7,297 research outputs found

    Driver Distraction Identification with an Ensemble of Convolutional Neural Networks

    Full text link
    The World Health Organization (WHO) reported 1.25 million deaths yearly due to road traffic accidents worldwide and the number has been continuously increasing over the last few years. Nearly fifth of these accidents are caused by distracted drivers. Existing work of distracted driver detection is concerned with a small set of distractions (mostly, cell phone usage). Unreliable ad-hoc methods are often used.In this paper, we present the first publicly available dataset for driver distraction identification with more distraction postures than existing alternatives. In addition, we propose a reliable deep learning-based solution that achieves a 90% accuracy. The system consists of a genetically-weighted ensemble of convolutional neural networks, we show that a weighted ensemble of classifiers using a genetic algorithm yields in a better classification confidence. We also study the effect of different visual elements in distraction detection by means of face and hand localizations, and skin segmentation. Finally, we present a thinned version of our ensemble that could achieve 84.64% classification accuracy and operate in a real-time environment.Comment: arXiv admin note: substantial text overlap with arXiv:1706.0949

    Region-based Skin Color Detection.

    Get PDF
    Skin color provides a powerful cue for complex computer vision applications. Although skin color detection has been an active research area for decades, the mainstream technology is based on the individual pixels. This paper presents a new region-based technique for skin color detection which outperforms the current state-of-the-art pixel-based skin color detection method on the popular Compaq dataset (Jones and Rehg, 2002). Color and spatial distance based clustering technique is used to extract the regions from the images, also known as superpixels. In the first step, our technique uses the state-of-the-art non-parametric pixel-based skin color classifier (Jones and Rehg, 2002) which we call the basic skin color classifier. The pixel-based skin color evidence is then aggregated to classify the superpixels. Finally, the Conditional Random Field (CRF) is applied to further improve the results. As CRF operates over superpixels, the computational overhead is minimal. Our technique achieves 91.17% true positive rate with 13.12% false negative rate on the Compaq dataset tested over approximately 14,000 web images

    Fair comparison of skin detection approaches on publicly available datasets

    Full text link
    Skin detection is the process of discriminating skin and non-skin regions in a digital image and it is widely used in several applications ranging from hand gesture analysis to track body parts and face detection. Skin detection is a challenging problem which has drawn extensive attention from the research community, nevertheless a fair comparison among approaches is very difficult due to the lack of a common benchmark and a unified testing protocol. In this work, we investigate the most recent researches in this field and we propose a fair comparison among approaches using several different datasets. The major contributions of this work are an exhaustive literature review of skin color detection approaches, a framework to evaluate and combine different skin detector approaches, whose source code is made freely available for future research, and an extensive experimental comparison among several recent methods which have also been used to define an ensemble that works well in many different problems. Experiments are carried out in 10 different datasets including more than 10000 labelled images: experimental results confirm that the best method here proposed obtains a very good performance with respect to other stand-alone approaches, without requiring ad hoc parameter tuning. A MATLAB version of the framework for testing and of the methods proposed in this paper will be freely available from https://github.com/LorisNann

    Automatic skin segmentation for gesture recognition combining region and support vector machine active learning

    Get PDF
    Skin segmentation is the cornerstone of many applications such as gesture recognition, face detection, and objectionable image filtering. In this paper, we attempt to address the skin segmentation problem for gesture recognition. Initially, given a gesture video sequence, a generic skin model is applied to the first couple of frames to automatically collect the training data. Then, an SVM classifier based on active learning is used to identify the skin pixels. Finally, the results are improved by incorporating region segmentation. The proposed algorithm is fully automatic and adaptive to different signers. We have tested our approach on the ECHO database. Comparing with other existing algorithms, our method could achieve better performance

    Automatic recognition of fingerspelled words in British Sign Language

    Get PDF
    We investigate the problem of recognizing words from video, fingerspelled using the British Sign Language (BSL) fingerspelling alphabet. This is a challenging task since the BSL alphabet involves both hands occluding each other, and contains signs which are ambiguous from the observer’s viewpoint. The main contributions of our work include: (i) recognition based on hand shape alone, not requiring motion cues; (ii) robust visual features for hand shape recognition; (iii) scalability to large lexicon recognition with no re-training. We report results on a dataset of 1,000 low quality webcam videos of 100 words. The proposed method achieves a word recognition accuracy of 98.9%

    Review of Face Detection Systems Based Artificial Neural Networks Algorithms

    Get PDF
    Face detection is one of the most relevant applications of image processing and biometric systems. Artificial neural networks (ANN) have been used in the field of image processing and pattern recognition. There is lack of literature surveys which give overview about the studies and researches related to the using of ANN in face detection. Therefore, this research includes a general review of face detection studies and systems which based on different ANN approaches and algorithms. The strengths and limitations of these literature studies and systems were included also.Comment: 16 pages, 12 figures, 1 table, IJMA Journa
    corecore