406 research outputs found

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Open Problems in (Hyper)Graph Decomposition

    Full text link
    Large networks are useful in a wide range of applications. Sometimes problem instances are composed of billions of entities. Decomposing and analyzing these structures helps us gain new insights about our surroundings. Even if the final application concerns a different problem (such as traversal, finding paths, trees, and flows), decomposing large graphs is often an important subproblem for complexity reduction or parallelization. This report is a summary of discussions that happened at Dagstuhl seminar 23331 on "Recent Trends in Graph Decomposition" and presents currently open problems and future directions in the area of (hyper)graph decomposition

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    Efficient Approximation Algorithms for Multi-Antennae Largest Weight Data Retrieval

    Full text link
    In a mobile network, wireless data broadcast over mm channels (frequencies) is a powerful means for distributed dissemination of data to clients who access the channels through multi-antennae equipped on their mobile devices. The δ\delta-antennae largest weight data retrieval (δ\deltaALWDR) problem is to compute a schedule for downloading a subset of data items that has a maximum total weight using δ\delta antennae in a given time interval. In this paper, we propose a ratio 1−1e−ϵ1-\frac{1}{e}-\epsilon approximation algorithm for the δ\delta-antennae largest weight data retrieval (δ\deltaALWDR) problem that has the same ratio as the known result but a significantly improved time complexity of O(21ϵ1ϵm7T3.5L)O(2^{\frac{1}{\epsilon}}\frac{1}{\epsilon}m^{7}T^{3.5}L) from O(ϵ3.5m3.5ϵT3.5L)O(\epsilon^{3.5}m^{\frac{3.5}{\epsilon}}T^{3.5}L) when δ=1\delta=1 \cite{lu2014data}. To our knowledge, our algorithm represents the first ratio 1−1e−ϵ1-\frac{1}{e}-\epsilon approximation solution to δ\deltaALWDR for the general case of arbitrary δ\delta. To achieve this, we first give a ratio 1−1e1-\frac{1}{e} algorithm for the γ\gamma-separated δ\deltaALWDR (δ\deltaAγ\gammaLWDR) with runtime O(m7T3.5L)O(m^{7}T^{3.5}L), under the assumption that every data item appears at most once in each segment of δ\deltaAγ\gammaLWDR, for any input of maximum length LL on mm channels in TT time slots. Then, we show that we can retain the same ratio for δ\deltaAγ\gammaLWDR without this assumption at the cost of increased time complexity to O(2γm7T3.5L)O(2^{\gamma}m^{7}T^{3.5}L). This result immediately yields an approximation solution of same ratio and time complexity for δ\deltaALWDR, presenting a significant improvement of the known time complexity of ratio 1−1e−ϵ1-\frac{1}{e}-\epsilon approximation to the problem

    A Survey of FPGA Optimization Methods for Data Center Energy Efficiency

    Get PDF
    This article provides a survey of academic literature about field programmable gate array (FPGA) and their utilization for energy efficiency acceleration in data centers. The goal is to critically present the existing FPGA energy optimization techniques and discuss how they can be applied to such systems. To do so, the article explores current energy trends and their projection to the future with particular attention to the requirements set out by the European Code of Conduct for Data Center Energy Efficiency. The article then proposes a complete analysis of over ten years of research in energy optimization techniques, classifying them by purpose, method of application, and impacts on the sources of consumption. Finally, we conclude with the challenges and possible innovations we expect for this sector.Comment: Accepted for publication in IEEE Transactions on Sustainable Computin

    Flow Decomposition With Subpath Constraints

    Get PDF
    Flow network decomposition is a natural model for problems where we are given a flow network arising from superimposing a set of weighted paths and would like to recover the underlying data, i.e., decompose the flow into the original paths and their weights. Thus, variations on flow decomposition are often used as subroutines in multiassembly problems such as RNA transcript assembly. In practice, we frequently have access to information beyond flow values in the form of subpaths, and many tools incorporate these heuristically. But despite acknowledging their utility in practice, previous work has not formally addressed the effect of subpath constraints on the accuracy of flow network decomposition approaches. We formalize the flow decomposition with subpath constraints problem, give the first algorithms for it, and study its usefulness for recovering ground truth decompositions. For finding a minimum decomposition, we propose both a heuristic and an FPTalgorithm. Experiments on RNA transcript datasets show that for instances with larger solution path sets, the addition of subpath constraints finds 13% more ground truth solutions when minimal decompositions are found exactly, and 30% more ground truth solutions when minimal decompositions are found heuristically.Peer reviewe
    • …
    corecore