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Abstract
We introduce a new perfect sampling technique that can
be applied to general Gibbs distributions and runs in linear
time if the correlation decays faster than the neighbor-
hood growth. In particular, in graphs with subexponential
neighborhood growth like Z𝑑 , our algorithm achieves linear
running time as long as Gibbs sampling is rapidly mixing.
As concrete applications, we obtain the currently best per-
fect samplers for colorings and for monomer-dimer models
in such graphs.
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1 INTRODUCTION

Spin systems model nearest neighbor interactions of complex systems. These models originated from
statistical physics, and have found a wide range of applications in probability theory, machine learn-
ing, and theoretical computer science, often under different names such as Markov random fields or
Boltzmann machines. Given an underlying graph G = (V ,E), a configuration 𝜎 is an assignment from
vertices to a finite set of spins, usually denoted by [q]. The weight of a configuration is specified by the
q-dimensional vector bv assigned to each vertex v ∈ V and the q-by-q symmetric interaction matrix
Ae assigned to each edge e ∈ E, namely,

w(𝜎) =
∏
v∈V

bv(𝜎v)
∏

e={u,v}∈E
Ae(𝜎u, 𝜎v). (1)

The equilibrium state of the system is described by the Gibbs distribution 𝜇, where the probability of
a configuration is proportional to its weight.
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A central algorithmic problem related to spin systems is to sample from the Gibbs distribution. A
canonical Markov chain for sampling approximately from the Gibbs distribution is the Gibbs sampler
(a.k.a. heat bath or Glauber dynamics). The efficiency of the sampler is determined by its mixing time,
namely how long it takes to converge to the desired distribution. One (conjectured) general criterion
for rapid mixing of such Markov chains is the spatial mixing property [52], which roughly states that
the correlation among variables decays rapidly in the system as their distances increase. It is widely
believed that spatial mixing (in some form) implies the rapid mixing of the Gibbs sampler. However,
rigorous implications have only been established for special classes of graphs or systems, such as for
lattice graphs [13, 38], for colorings on neighborhood amenable graphs [21], for ferromagnetic Ising
models [41], and very recently, for anti-ferromagnetic two-spin systems [3, 7–9].

One main drawback for Gibbs samplers or Markov chains, in general, is that one needs to know the
mixing time in advance to implement the algorithms with provably small errors. The mixing time is
usually hard to analyze and very pessimistic. The so-called perfect samplers are thus more desirable,
which run in a Las Vegas fashion and return exact samples upon halting. There have been a num-
ber of techniques available to design perfect samplers, such as Coupling From The Past (CFTP) [42],
including the monotone and anti-monotone CFTP [28, 42] and the bounding chains [5, 31], Random-
ness Recycler (RR) [18], and Partial Rejection Sampling (PRS) [16, 27]. Nevertheless, none of these
techniques address general spin systems or relate to the important spatial mixing properties of the
system.

In this paper, we introduce a new technique to perfectly sample from Gibbs distributions of spin
systems. The correctness of our algorithm relies on only the conditional independence property of
Gibbs distributions. Moreover, the expected running time is linear in the size of the system, when the
correlation decays more rapidly than the growth of the neighborhood.

Theorem 1.1 (informal). For any spin system with bounded maximum degree,1 if strong spatial mixing
holds with a rate faster than the neighborhood growth of the underlying graph, then there exists a
perfect sampler with running time O(n) in expectation, where n represents the number of vertices of
the graph.

More details and undefined terms are explained in Section 2. Formal statements of our results
are given in Theorem 2.4 for spin systems on subexponential neighborhood growth graphs, and in
Theorem 2.6 for spin systems on general graphs. Applications on list colorings and on monomer-dimer
models are given in Theorems 2.9 and 2.10.

Lattice graphs, such as Z𝑑 , are of special interests in statistical physics and combinatorics. These
graphs have subexponential neighborhood growth, which implies that temporal mixing is equivalent to
spatial mixing on them [13]. Therefore our sampler runs in linear time as long as the standard Glauber
dynamics has O(n log n) mixing time. This is a direct strengthening of aforementioned results [13, 21,
38] from approximate to perfect sampling, with an improved running time.

Corollary 1.2 (informal). For spin systems on graphs with subexponential neighborhood growth, if
the Gibbs sampler has O(n log n) mixing time, where n is the number of vertices, or the system shows
strong spatial mixing, then there exists a perfect sampler with running time O(n) in expectation.

1We remark that our algorithm remains in polynomial-time (but not in linear time) for graphs with unbounded degrees, as long as
the degree does not grow too quickly. This requirement on the degree comes from the cost of updating a block of certain radius,
similar to the cost of block dynamics, and the exact upper bound needed varies from problem to problem. See Theorem 2.6 and
the discussion thereafter. For the most part, we state our results for bounded degree cases to keep the statements clean.
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It is worth noting that many traditional perfect sampling algorithms, especially those rely on CFTP
[5, 31, 42], suffer from “non-interruptibility”. That is, early termination of the algorithm induces a
bias on the sample. In contrast, our algorithm is interruptible in the following sense: conditioned on
its termination at any particular step, the algorithm guarantees to return a perfect sample. Therefore,
had the algorithm been running for too long, one can simply stop it and restart. One can also run many
independent copies in parallel and output the earliest returned sample without biasing the sample.

In addition, our algorithm can be used to solve the recently introduced dynamic sampling
problem [15, 16], where the Gibbs distribution itself changes dynamically and the algorithm needs to
efficiently maintain a sample from the current Gibbs distribution. The detail of this part is given in
Section 7. Our perfect sampler also generalizes straightforwardly to Gibbs distributions with multi-
body interactions (namely spin systems on hypergraphs / constraint satisfaction problems), and similar
efficiency can be achieved when some appropriate variant of spatial mixing holds.

1.1 Algorithm overview

We give an overview of our main new idea. We briefly review the Gibbs sampler, which is a Markov
chain on the state space [q]V . At each step, a vertex u ∈ V is picked uniformly at random and the
current configuration X ∈ [q]V is updated by the simple rule:

• the spin Xu is redrawn according to the marginal distribution 𝜇
XΓ(u)
u ;

where Γ(u) ≜ {v ∈ V|{u, v} ∈ E} denotes the neighborhood of u, and 𝜇
XΓ(u)
u denotes the marginal

distribution induced at vertex u by the Gibbs distribution 𝜇, conditioned on the current spins of the
neighborhood Γ(u). It is a basic fact that this chain converges to the Gibbs distribution 𝜇.

Our perfect sampler makes use of the same update rule. To expose our main idea, we first consider
the single-site version of our perfect sampler, which works for systems with soft constraints (where all
Ae and bv are positive). The sampling algorithm is quite simple, described in Algorithm 1.

Algorithm 1: Perfect Gibbs sampler (single-site version)

1 Start from an arbitrary initial configuration X ∈ [q]V and  ← V;
2 while  ≠ ∅ do
3 pick a u ∈  uniformly at random;
4 let 𝜇min be the minimum value of 𝜇𝜎

u (Xu) over all 𝜎 ∈ [q]Γ(u) that 𝜎∩Γ(u) = X∩Γ(u);

5 with probability 𝜇min∕𝜇
XΓ(u)
u (Xu) do ⊳ Bayes filter

6 update X by redrawing Xu ∼ 𝜇
XΓ(u)
u ; ⊳ Gibbs sampler update

7  ←  ⧵ {u};

8 else
9  ←  ∪ Γ(u);

10 return X;

The algorithm starts from an arbitrary initial configuration X ∈ [q]V , and gradually “repairs” X to
a perfect sample drawn from the Gibbs distribution 𝜇. We maintain a set  ⊆ V of vertices that are
currently “incorrect,” initially set as  = V . At each step, a random vertex u is picked from , and we
try to remove u from  while maintaining the following invariant, denoted by the conditional Gibbs
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property:

X always follows the law 𝜇
X

 ,

which is the marginal distribution induced by 𝜇 on  ≜ V ⧵ conditioned on X.
(⋆)

This property ensures that the configuration on  follows the desired distribution conditioned on the
configuration on . In particular, when  = ∅,  = V , 𝜇X

 = 𝜇, and the sample X follows precisely
the distribution 𝜇. This is the goal of our algorithm: reduce  to the empty set.

To do this, we try to eliminate a vertex u from . Since (X,) satisfies the invariant ( ⋆), it holds
that X ∼ 𝜇

X

 , where  = V ⧵ . To satisfy the invariant ( ⋆), we update the configuration X as
follows:

• use a filter  to change the distribution of X from 𝜇
X

 to 𝜇
X⧵{u}
 ;

• resample Xu from distribution 𝜇
X⧵{u}∧X
u = 𝜇

XV⧵{u}
u = 𝜇

XΓ(u)
u , where last equation holds due to the

conditional independence property (formally, Property 4.3) of the Gibbs distribution.

After the two steps above, it is straightforward to verify the new pair (X, ⧵ {u}) satisfies the
invariant ( ⋆). We call  the Bayes filter, which is determined by a biased coin depending on only part
of X. For any X ∈ [q] , the success probability should be proportional to the following quantity:

Pr[  succeeds ] ∝
𝜇

X⧵{u}
 (X )
𝜇

X

 (X )
(⋆)
= 𝜇

X⧵{u}
u (Xu)
𝜇

XΓ(u)
u (Xu)(

as 𝜇
X⧵{u}
u (Xu) is independent from X

)
∝ 1

𝜇
XΓ(u)
u (Xu)

. (2)

In Algorithm 1 we set Pr[  succeeds] = 𝜇min∕𝜇
XΓ(u)
u (Xu) to satisfy the condition in (2). Here we

choose 𝜇min in the numerator so that the probability is bounded by 1. The key step in the above formula
is the equation (⋆), which holds because

𝜇
X

 (X ) = 𝜇
X⧵{u}∧Xu
 (X )

(⬦)
=

𝜇
X⧵{u}∧X
u (Xu) ⋅ 𝜇

X⧵{u}
 (X )

𝜇
X⧵{u}
u (Xu)

,

together with the fact that 𝜇
X⧵{u}∧X
u (Xu) = 𝜇

XV⧵{u}
u (Xu) = 𝜇

XΓ(u)
u (Xu). The equation (⬦) is obtained by

applying Bayes’ theorem on the distribution 𝜇X⧵{u} . This explains the name “Bayes filter”.

If the filter succeeds, the distribution of X follows the law 𝜇
X⧵{u}
 , and then we continue as

above. Meanwhile, since the filter only reveals the neighborhood spins XΓ(u), upon the failure of  , the
invariant (⋆) remains to hold as long as the revealed sites Γ(u) are added into  and X is unchanged.

This sampler is valid for general Gibbs distributions, since the only property we require is condi-
tional independence. However for efficiency purposes, our general algorithm, Algorithm 2, uses block
updates. A suitable block radius (chosen according to spatial mixing) is the key to efficiency in our
analysis. Moreover, to make sure that marginal distributions are well-defined, we restrict our attention
to permissive systems, which contain all soft constraint systems as well as all hard constraint systems
of interest. The details are given in Sections 2 and 3.

The algorithm is efficient as long as the size of  shrinks in expectation in every step. For the
more general Algorithm 2, this holds true when the correlation decays faster than the neighborhood
growth. The details are in Section 5.
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1.2 Related work

The conditional Gibbs property has been used implicitly or explicitly in previous works such as
PRS [22, 24–27], dynamic sampling [16], and RR [18]. Furthermore, the invariance of the condi-
tional Gibbs property ensures that the sampling algorithm is correct even when the input spin system
is dynamically changing over time [16].

Before our work, all previous resampling algorithms [16, 18, 22, 24–27] fall into the paradigm of
rejection sampling: a new sample is generated, usually from modifying the old sample, and (part of)
the new sample is rejected independently with some probability determined by the new sample. In our
algorithm, the filtration is executed before the generation of the new sample, with a bias independent
of the new sample.

Spatial mixing properties were known to imply rapid mixing of the Gibbs sampler for some par-
ticular systems. See for example [41]. For anti-ferromagnetic two-spin systems, weak spatial mixing
corresponds to the optimal threshold for efficient samplability [3, 8, 14, 19, 36, 44, 46, 52]. It remains
an interesting open problem whether spatial mixing implies the existence of efficient samplers in
general, and whether these samplers can be perfect.

2 OUR RESULTS

2.1 Model and definitions

Let G = (V ,E) be an undirected graph, and [q] = {1, 2, … , q} a finite domain of q ≥ 2 spins. An
instance of q-state spin system is specified by a tuple  = (G, [q], b,A), where b = (bv)v∈V assigns
every vertex v ∈ V a vector bv ∈ R

q
≥0 and A = (Ae)e∈E assigns every edge e ∈ E a symmetric matrix

Ae ∈ R
q×q
≥0 . The Gibbs distribution 𝜇 over [q]V is defined as

∀𝜎 ∈ [q]V ∶ 𝜇(𝜎) ≜ w(𝜎)
Z

= 1
Z
∏
v∈V

bv(𝜎v)
∏

e={u,v}∈E
Ae(𝜎u, 𝜎v), (3)

where w(𝜎) is the weight defined in (1) and Z ≜
∑

𝜎∈[q]V w(𝜎) is the partition function.
We restrict our attention to the so-called permissive spin systems, where the marginal distributions

are always well-defined. Let  = (G, [q], b,A) be an instance of spin system. A configuration on V
is called feasible if its weight is positive, and a partial configuration is feasible if it can be extended
to a feasible configuration. For any (possibly empty) subset Λ ⊆ V and any (not necessarily feasible)
partial configuration 𝜎 ∈ [q]Λ, we use w𝜎 (𝜏) to denote the weight of 𝜏 ∈ [q]V⧵Λ conditional on 𝜎:

w𝜎 (𝜏) =
∏

v∈V⧵Λ
bv(𝜏v)

∏
e={u,v}∈E
u,v∈V⧵Λ

Ae(𝜏u, 𝜏v)
∏

e={u,v}∈E
u∈Λ,v∈V⧵Λ

Ae(𝜎u, 𝜏v). (4)

Define the partition function Z𝜎 conditional on 𝜎 as Z𝜎 ≜
∑

𝜏∈[q]V⧵Λ w𝜎 (𝜏).

Definition 2.1 (permissive). A spin system  = (G, [q], b,A), where G = (V ,E), is called permissive
if Z𝜎 > 0 for any partial configuration 𝜎 ∈ [q]Λ specified on any subset Λ ⊆ V .

Permissive systems are very common, including, for examples, uniform proper q-coloring when
q ≥ Δ + 1, where Δ is the maximum degree, and spin systems with soft constraints, for example, the
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Ising model, or with a “permissive” state that is compatible with all other states, for example, the
hardcore model.

For permissive systems, a feasible configuration is always easy to construct by greedy algorithm.
More importantly, with permissiveness, marginal probabilities are always well defined, which is crucial
for Gibbs sampler and spatial mixing property.

Formally, we use 𝜇𝜎 to denote the conditional distribution over [q]V⧵Λ given 𝜎 ∈ [q]Λ, that is,

∀𝜏 ∈ [q]V⧵Λ, 𝜇𝜎(𝜏) ≜ w𝜎 (𝜏)
Z𝜎

. (5)

And for any v ∈ V ⧵ Λ, we use 𝜇𝜎
v to denote the marginal distribution at v projected from 𝜇𝜎 .

For any u, v ∈ V , we use distG(u, v) to denote the shortest-path distance between v and u in G.

Definition 2.2 (strong spatial mixing [51, 52]). Let 𝛿 ∶ N → R+. A classℑ of permissive spin systems
is said to exhibit strong spatial mixing with rate 𝛿(⋅) if for every instance  = (G, [q], b,A) ∈ ℑ, where
G = (V ,E), for every v ∈ V , Λ ⊆ V , and any two partial configurations 𝜎, 𝜏 ∈ [q]Λ,

𝑑TV (𝜇𝜎
v , 𝜇

𝜏
v ) ≤ 𝛿(𝓁), (6)

where 𝓁 = min{distG(v, u)|u ∈ Λ, 𝜎u ≠ 𝜏u}, and 𝑑TV (𝜇𝜎
v , 𝜇

𝜏
v ) ≜ 1

2

∑
a∈[q] |𝜇𝜎

v (a) − 𝜇𝜏
v (a)| denotes

the total variation distance between 𝜇𝜎
v and 𝜇𝜏

v . In particular, ℑ exhibits strong spatial mixing with
exponential decay if (6) is satisfied for 𝛿(𝓁) = 𝛼 exp(−𝛽𝓁) for some constants 𝛼, 𝛽 > 0.

Our first result holds for spin systems on graphs with bounded neighborhood growth.

Definition 2.3 (subexponential neighborhood growth). A class 𝔊 of graphs is said to have subexpo-
nential neighborhood growth if there is a function s ∶ N → N such that s(𝓁) = exp(o(𝓁)) and for every
graph G = (V ,E) ∈ 𝔊,

∀v ∈ V ,∀𝓁 ≥ 0, |B𝓁(v)| ≤ s(𝓁),

where B𝓁(v) ≜ {u ∈ V|distG(v, u) ≤ 𝓁} denotes the ball of radius 𝓁 centered at v in G.

Here s(𝓁) = exp(o(𝓁)) is a subexponential function, for example, s(𝓁) = poly(𝓁) or s(𝓁) =
exp(𝓁1−𝜖). Note that graphs with subexponential neighborhood growth necessarily have bounded
maximum degree because we can set 𝓁 = 1 and get s(1) = O(1).

2.2 Main results

Our first result shows that for spin systems on graphs with subexponential neighborhood growth, strong
spatial mixing implies the existence of linear-time perfect sampler.

Theorem 2.4 (main theorem: bounded-growth graphs). Let q > 1 be a finite integer and ℑ a
class of permissive q-state spin systems on graphs with subexponential neighborhood growth. If ℑ
exhibits strong spatial mixing with exponential decay, then there exists an algorithm such that given
any instance  = (G, [q], b,A) ∈ ℑ, the algorithm outputs a perfect sample from 𝜇 within O (n) time
in expectation, where n is the number of vertices in G.

The factor in O(⋅) is qO(Δ𝓁0 ), which is the cost for an update in (𝓁0-block) Gibbs sampler, where 𝓁0 =
O(1) is the radius at which the decay catches up with neighborhood growth, as formally given in (33).
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It is already known that for spin systems on subexponential neighborhood growth graphs, the strong
spatial mixing with exponential decay condition implies O(n log n) mixing time for block Gibbs sam-
pler [13], which generates approximate samples. We give a perfect sampler with O(n) expected running
time under the same condition. The notion of subexponential neighborhood growth is related to, but
should be distinguished from neighborhood-amenability (see e.g. [21]), which says that in an infinite
graph, for any constant real c > 0, there is an 𝓁 such that |S𝓁+1(v)||B𝓁(v)| ≤ c holds everywhere.

Our main result on general graphs assumes the following strong spatial mixing condition.

Condition 2.5. Let  = (G, [q], b,A) be a permissive spin system where G = (V ,E). There is an
integer 𝓁 = 𝓁(q) ≥ 2 such that the following holds: for every v ∈ V , Λ ⊆ V , for any two partial
configurations 𝜎, 𝜏 ∈ [q]Λ satisfying min {distG(v, u)|u ∈ Λ, 𝜎(u) ≠ 𝜏(u)} = 𝓁,

𝑑TV (𝜇𝜎
v , 𝜇

𝜏
v ) ≤

𝛾

5|S𝓁(v)| , (7)

where S𝓁(v) denotes the sphere of radius 𝓁 centered at v in G, and

𝛾 = 𝛾(v,Λ) ≜ min
{
𝜇
𝜌
v (a)|𝜌 ∈ [q]Λ, a ∈ [q] that 𝜇

𝜌
v (a) > 0

}
, (8)

denotes the lower bound of positive marginal probabilities at v.

The above condition basically says that the spin systems exhibit strong spatial mixing with a decay
rate faster than that of neighborhood growth, given that the marginal probabilities are appropriately
lower bounded (which holds with 𝛾 = Ω(1) when entries of A and b are of finite precision and
the maximum degree Δ is finitely bounded). Our result on general graphs is stated as the following
theorem.

Theorem 2.6 (main theorem: general graphs). Let ℑ be a class of permissive spin systems satisfying
Condition 2.5. There exists an algorithm which given any instance  = (G, [q], b,A) ∈ ℑ, outputs a
perfect sample from 𝜇 within n ⋅ qO(Δ𝓁) time in expectation, where n is the number of vertices in G, Δ
is the maximum degree of G, and 𝓁 = 𝓁(q) is determined by Condition 2.5.

The qO(Δ𝓁) factor in the time cost is contributed by the block Gibbs sampler update on 𝓁-radius
blocks. This extra cost could remain polynomial if q = 𝜔(1), but the upper bound on q for that will
vary from problem to problem. See for example, the discussion after Theorem 2.9.

We remark that Theorem 2.6 is not a generalization of Theorem 2.4, since we need the marginal
lower bound 𝛾 in (7). In fact, The conditions of both Theorems 2.4 and 2.6 are special cases of the more
technical Condition 5.1, stated in Section 5. Condition 5.1 is a multiplicative version of strong spatial
mixing (SSM). In Theorem 2.6, the marginal lower bound is used to derive that from the standard
total variation distance SSM. For graphs with subexponential neighborhood growth in Theorem 2.4,
the two versions are equivalent, as shown in Proposition 6.1.

2.3 Applications on specific systems

Our results can be applied on various spin systems. We consider four important examples:

• Uniform list coloring: A list coloring instance is specified by  = (G, [q],), where  ≜ {Lv ⊆

[q]|v ∈ V} assigns each vertex v ∈ V a list of colors Lv ⊆ [q]. A proper list coloring of instance
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 is a 𝜎 ∈ [q]V that 𝜎v ∈ Lv for all v ∈ V and 𝜎u ≠ 𝜎v for all {u, v} ∈ E. Let 𝜇 denote the
uniform distribution over all proper list colorings of .

• The monomer-dimer model: The monomer-dimer model defines a distribution over matchings
in graphs. An instance is specified by  = (G, 𝜆), where G = (V ,E) is a graph and 𝜆 > 0.
Each matching M ⊆ E in G is assigned a weight w(M) = 𝜆|M|. Let 𝜇 be the distribution over all
matchings in G such that 𝜇(M) ∝ w(M).

• The hardcore model: The hardcore model defines a distribution over independent sets in
graphs. An instance is specified by  = (G, 𝜆), where G = (V ,E) is a graph and 𝜆 > 0. Each
independent set S ⊆ V in G is assigned a weight w(S) = 𝜆|S|. Let 𝜇 be the distribution over all
independent sets in G such that 𝜇(S) ∝ w(S).

• The Ising model: An Ising model instance is specified by  = (G, 𝛽, 𝜆), where G = (V ,E) is
a graph, 𝛽 > 0 is the edge activity, and 𝜆 > 0 is the external field. Each configuration 𝜎 ∈
{−1,+1}V is assigned a weight w(𝜎) = 𝛽|m(𝜎)|𝜆|n+(𝜎)|, where m(𝜎) = |{{u, v} ∈ E|𝜎u = 𝜎v}|
denotes the number of monochromatic edges and n+(𝜎) denotes the number vertices that take the
value +1. The Gibbs distribution 𝜇 is defined by 𝜇(𝜎) ∝ w(𝜎). The Ising model is ferromagnetic
if 𝛽 > 1 and is anti-ferromagnetic if 𝛽 < 1.

• The anti-ferromagnetic two-spin system: An anti-ferromagnetic two-spin system is specified
by  = (G, 𝜆, 𝛽, 𝛾), where G = (V ,E) is a graph, 0 ≤ 𝛽 ≤ 𝛾 , 𝛽𝛾 < 1, 𝛾 > 0 and 𝜆 > 0. For
any configuration 𝜎 ∈ {−1,+1}V , its weight is defined by w(𝜎) = 𝜆n+(𝜎)𝛽m+(𝜎)𝛾m−(𝜎), where
n+(𝜎) = |{v ∈ V|𝜎v = +1}|, m+(𝜎) = |{{u, v} ∈ E|𝜎u = 𝜎v = +1}| and m−(𝜎) = |{{u, v} ∈
E|𝜎u = 𝜎v = −1}|. The Gibbs distribution 𝜇 is defined by 𝜇(𝜎) ∝ w(𝜎).

We use degG(v) to denote the degree of v in G and Δ ≜ maxv∈V degG(v) the maximum degree.
First, for the list coloring problem, we define the following two conditions for instance  =

(G, [q],). Let degG(v) denote the degree of v ∈ V in graph G, and Δ ≜ maxv∈V degG(v) the maximum
degree.

Condition 2.7. For every v ∈ V , |L(v)| ≥ 𝛼 degG(v) + 𝛽, where either one of the followings holds:

• 𝛼 = 2 and 𝛽 = 0;

• G is triangle-free, 𝛼 > 𝛼∗ where 𝛼∗ = 1.763 · · · is the positive root of xx = e, and 𝛽 ≥
√

2√
2−1

satisfies (1 − 1∕𝛽)𝛼e
1
𝛼
(1−1∕𝛽)

> 1.

Condition 2.8. For every v ∈ V , |L(v)| ≥ Δ2 − Δ + 2.

Our perfect sampler for list coloring runs in linear time in either above condition.

Theorem 2.9. Let 𝔏 be a class of list coloring instances with at most q colors for a constant q > 0.
If either of the two followings holds for all instances  = (G, [q],) ∈ 𝔏:

• Condition 2.7 and G has sub-exponential neighborhood growth; or
• Condition 2.8,

then there exists a perfect sampler for 𝜇 that runs in expected O (n) time, where n is the number of
vertices.

The constant factor in O(⋅), can be determined in the same way as in Theorem 2.4 in the case of
Condition 2.7, but is much higher in the case of Condition 2.8 due to the arbitrary neighborhood growth.
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Nevertheless, even in this costly case, 𝓁 = O(q2 log q) and the overall overhead can by upper bounded

by a rough estimate exp(exp(poly(q))). In fact, our proof works for q up to O
((

log log n
log log log n

)1∕2
)

so that

the run time remains a polynoimal in n.
Sampling proper q-colorings (where the lists are identical for all vertices) has been extensively

studied, especially using Markov chains. Approximate sampling received considerable attention [11,
12, 29, 33, 40]. The current best result [6, 50] is the O(n log n) mixing time of the flip chain if q ≥( 11

6
− 𝜖0

)
Δ for a small constant 𝜖0 ≈ 10−5. For perfect sampling q-colorings, Huber introduced a

bounding chain [31] based on CFTP [53], which terminates within O(n log n) steps in expectation if
q ≥ Δ2 + 2Δ. In a recent breakthrough, Bhandari and Chakraborty [5] introduced a novel bounding
chain that has expected running time O

(
n log2 n

)
in a substantially broader regime q > 3Δ. Very

recently, the regime for bounding chain was further improved to q ≥
( 8

3
+ o(1)

)
Δ [32]. Another way

to obtain perfect samplers is to use standard reductions between counting and sampling [35]. Using
this technique, any FPTAS for the number of colorings can be turned into a polynomial-time perfect
sampler. (It is important that the approximate counting algorithm is deterministic, or at least with
errors that can be detected.) Currently, the FPTAS with the best regime for general graphs is due to
Liu et al. [37], which requires q ≥ 2Δ, and it runs in time nEXP(Δ).

Comparing to the results above, our algorithm draws perfect samples and achieves the O(n)
expected running time. In case of sub-exponential growth graphs such as Z𝑑 , it improves the result of
[5] by requiring only q > 𝛼Δ + O(1), where 𝛼 > 𝛼∗ = 1.763 · · · .

Next we consider the monomer-dimer model. It was proved in [4, 47] that instances  = (G, 𝜆) on
graphs G with maximum degree Δ exhibits strong spatial mixing with rate (1 − Ω(1∕

√
1 + 𝜆Δ))−𝓁 .

Applying our algorithm yields the following perfect sampling result.

Theorem 2.10. Let 𝔐 be a class of monomer-dimer instances  = (G, 𝜆) on graphs G with
sub-exponential neighborhood growth and 𝜆 = O(1). There exists an algorithm which given any
instance  = (G, 𝜆) ∈ 𝔐, outputs a perfect sample from 𝜇 within expected O(n) time.

Note that, if 𝜆 = 𝜔(1), then the rate of correlation decay is not fast enough for our need.
Previously, Markov chains were the most successful techniques for sampling weighted matchings.

The Jerrum-Sinclair chain [34] on a monomer-dimer model  = (G, 𝜆), generates approximate samples
from 𝜇 within Õ(n2m) steps, where m = |E|. This chain also mixes in O

(
n log2 n

)
time for finite

subgraphs of the 2D lattice Z2 [49].
It is difficult to convert the Jerrum-Sinclair chain to perfect samplers. Before our work, the only

perfect sampler for the monomer-dimer model we are aware of is the one obtained via standard reduc-
tions from sampling to counting [35] (similar to the case of colorings), together with deterministic
approximate counting algorithms [4]. This is a perfect sampler with running time nPoly(Δ,𝜆).

Our algorithm is the first linear-time perfect sampler for the monomer-dimer model on graphs with
sub-exponential neighborhood growth, such as finite subgraphs of lattices Z𝑑 for any constant d and
constant weight 𝜆.

The hardcore model is another widely studied spin system in the sampling context. Due to the strong
spatial mixing result established by Weitz [51], we have the following perfect sampling algorithm.

Theorem 2.11. Let 𝔐 be a class of hardcore instances  = (G, 𝜆) on graphs G with sub-exponential
neighborhood growth and constant 𝜆 such that 𝜆 < 𝜆c(Δ) = (Δ−1)(Δ−1)

(Δ−2)Δ
, where Δ is the maximum degree

of G. There exists an algorithm which given any instance  = (G, 𝜆) ∈ 𝔐, outputs a perfect sample
from 𝜇 within expected O(n) time.
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The condition 𝜆 < 𝜆c(Δ) = (Δ−1)(Δ−1)

(Δ−2)Δ
is known as the uniqueness condition for hardcore model.

In general graphs, if 𝜆 > 𝜆c(Δ), the sampling problem is intractable [45]; if 𝜆 < 𝜆c(Δ), the sampling
problem can be solved in polynomial time [52]. Specifically, the Glauber dynamics is rapid mixing up
to the uniqueness threshold in general graphs [3, 7–9].

For perfect sampling, the PRS works for general graphs but it requires a strong condition 𝜆 ≤
1√

2Δ−1
[16, 27]. The bounding chain also requires 𝜆 ≤ 2

Δ−2
[30]. Our algorithm requires only the

uniqueness condition when restricted to sub-exponential neighborhood growth graphs.
The last model is the Ising model. Due to the strong spatial mixing result in [36, 41, 43], we have

the following perfect sampling algorithm.

Theorem 2.12. Let 𝔐 be a class of Ising instances  = (G, 𝛽, 𝜆) on graphs G with sub-exponential
neighborhood growth and constant 𝛽 such that Δ−2

Δ
< 𝛽 <

Δ
Δ−2

, where Δ is the maximum degree of G.
There exists an algorithm which given any instance  = (G, 𝛽, 𝜆) ∈ 𝔐, outputs a perfect sample from
𝜇 within expected O(n) time.

Note that Theorem 2.12 holds for arbitrary external fields 𝜆v > 0 (which may vary for different
vertices v ∈ V). The condition Δ−2

Δ
< 𝛽 <

Δ
Δ−2

corresponds to the uniqueness condition for arbitrary
external fields 𝜆v > 0, under which the Glauber dynamics is rapid mixing in general graphs [7–9, 41].
For uniform external field 𝜆 > 0 and the anti-ferromggnetic Ising model (𝛽 < 1), the same bound in
Theorem 2.12 holds for a refined regime for the uniqueness as formulated in [44].

For perfecting sampling, in monotone systems, the CFTP technique is efficient as long as the
corresponding Markov chain is rapid mixing [42]. The Ising model is monotone if it is ferromag-
netic (𝛽 ≥ 1). Thus, rapid mixing of the Glauber dynamics implies efficient perfect sampling when
1 ≤ 𝛽 <

Δ
Δ−2

. Alternatively, via CFTP of the random cluster dynamics [23], efficient perfect sam-

pling exists for all 𝛽 ≥ 1 and 𝜆 = 1. However, the expected running time of CFTP above is Õ(n2)
for Glauber dynamics or Õ(n10) for random cluster dynamics. PRS runs in expected linear time for
both ferromagnetic and anti-ferromagnetic Ising models, which requires 𝜆 = 1 and 1 − 1

2.22Δ+1
≤ 𝛽 ≤

1 + 1
2.22Δ

[16]. Our algorithm achieves the same linear expected run time for the whole uniqueness
regime in sub-exponential neighborhood growth graphs.

In fact, our result holds more generally for all anti-ferromagnetic two-spin systems in the unique-
ness regime as formulated in [36]. Let  = (G, 𝜆, 𝛽, 𝛾) be an anti-ferromagnetic two-spin system.
For any integer 𝑑 ≥ 1, let x𝑑 be the unique positive fixed point of the function f𝑑(x) = 𝜆

(
𝛽x+1
x+𝛾

)𝑑
.

Let Δ denote the maximum degree of G. We say  is up-to-Δ unique if for all 1 ≤ 𝑑 < Δ,|f ′𝑑(x𝑑)| < 1.

Theorem 2.13. Let 𝔐 be a class of anti-ferromagnetic two-spin system instances  = (G, 𝜆, 𝛽, 𝛾)
on graphs G with sub-exponential neighborhood growth and constants 𝜆, 𝛽, 𝛾 such that  is up-to-Δ
unique, where Δ is the maximum degree of G. There exists an algorithm which given any instance
 = (G, 𝜆, 𝛽, 𝛾) ∈ 𝔐, outputs a perfect sample from 𝜇 within expected O(n) time.

3 THE ALGORITHM

We now describe our general perfect Gibbs sampler. It generalizes the single-site version (Algorithm 1)
by allowing block updates. This generalization allows us to bypass some pathological situations, and
to greatly improve the efficiency of the algorithm. The pseudocode is given in Algorithm 2.



FENG ET AL. 11

Algorithm 2: Perfect Gibbs sampler (general version)
Parameter: an integer 𝓁 ≥ 0;

1 Start from an arbitrary feasible configuration X ∈ [q]V , i.e.∼w(X)>0;
2  ← V;
3 while  ≠ ∅ do
4 pick a u ∈  uniformly at random and let B ← (B𝓁(u) ⧵) ∪ {u};
5 let 𝜇min be the minimum value of 𝜇𝜎

u (Xu) over all 𝜎 ∈ [q]𝜕B that 𝜎∩𝜕B = X∩𝜕B;
6 with probability 𝜇min

𝜇
X𝜕B
u (Xu)

do ⊳ Bayes filter
7 update X by redrawing XB ∼ 𝜇

X𝜕B
B ; ⊳ block Gibbs sampler update

8  ←  ⧵ {u};

9 else
10  ←  ∪ 𝜕B;

11 return X;

Let  = (G, [q], b,A) be a permissive spin system instance and G = (V ,E). For any u ∈ V and
integer 𝓁 ≥ 0, recall that B𝓁(u) ≜ {v ∈ V|distG(u, v) ≤ 𝓁} denotes the 𝓁-ball centered at u in G. And
for any B ⊆ V , we use 𝜕B ≜ {v ∈ V ⧵B|∃w ∈ B, {v,w} ∈ E} to denote the vertex boundary of B in G.

The algorithm is parameterized by an integer 𝓁 ≥ 1, which is set in Section 5.
The initial X ∈ [q]V is an arbitrary feasible configuration, which is easy to construct by greedy

algorithm since  is permissive (Definition 2.1). After each iteration of the while loop, either X is
unchanged or XB is redrawn from 𝜇

X𝜕B
B , which is the marginal distribution of 𝜇, conditioned on the

current XB. Thus, we have the following observation.

Observation 3.1. In Algorithm 2, the configuration X is always feasible, i.e. w(X) > 0.

The observation implies that 𝜇X𝜕B
u (Xu) > 0 all along. The Bayes filter in Line 5 is always well-defined.

If the filter succeeds, XB is resampled according to the correct marginal distribution 𝜇
X𝜕B
B and u is

removed from (that is, u has been successfully “fixed”); otherwise, X is unchanged and is enlarged
by 𝜕B (because variables in 𝜕B are revealed and no longer random).

The key to the correctness of Algorithm 2 is the conditional Gibbs property ( ⋆): the law of X over
 ≜ V ⧵  is always the conditional distribution 𝜇X . By similar argument as in Section 1.1, just
redrawing XB from 𝜇

X𝜕B
B will introduce a bias ∝ 𝜇

X𝜕B
u (Xu) to the sample X, relative to its target distri-

bution 𝜇X⧵{u} . In the algorithm, we use the Bayes filter that succeeds with probability ∝ 1∕𝜇X𝜕B
u (Xu) to

cancel this bias, with the risk of enlarging  by 𝜕B upon failure. Balancing the success probability and
the size of 𝜕B is the key to getting an efficient algorithm, and this depends on choosing an appropriate
𝓁 according to the spatial mixing rate.

The efficiency of the algorithm, on the other hand, depends on the success rate for the filter at
Line 6: if its success probability p is always close enough to 1, so that (1 − p)|𝜕B| < p, then set 
shrinks in expectation in the worst case, and the algorithm converges geometrically. Meanwhile, the
success probability p = 𝜇min∕𝜇

X𝜕B
u (Xu) is always close enough to 1 when the values of the marginal

probability 𝜇𝜎
u (Xu) vary little for all 𝜎 ∈ [q]𝜕B that 𝜎∩𝜕B = X∩𝜕B, which is a decay of correlation

property.
The correctness and efficiency of the algorithm are analyzed respectively in next two sections.
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4 CORRECTNESS OF THE PERFECT SAMPLING

In this section, we prove the correctness of Algorithm 2, stated by the following theorem.

Theorem 4.1 (correctness theorem). Given any permissive spin system  = (G, [q], b,A), Algorithm
2 with any parameter 𝓁 ≥ 1 terminates with probability 1, and outputs X that follows the law of its
Gibbs distribution 𝜇.

The theorem is implied by two key properties of the Gibbs distribution 𝜇.

4.1 Key properties of Gibbs distributions

Note that the 𝜇min in Algorithm 2 is determined by the set , the vertex u ∈ , and the partial feasible
configuration X. Formally, fixing the parameter 𝓁 ≥ 0 in Algorithm 2,

𝜇min(, u,X) ≜ min
{
𝜇𝜎

u (Xu)|𝜎 ∈ [q]𝜕B s.t. 𝜎∩𝜕B = X∩𝜕B, where B ≜ (B𝓁(u) ⧵) ∪ {u}
}
.

Property 4.2 (positive lower bound of 𝜇min). The lower bound 𝛾 of 𝜇min is positive:

𝛾 ≜ min
{
𝜇min(, u,X)| ⊆ V , u ∈ ,X ∈ [q] s.t. X is feasible

}
> 0. (9)

To state the next property, we introduce some notations: For anyΛ ⊆ V , 𝜎 ∈ [q]Λ and S ⊆ V⧵Λ, we
use 𝜇𝜎

S (⋅) to denote the marginal distribution on S projected from 𝜇𝜎 . For any disjoint sets Λ,Λ′ ⊆ V ,
𝜎 ∈ [q]Λ and 𝜎′ ∈ [q]Λ′

, we use 𝜎 ⊎ 𝜎′ to denote the configuration on Λ ⊎Λ′ that is consistent with 𝜎

on Λ and consistent with 𝜎′ on Λ′.

Property 4.3 (conditional independence). Suppose A,B,C ⊂ V are three disjoint non-empty subsets
such that the removal of C disconnects A and B in G. For any 𝜎A ∈ [q]A, 𝜎B ∈ [q]B and 𝜎C ∈ [q]C,

𝜇
𝜎A⊎𝜎C
B (𝜎B) = 𝜇

𝜎C
B (𝜎B).

Theorem 4.1 is proved for general distribution 𝜇 over [q]V relying only on these two properties.
Thus, Algorithm 2 is correct for general permissive Gibbs distributions.

In particular, we verify that all permissive spin systems satisfy these two properties. First, the
conditional independence (Property 4.3) holds generally for Gibbs distributions [39]. Next, for the
positive lower bound of 𝜇min (Property 4.2): for spin systems with soft constraints, clearly Property 4.2
holds for all 𝓁 ≥ 0; and for general permissive spin systems , we need to verify that Property 4.2
holds if 𝓁 ≥ 1. Fix a tuple (, u,X) in (9). The following fact follows from the definition of set B.

Fact 4.4. 𝜕B ⊆ S𝓁+1(u) ∪, where B = (B𝓁(u) ⧵) ∪ {u}.

The fact implies 𝜕B ⧵  ⊆ S𝓁+1(u). Since 𝓁 ≥ 1, u is not adjacent to any vertex in 𝜕B ⧵ . Since 

is permissive and X is feasible, 𝜇𝜎
u (Xu) > 0 for all 𝜎 ∈ [q]𝜕B such that 𝜎∩𝜕B = X∩𝜕B. This implies

𝜇min(, u,X) is positive, thus the Property 4.2 holds.
We then prove Theorem 4.1 assuming only Property 4.2 and Property 4.3. More specifically, termi-

nation of the algorithm is guaranteed by Property 4.2, and correctness of the output upon termination
is guaranteed by Property 4.3.
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4.2 Termination of the algorithm

Denote by T the number of iterations of the while loop in Algorithm 2. To prove that the algorithm
terminates with probability 1, we show that T is stochastically dominated by a geometric distribution.
We use  to denote the Bayes filter in Algorithm 2. Then,

Pr[ succeeds] = 𝜇min(, u,X)
𝜇

X𝜕B
u (Xu)

≥ 𝜇min(, u,X).

If  succeeds for n = |V| consecutive iterations of the while loop, then the set  must become
empty and the algorithm terminates. By Property 4.2, we have

∀k ≥ 0, Pr[T ≥ kn] ≤ (1 − 𝛾n)k. (10)

This implies T is stochastically dominated by a geometric distribution. Each iteration of the while loop
terminates within finite number of steps. Thus, the algorithm terminates with probability 1.

4.3 Correctness upon termination

We show that upon termination, the output follows the correct distribution. Let (X,) ∈ [q]V × 2V be
the random pair maintained by the algorithm. The following condition is the “loop invariant” of the
random pair (X,).

Condition 4.5 (conditional Gibbs property). For any R ⊆ V and 𝜎 ∈ [q]R, conditioned on  = R and
XR = 𝜎, the random configuration XV⧵R follows the law 𝜇𝜎 .

Condition 4.5 is satisfied initially by the initial pair (X,) = (X,V). Furthermore, consider the
while loop that transforms

(X,) → (X′,′).

Then next lemma shows that Condition 4.5 holds inductively assuming Property 4.3.

Lemma 4.6. Suppose that (X,) ∈ [q]V × 2V is a random pair such that X is feasible and the pair
(X,) satisfies Condition 4.5. Then, the random pair (X′,′) satisfies Condition 4.5.

Our algorithm can be viewed as a Markov chain (Xt,t)t≥0. By Observation 3.1, the random config-
uration Xt ∈ [q]V maintained by algorithm is always feasible. Initially, 0 = V . Thus, Lemma 4.6
guarantees that for any t ≥ 0, the (Xt,t) maintained by Algorithm 2 satisfies Condition 4.5. In par-
ticular, for any t ≥ 0, conditional on t = ∅, the output Xt follows the correct distribution 𝜇. This
proves Theorem 4.1.

Proof of Lemma 4.6. It is sufficient to prove that for any R ⊆ V , any feasible partial configuration
𝜌 ∈ [q]R and any vertex u ∈ R, conditioned on  = R, XR = 𝜌, and the vertex picked in Line 4 being
u, the new random pair (X′,′) after one iteration of the while loop satisfies Condition 4.5.

Fix R ⊆ V and a feasible partial configuration 𝜌 ∈ [q]R. Let u ∈ R denote the uniform random
vertex picked in Line 4. Fix a vertex u ∈ R. Let  denote the event

 ∶ XR = 𝜌 ∧ = R ∧ u = u.
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Since (X,) satisfies Condition 4.5 and given the set R, u is independent from X, we have

∀𝜏 ∈ [q]V⧵R ∶ Pr
[
XV⧵R = 𝜏|] = 𝜇𝜌(𝜏). (11)

Recall that  is the Bayes filter. Depending on whether  succeeds or not, we have two cases.
The easier case is when  fails. Recall that the set B is fixed by R and u. In this case, ′ = R∪ 𝜕B

and X′ = X. Conditioned on  , we know that Xu = 𝜌u and X𝜕B∩R = 𝜌𝜕B∩R, the filter  depends only on
the partial configuration X𝜕B⧵R. For any configuration 𝜎 ∈ [q]𝜕B⧵R, conditioned on  and X𝜕B⧵R = 𝜎,
the failure of  is independent from XV⧵(R∪𝜕B) = XV⧵′ . Thus, by (11), conditioned on  , X𝜕B⧵R = 𝜎

and the failure of  , we have that X′
V⧵′ = XV⧵′ ∼ 𝜇𝜌⊎𝜎 , i.e. (X′,′) satisfies Condition 4.5.

Now we analyze the main case that  succeeds. If this case does occur, we must have

𝜇min(R, u, 𝜌) ≜ min{𝜇𝜎
u (𝜌u)|𝜎 ∈ [q]𝜕B s.t. 𝜎R∩𝜕B = 𝜌R∩𝜕B} > 0. (12)

Define Ru ≜ R ⧵ {u}. The fact that  succeeds means ′ = R ⧵ {u} = Ru and X′
Ru

= XRu = 𝜌Ru .
Hence, we only need to show that

∀𝜏 ∈ [q]V⧵Ru ∶ Pr
[
X′

V⧵Ru
= 𝜏| ∧  succeeds

]
= 𝜇𝜌(Ru)(𝜏). (13)

Recall that B = (B𝓁(u) ⧵ R) ∪ {u} = B𝓁(u) ⧵ Ru. We define the following set:

H ≜ V ⧵ {B𝓁(u) ∪ R} = V ⧵ {Ru ∪ B} .

Notice that the the whole set V is partitioned into three disjoint sets H ⊎ B ⊎ Ru. Namely, B is the set
whose configuration is resampled, and H⊎Ru is the set whose configuration is untouched, i.e. X′

H∪Ru
=

XH∪Ru . Note that B ⊎ H ⊎ Ru = V . By the chain rule:

Pr
[
X′

V⧵Ru
= 𝜏 ∧  succeeds|] = Pr

[
X′

H = 𝜏H ∧ X′
B = 𝜏B ∧  succeeds|] (14)

= Pr[X′
H = 𝜏H|] ⋅ Pr[ succeeds| ∧ X′

H = 𝜏H] ⋅ Pr[X′
B = 𝜏B| ∧ X′

H = 𝜏H ∧  succeeds].

As X′
H = XH , (11) implies that

Pr[X′
H = 𝜏H|] = 𝜇

𝜌

H(𝜏H).

By Line 7 of Algorithm 2, X′
B is redrawn from the distribution 𝜇

X𝜕B
B (⋅). By conditional independence

property (Property 4.3), we have 𝜇
X𝜕B
B (⋅) = 𝜇XV⧵B(⋅). Note that V ⧵ B = Ru ⊎ H. Conditioned on

 ∧ X′
H = 𝜏H , XRu = 𝜌Ru and XH = X′

H = 𝜏H , thus 𝜇X𝜕B
B (⋅) = 𝜇𝜌(Ru)⊎𝜏(H)(⋅). Hence,

(14) = 𝜇
𝜌

H(𝜏H) ⋅ 𝜇𝜌(Ru)⊎𝜏(H)(𝜏B) ⋅ Pr[ succeeds| ∧ X′
H = 𝜏H]. (15)

To finish the proof, we need to calculate Pr[ succeeds|∧X′
H = 𝜏H]. This is done by the following

claim, whose proof is deferred to the end of the section. Recall that 𝜌 is a configuration on R.

Claim 4.7. Assume (12). It holds that

𝜇
𝜌

H(𝜏H) > 0 ⟺ 𝜇
𝜌(Ru)
H (𝜏H) > 0. (16)
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Furthermore, for 𝜏H such that Pr[X′
H = 𝜏H|] = 𝜇

𝜌

H(𝜏H) > 0,

Pr[ succeeds| ∧ X′
H = 𝜏H] = C ⋅

𝜇
𝜌(Ru)
H (𝜏H)
𝜇
𝜌

H(𝜏H)
, (17)

where 0 < C = C(R, u, 𝜌) ≤ 1 is a constant depending only on R, u, 𝜌 but not on 𝜏.

Combining (15) and Claim 4.7, we have

∀𝜏 ∈ [q]V⧵Ru , Pr
[
X′

V⧵Ru
= 𝜏 ∧  succeeds|] = C ⋅ 𝜇𝜌(Ru)(𝜏). (18)

This equation can be verified in two cases:

• If 𝜇𝜌

H(𝜏H) = 0, then by (16), 𝜇𝜌(Ru)
H (𝜏H) = 0, thus LHS = RHS = 0.

• If 𝜇𝜌

H(𝜏H) > 0, by (15) and (17), we have LHS = C ⋅ 𝜇𝜌(Ru)
H (𝜏H) ⋅ 𝜇𝜌(Ru)⊎𝜏(H)(𝜏B) = RHS, where the

last equation holds because 𝜏 ∈ [q]V⧵Ru and V ⧵ Ru = H ⊎ B.

Thus, the probability that  succeeds is

Pr [ succeeds|] = ∑
𝜎∈[q]V⧵Ru

Pr
[
X′

V⧵Ru
= 𝜎 ∧  succeeds|] = ∑

𝜎∈[q]V⧵Ru

C ⋅ 𝜇𝜌(Ru)(𝜎) = C, (19)

where the last equation holds because
∑

𝜎∈[q]V⧵Ru 𝜇
𝜌(Ru)(𝜎) = 1 and C = C(R, u, 𝜌) > 0 is a constant

depending only on R, u, 𝜌. Thus, for any 𝜏 ∈ [q]V⧵Ru , combining (18) and (19), we have

Pr
[
X′

V⧵Ru
= 𝜏| succeeds ∧ 

]
=

Pr
[
X′

V⧵Ru
= 𝜏 ∧  succeeds|]

Pr [ succeeds|] = C ⋅ 𝜇𝜌(Ru)(𝜏)
C

= 𝜇𝜌(Ru)(𝜏),

where the last equation holds due to C = C(R, u, 𝜌) > 0. This proves (13). ▪

Proof of Claim 4.7. We first introduce the following definitions. Recall that Ru ⊎ B ⊎ H = V . We
further partition 𝜕B into two disjoint sets 𝜕B ∩ Ru and 𝜕B ⧵ Ru. Define

S ≜ 𝜕B ⧵ Ru = 𝜕B ∩ H,

Ψ ≜ 𝜕B ∩ Ru = 𝜕B ∩ R. (20)

We now prove (16). Since 𝜌 = 𝜌(Ru) ⊎ 𝜌(u), by the Bayes law, we have the following relation
between 𝜇

𝜌(Ru)
H (𝜏H) and 𝜇

𝜌

H(𝜏H):

𝜇
𝜌

H(𝜏H) = 𝜇
𝜌(Ru)⊎𝜌(u)
H (𝜏H) =

𝜇
𝜌(Ru)⊎𝜏(H)
u (𝜌u)
𝜇
𝜌(Ru)
u (𝜌u)

⋅ 𝜇𝜌(Ru)
H (𝜏H). (21)

Note that 𝜌 ∈ [q]R is a feasible configuration, thus 𝜇𝜌(Ru)
u (𝜌u) > 0 and the above ratio is well-defined.

Note that u ∈ B and Ru ⊎B⊎H = V . The set 𝜕B separates u from (Ru ⊎H)⧵ 𝜕B. Note that 𝜕B = S⊎Ψ,
where S and Ψ is defined in (20). By the conditional independence property (Property 4.3), we have

𝜇
𝜌(Ru)⊎𝜏(H)
u (𝜌u) = 𝜇

𝜌(Ψ)⊎𝜏(S)
u (𝜌u) ≥ 𝜇min(R, u, 𝜌) > 0, (22)
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where the first inequality is because 𝜇min(R, u, 𝜌) in (12) can be rewritten as min𝜂∈[q]S 𝜇
𝜌(Ψ)⊎𝜂
u (𝜌u), and

the second inequality is because 𝜇min(R, u, 𝜌) > 0 due to the lower bound in (12).
Next, we prove (17). Suppose 𝜇

𝜌

H(𝜏H) > 0. Combining (21) and (22), it remains to prove that

Pr[ succeeds| ∧ X′
H = 𝜏H] = C ⋅

𝜇
𝜌(Ru)
H (𝜏H)
𝜇
𝜌

H(𝜏H)
(⋆)
= C ⋅

𝜇
𝜌(Ru)
u (𝜌u)

𝜇
𝜌(Ψ)⊎𝜏(S)
u (𝜌u)

. (23)

To verify the equality (⋆), we write 𝜇𝜌

H(𝜏H) = 𝜇
𝜌u⊎𝜌(Ru)
H (𝜏H) = PrX∼𝜇𝜌(Ru ) [XH = 𝜏H|Xu = 𝜌u]. By Bayes’s

theorem, we have the following identity

𝜇
𝜌

H(𝜏H) = Pr
X∼𝜇𝜌(Ru )

[XH = 𝜏H|Xu = 𝜌u] =
Pr

X∼𝜇𝜌(Ru )
[Xu = 𝜌u|XH = 𝜏H] Pr

X∼𝜇𝜌(Ru )
[XH = 𝜏H]

Pr
X∼𝜇𝜌(Ru )

[Xu = 𝜌u]

=
𝜇
𝜌(Ru)⊎𝜏H
u (𝜌u) ⋅ 𝜇

𝜌(Ru)
H (𝜏H)

𝜇
𝜌(Ru)
u (𝜌u)

(∗)
=

𝜇
𝜌(Ψ)⊎𝜏(S)
u (𝜌u) ⋅ 𝜇

𝜌(Ru)
H (𝜏H)

𝜇
𝜌(Ru)
u (𝜌u)

,

where the equality (∗) holds due to the conditional independence property (since V = H ⊎ B ⊎ Ru).
Conditional on  , we have XΨ = 𝜌Ψ and Xu = 𝜌u. Recall that X′

H = XH , S ⊆ H and S ⊎ Ψ = 𝜕B.
Conditional on X′

H = 𝜏H , it holds that XS = 𝜏S. By the definition of the filter  in Line 5 of Algorithm
2, we have that

Pr
[
 succeeds| ∧ X′

H = 𝜏H
]
= 𝜇min(, u,X)

𝜇
X𝜕B
u (Xu)

= 𝜇min(R, u, 𝜌)
𝜇
𝜌(Ψ)⊎𝜏(S)
u (𝜌u)

. (24)

Combining (24) and (23), we can set C = C(R, u, 𝜌) in (23) as

C = C(R, u, 𝜌) ≜ 𝜇min(R, u, 𝜌)
𝜇
𝜌(Ru)
u (𝜌u)

= 1

𝜇
𝜌(Ru)
u (𝜌u)

⋅ min
𝜂∈[q]S

𝜇
𝜌(Ψ)⊎𝜂
u (𝜌u) ≤ 1. (25)

Note that 𝜇𝜌(Ru)
u (𝜌u) > 0 because 𝜌 is feasible, and 𝜇min(R, u, 𝜌) > 0 due to the lower bound in (12).

This implies C(R, u, 𝜌) > 0. Remark the sets S and Ψ are determined by R and u. This implies that the
C(R, u, 𝜌) defined as above depends only on R, u, 𝜌. This proves (17). ▪

5 EFFICIENCY UNDER STRONG SPATIAL MIXING

In this section, we prove the following result.

Condition 5.1. Let  = (G, [q], b,A) be a permissive spin system where G = (V ,E). There is an
integer 𝓁 = 𝓁(q) ≥ 2 such that the following holds: for every v ∈ V , Λ ⊆ V , and any two partial
configurations 𝜎, 𝜏 ∈ [q]Λ satisfying min{distG(v, u)|u ∈ Λ, 𝜎u ≠ 𝜏u} = 𝓁,

∀a ∈ [q] ∶
||||𝜇𝜎

v (a)
𝜇𝜏

v (a)
− 1

|||| ≤ 1
5 |S𝓁(v)| (with the convention 0∕0 = 1), (26)

where S𝓁(v) ≜ {u ∈ V|distG(v, u) = 𝓁} denotes the sphere of radius 𝓁 centered at v in G.
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Theorem 5.2. Let ℑ be a class of permissive spin systems satisfying Condition 5.1. Given any
instance  = (G, [q], b,A) ∈ ℑ, the Algorithm 2 with parameter 𝓁 = 𝓁∗ − 1 outputs a perfect sample
from 𝜇 within O

(
n ⋅ q2Δ𝓁∗

)
time in expectation, where n is the number of vertices in G, Δ is the max-

imum degree of G, 𝓁∗ = 𝓁∗(q) ≥ 2 is determined by Condition 5.1, and O(⋅) hides only absolute
constants.

The correctness part of Theorem 5.2 follows from Theorem 4.1, we focus on the efficiency part.
The proof sketch is that if ℑ satisfies Condition 5.1 with parameter 𝓁∗, we set the parameter 𝓁 in
Algorithm 2 as 𝓁 = 𝓁∗−1. We prove that after each iteration of the while loop, the size of  decreases
by at least 1

5
in expectation. Note that the initial  = V , thus the initial size of  is n. By the optional

stopping theorem, the number of iterations of the while loop is O(n) in expectation. One can verify
that the time complexity of the while loop is O

(
q2Δ𝓁+1) = O

(
q2Δ𝓁∗ )

. This proves the running time
result.

To analyze the expected size of  after each iteration of the while loop, we analyze the Bayes filter
 in Line 5. The probability that  fails is 1 − 𝜇min∕𝜇

X𝜕B
u (Xu). Suppose 𝜎 ∈ [q]𝜕B achieves 𝜇min =

𝜇𝜎
u (Xu). By Fact 4.4, we can verify that 𝜎 and X𝜕B can be differ only at 𝜕B ⧵ ⊆ S𝓁+1(u) = S𝓁∗ (u). By

Condition 5.1, we know that Pr[ fails] ≤ 1
5|S𝓁∗ (u)| . In addition, we have

• if  succeeds, the size of  decreases by 1;
• if  fails, the size of  increases by |𝜕B ⧵|, it easy to verify 𝜕B ⧵  ⊆ S𝓁∗ (u) by Fact 4.4,

thus, the size of  increases by at most |S𝓁∗ (u)|.
Thus, after each iteration of the while loop, the size of  decreases by at least 1

5
in expectation.

In the formal proof, we actually prove a stronger result. We first introduce the following condition.

Condition 5.3. Let  = (G, [q], b,A) be a permissive spin system where G = (V ,E). There is an
integer 𝓁 = 𝓁(q) ≥ 2 such that the following holds: for every v ∈ V , any two disjoint sets A,B ⊆ V
with distG(v,B) = min{distG(v, u)|u ∈ B} = 𝓁, and any partial configuration 𝜎 ∈ [q]A,

∀a ∈ [q], 1 −
min
𝜏∈[q]B

𝜇𝜎⊎𝜏
v (a)

𝜇𝜎
v (a)

≤
1

5 |S𝓁(v)| (with the convention 0∕0 = 1), (27)

where S𝓁(v) ≜ {u ∈ V|distG(v, u) = 𝓁} denotes the sphere of radius 𝓁 centered at v in G.

It is straightforward to verify that Condition 5.1 implies Condition 5.3. In the rest of this section,
we prove that the efficiency result in Theorem 5.2 holds under Condition 5.3.

Let  = (G, [q], b,A) ∈ ℑ be the input instance satisfying Condition 5.3 with some 𝓁∗ ≥ 2. Set
the parameter 𝓁 in Algorithm 2 as 𝓁 = 𝓁∗ − 1. Denote by T the number of iterations of the while loop
in Algorithm 2. To prove the efficiency result in Theorem 5.2, we bound the maximum running time
of the while loop and the expectation of T in the following two lemmas.

Lemma 5.4. The running time of each while loop is at most O(q2Δ𝓁+1) = O(q2Δ𝓁∗ ).

Lemma 5.5. E [T] ≤ 5n.

Since the input instance  is permissive (Definition 2.1) , the initial feasible configuration
can be constructed by a simple greedy algorithm. The running time of the first two lines in
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Algorithm 2 is O(nΔ). Combining this with Lemma 5.4 and Lemma 5.5 proves the efficiency result in
Theorem 5.2.

Proof of Lemma 5.4. We first show that 𝜇X𝜕B
u (Xu) can be computed in time O(qΔ𝓁+1), where O(⋅)

hides an absolute constant. Let G̃ = G[B ∪ 𝜕B] and ̃ be the instance restricted to G̃. Let 𝜇̃ denote
the Gibbs distribution defined by ̃. By the conditional independence property (Property 4.3), it is
straightforward to verify

𝜇
X𝜕B
u (Xu) = 𝜇̃

X𝜕B
u (Xu) (28)

since 𝜕B separates B from V ⧵ (B ∪ 𝜕B) and u ∈ B. Since |B| ≤ |B𝓁(u)| ≤ Δ𝓁+1−1
Δ−1

≤ Δ𝓁+1, it

takes at most O(qΔ𝓁+1) to enumerate all possibilities and compute 𝜇
X𝜕B
u (Xu) using (28). By Fact 4.4,

𝜕B ⊆ S𝓁+1(u) ∪ R. Since |𝜕B ⧵ R| ≤ |S𝓁+1(u)| ≤ Δ𝓁+1, we can enumerate all [q]𝜕B⧵R to compute
𝜇min in time O(q2Δ𝓁+1). The total running time for the first three lines of the while loop is at most
O(q2Δ𝓁+1).

Another non-trivial computation is to sample X(B) from 𝜇X𝜕B . Similar to (28), conditional indepen-
dence implies that this can be done by straightforward enumeration in time O(qΔ𝓁+1). The total running
time of the while loop is thus O(q2Δ𝓁+1)= O(q2Δ𝓁∗ ). ▪

Proof of Lemma 5.5. Define a sequence of random pairs (X0,0), (X1,1), … , (XT ,T ), where
each (Xt,t) ∈ [q]V × 2V . The initial (X0,0) is constructed by the first two lines of Algorithm 2.
In t-th while loop, Algorithm 2 updates (Xt−1,t−1) to (Xt,t). For any t ≥ 0, we use a random
variable Yt ≜ |t| to denote the size of t. The stopping time T is the smallest integer such that
Yt = 0.

Define the execution log of Algorithm 2 up to time t as

t ≜ (X0(0),0), (X1(1),1), … , (Xt(t),t).

Here Xi(i) is the restriction of Xi on i. Note that as R0 = V , (X0(0),0) is the same as (X0,0).
The algorithm terminates at time T if and only if T = ∅. In the t-th iteration of the while loop, we
use t to denote the Bayes filter and ut to denote the random vertex picked in Line 4. We have the
following claim.

Claim 5.6. Given any execution log t−1 created by Algorithm 2 such that t−1 ≠ ∅, for any u ∈
t−1,

Pr[t succeeds|t−1,ut = u] ≥
⎧⎪⎨⎪⎩

1 if |St| = ∅;
1 − 2

5|St| if |St| ≠ ∅,

where St = 𝜕Bt ⧵t−1 and Bt = (B𝓁(u) ⧵t−1) ∪ {u} is the set B in the t-th iteration the while loop.

Note that given t−1, the vertex ut ∈ t−1 is sampled uniformly and independently. For any 1 ≤

t ≤ T and any execution log t−1 created by Algorithm 2, if St = ∅, by Claim 5.6, we have

E
[
Yt|t−1, St = ∅

]
= Yt−1 − 1;
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Suppose St ≠ ∅. If t fails, then t = t−1 ∪ 𝜕Bt = t−1 ∪ (𝜕Bt ⧵ t−1). In other words, |St| new
vertices will be added into t−1 if t fails. We have

E
[
Yt|t−1, St ≠ ∅

]
≤ Yt−1 − Pr[t succeeds|t−1, St ≠ ∅] + Pr[t fails|t−1, St ≠ ∅] ⋅ |St|
≤ Yt−1 +

2
5|St| − 3

5
(by Claim 5.6)

≤ Yt−1 −
1
5
.

Combining two cases together implies

E [Yt|t−1] = E [Yt|(X0(0),0), (X1(1),1), … , (Xt−1(t−1),t−1)] ≤ Yt−1 −
1
5
.

We now define a sequence Y ′
0,Y ′

1, … ,Y ′
T where each Y ′

t = Yt + t
5
. Thus, Y ′

0,Y ′
1, … ,Y ′

T is a
super-martingale with respect to (X0(0),0), (X1(1),1), … , (XT (T ),T ) and T is a stopping
time. Note that each |Y ′

t − Y ′
t−1| ≤ n+ 1 is bounded and E [T] is finite due to (10). Due to the optional

stopping theorem [10, chapter 5], we have E
[
Y ′

T
]
≤ E

[
Y ′

0

]
= E [Y0]. Hence

E [T] ≤ 5E [Y0] = 5n,

where the last eqaution is because E [Y0] = E [|0|] = n. ▪

Proof of Claim 5.6. Suppose St = 𝜕Bt ⧵ t−1 = ∅. This implies 𝜕Bt ⊆ t−1. By the definition of
𝜇min, we have 𝜇

Xt−1(𝜕Bt)
u (Xt−1(u)) = 𝜇min and Pr[t succeeds] = 1. In the following proof, we assume

St ≠ ∅.
We need the following property to prove the claim. Fix an execution log Lt up to time t ≥ 0:

Lt = (𝜌0,R0), (𝜌1,R1), … , (𝜌t,Rt),

where each Ri ⊆ V , each 𝜌i ∈ [q]Ri . Assume Rt ≠ ∅ and Lt is a feasible execution log, i.e. Pr[t =
Lt] > 0. We claim that given the log Lt, the random Xt ∈ [q]V satisfies Xt(Rt) = 𝜌t and

∀𝜏 ∈ [q]V⧵Rt , Pr[Xt(V ⧵ Rt) = 𝜏|t = Lt] = 𝜇𝜌t (𝜏). (29)

equation (29) is proved by the induction on t. If t = 0, we have R0 = V , equation (29)
holds trivially. Assume equation (29) holds for all t < k. Fix any feasible execution log Lk =
(𝜌0,R0), (𝜌1,R1), … , (𝜌k,Rk) such that Rk ≠ ∅. Since Lk is feasible, we have Rk−1 ≠ ∅. Con-
sider the k-th iteration of the while loop. The k-th iteration exists because Rk−1 ≠ ∅. By induction
hypothesis, conditioning on the execution log k−1 = (𝜌0,R0), (𝜌1,R1), … , (𝜌k−1,Rk−1), the ran-
dom pair (Xk−1,k−1) satisfies the Condition 4.5 and Xk−1 is a feasible configuration (since Lk is
a feasible execution log, thus 𝜌k−1 is feasible). By Lemma 4.6, conditioning on the execution log
k−1 = (𝜌0,R0), (𝜌1,R1), … , (𝜌k−1,Rk−1), the random pair (Xk,k) satisfies the Condition 4.5. By
Condition 4.5, assuming the further condition k = Rk and Xk(Rk) = 𝜌k, equation (29) holds for t = k.
This proves equation (29).

Consider a feasible execution log up to time t − 1 ≥ 0:

Lt−1 = (𝜌0,R0), (𝜌1,R1), … , (𝜌t−1,Rt−1)
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satisfying Rt−1 ≠ ∅, where each Ri ⊆ V and each 𝜌i ∈ [q]Ri . Given the execution log t−1 = Lt−1, we
fix a vertex u ∈ Rt−1 and assume ut = u. We analyze the t-th iteration of the while loop. To simplify
the notation, we drop the index and denote

X = Xt−1, R = Rt−1, 𝜌 = 𝜌t−1, B = Bt = (B𝓁(u) ⧵ R) ∪ {u}, S = St = 𝜕B ⧵ R.

Note that the vertex ut is sampled from R uniformly and independently. By (29), given t−1 = Lt−1

and ut = u, it holds that X(R) = 𝜌 and (X,R) satisfies Condition 4.5. By Property 4.2, we know
𝜇min(R, u, 𝜌) > 0, thus the lower bound in (12) holds. According to the proof of Lemma 4.6,
combining (19) and (25), we have

Pr[t succeeds|t−1 = Lt−1,ut = u] = 1

𝜇
𝜌(Ru)
u (𝜌u)

⋅ min
𝜂∈[q]S

𝜇
𝜌(Ψ)⊎𝜂
u (𝜌u),

where Ru = R⧵{u}, S = 𝜕B⧵R and Ψ = 𝜕B∩R. Note that 𝜕B = S⊎Ψ and u ∈ B, the set 𝜕B separates
u from V ⧵ (B∪ 𝜕B). Since Ψ ⊆ Ru and two sets Ru and B are disjoint, by the conditional independence
property (Property 4.3), we have 𝜇

𝜌(Ψ)⊎𝜂
u (𝜌u) = 𝜇

𝜌(Ru)⊎𝜂
u (𝜌u). This implies

Pr[t succeeds|t−1 = Lt−1,ut = u] = 1

𝜇
𝜌(Ru)
u (𝜌u)

⋅ min
𝜂∈[q]S

𝜇
𝜌(Ru)⊎𝜂
u (𝜌u).

By Fact 4.4, we have S = 𝜕B ⧵ R ⊆ S𝓁+1(u). We take A = Ru,B = S, v = u, 𝜎 = 𝜌(Ru) and a = 𝜌u in
Condition 5.3, since distG(u, S) = 𝓁 + 1 = 𝓁∗ and |S| ≤ |S𝓁∗ (u)|, this proves that

Pr[t succeeds|t−1 = Lt−1,ut = u] ≥ 1 − 1
5|S𝓁∗ (u)| ≥ 1 − 1

5|S| ≥ 1 − 2
5|S| .

▪

Remark 5.7. Suppose the input instance from the class ℑ satisfies Condition 5.1 with some 𝓁∗ ≥ 2
and take 𝓁 = 𝓁∗ − 1 in Algorithm 2. We could tweak Algorithm 2 to reduce its running time to

O
(

n ⋅ qΔ𝓁∗
)

. Let Ψ ≜ 𝜕B ∩  and S ≜ 𝜕B ⧵ . Note that S ⊆ S𝓁∗ (u) by Fact 4.4. The idea is that

instead of calculating 𝜇min, we may simply compute 𝜇
X(Ψ)⊎𝜎
u (Xu) where 𝜎 = 1 ∈ [q]S is a one-vector,

then use (26) to get a lower bound 𝜇low of 𝜇min as

𝜇low ≜

(
1 − 1

5 |S𝓁∗ (u)|
)
𝜇

X(Ψ)⊎𝜎
u (Xu).

By Condition 5.1, 𝜇low ≤ 𝜇
X(𝜕B)
u (Xu). Then we use 𝜇low instead of 𝜇min in the definition of  . It is

straightforward to check that Algorithm 2 is still correct with this tweak, and for each iteration of the
while loop, given any X,, it holds that

Pr[ succeeds|X,] = 𝜇low

𝜇
X(𝜕B)
u (Xu)

=
(

1 − 1
5|S𝓁∗ (v)|

)
𝜇

X(Ψ)⊎𝜎
u (Xu)
𝜇

X(𝜕B)
u (Xu)

=
(

1 − 1
5|S𝓁∗ (v)|

)
𝜇

X(Ψ)⊎𝜎
u (Xu)

𝜇
X(Ψ)⊎X(S)
u (Xu)

≥

(
1 − 1

5|S𝓁∗ (v)|
)2

(by S ⊆ S𝓁∗ (u) and Condition 5.1)

≥ 1 − 2
5|S| .
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This proves Claim 5.6. Besides, we do not need to enumerate all configurations in [q]S to compute

𝜇min, the expected running time of Algorithm 2 can be reduced to O
(

n ⋅ qΔ𝓁∗
)

.

6 ANALYSIS OF STRONG SPATIAL MIXING

In this section, we use Theorem 5.2 to prove other results mentioned in Section 2. We analyze the
strong spatial mixing properties for the classes of spin systems mentioned in Section 2, so that we can
use Theorem 5.2 to prove the existences of perfect samplers.

6.1 Spin systems on subexponential neighborhood growth graphs

In this section, we prove Theorem 2.4 using Theorem 5.2. We need the following proposition, which
explains the relation between the multiplicative form of decay in (26) and the additive form of decay
in (6). Similar results appeared in [1, 2, 17, 48].

Proposition 6.1. Let 𝛿 ∶ N → N be a nonincreasing function. Let ℑ be a class of permissive
spin system instances exhibiting strong spatial mixing with decay rate 𝛿. For every instance  =
(G, [q], b,A) ∈ ℑ, where G = (V ,E), for every v ∈ V, Λ ⊆ V, and any two partial configurations
𝜎, 𝜏 ∈ [q]Λ with 𝓁 ≥ 2,

∀a ∈ [q], min
(||||𝜇𝜎

v (a)
𝜇𝜏

v (a)
− 1

|||| , 1
)

≤ 10q ⋅ |S⌊𝓁∕2⌋(v)| ⋅ 𝛿(⌊𝓁∕2⌋) (with the convention 0∕0 = 1),

(30)

where 𝓁 ≜ min{distG(v, u)|u ∈ Λ, 𝜎(u) ≠ 𝜏(u)} ≥ 2 and recall that S⌊𝓁∕2⌋(v) = {u ∈ V|distG(v, u) =⌊𝓁∕2⌋} denotes the sphere of radius ⌊𝓁∕2⌋ centered at v in G.

The choice of the parameter ⌊𝓁∕2⌋ in above proposition is not essential. In the proof, we fix the
configuration on the sphere of radius ⌊𝓁∕2⌋ centered at v, then utilize the conditional independence
property to prove the proposition. One can modify our proof by replacing ⌊𝓁∕2⌋with ⌊𝜃𝓁⌋ for any con-
stant 𝜃 ∈ (0, 1), which gives a similar result characterized by parameter 𝜃. We first use Proposition 6.1
to prove Theorem 2.4, and then show Proposition 6.1.

Proof of Theorem 2.4. Let q be a finite integer. Suppose ℑ is a class of q-state spin systems that
is defined on a class of graphs that have subexponential neighborhood growth in Definition 2.3 with
function s ∶ N → N. Suppose ℑ exhibits strong spatial mixing with exponential decay with some
constants 𝛼 > 0, 𝛽 > 0. Let 𝛿 be the function 𝛿(x) = 𝛼 exp(−𝛽x).

Fix a instance  = (G, [q], b,A) ∈ ℑ, where G = (V ,E). By Proposition 6.1, we have for any
Λ ⊆ V , any v ∈ V , and any two partial configurations 𝜎, 𝜏 ∈ [q]Λ satisfying 𝓁 ≜ min{distG(v, u)|u ∈
Λ, 𝜎(u) ≠ 𝜏(u)} ≥ 2,

∀a ∈ [q], min
(||||𝜇𝜎

v (a)
𝜇𝜏

v (a)
− 1

|||| , 1
)

≤ 10q ⋅ |S⌊𝓁∕2⌋(v)| ⋅ 𝛿(⌊𝓁∕2⌋)
(by |Sr(v)| ≤ |Br(v)| ≤ s(r)) ≤ 10q ⋅ s(⌊𝓁∕2⌋) ⋅ 𝛿(⌊𝓁∕2⌋). (31)
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Recall that s(⋅) is the subexponential function in Definition 2.3. Note that 𝛿(𝓁) = 𝛼 exp(−𝛽𝓁). We take
𝓁0 = 𝓁0(q, 𝛼, 𝛽, s) sufficiently large such that 𝓁0 ≥ 2 and

10𝛼q ⋅ s(⌊𝓁0∕2⌋) exp(−𝛽⌊𝓁0∕2⌋) ≤ 1
5s(𝓁0)

≤
1

5 ||B𝓁0
(v)|| ≤ 1

5 ||S𝓁0
(v)|| . (32)

Note that (32) is equivalent to

𝛿(⌊𝓁0∕2⌋) = 𝛼 exp(−𝛽⌊𝓁0∕2⌋) ≤ 1
50q ⋅ s(⌊𝓁0∕2⌋) ⋅ s(𝓁0)

. (33)

A sufficiently large 𝓁0 = 𝓁0(q, 𝛼, 𝛽, s) to satisfy the above must exist because s(r) = exp(o(r)). Com-
bining (31) and (32) implies that  satisfies Condition 5.1 with 𝓁0 ≥ 2. By Theorem 5.2, if the
parameter 𝓁 in Algorithm 2 is set so that 𝓁 = 𝓁0 − 1, given , the expected running time of Algorithm
2 is n ⋅ qO(Δ𝓁0). Since 𝓁0 = O(1), q = O(1) and Δ ≤ s(1) = O(1), the expected running time of
Algorithm 2 is O(n). ▪

We now prove Proposition 6.1. Similar results are proved in [1, 2, 17, 48].

Proof of Proposition 6.1. Fix a instance  = (G, [q], b,A) ∈ ℑ, where G = (V ,E). Fix two partial
configurations 𝜎, 𝜏 ∈ [q]Λ with 𝓁 ≜ min{distG(v, u)|u ∈ Λ, 𝜎(u) ≠ 𝜏(u)}. We use D ≜ {v ∈
Λ|𝜎(v) ≠ 𝜏(v)} to denote the set at which 𝜎 and 𝜏 disagree. Fix a spin a ∈ [q]. Since  is permissive
(Definition 2.1), we have

𝜇𝜎
v (a) = 0 ⟺ bv(a)

∏
u∈ΓG(v)∩Λ

Auv(a, 𝜎(v)) = 0,

𝜇𝜏
v (a) = 0 ⟺ bv(a)

∏
u∈ΓG(v)∩Λ

Auv(a, 𝜏(v)) = 0,

where ΓG(v) is the neighborhood of v in G. Since 𝓁 ≥ 2, there is no edge between v and D, we have
ΓG(v) ∩ D = ∅. This implies 𝜇𝜎

v (a) = 0 if and only if 𝜇𝜏
v (a) = 0. If 𝜇𝜎

v (a) = 𝜇𝜏
v (a) = 0, the proposition

holds trivially. We assume

𝜇𝜎
v (a) > 0 ∧ 𝜇𝜏

v (a) > 0. (34)

Define the set of vertices H ≜ S⌊𝓁∕2⌋(v) ⧵ Λ, where S⌊𝓁∕2⌋(v) = {u ∈ V|dist(u, v) = ⌊𝓁∕2⌋} is the
sphere of radius ⌊𝓁∕2⌋ centered at v in graph G. By the definitions, we have H∩D = ∅. If H = ∅, then
S⌊𝓁∕2⌋(v) ⊆ Λ. This implies that all vertices in S⌊𝓁∕2⌋(v) are fixed to the same values in 𝜎 and 𝜏. Note
that S⌊𝓁∕2⌋(v) separates v from D in G. By the conditional independence property, 𝜇𝜎

v (a) = 𝜇𝜏
v (a), the

proposition holds. In the rest of the proof, we assume H ≠ ∅.
For any 𝜌 ∈ [q]H satisfying 𝜇

𝜎⊎{v←a}
H (𝜌) > 0 and 𝜇

𝜏⊎{v←a}
H (𝜌) > 0 we have

𝜇𝜎
v (a) =

𝜇𝜎
H(𝜌) ⋅ 𝜇

𝜎⊎𝜌
v (a)

𝜇
𝜎⊎{v←a}
H (𝜌)

, 𝜇𝜏
v (a) =

𝜇𝜏
H(𝜌) ⋅ 𝜇

𝜏⊎𝜌
v (a)

𝜇
𝜏⊎{v←a}
H (𝜌)

.

The first equation holds since 𝜇𝜎
H(𝜌) ⋅ 𝜇

𝜎⊎𝜌
v (a) = 𝜇𝜎

v (a) ⋅ 𝜇𝜎⊎{v←a}
H (𝜌) and 𝜇

𝜎⊎{v←a}
H (𝜌) > 0; the second

equation holds similarly. Note that 𝜇𝜎
v (a) > 0 and 𝜇𝜏

v (a) > 0. We have

𝜇𝜎
v (a)

𝜇𝜏
v (a)

=
(
𝜇
𝜎⊎𝜌
v (a)

𝜇
𝜏⊎𝜌
v (a)

)(
𝜇𝜎

H(𝜌)
𝜇𝜏

H(𝜌)

)(
𝜇
𝜏⊎{v←a}
H (𝜌)

𝜇
𝜎⊎{v←a}
H (𝜌)

)
.
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Note that (Λ⧵D)∪H separates v from D in graph G, and the two configurations 𝜎⊎𝜌 and 𝜏 ⊎𝜌 disagree
only at D. By the conditional independence property, we have 𝜇

𝜎⊎𝜌
v (a) = 𝜇

𝜏⊎𝜌
v (a). Hence, we have

𝜇𝜎
v (a)

𝜇𝜏
v (a)

=
(
𝜇𝜎

H(𝜌)
𝜇𝜏

H(𝜌)

)(
𝜇
𝜏⊎{v←a}
H (𝜌)

𝜇
𝜎⊎{v←a}
H (𝜌)

)
. (35)

Note that (35) holds for any 𝜌 ∈ [q]H satisfying 𝜇
𝜎⊎{v←a}
H (𝜌) > 0 and 𝜇

𝜏⊎{v←a}
H (𝜌) > 0. Our goal is to

choose a suitable 𝜌 and bound the RHS. Let

𝜖 ≜ 𝛿(⌊𝓁∕2⌋).
Without loss of generality, we assume

10q ⋅ |S⌊𝓁∕2⌋(v)| ⋅ 𝛿(⌊𝓁∕2⌋) = 10q𝜖 ⋅ |S⌊𝓁∕2⌋(v)| < 1. (36)

If (36) does not hold, then the inequality (30) holds trivially. We have the following claim.

Claim 6.2. Assume (36). There exists a configuration 𝜌 ∈ [q]H satisfying 𝜇
𝜎⊎{v←a}
H (𝜌) > 0 and

𝜇
𝜏⊎{v←a}
H (𝜌) > 0 such that

(
1 − 2q𝜖

1 + q𝜖

)2m

≤

(
𝜇𝜎

H(𝜌)
𝜇𝜏

H(𝜌)

)(
𝜇
𝜏⊎{v←a}
H (𝜌)

𝜇
𝜎⊎{v←a}
H (𝜌)

)
≤

(
1 + 2q𝜖

1 − q𝜖

)2m

,

where m ≜ |S⌊𝓁∕2⌋(v)| and 𝜖 ≜ 𝛿(⌊𝓁∕2⌋).
The inequality (36) implies that

q𝜖m ≤
1

10
. (37)

Combining Claim 6.2 with the above, we have

(
𝜇𝜎

H(𝜌)
𝜇𝜏

H(𝜌)

)(
𝜇
𝜏⊎{v←a}
H (𝜌)

𝜇
𝜎⊎{v←a}
H (𝜌)

)
≤ exp

(
4q𝜖m
1 − q𝜖

)
≤ exp (5q𝜖m) (by(37))

≤ 1 + 10q𝜖m. (by(37))

Similarly, we have

(
𝜇𝜎

H(𝜌)
𝜇𝜏

H(𝜌)

)(
𝜇
𝜏⊎{v←a}
H (𝜌)

𝜇
𝜎⊎{v←a}
H (𝜌)

)
≥ (1 − 2q𝜖)2m

≥ exp (−8q𝜖m) (by(37))

≥ 1 − 10q𝜖m.

Recall m ≜ |S⌊𝓁∕2⌋(v)| and 𝜖 ≜ 𝛿(⌊𝓁∕2⌋). This proves the proposition. ▪
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Proof of Claim 6.2. Recall H ≜ S⌊𝓁∕2⌋(v) ⧵ Λ. Suppose |H| = h ≥ 1. Let H = {v1, v2, … , vh}.
Define a sequence of subsets H0,H1, … ,Hh as Hi ≜ {vj|1 ≤ j ≤ i}. Note that H0 = ∅ and Hh = H.
We now construct the configuration 𝜌 ∈ [q]H by the following h steps.

• initially, 𝜌 = ∅ is an empty configuration;
• in ith step, given 𝜌 ∈ [q]Hi−1 , choose ci ∈ [q] that maximizes 𝜇𝜎⊎𝜌⊎{v←a}

vi (ci) (break tie arbitrarily),
extend 𝜌 further at position vi and set 𝜌(vi) = ci, thus 𝜌 ∈ [q]Hi after the ith step.

By the construction, we have

∀1 ≤ i ≤ h, 𝜇
𝜎⊎𝜌(Hi−1)⊎{v←a}
vi (𝜌(vi)) ≥

1
q
> 0.

We have distG(H,D) ≥ 𝓁 − ⌊𝓁∕2⌋ ≥ ⌊𝓁∕2⌋, where D is the set at which 𝜎 and 𝜏 disagree, and
distG(H,D) ≜ min{distG(u1, u2)|u1 ∈ H ∧ u2 ∈ D}. Recall 𝜖 ≜ 𝛿(⌊𝓁∕2⌋) and 𝛿 is a nonincreasing
function. By the strong spatial mixing property in Definition 2.2, we have

∀1 ≤ i ≤ h, 𝜇
𝜏⊎𝜌(Hi−1)⊎{v←a}
vi (𝜌(vi)) ≥

1
q
− 𝜖 > 0,

where 1
q
− 𝜖 > 0 holds due to (36). By the chain rule, we have 𝜇

𝜎⊎{v←a}
H (𝜌) > 0 and 𝜇

𝜏⊎{v←a}
H (𝜌) > 0.

We now prove that 𝜌 satisfies the inequalities in Claim 6.2. For any 1 ≤ i ≤ h, define

pi ≜ 𝜇
𝜎⊎𝜌(Hi−1)⊎{v←a}
vi (𝜌(vi)). (38)

Recall that distG(H, v) ≥ ⌊𝓁∕2⌋ and distG(H,D) ≥ ⌊𝓁∕2⌋. Recall 𝜖 ≜ 𝛿(⌊𝓁∕2⌋) and 𝛿 is a nonincreas-
ing function. By the strong spatial mixing property in Definition 2.2, we have for any c ∈ [q] and any
1 ≤ i ≤ h,

0 < pi − 𝜖 ≤ 𝜇
𝜎⊎𝜌(Hi−1)⊎{v←c}
vi (𝜌(vi)) ≤ pi + 𝜖, (39)

0 < pi − 𝜖 ≤ 𝜇
𝜏⊎𝜌(Hi−1)⊎{v←c}
vi (𝜌(vi)) ≤ pi + 𝜖. (40)

Note that pi − 𝜖 ≥ 1
q
− 𝜖 > 0 due to (36). Combining (39), (40) and the chain rule implies

∀c, c′ ∈ [q],
h∏

i=1

(
pi − 𝜖

pi + 𝜖

)
≤

𝜇
𝜏⊎{v←c}
H (𝜌)

𝜇
𝜎⊎{v←c′}
H (𝜌)

≤

h∏
i=1

(
pi + 𝜖

pi − 𝜖

)
.

Note that pi ≥
1
q

for all 1 ≤ i ≤ h due the construction of 𝜌, and q𝜖 < 1 due to (36). We have

∀c, c′ ∈ [q],
(

1 − 2q𝜖
1 + q𝜖

)h

≤
𝜇
𝜏⊎{v←c}
H (𝜌)

𝜇
𝜎⊎{v←c′}
H (𝜌)

≤

(
1 + 2q𝜖

1 − q𝜖

)h

, (41)

and

∀c, c′ ∈ [q],
(

1 − 2q𝜖
1 + q𝜖

)h

≤
𝜇
𝜎⊎{v←c}
H (𝜌)

𝜇
𝜏⊎{v←c′}
H (𝜌)

≤

(
1 + 2q𝜖

1 − q𝜖

)h

. (42)
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Note that

𝜇𝜎
H(𝜌) =

∑
c∈[q]

𝜇𝜎
v (c)𝜇𝜎⊎{v←c}

H (𝜌), 𝜇𝜏
H(𝜌) =

∑
c∈[q]

𝜇𝜏
v (c)𝜇𝜏⊎{v←c}

H (𝜌).

𝜇𝜎
H(𝜌) is a convex combination of 𝜇𝜎⊎{v←c}

H (𝜌), and 𝜇𝜏
H(𝜌) is a convex combination of 𝜇𝜏⊎{v←c}

H (𝜌).
By (41) and (42), it holds that(

1 − 2q𝜖
1 + q𝜖

)2h

≤

(
𝜇𝜎

H(𝜌)
𝜇𝜏

H(𝜌)

)(
𝜇
𝜏⊎{v←a}
H (𝜌)

𝜇
𝜎⊎{v←a}
H (𝜌)

)
≤

(
1 + 2q𝜖

1 − q𝜖

)2h

.

Note that h = |H| and H ⊆ S⌊𝓁∕2⌋(v), then m = |S⌊𝓁∕2⌋(v)| ≥ h. This proves the claim. ▪

6.2 Spin systems on general graphs

In this section, we prove Theorem 2.6 by showing that Condition 2.5 implies Condition 5.1.

Proof of Theorem 2.6. Fix a instance  = (G, [q],A, b) ∈ ℑ satisfying Condition 2.5 with parameter
𝓁 = 𝓁(q) ≥ 2. Fix subset Λ ⊆ V and vertex v ∈ V ⧵ Λ. For any two partial configurations 𝜎, 𝜏 ∈ [q]Λ
satisfying min{distG(v, u)|u ∈ Λ, 𝜎(u) ≠ 𝜏(u)} = 𝓁 ≥ 2, we claim

∀a ∈ [q], 𝜇𝜎
v (a) = 0 ⟺ 𝜇𝜏

v (a) = 0. (43)

Let D ≜ {u ∈ Λ|𝜎(u) ≠ 𝜏(u)}, H ≜ Λ ⧵ D and 𝜌 ≜ 𝜎H = 𝜏H . Since 𝓁 ≥ 2, ΓG(v) ∩ Λ = ΓG(v) ∩ H,
where ΓG(v) is the neighborhood of v in G. Since  is a permissive spin system (Definition 2.1),
𝜇𝜎

v (a) = 0 if and only if bv(a)
∏

u∈ΓG(v)∩H Auv(a, 𝜌u) = 0; similarly, 𝜇𝜏
v (a) = 0 if and only if

bv(a)
∏

u∈ΓG(v)∩H Auv(a, 𝜌u) = 0. This proves (43).
If 𝜇𝜎

v (a) = 𝜇𝜏
v (a) = 0, then (26) holds trivially. Otherwise, by Condition 2.5, 𝜇𝜎

v (a) ≥ 𝛾 and
𝜇𝜏

v (a) ≥ 𝛾 , where 𝛾 = 𝛾(Λ, v) > 0 is positive and depends only on Λ and v. By (8) and (7), we have

||||𝜇𝜎
v (a)

𝜇𝜏
v (a)

− 1
|||| ≤ 𝛾 + 𝑑TV (𝜇𝜎

v , 𝜇
𝜏
v )

𝛾
− 1 ≤

1
5|S𝓁(v)| .

This implies that any instance  = (G, [q],A, b) ∈ ℑ satisfies Condition 5.1 with parameter 𝓁 =
𝓁(q) ≥ 2. Theorem 2.6 is a corollary of Theorem 5.2. ▪

6.3 Uniform list coloring

We now prove Theorem 2.9. Let 𝔏 be a class of list coloring instances with at most q colors for a finite
q > 0. Let 𝛼∗ ≈ 1.763 … be the positive root of the equation xx = e. Suppose there exist 𝛼 > 𝛼∗ and

𝛽 ≥
√

2√
2−1

satisfying (1 − 1∕𝛽)𝛼e
1
𝛼
(1−1∕𝛽)

> 1 such that for all  = (G = (V ,E), [q],) ∈ 𝔏, the graph

G is triangle-free and

∀v ∈ V , |L(v)| ≥ 𝛼 degG(v) + 𝛽.

Gamarnik, Katz, and Misra [20] proved that 𝔏 exhibits the strong spatial mixing with exponential
decay. If 𝔏 is defined on subexponential neighborhood growth graphs, then by Theorem 2.4, the linear
time perfect sampler exists for every instance in 𝔏.
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There are two remaining cases in Theorem 2.9. We now assume that the class 𝔏 of list coloring
instances satisfies one of the following two conditions.

(I) there is an s ∶ N → N with s(𝓁) = exp(o(𝓁)) such that for any  = (G = (V ,E), [q],) ∈ 𝔏,

∀v ∈ V ,𝓁 ≥ 0, |S𝓁(v)| ≤ s(𝓁),
∀v ∈ V , |L(v)| ≥ 2 degG(v);

(II) for any  = (G = (V ,E), [q],) ∈ 𝔏,

∀v ∈ V , |L(v)| ≥ Δ2 − Δ + 2.

Lemma 6.3. Let 𝔏 be a class of list coloring instances with at most q colors for a finite q > 0.
Suppose 𝔏 satisfies (I) or (II). There exist finite A > 0 and 𝜃 > 0 such that for every  = (G, [q],) ∈
𝔏, where G = (V ,E), for any v ∈ V, any Λ ⊆ V, and any 𝜎, 𝜏 ∈ [q]Λ with 𝓁 ≜ min{distG(v, u)|u ∈
Λ, 𝜎(u) ≠ 𝜏(u)} = Ω(q log q), it holds that

∀a ∈ [q] ∶
||||𝜇𝜎

v (a)
𝜇𝜏

v (a)
− 1

|||| ≤ Ae−𝜃𝓁|S𝓁(v)| (with the convention 0∕0 = 1),

where A = A(q, s) > 0 and 𝜃 = 1
2q

> 0 if 𝔏 satisfies (I) with the function s ∶ N → N; or A = poly(q)
and 𝜃 = 1

2q2
> 0 if 𝔏 satisfies (II).

Theorem 5.2 together with Lemma 6.3 proves the remaining two cases in Theorem 2.9. We take a
sufficiently large 𝓁∗ such that 𝓁∗ = Ω(q log q) and Ae−𝜃𝓁

∗
≤ 1

5
. By Lemma 6.3, instances of 𝔏 satisfy

Condition 5.1 with this 𝓁∗ ≥ 2. Thus the perfect sampler exists due to Theorem 5.2. Note that 𝓁∗

depends only on q and the function s, and for any instance  ∈ 𝔏, the maximum degree Δ ≤ q. Thus,
the expected running time of our algorithm is n ⋅ qO(q𝓁∗ ) = O(n). Furthermore, if 𝔏 satisfies (II), then
𝓁∗ = Θ(q2 log q), thus the expected running time is n ⋅ exp(exp(poly(q))).

6.3.1 The multiplicative SSM of list coloring (proof of Lemma 6.3)

In [20, theorem 3], Gamarnik, Katz, and Misra established the best-known strong spatial mixing result
for list colorings in bounded degree graphs. This is almost what we need, except that we want to control
the decay rate under conditions (I) and (II). Going through the proof of [20, theorem 3] and keeping
track of the decay rate, we have the proposition below. The similar analysis technique are also used
in [37].

Proposition 6.4 ([20]). Let  = (G, [q],) be a list coloring instance, where G = (V ,E). Assume
that  satisfies |L(v)| ≥ degG(v) + 1 for all v ∈ V. Suppose

max
u∈V

degG(u) − 1|L(u)| − degG(u)
≤ 𝜒 < 1.

Then for any Λ ⊆ V, any vertex v ∈ V ⧵ Λ, and any two partial colorings 𝜎, 𝜏 ∈ [q]Λ satisfying
𝓁 ≜ min{distG(v, u)|u ∈ Λ, 𝜎(u) ≠ 𝜏(u)} = Ω

(
log q

log(1∕𝜒)

)
, it holds that

∀a ∈ [q] ∶
||||𝜇𝜎

v (a)
𝜇𝜏

v (a)
− 1

|||| ≤ B𝜒𝓁 , (with convention 0∕0 = 1),
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where B = poly(q∕𝜒) depends only on q and 𝜒 .

Proof of Lemma 6.3. Fix a instance  = (G, [q],) ∈ 𝔏, where G = (V ,E). Suppose 𝔏 satisfies
Condition in (I). We have

max
u∈V

degG(u) − 1|L(u)| − degG(u)
≤ max

u∈V

degG(u) − 1
degG(u)

= Δ − 1
Δ

≤
q − 1

q
.

The 𝜒 and B in Proposition 6.4 can be set as 𝜒 = q−1
q

and B = poly(q∕𝜒) ≤ Bmax = poly(q). Then

for any subset Λ ⊆ V , any vertex v ∈ V ⧵ Λ, any two colorings 𝜎, 𝜏 ∈ [q]Λ that disagree on D ⊆ Λ
satisfying 𝓁 ≜ min{distG(u, v)|u ∈ D} = Ω

(
log q

log 1∕𝜒

)
= Ω(q log q), it holds that

∀a ∈ [q] ∶
||||𝜇𝜎

v (a)
𝜇𝜏

v (a)
− 1

|||| ≤ Bmax𝜒
𝓁 ≤ Bmax ⋅

|S𝓁(v)||S𝓁(v)| ⋅ 𝜒𝓁 .

Since G has subexponential growth, we have that |S𝓁(v)| ≤ s(𝓁) = exp(o(𝓁)). Thus,

∀a ∈ [q] ∶
||||𝜇𝜎

v (a)
𝜇𝜏

v (a)
− 1

|||| ≤ Bmax ⋅
s(𝓁)|S𝓁(v)| ⋅

(
q − 1

q

)𝓁

≤
s(𝓁)Bmax|S𝓁(v)| ⋅ e−𝓁∕q ≤

Ae−𝜃𝓁|S𝓁(v)| ,
for some A = A(q, s) > 0 and 𝜃 = 1

2q
> 0.

Suppose 𝔏 satisfies (II). Recall that Δ is the maximum degree of graph G. we have

max
u∈V

degG(u) − 1|L(u)| − degG(u)
≤

Δ − 1
(Δ − 1)2 + 1

.

The 𝜒 and B in Proposition 6.4 can be set as 𝜒 = Δ−1
(Δ−1)2+1

and B = poly(q∕𝜒). Thus 1∕𝜒 ≤ Δ2 ≤ q2.
We have B = poly(q∕𝜒) ≤ Bmax = poly(q). For any subset Λ ⊆ V , any vertex v ∈ V ⧵ Λ, any two
colorings 𝜎, 𝜏 ∈ [q]Λ that disagree on D ⊆ Λ satisfying 𝓁 ≜ min{distG(u, v)|u ∈ D} = Ω( log q

log 1∕𝜒
) =

Ω(log q), it holds that

∀a ∈ [q] ∶
||||𝜇𝜎

v (a)
𝜇𝜏

v (a)
− 1

|||| ≤ Bmax𝜒
𝓁 ≤ Bmax ⋅

Δ(Δ − 1)𝓁−1|S𝓁(v)| ⋅ 𝜒𝓁 ,

where the last inequality due to |S𝓁(v)| ≤ Δ(Δ − 1)𝓁−1. Since 𝜒 = Δ−1
(Δ−1)2+1

, we have

∀a ∈ [q] ∶
||||𝜇𝜎

v (a)
𝜇𝜏

v (a)
− 1

|||| ≤ BmaxΔ
Δ − 1

⋅
1|S𝓁(v)| ⋅

(
(Δ − 1)2

(Δ − 1)2 + 1

)𝓁

(by Δ ≤ q) ≤ 2Bmax|S𝓁(v)| ⋅
(

(q − 1)2
(q − 1)2 + 1

)𝓁

≤
2Bmax|S𝓁(v)| ⋅ e

− 𝓁
2q2 = Ae−𝜃𝓁|S𝓁(v)| ,

where A = 2Bmax = poly(q) and 𝜃 = 1
2q2

> 0. ▪
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6.4 The monomer-dimer model

We now prove Theorem 2.10. We first present the monomer-dimer model instance as a spin system
instance, then we use Theorem 2.4 to prove Theorem 2.10.

Given a graph G = (V ,E), we use G∗ = (V∗,E∗) = Lin(G) to denote the line graph of G. Each
vertex ve ∈ V∗ in line graph G∗ represents an edge e ∈ E in the original graph G, and two vertices ve, ve′

in G∗ are adjacent if and only if e and e′ share a vertex in G. We call S ⊆ V∗ an independent set in G∗

if no two vertices in S are adjacent in G∗. It is easy to verify that there is a one-to-one correspondence
between the matchings in G and the independent sets in G∗.

Given a monomer-dimer model instance  = (G, 𝜆), we define a hardcore model instance ∗ =
(G∗, 𝜆) in the line graph G∗ = Lin(G). Each independent set S in G∗ is assigned a weight w∗ (S) = 𝜆|S|.
Let 𝜇∗ be a distribution over all independent sets in G∗ such that 𝜇∗ (S) ∝ w∗ (S). Hence, ∗ is a spin
system instance and ∗ is permissive. Besides, if we can sample independent sets from 𝜇∗ , then we
can sample matchings from 𝜇 = 𝜇 .

Suppose the class of monomer-dimer model instances 𝔐 satisfies the condition in Theorem 2.10.
Then, there exist a constant C and a function s ∶ N → N with s(𝓁) = exp(o(𝓁)) such that for all
 = (G, 𝜆) ∈ 𝔐, 𝜆 ≤ C = O(1), |S𝓁(v)| ≤ s(𝓁) = exp(o(𝓁)) for all v ∈ V and 𝓁 ≥ 0, and
ΔG ≤ s(1) = O(1). Thus, 𝔐 exhibits strong spatial mixing with exponential decay with constants
𝛼 = 𝛼(C, s) > 0 and 𝛽 = 𝛽(C, s) > 0 [4, 47]. Observe that if e1, e2, … , e𝓁 is a path of edges in G,
then ve1

, ve2
, … , ve𝓁 is a path of vertices in G∗, and vice versa. Hence, the following results hold for

the class of hardcore instances ℌ = {∗ = (G∗, 𝜆)| ∈ 𝔐}.

• The class of hardcore instances ℌ exhibits strong spatial mixing with exponential decay with
constants 𝛼′ = 𝛼′(C, s) > 0 and 𝛽 = 𝛽(C, s) > 0.

• for any instance (G∗, 𝜆) ∈ ℌ, the graph G∗ has subexponential growth. Suppose G∗ = (V∗,E∗)
is the line graph of G = (V ,E). For all e = {u, v} ∈ E, 𝓁 ≥ 1, it holds that |S∗

𝓁(ve)| ≤

ΔG(|S𝓁−1(u)| + |S𝓁−1(v)|) ≤ 2s(1)s(𝓁 − 1) = exp(o(𝓁)), where ve ∈ V∗ represents the edge e,
S∗
𝓁(ve) is the sphere of radius 𝓁 centered at ve in G∗, S𝓁−1(v) is the sphere of radius 𝓁−1 centered

at v in G.

Note that the number of vertices in G∗ is at most nΔG = O(n), where n is number of vertices in G.
Theorem 2.10 is a corollary of Theorem 2.4.

6.5 The hardcore model, Ising model, and anti-ferromagnetic two-spin system

Theorem 2.11, Theorem 2.12, and Theorem 2.13 follow immediately from Theorem 2.4 and strong
spatial mixing results in [36, 41, 43, 52].

7 DYNAMIC SAMPLING

In this section, we use our algorithm to solve the dynamic sampling problem [15, 16]. In this problem,
the Gibbs distribution itself changes dynamically and the algorithm needs to maintain a random sample
efficiently with respect to the current Gibbs distribution.

We first define the update for the spin system instance. Let  = (G, [q], b,A) be a spin system
instance, where G = (V ,E). We use 𝜇 to denote the Gibbs distribution defined by .

• updates for vertices: modifying the vector bv of vertex v ∈ V;
• updates for edges: modifying the matrix Ae of edge e ∈ E; or adding new edge e ∉ E.
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We use (DV ,DE,) to denote the update for instance , where DV ⊆ V , DE ⊆ {{u, v}|u, v ∈ V , u ≠

v}, and  = (bv)v∈DV ∪(Ae)e∈DE . For each v ∈ DV , we modify its vector to bv ∈ , and for each e ∈ DE,
we either add the new edge e with matrix Ae ∈  (if e ∉ E), or modify its matrix to Ae ∈  (if e ∈ E).

Definition 7.1 (dynamic sampling problem). Given a spin system instance  = (G, [q], b,A) where
G = (V ,E), a random sample X ∈ [q]V such that X ∼ 𝜇 , and an update (DV ,DE,) that modifies the
instance  to an updated instance ′ = (G′, [q], b′,A′) where G′ = (V ,E′), the algorithm updates X to
a new sample X′ ∈ [q]V such that X′ ∼ 𝜇′ .

Theorem 7.2. Let ℑ be a class of permissive spin systems satisfying Condition 5.1. There exists an
algorithm such that if the updated instance ′ = (G′, [q], b′,A′) ∈ ℑ, then the algorithm solves the
dynamic sampling problem within Δ(|DV |+ |DE|)qO(Δ𝓁) time in expectation, where Δ is the maximum
degree of G′ and 𝓁 = 𝓁(q) ≥ 2 is determined by Condition 5.1.

Suppose q,Δ,𝓁 = O(1). By Theorem 7.2, the running time of our algorithm is linear in the size of
the update. Hence, the efficient dynamic sampling algorithm exists if strong spatial mixing holds with
a rate faster than the neighborhood growth. The relation between the spatial mixing property and the
static sampling is well studied, we extend such relation further to the dynamic setting.

The dynamic sampling algorithm is given in Algorithms 3 and 4.
In Algorithm 3, the set  ⊆ V contains all the vertices incident to the update. Note that the input

X can be an infeasible configuration for ′, that is, w′ (X) = 0, because the configuration X may

Algorithm 3: Dynamic perfect Gibbs sampler
Input:a spin system instance  = (G = (V ,E), [q], b,A), a random sample X ∼ 𝜇 , and an

update (DV ,DE,) that modifies  to ′ = (G′ = (V ,E′), [q], b′,A′).
1  ← DV ∪

(⋃
e∈DE

e
)

and 𝜕 ← {v ∈ V ⧵ ∣ ∃u ∈  s.t. {u, v} ∈ E′};

2 based on X𝜕, modify the partial configuration X so that w′ (X)>0;
3  ←  ∪ 𝜕 ;
4 while  ≠ ∅ do
5 (X,) ← Fix(′,X,);

6 return X;

Algorithm 4: Subroutine Fix(,X,)
Input:a spin system instance  = (G = (V ,E), [q], b,A), a configuration X ∈ [q]V , a

nonempty subset  ⊆ V , and an integer parameter 𝓁 ≥ 0;
1 pick a u ∈  uniformly at random and let B ← (B𝓁(u) ⧵) ∪ {u};
2 let 𝜇min be the minimum value of 𝜇𝜎

u,(Xu) over all 𝜎 ∈ [q]𝜕B that 𝜎∩𝜕B = X∩𝜕B;
3 with probability 𝜇min

𝜇
X𝜕B
u, (Xu)

do

4 update X by redrawing XB ∼ 𝜇
X𝜕B
B, ;

5  ←  ⧵ {u};

6 else
7  ←  ∪ 𝜕B;

8 return (X,)
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violate the new constraints in . Hence, in line 2, we modify the configuration X so that w′ (X) > 0.
Given the X𝜕, this step can be achieved by a simple greedy algorithm since ′ is permissive. Then,
we construct the initial  as  ∪ 𝜕. In line 5, we call the subroutine Fix on the updated instance ′.

Note that  =  ∪ 𝜕 and 𝜕 separates  from V ⧵  in both G and G′. In line 2, we only
modify the partial configuration X. Such modification only reviews the information of X in  ∪ 𝜕.
Thus, after the modification, the XV⧵ follows the distribution 𝜇

X

 = 𝜇
X𝜕

V⧵, due to the conditional
independence property. Since two instances  and ′ differ only at the subset , due to the conditional
independence property, two distributions 𝜇

X

 and 𝜇
X

′ are identical. Thus, the initial X, satisfies
Condition 4.5 with respect to ′, and X is a feasible configuration for ′. In each iteration of the while
loop, we call the subroutine Fix on ′. By the identical proof in Section 4, the output X ∼ 𝜇′ .

Let Δ denote the maximum degree of graph G′. Note that || = O(|DV | + |DE|). The time com-
plexity of the first three lines of Algorithm 3 is O(Δ||). Note that the size of the initial  is O(Δ||).
The efficiency result in Theorem 7.2 follows from the identical proof in Section 5.

8 CONCLUSION AND OPEN PROBLEMS

The connection between efficient algorithms and spatial mixing (decay of correlation) has been a
long-lasting theme in the study of sampling and approximate counting algorithms. In this work, we
introduce a new approach for perfect sampling, that relates efficient perfect sampling to strong spatial
mixing, for Gibbs distributions on graphs with subexponential neighborhood growth.

Our perfect sampling approach is generic. It is based on the classic Gibbs sampler, while previous
perfect sampling techniques were designed for specific systems or subclasses of systems. It is surpris-
ing to us that the Gibbs sampler, studied for decades as the go-to algorithm for approximate sampling,
can be turned into a perfect sampler by simply adding a filter that accesses only local information.

One key insight in designing our algorithm is to preserve the so called conditional Gibbs
property (⋆), a strong invariant property that implies interruptible perfect sampling as well as dynamic
perfect sampling. An important open problem is to establish the same implication from spatial mix-
ing to efficient perfect sampling on general graphs. This is interesting even for special systems, for
example, the hardcore or monomer-dimer models.

We want to point out that our current algorithm preserves the conditional Gibbs invariant (⋆)
in a quite pessimistic way: the invariant holds for any conditioning of the random configuration of
the “incorrect” variables. We see that even such a straightforward implementation of the invariant
is sufficient to give efficient perfect sampling under spatial mixing on graphs of bounded neigh-
borhood growth. It is promising to have cleverer algorithms that exploit the true power of the
conditional Gibbs property by implementing this invariant in a more global fashion, on average over
randomness.

In general, do efficient perfect sampling algorithms exist whenever efficient approximate samplers
exist? Our results provide evidence towards a positive answer, especially for spin systems on graphs
with bounded neighborhood growth. However, in general the gap between approximate and perfect
sampling persists (e.g. for sampling proper graph colorings [5]). Designing efficient perfect sampling
algorithms matching their approximate counterparts remains an interesting research direction.
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