4,866 research outputs found

    Fast and Accurate Algorithm for Eye Localization for Gaze Tracking in Low Resolution Images

    Full text link
    Iris centre localization in low-resolution visible images is a challenging problem in computer vision community due to noise, shadows, occlusions, pose variations, eye blinks, etc. This paper proposes an efficient method for determining iris centre in low-resolution images in the visible spectrum. Even low-cost consumer-grade webcams can be used for gaze tracking without any additional hardware. A two-stage algorithm is proposed for iris centre localization. The proposed method uses geometrical characteristics of the eye. In the first stage, a fast convolution based approach is used for obtaining the coarse location of iris centre (IC). The IC location is further refined in the second stage using boundary tracing and ellipse fitting. The algorithm has been evaluated in public databases like BioID, Gi4E and is found to outperform the state of the art methods.Comment: 12 pages, 10 figures, IET Computer Vision, 201

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    Fragment based tracking for scale and orientation adaptation

    Get PDF
    In this work, we propose a simple yet highly effective algorithm for tracking a target through significant scale and orientation change. We divide the target into a number of fragments and tracking of the whole target is achieved by coordinated tracking of the individual fragments. We use the mean shift algorithm to move the individual fragments to the nearest minima, though any other method like integral histograms could also be used. In contrast to the other fragment based approaches, which fix the relative positions of fragments within the target, we permit the fragments to move freely within certain bounds. Furthermore, we use a constant velocity Kalman filter for two purposes. Firstly, Kalman filter achieves robust tracking because of usage of a motion model. Secondly, to maintain coherence amongst the fragments, we use a coupled state transition model for the Kalman filter. Using the proposed tracking algorithm, we have experimented on several videos consisting of several hundred frames length each and obtained excellent results

    Nuclei/Cell Detection in Microscopic Skeletal Muscle Fiber Images and Histopathological Brain Tumor Images Using Sparse Optimizations

    Get PDF
    Nuclei/Cell detection is usually a prerequisite procedure in many computer-aided biomedical image analysis tasks. In this thesis we propose two automatic nuclei/cell detection frameworks. One is for nuclei detection in skeletal muscle fiber images and the other is for brain tumor histopathological images. For skeletal muscle fiber images, the major challenges include: i) shape and size variations of the nuclei, ii) overlapping nuclear clumps, and iii) a series of z-stack images with out-of-focus regions. We propose a novel automatic detection algorithm consisting of the following components: 1) The original z-stack images are first converted into one all-in-focus image. 2) A sufficient number of hypothetical ellipses are then generated for each nuclei contour. 3) Next, a set of representative training samples and discriminative features are selected by a two-stage sparse model. 4) A classifier is trained using the refined training data. 5) Final nuclei detection is obtained by mean-shift clustering based on inner distance. The proposed method was tested on a set of images containing over 1500 nuclei. The results outperform the current state-of-the-art approaches. For brain tumor histopathological images, the major challenges are to handle significant variations in cell appearance and to split touching cells. The proposed novel automatic cell detection consists of: 1) Sparse reconstruction for splitting touching cells. 2) Adaptive dictionary learning for handling cell appearance variations. The proposed method was extensively tested on a data set with over 2000 cells. The result outperforms other state-of-the-art algorithms with F1 score = 0.96

    LIMBUSTRACK: STABLE EYE-TRACKING IN IMPERFECT LIGHT CONDITIONS

    Get PDF
    We are aware of only one serious effort at development of a cheap, accurate, wearable eye tracker: the open source openEyes project. However, its method of ocular feature detection is such that it is prone to failure in variable lighting conditions. To address this deficiency, we have developed a cheap wearable eye tracker. At the heart of our development are novel techniques that allow operation under variable illumination

    Particle Filters for Colour-Based Face Tracking Under Varying Illumination

    Get PDF
    Automatic human face tracking is the basis of robotic and active vision systems used for facial feature analysis, automatic surveillance, video conferencing, intelligent transportation, human-computer interaction and many other applications. Superior human face tracking will allow future safety surveillance systems which monitor drowsy drivers, or patients and elderly people at the risk of seizure or sudden falls and will perform with lower risk of failure in unexpected situations. This area has actively been researched in the current literature in an attempt to make automatic face trackers more stable in challenging real-world environments. To detect faces in video sequences, features like colour, texture, intensity, shape or motion is used. Among these feature colour has been the most popular, because of its insensitivity to orientation and size changes and fast process-ability. The challenge of colour-based face trackers, however, has been dealing with the instability of trackers in case of colour changes due to the drastic variation in environmental illumination. Probabilistic tracking and the employment of particle filters as powerful Bayesian stochastic estimators, on the other hand, is increasing in the visual tracking field thanks to their ability to handle multi-modal distributions in cluttered scenes. Traditional particle filters utilize transition prior as importance sampling function, but this can result in poor posterior sampling. The objective of this research is to investigate and propose stable face tracker capable of dealing with challenges like rapid and random motion of head, scale changes when people are moving closer or further from the camera, motion of multiple people with close skin tones in the vicinity of the model person, presence of clutter and occlusion of face. The main focus has been on investigating an efficient method to address the sensitivity of the colour-based trackers in case of gradual or drastic illumination variations. The particle filter is used to overcome the instability of face trackers due to nonlinear and random head motions. To increase the traditional particle filter\u27s sampling efficiency an improved version of the particle filter is introduced that considers the latest measurements. This improved particle filter employs a new colour-based bottom-up approach that leads particles to generate an effective proposal distribution. The colour-based bottom-up approach is a classification technique for fast skin colour segmentation. This method is independent to distribution shape and does not require excessive memory storage or exhaustive prior training. Finally, to address the adaptability of the colour-based face tracker to illumination changes, an original likelihood model is proposed based of spatial rank information that considers both the illumination invariant colour ordering of a face\u27s pixels in an image or video frame and the spatial interaction between them. The original contribution of this work lies in the unique mixture of existing and proposed components to improve colour-base recognition and tracking of faces in complex scenes, especially where drastic illumination changes occur. Experimental results of the final version of the proposed face tracker, which combines the methods developed, are provided in the last chapter of this manuscript

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure
    corecore