8 research outputs found

    D4.1 Draft air interface harmonization and user plane design

    Full text link
    The METIS-II project envisions the design of a new air interface in order to fulfil all the performance requirements of the envisioned 5G use cases including some extreme low latency use cases and ultra-reliable transmission, xMBB requiring additional capacity that is only available in very high frequencies, as well as mMTC with extremely densely distributed sensors and very long battery life requirements. Designing an adaptable and flexible 5G Air Interface (AI), which will tackle these use cases while offering native multi-service support, is one of the key tasks of METIS-II WP4. This deliverable will highlight the challenges of designing an AI required to operate in a wide range of spectrum bands and cell sizes, capable of addressing the diverse services with often diverging requirements, and propose a design and suitability assessment framework for 5G AI candidates.Aydin, O.; Gebert, J.; Belschner, J.; Bazzi, J.; Weitkemper, P.; Kilinc, C.; Leonardo Da Silva, I.... (2016). D4.1 Draft air interface harmonization and user plane design. https://doi.org/10.13140/RG.2.2.24542.0288

    D2.2 Draft Overall 5G RAN Design

    Full text link
    This deliverable provides the consolidated preliminary view of the METIS-II partners on the 5 th generation (5G) radio access network (RAN) design at a mid-point of the project. The overall 5G RAN is envisaged to operate over a wide range of spectrum bands comprising of heterogeneous spectrum usage scenarios. More precisely, the 5G air interface (AI) is expected to be composed of multiple so-called AI variants (AIVs), which include evolved legacy technology such as Long Term Evolution Advanced (LTE-A) as well as novel AIVs, which may be tailored to particular services or frequency bands.Arnold, P.; Bayer, N.; Belschner, J.; Rosowski, T.; Zimmermann, G.; Ericson, M.; Da Silva, IL.... (2016). D2.2 Draft Overall 5G RAN Design. https://doi.org/10.13140/RG.2.2.17831.1424

    Analysis of Multi Carrier Modulation Techniques for 5G Physical Layer Communications Estimation of KPI

    Get PDF
    The more enchanting Multicarrier Communication (MCM) techniques like Fifth Generation (5G), Long Term Evolution (LTE) and Fourth Generation (4G) are the enhancing techniques that contribute the progress of wireless communication systems. The most effective way to save resources in 5G is to make efficient use of all existing discontinuous spectrums, which maximizes Spectrum Efficiency (SE). A valid comparison of many 5G MCM techniques is made in this work, namely Universal Filter Multi Carrier (UFMC), Filter Bank Multi Carrier (FBMC) and Orthogonal Frequency Division Modulation (OFDM). Various Key Performance Indicators (KPI) such as Bit Error Ratio (BER), Signal to Interference Ratio (SIR), Power Spectral Density (PSD) and ratio between Peak Power and Average Power, Throughput, and Spectral Efficiency (SE) are evaluated and compared under various realistic channels. UFMC Modulation technique is compatible with existing channel estimation and detection techniques and further improves SE. The SE of FBMC has been improved by 2% with Hermite filter when compared to PHYSDAS, RRC prototype filters. It has been observed that FBMC offered better SIR, Throughput, also a complex design of filter reduced BER and PAPR

    30 GHz Path Loss Modeling and Performance Evaluation for Noncoherent M-ary Frequency Shift Keying in the 30 GHz Band

    Get PDF
    A candidate millimeter-wave (mmWave) frequency band and modulation scheme that could fit to many present and future applications has been presented in this work. As is being explored by industry, we also suggest the 30 GHz band as a candidate carrier frequency and non-coherent frequency shift keying (NC-FSK) as a potential modulation scheme for future communication applications. The primary applications are aimed at 5th generation (5G) cellular type systems. Propagation measurements were conducted for outdoor and indoor environments using directional horn antennas for both co-polarized and cross-polarized antenna configurations to model the path loss for our candidate band. The measurements were conducted in typical line-of-sight (LOS) and non-LOS (NLOS) environments in a large building on the University of South Carolina campus, specifically at Swearingen Engineering Center. Several propagation path loss (PL) models are presented based upon this collected data. We can use these PL models in link budgets for estimating transmit power, antenna gains, receiver characteristics (e.g., noise figure), and link distances. The measurements also contribute to the body of knowledge on wireless channel propagation path loss for bands near 30 GHz. Another measurement campaign was also conducted at the USC campus to measure a unique and complicated vegetation attenuation that may be considered a large challenge to mmWave systems. Radio wave attenuation and depolarization effects through several broadleaf evergreen shrubs at 31 GHz are reported, based upon measurements. To obtain a comparative reference for this mmWave attenuation, another measurement was also conducted at 5 GHz. From these measurements, we analyzed the proportional relationships between the attenuation and the shrub density (related to species), depth, and measurement geometry. Three different shrub species with different densities and depths, and for different measurement geometries, were employed. Results are in terms of measured specific attenuations at 31 GHz—the attenuation in dB/m. These will also be useful for link budget design, and outdoor and outdoor-indoor models for future mmWave communication. For our 5G modulation scheme candidate, we evaluate its performance at 31 GHz via an empirical 3-D mmWave channel simulator: the NYUSIM channel model. As with all digital communication systems, performance is measured in terms of error ratios, and we evaluate the bit error rate (BER) performance of NC-FSK for different symbol rates over a variety of wireless mmWave channels. The NC-FSK scheme is known to be energy efficient for large alphabet size, and this is one of its virtues. Another is that since it is a form of FM, nonlinear amplification (far less costly than linear amplification) can be used. The performance evaluations enable us to present enhancements and trade-offs that can be done to improve the system performance by adjustment of the design parameters, i.e., modulation alphabet size and symbol rate, which together determine bandwidth (BW)
    corecore