facial images and multilayer perceptron neural network using constructive

training algorithm,” IET Computer Visio, vol. 8, no. 6, pp. 729-739, 2014.

[15] M. J. Er, W. Chen, and S. Wu, “High speed face recognition based on discrete cosine

transform and RBF neural network,” IEEE Transaction on Neural Network, vol. 16,

no.3, pp. 679-691, 2005.

77

[16] Y. Xu, F. Liang, G. Zhang, and H. Xu, “Image Intelligent Detection Based on the

Gabor Wavelet and the Neural Network,” MDPI Symmetry, vol. 8, 130, 2016.

[17] D. Hemanth, C. Kezi, and J. Anitha, “Application of Neuro-Fuzzy Model for MR

Brain Tumor Image classification,” International Journal of Biomedical Soft

Computing and Human Sciences, vol. 16, no., 2010.

[18] Z. Yang and F. S. Cohen, “Image registration and object recognition using affine

invariants and convex hulls,” IEEE Transaction on Image Processing, vol. 8, no. 7,

pp. 934-946, July 1999.

[19] F. Dufaux and J. Konrad, “Efficient, robust, and fast global motion estimation for

video coding,” IEEE Transaction on Image Processing, vol. 9, no. 3, pp. 497-501,

March 2000.

[20] J. B. A. Maintz and M. A. Viergever, “A survey of medical image registration,”

Medical Image Analysis, vol. 2, no. 1, pp. 1-36, 1998.

[21] H. Dou, and Y. Lu, “Medical Image Registration based on Edge Inflection point,”

Life Science Instrument, vol. 10, no. 4, pp. 15-18, 2006.

[22] R. Hartley and A. Zisserman, “Multiple view geometry in computer vision”

Cambridge university press, 2003.

[23] D. G. Lowe, “Distinctive image features from scale invariant keypoints,”

International journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[24] B. Zitova, and J. Flusser, “Image registration methods: a survey,” Image and Vision

Computing, vol. pp. 977-1000, 2003.

78

[25] N. Vujovic, and D. Brzakovic, “Establishing the correspondence between control

points in pairs of mammographic image,” IEEE Transactions on Image Processing

vol. 6, pp. 1388–1399, 1997.

[26] H. Alhichri, and M. Kamel, “Virtual Circles: a new set of features for fast image

registration,” Pattern Recognition Letters, vol. 24, pp. 11811190, 2003.

[27] B. Manjunath, C. Shekhar, and R. Chellapa, “A new approach to image feature

detection with applications,” Pattern Recognition, vol. 29, pp. 627–640, 1996.

[28] S. Wisetphanichkij, and K. Dejhan, “Fast Fourier Transform Technique and Affine

Transform Estimation-Based High Precision Image Registration Method,” GESTS

Int'l Transition on Computer Science and Engineering, vol. 20, no. 1, pp. 179-191,

2005.

[29] R. Karani, and T. Sarode, “Image Registration using Discrete Cosine Transform and

Normalized Cross Correlation,” IJCA Proceedings on International Conference and

Workshop on Emerging Trends in Technology, pp. 28-34, 2012.

[30] E. Paul and A. Beegom, “Mining images for image annotation using SURF detection

technique,” International Conference on Control Communication & Computing, pp.

724-728, 2015.

[31] W. Chen S. Ding, and Z. Chai, “FPGA-Based Parallel Implementation of SURF

Algorithm,” IEEE International Conference on Parallel and Distributed Systems, pp.

308-315, 2016.

[32] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, ”Speedud-Up Robust

Features(SURF)”, IEEE transactions ,vol. 14,no. 1, 2008.

79

[33] M. Calonder, V. Lepetit, C. Strecha, and P. F. Brief, “Binary robust independent

elementary features,” European Conference on Computer Vision, pp. 778–792, 2010.

[34] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography,”

Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[35] P. J. Rousseeuw, “Least median of squares regression,” Journal of the American

Statistical Association, vol. 79, pp.871-880, December 1984.

[36] M. H. Yang, “Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition using

kernel methods,” Automatic Face and Gesture Recognition, pp. 205–211, 2002.

[37] C. Liu and H. Wechsler, “Evolutionary pursuit and its application to face

recognition,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol.

22, no. 6, pp. 570–582, 2000.

[38] D. Zhang, Z. Zhou, and S. Chen, “Diagonal Principal Component Analysis for Face

Recognition,” Pattern Recognition, vol. 39, pp. 140-142, 2006.

[39] T. Mandal, Q. M. J. Wu, and Y. Yuan, “Curvelet based face recognition via

dimension reduction,” Elsevier Signal Processing, vol. 89, no. 3, pp. 2345-2353,

2009.

[40] M. H. Yang, “Kernel Eigenfaces vs. Kernel Fisherfaces: Face Recognition Using

Kernel Methods,” Automatic Face and Gesture Recognition, pp. 215-220, May 2002.

[41] R. Gottumukkal and V. K. Ansri, “An improved face recognition technique based on

Mudular PCA approach,” Pattern Recognition letters, vol. 25, pp. 429-436, 2004.

[42] J. Yang, D. Zhang, A. F. Frangi, and J. Y. Yang, “Two-dimensional PCA: a new

approach to appearance-based face representation and recognition,” IEEE

80

Transaction on Pattern Analysis and Machine Intelligence, vol. 26, no. 1, pp. 131-

137, Jan. 2004.

[43] J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Face Recognition using LDA

based Algorithms,” IEEE Transaction on Neural Networks, vol. 14, no. 1, pp 195-

200, 2003.

[44] A. Martez, and A. Kak, “PCA versus LDA,” IEEE Transaction on Pattern Analysis

and Machine Intelligence, vol. 23, no. 2, pp. 228-233, 2001.

[45] M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face Recognition by

Independent Component Analysis,” IEEE Transaction on Neural Networks, vol. 13,

no. 6, pp. 1450-1464, 2002.

[46] B. A. Draper, K. Baek, M. S. Bartlett, and J. R. Beveridge, “Recognizing Faces with

PCA and ICA,” Computer Vision and Image Understanding: special issue on face

recognition, pp. 115-137, 2003.

[47] B. Moghaddam, “Principal manifolds and bayesian subspaces for visual recognition,”

IEEE International Conference on Computer Vision, pp. 1131-1136, 1999.

[48] P. C. Yuen and J. H. Lai, “Face representation using Independent Component

Analysis,” Pattern Recognition, vol. 35, no. 6, pp. 1247-1257, 2002.

[49] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of texture measures

with classification based on feature distributions,” Pattern Recognition, vol. 29, no.

1, pp. 51–59, 1996.

[50] W. Zhang, S. Shan, W. Gao, and H. Zhang. “Local Gabor binary pattern histogram

sequence (LGBPHS): a novel non-statistical model for face representation and

recognition,” IEEE ICCV, vol. 1, pp. 786–791, 2005.

81

[51] H. E. Komleh, V. Chandran, and S. Sridharan, “Robustness to expression variations

in fractal-based face recognition,” Proc. IEEE Int. Symp. Signal Processing and its

Applications, vol. 1, Kuala Lumpur, Malaysia, pp. 359–362, 2001.

[52] M. Lades, J. C. Vorbriiggen, J. Buhmann, J. Lange, C. von der Malsburg, R. P.

Wiirtz, and W. Konen, “Distortion invariant object recognition in the dynamic link

architecture,” IEEE Transaction on Computers, vol. 42, no. 3, pp. 300-311, 1993.

[53] T. Cover, and P. Hart, “Nearest Neighbor Pattern Classification,” IEEE Transaction

on Information Theory, Vol. 13, no. 1, pp. 21–27. 1967.

[54] K. Lee, Y. Chung, and H. Byun, “SVM based face verification with feature set of

small size,” Electronic letters, vol. 38, no.15, pp. 787-789, 2002.

[55] Y. LeCun, L. Bottou, G. B. Orr, and K. R. Muller, "Efficient BackProp," Neural

Networks: Tricks of the Trade, pp. 9-50, 1998.

[56] I. Chakroun, T. Haber, and T. J. Ashby, “SW-SGD: The Sliding Window Stochastic

Gradient Descent Algorithm,” Procedia Computer Science, vol. 108, pp. 2318-2322,

2017.

[57] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” In Proc. International Conference on Learning Representations,

2014.

[58] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural network

for modelling sentences,” Association for Computational Linguistics, pp. 655-665,

2014.

Y. Kim, “Convolutional neural networks for sentence classification,” Empirical Methods

in Natural Language Processing, 2014.

82

[59] A. Conneau, H. Schwenk, Y. LeCun, and L. Barrault, “Very deep convolutional

networks for text classification,” European Chapter of the Association for

Computational Linguistics, 2017.

[60] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale

hierarchical image database,” IEEE Conference on Computer Vision and Pattern

Recognition, pp. 248-255, 2009.

[61] V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer, “Efficient processing of deep neural

networks: A tutorial and survey,” in Proceedings of the IEEE, vol. 105, no. 12, pp.

2295-2329, 2017.

[62] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436-

444, 2015.

[63] Y. Bengio, “Learning Deep Architectures for AI,’ Foundations and Trends® in

Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

[64] L. Deng, “Three classes of deep learning architectures and their applications: a

tutorial survey,” APSIPA Transactions on Signal and Information Processing, 2012.

[65] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” Journal of

Machine Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.

[66] Y. Liu, E. Racah, P. J. Correa, A. Khosrowshahi, D. Lavers, K. Kunkel, M. Wehner,

and W. D. Collins “Application of Deep Convolutional Neural Networks for

Detecting Extreme Weather in Climate Datasets,” arXiv preprint arXiv:1605.01156,

2016.

83

[67] A. Esteva, B. Kuprel, R.A. Novoa, Ko J., S.M. Swetter, H.M. Blau, S. Thrun,

“Dermatologist-level classification of skin cancer with deep neural networks,”

Nature, vol. 542, no. 7639, pp. 115-118, 2017.

[68] T. Chen, R. Xu, Y. He, and X. Wang, “A gloss composition and context clustering

based distributed word sense representation model,” Entropy, vol. 17, no. 9, pp. 6007-

6024, 2015.

[69] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘Imagenet classification with deep

convolutional neural networks,” Advances neural information processing systems,

pp. 1090-1098, 2012.

[70] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann

machines,” International Conference on Machine Learning, pp. 807-814, 2010.

[71] A. Aldhaheri and J. Lee, “Event detection on large social media using temporal

analysis,” Computing and Communication Workshop and Conference, pp. 1-6, 2017.

[72] F. Schilling, “The Effect of Batch Normalization on Deep Convolutional Neural

Networks,” DiVA Publisher: Uppsala, Sweden, 2016.

[73] ORL dataset. Available online: (accessed on 12/11/2018)

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

[74] Yale Face Dataset. Available online: (accessed on 12/11/2018).

http://vision.ucsd.edu/content/yale-face-database.

[75] M. Kirby and L. Sirvoich, “Application of the Karhunen-Loeve Procedure for the

characterization of human faces,” IEEE Transaction on Pattern Analysis and

Machine Intelligence, vol. 12, no. 1, pp. 103–108, 1990.

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://vision.ucsd.edu/content/yale-face-database

84

[76] K. Perumal, and R. Bhaskaran, “Supervised classification Performance of

multispectral images,” Journal of computing, vol. 2, no. 2, pp. 124-129, 2010.

[77] G. J. Szekély, M. L. Rizzo, and N. K. Bakirov, “Measuring and testing independence

by correlation of distances,” The Annals of Statistics, vol. 35, no. 6, pp. 2769-2794,

2007.

[78] M. P. Rajath, R. Keerthi, and K. M. Aishwarya, “Artificial neural networks for face

recognition using PCA and BPNN,” TENCON 2015 - 2015 IEEE Region 10

Conference, pp. 1-6, 2015.

[79] W. Ge, W. Quan, and C. Han, “Face description and identification using histogram

sequence of local binary pattern”. International Conference on Advanced

Computational Intelligence, pp. 415-420, 2015.

[80] F. Purnomo, D. Suhartono, M. Shodiq, A. Susanto, S. Raharja, and R. W. Kurniawan,

“Face recognition using Gabor Wavelet and Non-negative Matrix Factorization,” SAI

Intelligent Systems Conference (IntelliSys), pp. 788-792, 2015.

[81] F. A. Bhat, and M. A. Wani, “Performance Comparison of Major Classical Face

Recognition Techniques,” International Conference on Machine Learning and

Applications, pp. 521-528, 2015.

[82] T. Ayyavoo, and J. S. Jayasudha, “Face recognition using enhanced energy of

Discrete Wavelet Transform,” International Conference on Control Communication

and Computing, pp. 415-419, 2013.

[83] C. I. Fan, X. T. Chen, and N. D. Jin, “Research of face recognition based on wavelet

transform and principal component analysis,” International Conference on Natural

Computation, pp. 575-578, 2012.

85

[84] A. J. Dhanaseely, S. Himavathi, and E. Srinivasan, “Performance comparison of

cascade and feed forward neural network for face recognition system,” International

Conference on Software Engineering and Mobile Application Modelling and

Development, pp. 1-6, 2012.

[85] M. A. Lone, S. M. Zakariya, and R. Ali, “Automatic Face Recognition System by

Combining Four Individual Algorithms,” International Conference on

Computational Intelligence and Communication Networks, pp. 222-226, 2011.

[86] P. Gadde, and X. Yu, “Image Registration with Artificial Neural Networks Using

Spatial and Frequency Features,” IEEE International Joint Conference on Neural

Networks, pp. 4643-4649, 2016.

86

APPENDIX

Simple CNN model:

__
Layer (type) Output Shape Param #

==

input_1 (Input Layer) (None, 100, 100, 3) 0

__

conv2d_1 (Conv2D) (None, 100, 100, 128) 3584

__

batch_normalization_1 (Batch (None, 100, 100, 128) 512

__

max_pooling2d_1 (MaxPooling2 (None, 50, 50, 128) 0

__

conv2d_2 (Conv2D) (None, 50, 50, 128) 147584

__

batch_normalization_2 (Batch (None, 50, 50, 128) 512

__

max_pooling2d_2 (MaxPooling2 (None, 25, 25, 128) 0

__

conv2d_3 (Conv2D) (None, 25, 25, 128) 147584

__

batch_normalization_3 (Batch (None, 25, 25, 128) 512

__

max_pooling2d_3 (MaxPooling2 (None, 13, 13, 128) 0

__

conv2d_4 (Conv2D) (None, 13, 13, 128) 147584

__

batch_normalization_4 (Batch (None, 13, 13, 128) 512

__

flatten_1 (Flatten) (None, 21632) 0

__

dense_1 (Dense) (None, 128) 2769024

__

dense_2 (Dense) (None, 64) 8256

__

dense_3 (Dense) (None, 4) 260

==

Total params: 3,225,924

Trainable params: 3,224,900

Non-trainable params: 1,024

__

87

VGG16 Model layers:

Layer (type) Output Shape Param #

===

input_4 (Input Layer) (None, 224, 224, 3) 0

block1_conv1 (Conv2D) (None, 224, 224, 64) 1792

block1_conv2 (Conv2D) (None, 224, 224, 64) 36928

block1_pool (MaxPooling2D) (None, 112, 112, 64) 0

block2_conv1 (Conv2D) (None, 112, 112, 128) 73856

block2_conv2 (Conv2D) (None, 112, 112, 128) 147584

block2_pool (MaxPooling2D) (None, 56, 56, 128) 0

block3_conv1 (Conv2D) (None, 56, 56, 256) 295168

block3_conv2 (Conv2D) (None, 56, 56, 256) 590080

block3_conv3 (Conv2D) (None, 56, 56, 256) 590080

block3_pool (MaxPooling2D) (None, 28, 28, 256) 0

block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160

block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808

block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808

block4_pool (MaxPooling2D) (None, 14, 14, 512) 0

block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808

block5_pool (MaxPooling2D) (None, 7, 7, 512) 0

Flatten (Flatten) (None, 25088) 0

fc1 (Dense) (None, 4096) 102764544

fc2 (Dense) (None, 4096) 16781312

fc3 (Dense) (None, 128) 524416

fc4 (Dense) (None, 64) 8256

Predictions (Dense) (None, 4) 260

===

Total params: 134,793,476

Trainable params: 134,793,476

Non-trainable params: 0

88

VGG19 Model layers:

Layer (type) Output Shape Param #

===

input_5 (Input Layer) (None, 224, 224, 3) 0

block1_conv1 (Conv2D) (None, 224, 224, 64) 1792

block1_conv2 (Conv2D) (None, 224, 224, 64) 36928

block1_pool (MaxPooling2D) (None, 112, 112, 64) 0

block2_conv1 (Conv2D) (None, 112, 112, 128) 73856

block2_conv2 (Conv2D) (None, 112, 112, 128) 147584

block2_pool (MaxPooling2D) (None, 56, 56, 128) 0

block3_conv1 (Conv2D) (None, 56, 56, 256) 295168

block3_conv2 (Conv2D) (None, 56, 56, 256) 590080

block3_conv3 (Conv2D) (None, 56, 56, 256) 590080

block3_conv4 (Conv2D) (None, 56, 56, 256) 590080

block3_pool (MaxPooling2D) (None, 28, 28, 256) 0

block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160

block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808

block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808

block4_conv4 (Conv2D) (None, 28, 28, 512) 2359808

block4_pool (MaxPooling2D) (None, 14, 14, 512) 0

block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv4 (Conv2D) (None, 14, 14, 512) 2359808

block5_pool (MaxPooling2D) (None, 7, 7, 512) 0

Flatten (Flatten) (None, 25088) 0

fc1 (Dense) (None, 4096) 102764544

fc2 (Dense) (None, 4096) 16781312

fc3 (Dense) (None, 128) 524416

fc4 (Dense) (None, 64) 8256

Predictions (Dense) (None, 4) 260

===

Total params: 140,103,172

Trainable params: 140,103,172

Non-trainable params: 0

89

ResNet50 Model layers:

Layer (type) Output Shape Param #

===

input_3 (InputLayer) (None, 224, 224, 3) 0

conv1_pad (ZeroPadding2D) (None, 230, 230, 3) 0

conv1 (Conv2D) (None, 112, 112, 64) 9472

bn_conv1 (BatchNormalization) (None, 112, 112, 64) 256

activation_99 (Activation) (None, 112, 112, 64) 0

max_pooling2d_3 (MaxPooling2D) (None, 55, 55, 64) 0

res2a_branch2a (Conv2D) (None, 55, 55, 64) 4160

bn2a_branch2a (BatchNormalizati (None, 55, 55, 64) 256

activation_100 (Activation) (None, 55, 55, 64) 0

res2a_branch2b (Conv2D) (None, 55, 55, 64) 36928

bn2a_branch2b (BatchNormalizati (None, 55, 55, 64) 256

activation_101 (Activation) (None, 55, 55, 64) 0

res2a_branch2c (Conv2D) (None, 55, 55, 256) 16640

res2a_branch1 (Conv2D) (None, 55, 55, 256) 16640

bn2a_branch2c (BatchNormalizati (None, 55, 55, 256) 1024

bn2a_branch1 (BatchNormalizatio (None, 55, 55, 256) 1024

add_33 (Add) (None, 55, 55, 256) 0

activation_102 (Activation) (None, 55, 55, 256) 0

res2b_branch2a (Conv2D) (None, 55, 55, 64) 16448

bn2b_branch2a (BatchNormalizati (None, 55, 55, 64) 256

activation_103 (Activation) (None, 55, 55, 64) 0

res2b_branch2b (Conv2D) (None, 55, 55, 64) 36928

bn2b_branch2b (BatchNormalizati (None, 55, 55, 64) 256

activation_104 (Activation) (None, 55, 55, 64) 0

res2b_branch2c (Conv2D) (None, 55, 55, 256) 16640

bn2b_branch2c (BatchNormalizati (None, 55, 55, 256) 1024

add_34 (Add) (None, 55, 55, 256) 0

activation_105 (Activation) (None, 55, 55, 256) 0

90

res2c_branch2a (Conv2D) (None, 55, 55, 64) 16448

bn2c_branch2a (BatchNormalizati (None, 55, 55, 64) 256

activation_106 (Activation) (None, 55, 55, 64) 0

res2c_branch2b (Conv2D) (None, 55, 55, 64) 36928

bn2c_branch2b (BatchNormalizati (None, 55, 55, 64) 256

activation_107 (Activation) (None, 55, 55, 64) 0

res2c_branch2c (Conv2D) (None, 55, 55, 256) 16640

bn2c_branch2c (BatchNormalizati (None, 55, 55, 256) 1024

add_35 (Add) (None, 55, 55, 256) 0

activation_108 (Activation) (None, 55, 55, 256) 0

res3a_branch2a (Conv2D) (None, 28, 28, 128) 32896

bn3a_branch2a (BatchNormalizati (None, 28, 28, 128) 512

activation_109 (Activation) (None, 28, 28, 128) 0

res3a_branch2b (Conv2D) (None, 28, 28, 128) 147584

bn3a_branch2b (BatchNormalizati (None, 28, 28, 128) 512

activation_110 (Activation) (None, 28, 28, 128) 0

res3a_branch2c (Conv2D) (None, 28, 28, 512) 66048

res3a_branch1 (Conv2D) (None, 28, 28, 512) 131584

bn3a_branch2c (BatchNormalizati (None, 28, 28, 512) 2048

bn3a_branch1 (BatchNormalizatio (None, 28, 28, 512) 2048

add_36 (Add) (None, 28, 28, 512) 0

activation_111 (Activation) (None, 28, 28, 512) 0

res3b_branch2a (Conv2D) (None, 28, 28, 128) 65664

bn3b_branch2a (BatchNormalizati (None, 28, 28, 128) 512

activation_112 (Activation) (None, 28, 28, 128) 0

res3b_branch2b (Conv2D) (None, 28, 28, 128) 147584

bn3b_branch2b (BatchNormalizati (None, 28, 28, 128) 512

activation_113 (Activation) (None, 28, 28, 128) 0

res3b_branch2c (Conv2D) (None, 28, 28, 512) 66048

bn3b_branch2c (BatchNormalizati (None, 28, 28, 512) 2048

add_37 (Add) (None, 28, 28, 512) 0

91

activation_114 (Activation) (None, 28, 28, 512) 0

res3c_branch2a (Conv2D) (None, 28, 28, 128) 65664

bn3c_branch2a (BatchNormalizati (None, 28, 28, 128) 512

activation_115 (Activation) (None, 28, 28, 128) 0

res3c_branch2b (Conv2D) (None, 28, 28, 128) 147584

bn3c_branch2b (BatchNormalizati (None, 28, 28, 128) 512

activation_116 (Activation) (None, 28, 28, 128) 0

res3c_branch2c (Conv2D) (None, 28, 28, 512) 66048

bn3c_branch2c (BatchNormalizati (None, 28, 28, 512) 2048

add_38 (Add) (None, 28, 28, 512) 0

activation_117 (Activation) (None, 28, 28, 512) 0

res3d_branch2a (Conv2D) (None, 28, 28, 128) 65664

bn3d_branch2a (BatchNormalizati (None, 28, 28, 128) 512

activation_118 (Activation) (None, 28, 28, 128) 0

res3d_branch2b (Conv2D) (None, 28, 28, 128) 147584

bn3d_branch2b (BatchNormalizati (None, 28, 28, 128) 512

activation_119 (Activation) (None, 28, 28, 128) 0

res3d_branch2c (Conv2D) (None, 28, 28, 512) 66048

bn3d_branch2c (BatchNormalizati (None, 28, 28, 512) 2048

add_39 (Add) (None, 28, 28, 512) 0

activation_120 (Activation) (None, 28, 28, 512) 0

res4a_branch2a (Conv2D) (None, 14, 14, 256) 131328

bn4a_branch2a (BatchNormalizati (None, 14, 14, 256) 1024

activation_121 (Activation) (None, 14, 14, 256) 0

res4a_branch2b (Conv2D) (None, 14, 14, 256) 590080

bn4a_branch2b (BatchNormalizati (None, 14, 14, 256) 1024

activation_122 (Activation) (None, 14, 14, 256) 0

res4a_branch2c (Conv2D) (None, 14, 14, 1024) 263168

res4a_branch1 (Conv2D) (None, 14, 14, 1024) 525312

bn4a_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096

92

bn4a_branch1 (BatchNormalizatio (None, 14, 14, 1024) 4096

add_40 (Add) (None, 14, 14, 1024) 0

activation_123 (Activation) (None, 14, 14, 1024) 0

res4b_branch2a (Conv2D) (None, 14, 14, 256) 262400

bn4b_branch2a (BatchNormalizati (None, 14, 14, 256) 1024

activation_124 (Activation) (None, 14, 14, 256) 0

res4b_branch2b (Conv2D) (None, 14, 14, 256) 590080

bn4b_branch2b (BatchNormalizati (None, 14, 14, 256) 1024

activation_125 (Activation) (None, 14, 14, 256) 0

res4b_branch2c (Conv2D) (None, 14, 14, 1024) 263168

bn4b_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096

add_41 (Add) (None, 14, 14, 1024) 0

activation_126 (Activation) (None, 14, 14, 1024) 0

res4c_branch2a (Conv2D) (None, 14, 14, 256) 262400

bn4c_branch2a (BatchNormalizati (None, 14, 14, 256) 1024

activation_127 (Activation) (None, 14, 14, 256) 0

res4c_branch2b (Conv2D) (None, 14, 14, 256) 590080

bn4c_branch2b (BatchNormalizati (None, 14, 14, 256) 1024

activation_128 (Activation) (None, 14, 14, 256) 0

res4c_branch2c (Conv2D) (None, 14, 14, 1024) 263168

bn4c_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096

add_42 (Add) (None, 14, 14, 1024) 0

activation_129 (Activation) (None, 14, 14, 1024) 0

res4d_branch2a (Conv2D) (None, 14, 14, 256) 262400

bn4d_branch2a (BatchNormalizati (None, 14, 14, 256) 1024

activation_130 (Activation) (None, 14, 14, 256) 0

res4d_branch2b (Conv2D) (None, 14, 14, 256) 590080

bn4d_branch2b (BatchNormalizati (None, 14, 14, 256) 1024

activation_131 (Activation) (None, 14, 14, 256) 0

res4d_branch2c (Conv2D) (None, 14, 14, 1024) 263168

bn4d_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096

93

add_43 (Add) (None, 14, 14, 1024) 0

activation_132 (Activation) (None, 14, 14, 1024) 0

res4e_branch2a (Conv2D) (None, 14, 14, 256) 262400

bn4e_branch2a (BatchNormalizati (None, 14, 14, 256) 1024

activation_133 (Activation) (None, 14, 14, 256) 0

res4e_branch2b (Conv2D) (None, 14, 14, 256) 590080

bn4e_branch2b (BatchNormalizati (None, 14, 14, 256) 1024

activation_134 (Activation) (None, 14, 14, 256) 0

res4e_branch2c (Conv2D) (None, 14, 14, 1024) 263168

bn4e_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096

add_44 (Add) (None, 14, 14, 1024) 0

activation_135 (Activation) (None, 14, 14, 1024) 0

res4f_branch2a (Conv2D) (None, 14, 14, 256) 262400

bn4f_branch2a (BatchNormalizati (None, 14, 14, 256) 1024

activation_136 (Activation) (None, 14, 14, 256) 0

res4f_branch2b (Conv2D) (None, 14, 14, 256) 590080

bn4f_branch2b (BatchNormalizati (None, 14, 14, 256) 1024

activation_137 (Activation) (None, 14, 14, 256) 0

bn4f_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096

add_45 (Add) (None, 14, 14, 1024) 0

activation_138 (Activation) (None, 14, 14, 1024) 0

res5a_branch2a (Conv2D) (None, 7, 7, 512) 524800

bn5a_branch2a (BatchNormalizati (None, 7, 7, 512) 2048

activation_139 (Activation) (None, 7, 7, 512) 0

res5a_branch2b (Conv2D) (None, 7, 7, 512) 2359808

bn5a_branch2b (BatchNormalizati (None, 7, 7, 512) 2048

activation_140 (Activation) (None, 7, 7, 512) 0

res5a_branch2c (Conv2D) (None, 7, 7, 2048) 1050624

res5a_branch1 (Conv2D) (None, 7, 7, 2048) 2099200

bn5a_branch2c (BatchNormalizati (None, 7, 7, 2048) 8192

94

bn5a_branch1 (BatchNormalizatio (None, 7, 7, 2048) 8192

add_46 (Add) (None, 7, 7, 2048) 0

activation_141 (Activation) (None, 7, 7, 2048) 0

res5b_branch2a (Conv2D) (None, 7, 7, 512) 1049088

bn5b_branch2a (BatchNormalizati (None, 7, 7, 512) 2048

activation_142 (Activation) (None, 7, 7, 512) 0

res5b_branch2b (Conv2D) (None, 7, 7, 512) 2359808

bn5b_branch2b (BatchNormalizati (None, 7, 7, 512) 2048

activation_143 (Activation) (None, 7, 7, 512) 0

res5b_branch2c (Conv2D) (None, 7, 7, 2048) 1050624

bn5b_branch2c (BatchNormalizati (None, 7, 7, 2048) 8192

add_47 (Add) (None, 7, 7, 2048) 0

activation_144 (Activation) (None, 7, 7, 2048) 0

res5c_branch2a (Conv2D) (None, 7, 7, 512) 1049088

bn5c_branch2a (BatchNormalizati (None, 7, 7, 512) 2048

activation_145 (Activation) (None, 7, 7, 512) 0

res5c_branch2b (Conv2D) (None, 7, 7, 512) 2359808

bn5c_branch2b (BatchNormalizati (None, 7, 7, 512) 2048

activation_146 (Activation) (None, 7, 7, 512) 0

res5c_branch2c (Conv2D) (None, 7, 7, 2048) 1050624

bn5c_branch2c (BatchNormalizati (None, 7, 7, 2048) 8192

add_48 (Add) (None, 7, 7, 2048) 0

activation_147 (Activation) (None, 7, 7, 2048) 0

avg_pool (GlobalAveragePooling2 (None, 2048) 0

dropout_3 (Dropout) (None, 2048) 0

fc1 (Dense) (None, 128) 262272

fc2 (Dense) (None, 64) 8256

fc3 (Dense) (None, 4) 260

===

Total params: 23,858,500

Trainable params: 23,805,380

Non-trainable params: 53,120
