333 research outputs found

    Hierarchically Clustered Adaptive Quantization CMAC and Its Learning Convergence

    Get PDF
    No abstract availabl

    A Multi-Fault Diagnosis Method for Sensor Systems Based on Principle Component Analysis

    Get PDF
    A model based on PCA (principal component analysis) and a neural network is proposed for the multi-fault diagnosis of sensor systems. Firstly, predicted values of sensors are computed by using historical data measured under fault-free conditions and a PCA model. Secondly, the squared prediction error (SPE) of the sensor system is calculated. A fault can then be detected when the SPE suddenly increases. If more than one sensor in the system is out of order, after combining different sensors and reconstructing the signals of combined sensors, the SPE is calculated to locate the faulty sensors. Finally, the feasibility and effectiveness of the proposed method is demonstrated by simulation and comparison studies, in which two sensors in the system are out of order at the same time

    Intelligent flight control systems

    Get PDF
    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms

    Efficient techniques for soft tissue modeling and simulation

    Get PDF
    Performing realistic deformation simulations in real time is a challenging problem in computer graphics. Among numerous proposed methods including Finite Element Modeling and ChainMail, we have implemented a mass spring system because of its acceptable accuracy and speed. Mass spring systems have, however, some drawbacks such as, the determination of simulation coefficients with their iterative nature. Given the correct parameters, mass spring systems can accurately simulate tissue deformations but choosing parameters that capture nonlinear deformation behavior is extremely difficult. Since most of the applications require a large number of elements i. e. points and springs in the modeling process it is extremely difficult to reach realtime performance with an iterative method. We have developed a new parameter identification method based on neural networks. The structure of the mass spring system is modified and neural networks are integrated into this structure. The input space consists of changes in spring lengths and velocities while a "teacher" signal is chosen as the total spring force, which is expressed in terms of positional changes and applied external forces. Neural networks are trained to learn nonlinear tissue characteristics represented by spring stiffness and damping in the mass spring algorithm. The learning algorithm is further enhanced by an adaptive learning rate, developed particularly for mass spring systems. In order to avoid the iterative approach in deformation simulations we have developed a new deformation algorithm. This algorithm defines the relationships between points and springs and specifies a set of rules on spring movements and deformations. These rules result in a deformation surface, which is called the search space. The deformation algorithm then finds the deformed points and springs in the search space with the help of the defined rules. The algorithm also sets rules on each element i. e. triangle or tetrahedron so that they do not pass through each other. The new algorithm is considerably faster than the original mass spring systems algorithm and provides an opportunity for various deformation applications. We have used mass spring systems and the developed method in the simulation of craniofacial surgery. For this purpose, a patient-specific head model was generated from MRI medical data by applying medical image processing tools such as, filtering, the segmentation and polygonal representation of such model is obtained using a surface generation algorithm. Prism volume elements are generated between the skin and bone surfaces so that different tissue layers are included to the head model. Both methods produce plausible results verified by surgeons

    Human inspired pattern recognition via local invariant features

    Get PDF
    Vision is increasingly becoming a vital element in the manufacturing industry. As complex as it already is, vision is becoming even more difficult to implement in a pattern recognition environment as it converges toward the level of what humans visualize. Relevant brain work technologies are allowing vision systems to add capability and tasks that were long reserved for humans. The ability to recognize patterns like humans do is a good goal in terms of performance metrics for manufacturing activities. To achieve this goal, we created a neural network that achieves pattern recognition analogous to the human visual cortex using high quality keypoints by optimizing the scale space and pairing keypoints with edges as input into the model. This research uses the Taguchi Design of Experiments approach to find optimal values for the SIFT parameters with respect to finding correct matches between images that vary in rotation and scale. The approach used the Taguchi L18 matrix to determine the optimal parameter set. The performance obtained from SIFT using the optimal solution was compared with the performance from the original SIFT algorithm parameters. It is shown that correct matches between an original image and a scaled, rotated, or scaled and rotated version of that image improves by 17% using the optimal values of the SIFT. A human inspired approach was used to create a CMAC based neural network capable of pattern recognition. A comparison of 3 object, 30 object, and 50 object scenes were examined using edge and optimized SIFT based features as inputs and produced extensible results from 3 to 50 objects based on classification performance. The classification results prove that we achieve a high level of pattern recognition that ranged from 96.1% to 100% for objects under consideration. The result is a pattern recognition model capable of locally based classification based on invariant information without the need for sets of information that include input sensory data that is not necessarily invariant (background data, raw pixel data, viewpoint angles) that global models rely on in pattern recognition

    Odor Recognition and Localization Using Sensor Networks

    Get PDF

    ANOMALY NETWORK INTRUSION DETECTION SYSTEM BASED ON DISTRIBUTED TIME-DELAY NEURAL NETWORK (DTDNN)

    Get PDF
    In this research, a hierarchical off-line anomaly network intrusion detection system based on Distributed Time-Delay Artificial Neural Network is introduced. This research aims to solve a hierarchical multi class problem in which the type of attack (DoS, U2R, R2L and Probe attack) detected by dynamic neural network. The results indicate that dynamic neural nets (Distributed Time-Delay Artificial Neural Network) can achieve a high detection rate, where the overall accuracy classification rate average is equal to 97.24%

    Error minimising gradients for improving cerebellar model articulation controller performance

    Get PDF
    In motion control applications where the desired trajectory velocity exceeds an actuator’s maximum velocity limitations, large position errors will occur between the desired and actual trajectory responses. In these situations standard control approaches cannot predict the output saturation of the actuator and thus the associated error summation cannot be minimised.An adaptive feedforward control solution such as the Cerebellar Model Articulation Controller (CMAC) is able to provide an inherent level of prediction for these situations, moving the system output in the direction of the excessive desired velocity before actuator saturation occurs. However the pre-empting level of a CMAC is not adaptive, and thus the optimal point in time to start moving the system output in the direction of the excessive desired velocity remains unsolved. While the CMAC can adaptively minimise an actuator’s position error, the minimisation of the summation of error over time created by the divergence of the desired and actual trajectory responses requires an additional adaptive level of control.This thesis presents an improved method of training CMACs to minimise the summation of error over time created when the desired trajectory velocity exceeds the actuator’s maximum velocity limitations. This improved method called the Error Minimising Gradient Controller (EMGC) is able to adaptively modify a CMAC’s training signal so that the CMAC will start to move the output of the system in the direction of the excessive desired velocity with an optimised pre-empting level.The EMGC was originally created to minimise the loss of linguistic information conveyed through an actuated series of concatenated hand sign gestures reproducing deafblind sign language. The EMGC concept however is able to be implemented on any system where the error summation associated with excessive desired velocities needs to be minimised, with the EMGC producing an improved output approximation over using a CMAC alone.In this thesis, the EMGC was tested and benchmarked against a feedforward / feedback combined controller using a CMAC and PID controller. The EMGC was tested on an air-muscle actuator for a variety of situations comprising of a position discontinuity in a continuous desired trajectory. Tested situations included various discontinuity magnitudes together with varying approach and departure gradient profiles.Testing demonstrated that the addition of an EMGC can reduce a situation’s error summation magnitude if the base CMAC controller has not already provided a prior enough pre-empting output in the direction of the situation. The addition of an EMGC to a CMAC produces an improved approximation of reproduced motion trajectories, not only minimising position error for a single sampling instance, but also over time for periodic signals

    Use of human gestures for controlling a mobile robot via adaptive CMAC network and fuzzy logic controller

    Get PDF
    Mobile robots with manipulators have been more and more commonly applied in extreme and hostile environments to assist or even replace human operators for complex tasks. In addition to autonomous abilities, mobile robots need to facilitate the human–robot interaction control mode that enables human users to easily control or collaborate with robots. This paper proposes a system which uses human gestures to control an autonomous mobile robot integrating a manipulator and a video surveillance platform. A human user can control the mobile robot just as one drives an actual vehicle in the vehicle’s driving cab. The proposed system obtains human’s skeleton joints information using a motion sensing input device, which is then recognized and interpreted into a set of control commands. This is implemented, based on the availability of training data set and requirement of in-time performance, by an adaptive cerebellar model articulation controller neural network, a finite state machine, a fuzzy controller and purposely designed gesture recognition and control command generation systems. These algorithms work together implement the steering and velocity control of the mobile robot in real-time. The experimental results demonstrate that the proposed approach is able to conveniently control a mobile robot using virtual driving method, with smooth manoeuvring trajectories in various speeds
    • …
    corecore