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IMPROVING HUMAN FACE RECOGNITION USING DEEP 

LEARNING BASED IMAGE REGISTRATION AND MULTI-

CLASSIFIER APPROACHES 

ABSTRACT 

Face detection, registration, and recognition have become a fascinating field for 

researchers. The motivation behind the enormous interest in the topic is the need to 

improve the accuracy of many real-time applications. Countless methodologies have been 

acknowledged and presented in the past years. The complexity of the human face visual 

and the significant changes based on different effects make it more challenging to design 

as well as implementing a powerful computational system for object recognition in 

addition to human face recognition. Using supervised learning often requires extensive 

training for the computer which results in high execution times. It is an essential step in 

the face recognition to apply strong preprocessing approaches such as face registration to 

achieve a high recognition accuracy rate. Although there are exist approaches do both 

detection and recognition, we believe the absence of a complete end-to-end system 

capable of performing recognition from an arbitrary scene is in large part due to the 

difficulty in alignment. Often, the face registration is ignored, with the assumption that 

the detector will perform a rough alignment, leading to suboptimal recognition 
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performance. 

In this research, we presented an enhanced approach to improve human face 

recognition using a back-propagation neural network (BPNN) and features extraction 

based on the correlation between the training images. A key contribution of this paper is 

the generation of a new set called the T-Dataset from the original training data set, which 

is used to train the BPNN. We generated the T-Dataset using the correlation between the 

training images without using a common technique of image density. The correlated T-

Dataset provides a high distinction layer between the training images, which helps the 

BPNN to converge faster and achieve better accuracy. Data and features reduction is 

essential in the face recognition process, and researchers have recently focused on the 

modern neural network. Therefore, we used using a classical conventional Principal 

Component Analysis (PCA)  and Local Binary Patterns (LBP) to prove that there is a 

potential improvement even using traditional methods. We applied five distance 

measurement algorithms and then combined them to obtain the T-Dataset, which we fed 

into the BPNN. We achieved higher face recognition accuracy with less computational 

cost compared with the current approach by using reduced image features. We test the 

proposed framework on two small data sets, the YALE and AT&T data sets, as the ground 

truth. We achieved tremendous accuracy. Furthermore, we evaluate our method on one 

of the state-of-the-art benchmark data sets, Labeled Faces in the Wild (LFW), where we 

produce a competitive face recognition performance.  

In addition, we presented an enhanced framework to improve the face registration 

using deep learning model. We used deep architectures such as VGG16 and VGG19 to 

train our method. We trained our model to learn the transformation parameters (Rotation, 
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scaling, and shifting). By leaning the transformation parameters, we will able to transfer 

the image back to the frontal domain.  We used the LFW dataset to evaluate our method, 

and we achieve high accuracy.  
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CHAPTER 1: INTRODUCTION 

1.1 Research Problem and Scope  

Human face recognition is a challenging task because of the variability of the facial 

expression, personal appearance, variant poses, and the various illumination as shown in 

Figure 1.1 [1-4]. Also, due to the variability in lighting intensity, the number of sources, 

direction, and the camera orientation as illustrated in Figure 1.2, it is a challenging task to 

design a face recognition system in the real-time with high accuracy recognition rate. 

Image transformation by rotation, scaling, and a translation is one of the most challenging 

tasks to solve and has a significant influence on the image recognition as shown in Figure 

1.3. The changes in the human face personality should have less effect compared to the 

pose variation and illumination [5]. Reducing the image dimension is necessary to improve 

the classification processing time since the object recognition system requires an enormous 

volume for the computing process. PCA and LBP are one of the popular conventional 

approaches; both used for robust data representation, as well as histograms, for features 

reduction [6-13]. Higher accuracy can be achieved by finding a strong representation of 

the human face by retaining the most dissimilarities in the image data after reducing the 

dimensionality of the image. 



 

2 
 

 Classical human face recognition systems are divided into three phases as shown 

in Figure 1.4: The first step is preprocessing, which consists of many types of operations, 

Figure 1.2. Under variant lighting environments, the face can look different for the same person based on the 

light source. 

  

Figure 1.1. Same person with variant facial expression. 

Figure 1.3. Transformation Image. 
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such as image registration, scaling, face normalization, reducing the effect of background 

noise, detection and resizing, all of which affect the face recognition accuracy. Feature 

extraction is the second phase, which can be achieved by using powerful transformation 

approaches. The image dimension can be reduced to a smaller dimension by retaining 

significant features [12-13]. The final phase is the classification which is using powerful 

classifiers such as deep neural networks and the fully connected neural networks [14-16].  

In this research, we focused on the preprocessing phase and the feature extraction phase 

which they have a potential improvement.  

1.2 Motivation behind the Research  

There are many existing algorithms handle the human face recognition. The 

purpose of these algorithms to achieve an optimal recognition rate or near optimal 

Figure 1.4. Face Recognition System Process. 
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recognition rate in real-time processing time. However, none of the algorithms achieved a 

100% recognition rate. Therefore, human face recognition is an incredibly exciting field 

for researchers. The neural network classifier is relying on the strong features extraction 

methods. Neural network performs well with low error rate by feeding strong distinction 

patterns and features. 

This research is motivated by the drawbacks and limitations of existing systems. 

Existing methods relays on simple preprocessing methods such as face detection and 

simple image registration. Therefore, we felt that there is a potential improvement can be 

achieved by implementing a strong image registration based on deep learning approach 

and a strong features extraction approach which can provide strong distinction patterns and 

features based on the existing feature extraction methods such as PCA and LBP. 

1.3 Potential Contributions of the Proposed Research  

In this dissertation, we introduce an enhanced human face recognition framework 

with a high recognition rate. This improvement based on improving the features extraction 

approach and improving the image registration based on active shape model deep learning. 

The proposed framework is suitable for different features extraction methods such as PCA 

and LBP which we used in this research, and it can be extended to other algorithms such 

as a deep neural network.  

The contribution of the features extraction approach emanated from the first 

experiment. After we had obtained the training dataset based on the five distance methods, 

we noticed three scenarios. The first scenario is the optimal matching as shown in Table 
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1.1. All the distance methods were able to find the right match image of the person 1 which 

is the image 3 of the person 1. The second scenario is partially matching as shown in Table 

1.2. Euclidean, Manhattan, and Mahalanobis methods been able to find the right match for 

person 1 image which was image 2. However, Correlation and Canberra found the wrong 

match which was the image belong to person 28. The last scenario is the complete 

mismatching as shown in Table 1.3. All the distance methods failed to find the right image 

for person 1. Combining the five distance methods using equation (1.1) makes the system 

more robust and the recognition rate higher since the training dataset will be more 

significant for the neural network.  

√∑ 𝐷𝐼𝑆𝑖
25

𝑖=1        (1.1) 

Table 1.1. The optimal match scenario. 

 Correlation Euclidean Canberra Manhattan Mahalanobis 

Person 

1 

Picture1 0.22 0.24 0.71 0.32 0.56 

Picture2 0.12 0.19 0.67 0.25 0.47 

Picture3 0.06 0.14 0.58 0.21 0.47 

Picture4 0.12 0.19 0.64 0.27 0.48 

Person 

2 

Picture1 1 0.7 0.83 0.69 0.73 

Picture4 0.97 0.74 0.82 0.56 0.77 

 …..      

Person 

40 

Picture1 0.38 0.43 0.75 0.47 0.54 

Picture4 0.59 0.67 0.9 0.7 0.66 
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Table 1.2. The partially match scenario. 

 Correlation Euclidean Canberra Manhattan Mahalanobis 

Person  

1 

Picture1 0.39 0.24 0.71 0.34 0.56 

Picture2 0.31 0.14 0.67 0.21 0.36 

Person 

28 

Picture1 1 0.7 0.83 0.69 0.66 

Picture2 0.24 0.51 0.71 0.44 0.64 

Picture3 0.72 0.54 0.85 0.48 0.79 

Picture4 0.4 0.77 0.61 0.56 0.74 

 …..      

Person 

40 

Picture1 0.41 0.73 0.78 0.41 0.71 

Picture4 0.39 0.54 0.92 0.69 0.69 

 

Table 1.3. The complete mismatch scenario. 

 

 Correlation Euclidean Canberra Manhattan Mahalanobis 

Person 1 

Picture1 0.39 0.34 0.71 0.34 0.56 

Picture2 0.31 0.32 0.67 0.42 0.49 

Picture3 0.41 0.28 0.77 0.29 0.39 

Picture4 0.29 0.29 0.64 0.27 0.48 

Person 5 
Picture3 0.72 0.54 0.85 0.48 0.79 

Picture4 0.19 0.77 0.61 0.56 0.32 

 …..      

Person 

21 
Picture2 0.34 0.41 0.57 0.32 0.74 

Person 

27 
Picture1 0.51 0.57 0.74 0.21 0.64 

Person 

40 

Picture1 0.41 0.27 0.78 0.41 0.71 

Picture4 0.39 0.54 0.92 0.69 0.69 
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On the other hand, we are trying to achieve higher accuracy by improving the face 

registration approach which will lead to a robust end-to-end face recognition system. Since 

the classical face registration is outdated, we are working on the deep learning based face 

registration, and we decided to build our deep learning system based on the deep learning 

concept. We used VGG16, VGG19 and ResNet50 architectures to build our model then we 

applied the model on one of the State-of-Art datasets such as LFW. 
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CHAPTER 2: LITERATURE SURVEY  

The humans can easily and successfully perform face recognition task using their 

eyes. However, the automatic human face recognition still far from optimal and the 

researchers with a variant background such as pattern recognition, computer vision, and 

neural network consider it an area which can be improved. Therefore, the literature survey 

on human face recognition is diverse. In this survey, a detailed view of the human face 

recognition methods is presented. Researchers introduced variant algorithms with different 

accuracy and sometimes inconsistent results comparing to each other. The objective of this 

survey is to provide an overview of the face recognition process. We focused on the popular 

categories of feature extraction methods and face registration since the features 

characterize the whole image [17].  The main purpose of the features extraction is to reduce 

the image dimension by selecting the most significant features with retaining the relevant 

information and should be diverse enough among classes for good classification 

performance. However, the strength of the features extraction methods relies on strong 

preprocessing approaches like the face registration. The extracted features can be used to 

classify and to recognize patterns that are present in the source images. Therefore, the face 

registration and feature extraction process are the key point of the classification 

performance and thus, in the overall human face recognition.  
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2.1 Preprocessing and Image Registration 

Image registration is an essential method used in the image processing systems such 

as face and object recognition [18-22], object detection, motion estimation [19], and 

medical application [20]. The information inherited from two related images for the same 

scene is different. Therefore, they need a proper registration to make the two images 

uniform and transfer them to the same coordinate system. The classical steps of the image 

registration are divided into four phases as shown in Figure 2.1 [21]. The first step is to 

extract the most significant features of the source image and the target image such as edges, 

corners, and intersections, etc. The key points can be found using methods such as 

Gaussians difference algorithm [23], segmentation methods [24], representations of 

general line segments or elongated anatomic structures [25], virtual circles [26], and local 

curvature discontinuities detected using the Gabor wavelets [27]. These algorithms are 

recommended if the image contains detectable objects.  

On the other hand, the medical images usually have one object and considered as a 

lake of details. Fast Fourier transform (FFT) used to extract the features in the frequency 

domain and obtain the parameters based on cross-correlation [28]. The discrete wavelet 

transform is another method used for feature extraction with root mean square error 

(RMSE) method [29]. The second step is to find the matching features between the two 

images from the features which we extracted in step one.  Obtaining the corresponding 

points between the images has been a motivation of many invariant algorithms such as the 

Scale-Invariant Feature Transform (SIFT) [23], Speeded-Up Robust Features (SURF) [30-

32], and Binary Robust Independent Elementary Feature (BRIEF) [33]. Even with these 
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methods, it is still a challenge to obtain the appropriate matches. The RANSAC method is 

used to eliminate all the mismatching points by finding the best fitting on random subsets 

of the matches then select the best fitting subset. RANSAC [34] is robust to mismatches 

but finds a sub-optimal estimation, where LMedS [35] is a more accurate estimation, 

however, requires at least 50% correct matches. The third step is to find the affine 

transformation parameters such as translation, scaling, reflection, rotation, and shearing 

using some of the methods such as the minimized cost function.  The last step is 

transforming the target image to the source image coordinate system using the affine 

transformation parameters which obtained from the third step. 

The researchers moved toward a deep learning based image registration approaches 

because of the classical image registration limitation. P. Gadde et al. [87] proposed an 

Image registration with artificial neural networks using spatial and frequency features. In 

their study, the registration of images is investigated with two novel neural network based 

approaches, namely, SIFT-DCT and SIFT-DWT. Scale-invariant Feature Transform 

(SIFT), Discrete Cosine Transform (DCT), and Discrete Wavelet Transform (DWT) are 

employed in these approaches. Both new approaches combine features in the spatial 

domain (SIFT) and frequency domain (DCT or DWT) to provide more robust feature 

Figure 2.1. Classical image registration. 
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extraction methods for image registration. The learning ability and nonlinear mapping 

ability of artificial neural network provide a flexible and intelligent tool for data fusion on 

feature matching and transform model parameter estimation. However, this proposed 

method obtain the training data using original methods not based on deep learning. 

2.2 Feature Extraction for Face Recognition 

Feature extraction can be accomplished using numerous mathematical models, 

image processing techniques, and intelligent computational tools such as neural networks 

or fuzzy logic. The approaches divided into four categories feature-based, appearance-

based, and template-based and part-based approaches as shown in Figure 2.2. In our 

research, we focused on the feature-based and appearance-based. 

Feature Extraction categories  

Appearance-based

* PCA

*LDA

*ICA

Feature-based

* LBP

*Gabor

Template-based

Part-based

* SIFT

*Component based

Figure 2.2. Feature Extraction categories 
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2.2.1 Appearance-Based Feature Extraction Approach 

Appearance-based approaches also known as holistic-based methods identify faces 

using global features based on the whole image instead of local features of the human face. 

The new reduced dimension representation of the face obtain by applying some 

transformation on the entire image. However, the feature-based method obtains the 

information from some detected fiducial points like eyes, noses, and lips, etc. The fiducial 

points are usually determined from domain knowledge and discard other information. 

However, the feature obtained from statistics in the appearance-based methods by 

performing transformations on the entire face. Holistic-based methods took the most 

attention against other approaches for the past 3 decades. In this section, we will present 

an overview of Eigen-face [12] based on the PCA, fisher face based on the LDA, and 

independent component analysis (ICA). More methods can be found in [36] and [37]. 

A) Karhunen-Loeve expansion, also known as PCA is one of the popular common 

approaches, which is wildly used for data representation and features reduction 

[38]. A solid representation of the human face is achieved by retaining the most 

variations in the image data after reducing the dimensionality of the image. The 

concept of the PCA is to translate the human face into a smaller set of features data 

and keep the variations in the image data-characteristic, which is called Eigen-

Faces and they are the principal components of the initial training set of the human 

face images. The unknown face image in the recognition testing process is 

projected into a reduced-dimension human face space obtained by the Eigen Faces 

then classified by distance classifiers or statistical method. Sirovich and Kirby 
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efficiently represent pictures of human faces in 1978 using the PCA. In 1991 Turk 

and Pentland [12], proposed the popular Eigen-faces method for face recognition. 

PCA uses the Eigen-Faces to represents human face images as a subset of their 

Eigen Vectors. Many methods proposed in the computer vision field based on the 

PCA such as Diagonal PCA [38], and Curvelet-based PCA [39]. Yang et al. [40] 

proposed Kernel PCA and Kernel FLD for human face recognition, which they 

called Kernel Fisher-face and Kernel Eigen-face methods. The modular PCA [41] 

approach has achieved the high accuracy of PCA in cases of extreme change of 

pose variations, illumination, and expressions. The 2- Dimensional principal 

component analysis (2DPCA) was introduced as a new approach for feature 

extraction and representation by Yang et al. [42]. The 2DPCA has numerous 

advantages over conventional PCA, and it is more straightforward than the PCA 

to use for face image extraction because 2DPCA regarding the image matrix. 

Based on Yang method, the 2DPCA is better than conventional PCA in terms of 

recognition accuracy and is computationally more efficient than conventional PCA 

therefore; it can improve the process time of image feature extraction significantly. 

On the other hand, the conventional PCA based image representation is more 

efficient than the 2DPCA-based image representation regarding storage space 

because 2DPCA needs more coefficients for face representation. 

B) Lu et al. [43] in 2003 and Martinez et al. [44] in 2001 proposed the Fisher‘s linear 

discriminant analysis (LDA) as a better alternative to the PCA. LDA successfully 

applied to face recognition area in the past few years. LDA explicitly provides 

discernment among the classes, while the PCA deals with the input image as entire 
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without paying any attention to the principal structure. The main objective of the 

LDA is to find a base vector which is providing the best discrimination between 

the classes to help to maximize the differences between the classes and minimizing 

the differences within the same classes. The classes are represented by the 

corresponding scatter matrices Sb and Sw while the ratio is the derivative of | Sb | /| 

Sw |has to be maximized. LDA outperform the PCA and provide robust 

classification performances only when a wide training set is an available base on 

some results discussed by Martinez and Kak which is confirm this thesis and it 

called the SSS (Small Sample Size) problem. Belhumeur et al., 1997 considered 

the PCA as an initial step in order to reduce the dimensionality of the input space 

then LDA is applied to the resulting space in order to perform the real 

classification. However, Chen et al., 2000; Yu and Yang, 2001 applied LDA 

directly on the input space and claimed that combining the PCA and LDA, 

discriminant information together with redundant one is discarded. Lu et al. (2003) 

proposed a hybrid between the Direct LDA and the Fractional LDA, a variant of 

the LDA, in which weighed functions are used to avoid that output classes, which 

are too close, can induce a misclassification of the input. 

C) Generalization of PCA called Independent Component Analysis (ICA) was 

introduced by Bartlett et al. [45] and Draper et al. [46]. They assumed a better basis 

of the human face images might be found by methods which are sensitive to these 

high-order statistics. Moghaddam [47] claimed that the ICA-based approach does 

not provide a significant advantage over the PCA-based method. Yang [48] 

showed that the Kernel PCA method outperforms the classical PCA method by 
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applying the Kernel PCA for human face feature extraction and recognition. 

However, Kernel PCA and ICA are both computationally more expensive than 

PCA.  

2.2.2 Feature-Based Feature Extraction Approach 

Feature-based methods exploit more ideas from image processing, computer vision, 

and domain knowledge from a human face. However, appearance-based methods rely more 

on statistical learning and analysis. We compared the differences between holistic based 

methods and feature-based methods and in this section, we discuss two outstanding features 

for face recognition, the Gabor wavelet feature and the local binary pattern. 

A)  Local Binary Pattern (LBP) is one of the feature descriptor widely used in face 

recognition systems. The original LBP operator was introduced by Ojala et al. 

[49] and was proved a powerful means of texture description. The most 

important properties of LBP features are the tolerance against illumination 

changes.  LBP is one of the best accomplishment descriptors as it contains the 

microstructure as well as macro-structure of the face image. Despite its 

popularity, the LBP approach has some shortcomings, including sensitivity to 

noise, scale changes, and rotation in the image. The LBP assigns an 18 label to 

every pixel of an image by thresholding the 3x3-neighborhood of each pixel 

with the center pixel value, resulting in a binary number [50]. Ahonen et al. [6] 

applied the LBP on the FERET dataset show good robust performance using 

one sample per person for training. Besides LBP, other features that widely used 

in computer vision field can also be used in face recognition, such as fractal 
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features. For example, Komleh et al. [51] presented a method based on fractal 

features for expression invariant face recognition. Their method is tested on the 

MIT face database with 100 subjects. One image per subject was used for 

training while 10 images per subject with different expressions for testing. 

Experimental results show that the fractal features are robust against expression 

variation. 

B) The Gabor filters represent a powerful tool in image processing and image 

coding based on the capability of capturing important visual features, such as 

spatial localization, spatial frequency, and orientation selectivity. In most cases, 

the Gabor filters are used to extract the main features from the face images. The 

application of Gabor wavelet for face recognition is pioneered by Lades et al.’s 

work [52]. They used an elastic graph matching framework to find feature 

points, build the face model and to perform distance measurement, while the 

Gabor wavelets are used for extracting local features at these feature points, and 

a set of complex Gabor wavelet coefficients for each point is called a jet. Lades 

et al. used a simple rectangular graph to model faces in the database while each 

vertex is without the direct object meaning on faces. In the database building 

stage, the deformation process mentioned above is not included, and the 

rectangular graph is manually placed on each face, and the features are extracted 

at individual vertices. When a new face I comes in, the distance between it and 

all the faces in the database are required to calculate, that means if there are 

totally N face samples are present in the database, we have to construct N graphs 
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for I based on each face sample. This matching process is very computationally 

expensive, especially for a large database. 

2.3 Classification 

The simplest method for matching feature vectors is using the nearest neighborhood 

classifier. It calculates the distance between the source image vector to be classified and 

the dataset of images vectors, and then assigns the probe the class label of its nearest 

neighbor in the dataset. If the distance is zero, then the image matched are exactly the same. 

The distance measure can be converted to a similarity measure simply by negating it, such 

that the chosen match is the one with the maximum similarity value. The choice of distance 

metric depends on the type of task, such as Euclidean distance, cosine distance, and chi-

square similarity. For an analysis of nearest neighbor pattern classification, see the article 

by Cover et al. [53]. The advantage of the NN-classifier is that it does not require any 

training stage and that it naturally extends to multi-class classification. Training other 

classifiers such as support vector machines (SVM’s) [54] and neural networks [14-16] is 

often computationally demanding for high-dimensional data with many examples. Even 

though they may increase matching performance by accounting for non-linearity in the 

data, training would have to be done every time the gallery is altered. 
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2.4 Neural Network 

Computer vision needs powerful classification methods to achieve a high 

recognition system rate with low computing time and resource. Neural network 

classification is widely used for training the neural network since NN is simple, efficient 

to compute the gradient descent, and straightforward to implement. Determine the size of 

the neural network, the number of samples and the weights is a challenging task, and it is 

important to fit the neural network output. The NN is divided into three layers which are 

training input layer, hidden layer (one or more), and the expected output layer as shown in 

Figure 2.3. 

 One popular training method is the backpropagation algorithm that uses a gradient 

descent algorithm [55] to update the parameters of deep learning. In order for gradient 

descent to map the arbitrary inputs to the target outputs in an accurate manner, gradient 

descent has to find parameters such as weights 𝑤 and biases 𝑏 that minimize loss function. 

Figure 2.3. Three layers neural network. 
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The input data forward through the network layers to calculate the outputs to compare them 

with the expected outputs and compute the error of the loss function. The gradient of the 

loss function computes during the back-forward to update the parameters that minimize the 

loss function.  

The common backpropagation algorithm can be described as the following: 

1. The weights 𝑤𝑖𝑗
[𝑙]

 and the thresholds  𝜗𝑗
[𝑙]

 , randomly initialize let n=l. 

2. Calculate the output of all layers according to equation (2.1) after feeding the 

prepared training dataset 𝑰𝒑 and the output dataset 𝑶𝒑 to the NN. 

 𝒚𝒋𝒑
[𝒍+𝟏]

= 𝒇(∑ 𝒘𝒊𝒋
[𝒍+𝟏]𝑵𝟏

𝒊=𝟏 𝒚𝒊𝒑
[𝒍]

+ 𝝑𝒋
[𝒍+𝟏]

)                                 (2.1) 

3. In each layer, compute the square root error as follows: 

Equation (2.2) used to calculate the square error at the output layer: 

 𝒆𝒓𝒋𝒑
[𝑳]

= 𝒇′(𝒏𝒆𝒕𝒋𝒑
[𝑳]

)(𝒅𝒑 − 𝒚𝒋𝒑
[𝑳]

)                                 (2.2) 

 In the ith hidden layer (i=L-1, L-2 ... i): 

 𝒆𝒓𝒋𝒑
[𝒍]

= 𝒇′(𝒏𝒆𝒕𝒋
[𝒍]

) ∑ 𝒆𝒓𝒌𝒑
[𝒍+𝟏]𝑵𝒍+𝟏

𝒌=𝒍 𝒘𝒋𝒌
[𝒍+𝟏]

                              (2.3) 

4. The change in the weights between the input and the output will be calculated 

based on equation (2.4) and (2.5).    

 𝝑𝒊𝒋
[𝒍](𝒏 + 𝟏) = 𝝑𝒊

[𝒍](𝒏) + 𝜼. 𝒆𝒋𝒑
[𝒍]

                                 (2.4) 
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 𝒘𝒊𝒋
[𝒍](𝒏 + 𝟏) = 𝒘𝒊𝒋

[𝒍](𝒏) + 𝜼. 𝒆𝒋𝒑
[𝒍]

. 𝒚𝒊𝒑
[𝒍−𝟏]

                             (2.5) 

5. Go back to step 2 if the mean-squared error more than the threshold otherwise stop 

and print the weight value. 

There is many of neuron activation function used in the neural network, and 

the sigmoidal function is what we used in our proposal system which is shown in 

equation (2.6). 

 𝒇(𝒙) =
𝟏

𝟏+𝒆−𝒙                                       (2.6) 

      Sigmoidal function derivative is: 

 𝒇′(𝒙) = 𝒇(𝒙)(𝟏 − 𝒇(𝒙))                                 (2.7) 

J. Toms in 1990 improved the backpropagation algorithm using the hybrid 

neuron because in the big size neural network system was difficult to reach to the 

minimum mean-squared-error using the sigmoidal activation function compared to 

the small size neural network which the patterns of the input images are normally 

classified.  

 𝒇(𝒙) = 𝝀. 𝒔(𝒙) + (𝟏 − 𝝀). 𝒉(𝒙)                            (2.8) 

Where h(x) is the hard-limiting function which is defined in equation (2.9) and the 

derivatives of the hybrid neuron is defined in equation (2.10)  

 𝒉(𝒙) = {
𝟏           𝒙 ≥ 𝟎
𝟎          𝒙 < 𝟎

                                  (2.9) 



 

21 
 

 𝒇′(𝒙) = 𝝀𝒔(𝒙)(𝟏 − 𝒔(𝒙))       𝝀 ≠ 𝟎                          (2.10) 

PBN often trapped into the local minimum and the learning speed is updated 

according to equation (2.11) where ESS is the Sum-Squared-Error. To make the NN faster 

and reach to zero error by adding a coefficient α to the steepness of the sigmoidal function 

as defined in Equation (2.12). 

𝝀(𝒏) = 𝒆−𝟏/𝑺𝑺𝑬                                       (2.11) 

 𝒇(𝒙) =
𝟏

𝟏+𝒆−𝜶𝒙                                        (2.12) 

Its derivative is: 

 𝒇′(𝒙) = 𝜶. 𝒇(𝒙)(𝟏 − 𝒇(𝒙))                               (2.13) 

Algorithm (1.1) highlights the essential steps of SGD with mini-batch in iteration 𝑘. 

Algorithm 1.1. Stochastic Gradient Descent with mini-batch at iteration 𝑘  

1: Input: Learning rate 𝜖 , initial parameters 𝑤, 𝑏 , mini-batch size (𝑚′) 

2: While stopping criterion not met do 

3:              Pick a random mini-batch with size 𝑚′ from the training set (𝑥 (1), … … …., 𝑥 (𝑚))                  

4:               with corresponding outputs  𝑦(𝑖) 

5:               Compute gradient  for 𝑤:     

6:               Compute gradient  for 𝑏:  

7:               Apply update for:  𝑤 = 𝑤 − 𝜖. ∇𝑤 

8: Apply update for:  𝑏 = 𝑏 − 𝜖. ∇𝑏 

9: end while 
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Gradient descent can be categorized into Stochastic Gradient Descent (SGD) and 

Batch Gradient Descent (BGD). The difference between the two algorithms is how to 

handle the input data. BGD updates the gradient based on the entire training dataset in each 

iteration which is considered as a disadvantage, and it could be slow and expensive. 

However, the convergence is smoother, and the termination is more easily detectable. On 

the other hand, SGD is less expensive because the gradient computed for each training 

example and suffers from noisy steps and its frequent updates can make the loss function 

heavily fluctuate [56]. 

2.5 Deep Learning Background 

Deep learning in the machine learning field achieved numerous performance in the 

computer vision and the processing of human language applications [57-61]. Deep learning 

is driven by understanding how the human brain processes information. The brain is 

organized as a deep architecture with several layers that process the information among 

many levels of non-linear transformation and representation [62]. Deep learning learns the 

hierarchy, structure, and pattern of the features from the lower level features using multi-

level of hidden layers of non-linear transformations [60]. Very complex functions can be 

learned with enough such transformations. The higher layers of representation increase 

aspects of the inputs that are important for discrimination and suppress irrelative variation 

for any object recognition. For human face recognition, higher layers of representation 

amplify features of the inputs that are significant for discrimination and subdue irrelative 

features [63]. The first layer learns the low-level features such as curves, edges, and point 

from the image pixels. The low-level features are combined in the following layers to 
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produce higher features; for example, points and combined into lines and curves then they 

combined into shapes and more complex shapes. Once this is done, the deep neural network 

delivers a probability that these high-level features contain a particular object or scene. The 

main goal of deep learning is to automatically learn the most discriminative features from 

the raw data without human involvement. Convolutional Neural Networks (CNN) Stacked 

Auto-encoder (SA), Recurrent Neural Network (RNN), and Deep Belief Network (DBN) 

are the popular models for deep learning. [64, 65]. 

2.6 Convolutional Neural Network 

CNN is a class of deep, feed-forward artificial neural networks, most commonly 

applied to analyzing visual imagery that takes advantage of the spatial construction of the 

inputs. A CNN consists of an input and an output layer, as well as multiple hidden layers.  

CNN consist of alternating convolutional layers followed sometime by pooling 

layers and dropout layers to avoid the overfitting issue. The network end with few of fully-

connected layers followed by classifier layer such as soft-max classifier or regression 

classifier as shown in Figure 2.4.   

The CNNs gain the advantage by learning features representation automatically 

without depending on human-crafted features using end-to-end system starting from raw 

pixels to classifier outputs [61, 66]. Since 2012, researchers focus on improving the 

performance of CNNs architecture and methods such as layer design, activation function, 

and regularization, and exploring the performance in different fields [67, 68]. Resnet50, 

https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Multilayer_perceptron#Layers
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Inception v4 and FaceNet are some of the existing models which they can be used to train 

a dataset on different domain issue. 

 

2.6.1 Convolutional Layer 

The convolutional layer is the core building block of a CNN. The convolutional 

layer's parameters comprised of a set of learnable kernels (or filters). The convolutional 

layer extracts local features from the input by sliding a filter over the input and computing 

the dot product and producing a 2-dimensional activation map of that filter as shown in 

Figure 2.5. The feature maps connected to a small region of the input called receptive field, 

and the new feature map is generated by convolution operation and followed by a non-

linear activation function as shown in Equation (2.14) to introduce non-linearity into the 

model.   

𝑥𝑓
(𝑙)

= 𝑓(∑ 𝑥(𝑙−1)
𝑆,𝑆 ∗ 𝑤𝑓

(𝑙)
+ 𝑏𝑓

(𝑙)
)                                 (2.14) 

Figure 2.4. The typical structure of a CNN. 
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Where the f is non-linear activation function, 𝑏𝑓
(𝑙)

is shared bias of the feature map, 

𝑥(𝑙−1) is the output of the previous layer, * is convolution operation, and 𝑤𝑓
(𝑙)

 is convolution 

filter with size S × S. 

CNN compute the gradient of the loss function with respect to the weights (𝑤) and 

biases (𝑏) of the respective layer in the backward phase as follows: 

∇𝑤𝑓
(𝑙)

𝑙 = ∑ (∇x𝑓
(𝑙+1)

𝑙)
𝑆,𝑆

(𝑥𝑆,𝑆
(𝑙)

∗ 𝑤𝑓
(𝑙)

)𝑆,𝑆                                  (2.15) 

∇𝑏𝑓
(𝑙)

𝑙 = ∑ (∇x𝑓
(𝑙+1)

𝑙)
𝑆,𝑆

(𝑥𝑆,𝑆
(𝑙)

∗ 𝑏𝑓
(𝑙)

)𝑆,𝑆                                  (2.16) 

All units share the same weights (filters) among each feature map. The advantage 

of sharing weights is the reduced number of parameters and the ability to detect the same 

feature, regardless of its location in the inputs [69]. The hyper-parameters of each 

convolutional layer must be chosen carefully in order to generate desired outputs such as e 

filter size, the number of learnable filters, and stride. 

Numerous nonlinear activation functions are existing, such as sigmoid, tanh, and 

ReLU. However, ReLU is preferable because it makes training faster relative to the others 

[70, 71]. The filter size and stride decides the output features map size (WxW) based on 

the input image with a size of (H × H) over a filter with a size of (F × F) and a stride of (S) 

as: 

𝑊 = ⌊
𝐻−𝐹

𝑆
⌋ + 1                                                     (2.17) 
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2.6.2 Pooling Layer 

Typically the pooling layers (down-sampling layer) applied after the convolutional 

layers to reduce the resolution of the previous feature maps and preserve most relevant 

feature. Pooling provides a fixed size output, which is important for classification. Pooling 

produces invariance to a small transformation and/or distortion. Pooling splits the inputs 

into disjoint regions with a size of (R × R) to produce one output from each region [72]. 

Two pooling are exist: Max-pooling and Average-pooling and the output size will be 

obtained from the input with a size of (W × W) by: 

Figure 2.5. Convolution operation 
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𝑃𝑜𝑜𝑙𝑖𝑛𝑔 = ⌊
𝑊

𝑅
⌋                                                     (2.18) 

We are losing global information about locality, and where in image something 

happened by applying a max-pooling in CNN [55, 73]. However, we are keeping 

information about whether the most important feature appeared in the image or not. 

The maximum value of non-overlapping blocks from the previous feature map 

(𝑙−1) is calculated during the forward phase as follows: 

𝑥(𝑙) = 𝑚𝑎𝑥𝑅,𝑅(𝑥(𝑙−1))
𝑅,𝑅

                                            (2.19) 

There are no any learnable parameters in the Max pooling. Therefore, the gradient 

from the next layer is passed back only to the neuron that achieved the max value and all 

of the other neurons receive zero gradient. Figure 2.6 shows how the max-pooling works. 

Figure 2.6. Max pooling in CNN. 
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2.6.3 Fully Connected Layer 

The CNN ends with one or more of the fully connected layers that connect every 

neuron in one layer to every neuron in another layer and has the only number of neurons 

hyper-parameter. It is in principle the same as the traditional multi-layer perceptron neural 

network (MLP). Fully connected layer purpose is to extract the global features of the 

inputs, and the output is computed by Equation (2.20): 

𝑥(𝑙) = 𝑓((𝑤(𝑙))𝑇. 𝑥(𝑙−1) + 𝑏(𝑙))                                     (2.20) 

Where is the (𝑙), (𝑙), and (𝑙) are the input, weights, and biases of the current layer 

(l), x (l-1) is the output of the previous layer, is a dot product, and 𝑓 is the non-linear 

activation function. The last layer is the classifier layer such as soft-max classifier and 

regression classifier. 

2.7 Literature Review for Face Registration 

2.7.1 Speed-Up Robust Features (SURF) 

The Speeded-up Robust Features (SURF) is a method to obtain the local features 

which will be used to align two related images which are taken at a different time or a 

different position. SURF process includes feature detection, feature description, and 

feature matching. The SURF steps are: 

1) Find the integral image (IΣ) based on the input image I to achieve fast 

computation of the convolution filters. The value for each point P =(x, y) is 

represented by the sum of all pixels in the input image I. Then we calculate the 

https://en.wikipedia.org/wiki/Multilayer_perceptron
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sum of the intensities within a rectangular region formed by the origin and P 

using equation (2.21). 

𝛴 = 𝐼𝛴(𝐶) − 𝛴(𝐵) − 𝛴(𝐷) + 𝛴(𝐴)                                  (2.21) 

2) Find the interesting points using hessian matrix by finding the maximum 

hessian matrix corresponding to a point P =(x, y). 

3) Subtract the adjacent Gaussian images to obtain the difference of Gaussian 

images by repeatedly convolved with Gaussians. 

4) Optimize the key-points after obtaining image gradients using three methods to 

obtain the descriptor. 

5) Finding the orientation Assignment: using the pixel differences, we compute 

orientation θ(x, y) and gradient magnitude M(x, y) for each image sample L(x, 

y). 

𝑀(𝑥, 𝑦) = √𝐴2 + 𝐵2                                                (2.22) 

6) Obtaining Key-point descriptors: 64 element vector obtain by combining all the 

orientation histogram entries. 

7) Perform the k-nearest-neighbor (KNN) on the feature values to find the distance 

between the features using four steps: 

i. Compute the Euclidean distance on the obtained features. 

ii. Descending sort of the labeled example. 

iii. Based on root mean square deviation (RMSE), find the optimal K of the 

KNN. 

iv. Represent the image based on these KNN. 
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2.7.2 Minimized Cost Function 

Matrix equation (2.23) is used to minimize the cost of the image registration 

(without shear) when the related points in two images X and Y are identified. Summation 

indicates the sum over all points in an image.  We used in our implementation the sigmoidal 

function as the neuron activation functions. 

   (2.23)
 

To find the optimal transformation that will align image 2 to image 1, take the 

partial derivatives of the above cost with respect to a, b, t1 and t2 and set these to 0 (∂C/∂a 

= 0, ∂C/∂b = 0, ∂C/∂t1 = 0, ∂C/∂t2 = 0). We express the four resulting equations in matrix 

form as is shown in equation (2.24). 

 (2.24)

 

After calculating the sum over all points for the 4x4 matrix and the right-hand 4x1 

vector in equation (2.24), we can compute the required transformation by:  

Matrix Ainv = A.Inverse and  Matrix Res = Ainv * B. 

2.7.3 Random Sample Consensus (RANSAC) 

Fischer et al. introduced the RANSAC algorithm in 1981. RANSAC is one of the 

most suitable algorithms to eliminate the false matched points in the source and target 
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images in the presence of noise [17]. Some of the disadvantages of RANSAC are 

computing time, correct matches count, and the dependency of mismatches removal on the 

amount of threshold value. RANSAC algorithm is divided into four steps. The first step is 

to select a suitable model based on the transformation model. Equation (2.25) is used to 

calculate the number of related points which are required to calculate the transformation 

parameters. q is the minimum number of the related points and p is the number of the 

parameters need to calculate. 

𝑞 =
𝜌

2
                                                               (2.25) 

The second step is selecting the best model in a specified iterations. In each 

iteration, the minimum number of the related points randomly selected to estimate the 

transformation parameters based on equation (2.26) for 6 parameters a, b, c, d, e, and f. 

                                                (2.26)
 

The third step is to calculate the distance between the source image and the 

transformed image. We consider a point is a right match if the distance is less than the 

threshold. Otherwise, we eliminate the point since it is not a true match. In the last step, for 

each iteration, we count the numbers of the true match, and if they are more than the desired 

value, or reaches the predetermined maximum number of iterations, then the algorithm 

stops. Transformation model selected which has the highest matching count.  
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CHAPTER 3: RESEARCH PLAN AND SYSTEM 

ARCHITECTURE 

This research aims to achieve a higher human face recognition with less 

computation processing time. Image registration and feature extraction are the key points 

of improving face recognition. Therefore, we implemented our system based on multiple 

classification methods. To compare our results with the existing face recognition systems, 

we applied our frameworks on two of the well-known human face image databases, Yale 

and Olivetti Research Laboratory Human Face Datasets. We implemented some of the 

existing face recognition systems to compare our testing results to their results. We 

randomly obtain the training set and the testing set with different scenarios. Different size 

of dataset applied to like 90% of the picture as training and 10% as a testing set or 70% to 

30%. Our goal is to achieve higher accuracy of the 50% to 50% scenario. Finally, 

recognition rate (RR) is calculated using equation (3.1) after the system finishes training 

the NN then test the testing set.  

𝑅𝑅(%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑎𝑡𝑐ℎ

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡
*100                            (3.1) 

 

3.1 Human Face Datasets 

3.1.1 ORL Dataset 

Olivetti Research Laboratory Dataset (ORL) [74]. ORL dataset represents images 

of 40 different persons with ten different pictures for each person. A total of 400 face 



 

33 
 

images used for training and testing the system. The 400 images are in grayscale, and the 

size is 92X112 pixels with variant expressions, timing, pose, and gender. Figure 3.1 shows 

a sample of the ORL dataset. 

3.1.2 Yale Dataset 

The Yale face dataset has a total of 165 face images which represent 15 different 

persons with 11 images per person [75]. Different facial expression, gender, light 

configuration, and with or without wearing eyeglasses. The 165 images are in a grayscale 

Figure 3.1. Sample of the ORL dataset. 
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domain and images resized to 92x112 pixels after we cropped the face only. Figure 3.2 

shows Yale sample images. 

 

3.1.3 Labeled Faces in the Wild 

 

The data set contains more than 13,000 images of faces collected from the web. 

Each face has been labeled with the name of the person pictured. 1680 of the people 

pictured have two or more distinct photos in the data set. The only constraint on these faces 

is that they were detected by the Viola-Jones face detector. The images are in color scale, 

and the size is 250x250 pixels with variant expressions, timing, pose, and gender. Figure 

3.3 shows a sample of the LFW dataset. 

3.2 Classical Face Recognition System 

We implemented the classical face recognition system as a baseline for our 

research. First, we used the PCA and the KNN classifier [1] only as shown in Figure 3.4. 

Figure 3.2. Sample images of Yale dataset. 
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The goal of the PCA is to reduce the face image dimension by using only the highest K 

Eigen-values and their corresponding Eigen-vectors with losing minimal information, 

which helps to reduce the computation process. Second, we used LBPH and the KNN 

classifier as shown in Figure 3.5. The goal of the LBPH is to reduce the face image 

dimension by dividing the image into small regions called cell and represent each cell by 

59 dimensions with losing minimal information. We used five different distance classifiers 

to measure the similarity between the source image and the test image to show how 

accuracy is different between the methods, which lead us to combine them in the proposed 

framework to achieve higher accuracy. 

 

Figure 3.3. Sample images of LFW dataset. 
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Figure 3.4. Classical face recognition system using The PCA and KNN classifier methods. 

Figure 3.5. Classical face recognition system using the LBPH and KNN classifier methods. 
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We reduced the computation time in both frameworks by preprocessing the face 

images using different methods as needed.  The preprocessing starts with resizing the 

image to a reasonable size followed by cropping the face only to eliminate the face 

background effect. Reducing the noise and the illumination by converting the face images 

to grayscale images and histogram equalization to build a robust face recognition system, 

Figure 3.6 shows some of the preprocessing methods. The new face representation is 

obtained from the PCA or the LBPH which present the face image in a smaller dimension. 

Finally, using one of the classifier measurements we calculate the similarity between the 

source image and the target image and we consider the matching occurs only if the lowest 

KNN neighbor matches the source as shown in Figure 3.7(a) otherwise it will be considered 

as a mismatch as shown in Figure 3.7(b). Then, we calculate the recognition rate for the 

whole system using equation (3.1).  

Figure 3.6.  Example of Prepressing Methods including cropping, resizing and Histogram. 
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3.2.1 Principle Component Analysis 

Image recognition and detection need a massive resource of storage and powerful 

system to reduce the computation processing time and cost. Therefore, the dimension 

reduction and image re-representation are needed as the first step in any face recognition 

systems. PCA is one of the popular statistical transform methods. PCA reduces the image 

dimension by analyzing the image and identifying distinction patterns which can be used 

as a new representation of the image without losing an enormous information content from 

the image. Face dimension reduction is obtained by applying the PCA and finding the 

highest K Eigen-Values and their corresponding Eigen-Vectors. The face image can be re-

represented using only 15% of the Eigen-Values with a minimal losing of information [76]. 

PCA is relying on the variance-covariance matrix. Therefore, the images are not a 

significant comparison to the number of face images in the training dataset. The advantages 

Figure 3.7. Example of the matching case and mismatching case image using KNN with Mahalanobis 
distance. (a) Test image (b) Matching case. (c) Mismatching case. 
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of the PCA are low noise sensitivity, eliminating the data redundancy by providing the 

orthogonal components and reducing the image complexity. The disadvantages of the PCA 

methods are evaluating the variance-covariance matrix and capturing the invariance. 

Evaluating the variance-covariance matrix in an accurate manner and capturing the 

invariance is difficult unless the training dataset explicitly provides the information. Figure 

3.7 shows an example of the PCA methodology. Figure 3.8(a), the face data are randomly 

distributed, and Figure 3.8(b) shows the correlated data grouped in the same coordinate 

face space. 

The PCA process starts with standardizing the image scale by obtaining the same 

face size vector 𝛤𝑖 for all of the training images I1, I2… IM. The training data-set of M 

faces written as I = (I1, I2, IN) and the average image 𝛹 is obtained by equation (3.2). 

 

𝛹 =
1

𝑀
∑ 𝛤𝑖𝑀

𝑖=1                                                           (3.2) 

 

Figure 3.8. An example of PCA (a) Original data. (b) Correlated data 
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Then centralize each training image by subtracting the mean, which is the average 

across all dimensions from each image and finds the vector 𝛷 =  𝛤𝑖 −  𝛹𝑖  . PCA uses 

equation (3.3) to calculate the covariance-matrix C, which is used to find the Eigen-Value. 

 

𝐶 =
1

𝑀
∑ 𝛷𝑚𝛷𝑚𝑇𝑀

𝑀=1 = 𝐴𝐴𝑇    (𝑀2𝑥𝑀2 𝑚𝑎𝑡𝑟𝑖𝑥)                             (3.3) 

 

𝑊ℎ𝑒𝑟𝑒 𝐴 = [Φ1Φ2 … … … Φ𝑀]    (𝑁2𝑥𝑀 𝑚𝑎𝑡𝑟𝑖𝑥). 

 

We can calculate the Eigen-Values 𝜇𝑖 and the Eigen-Vectors 𝑣𝑖 from the covariance 

matrix since the matrix is square using equation (3.4).  

 

𝐴𝑇𝐴𝜈𝑖 = 𝜇𝑖 𝜈𝑖                                                 (3.4) 

 

PCA significantly orders the Eigen-Values from highest to lowest. We then ignore 

low significance Eigen-Values to reduce the face domain, and we obtain the corresponding 

Eigen-Vectors. PCA loses some of the information from the image. However, this will not 

affect the recognition since most of the data discrepancy exists in the first 15% of the face 

dimension. We obtain the Eigen-Faces by transpose the Eigen-Vectors then multiply them 

by the original faces dataset. Eigen-Faces appears as ghostly faces in Figure 3.9. 

Eigen-Faces = (Original data-set) X (Eigen-Vectors) 

3.2.2 Local Binary Patterns Histogram (LBPH)  

Correlation methods require substantial computation time and enormous amounts 

of storage. Therefore, features reduction and face representation are needed in the face 

recognition system. LBPH is usually a preferred method in computer vision, image 

processing, and pattern recognition; it is appropriate for the feature because it describes the 

texture and structure of an image. We represent the face image and reduce the image 
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dimension by applying the LBPH method, extracting the features texture of the image by 

dividing the image into local regions and extracting the binary pattern for each local region. 

The original LBP operator, which works on eight neighbors of a pixel, was introduced by 

Ojala et al. [49]. The image is divided into small regions called the cell. Each pixel in the 

cell is compared with each of its eight neighbors. The center pixel value will be used as the 

threshold value [6-11]. The eight-neighbors-pixel will be set to one if its value is equal to 

or greater than the center pixel; otherwise, the value is set to zero. Accordingly, the LBP 

code for the center pixel is generated by concatenating the eight neighbor pixel values (ones 

or zeroes) into a binary code, which is converted to a 256-dimensional decimal for 

convenience as a texture descriptor of the center pixel. The original LBP operator is shown 

in Figure 3.10.  

 

Figure 3.9. (a) Original faces (b) Corresponding Eigen-faces. 
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The mathematical formulation of LBP operator is given by: 

𝐿𝐵𝑃(𝑥) = ∑ 𝑠(𝐺(𝑥𝑖8
𝑖=1 ) − 𝐺(𝑥))2𝑖−1                               (3.5) 

𝑠(𝑡) = {
1           𝑡 ≥ 0
0          𝑡 < 0

                                                 (3.6) 

We used a modified LBP operator called a uniform pattern. The pattern is the 

number of bitwise transitions from 1 to 0 or vice versa. The LBP is called uniform if its 

uniformity measure is at most 2. For example, the patterns 11111111 (0 transitions), 

01111100 (2 transitions) and 11000111 (2 transitions) are uniform, while the patterns 

10001000 (3 transitions) and 11010011 (4 transitions) are not. For dimension reduction, 

we used the histogram to reduce the image features from a 256-dimensional decimal to a 

59- dimensional histogram, which contains information about the local patterns. The 

histogram uses a separate bin for each uniform pattern, and one separate bin for all non-

uniform patterns. In the 8-bit binary number, we have 58 uniform patterns; therefore, we 

Figure 3.10. Original LBP Operator. 
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used 58 bins for them and one bin for all non-uniform patterns. The global description of 

the face image is obtained by concatenating all regional histograms. The overall value of 

LBPH can be represented in a histogram as (3.7): 

𝐻(𝑘) =  ∑ ∑ 𝑓(𝐿𝐵𝑃𝑃,𝑅(𝑖, 𝑗), 𝑘), 𝑘 ∈ [0, 𝑘]𝑚
𝑗=1

𝑛
𝑖=0  (3.7) 

Where P is the sampling points, and R is the radius.  

Figure 3.11 shows the process of getting the feature vector for each image, which 

will be fed to the classifier. 

3.2.3 Similarity Measurements Methods  

The K-Nearest-Neighbors (KNN) is one of the methods used in the computer 

vision. Most of the KNN use the Euclidean distances. However, it produces less accurate 

results than the other methods. Each distance method provides different levels of accuracy 

based on the problem domain. Therefore, the first contribution is to combine some of them 

Figure 3.11. Face description with local binary patterns. 
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to improve the face recognition accuracy. Mahalanobis distance measurement provides 

more accurate result than Minimum Distance depending on the covariance matrix between 

the two vectors in the (3.8) [77]. 

Mahalanobis(x, y) = √(xi − yi)TS−1
(xi − yi)                                  (3.8) 

Where 𝑺−𝟏  is the covariance matrix inverse. 

Correlation distance classifier was introduced by Székely, Rizzo, and Bakirov in 

2007 [78]. A valuable property is the measure of dependence equal zero and is sensitive to 

a linear relationship between two vectors. 

Correlation(x, y) =
Cov(x,y)

σx σy
                                                (3.9) 

Where Cov is the covariance and 𝛔𝐱 and 𝛔𝐲 are the standard deviations of x and y. 

 

Euclidean distance method is considered the basis of many measures of similarity 

and dissimilarity.  We use (3.10) to calculate the Euclidean distance between corresponding 

elements of the two vectors space. 

Euclidean(x, y) = √∑ (xi − yi)2M
i=1                                     (3.10) 

The Canberra distance classifier is a numerical measure of the distance between 

two points in a vector space, which is presented in (3.11): 

Canberra(x, y) = ∑
|xi−yi|

|xi|+|yi|
M
i=1                                     (3.11) 

https://en.wikipedia.org/wiki/Vector_space
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The Manhattan distance classifier is another method to measure the distance 

between two vectors and is introduced in (3.12): 

Manhattan(x, y) = ∑ |xi − yi|M
i=1                                (3.12) 

We used different distance classifier methods to provide a variant dataset to 

improve the training of the neural network. 

3.3 Face Recognition using PCA and NN Proposed System  

3.3.1 Proposed Method  

We proposed in this paper an enhanced Face Recognition Framework Based on 

Correlated Images and Back- Propagation Neural Network. The main contributions of our 

work are: 

 Using five distance methods and combining them will provide a clear 

pattern which helps the NN to converge faster and more accurate. 

 Obtaining the T-Set based on the correlation between the training dataset 

will provide robust data which we used as an input of the NN. 

 Each distance method performs well in a different direction. Therefore, 

adding a strength factor helps to improve the accuracy rate.   

The proposed framework is divided into five steps as shown in Figure 3.12 

1) Preprocessing step: Face recognition needs huge storage and CPU 

resources. Therefore, we applied a few of the preprocessing operations 

to reduce the computing time as shown in Figure 3.5. Haar-cascade 
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detection is used to detect the face then we cropped the face to reduce 

the background effect. We converted the images to a gray-scale image 

then we applied a histogram equalizer to reduce the noise effect. Finally, 

we resized the images to the size we preferred. 

2) Features extraction: We used the PCA algorithm to reduce the 

dimensionality of the images by eliminating the redundant data between 

the training images while retaining the variation between them. The 

PCA is transforming the dataset into a new set of variables which called 

the principal components (PCs).  The first PC retains the maximum 

variation in the dataset. The PCA sorts the Eigen-Vectors and selects to 

top K values to reduce the dimensions. The training dataset must be 

scaled, and the complexity of calculating the covariance matrix are 

some of the drawbacks of the PCA. However, we used the PCA to prove 

that there is a potential accuracy improvement using the traditional 

methods by adding an extra step (step 3) to obtain the T-Set based on 

the correlated training dataset images.  

3) Obtaining the T-Set: We added this step to obtain a correlated dataset 

which we called the T-Set and use it as an input of our NN. The T-Set 

has strong distinction patterns which improved the overall accuracy rate 

of the face recognition system. The next steps are applied to each of the 

training images to obtain the T-Set: 

a. Based on the reduced dimension of each training image from 

step 2 and using Mahalanobis, Manhattan, Correlation, Canberra 
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and Euclidean distance methods; we separately computed the 

distance between each training image and all other images.   

b. First, we trained our NN using each method individually, and we 

achieved different accuracy rates as shown in Table 4.1. 

Therefore, we decided to combine the five distance methods 

using equation (3.13). 

𝐷𝑆𝑆 = √∑ 𝐷𝐼𝑆𝑖
25

𝑖=1                                                  (3.13) 

Where DISi is one of the distance methods. 

c. However, based on the classical face recognition experiment, 

each distance algorithm has an advantage over the other 

algorithms in different dimensions. Therefore, we modified 

(3.13) to (3.14) by adding a strength factor α to improve the 

accuracy result in the final scenario. Table 4.1 shows that the 

Mahalanobis and Manhattan distances have an advantage over 

the other distance methods. Therefore, we assign the strength 

factors as: Mahalanobis and Manhattan = 0.3, Canberra = 0.2, 

Correlation and Euclidean = 0.1. 

𝐷𝑆𝑆𝛼 = √∑ 𝛼𝑖𝐷𝐼𝑆𝑖
25

𝑖=1                                                (3.14) 

Where ∑ 𝛼𝑖
5
𝑖=1 = 1 
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 The KNN method is used to find the expected output for each training image, 

and we selected K=1 to avoid majority voting, which leads to incorrect votes 

since the dataset has identical or nearly identical images. Our decision is based 

on the nearest neighbor, and we considered a match to have occurred if the 

nearest neighbor matches the source image. 

Table 3.1 shows an example of how to obtain the T-Dataset (column 6) and the 

expected output (column 7) for one of the training images (image X). We assume the 

training dataset has 200 images that represent 40 persons. 

Table 3.1. An example of how to obtain the new training data (column6) and the expected output 

(column 7) for one of the training images (imageX). 

  Column1 Column2 Column3 Column4 Column5 Column6 Column7 

 Distance  

Between 

image X 

and  

Using 

Correlation 

Using  

Euclidean 

Using 

Canberra 

Using 

Manhattan 

Using 

Mahalanobis 

Combine the result 

using:𝑅𝑆𝑆𝛼 =

√∑ 𝛼𝑖𝐷𝐼𝑆𝑖
25

𝑖=1  

expected 

Output 

Based on the 

KNN (K=1) 

 

 

 

person1 

 

Image1 0.39 0.34 0.71 0.34 0.56 
1.091  

 

 

1 (best 

match) 

 

Image2 0.31 0.32 0.67 0.42 0.49 1.033 

Image3 0.41 0.28 0.77 0.29 0.39 1.037 

Image4 0.29 0.29 0.64 0.27 0.48 1.533 

Image5 0.72 0.54 0.85 0.48 0.79 1.544 

Person2 Image6 0.19 0.77 0.61 0.56 0.32 1.190 0 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 Image198 0.51 0.57 0.74 0.21 0.64 1.259  

Image199 0.41 0.27 0.78 0.41 0.71 1.233 

Image200 0.39 0.54 0.92 0.69 0.69 1.497 
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4) Set up and train the NN: We start the training after we set up the NN 

parameters such as the number of the hidden layers, the number of the 

neurons of each layer, number of the iteration, threshold value, setup the 

input matrix and finally, setup the output matrix. 

5) Testing the system: We found the reduced data of the testing image 

using the Eigen-Vectors which we obtained from step 2. Then, we fed 

the testing image the trained NN to calculate the predicted output label.  

We computed the accuracy based on comparing the predicted label and 

the expected label. Finally, we calculated the overall accuracy rate of 

the framework. 

 

Figure 3.12. Proposed recognition system using PCA and NN classifier methods. 
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3.4 Face Recognition using LBPH and NN Proposed System 

3.4.1 Proposed Method 

We proposed in this work an enhanced human face recognition using LBPH 

descriptors, multi-KNN, and BPNN neural network. Figure 3.13 shows the proposed 

framework in detail. Our main contribution is based on the fact that obtaining a robust T-

Dataset will help the BPNN to converge quickly with improved accuracy. We gathered a 

robust T-Dataset relying on the correlation between the training images, not the density of 

images. Our method is divided into five steps. In step one, we applied some of the 

preprocessing methods on the raw training images, including resizing and cropping using 

Haar-cascade detection, to eliminate the face background effect. Noise and illumination 

were reduced by converting the images to grayscale images and using histogram 

equalization to build a robust face recognition system; Figure 3.6 shows some of the 

preprocessing methods. 

In Step 2, we extracted the most significant local features from each image using 

the 𝐿𝐵𝑃8,2
𝑈2 descriptor and combined them into a global description using the histogram 

method. 

Here is how it is done: 

 We divided the images into 25 small cells after we tried different grid sizes. 

We found that the 5x5 grid gives us better performance with a reasonable 

time. Smaller grid sizes such as 4x4 provide fewer features (4 x 4 x 59 = 

944) compared to (5 x5 x 59 = 1475 features), which leads to less accuracy 
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and perhaps to an under-fitting problem with the neural network training. A 

larger grid size provides more features; however, it increases the computing 

time with a slight improvement in accuracy. 

 We applied the LBP method on image pixels by thresholding the 3 x 3 

neighborhood of each pixel with the center value and considering the result 

as a binary number. 

 Finally, we applied the histogram method to concatenate the new cells 

description and obtain a new representation (25 cell * 59 dimensions =1475) 

for each training image, which helps to reduce the computation time. 

 

Step 3 was added as an extra step to obtain a robust T-Dataset, which we used as 

an input to our BPNN instead of using the LBPH descriptor of each training image. As 

mentioned earlier, the T-Dataset is gathered based on the correlation between the new 

representations of all training images. 

 Based on the LBPH presentation of each image, which we obtained from step 

2, we calculated the distance between each training image with all other 

training images using five distance methods (Correlation, Euclidean, 

Canberra, Manhattan, and Mahalanobis). 

 We tried different scenarios to achieve higher accuracy. First, we trained the 

BPNN using each distance method separately, and we achieved variant 

accuracy as shown in table 4.2. In another scenario, we combined the five 
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distances using the square-root of the sum of the squares (SRS) (23) to provide 

a robust distinction T-Dataset in a reduced dimension. 

 However, based on the classical face recognition experiment, each distance 

algorithm has an advantage over the other algorithms in different dimensions. 

Therefore, we modified (3.13) to (3.14) by adding a strength factor α to 

improve the accuracy result in the final scenario. Table 4.1 shows that the 

Mahalanobis and Manhattan distances have an advantage over the other 

distance methods. Therefore, we assign the strength factors as Mahalanobis 

and Manhattan = 0.3, Canberra = 0.2, Correlation and Euclidean D 0.1. 

 The KNN method is used to find the expected output for each training image, 

and we selected K=1 to avoid majority voting, which leads to incorrect votes 

since the dataset has identical or nearly identical images. Our decision is based 

on the nearest neighbor, and we considered a match to have occurred if the 

nearest neighbor matches the source image. 

Table 3.1 shows an example of how to obtain the T-Dataset (column 6) and the 

expected output (column 7) for one of the training images (image X). We assume the 

training dataset has 200 images that represent 40 persons. 

In Step 4, the BPNN parameters are set up then the training begins. Our BPNN 

architecture contains an input layer followed by two fully connected hidden layers, 

followed by a soft-max classification layer. 

 Set the number of layers and neurons. 
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 Set the number of iterations and set the threshold value. 

 Set the input matrix and the expected output from the previous step. 

 Randomly initialize the weights and bias then strat the training. 

Finally, we test the accuracy of the system by Applying steps 1 to 3 for each 

testing image. 

 Feeding the testing image data to the trained BPNN and obtaining the 

predicted output.  

 Based on the image label, we know whether the prediction is correct. 

 Finally, the overall system accuracy is calculated. 

Figure 3.13. Proposed recognition system using LBPH and NN classifier method. 
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3.5 Face Registration Based on a Minimalized Cost Function 

3.5.1 Proposed Method 

In this experiment, we applied our proposed method to a 256x256 pixels Lena 

image. Image registration objective to align two images of the same object to the same 

coordinator. Suppose we obtain two images for the same parson I1 and I2 which are 

acquired at a different angle or distance. In image I1 (x, y) is a point and (x’, y’) is a related 

point in the image and the transformation model between the two images include scale, 

rotation, and translation which can be expressed in equation (3.15).
 
 

                                                (3.15) 

Where tx and ty are horizontal, vertical translation parameters, s is the scale 

parameter,  is the rotation angle parameter. Our purpose is to find these key-points then 

the matching points, calculate the affine transformation parameters, then align two images 

as is shown in Figure 3.14.  

Step1 •Preprocessing

Step2 •Extracting the key-points using SURF detector

Step3 •Finding the matching points using SURF descriptor

Step4 •Eliminating the false matching using RANSAC 

Step5 •Selecting some of the matching points

Step6 •Finding the affine transformation parameters using the Minimized cost function

Step7 •Transforming the target image using the affine transformation parameters

Figure 3.14. The proposed image registration method. 
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We used the SURF algorithm in our proposed method to find the key-points for 

both source and target images. We choose a high threshold to reduce the number of the 

key-points since we are looking for a few of the matching points to register the image using 

the minimized cost function. Figure 3.15 shows the key-points for an image with a different 

threshold (100, 50 and 20). 

After we obtain the key-points, we used the SURF descriptor to find the matching 

points. With a large number of key-points, we found some of the false matching points 

which we have to eliminate to achieve higher registration accuracy. Figure 3.16 shows the 

matching points between two images with some of the false matching points. Then, we 

used the RANSAC algorithm to eliminate all the false matching points as shown in Figure 

3.17.  

Figure 3.15.  Key-points for Lena with variant threshold. (a) Threshold =100. (b) Threshold 

=50. (3)Threshold =20. 

Figure 3.16. Matching points with false matching points. 
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The next step is to find the affine transformation parameters using the minimized 

cost function with few matching points. We have been able to achieve the lowest error with 

only two matching points. Figure 3.18 shows the registration example with only two 

matching points.  

3.6 Deep Learning Face Registration 

The software engineering is nowadays moving in the direction of machine 

intelligence. Machine Learning has become essential in every segment as a way of making 

machines intelligent. More simply, Machine Learning is a set of algorithms that analyze 

data, learn from them, and then apply what they’ve learned to make intelligent decisions. 

In this proposed method, we are trying to take advantage of the deep learning to build a 

robust face registration system based on the transfer learning from pre-trained models. 

Figure 3.18. Example of image registration. (a) Source and target images with two matching points. 

(b) Registered image. 

 

Figure 3.17.  Matching points after elemintaing the fasle points. 
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3.6.1 Obtaining the Training Dataset 

Based on our survey, we could not find a dataset used to the face registration 

problem. Therefore, we had to build our face registration dataset based on one of the 

existing datasets. We decided to go with the labeled faces in the wild dataset which we 

described in section 3.1.3. 

We selected one of the LFW images as a reference image for all other images in 

the dataset. The reference image is centered and has a frontal face with the assumption that, 

no any transformation (rotation, scaling and shifting) applied to the reference image. Figure 

3.19 shows our reference image which we used to find the transformation parameters. 

Next, we applied the haar-cascade face detection algorithm on the reference image 

to find the face boundary. Then, we detected the 6 facial landmarks associated with each 

eye based on the haar-cascade algorithm as it is shown in Figure 3.20.  In addition to the 

reference image, we apply the same method to all images in the dataset. Each eye is 

represented by 6 (x, y)-coordinates, starting at the left-corner of the eye (as if you were 

Figure 3.19. Refrenace Image. 
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looking at the person), and then working clockwise around the remainder of the region. 

The total of points we will use to calculate the transformation parameter is 12 points, and 

we will eliminate any image has less than that from the training dataset. 

To find the transformation parameters for an image, we passed the 12 points of the 

reference image and the 12 points of the target image to the minimized cost function 

method which we described in section 3.5. Minimized cost function will return the 

transformation parameters (Rotation, Scaling shifting). We obtained our training dataset 

by applying the same method on all images.  

3.6.2 VGGNet Model 

VGG is a convolutional neural network model proposed by K. Simonyan and A. 

Zisserman from the University of Oxford in the paper “Very Deep Convolutional Networks 

for Large-Scale Image Recognition” [57]. The model achieves 92.7% top-5 test accuracy 

in ImageNet, which is a dataset of over 14 million images belonging to 1000 classes. VGG 

shows that a significant improvement on the prior-art configurations can be achieved by 

Figure 3.20. The 6 facial landmarks associated with the eye. 
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increasing the depth to 16-19 weight layers, which is substantially deeper than what has 

been used in the prior art. To reduce the number of parameters in such very deep networks, 

VGG use very small 3×3 filters in all convolutional layers (the convolution stride is set to 

1). However, VGGNet consists of 138 million parameters, which can be a bit challenging 

to handle. Figure 3.21 shows the general VGG model architecture.   

 

3.6.3 Residual Neural Network (ResNet) Model 

Residual Network was possibly the most groundbreaking work in the computer 

vision/deep learning community in the last few years. ResNet makes it possible to train up 

to hundreds or even thousands of layers and still achieves engrossing performance. 

Increasing network depth does not work by simply stacking layers together. Deep networks 

are hard to train because of the infamous vanishing gradient problem — as the gradient is 

back-propagated to earlier layers, repeated multiplication may make the gradient 

Figure 3.21.  VGGNet model architecture. 
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infinitively small. As a result, as the network goes deeper, its performance gets saturated 

or even starts degrading rapidly. 

The main idea of ResNet is introducing a so-called “identity shortcut connection” 

that skips one or more layers, as shown in Figure 3.22. The authors of the ResNet argue 

that stacking layers shouldn’t degrade the network performance, because we could simply 

stack identity mappings (layer that doesn’t do anything) upon the current network, and the 

resulting architecture would perform the same. This indicates that the deeper model should 

not produce a training error higher than its shallower counterparts. They hypothesize that 

letting the stacked layers fit a residual mapping is easier than letting them directly fit the 

desired under-laying mapping. And the residual block above explicitly allows it to do 

precisely that. Figure 3.23 shows the ResNet model architecture.  

Figure 3.23. ResNet50 model architecture. 

Figure 3.22. A residual block. 
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3.6.4 Proposed Method Configurations 

Our implementation for deep face registration evaluated few models architectures. 

We started with a simple CNN network with few convolution layers followed by 

MaxPooling layer and batch normalization (BN) right after each convolution and before 

activation, and we did not use dropout. In the classification layers, we used two fully-

connected layers one with 128 neurons and one with 64 neurons followed with the. We 

randomly initialize the weights, and we use the Relu activation function. We used Adam 

optimizer with a mini-batch size of 32. We used the default learning rate which is 0.001, 

and the model was trained up to 80 epochs. Figure 3.24 shows the model architecture.  

In the second model, we went deeper and used the VGGNet. Ones with 16 layers 

(VGG16) and the second one with 19 layers (VGG19) as Figure 3.25 shows. We added 

two fully-connected layers one with 128 neurons and one with 64 neurons followed with 

the output layers with four neurons at the end to fit our problem. We used Adam optimizer 

Figure 3.24. Proposed method using a simple CNN. 
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with a mini-batch size of 32. However, we changed to the learning rate to 0.0001, and the 

model was trained up to 100 epochs.  

The last model, we used the ResNet50 model. We added a drop out layer before the 

fully-connected layers to make the model generalized. We used the same fully-connected 

and the output layers as the VGGNet model. We used Adam optimizer with a mini-batch 

size of 32. We used the default learning rate which is 0.001, and the model was trained up 

to 80 epochs. Figure 3.26 shows the ResNet50 model. 

  

Figure 3.25. Proposed method using VGG16 and VGG19. 

Figure 3.26. Proposed method using ResNet50. 
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CHAPTER 4: RESULTS  

4.1 Classical Face Recognition System Result  

4.1.1 Classical Face Recognition Using PCA and KNN Result 

In the PCA and KNN experiment, the variant recognition rate is achieved based on 

different distance methods.  Table 4.1 show the results for three scenarios, 50% to 50%, 

70% to 30% and 90% to 10%.  In the 50% to %50 scenario, Manhattan distance 

outperforms the other distance methods by mismatching only 5 images with 94.4% 

accuracy in the YALE dataset and Mahalanobis distance mismatch 9 images and achieved 

95.5% accuracy for the ORL dataset. In the second scenario, Mahalanobis and Canberra 

methods achieved 100% accuracy in the YALE dataset, and Manhattan achieved 95.8% 

accuracy for the ORL dataset. Finally, we achieved a higher accuracy in the last scenario 

since we left only one image for testing. The comparison between the three scenarios is 

shown in Figure 4.1 and Figure 4.2. 

Table 4.1. Experiment results using PCA + KNN  

  Recognition Rate (%) 

Method 50%  50% 70% 30% 90% 10% 

PCA +KNN Using: Yale ORL Yale ORL Yale ORL 

Euclidean Distance 87.8 89 95.6 93.3 100 90 

Correlation Distance 88.8 91 97.8 91.7 100 95 

Canberra Distance 90 92.5 100 93.3 93.3 97.5 

Manhattan Distance 92.2 93.5 95.6 95.8 100 97.5 

Mahalanobis Distance 93.3 94 100 95.8 100 97.5 
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Figure 4.1. Experiment results using PCA + KNN for the Yale data-set. 
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Figure 4.2. Experiment results using PCA +KNN for ORL data-set. 
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4.1.2 Classical Face Recognition Using LBPH and KNN Result 

In the LBPH and KNN experiment, the variant recognition rate is achieved based 

on different distance methods.  Table 4.2 show the results for three scenarios, 50% to 50%, 

70% to 30%, and 90% to 10%. In the 50% to %50 scenario, Manhattan distance 

outperforms the other distance methods by mismatching only 5 images with 94.4% 

accuracy in the YALE dataset and Mahalanobis distance mismatch 6 images and achieved 

97% accuracy for the ORL dataset. In the second scenario, Mahalanobis and Canberra 

methods achieved 100% accuracy in the YALE dataset and Mahalanobis achieved 97.5% 

accuracy for the ORL dataset. Finally, we achieved a higher accuracy in the last scenario 

since we left only one image for testing. The comparison between the three scenarios is 

shown in Figure 4.3 and Figure 4.4. 

 

 

Table 4.2. Experiment results using LBPH + KNN. 

 

  Recognition Rate (%) 

Method 50%  50% 70% 30% 90% 10% 

LBP +KNN Using: Yale ORL Yale ORL Yale ORL 

Euclidean Distance 88.8 90 95.6 93.3 100 94 

Correlation Distance 90 92.5 97.8 94.5 100 95 

Canberra Distance 91.1 93.5 100 96 93.3 98 

Manhattan Distance 93.3 94 95.6 97.3 100 99 

Mahalanobis Distance 94.4 95 100 97.5 100 98 
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Figure 4.3. Experiment results using LBP-HOG + NN for the Yale data-set. 
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Figure 4.4. Experiment results using LBPH + NN for the ORL data-set. 
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4.2 Proposed Face Recognition System Result 

4.2.1 Proposed Face Recognition Result Using the PCA and NN 

In the second experiment, based on the fact which we concluded from the first 

experiment, combining the distance methods will allow us to achieve a higher recognition 

rate. In the proposed framework using multi-classifier PCA and NN, we achieved higher 

accuracy using equation (3.13) then equation (3.14). We achieved 97.7% accuracy in the 

Yale database with only 2 mismatching of 165 images and 97.5% with 5 mismatching of 

200 testing images in 50% training set and 50% testing scenario. Table 4.3 and Figure 4.5 

shows the result in details. 

  Table 4.3. Experiment results using PCA + NN with 50% training set and 50% testing set. 

 
Method 

PCA + NN using: 

Recognition Rate 

(%) 

Yale ORL 

Canberra Distance 88.9 80 

Euclidean Distance 75.6 79.5 

Correlation 
Distance 

89.9 85.5 

Manhattan Distance 87.8 89.5 

Mahalanobis 
Distance 

94.4 95.5 

Proposed: 

√∑ 𝑫𝑰𝑺𝒊
𝟐𝟓

𝒊=𝟏  

 

96.6 

 

96.5 

Proposed:

√𝛂 ∑ 𝑫𝑰𝑺𝒊
𝟐𝟓

𝒊=𝟏  

 

97.7 

 

97.5 
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4.2.2 Proposed Face Recognition Result Using the LBPH and NN 

In the proposed framework using multi-classifier LBPH and NN, we achieved 

higher accuracy using equation (3.13) then equation (3.14). We achieved 97.7% accuracy 

in the Yale dataset with only 2 mismatching of 165 images and 98% with 4 mismatching 

of 200 testing images in 50% training set and 50% testing scenario. Table 4.4 and Figure 

4.6 shows the result in details. Table 4.5 shows the comparison between the proposed 

framework and the other existing methods on the ORL. 

 

Figure 4.5. Experiment results using PCA + NN with 50% training set and 50% testing set. 
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Table 4.4. Experiment results using LBPH + NN with 50% training set and 50% testing set. 

 

 

 

 

 

 

 

 

 

Method 

PCA + NN using: 

Recognition Rate 

(%) 

Yale ORL 

Canberra Distance 91.1 93.5 

Euclidean Distance 91.1 95 

Correlation Distance 92.2 95.5 

Manhattan Distance 94.4 96 

Mahalanobis 
Distance 

95.4 96.5 

Proposed: 

√∑ 𝑫𝑰𝑺𝒊
𝟐𝟓

𝒊=𝟏  

 

96.6 

 

97.5 

Proposed:

√𝛂 ∑ 𝑫𝑰𝑺𝒊
𝟐𝟓

𝒊=𝟏  

 

97.7 

 

98 
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Figure 4.6. Experiment results using LBPH + NN with 50% training set and 50% testing set. 
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 Table 4.5. Comparison between the proposed framework and the other existing methods. 

 

4.3 Face Registration Based on a Minimalized Cost Function 

Result  

In this experiment, we applied our proposed method to a 256x256 pixels Lena 

image. After converting Lena image to gray-scale image and adding some noise, we 

applied some transformation to Lena image such as 0.2 scaling, 0.2 rotation, -15 translation 

tx, and -5 translation ty. We achieved a high registration accuracy with the lowest error by 

using few matching points. We tried variant matching point scenarios, and we achieved a 

steady error rate. The main contribution in this paper is registering the images with only 

two sufficient matching points. Table 4.6 shows the error rate for affine parameters with 

variant matching point number. This table shows the proposed algorithm achieved the 

lowest passable error rate with few matching points. The proposed methods can be applied 

to the human face images as shown in Figure 4.7.  

Reference Year Method 

Number of 

Training Images 

per person 

%Accuracy 

[79] 2015 PCA+BPNN N/A 88 

[80] 2015 LDA 5 89.5 

[81] 2015 Gabor + NMF 5 95 

[82] 2014 PCA,LDA,DCT,ICA 5 85.5,88.5,91.5,87.5 

[83] 2013 FKNN 5 87 

[84] 2012 WT+PCA 8 95 

[85] 2012 CASNN,FFNN 5 86.5,80 

[86] 2011 
PCA-DCT-Corr-

PIFS 
N/A 86.8 

Proposed 2017 
LBPH, multi-KNN, 

and BPNN 
5 98 
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Table 4.6. Registration error rate for variant matching point number. 

 

 

 

 

 

 

4.4 Deep Face Registration Result  

In this experiment, we applied our proposed method on the LFW dataset. All the 

images resized to 224x224 and no preprocessing methods applied to them. All images 

normalized between [0, 1]. The dataset randomly split to 67% as a training dataset and 33% 

as a testing dataset. We evaluated 4 of the deep network models and we achieved a high 

accuracy. In the simple CNN model, we achieved %98.18 accuracy. However, when we 

use a deeper model we achieved a higher accuracy. The accuracy using the ResNet50 is 

Number of 

Matching Points 

Scaling 

Error 

Rotation 

Error 

tx   

Error 

ty   

Error 

30 0.007 0.066 0.34 2.21 

20 0.01 0.067 0.4 2.5 

10 0.012 0.07 0.45 2.43 

5 0.015 0.064 1.37 0.9 

3 0.017 0.07 1.4 1.7 

2 0.019 0.065 0.86 1.09 
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Figure 4.7. Registration error rate for variant matching point number on Lena image. 
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98.55% and 98.42% for VGG19 and VGG16 provided the highest accuracy which is 

98.40%. Deeper networks takes more training time which is not critical since the network 

will be trained off line. The networks predicts the output in a real time miner which is with 

0.009 second. Table 4.7 shows the accuracy, training time and the prediction time of the 

output.  Figure 4.8 shows all the models converged smoothly.  

Table 4.7. Deep face registration result. 

 

 

Model Accuracy 
Training 

time 

Prediction 

time 

Total 

parameters 

Simple CNN 98.18 2.6 Hours 0.004 Second 3 million 

VGG16 98.42 6.6 Hours 0.009 Second 134 million 

VGG19 98.40 7.6 Hours 0.01  Second 140 million 

ResNet50 98.55 5.5 Hours 0.007 Second 23 million 
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Figure 4.8. Models loss curve. 
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Figure 4.9.  Example for registered faces: (a) Original face (b) Predicted registered face 

(c) Expected registered face. 
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CONCLUSIONS 

In this thesis, we have proposed an improving human face recognition using deep 

learning based image registration and multi-classifier approaches. In our dissertation, we 

started with improving the recognition face system by improving the features extraction 

approach. The framework can work with different types of feature extraction methods. We 

used the Principal component analysis (PCA) for the first proposed system then the Local 

binary patterns (LBP) for the second proposed system.  The main contribution is to provide 

training data with distinction patterns which will help the NN to converge faster and more 

accurate. We achieved this contribution by combining five distance methods since each 

distance methods has an advantage over the other methods and by combining them we 

added strength to the whole system. Experimental results showed that we achieved a higher 

accuracy, and we reduced the computation time. Also, we outperformed the existing 

frameworks. We can use the proposed framework with a robust feature extraction 

algorithms such as Support Vector Machine (SVM) and deep neural network which have 

some advantage over the LPB and PCA. Also, we proposed a deep face registration which 

can lead to a robust overall face recognition system. We achieved high accuracy using deep 

models such as VGGNet and ResNet models. Our deep face registration dataset and the 

deep models will be available for the public after we publish our result. 
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APPENDIX 

Simple CNN model: 

__________________________________________________________ 
Layer (type)                 Output Shape              Param #    

================================================================ 

input_1 (Input Layer)         (None, 100, 100, 3)       0          

________________________________________________________________ 

conv2d_1 (Conv2D)            (None, 100, 100, 128)     3584       

________________________________________________________________ 

batch_normalization_1 (Batch (None, 100, 100, 128)     512        

________________________________________________________________ 

max_pooling2d_1 (MaxPooling2 (None, 50, 50, 128)       0          

________________________________________________________________ 

conv2d_2 (Conv2D)            (None, 50, 50, 128)       147584     

________________________________________________________________ 

batch_normalization_2 (Batch (None, 50, 50, 128)       512        

________________________________________________________________ 

max_pooling2d_2 (MaxPooling2 (None, 25, 25, 128)       0          

________________________________________________________________ 

conv2d_3 (Conv2D)            (None, 25, 25, 128)       147584     

________________________________________________________________ 

batch_normalization_3 (Batch (None, 25, 25, 128)       512        

________________________________________________________________ 

max_pooling2d_3 (MaxPooling2 (None, 13, 13, 128)       0          

________________________________________________________________        

conv2d_4 (Conv2D)            (None, 13, 13, 128)       147584     

________________________________________________________________ 

batch_normalization_4 (Batch (None, 13, 13, 128)       512        

________________________________________________________________        

flatten_1 (Flatten)          (None, 21632)             0           

________________________________________________________________ 

dense_1 (Dense)              (None, 128)               2769024    

________________________________________________________________ 

dense_2 (Dense)              (None, 64)                8256       

________________________________________________________________ 

dense_3 (Dense)              (None, 4)                 260        

================================================================ 

Total params: 3,225,924 

Trainable params: 3,224,900 

Non-trainable params: 1,024 

________________________________________________________________ 
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VGG16 Model layers: 

Layer (type)                 Output Shape              Param #    

================================================================= 

input_4 (Input Layer)         (None, 224, 224, 3)       0          

_________________________________________________________________ 

block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792       

_________________________________________________________________ 

block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928      

_________________________________________________________________ 

block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0          

_________________________________________________________________ 

block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856      

_________________________________________________________________ 

block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584     

_________________________________________________________________ 

block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0          

_________________________________________________________________ 

block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168     

_________________________________________________________________ 

block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080     

_________________________________________________________________ 

block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080     

_________________________________________________________________ 

block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0          

_________________________________________________________________ 

block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160    

_________________________________________________________________ 

block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808    

_________________________________________________________________ 

block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808    

_________________________________________________________________ 

block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0          

_________________________________________________________________ 

block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808    

_________________________________________________________________ 

block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808    

_________________________________________________________________ 

block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808    

_________________________________________________________________ 

block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0          

_________________________________________________________________ 

Flatten (Flatten)            (None, 25088)             0          

_________________________________________________________________ 

fc1 (Dense)                  (None, 4096)              102764544  

_________________________________________________________________ 

fc2 (Dense)                  (None, 4096)              16781312   

_________________________________________________________________ 

fc3 (Dense)                  (None, 128)               524416     

_________________________________________________________________ 

fc4 (Dense)                  (None, 64)                8256       

_________________________________________________________________ 

Predictions (Dense)          (None, 4)                 260        

================================================================= 

Total params: 134,793,476 

Trainable params: 134,793,476 

Non-trainable params: 0 

_________________________________________________________________ 
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VGG19 Model layers: 

Layer (type)                 Output Shape              Param #    

================================================================= 

input_5 (Input Layer)         (None, 224, 224, 3)       0          

_________________________________________________________________ 

block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792       

_________________________________________________________________ 

block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928      

_________________________________________________________________ 

block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0          

_________________________________________________________________ 

block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856      

_________________________________________________________________ 

block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584     

_________________________________________________________________ 

block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0          

_________________________________________________________________ 

block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168     

_________________________________________________________________ 

block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080     

_________________________________________________________________ 

block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080     

_________________________________________________________________ 

block3_conv4 (Conv2D)        (None, 56, 56, 256)       590080     

_________________________________________________________________ 

block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0          

_________________________________________________________________ 

block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160    

_________________________________________________________________ 

block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808    

_________________________________________________________________ 

block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808    

_________________________________________________________________ 

block4_conv4 (Conv2D)        (None, 28, 28, 512)       2359808    

_________________________________________________________________ 

block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0          

_________________________________________________________________ 

block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808    

_________________________________________________________________ 

block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808    

_________________________________________________________________ 

block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808    

_________________________________________________________________ 

block5_conv4 (Conv2D)        (None, 14, 14, 512)       2359808    

_________________________________________________________________ 

block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0          

_________________________________________________________________ 

Flatten (Flatten)            (None, 25088)             0          

_________________________________________________________________ 

fc1 (Dense)                  (None, 4096)              102764544  

_________________________________________________________________ 

fc2 (Dense)                  (None, 4096)              16781312   

_________________________________________________________________ 

fc3 (Dense)                  (None, 128)               524416     

_________________________________________________________________ 

fc4 (Dense)                  (None, 64)                8256       

_________________________________________________________________ 

Predictions (Dense)          (None, 4)                 260        

================================================================= 

Total params: 140,103,172 

Trainable params: 140,103,172 

Non-trainable params: 0 

_________________________________________________________________ 
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ResNet50 Model layers:  

_________________________________________________________________ 

Layer (type)                    Output Shape         Param #                          

================================================================= 

input_3 (InputLayer)            (None, 224, 224, 3)   0                                             

_________________________________________________________________ 

conv1_pad (ZeroPadding2D)       (None, 230, 230, 3)   0            

_________________________________________________________________ 

conv1 (Conv2D)                  (None, 112, 112, 64)  9472         

_________________________________________________________________ 

bn_conv1 (BatchNormalization)   (None, 112, 112, 64)  256          

_________________________________________________________________ 

activation_99 (Activation)      (None, 112, 112, 64)  0            

_________________________________________________________________ 

max_pooling2d_3 (MaxPooling2D)  (None, 55, 55, 64)    0            

_________________________________________________________________ 

res2a_branch2a (Conv2D)         (None, 55, 55, 64)    4160         

_________________________________________________________________ 

bn2a_branch2a (BatchNormalizati (None, 55, 55, 64)    256          

_________________________________________________________________ 

activation_100 (Activation)     (None, 55, 55, 64)    0            

_________________________________________________________________ 

res2a_branch2b (Conv2D)         (None, 55, 55, 64)   36928        

_________________________________________________________________ 

bn2a_branch2b (BatchNormalizati (None, 55, 55, 64)   256          

_________________________________________________________________ 

activation_101 (Activation)     (None, 55, 55, 64)   0            

_________________________________________________________________ 

res2a_branch2c (Conv2D)         (None, 55, 55, 256)  16640        

_________________________________________________________________ 

res2a_branch1 (Conv2D)          (None, 55, 55, 256)  16640        

_________________________________________________________________ 

bn2a_branch2c (BatchNormalizati (None, 55, 55, 256)  1024         

_________________________________________________________________ 

bn2a_branch1 (BatchNormalizatio (None, 55, 55, 256)  1024         

_________________________________________________________________ 

add_33 (Add)                    (None, 55, 55, 256)  0                                                                       

_________________________________________________________________ 

activation_102 (Activation)     (None, 55, 55, 256)  0            

_________________________________________________________________ 

res2b_branch2a (Conv2D)         (None, 55, 55, 64)   16448        

_________________________________________________________________ 

bn2b_branch2a (BatchNormalizati (None, 55, 55, 64)   256          

_________________________________________________________________ 

activation_103 (Activation)     (None, 55, 55, 64)   0            

_________________________________________________________________ 

res2b_branch2b (Conv2D)         (None, 55, 55, 64)   36928        

_________________________________________________________________ 

bn2b_branch2b (BatchNormalizati (None, 55, 55, 64)   256          

_________________________________________________________________ 

activation_104 (Activation)     (None, 55, 55, 64)   0            

_________________________________________________________________ 

res2b_branch2c (Conv2D)         (None, 55, 55, 256)  16640        

_________________________________________________________________ 

bn2b_branch2c (BatchNormalizati (None, 55, 55, 256)  1024         

_________________________________________________________________ 

add_34 (Add)                    (None, 55, 55, 256)  0                                                                            

_________________________________________________________________ 

activation_105 (Activation)     (None, 55, 55, 256)  0            

_________________________________________________________________ 



 

90 
 

res2c_branch2a (Conv2D)         (None, 55, 55, 64)   16448        

_________________________________________________________________ 

bn2c_branch2a (BatchNormalizati (None, 55, 55, 64)   256          

_________________________________________________________________ 

activation_106 (Activation)     (None, 55, 55, 64)   0            

_________________________________________________________________ 

res2c_branch2b (Conv2D)         (None, 55, 55, 64)   36928        

_________________________________________________________________ 

bn2c_branch2b (BatchNormalizati (None, 55, 55, 64)   256          

_________________________________________________________________ 

activation_107 (Activation)     (None, 55, 55, 64)   0            

_________________________________________________________________ 

res2c_branch2c (Conv2D)         (None, 55, 55, 256)  16640        

_________________________________________________________________ 

bn2c_branch2c (BatchNormalizati (None, 55, 55, 256)  1024         

_________________________________________________________________ 

add_35 (Add)                    (None, 55, 55, 256)  0                                                                         

_________________________________________________________________ 

activation_108 (Activation)     (None, 55, 55, 256)  0            

_________________________________________________________________ 

res3a_branch2a (Conv2D)         (None, 28, 28, 128)  32896        

_________________________________________________________________ 

bn3a_branch2a (BatchNormalizati (None, 28, 28, 128)  512          

_________________________________________________________________ 

activation_109 (Activation)     (None, 28, 28, 128)  0            

_________________________________________________________________ 

res3a_branch2b (Conv2D)         (None, 28, 28, 128)  147584       

_________________________________________________________________ 

bn3a_branch2b (BatchNormalizati (None, 28, 28, 128)  512          

_________________________________________________________________ 

activation_110 (Activation)     (None, 28, 28, 128)  0            

_________________________________________________________________ 

res3a_branch2c (Conv2D)         (None, 28, 28, 512)  66048        

_________________________________________________________________ 

res3a_branch1 (Conv2D)          (None, 28, 28, 512)  131584       

_________________________________________________________________ 

bn3a_branch2c (BatchNormalizati (None, 28, 28, 512)  2048         

_________________________________________________________________ 

bn3a_branch1 (BatchNormalizatio (None, 28, 28, 512)  2048         

_________________________________________________________________ 

add_36 (Add)                    (None, 28, 28, 512)  0                                                                          

_________________________________________________________________ 

activation_111 (Activation)     (None, 28, 28, 512)  0            

_________________________________________________________________ 

res3b_branch2a (Conv2D)         (None, 28, 28, 128)  65664        

_________________________________________________________________ 

bn3b_branch2a (BatchNormalizati (None, 28, 28, 128)  512          

_________________________________________________________________ 

activation_112 (Activation)     (None, 28, 28, 128)  0            

_________________________________________________________________ 

res3b_branch2b (Conv2D)         (None, 28, 28, 128)  147584       

_________________________________________________________________ 

bn3b_branch2b (BatchNormalizati (None, 28, 28, 128)  512          

_________________________________________________________________ 

activation_113 (Activation)     (None, 28, 28, 128)  0            

_________________________________________________________________ 

res3b_branch2c (Conv2D)         (None, 28, 28, 512)  66048        

_________________________________________________________________ 

bn3b_branch2c (BatchNormalizati (None, 28, 28, 512)  2048         

_________________________________________________________________ 

add_37 (Add)                    (None, 28, 28, 512)  0                                                                          
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_________________________________________________________________ 

activation_114 (Activation)     (None, 28, 28, 512)  0            

_________________________________________________________________ 

res3c_branch2a (Conv2D)         (None, 28, 28, 128)  65664        

_________________________________________________________________ 

bn3c_branch2a (BatchNormalizati (None, 28, 28, 128)  512          

_________________________________________________________________ 

activation_115 (Activation)     (None, 28, 28, 128)  0            

_________________________________________________________________ 

res3c_branch2b (Conv2D)         (None, 28, 28, 128)  147584       

_________________________________________________________________ 

bn3c_branch2b (BatchNormalizati (None, 28, 28, 128)  512          

_________________________________________________________________ 

activation_116 (Activation)     (None, 28, 28, 128)  0             

_________________________________________________________________ 

res3c_branch2c (Conv2D)         (None, 28, 28, 512)  66048        

_________________________________________________________________ 

bn3c_branch2c (BatchNormalizati (None, 28, 28, 512)  2048         

_________________________________________________________________ 

add_38 (Add)                    (None, 28, 28, 512)  0                                                                           

_________________________________________________________________ 

activation_117 (Activation)     (None, 28, 28, 512)  0            

_________________________________________________________________ 

res3d_branch2a (Conv2D)         (None, 28, 28, 128)  65664        

_________________________________________________________________ 

bn3d_branch2a (BatchNormalizati (None, 28, 28, 128)  512          

_________________________________________________________________ 

activation_118 (Activation)     (None, 28, 28, 128)  0            

_________________________________________________________________ 

res3d_branch2b (Conv2D)         (None, 28, 28, 128)  147584       

_________________________________________________________________ 

bn3d_branch2b (BatchNormalizati (None, 28, 28, 128)  512          

_________________________________________________________________ 

activation_119 (Activation)     (None, 28, 28, 128)  0            

_________________________________________________________________ 

res3d_branch2c (Conv2D)         (None, 28, 28, 512)  66048        

_________________________________________________________________ 

bn3d_branch2c (BatchNormalizati (None, 28, 28, 512)  2048         

_________________________________________________________________ 

add_39 (Add)                    (None, 28, 28, 512)  0                                                                          

_________________________________________________________________ 

activation_120 (Activation)     (None, 28, 28, 512)  0            

_________________________________________________________________ 

res4a_branch2a (Conv2D)         (None, 14, 14, 256)  131328       

_________________________________________________________________ 

bn4a_branch2a (BatchNormalizati (None, 14, 14, 256)  1024         

_________________________________________________________________ 

activation_121 (Activation)     (None, 14, 14, 256)  0            

_________________________________________________________________ 

res4a_branch2b (Conv2D)         (None, 14, 14, 256)  590080       

_________________________________________________________________ 

bn4a_branch2b (BatchNormalizati (None, 14, 14, 256)  1024         

_________________________________________________________________ 

activation_122 (Activation)     (None, 14, 14, 256)  0            

_________________________________________________________________ 

res4a_branch2c (Conv2D)         (None, 14, 14, 1024) 263168       

_________________________________________________________________ 

res4a_branch1 (Conv2D)          (None, 14, 14, 1024) 525312       

_________________________________________________________________ 

bn4a_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096         

_________________________________________________________________ 
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bn4a_branch1 (BatchNormalizatio (None, 14, 14, 1024) 4096         

_________________________________________________________________ 

add_40 (Add)                    (None, 14, 14, 1024) 0                                                                            

_________________________________________________________________ 

activation_123 (Activation)     (None, 14, 14, 1024) 0            

_________________________________________________________________ 

res4b_branch2a (Conv2D)         (None, 14, 14, 256)  262400       

_________________________________________________________________ 

bn4b_branch2a (BatchNormalizati (None, 14, 14, 256)  1024         

_________________________________________________________________ 

activation_124 (Activation)     (None, 14, 14, 256)  0            

_________________________________________________________________ 

res4b_branch2b (Conv2D)         (None, 14, 14, 256)  590080       

_________________________________________________________________ 

bn4b_branch2b (BatchNormalizati (None, 14, 14, 256)  1024         

_________________________________________________________________ 

activation_125 (Activation)     (None, 14, 14, 256)  0           

_________________________________________________________________ 

res4b_branch2c (Conv2D)         (None, 14, 14, 1024) 263168       

_________________________________________________________________ 

bn4b_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096         

_________________________________________________________________ 

add_41 (Add)                    (None, 14, 14, 1024) 0                                                                          

_________________________________________________________________ 

activation_126 (Activation)     (None, 14, 14, 1024) 0            

_________________________________________________________________ 

res4c_branch2a (Conv2D)         (None, 14, 14, 256)  262400       

_________________________________________________________________ 

bn4c_branch2a (BatchNormalizati (None, 14, 14, 256)  1024         

_________________________________________________________________ 

activation_127 (Activation)     (None, 14, 14, 256) 0            

_________________________________________________________________ 

res4c_branch2b (Conv2D)         (None, 14, 14, 256)  590080       

_________________________________________________________________ 

bn4c_branch2b (BatchNormalizati (None, 14, 14, 256)  1024         

_________________________________________________________________ 

activation_128 (Activation)     (None, 14, 14, 256)  0            

_________________________________________________________________ 

res4c_branch2c (Conv2D)         (None, 14, 14, 1024) 263168       

_________________________________________________________________ 

bn4c_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096         

_________________________________________________________________ 

add_42 (Add)                    (None, 14, 14, 1024) 0            

_________________________________________________________________ 

activation_129 (Activation)     (None, 14, 14, 1024) 0            

_________________________________________________________________ 

res4d_branch2a (Conv2D)         (None, 14, 14, 256)  262400       

_________________________________________________________________ 

bn4d_branch2a (BatchNormalizati (None, 14, 14, 256)  1024         

_________________________________________________________________ 

activation_130 (Activation)     (None, 14, 14, 256)  0            

_________________________________________________________________ 

res4d_branch2b (Conv2D)         (None, 14, 14, 256)  590080       

_________________________________________________________________ 

bn4d_branch2b (BatchNormalizati (None, 14, 14, 256)  1024         

_________________________________________________________________ 

activation_131 (Activation)     (None, 14, 14, 256)  0            

_________________________________________________________________ 

res4d_branch2c (Conv2D)         (None, 14, 14, 1024) 263168       

_________________________________________________________________ 

bn4d_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096         
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_________________________________________________________________ 

add_43 (Add)                    (None, 14, 14, 1024) 0                                                                           

_________________________________________________________________ 

activation_132 (Activation)     (None, 14, 14, 1024) 0            

_________________________________________________________________ 

res4e_branch2a (Conv2D)         (None, 14, 14, 256)  262400       

_________________________________________________________________ 

bn4e_branch2a (BatchNormalizati (None, 14, 14, 256)  1024         

_________________________________________________________________ 

activation_133 (Activation)     (None, 14, 14, 256) 0            

_________________________________________________________________ 

res4e_branch2b (Conv2D)         (None, 14, 14, 256)  590080       

_________________________________________________________________ 

bn4e_branch2b (BatchNormalizati (None, 14, 14, 256)  1024         

_________________________________________________________________ 

activation_134 (Activation)     (None, 14, 14, 256)  0            

_________________________________________________________________ 

res4e_branch2c (Conv2D)         (None, 14, 14, 1024) 263168       

_________________________________________________________________ 

bn4e_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096         

_________________________________________________________________ 

add_44 (Add)                    (None, 14, 14, 1024) 0                                                                         

_________________________________________________________________ 

activation_135 (Activation)     (None, 14, 14, 1024) 0            

_________________________________________________________________ 

res4f_branch2a (Conv2D)         (None, 14, 14, 256)  262400       

_________________________________________________________________ 

bn4f_branch2a (BatchNormalizati (None, 14, 14, 256)  1024         

_________________________________________________________________ 

activation_136 (Activation)     (None, 14, 14, 256)  0            

_________________________________________________________________ 

res4f_branch2b (Conv2D)         (None, 14, 14, 256)  590080       

_________________________________________________________________ 

bn4f_branch2b (BatchNormalizati (None, 14, 14, 256)  1024         

_________________________________________________________________ 

activation_137 (Activation)     (None, 14, 14, 256)  0            

_________________________________________________________________ 

bn4f_branch2c (BatchNormalizati (None, 14, 14, 1024) 4096         

_________________________________________________________________ 

add_45 (Add)                    (None, 14, 14, 1024) 0                                                                            

_________________________________________________________________ 

activation_138 (Activation)     (None, 14, 14, 1024) 0            

_________________________________________________________________ 

res5a_branch2a (Conv2D)         (None, 7, 7, 512)    524800       

_________________________________________________________________ 

bn5a_branch2a (BatchNormalizati (None, 7, 7, 512)    2048         

_________________________________________________________________ 

activation_139 (Activation)     (None, 7, 7, 512)    0            

_________________________________________________________________ 

res5a_branch2b (Conv2D)         (None, 7, 7, 512)    2359808      

_________________________________________________________________ 

bn5a_branch2b (BatchNormalizati (None, 7, 7, 512)    2048         

_________________________________________________________________ 

activation_140 (Activation)     (None, 7, 7, 512)    0            

_________________________________________________________________ 

res5a_branch2c (Conv2D)         (None, 7, 7, 2048)   1050624      

_________________________________________________________________ 

res5a_branch1 (Conv2D)          (None, 7, 7, 2048)   2099200      

_________________________________________________________________ 

bn5a_branch2c (BatchNormalizati (None, 7, 7, 2048)   8192         

_________________________________________________________________ 
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bn5a_branch1 (BatchNormalizatio (None, 7, 7, 2048)   8192         

_________________________________________________________________ 

add_46 (Add)                    (None, 7, 7, 2048)   0                                                                         

_________________________________________________________________ 

activation_141 (Activation)     (None, 7, 7, 2048)   0            

_________________________________________________________________ 

res5b_branch2a (Conv2D)         (None, 7, 7, 512)    1049088      

_________________________________________________________________ 

bn5b_branch2a (BatchNormalizati (None, 7, 7, 512)    2048         

_________________________________________________________________ 

activation_142 (Activation)     (None, 7, 7, 512)    0            

_________________________________________________________________ 

res5b_branch2b (Conv2D)         (None, 7, 7, 512)    2359808      

_________________________________________________________________ 

bn5b_branch2b (BatchNormalizati (None, 7, 7, 512)    2048         

_________________________________________________________________ 

activation_143 (Activation)     (None, 7, 7, 512)    0            

_________________________________________________________________ 

res5b_branch2c (Conv2D)         (None, 7, 7, 2048)   1050624      

_________________________________________________________________ 

bn5b_branch2c (BatchNormalizati (None, 7, 7, 2048)   8192         

_________________________________________________________________ 

add_47 (Add)                    (None, 7, 7, 2048)   0                                                              

_________________________________________________________________ 

activation_144 (Activation)     (None, 7, 7, 2048)   0            

_________________________________________________________________ 

res5c_branch2a (Conv2D)         (None, 7, 7, 512)    1049088      

_________________________________________________________________ 

bn5c_branch2a (BatchNormalizati (None, 7, 7, 512)    2048         

_________________________________________________________________ 

activation_145 (Activation)     (None, 7, 7, 512)    0            

_________________________________________________________________ 

res5c_branch2b (Conv2D)         (None, 7, 7, 512)    2359808      

_________________________________________________________________ 

bn5c_branch2b (BatchNormalizati (None, 7, 7, 512)    2048         

_________________________________________________________________ 

activation_146 (Activation)     (None, 7, 7, 512)    0            

_________________________________________________________________ 

res5c_branch2c (Conv2D)         (None, 7, 7, 2048)   1050624      

_________________________________________________________________ 

bn5c_branch2c (BatchNormalizati (None, 7, 7, 2048)   8192         

_________________________________________________________________ 

add_48 (Add)                    (None, 7, 7, 2048)   0                                                                  

_________________________________________________________________ 

activation_147 (Activation)     (None, 7, 7, 2048)   0            

_________________________________________________________________ 

avg_pool (GlobalAveragePooling2 (None, 2048)         0            

_________________________________________________________________ 

dropout_3 (Dropout)             (None, 2048)         0            

_________________________________________________________________ 

fc1 (Dense)                     (None, 128)          262272       

_________________________________________________________________ 

fc2 (Dense)                     (None, 64)           8256         

_________________________________________________________________ 

fc3 (Dense)                     (None, 4)            260          

================================================================= 

Total params: 23,858,500 

Trainable params: 23,805,380 

Non-trainable params: 53,120 

_________________________________________________________________ 

 


