19 research outputs found

    FPTAS for Hardcore and Ising Models on Hypergraphs

    Get PDF
    Hardcore and Ising models are two most important families of two state spin systems in statistic physics. Partition function of spin systems is the center concept in statistic physics which connects microscopic particles and their interactions with their macroscopic and statistical properties of materials such as energy, entropy, ferromagnetism, etc. If each local interaction of the system involves only two particles, the system can be described by a graph. In this case, fully polynomial-time approximation scheme (FPTAS) for computing the partition function of both hardcore and anti-ferromagnetic Ising model was designed up to the uniqueness condition of the system. These result are the best possible since approximately computing the partition function beyond this threshold is NP-hard. In this paper, we generalize these results to general physics systems, where each local interaction may involves multiple particles. Such systems are described by hypergraphs. For hardcore model, we also provide FPTAS up to the uniqueness condition, and for anti-ferromagnetic Ising model, we obtain FPTAS where a slightly stronger condition holds

    Counting hypergraph matchings up to uniqueness threshold

    Get PDF
    We study the problem of approximately counting matchings in hypergraphs of bounded maximum degree and maximum size of hyperedges. With an activity parameter λ\lambda, each matching MM is assigned a weight λM\lambda^{|M|}. The counting problem is formulated as computing a partition function that gives the sum of the weights of all matchings in a hypergraph. This problem unifies two extensively studied statistical physics models in approximate counting: the hardcore model (graph independent sets) and the monomer-dimer model (graph matchings). For this model, the critical activity λc=ddk(d1)d+1\lambda_c= \frac{d^d}{k (d-1)^{d+1}} is the threshold for the uniqueness of Gibbs measures on the infinite (d+1)(d+1)-uniform (k+1)(k+1)-regular hypertree. Consider hypergraphs of maximum degree at most k+1k+1 and maximum size of hyperedges at most d+1d+1. We show that when λ<λc\lambda < \lambda_c, there is an FPTAS for computing the partition function; and when λ=λc\lambda = \lambda_c, there is a PTAS for computing the log-partition function. These algorithms are based on the decay of correlation (strong spatial mixing) property of Gibbs distributions. When λ>2λc\lambda > 2\lambda_c, there is no PRAS for the partition function or the log-partition function unless NP==RP. Towards obtaining a sharp transition of computational complexity of approximate counting, we study the local convergence from a sequence of finite hypergraphs to the infinite lattice with specified symmetry. We show a surprising connection between the local convergence and the reversibility of a natural random walk. This leads us to a barrier for the hardness result: The non-uniqueness of infinite Gibbs measure is not realizable by any finite gadgets

    The Ising Partition Function: Zeros and Deterministic Approximation

    Full text link
    We study the problem of approximating the partition function of the ferromagnetic Ising model in graphs and hypergraphs. Our first result is a deterministic approximation scheme (an FPTAS) for the partition function in bounded degree graphs that is valid over the entire range of parameters β\beta (the interaction) and λ\lambda (the external field), except for the case λ=1\vert{\lambda}\vert=1 (the "zero-field" case). A randomized algorithm (FPRAS) for all graphs, and all β,λ\beta,\lambda, has long been known. Unlike most other deterministic approximation algorithms for problems in statistical physics and counting, our algorithm does not rely on the "decay of correlations" property. Rather, we exploit and extend machinery developed recently by Barvinok, and Patel and Regts, based on the location of the complex zeros of the partition function, which can be seen as an algorithmic realization of the classical Lee-Yang approach to phase transitions. Our approach extends to the more general setting of the Ising model on hypergraphs of bounded degree and edge size, where no previous algorithms (even randomized) were known for a wide range of parameters. In order to achieve this extension, we establish a tight version of the Lee-Yang theorem for the Ising model on hypergraphs, improving a classical result of Suzuki and Fisher.Comment: clarified presentation of combinatorial arguments, added new results on optimality of univariate Lee-Yang theorem

    Rapid mixing of hypergraph independent sets

    Get PDF
    We prove that the mixing time of the Glauber dynamics for sampling independent sets on n-vertex k-uniform hypergraphs is 0(n log n) when the maximum degree Δ satisfies Δ ≤ c2k/2, improving on the previous bound Bordewich and co-workers of Δ ≤ k − 2. This result brings the algorithmic bound to within a constant factor of the hardness bound of Bezakova and co-workers which showed that it is NP-hard to approximately count independent sets on hypergraphs when Δ ≥ 5·2k/2.Financial support by the EPSRC grant EP/L018896/1 (J.H.)

    Approximation via Correlation Decay when Strong Spatial Mixing Fails

    Get PDF
    Approximate counting via correlation decay is the core algorithmic technique used in the sharp delineation of the computational phase transition that arises in the approximation of the partition function of antiferromagnetic 2-spin models. Previous analyses of correlation-decay algorithms implicitly depended on the occurrence of strong spatial mixing. This, roughly, means that one uses worst-case analysis of the recursive procedure that creates the subinstances. In this paper, we develop a new analysis method that is more refined than the worst-case analysis. We take the shape of instances in the computation tree into consideration and we amortize against certain “bad” instances that are created as the recursion proceeds. This enables us to show correlation decay and to obtain a fully polynomial-time approximation scheme (FPTAS) even when strong spatial mixing fails. We apply our technique to the problem of approximately counting independent sets in hypergraphs with degree upper bound Δ\Delta and with a lower bound kk on the arity of hyperedges. Liu and Lin gave an FPTAS for k2k\geq2 and Δ5\Delta\leq5 (lack of strong spatial mixing was the obstacle preventing this algorithm from being generalized to Δ=6\Delta=6). Our technique gives a tight result for Δ=6\Delta=6, showing that there is an FPTAS for k3k\geq3 and Δ6\Delta\leq6. The best previously known approximation scheme for Δ=6\Delta=6 is the Markov-chain simulation based fully polynomial-time randomized approximation scheme (FPRAS) of Bordewich, Dyer, and Karpinski, which only works for k8k\geq8. Our technique also applies for larger values of kk, giving an FPTAS for kΔk\geq\Delta. This bound is not substantially stronger than existing randomized results in the literature. Nevertheless, it gives the first deterministic approximation scheme in this regime. Moreover, unlike existing results, it leads to an FPTAS for counting dominating sets in regular graphs with sufficiently large degree. We further demonstrate that in the hypergraph independent set model, approximating the partition function is NP-hard even within the uniqueness regime. Also, approximately counting dominating sets of bounded-degree graphs (without the regularity restriction) is NP-hard

    Perfect sampling from spatial mixing

    Get PDF
    We introduce a new perfect sampling technique that can be applied to general Gibbs distributions and runs in linear time if the correlation decays faster than the neighborhood growth. In particular, in graphs with subexponential neighborhood growth like [Formula: see text] , our algorithm achieves linear running time as long as Gibbs sampling is rapidly mixing. As concrete applications, we obtain the currently best perfect samplers for colorings and for monomer‐dimer models in such graphs

    Approximate Counting, the Lovasz Local Lemma and Inference in Graphical Models

    Get PDF
    In this paper we introduce a new approach for approximately counting in bounded degree systems with higher-order constraints. Our main result is an algorithm to approximately count the number of solutions to a CNF formula Φ\Phi when the width is logarithmic in the maximum degree. This closes an exponential gap between the known upper and lower bounds. Moreover our algorithm extends straightforwardly to approximate sampling, which shows that under Lov\'asz Local Lemma-like conditions it is not only possible to find a satisfying assignment, it is also possible to generate one approximately uniformly at random from the set of all satisfying assignments. Our approach is a significant departure from earlier techniques in approximate counting, and is based on a framework to bootstrap an oracle for computing marginal probabilities on individual variables. Finally, we give an application of our results to show that it is algorithmically possible to sample from the posterior distribution in an interesting class of graphical models.Comment: 25 pages, 2 figure

    Optimal zero-free regions for the independence polynomial of bounded degree hypergraphs

    Full text link
    In this paper we investigate the distribution of zeros of the independence polynomial of hypergraphs of maximum degree Δ\Delta. For graphs the largest zero-free disk around zero was described by Shearer as having radius λs(Δ)=(Δ1)Δ1/ΔΔ\lambda_s(\Delta)=(\Delta-1)^{\Delta-1}/\Delta^\Delta. Recently it was shown by Galvin et al. that for hypergraphs the disk of radius λs(Δ+1)\lambda_s(\Delta+1) is zero-free; however, it was conjectured that the actual truth should be λs(Δ)\lambda_s(\Delta). We show that this is indeed the case. We also show that there exists an open region around the interval [0,(Δ1)Δ1/(Δ2)Δ)[0,(\Delta-1)^{\Delta-1}/(\Delta-2)^\Delta) that is zero-free for hypergraphs of maximum degree Δ\Delta, which extends the result of Peters and Regts from graphs to hypergraphs. Finally, we determine the radius of the largest zero-free disk for the family of bounded degree kk-uniform linear hypertrees in terms of kk and Δ\Delta.Comment: 34 pages, 4 figure
    corecore