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ABSTRACT 
 
 

Vision is increasingly becoming a vital element in the manufacturing 

industry.  As complex as it already is, vision is becoming even more difficult 

to implement in a pattern recognition environment as it converges toward 

the level of what humans visualize.  Relevant brain work technologies are 

allowing vision systems to add capability and tasks that were long reserved 

for humans.  The ability to recognize patterns like humans do is a good goal 

in terms of performance metrics for manufacturing activities.  To achieve this 

goal, we created a neural network that achieves pattern recognition 

analogous to the human visual cortex using high quality keypoints by 

optimizing the scale space and pairing keypoints with edges as input into the 

model. 
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This research uses the Taguchi Design of Experiments approach to 

find optimal values for the SIFT parameters with respect to finding correct 

matches between images that vary in rotation and scale. The approach used 

the Taguchi L18 matrix to determine the optimal parameter set. The 

performance obtained from SIFT using the optimal solution was compared 

with the performance from the original SIFT algorithm parameters. It is 

shown that correct matches between an original image and a scaled, rotated, 

or scaled and rotated version of that image improves by 17% using the 

optimal values of the SIFT. 

A human inspired approach was used to create a CMAC based neural 

network capable of pattern recognition.   A comparison of a 3 object, 30 

object, and 50 object scenes were examined using edge and optimized SIFT 

based features as inputs and produced extensible results from 3 to 50 objects 

based on classification performance.  The classification results prove that we 

achieve a high level of pattern recognition that ranged from 96.1% to 100% 

for objects under consideration.  The result is a pattern recognition model 

capable of locally based classification based on invariant information without 

the need for sets of information that include input sensory data that is not 

necessarily invariant (background data, raw pixel data, viewpoint angles)  

that global models rely on in pattern recognition.
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Chapter 1:  INTRODUCTION 

1.1 Goal   

The goal of the proposed research is to develop a pattern recognition 

model that consists of a cerebral framework that locally trains, classifies, 

and recognizes patterns based on local invariant keypoints extracted from 

image scenes. This was accomplished based on local information within a 

scene and trained via the implementation of an algorithm based on 

keypoints utilized as inputs into a neural network similar to those inspired 

by Cerebellar Model Articulation Controller (CMAC) neural network and in 

the human visual cortex. The parameters were optimized to extract 

invariant keypoints and establish a model of pattern recognition. 

1.2 Problem 

Successful pattern recognition is determined by the probability that a 

pattern under consideration is the same as a known pattern stored in a 

database with similar attributes. Current successful pattern recognition 

schemes are global in nature and rely on input sensory data that are not 

necessarily invariant (background data, raw pixel data, viewpoint angles).  

The net result is that most of these schemes require large intensive databases 

to use probability based matches from images and their associated pixel 
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information.  To be successful, comparisons must be near perfect matches to 

the trained database and errors occur that lead to incomplete or false 

recognition. The most common methods for pattern recognition often 

involve mathematical and statistical methods that utilize Bayesian based 

algorithms.  While these algorithms provide sufficient pattern recognition 

against known databases, the algorithms operate differently than the way 

humans recognize patterns. 

Today’s algorithms rarely take advantage of visual cortex inspired 

approaches to pattern recognition which result in large complex methods 

for specific tasks, but do not provide robustness for task variation. The focus 

of this research attempts to resolve a common problem with computer 

vision pattern recognition methods.  The problem occurs when these created 

pattern recognition schemes are compared to how easily humans recognize 

patterns.  Using the vast array of neural networks within the brain, it is 

proposed that humans use a cerebral approach to pattern recognition and 

take advantage of information from scene to scene without change—also 

known as invariance.  A model of human-inspired and locally based pattern 

recognition can be developed using modern day technology to recognize 

patterns more like humans.  The model takes advantage of the benefits of 

feature extraction used to detect boundaries and edges, neural networks to 
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process information like the human brain, and invariant data that can be 

manipulated and extracted to control information used for pattern 

recognition.  The result of this approach is the ability to use local 

information within a scene to train, classify, and recognize patterns without 

the need for a large external database. 



Chapter 2: LITERATURE REVIEW 
 

4 

Chapter 2: LITERATURE REVIEW 

2.1 State of the Art   

Vision is increasingly becoming a vital element in the manufacturing 

industry.  As complex as it already is, vision it is becoming even more 

difficult to implement in a pattern recognition environment as it converges 

toward the level of what humans visualize.  Relevant brain work 

technologies are allowing vision systems to add capability and tasks that 

were long reserved for humans.  The ability to recognize patterns the way 

humans do is a good goal in terms of performance metrics for 

manufacturing activities.  To achieve this goal, advances gained from 

computer vision, such as the ability to use invariant keypoints, were 

integrated with neural networks to create a unique model that achieves 

pattern recognition analogous to the human visual cortex. 

 

2.2 Human Vision Object Recognition 

To create a model of pattern recognition, it is essential to first examine 

theories on how humans perform pattern recognition. To do that the human 

physiology must be investigated in terms of learning and function.  We 

need to know how the brain sees information. To know this we need to 

know the answers to the following two questions: how the brain gets the 
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information (i.e., what are the inputs?), and how the brain translates and 

processes the information. 

David Marr [31] was one of the first researchers to examine the brain.  

Marr presented his theory that the cerebellum learns to perform motor skills 

via learning movements or actions and learning to maintain posture or 

balance which are the reflexes to the observed actions.  While this first 

approach did not answer the question of how humans see, it set the basis 

work for following investigations.  In particular, Marr [30] presented to the 

Royal Society of London that the link between the cerebellum and cerebrum 

could be established in terms of learning by using criteria (form, color, 

texture, and movement).  This criterion enabled the nervous system to split 

up its visual input into components or classification units for different 

objects and can be used in visual bonding and coding features based on 

continuities in capturing information that can be suitably invariant as a 

means to look for patterns of coherent matter (objects) [30].  Visual bonding 

is a technique for joining visual data using fixed criteria.  To strengthen his 

argument, Marr decided to play “Devil’s Advocate” and investigate what 

was termed the Anticortex.  Marr’s counter argument to the existence of a 

cerebral cortex suggests that an anticortex is used for primitive functions 

like storage and free association. Currents (spikes and firings) can be used 
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like an SRAM structure, in today’s terms, for the cerebrum to easily 

associate items as permanent or temporary.  Then the information in 

memory can be used to recall instructions based on past experiences and 

used in future behaviors.  The result is efficient control of behavior by 

means of a simple memory [32].   

Another early researcher was Frank Rosenblatt.  In terms of pattern 

recognition, Rosenblatt’s research that is most applicable was his invention 

of the perceptron model.  Rosenblatt [40] distinguished between object 

identification and recognition. Object Identification can be thought of as 

something of interest present in the environment so that the information is 

registered into the brain in a certain form and can serve as a sensor for 

future recall (i.e., stimuli) [40].  Object recognition can be thought of as the 

recall and influence that the stored information has on future behavior (i.e., 

knowing the difference between an attacking animal for survival vs. a 

harmless creature) [40].  He then combined object identification and 

recognition into what he called statistical separability which is using the 

same association and applying it to a different situation like future behavior 

[41].   While the first set of experiments and theories that Rosenblatt 

presents are primarily concerned with how the brain organizes information, 



Chapter 2: LITERATURE REVIEW 
 

7 

statistical separability proves the brain can be adapted to apply stored data 

to other activities. 

Now that we have a general idea how the brain utilizes the information, 

the next question is how does it get the information (i.e., what are the 

inputs?)?  The eye is the window in which visual information from the 

world is brought into the brain for processing. As shown in Fig. 1, the major 

components of the eye are the iris, pupil, cornea, lens, retina, macula, fovea 

and optic nerve.  

 

 

Fig. 1. Eye and its Labeled Components [11] 

 

While the rods and cones of the retina serve as the primary sensors for 

processing light information, the primary component of the eye, where 
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feature extraction takes place, is in the fovea [8].  Biederman [8] conducted 

some of the first experiments to prove human object recognition using 

feature extraction to prove the fovea segments images of unknown objects 

into blocks, cones, triangles, or cylinders.  

The fovea is most effective in processing image information using eye 

movement and periods of fixation—known as human saccades [16].  Siagian 

and Itti [46] discussed plausibility of scene recognition by conducting an 

experiment where subjects could recognize objects in their peripheral vision 

while still focusing on primary objects directly in front of them.   Zhang [54] 

used human subjects to show how the fovea detects “hot spots” to track the 

eye movement during scene recognition to then create a simulated eye 

movement model based on invariant features from Scale Invariant Feature 

Transforms (SIFT).   

From the fovea the information is sent through the optic nerve and split 

into two paths on each side of the eye into the optic chasm for coding so 

that the visual cortex can reprocess the information for the brain.  As shown 

in Fig. 2, the visual cortex is the part of the brain responsible for processing 

the information transmitted from the world through the optic nerve and 

chasm.  It decodes the information for the brain and is composed of 5 

regions-namely V1-V5.  V1 is the primary visual cortex region and is 
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responsible for most of the processing that takes place with V2 being the 

secondary visual cortex handling overflow. V3-V5 are visual association 

areas used by the brain for signals not processed at V1 or V2.  They do not 

just respond to whether there is a presence of light or not, but process 

columns of light in specific directions—in essence they are feature extractors 

[8].  There are 3 types of cells that act as the feature extractors: simple, 

complex, and hypercomplex [34]:    

• Simple cells: Respond to the presence of columns of light at a 

particular orientation and position. 

• Complex cells: Respond to columns of particular orientations moving 

across the retina. 

• Hypercomplex cells: Responded to moving columns but also had a 

strong inhibitory region at their end.     

Since the transmittance from the world through the optic nerve and chasm 

is divided for each eye, the cells cause neural responses based on similar 

objects and that determines which one of the three cells activates as a 

primary stimuli response.  The aforementioned is primarily done in V1. 

Regions V2-V5, also known as the striate cortex, are mainly used for 

auxiliary visual processing or overflows of information streaming down the 

optic nerve. Primary function of the striate is for identification and location.  
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Striates can be used to get basic shape, orientation, and awareness like those 

commonly described as survival instincts in human vision to determine if a 

large animal is in the field of view (identification) and coming to attack 

(location).  

 

 

 

Fig. 2.The Human Visual System and its Associated Areas and Cortices [18] 
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Now that we know how the brain gets its inputs, the next question is how 

does it translate and process the information once inside?  Spikes, action 

potentials, and oscillation rhythms are key representations in translating 

what humans see into motion.  The brain utilizes inputs from the various 

cortices and acts as a virtual simulator in the brain to construct models of 

motions [56].  Neurons are the inputs and are the basic structure used to 

transmit data in the brain as shown by Paugam-Moisy [36] in Fig. 3. 

 

 

Fig. 3. Neural Structure Showing A Synapse Connection [20] 

In review, we examined theories on how humans perform pattern 

recognition.   We investigated the human physiology in terms of learning 

and function to know how the brain sees information. To create a unique 

model of pattern recognition, we looked into research on how the brain gets 
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the information (i.e., what are the inputs?), and how the brain translates and 

processes the information so that our model is human inspired and can 

recognize patterns using invariant features that are naturally present in the 

world. 

 

2.3 Computer Based Object Recognition 

To create a model of pattern recognition, it is essential to first examine 

theories on how computers are used to perform pattern recognition. To do 

that the current models and algorithms must be investigated in terms of 

learning and function.  We need to know how computers see information. 

To know this we need to know the answers to the following two questions: 

how computers get the information (i.e., what are the inputs?), and how 

algorithms translate and process the information. 

The answer to the first question is fairly straight forward as shown in Fig. 4. 

Computers get inputs from cameras either through image scenes or video 

processing and translating the information into pixels that can be read and 

extracted by algorithms. 

 

 

Fig. 4. Typical Computer Vision Setup with an Object, Camera, and Computer 

 

 
 
  

object camera 
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One of the most notable algorithms is the Canny edge detector. Canny [9] 

created an algorithm that takes objects input via a camera and detects 

boundaries and edges of objects to image process scene information terms 

of lines and curves.  Canny’s success showed that information related to 

specific objects can be taken and segmented into useful information.  The 

information can be used to show where natural boundaries occur.  The 

information can be translated into data a computer can recognize. The 

information can be used to index patterns, but nothing is done about 

determining whether the information is invariant.  Riesenhuber and Poggio 

[39] introduced a nonlinear maximum operation that was invariant to 

position and scale on the one hand but feature specificity must be built up 

through separate mechanisms to increase feature extraction.  Serre, Wolf, 

and Poggio [45] followed up by applying Gabor filters to introduce a novel 

set of features for robust feature extraction. They attempted to apply the 

visual cortex model of learning where most processing takes place in the V1 

region using simple cells and extend it to the V2 region.  The main feature 

extraction technique used by them was through edge detectors [45].   

One of the most notable approaches in extracting image information was 

introduced by Lowe [26]. Its primary purpose was image matching to gain 
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information about structure during scene recognition.  Lowe [26] used local 

reference frames to show that in relation to them scale and rotation is 

invariant from pixel to pixel.  Algorithms can be written to take advantage 

of the large number of features that densely fill the image scene based on 

Lowe’s [26] four stages of image matching:  scale-space maxima detection, 

keypoint localization, orientation, and keypoint descriptors. 

The second question is at the heart of computer based pattern recognition. 

Most of the research follows the following form. Create a vision system, use 

objects or characters as targets, and create a large global database of 

information that takes new information into the algorithm and computes a 

best guess to the closest match between the input data and the stored 

database information.  

Guy Wallis and Edmond Rolls [51] investigated the use of networks that 

solved invariant problems related to visual recognition using the trace rule. 

The trace rule looks at the original cell or neuron information input into the 

system and tracks its transformation (translation, size, and view) matrix 

used to discern one object from another in the natural environment via a 

global database of input scenes.  Research conducted by Rowley changed 

the object to a human face. Rowley [43] used a window of pixel information 

to extract frontal views of faces to recognize different faces and then 
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transform them based on invariant attributes of a globally trained database 

to detect the presence of facial features via a neural network. Kanade [53], 

followed up in 2001 developing action units based on facial expressions.  

Action units are used in processing information so that facial object 

recognition occurs at a salient level by extracting facial features. The 

combination of the two, (1) information processing via neural networks to 

store and (2) retrieval with the ability generalize facial features based on 

action units, allows for better facial recognition.  The result the ability to 

visualize human expression and emotion programmed into a global 

database but input sensory data that are not necessarily invariant.    

Viola and Jones [50] contributed to information processing with respect to 

object recognition at the same time by establishing classifiers which 

contained information in the form of rectangular areas. Using this format 

allowed for images to integrate easily and resulted in fast information 

processing.  The effect was that an image could be contained or be 

segmented into features.  Having a vast number of features created the 

ability to rapidly and easily compute and classify facial expressions subtle 

and small in size with a 3% improvement in the number of false classifiers 

rejected. Jonnalagadda, et al., [22] developed a new shape based viewpoint 

selection process that uses the local geometric features of an object. The 
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local features of the object are assembled into simple geometric primitives 

and these primitives are then classified into shapes, which are used to 

hypothesize the global shape of the object. 

Around the same time that Lowe came out with SIFT, Fergus [18] utilized 

shape, appearance, and scale to create an entropy based detector capable of 

object recognition. The difference between Fergus and Lowe is in the 

fundamental engineering. Lowe created a scale invariant feature transform 

algorithm to feature match between scale and orientation between 

corresponding images of the same scene using Gaussian processing to 

produce scale space images. He subtracted the Gaussians from each image 

and what was left were the invariant scale and orientation features.  Fergus’ 

approach was Bayesian based and presented more of an engineering or 

computational view of object recognition using shape and scale as primary 

data. Fergus [18] approached recognition by detecting features and then 

calculating a likelihood ratio and compares it to a threshold that indicates 

presence or absence of an object. The major contributions of both Lowe and 

Fergus are in the invariant nature of their methods. Chikkerur‘s [13] 

approach enabled identification and the position of objects in visual scenes 

using a Bayesian framework. Similar to Fergus, Chikkerur [13] successfully 

developed a spatially based algorithm of attention to reduce uncertainty in 
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shape information and feature-based attention to reduce the uncertainty in 

spatial information to recognize objects using a global database. 

In review, we examined theories on how computers are used to perform 

pattern recognition by investigating current models and algorithms.  We 

now know how computers see information by investigating how computers 

get the information (i.e., what are the inputs?), and how algorithms translate 

and process the information to recognize objects. 

2.4 Scale Space Algorithms  

One of the earliest works in the field was by Rosenfeld and Thurston [42].  

They developed a routine that worked to detect edges via the use of a 

differential operator.  They used grouping of regions to create a scale space 

of a scene so that identified edges and curves could be mathematically 

classified [42].  Witkin [52] expanded the idea of perceptual grouping into 

one of the earliest scale-space filtering methods that used Gaussian 

convolutions to compute signal information from its extrema values.  This 

created the ability to examine scale information from large groupings of 

signal data sets [52].   A visual scheme to detect edges and curves was 

proposed by Perona and Malik [38] to include anisotropic diffusion in the 

scale-space for curve and edge detection.  
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One of the most notable technologies in extracting image information was 

introduced by David Lowe [26, 27] and is known as the Scale Invariant 

Feature Transform (SIFT). Its primary purpose was image matching to gain 

information from image frames to use in pattern recognition. Next, Zhang 

[54] used human subjects to show how the fovea detects “hot spots.”  He 

used "hot spots" to track the eye movement during scene recognition.  With 

this information he created a simulated eye movement model based on 

invariant features from SIFT.  Algorithms [26, 27, 48, and 49] have been 

written to take advantage of the large number of features that densely fill 

the image scene based on Lowe’s four stages of image matching:  scale-

space maxima detection, keypoint localization, orientation, and keypoint 

descriptors.  

Scale-space algorithms [6, 23] that make use of the basic SIFT structure 

include Speeded-Up Robust Features (SURF) and Maximally Stable 

Extremal Region (MSER) to extract information using vision systems by 

taking the integral images that result in a time reduction to compute SIFT 

features.  Bay, et al. [6] improved SIFT by using a fast approximation of the 

Hessian matrix in integral imaging and reducing the artifacts normally 

associated with Gaussian discretization.  Grabner, et al. [20] improved the 

computational efficiency of pattern recognition in terms of faster processing 
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and provided a framework that can be used to recover feature information 

using parametric analysis.   Cheung [12] successfully demonstrated SIFT 

pattern recognition by matching medical image scans against a trained 

database.  Montesano and Zhang [33, 54] both use the scale-space approach 

via a given database trained with keypoint and descriptor information of an 

object to group features based on similar attributes into categories that can 

be used for pattern recognition.   

Veldaldi and Fulkerson  [49] created a SIFT based algorithm that could be 

used in MATLAB that examined other parameters used to control feature 

matching through a series of thresholds controlling flat areas, edges, and 

corners.  Maestas, et al. [29] utilized a histogram approach that provides 

insight into obvious mismatching errors. Keypoints that are different in 

comparative images, but matched using SIFT, has an angle between the two 

corresponding points that deviates from the rest of the angles between 

matches. In the histogram, these mismatches appear as outliers and prime 

candidates for elimination during feature detection. It is expected that in a 

perfect match situation at nominal scale without rotation, the set of matched 

feature points from one image to the other form parallel lines. 
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2.5 Scale Invariant Feature Transform (SIFT) 

  To use the SIFT algorithm, one chooses a number of specific parameters.  

The parameters are octaves, levels, and thresholds.  Octaves include 

information about the number of times that the Difference of Gaussians 

(DOG) is performed and where to start taking the DOG, known as the first 

octave.  Levels refer to the number of levels per octave within the DOG 

subspace.  Thresholds are divided among peak, edge, and normal.  The 

thresholds establish which image points to accept between edge and non-

edge and provide controllability of image pixel data.  Lowe used local 

reference frames to show that scale and rotation do not change from pixel to 

pixel [26, 27].  This property is referred to as invariance in the local frame.  

One of the primary reasons SIFT works is because of the large number of 

keypoints it generates from an image [26].  The density of keypoints allows 

for frames to be created in clusters. Small objects in a scene background can 

be recognized as long as three features are correctly matched, either from 

two images or from a training database via Euclidean distance [26].   

SIFT develops a scale space by looking for extrema points and then 

extracts the point’s position, orientation and scale.  It is the result of four 

major steps [26, 27]: (1) create an invariant scale space, (2 and 3) find and 

manipulate the keypoints, and (4) bin and pair the keypoints.  
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2.5.1 Create an invariant scale space  

  The initial step is to create representations of the original image. To 

accomplish this, Gaussian blur is applied to the original image.  Creating 

the scale space in this manner ensures scale invariance. The parameters that 

control the initial scale space representation are the number of octaves used 

and the number of levels required.  The number of octaves implemented 

refers to how many sequential times the original is reduced by half the 

previous octave, Lowe used a default of four.  The number of levels 

implemented refers to how many blurs including the original are completed 

for within each octave, Lowe by default used five.   

Blurring involves convolution using a Gaussian: 

 
                                             B(x,y,σ)=G(x,y,σ)*I(x,y)        (2.1) 

 

where B is the blurred image,  G is the Gaussian operator,  I is the original 

image,  x,y are the location coordinates, and σ the scale parameter.    

Convolution involves the Gaussian operation equation: 
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2.5.2 Find and Manipulate Keypoints 

  The Difference of Gaussians (DOG) is used to find unique keypoints from 

images that are scale invariant.  Within an octave, starting from the original 

image, the next blurred image is subtracted from the previous image.  The 

result is n-1 images, where n is the number of levels parameter and contains 

invariant data left after subtraction.  This is accomplished by scaling the 

images in the Gaussian operation equation above by σ2 function which 

means the Laplacian  ∇2*G becomes σ2*∇2*G and scale invariant when 

keypoints are created.  Keypoints are determined by looking for extreme 

values both high and low by comparing one pixel to its neighboring pixels 

one level above, at the same level, and one level below.   There are 27 values 

to compare, e.g., one pixel of interest compared to the values of 26 nearby 

pixels.  If it is a minimum or a maximum it is kept as a keypoint.  The 

process is repeated for all levels except the top and bottom levels.  The 

entire set of images where the DOG was applied is an octave.  New octaves 

are then created by scaling them down to create another scale space by an 

integer value.  Typically a factor of 2 is used so that the entire octave space 

is covered and then the DOG is computed. 

Once keypoints are generated, subpixel information needs to be 

generated.  The purpose of the subpixel generation is due to the fact that 
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max and min values can occur between pixels and can lead to mismatches 

when the keypoints are manipulated.  Taylor series approximations are set 

equal to zero to solve for keypoints, x̂ .  The equation to find keypoints is as 

follows [26, 27]: 

 

                
0-x̂ 2

1

=
∂
∂

∂
∂

=
−

x
D

x
D

  (2.3) 

  

Filters can be applied to the magnitudes of min and max values to eliminate 

low contrast areas.   

 

2.5.3 Keypoint Binning and Pairing 

The values of the gradient magnitude and orientation are computed for 

each keypoint.  The equations used are: 

22 1))- yL(x,-1)  y (L(x,   y))1,-L(x- y)1, (L(x   y)(x, mag +++=∇   (2.4) 

and 

 y)))1,-L(x- y)1, 1))/(L(x - yL(x,-1)  y ((L(x,tan-1
, ++=∠ yx (2.5) 

where L is the smoothed Gaussian image at the closest scale to the keypoint.  

A histogram of the orientations can be made for keypoint locations which 

align keypoints from one image to another.  The most highly counted 
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orientation is then attached to that keypoint location to pair up the same 

keypoints in other images. Points are paired up and matched to their closest 

location from a different image using a Euclidean distance metric via 

histogramming angles between image points.  The resulting binned 

information is used to pair points from images to create matched features 

between different rotations and scales. 

2.6 Taguchi Design of Experiments (DOE) 

Design of Experiments (DOE) is an approach that computes variation in a 

process to minimize the number of experiments required to achieve an 

optimal set of parameters. Traditionally, DOE has been used to determine 

the optimal setting for machine parameter values.   In our research, DOE is 

used to determine the optimal values for the parameters of the SIFT 

algorithm.  

The Taguchi method, a particular type of DOE algorithm is a way to plan, 

conduct, analyze, and determine optimal settings for a system using 

orthogonal arrays.  The orthogonal array is the method by which relatively 

few experiments span a large experiment space [44, 47] versus that of a full 

factorial set of experiments.  

Since the Taguchi DOE method performs relatively few experiments, it is 

unlikely for the optimal answer to be one of the prescribed experiments. 
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However, it is possible to use the experiments to determine the optimal 

settings as well as to predict the output expected from the use of those 

settings.  Fig. 5 shows the delta between Taguchi over Full Factorial.  The 

additional number of full factorial experiments that would need to be run 

corresponds to the Lx matrix from Taguchi, where x is the number of factors 

being tested.  For example, the 4 on the x-axis represents an L4 Taguchi 

matrix and would require the same number of experiments using a full 

factorial design.  Therefore no additional experimental benefit (or 

effectiveness=0) is gained by using Taguchi over a Full Factorial design for a 

two level design.  As a result more experimental levels can be introduced 

via Taguchi design to increase the probability of finding the best answers 

for a given possible set of variable combination of parameters, e.g., a mixed 

2 and 3-level design.  Using the best set of answers is then used to find the 

optimal settings to achieve the best system performance. 
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Fig. 5. Additional number of full factorial experiments that would need to be run 

versus the Taguchi Design 

 

2.7 Neural Networks 

David Marr was an early examiner of the brain.  Marr's [30] theory was 

that the cerebellum learns to perform motor skills via learning movements 

or actions and learns to maintain posture or balance in reaction to observed 

actions.  This first approach did not answer the question of how humans 

see, but developed the foundation for further work for following 

investigations.  Marr [30] presented to the Royal Society of London that the 

link between the cerebellum and cerebrum is established by using criteria 
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(form, color, texture, and movement).  The nervous system uses these 

criteria and splits up its visual input into components or classification units 

based on object features.  Object features can be used in visual bonding 

(find common features in nature) and coding based on continuities in 

capturing invariant information to look for patterns of coherent matter 

(objects) [30].  James Albus [3] quickly adapted Marr's work to create the 

theory of cerebellar function used in robotic arms by mimicking the 

function of the biological cerebellum to control and coordinate movements.  

Duda and Hart [15] published their own neural network around the same 

time that was capable of classifying features with a scene.  

Another early researcher was Frank Rosenblatt.  Rosenblatt’s [40] research 

that is most applicable is his invention of the perceptron. Using a 

perceptron a neural network can be implemented that is able to classify 

objects and resulted in Rosenblatt's network able to identify objects.   

Peeling and Moore [37] used the Rosenblatt perceptron to create a Multi-

Layer Perceptron (MLP) for isolated digit recognition. Though primarily a 

Bayesian approach, Peeling and Moore's [37] work was a precursor to 

adaptive non-parametric networks [25].   

One of the most well-known non-parametric networks is the nearest 

neighbor method.  The result of the nearest neighbor method is the ability to 
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easily classify.  Friedman [9] extended the nearest neighbor method by 

creating a metric by which inputs are graded based on expectation.  The 

expectation is that inputs that are more important have a higher grade than 

lower valued inputs.  This ability to statistically partition inputs is the 

precursor to weighting inputs in present day statistically pattern 

recognition networks [19, 21].  Cortes and Vapnik [14] created a support 

vector machine capable of classifying digits.    Their statistical approach is a 

linear discriminant function that uses a perceptron based neural network 

for two group classifications [14].    Bell and Sejknowski [7] created a self-

associative network call individual component analysis that is adapted from 

the results one normally attains from using principal components analysis.  

Bell and Sjenowski determined that edges are detected by linear filters alone 

and are a top level invariant feature in natural images.  They suggest that 

other levels such as scale, rotation, and illumination can be second level 

invariant features capable of detection using non-linear statistical pattern 

recognition techniques [7].   

Several researchers (Rowley [43], Kanade [53], Viola, and Jones [50]) have 

used non-linear discriminant functions couple with a multi-layer perceptron 

neural network for classification.  Research conducted by Rowley [43] 

changed the object to a human face. Rowley used a window of pixel 
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information to extract frontal views of faces to recognize different faces 

within and then transform them based on invariant attributes of a globally 

trained database to detect the presence of facial features via a neural 

network. Kanade [53], followed up by advancing the state of the art of 

information processing by developing action units based on facial 

expressions.  Action units are features used in processing information so 

that facial object recognition occurs at a salient level by extracting only facial 

features. The combination of the two, information processing via neural 

networks to store and retrieve with the ability generalize facial features 

based on action units, allows for better recognition in terms of being able to 

visualize human expression and emotion programmed into a global 

database.   Viola and Jones [50] contributed to information processing with 

respect to object recognition at the same time by establishing classifiers 

which contained information in the form of rectangular areas. Using this 

format allowed for images to integrate easily and resulted in fast 

information processing.  The effect was that an image could be contained or 

be segmented into a variety features.  Having a vast number of features 

created the ability to rapidly and easily compute and classify facial 

expressions subtle and small in size with a 3% improvement in the number 

of false classifiers rejected.  
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Park, et al., [35] created a Parzen classifier neural network that utilizes a 

polynomial radial basis function to create classifiers via fuzzy clustering.  

Using fuzzy clustering, if-then rules are created to separate and classify 

polynomials [35].  The advantage of such a radial based function network is 

a rapid convergence to a global optimal approximation-basically fast 

learning [35].   Most recent Kim, et al., [24] used a hybrid approach by 

combining self- organizing maps, introduced by Kohonen, with that of 

learning vector quantization theory, and nearest neighbor networks theory 

that designates a classifier as a prototype.  Kim proved that classifier near 

boundaries play a more important role than classifiers in the interior of a 

boundary.  The result is more accurate global classifiers, but increased error 

during recognition.  

2.8 Cerebellar Model Articulation Controller (CMAC) 

In 1969 David Marr published the theory of cerebellar cortex and two 

years later, in 1971, James Albus expanded this state of the art by 

introducing his theory of cerebellar function. Albus [3] utilized Marr’s 

theory and applied it to robotic arm control by mimicking the function of 

the biological cerebellum to control and coordinate movements.  Albus’ 

theory was put into practice over the next four years to develop a Cerebellar 

Model Articulation Controller (CMAC) [1].  Albus was trying to solve the 
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problem of knowing and coordinating joint dynamics at every instant in 

time based on the hierarchical dependencies required to perform a task. To 

achieve robot manipulation, a neural network connected the function of the 

cerebellum (motion and coordination) to the perception (what is to be 

manipulated) based on patterns in nature.   The neural network created 

binary inputs and outputs weighted by pairs of mappings [1]. The 

mappings started with sensory cells, then input to association cells, adjusted 

for weights, and output to response cells based on the weighting results. 

The reason this worked was because of the classical nature of using binary 

stimuli (1 or 0).  The result is that there would be overlaps in the 

information taken from a scene based on similar information being 

processed as a digital signal as shown in Fig. 6.   

 

Fig. 6. A Typical CMAC Neural Network with Sensory Inputs and Output 

Motion 
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The data are distributed by summing ones and zeros in each space location 

[2].  An advantage to the early work in CMAC is that all levels are treated 

the same way, given either a 1 or a 0, making it easy for conventional linear 

mapping—though never demonstrated explicitly [1,2].   

In the early part of the 1990s, Albus came out with his “Outline for the 

Theory of Intelligence.”  Albus [4] quantified "Intelligence" as a measure of 

value that can be used to describe real world objects in terms of computer 

programmable inputs that could be used as the basis for object recognition.  

The more a system can recognize correctly the more intelligence the system 

possesses.  

In 2001, Albus [4] expanded this research on his “Theory of Intelligence” 

into processes of the mind that linked internal models of the brain to world 

models in quantifiable terms. Albus [4, 5] consolidated 20 years of research 

into “An Introduction to the Science of Intelligent Systems.” This was the 

first attempt by anyone to quantify the processes of the mind into 

computational terms that could be used to create a basic structure for 

perception as shown in Fig. 7. The basic instruction defines perception as 

the correspondence between the internal world model and external real 

world and how humans behave as a result [4, 5]. Next, human behavior 
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utilizes the world model to generate action to achieve goals like that of 

object recognition [4, 5]. 

 

Fig. 7. A Basic Structure of Human Vision Known as the Perception Model  

Albus related sensory processing to the regions of the visual cortex. For 

example, in the V1 region, input from the optic nerves are overlaid, since 

there are two, one from each eyeball. Then the information is registered and 

sent to V2. In V2, similarities and differences are computed and compared 

to the world model and converted into basic structures like points, lines, 

curves, edges, and boundaries updating the internal model. V3 and V4 

detect motion and surface textures and create segmented groups of 



Chapter 2: LITERATURE REVIEW 
 

34 

information so that it can be used for recall and comparisons.  The V5 

region contains basic information and is used for storage.  Basically, Albus 

used his “Outline for the Theory of Intelligence” paper to setup a research 

direction related to vision in terms of relating biological concepts about the 

world into quantifiable inputs used to test hypotheses between 

computational visual systems to those of other mammalian visual systems.  

Value state representations created the quantization of human emotional 

states (pain, confidence, happiness, uncertainty) into state variables which 

could be programmed using computers.   

The Albus theory consists of both top down processing converging with 

bottom up information.  The theory is that top down processing emanates 

from within the brain and recognizes objects by either classifying them or 

recalling information about the object from memory. CMAC can then be 

adapted as a memory storage neural network. Bottom up processing relies 

on the eye's optic nerve and fovea to gather information and transmit it to 

the visual cortex. The visual cortex locates and stores the information in one 

of the regions.  Albus’ work on CMAC introduced a new capability of using 

neural networks for a plethora of tasks in a human inspired way.  He 

leveraged Marr’s initial theory to create a basic structure. Later in the 20th 

century Albus used it to measure intelligence and quantify it in a way that 
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is suitable for computers to utilize in real world tasks to create perception 

models.  Perception models relate what goes on inside the human brain to a 

model that is programmable by humans using computers to solve real work 

tasks. 

2.9 Conclusion from Previous Work 

An opportunity exists to take advantage of linear invariant information 

contained in edges and boundaries and associate them with second level 

non-linear information from high quality keypoints described in previous 

sections that are invariant to scale, rotation, and illumination.  This 

information can be used as any input to create a network capable of local 

classification which results in a human inspired local model of pattern 

recognition vs. the global models currently developed that are inflexible 

and non-human in the processing of information due to input sensory data 

that is not necessarily invariant (background data, raw pixel data, viewpoint 

angles). 
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Chapter 3:  LOCALLY BASED PATTERN RECOGNITION 

3.1 The Model 

The model proposed creates a pattern recognition scheme that leverages 

the most current research to create a network that locally trains, classifies, 

and recognizes patterns based on local invariant keypoints extracted from 

image scenes.  The model is trained via the implementation of an algorithm 

based on keypoints.  The keypoints are utilized as inputs into a neural 

network similar to those used in a Cerebellar Model Articulation Controller 

(CMAC) neural network and in the human visual cortex. The parameters 

(octaves, levels, and illumination) were optimized with respect to accuracy 

to extract invariant keypoints. The keypoints are localized meaning based 

on input image data only.  Using the localized invariant points, they are 

used as inputs that are used in a CMAC-inspired neural network to 

establish a model of pattern recognition.  As shown in Fig. 8, the final 

system resembles a CMAC neural network and is comprised of inputs, a 

hidden layer, and outputs.  It works by taking inputs, and using feature 

extraction, detects edges and boundaries to create an image where invariant 

keypoints are identified.  Based on the key point information, objects are 

classified and fed into the network to perform pattern recognition. 
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Fig. 8. Model of Invariant Local Pattern Recognition (lower) vs. CMAC 
(upper) 

 
The above model of invariant local pattern recognition can then be 

adapted by using Rosenblatt’s perceptron to be extended to use the weights 

and bias which can be trained to produce the correct pattern recognition for 

a given set of input objects.  The translated system level diagram is shown 

in Fig. 9.  Each object datum is assigned a weight and then sent through a 

transfer function along with a bias resulting in an output that is either one 

or zero. Next, the network can be trained so that the desired output 
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coincides with the input objects. Simulink training presents a subset of the 

object data to network so that the weight and bias are automatically 

adjusted until the weight and bias does not change with additional input of 

object data.  

 

 
 

Fig. 9: Simulink System Flow Diagram of Classifying Objects 
 
 
 

3.2 The Contribution 

The proposed research develops a unique pattern recognition model that 

consists of a cerebral framework that locally trains, classifies, and 

recognizes patterns based on local invariant keypoints extracted from image 

scenes. The term “local applies” to data stored in the neural network 

without the need for a large database of object attributes.  The gap revealed 

by the literature review clearly shows that while a variety of global models 

and information are used in pattern recognition by computers, the ability to 

recognize using only local information is minimal to none.  The ability to 

model more like humans is ingrained local pattern recognition so that edges 

and invariant points in nature can used to teach computers to see.  The 
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proposed model provides the ability to establish pattern recognition within 

a scene based on local information and training as part of the process 

without the need for a large external database.  This is the first time the 

pattern recognition occurs on a local level using only invariant information 

regardless of scale (near or far) or rotation. 

 

3.3 The Impact 

The proposed model links the current global models of pattern 

recognition to that of human based pattern recognition by being able to 

process scene information relying solely on localized image data extraction-

a departure from current algorithms.  Currently algorithms are task specific 

and work well if a target object and all its attribute variations are already 

trained, but struggle to correctly recognize new objects if they are not part 

of an externally trained database because of the noise that lack of invariance 

introduces.  The proposed model establishes pattern recognition within a 

scene based on local invariant information that works with any number of 

objects—a cluttered scene.  Training a system to identify multiple patterns 

of interest provides a robust pattern recognition scheme.  Neural Networks 

in robotic vision applications are emerging as new field.  Neural Network 

robotics integrates the fields of mechanical engineering, robotics research, 

and computer vision that is human inspired and serves as a computational 
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brain with the ability to train, classify, and recognize objects.  Applications 

of algorithms thought only to be reserved for the human brain can be 

attempted by using this new method of local pattern recognition based 

solely on invariant inputs. 
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Chapter 4:  IMPROVING KEYPOINT FEATURE QUALITY 

 

4.1 Introduction 

While the SIFT algorithm is widely acknowledged to be one of the best 

available image processing algorithms for feature extraction over a wide 

range of scales and rotation, this chapter explores whether its performance 

can be improved by choosing values for its parameters that are different 

than the current ones. We explore choosing SIFT parameters through an 

optimization process, specifically the Taguchi design of experiments. The 

hypothesis is that choosing the key parameters, e.g., octaves levels, the 

number of times the Difference of Gaussians is completed, and various 

thresholds using the Taguchi design of experiments results in improved 

feature extraction. It is certainly possible to choose specific values for each 

SIFT algorithm parameter and run experiments for each possible 

combination of variables. This brute force approach is both time consuming 

and unnecessary. Instead, a Taguchi Design of Experiments (DOE) is used 

to choose the values of the parameters that improve SIFT feature extraction 

compared to the original SIFT algorithm’s parameter values.  
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4.2 Theory 

Once we have completed the basic SIFT steps by creating an invariant 

scale space, finding and manipulating keypoints, and binning and pairing 

keypoints, we can improve the feature quality by creating a metric for 

feature detection.    

4.2.1 Feature detection 

Metric Formulation:  The Taguchi method requires a performance index 

that quantitatively measures the results of experiments. The optimization 

occurs versus SIFT parameters:  octaves, levels, and illumination.  However, 

in terms of matching there is gap in determining how to measure the quality 

of matches.   

To determine whether a match is considered good or bad, a scoring method 

needs to be applied to rank matches to differentiate between good and bad 

matches—also known as rank filtering.  Normalized cross correlations 

(NCC) are used to score the quality of points.  NCC is invariant to 

brightness changes and compares the same regions between images.  The 

result is a ranking of image attributes such as keypoints.  The highest 

quality of points are being filtered and used as correct matches.  The NNC 

equation is given as:   
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    (4.1)   

 

where α and β are the resulting sums from two equally sized regions for 

two images under process, i is from the first region segment to N, the last 

region block being compared between two images.  NCC ranges between -1 

and 1, where a score of 1 means two identical regions.    

Once the scoring is in place we can filter on randomly grouped NCC point 

scores using a randomly sample and consensus (RANSAC).  First a random 

sample of keypoint pairs is grouped together.  The group NCC is averaged.  

This process is repeated until all permutations are scored.  The highest 

scoring group is then used to filter on and the rest of the point pairs are 

filtered out and this group becomes the correct matches.  

The total of number of matched points can be compared prior to the rank 

scoring and filtering to determine the percentage of matched pairs that were 

correct matches.  The percentage correct is calculated using the correct 

matches divided by the total number of matches via the following equation. 
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It is a good measure because matching points between similar images are 

illumination invariant by scoring based on the normalized cross correlation.  

Secondly, the quality of resultant image matching is higher than default 

SIFT parameters so that the effect of each parameter (octaves, levels, and 

illumination) is orthogonal with respect to other parameters.  

Fig. 10 shows the effect of utilizing a rank filter.  First, traditional 

matching of keypoints can result in mismatched points as shown in red and 

has a lower NCC value than matched points in green.  Because they would 

typically be included in final matched results, the mismatches result in 

poorer feature detection.  By applying a rank filter, we can quantify using 

our measure of goodness.  The rank filter value of the feature detection 

match under various parameter changes is computed for percent correct 

before and after keypoint pair elimination from the results of RANSAC.  In 

the Fig. 10, for both scale and rotation the percent correct would be 2 correct 

matches out of 3 total matches--66%.   
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Fig. 10. Example of Matching Keypoints on different images before and 
after Rank Filtered 

 
By choosing the best parameters for the algorithm, the %correct increases--

improving which keypoint pairs are utilized during feature detection (i.e., 

only high quality matches are accepted). 

Feature Detection Methodology: The algorithm for feature detection is 

composed of the following steps. 
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1. Capture images and compare two images at different rotation, 

scale, and illumination. 

2. Determine the keypoints and rank using NCC between each image.  

3. Apply rank filtering to determine the correct matches. 

4. Eliminate undesired matches and compute the %correct. 

As shown in Fig. 11, the aforementioned steps produced a code so that the 

Taguchi DOE can be used to test the set of SIFT algorithm parameters that 

produces the best matching.  

 
 

Fig. 3: Code Structure of   
 

Fig. 11. SIFT Matching Algorithm Code Steps of Matlab Implementation 

4.2.2  L18 Experimentation 

Setup: The equipment used during the experiments includes 4 Basler 

A605fc-2 cameras assembled on a vision table with camera mounts on 

Panavise 15” goosenecks at each corner. Lenses were 9 mm Fujinon 

HF9HA-1B. Lighting is controlled using two umbrella light assemblies to 

ensure diffuse illumination that can vary between 250-650 watts. The vision 

1. If{Images Exists} 
2. Read in Images 
3. Compute the scale invariant features 
4. Find and Manipulate Keypoints using DOG from consecutive Frames 
5. Determine the NCC  

                 Match points within Frames 
6.     Randomly Sample and Group the Correct  

                Matches 
7. Eliminate False Matches 
8.  EndIf{Show Images Overlaid} 
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table cameras are connected via IEEE 1394 fire wires to two PCI-fire wire 

cards (2 cameras per card) as shown in Fig. 12.  The station controller uses a 

core 2 duo processor from Intel, with 3 gigabytes of onboard Random 

Access Memory (RAM).  Experimental analysis used Matlab with image 

acquisition from a Canon Powershot camera under different conditions and 

brightness. JMP 9.0 [56] statistical software is used for analyses of the 

Taguchi Design, effects rollup, and optimal parametric prediction.  The 

implementation consists of capturing an image pair.  Then matched 

keypoints are detected using SIFT as the method of extraction.  Using the 

NCC equation the keypoint matches are ranked. Next, RANSAC filters out 

in correct matches.  The final metric is computer to determine the number 

correct matches. 
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Fig. 12. Multi-Image Experiment Setup Diagram Schematic and Photos of the 

Vision Table 
 

 

Parameters:  The following list describes the key parameters or factors 

controlled by SIFT algorithms. A mixed 2-3 level of each factor is used via 

an L18 Taguchi meaning one factor will have two levels of parameter values 
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to test while the other factors use three levels.  Because a rank filter is used, 

other threshold parameters normally used in SIFT algorithms to control 

feature detection are no longer of primary concern.  Additionally, the 

number of experiments required by being able to use an L18 design instead 

of an L32 design is reduced with additional columns being dedicated to 

investigate the presence of interactions.    

1. Octaves: (low=2 med=4 high=6) is the number of times that the 

Difference of Gaussians is performed to create a scale-space. 

2. Levels: (low=3 med= 5 high=8) determine the number of levels per 

octave within the Difference of Gaussians subspace. 

3. Illumination: (low=-30% brightness high=+30% brightness) are the 

lighting levels associated with each image from umbrella lights or 

using image contrast control. 

4.2.3 Taguchi Setup 

The experimental set up consists of 3 factors using a mixed 2-3 level 

design along with their interactions as shown in Fig.  13.  The linear graph is 

interpreted as follows.  To determine the interaction between columns 1 and 

2 of Taguchi's L18 coded design use the column 3.  To determine the 

interaction between columns 2 and 5 of Taguchi's L18 coded design use the 
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column 8.  To determine the interaction between columns 1 and 5 of 

Taguchi's L18 coded design use the column 6.   

 

Fig. 13. L18 Linear Graph with Interactions for Mixed 2-3 Design 

    

Using the aforementioned factors (octaves, levels, and illumination) the 

resultant L18 experimental coded design is shown in Table 1 along with 

their interactions, denoted by “x.” 

 

 

 

 

 

1 

2 

3 

5 
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Table 1. L18 Design Parameters 

 

 

Since we are using a bigger is better metric for the Taguchi DOE, the goal 

of the experiments is to determine the set of parameters that creates matches 

that produce the highest percentage of correct matches (%correct). The 

%correct is the index of performance that is used to optimize the parameter 

set. The experimental mean is calculated to compare to the predicted and 

actual means from Taguchi Design and its validation trial, where x is 

percent correct for the experiment, n is the number of runs, j is the number 

of experiments, and i is the experiment number. 
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(4.3) 

The signal to noise ratio for each experiment, i, for a bigger is better 

experiment is represented by 
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(4.4) 

Next, the effect of each factor is known and used in the optimal prediction 

with respect to each of the parameters. The result is predicted to lead to the 

highest percentage of correct matches and reduces the number of invalid 

matching between comparative images. 

To compute the optimal values, η, Taguchi’s Additive Model (no 

interaction of parameters is assumed) for orthogonal arrays [8] is used: 

 

( )∑ −+=
j

jx
1

µµη
 

(4.5) 
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where µ is the overall mean for all experiments run, jx  is the effect mean 

from 1 to j, the number of experiments. 

4.3 Experiments 

With our theory established and a metric formulated. The experiments are 

run to determine if keypoint feature quality is improved. 

4.3.1  Results 

Using a random run order, 36 experiments (18 experiments across 2 runs) 

were conducted and the results are shown in Table 2 corresponding to the 

L18 design codes and shown in the table below.  

Table 2. L18 Design Results for % Correct 

 

Using equations (4.3) and (4.4) the mean and signal to noise ratio were 

calculated for each run to estimate the optimal parameters to use for feature 
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detection. The %Correct-Experimental (i.e., mean of the L18 experiments) 

for the L18 of experiments is   77.63%.  The results for signal-to-noise ratio 

for each run are computed with equation (4.4) and shown in Table 3. 

 
Table 3. L18 Design Signal-to-Noise Ratios 
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4.3.2  Analysis 

The Signal to Noise data are rolled up based on Factors, Levels, and the 

associated effect for each of the levels tested per parameter can be analyzed 

in Table 4. 

Table 4. L18 Effect by Factor 

 

The data are then charted (Fig. 14) to reveal which effects have the greatest 

impact. 
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Fig. 14.  Effect versus Scale-Space Parameters Showing the Effect of each 

Parameter Setting 

Choosing the highest effect for each reveals which parameter level should 

be chosen that determines the optimal prediction values using equation (3).   
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4.3.3 Optimal Prediction 

The goal of Taguchi DOE is to run a set of experiments using orthogonal 

arrays versus running all the experiments of a full factorial design.  Then, a 

prediction of the optimal parameters can be computed by using Taguchi’s 

Additive Model so that positive matching leads to improved feature 

detection. 

The overall mean of all experiments run (%Correct-Experimental) is 

77.63%.  The next step is to investigate how the effects and levels are 

impacted by each factor.  The information from the effects roll up, as shown 

in Fig. 14, and equation (4.5) are the basis of determining the optimal 

parameters based on the L18 results aforementioned. From Fig. 14, we can 

see how each parameter affects the feature detection algorithm.  Then we 

can choose the parameter setting with the highest effect to improve feature 

detection.  Choosing the highest effect on each reveals the following optimal 

parameters: 

• Octaves = 2 (4 octaves) 

• Levels = 1 (3 levels) 

• Illumination = 2 (30% Brighter) 

From equation (4.5), the %Correct-Predicted is 93.5%.  The experiment is 

repeated for the optimal setup.  The %Correct-Optimal is 90.9%.   
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Interactions and Analysis of Variance (ANOVA):  Recalling from our 

Taguchi linear design two way interactions are plotted to determine if there 

are any interactions in our results.  Fig. 15 a-c show no obvious interactions. 
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(a) 

 

(b) 

 

(c) 

Fig. 15.  Two Way Interactions (a) Illumination by Octaves (b) Octaves by 
Levels (c) Illumination by Levels 
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The next step is to complete an ANOVA to determine how each of the 

primary factors affects the results.  From Table 5, there are 6 degrees of 

freedom (3 from the primary variables and 3 from their associated 

interactions). 
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Table 5. ANOVA Results 
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The data in Table 5 show that levels is the SIFT parameter that affects 

performance the most.  The contribution of levels is 97.1% of the actual 

optimal experimental run.   Further examination of octaves and illumination 

reveals a contribution of ~ 2.5%. Through the ANOVA it is observed that the 

difference between predicted and the optimal is ~ 2.6%.  The difference is 

attributed to a slight correlation among variables.  However the error 

associated is small that the optimized SIFT parameters can be accepted as 

correct. 

4.3.4 Conclusions from Analysis  

  From the above results, we can conclude that we have found the optimal 

SIFT parameters via Taguchi DOE.   The optimal parameters in feature 

matching that are orthogonal with respect to each other since Taguchi was 

utilized.  The results show that Levels have the greatest effect on the output.  

Now that the experimental parameters are optimized, a range of patterns 

are analyzed in the next section to determine how well the optimal settings 

work versus the standard SIFT parameter values used by David Lowe. 

4.3.5 Experimental Results 

SIFT Comparison:  Experiments using SIFT with original and optimized 

parameters were run.  Experiments compare the quality of feature detection 



Chapter 4:  IMPROVING KEYPOINT FEATURE QUALITY 
 

63 

for scale, rotation, and scale and rotation for the set of images shown in Fig. 

16.  The experimental results are summarized in Table 6. 

 

Fig. 16. Image Comparison for Scale and Rotation for 3 Different Images 
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The first observation shown in Table 6 is that the SIFT based algorithm 

that uses the optimized values for its variables performs better than the 

unoptimized variables for the images in Fig. 16. 

Table 6. Results of SIFT vs. Optimized Parameters 

 

Optimized SIFT parameters produced %correct matches that met or 

exceeded SIFT run with the original parameter values.  

4.4 Conclusion 

The Taguchi Design of Experiments approach was used to compute 

optimized values for each SIFT variable.   The analysis used the L18 Design 

and Optimization. A comparison of SIFT using original and optimized 

variable values showed that the optimized values produced better 

performance. 

Taguchi DOE was used to choose the best set of algorithm parameters so 

as to improve feature detection between two frames of the same pattern.  
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The L18 results demonstrated a 17% improvement of %Correct-Optimal in 

comparison to %Correct-Experimental.  Additionally, the time it takes to 

run the Taguchi based experiments is far less than it would take to run a full 

factorial design to find the optimized answer should more levels be 

investigating for each factor.   The optimal parameters show how effective 

design can save time and experimentation by conducting far fewer 

experiments.  Maestas, et al., [29] L32 design proved that there would have 

to be 65,536 experiments using a full factorial design to test every possible 

combination versus the 32 experiments conducted per run.  The algorithm 

executes in approximately 5 minutes per experiment and would take 7.5 

months in processing time to conduct all the required experiments versus 

the 2 hours and 40 minutes of processing of the L32 design run.   
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Chapter 5:  PATTERN RECOGNITION INSPIRED BY 

HUMANS 

5.1 Introduction 

It is essential to understand how humans perform pattern recognition and 

to what end can this be emulated in pattern recognition model technology 

space. To do that human physiology must be investigated in terms of 

learning and function.  We need to know how the brain sees information 

and then create a model using neural networks.  The purpose of this chapter 

is to create a model that is inspired by how the brain gets the information 

(i.e., what are the inputs?).  The brain translates and processes the 

information to classify and recognize patterns. 

5.2 Theory 

The basis of human pattern recognition for visual information has been 

described in terms of neurons and synapse with the eye being the primary 

transmission piece to gather and distribute information to the brain.  To 

create this type of behavior in a computer we must first create an object 

matrix of information using a camera lens, detect and keep only the features 

that are import to recognition, and create a network that processes this 
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information.  This model is analogous to human pattern recognition as 

aforementioned. 

5.2.1 Feature Extraction 

The idea is to detect edges accurately and then extract the SIFT based 

features from object image and add the edge data into to the object vector. 

As shown in the equation below, the gradient is calculated and can be 

separated into weak and strong edges based on the value of the edge 

magnitude. Strong edges have gradient values greater than an arbitrary 

threshold based on the desired output to detect edges. Weak edges can be 

ignored in the final output images.  The result is to create an image that 

reveals the boundaries or edges of objects. The equations to find the local 

maxima that meet this arbitrary criteria are identified as edges with their 

corresponding direction  

 
10 →∈≥Ι∇+Ι∇=Ι∇ ayx   (5.1) 

where 22
yx Ι+Ι=Ι  and  

x

y

Ι

Ι
= −1tanϑ    

 
 

The edge extraction methods available for implementation of (5.1) in 

Matlab are Canny, Sobel, Prewitt, or Roberts detection.  Canny is chosen 

because this method finds edges by looking for the local maxima of the 
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gradient of the input image using (5.1), which is the gradient result of using 

the derivative of a Gaussian filter.   

Feature extraction also provides a way to label target objects and is the 

link between the target object and its SIFT based keypoints extracted using 

the process from the previous chapter.  The system flow is shown in Fig. 17 

The first step acquires the image input via PCIE Firewire and is Gaussian 

smoothed via equation (5.2) that outputs the magnitude and phase.  

( ) ),(),(, yxGyxIyxs ∗=   (5.2) 

where, I(x,y) is the 2-D function of the original input image and G(x,y) is 

the Gaussian operator

222 2)(
22

1),,( σ

πσ
σ yxeyxG +−=

. Using this data the local 

maxima are computed.   

 
  

 
 

Fig. 17. Feature Extraction System Flow from Video Input to Edges 
 

After the edges are found, they are stored in the object matrix with SIFT 

based keypoints associated with the object vector to be used as an input to 

the network.  Fig. 18 is an example of an image that we will utilize in our 
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pattern recognition experiments.  The image consists of three different 

shapes:  a green triangle, an orange square, and a yellow hexagon.  The top 

image (a) is the image capture and the middle image (b) is the edge 

detection associated with the objects under consideration. The bottom 

image (c) is an overlay of the edges on the grayscale original. 
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(a) 

 
(b) 

 
(c) 

Fig. 18. (a) Original Image Capture (b) Original Image Afer Edge Detection 
(c) Edge Overlay to Original Image 
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5.2.2 Creating the Object Matrix 

The input images are imported using a camera. Simulink software utilizes 

the Video and Image Processing (VIP) toolbox to process information from a 

camera.  An object can be placed within the object workspace on a vision 

table within the field of view (FOV) of a four camera system as shown in 

Fig. 19.  Four cameras ensure the entire subspace is covered so that object 

can be captured into a desired vector format.  The basic process is to place 

an object on a vision table, and use the VIP blockset in Simulink to capture a 

snap shot image which is converted into a pixilated scene for processing.    

 

 
Fig. 19. Hardware Setup Schematic with 4 Cameras Connected to Station 

Controller 
 

Edges of target objects and invariant keypoint data associated with each 

input image are extracted.  The result is an object vector that is a 
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combination of two separate matrices: one for the edges of targets and one 

of keypoints as shown in Fig. 20.   

 

Fig. 20. Object Matrix of Keypoint Pairs and Image Targets 
 

The object matrix is the input into the classification portion of the neural 

network.  It associates the edges to the keypoint information for high 

quality keypoints extracted from Chapter 4.  The reason the object matrix is 

constructed in this way is so that each object can be associated with its 

corresponding edge boundary.  Because human perception is based on 

recognizing salient features in a scene we ensure that the most salient 

features (keypoint and edges) are paired and used as our sensory input into 

the neural network.  This is analogous to Albus's CMAC where he 

associated sensory inputs with joint angles in robotic arm motion. Each 
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CMAC network component, shown in table 7, and its equivalent component 

in our human inspired locally based (HILB) neural network to shown the 

structure equivalency of using such a network like that of the Albus's 

approach.  

Table 7. CMAC Translated to HILB 
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5.2.3 Feed Forward Network 

At this point the object matrix contains information that is localized and 

invariant to the object it is associated within the scene along with its 

corresponding edge data from that of Fig. 21.  Each keypoint was extracted 

using our Taguchi optimization described in Chapter 3 to improve keypoint 

feature quality.  The method has applied a rank filter to get rid of points not 

associated with objects so that only high quality keypoints are used as 

inputs into the neural network. 

 

Fig. 21. Keypoint and Edge Overlay Used for Object Matrix 
 

 The object matrix that can be broken into two separate matrices: one for 

the edges of targets and one for SIFT based keypoints.  The two matrices 

become the inputs into the classification portion of the neural network since 

they are associated with each other.  Each keypoint-target row vector from 



Chapter 5:  PATTERN RECOGNITION INSPIRED BY HUMANS 
 

75 

the object matrix is fed into a neural network. The network is trained using 

a gradient based approach of backward propagation since we are providing 

the inputs to the network as edges and keypoints.   The samples are 

randomly divided up into training (15%), validation (15%), and test (70%).  

Because we utilize the Simulink, the Neural Network Toolbox takes the 

weights and bias, adjusting them accordingly via back propagation.   If the 

weights and bias are not leading to desired network behavior, the model 

can be retrained by increasing the percentage allocated as the training 

subset from say 15% to a different percentage.  Since retraining selects a 

random subset to comprise the training data a different set of data points 

will be used, which affects the weight and bias values used for 

classification. The technical details are presented in the next section where 

our theory of keypoint classification is described.  A portion of the data is 

partitioned for training and to establish the weight and bias for the neural 

network. A logarithmic transfer function is implemented to attain successful 

classification- a primary goal in pattern recognition.  The classification 

occurs without the need for a global training database in which input 

sensory data that is not necessarily invariant (background data, raw pixel 

data, viewpoint angles 
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Using a neural network model the data from within the scene is 

partitioned as test data. The rest of the invariant keypoint data is fed into 

the neural network to adjust the controls (weighting, bias, and transfer 

functions) that are used to determine the probability that a pattern exists via 

successful classification. 

 

5.2.4 Theory of Keypoint Classification 

Classification is completed using Simulink by taking each external 

keypoint input from the object matrix, where q is the number of objects, r is 

the number of samples and multiplying it by a weight, wrx1, adding a bias, 

bqx1,  to it and collecting it into Aqx1 as a 1 or 0. If the result from (5.3) is 

greater than zero it is stored as a scalar element the output vector.  The 

output for each cell can be represent as A and relates to the object, Obj and 

via the scalar product with the weight, W, and adds the bias.  The general 

vectored equation is: 

Aqx1= (Objqxr x Wrx1) + [1]qx1 B.  (5.3) 

Since we are classifying multiple objects and everything can't be a 1 or 0, a 

memory cell is needed.  We choose what values to store in the memory cell 

by using a transfer function, tf.     We choose the weighting and bias of the 

inputs based on the testing phase of target object attributes to achieve the 

desired classification. As shown in Fig. 22, keypoint data from the object 
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matrix are extracted from the object vector and multiplied by a weight.  A 

bias, B, is added to the product of object multiplied by the weight and shifts 

the output so that it can be included if the transfer function result as shown 

in 5.4.  

 tf qx1=logsig(Aqx1)  (5.4) 

If the result of tf is greater than 1 the transfer function outputs tf=1.  If the 

result is equal to zero or less than or equal to -1, the output of the transfer 

function tf=0.  If we have more than one object the transfer function results 

become a vector and if they greater than one are accumulated into an 

element in a matrix, Mqx1, known as memory cells that is the result of scalar 

multiplication and represented as a vector that classifies each target object 

based on its cell value.  
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Fig. 22.  Classification Based on the Object Vector (where q is the number of objects, r is the number of samples) 
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5.3 Experiments 

The set of experiments to be conducted is based on classifying objects.  

The objects contain invariant information which has been extracted to the 

object matrix for input into the neural network using the keypoint-edge 

pairs as our inputs and target objects.  Pattern recognition occurs with 

successful execution of experiments that classify a small number of objects, 

then a statistically significant set of objects classified, and a final comparison 

to demonstrate extensibility.  The purpose is to show that (1) pattern 

recognition is achievable using our model and (2) once pattern recognition 

is achieved it can be extended to a large number of objects.    

5.3.1 Perform Pattern Recognition on a Few Objects 

The first part of pattern recognition consists of training the target objects.  

For illustration purposes, consider the 3 object input image from Fig. 23.  

The image consists of three triangles-in our case we use a triangle, square, 

and hexagon.  Feature extraction (edges) and keypoint features (SIFT) 

establish the edges and keypoints that are represented as values in the 

object vector matrix.  Once the object vector matrix is created a portion of 

the matrix is set aside for training.  In our case we use 15% of the data to 

feed into the neural network.  The output of the neural network is weights 



Chapter 5:  PATTERN RECOGNITION INSPIRED BY HUMANS 

80 

and bias that can be used to classify target objects.  The percentage of each 

object is also computed using the test subset.  

 

Fig. 23.  Training Flow for a 3 object pattern recognition 
 

5.3.1.1 Training of a 3 Object Pattern Recognition 

Training data are fed from the object matrix into the network so that the 

weights and bias are set according to the lowest mean square error. The 

goal of training is to ensure the weights and biases are stable to the point 

where the network behavior will correctly classify known objects and 

results in supervised learning. Validation data are used to halt training 

when the mean square error stops improving and provides a set point for 

our final weights and bias that will be used to classify patterns. Ideally, 

validation error should decrease with initial training inputs and then when 

over fitting occurs the minimum level has been reached.  Testing is not 

associated with training or validation and is an independent measure of 
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network performance, i.e., how well patterns are being recognized.   Using 

the mean squared error provides an average squared difference between 

outputs and targets using (5.5) which allows us to track the error to 

determine if it increase, decreases, or does not change.  

Once training is completed, pattern recognition can be executed.  Shown 

in Fig. 24, the rest of the object matrix is fed into the neural network.  The 

mean square error is calculated and is the measure of performance of the 

pattern recognition system.  The mean square is represented by 5.5, 

∑
=

−=
N

n
nn at

N
mse

1

2)(1
 (5.5) 

where N is the number of keypoint-edge pairs fed into the network. n is 

the specific row that contains the keypoint-edge input #, an is the input into 

the network from 5.3, and tn is the respective output.  

A plot of the mean square error from input identifies the level at which 

the error from consecutive training inputs was minimized and validated 

with consecutive increase in the mse for the validation partition of data. 

Because the mse is quadratic it will either be a minimum or no minimum so 

that consecutive increases are an observable trigger that we have found the 

minimum mse.  The network weight and bias has reached a stable set so the 

patterns can be detected and result in the desired network behavior.  The 

lowest error of validation set of data represents the level, also known as 
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epoch in neural network literature, at which pattern recognition has 

occurred.  The result is the output of patterns which can be normalized 

using the Simulink Neural Network toolbox statistical functions to calculate 

the desired network performance, the percentage, and number of patterns 

recognized using a truth table known as a confusion matrix in neural 

network literature  

 
Fig. 24.  Execution Flow of a 3 object pattern recognition 

 

5.3.1.2 Validation of a 3 Object Pattern Recognition 

Validation subset data is fed into the network simultaneously with the 

training data.  Training data are used to get the gradient and finalize the 

weights using back propagation to assist in evaluating the accuracy of the 

network. Validation data error is tracked until the minimum error is 

detected. Since the goal is to have a network that has decreasing error to 

assist in evaluating network accuracy, the validation error should also 
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decrease until it reaches a minimum.  At the point when the network begins 

to over fit the training data the validation error increases.  After six 

consecutive increases in the mean square error of the validation data, the 

network ceases to train. The gradient of the mse is computed and the 

weights and bias set based on the level (epoch) at the min validation error.   

As shown in Fig. 25 our training data are paired with the validation 

checks to improve the chances of correct classification using a technique 

called early stopping.  Early stopping shows that the minimum error level 

(va fail) occurs at an epoch of 17. The mean square error, at the va fail level, 

stops improving because the error starts to increase. The gradient is 

0.00018559.  The purpose of va fail and gradient is to determine the set point 

for the weight and bias final at the minimum mse level.  Using the gradient 

is computationally advantageous because it stops changing when the mse is 

at a min.  Then validation checks over and over until we are confident we 

have found values of weight and bias that allow confident classification. 
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Fig. 25.  Training Status for 3 Object Classification 
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The error histogram buckets the error associated with training, validation, 

and test and shows a mean centered on zero error from (5.5) as shown in 

Fig. 26.   

 

Fig. 26.  Error Histogram for 3 Object Classification 
 

 
 

From the performance data in Fig. 27, we observe best validation 

performance is at a mean square error of 0.019913 at epoch 11, with ultimate 

stability after six consecutive validation checks occurring at epoch 17.  The 

means that we have three separate measures that account for setting the 

final weights and bias set for the neural network.  This provides accurate 
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classification and we can re-plot the mse vs. the level of convergence to see 

if data does min out as the gradient in Fig. 25 suggests. 

 
 

Fig. 27.  Performance Plots for 3 Object Classification 
 

 
 

5.3.1.3 Testing of a 3 Object Pattern Recognition 

Testing is not associated with training or validation and is an independent 

measure of network performance, i.e., how well patterns are being 

recognized.   Testing tells us how reliably we are recognizing patterns given 

the rest of the inputs and noise associated with them.  Using the mean 

squared error of each input and corresponding output we can calculate the 

mse as an average squared difference between outputs and targets 
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(keypoint edge pairs) using (5.5).  We use the difference to minimize the 

average sum of these two values for each of the inputs.  

∑
=

−=
N

n
nn at

N
mse

1

2)(1
(5.5) 

 Each object from Fig. 21 is assigned to a class based off of the edges from 

the object matrix to distinguish it from the other objects.  Class 1 is the 

triangle.  Class 2 is the hexagon.  Class 3 is the square.  Upon further 

investigation of the receiver operating characteristic (ROC), a neural 

network measure for how well classification occurred based on the 

changing weights and bias, for each phase (training, validation, and test), 

shown in Fig. 28, we observe true positive rates for each phase hover near 1.  

ROC curves that converge to the left and top edges of the plot mean better 

the classification occurred versus curves that do not show this type of 

convergence and drop away from the upper left corner of the ROC plot. 
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Fig. 28.  Receiver Operating Characteristic Plots for: training (upper left), 
validation (upper right), test (lower left), and comined plot for all phases 

(lower right) 
 

Next, we analyze confusion matrices shown in Fig. 29.  The confusion 

plots give the percentage of each object recognized for all phases of network 

execution similar to the ROC plots.  The most important phase, which is the 

test phase, result in zero error associated with our 3 object pattern 

recognition and that 100% of the test data classified correctly to one of the 

three input objects.  This means that the weights and biases need no more 

adjustments because successful classification occurred. 
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Fig. 29.  Confusion Plots for: training (upper left), validation (upper right), 

test (lower left), and combined plot for all phases (lower right) 
 

5.3.2 Generalization Confirmation 

We have demonstrated that successful classification using the final 

weights and bias is possible using our model test subset.  Next, system 

generalization will show the effectiveness of our model to classify other 

images.  The images are a subset of the objects that were trained.  They are 

placed with other objects in arbitrary positions and orientations in the scene 

as shown in Fig. 30. Then, without retraining, we run the algorithm on these 

images.   Once the weights and bias are established, objects of the same class 
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are tested in different positions and orientations along with untrained 

objects.  The purpose of this experiment is to test, using the final weights 

and bias from our original training, work in recognizing the same objects in 

a general setting. For a c classes of objects technical details we expect are as 

follows for the general cases of classification using network weights and 

bias using (5.6) and (5.7).   I is the number of objects, j is the number of 

samples of keypoint-edge pairs, w is final weight from the aforementioned 

training phase, and b is the final bias from the aforementioned training. P is 

the result of object (Obj) times the weight plus the bias for each object. 
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 The first image contains the triangles we initially trained on within a 

different scene that includes part of a phone, a flashlight, and a tape 

measure. 
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Fig. 30.  Classification of a Triangle within a Scene 
 

We remake the test confusion and ROC, shown in Fig. 31, for the newly 

added input data from the image scene above for the triangles.  The triangle 

object corresponds to the first output class in the matrix below and we 

observe a repeatable result in accordance with (5.7a) that of the first run 

with the triangle being correctly classified and improved pattern 

recognition from our test data.  The ROC also confirms correct classification.  

 
Fig. 31.  Confusion Matrix and ROC results of a Triangle with a Scene 
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The second image (Fig. 32) contains the squares we initially trained on 

within a different scene that includes a phone handset, part of a flashlight, 

and a tape measure. 

  
Fig. 32.  Classification of a Square within a Scene 
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As with the untrained triangles above, we observed a repeatable 

classification result with the square (Class 3) in accordance with (5.7c) to 

that of the first run shown in Fig. 33. 

 

Fig. 33.  Confusion Matrix of a Square within a Scene 
 

Our system validation shows the effectiveness of our model to classify 

objects in other images correctly.  The images were a subset of the objects 

(square, triangle, and hexagon) that were trained.  The squares were placed 

with other objects in arbitrary positions and orientations in the scene. Then, 

without retraining, we ran the algorithm on these images which should 

classify objects correctly based on the initial training images.  Our next set of 

experiments will go another step in pattern recognition to extensibility to 

multi-object recognition. 
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5.3.3 Perform Pattern Recognition on Several Objects 

We used Simulink's Neural Network Toolbox to build our HILB pattern 

recognition model shown in Fig. 34. HILB is represented by a two layer feed 

forward network that uses a sigmoid transfer function, which from the 

literature review, is a plausible way in which humans recognize patterns.  

Based on previous work, a hidden layer can be used to simulate additional 

neurons to provide classification of the objects in our images. 

 

 
Fig. 34.  Two Layer Feedfoward Network Diagram from Simulink [57] 

 
 

The next experiment extends pattern recognition to a cluttered scene with 

multiple objects to test if the method is extensible.  The goal is to prove 

statistical significance if images with 30 objects can be classified 

successfully.  Pattern recognition utilizes the rest of the data using neural 

network hidden nodes—ways of adding extra neurons like we believe 

humans do.  The number of neurons can be adjusted on the fly once the 

object vector with keypoints and edge target objects is known, something 

not done in prior use of neural networks.  Fig. 35 is an example of our 

pattern recognition model.  Starting at the top level system overview where 
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inputs, keypoints and edge target objects shown in Fig. 36, are fed into the 

neural network shown as Input 1 (x{1} for each target input) and the output 

is patterns (y{1}).   

 
 
 

Fig. 35.  Top Level View-Neural Network of a 3 object pattern recognition 
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(a) 

 

 
(b)  

Fig. 36. (a) Original Image Capture (b) Edge and Keypoint Overlay to 
Original Image 

 
The second level of the neural network is the two layers and shown in Fig. 

37. The first layer processes the input x{1} into a format p{1} input into the 

first layer where the weight IW{1,1} is added to the bias b{1} via netsum and 
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sent to the transfer function , shown in the exploded view of layer 1 in Fig. 

37.  This results in the output of the first layer—a classification vector a{1}.  

The first classification vector, a{1}, is fed into a second layer where the 

process is repeated.  The output is classification, a{2}, of data that become 

the memory cells used for training, y{1} and a decreased probability of false 

pattern recognition since two layers refines data.   

 

 
 

Fig. 37.  Second Level View-Two Layers of a multi object pattern recognition 
neural network with Layer 1 exploded view 
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5.3.3.1 Training on Several Objects 

Once training is completed and the weights and bias established the rest 

of the data are fed through the neural network and the mean square error is 

computed on the test data to complete the pattern recognition. 

5.3.3.2 Validation on Several Objects 

As shown in Fig. 38 our training data are paired with the validation mean 

square error checks and reaches a minimum at 31 levels (epoch) and the 

mean square stops over fitting and gradient of 0.0071904. 

 

 
Fig. 38.  Training Status on Several Objects 
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We can see from the validation check that for additional objects have more 

mean square variation before stability is confirmed with six consecutive 

rises in error compared to the 3 object recognition experiment earlier. 

The error histogram buckets the error associated with training, validation, 

and test and shows a mean centered near zero error as shown in Fig. 39.  

This is our first indication that classification is successful and performance 

data should be analyzed. 

 
Fig. 39.  Error Histogram on Several Objects 
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5.3.3.3 Testing on Several Objects 

From the performance data in Fig. 40, we observe best validation 

performance is at a mean square error of the test data 0.019617 at epoch 25, 

with ultimate stability occurring at epoch 31. 

 
Fig. 40.  Performance Plots on Several Objects 

 
Similar to Fig. 28 plots, the receiver operating characteristic (ROC) for 

each phase (training, validation, and test) shows true positive rates that 

hover near 1.  The ROC results mean better the classification is occurring. 

The test phase shows that we have zero error associated with our 30 object 

pattern recognition and 97.3% of the test data could be classified based on 

the desired behavior learned from our training data.  This means that from 
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the training and validation phase the weights and biases were adjusted 

sufficiently to achieve successful classification. 

5.4 Extensibility Comparison 

The next experiment extends the number of objects by 20 to create a 50 

object pattern analysis problem.  The results are shown in Table 8.  

Consistent with previous runs we observed comparable gradient figures 

with an error that centers around zero.  The ROC hovers near the upper left, 

i.e.,  near 1.0, with a test confusion showing 96.1% of the data being able to 

be classified.  The result is that for each of the object runs we conclude there 

is no significant difference between the number of objects with respect to 

gradient, error, ROC, and test confusion-all key metrics in neural network 

performance. 

 
Table 8.  Pattern Recognition Summary 

 
 

5.5 Conclusion 

A human inspired approach was used to create a CMAC based neural 

network capable of pattern recognition.   The analysis used a two layer feed 
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forward network to calculate the mean square error.  Experiments were run 

on 3 object, 30 object, and 50 object scenes using edge and optimized SIFT 

based features as inputs and produced extensible results from 3 to 50 objects 

with successful  classification performance. 

The classification results prove that we achieve a high level of pattern 

recognition from few objects to many objects that ranged from 96.1% to 

100%.   

HILB pattern recognition model is capable of locally based classification 

without the need for global models. Global models are reliant solely on 

what data it has been trained against.  Global models typically do not show 

extensibility from a small number of objects to cluttered scenes with a large 

number or objects. 
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Chapter 6:  CONCLUSION 

 

6.1 Summary 

The goal of the proposed research was to develop a pattern recognition 

model that consists of a cerebral framework that locally trains, classifies, 

and recognizes patterns based on local invariant keypoints extracted from 

image scenes.  

This was accomplished based on local information within a scene.  We 

trained via the implementation of an algorithm based on SIFT keypoints 

and edge data as inputs into a neural network.  The network was inspired 

by the Cerebellar Model Articulation Controller (CMAC) neural network as 

well as what is perceived to be in the human visual cortex.  

SIFT based parameters were optimized to extract invariant keypoints and 

establish a HILB model of pattern recognition. The HILB model is a 

framework that links the current global models of pattern recognition to 

that of human based pattern recognition by being able to process scene 

information relying solely on localized image data extraction - a departure 

from current algorithms.   

Currently algorithms are task specific and work well if a target object and 

all its attribute variations are already trained, but struggle to correctly 
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classify new objects if they are not part of an externally trained database.  

Recognition is difficult due to input sensory data that is not necessarily 

invariant and susceptible to noise.  Our localized model establishes pattern 

recognition within a scene based on invariant information that will work 

with any number of objects within a scene.   
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