UNIVERSITY OF HELSINKI

https://helda.helsinki.fi

Flow Decomposition With Subpath Constraints

Williams, Lucia

2023-01

Williams , L, Tomescu , Al & Mumey , B 2023, ' Flow Decompaosition With Subpath
Constraints ', IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.
20, no. 1, pp. 360-370 . https://doi.org/10.1109/TCBB.2022.3147697

http://hdl.handle.net/10138/354608
https://doi.org/10.1109/TCBB.2022.3147697

cc_by
publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

360 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

Flow Decomposition With Subpath Constraints

Lucia Williams

, Alexandru |. Tomescu

, and Brendan Mumey

Abstract—Flow network decomposition is a natural model for problems where we are given a flow network arising from superimposing
a set of weighted paths and would like to recover the underlying data, i.e., decompose the flow into the original paths and their weights.
Thus, variations on flow decomposition are often used as subroutines in multiassembly problems such as RNA transcript assembly. In
practice, we frequently have access to information beyond flow values in the form of subpaths, and many tools incorporate these
heuristically. But despite acknowledging their utility in practice, previous work has not formally addressed the effect of subpath
constraints on the accuracy of flow network decomposition approaches. We formalize the flow decomposition with subpath constraints
problem, give the first algorithms for it, and study its usefulness for recovering ground truth decompositions. For finding a minimum
decomposition, we propose both a heuristic and an FPT algorithm. Experiments on RNA transcript datasets show that for instances
with larger solution path sets, the addition of subpath constraints finds 13% more ground truth solutions when minimal decompositions
are found exactly, and 30% more ground truth solutions when minimal decompositions are found heuristically.

Index Terms—Flow decomposition, subpath constraints, RNA-Seq

1 INTRODUCTION

LOW networks are useful models in many domains, from

transportation planning to computational biology. In
some cases, the flow on a graph arises as the superposition
of some set of weighted paths, such as trips through a road
network, routing of information through a communication
network, or paths in a graph encoding mixed reads
sequenced from several biological sequences, as in the case
of RNA transcripts through a splice graph.

In many such applications, we are actually presented
with the inverse problem: given a flow in a graph, we need
to recover the initial paths that made up the flow. This prob-
lem is also referred to as the flow decomposition (FD) problem.
In computational biology, this is a common subroutine in
multiassembly problems, such as RNA transcript assembly
or viral quasispecies assembly. Prioritizing parsimonious
solutions proved to be an accurate assembly method, but it
can suffer when there are multiple parsimonious solution to
choose from. As such, in this paper we consider a natural
generalization of the flow decomposition problem, by
assuming that extra information about the initial paths is
available in the form of subpath constraints. These are sub-
paths in the graph that must be followed by at least one

o Lucia Williams and Brendan Mumey are with the School of Computing,
Montana State University, Bozeman, MT 59717 USA. E-mail: Igw2@uw.
edu, brendan.mumey@montana.edu.

o Alexandru I. Tomescu is with the Department of Computer Science,
University of Helsinki, 00100 Helsinki, Finland. E-mail: alexandru.
tomescu@helsinki fi.

Manuscript received 4 August 2021; revised 2 December 2021; accepted 16
January 2022. Date of publication 1 February 2022; date of current version 3
February 2023.

This work was supported in part by European Research Council (ERC) under
the European Union’s Horizon 2020 Research and Innovation Programme
under Grants 851093 and SAFEBIO, in part by the Academy of Finland under
Grants 322595, 328877, and 308030, and in part by the U.S. National Science
Foundation under Grants DBI-1759522, DBI-1661530, and OIA-1920954.
(Corresponding author: Lucia Williams.)

Digital Object Identifier no. 10.1109/TCBB.2022.3147697

path in the flow decomposition; thus, we are looking for
flow decompositions with the property that every constraint
is a subpath of some decomposition path. We call the result-
ing problem flow decomposition with subpath constraints
(FDSC).

In a version of this work presented at WABI 2021, we left
open the question of whether FDSC (not necessarily mini-
mal) can be solved in polynomial time. In this updated
work, we give a polynomial time algorithm for FDSC, and
present additional discussion on the hardness of two FDSC
variants.

1.1 Biological Setting

Algorithms that solve variations of the flow decomposition
problem are at the heart of most RNA transcript assembly
software, including IsoLasso [1], Traph [2], FlipFlop [3],
Scallop [4] and StringTie [5]. More recently, flow decompo-
sition methods were used for another multi-assembly
problem, namely strain-aware genome assembly, with
applications to viral quasispecies assembly [6], [7]. Briefly,
flow decomposition methods for sequence assembly work
by using reads and their abundances to first construct a
flow network whose vertices may represent exons (in the
case of an RNA splice graph) or k-mers (in the case of a de
Bruijn graph). Edges in the network are present if there is
read evidence that some sequence followed the edge (e.g.,
two exons are consecutive in some transcript). Furthermore,
each edge is weighted by the number of reads that support
it. With perfect data, we might expect the weights to directly
provide a flow in the network; however in practice some
adjustment to the weights may be needed to achieve a flow.
One such method uses a minimum-cost flow approach for
this adjustment [2]. Another approach [8] models the input
as an inexact flow network in which edge flows belong to
intervals, that are estimated from the data. In all cases, we
seek a path decomposition for the flow network that mini-
mizes the number of paths.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3785-0247
https://orcid.org/0000-0003-3785-0247
https://orcid.org/0000-0003-3785-0247
https://orcid.org/0000-0003-3785-0247
https://orcid.org/0000-0003-3785-0247
https://orcid.org/0000-0002-5747-8350
https://orcid.org/0000-0002-5747-8350
https://orcid.org/0000-0002-5747-8350
https://orcid.org/0000-0002-5747-8350
https://orcid.org/0000-0002-5747-8350
https://orcid.org/0000-0001-7151-2124
https://orcid.org/0000-0001-7151-2124
https://orcid.org/0000-0001-7151-2124
https://orcid.org/0000-0001-7151-2124
https://orcid.org/0000-0001-7151-2124
mailto:lgw2@uw.edu
mailto:lgw2@uw.edu
mailto:brendan.mumey@montana.edu
mailto:alexandru.tomescu@helsinki.fi
mailto:alexandru.tomescu@helsinki.fi

WILLIAMS ET AL.: FLOW DECOMPOSITION WITH SUBPATH CONSTRAINTS

In Kloster et al. [9] it was shown that in the case of RNA
transcripts, most of the time the “true” transcripts also pro-
vide a minimum flow decomposition of the splice graph.
However, there can often be more than one solution to the
minimum flow decomposition problem; indeed, Kloster
et al. found that, when the number of true transcripts is
seven, the minimum flow decomposition found corre-
sponds to the true paths in only 80% of the instances of that
size, with lower accuracies as the number of true paths
increases. In fact, practical methods for RNA assembly
methods also have a precision of 50%—60% on some human
datasets [5], [10]. Adding subpath constraints to the flow
decomposition problem may further restrict the solution
space, thus improving RN A assembly accuracy.

In practice, the subpath constraints can be derived from
reads overlapping three or more nodes of the flow graph.
Long RNA-Seq reads naturally have this property in many
cases; however, also short reads can exhibit this behavior in
the case of short exons. As we review below, other possible
sources of such constraints exist in practice as well, such as
from partial assemblies, or super-reads [5] constructed from
short reads that can be uniquely extended.

Finally, most of the RNA assembly tools cited above
work in a so-called genome-guided setting in which also a ref-
erence genome of the studied species is available. This
makes the splice graph acyclic (i.e. a DAG). While both the
original flow decomposition problem and our variant with
subpath constraints can be defined in flow networks with
cycles (which would correspond to a de novo assembly set-
ting), in this paper we focus on DAGs only.

1.2 Related Work

Finding a flow decomposition with the minimum number
of weighted paths is a well-studied problem in computer
science. Even when restricted to DAGs, the minimum
FD problem is NP-hard [11], and thus various practical
approaches to it exist: approximation algorithms [12], [13],
[14], [15], [16], FPT algorithms [9], greedy algorithms [11],
[17]. By taking the set of subpaths constraints to be empty
(or to correspond to all edges of the graph with non-zero
flow), it follows that also finding a solution to the FDSC
problem with a minimum number of paths is NP-hard.

The idea of improving RNA assembly by multi-edge sub-
path information is in fact used by several flow-based tools,
such as Scallop [4] and StringTie [5]. However, both
approaches integrate subpaths in a heuristic manner, with
no overall formulation of the computational problem they
are solving. The same holds also for the viral quasispecies
assembler [6]. Recently, the method TransBorrow [18] uses
partial assemblies from different RNA assembly tools, and
works by heuristically extending the subpaths they corre-
spond to in a splice graph.

Moreover, our FDSC problem generalizes a related prob-
lem on DAGs. Recall that in the minimum path cover (MPC)
problem, we are looking for a minimum-cardinality set of
path that together cover all nodes of a DAG (e.g., “explain”
all exons of a splice graph). The problem is behind early
RNA assembly methods such as Cufflinks [19], and early
virus quasispecies assembly methods such as ShoRAH [20].
The MPC problem has been extended to include subpath

361

constraints as well [21], [22], [23], [24], by analogously
requiring that each constraint is a subpath of some solution
path. While these generalizations are polynomially-time
solvable, they (together with the initial MPC formulations)
are usually unsatisfactory since they ignore the weights of
the graph (i.e. the abundances of the reads)—recall that
most state-of-the-art RNA assembly methods cited above
are flow-based. Moreover, MPCs and MPCs with subpath
constraints correspond to restricted classes of flows in some
DAG [21], [25], and thus the minimum FDSC problem is a
strict generalization of the MPC problem with subpath
constraints.

1.3 Contributions

In this work, we initiate the formal study of the FDSC prob-
lem. This is a natural model for multiassembly problems, as
seen by the abundance of methods and tools that incorpo-
rate subpath information for improving RNA and viral qua-
sispecies assemblies. However, because finding a minimum
solution to the FDSC problem is NP-hard, these methods
and tools have focused on either heuristic approaches or a
polynomial-time solvable particular version of the problem
(MPC) that ignores valuable edge weight information. Here,
we make two advances that bring us closer to being able to
use the complete version of the problem in practical tools.
On the theoretical side, we formalize the problem and give
the first algorithm to determine whether an instance is feasi-
ble (Theorem 18), and produce a solution if it is. The algo-
rithm works via a reduction to the standard flow
decomposition problem where any solution must translate
to a solution in the original graph that satisfies all of the sub-
path constraints. Based on this reduction, in Section 3.2 we
also propose a “bridge-reweighting” heuristic algorithm to
solve the minimum FDSC problem. Additionally, we give
an FPT algorithm for the minimum FDSC problem (Theo-
rem 20), extending the one of Kloster et al. [9]. Finally, in
Section 4, to add to the complexity picture around the FDSC
problem, we show that two application-oriented FD prob-
lems related to FDSC are NP-hard in the strong sense, even
without requiring a solution with a minimum number of
paths.

We implement both algorithms for FDSC, and perform a
proof-of-concept study of their usefulness in RNA assem-
bly. We experiment on a dataset developed by Shao et al.
[17] to study their heuristic for the minimum FD problem.
The same dataset was then used by Kloster et al. [9], who
focused on studying the usefulness of standard minimum
flow decompositions in RNA assembly, as explained above.
We find that our FDSC algorithms increase our ability to
uncover the ground truth RNA transcripts, as more and lon-
ger subpath constraints are included in the input. This holds
both when minimality is enforced, through our FPT algo-
rithm, and when it is only heuristically sought, through the
flow decomposition reduction and an associated path
reduction heuristic. For example, when there are seven
ground truth transcripts, we increase the accuracy by 13%
when an optimal solution is found (via FPT) and 30% when
a heuristic solution is found.

Our FDSC algorithm runs in polynomial time (i.e. always
finds a solution to the FDSC problem, not necessarily

362 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

Fig. 1. An example FDSC flow network with the flow values of the edges
being 1 or z; the dashed paths indicate the subpath constraints. If z = 1,
then the instance is infeasible. If z = 2, then the instance is feasible and
requires three paths to decompose (whereas the associated FD
instance without subpath constraints can be decomposed with two paths
in both cases).

minimum). Though we desire a minimum such path
decomposition, algorithms that guarantee such solutions in
general may be too slow to be used in practice. Despite a
lack of minimality guarantees in our heuristic FDSC algo-
rithm, our experiments show that the addition of subpath
constraints yields solutions that approach the accuracy of a
minimum decomposition without subpath constraints;
thus, our results show that heuristic FDSC is a practical sub-
stitute for minimum FD without subpath constraints.

2 PRELIMINARIES

Since flow weights represent read counts, we restrict atten-
tion to integral flow networks and flow decompositions.

Definition 1. A flow network G = (V, E, f) is a directed acy-
clic graph (DAG) comprised of a set of vertices V containing a
source s and sink t, a set of directed edges E, and a flow func-
tion f : E — N, such that forv e V' \ {s,t},

Z flu,v) = Z (v, w).)
w:(u,w)EE w:(v,w)eE

Finally, for each v € V, there is an s-t path in G that includes v.

Definition 2 (Flow decomposition). A flow decomposi-
tion for a flow network G = (V, E, f) consists of a set of s-t

paths P = (Py,..., B,) and associated integral flow weights
w = (wy, ..., wy) with w; € N such that for each edge e € E,
i:e€P;

We define several problems concerning finding decom-
positions of flow networks into paths.

Problem 3 (MFD). Given a flow network G = (V, E, f), the
minimum flow decomposition problem is fo find a decom-
position (P, w) such that |P| is minimized.

Definition 4 (Flow decomposition with subpath con-
straints). Let G = (V, E, f) be a flow network. Subpath con-
straints are simple paths R = {R, ..., R¢} in G such that no
R; C R;. A flow decomposition (P,w) satisfies the subpath
constraints if and only if

VR; € R 3P; € Psuch that R; is a subpath of P;
(in short, R; € P;). 3
Fig. 1 shows an example of a flow network with subpath
constraints.

Problem 5 (FDSC). Given a flow network G = (V, E, f) and
subpath constraints R, the flow decomposition with

(a) FDSC instance

(b) Constraint graph

Fig. 2. lllustration of the greedy choice for extending paths used in
Algorithm 1. When processing node R; in the constraint graph in Fig. 2b,
the path from R, is extended because the overlap between Ry’s subpath
constraint and R3’s subpath constraint is greater than R;’s and Rj’s.

subpath constraints problem is to determine if there exists,
and if so, find a flow decomposition (P, w) satisfying (3).

Problem 6 (MFDSC). Given a flow network G = (V, E, f) and
subpath constraints R, the minimum flow decomposition
with subpath constraints problem is to determine if there
exists, and if so, find a flow decomposition (P, w) satisfying (3)
such that |P| is minimized.

3 FDSC ALGORITHMS

3.1 FDSC Reduces to FD
We now describe a reduction from the FDSC problem to the
FD problem. The idea is to convert subpath constraints into
edges in an FD instance so that any path decomposition of
the FD instance translates into a path decomposition for the
FDSC instance that covers the subpath constraints.

Given a flow network G = (V, E, f) with subpath con-
straints R, we define the overdemand of an edge as

do(e) = max(0,|{i : e € R;}| — f(e)), 4)

and say that e is overdemanded if d,(e) > 0. The FDSC prob-
lem (G, R) may be feasible if multiple subpaths covering e
are satisfied by a single path in a path decomposition.

If no edges are overdemanded, we can give a simple
reduction from FDSC to FD by transforming all subpath
constraints in the FDSC instance into edges in the FD
instance. We address this case in Section 3.1.1 and the case
with overdemanded edges in Section 3.1.2.

3.1.1 Instances Without Overdemanded Edges

Lemma 7. Let G = (V, E, f) be a flow network with subpath
constraints R such that no edge is overdemanded. Let G' =
(V,E', f') be the flow network that results from converting
every subpath constraint R; = [vi,va,...,v,] to a bridge
edge e; = (v1,v)g,) with f'(e;) = 1 and subtracting one from
the flow values on the edges it covers. That is, for all e € E,
f'(e) = f(e) — |{i : e € R;}|. G is a flow network.

Proof. Consider building G’ from G iteratively by convert-
ing each subpath constraint into a new edge and subtract-
ing its flow from the edges it covers. At each step,
conservation of flow holds. Thus, after the final step, f’ is
a flow on G'. Additionally, because no edge is overde-
manded, all flow values in f" are nonnegative. Thus, G’ is
a flow network.]

WILLIAMS ET AL.: FLOW DECOMPOSITION WITH SUBPATH CONSTRAINTS

(b) Reduced graph

Fig. 3. Demonstration of reduction and bridge reweighthing procedure
used in the heuristic MFDSC algorithm. The resulting FD instance in
Fig. 3b is solved using greedy-width. The dashed edge is a bridge edge
for the corresponding subpath constraint. Weights in parentheses are
the weights before bridge reweighting.

Fig. 3 shows an example of the reduction of an FDSC
instance to a FD instance with a bridge edge.

Lemma 8. Let G and G' be as described in Lemma 7. Let (P', w)
be a size k solution to the FD problem on G'. There exists a size
k solution to the FDSC problem on G.

Proof. We show how to construct a size k solution to FDSC on
G from (P, w). For each path P’ € P, create a new path P
by replacing all bridge edges €, with the original sequence
of nodes R;. By construction, R; must form a path from the
start node of e; to the end node of ¢; in P, and so P is a valid
path from s to ¢ in G. We take P to be the set of all £ such
paths P. We now must show that (P,w) forms a flow
decomposition with subpath constraints for G.

Let e be any edge in G and let R’ C R be the set of sub-
path constraints containing e. We can divide the paths in
P that cover e into two disjoint sets: Pp, those that cov-
ered bridge edges e; : R; € R/, and Py, those those that
covered the original edge e in G'. Because (P, w) is a
flow decomposition for G’, each path in Pz must have
unit weight. Thus, paths in Pp contribute [{i : R; € R'}|
to €’s flow. On the other hand, paths in Pp must cover €’s
flow in G’, which is f(e) — |{i : R; € R'}|. Thus, paths
from Pp and Py together cover e with exactly f(e) units
of flow. Additionally, Pz must satisfy all of the subpath
constraints R’, so together P and Pp do as well. |

Because any FDSC instance without overdemanded
edges can be solved by reduction to FD, it follows that all
FDSC instances without overdemanded edges are feasible.

Corollary 8.1. Let G = (V, E, f) be a flow network with subpath
constraints R. A sufficient condition for a flow decomposition
to exist is that no edge is overdemanded.

3.1.2 Resolving Overdemanded Edges

When an FDSC instance has an overdemanded edge, the
reduction given above fails, because any overdemanded
edge would have a negative flow value after subtracting all
of its demands from its original flow. However, if the FDSC

363

instance (G,R) is feasible, it is possible to first transform
(G,R) to an FDSC instance (G, R*), where no edge is over-
demanded and any path decomposition for (G,R*) also
provides a feasible path decomposition for (G,R). By
Lemma 7, (G,R*) can be solved via reduction to an FD
instance. We now show how to obtain (G, R*), if it exists.

Lemma 9. Let (G, R) be a feasible FDSC instance with overde-
manded edge e and (P, w) be a path decomposition for (G, R).
Let R' C R be the set of subpath constraints that contain e.
There is some P € P such that |{R; : R; € R',R; € P}| > 2.

Proof. Suppose not. That is, suppose (P, w) is a path decom-
position for (G, R) but no path in P covers two or more
subpath constraints in R’ completely. This means that
every subpath constraint in R’ must be satisfied by a dif-
ferent path; call this set of paths P and let the total weight
assigned to these paths be w’ > |P'| = |R/| = |{i : e € R;}|.
As e is overdemanded, we have |{i: e € R;}| > f(e). But
then w' > f(e), contradicting the fact that (P, w) is a path
decomposition for (G, R). 0

Inspired by the above lemma, we consider pairs of sub-
path constraints that may be satisfied by the same path in a
decomposition.

Definition 10 (Compatible subpaths). Two subpaths
R;, R; € R are compatible if and only if R; and R; have a suf-
fix-prefix overlap (so that R; U R; forms a simple path in G).

Definition 11 (Directly-compatible subpaths). Two sub-
paths R;, R; € R are directly compatible if and only if R; and
R; are compatible and there does not exist a subpath Ry such that
R; and Ry, are compatible and Ry, and R; are compatible.

We remark that the directly-compatible relation is just
the transitive reduction of the compatible relation.

Lemma 12. Let (G, R) be an FDSC instance with some overde-
manded edge e. Then (P, w) is a solution for (G, R) if and only
if there exist directly-compatible subpaths R; and R;, each con-
taining e, such that (P,w) is a solution for (G,RU{R;
UR;}\ {Ri, Rj}).

Proof. (—) Let (G,R) be a feasible FDSC instance with
overdemanded edge e. Let (P, w) be a path decomposi-
tion for (G,R). Let R C R be the set of subpath con-
straints that contain e. By Lemma 9, there exists a P € P
and R;,R; € R’ such that R; # R; and R;, R; € P. Since
R; and R; both belong to P and overlap (since they each
contain e), it follows that they are compatible. If R; and
R; are not directly compatible, there must exist some R,
such that R; and Ry, both contain e and are directly com-
patible. In this case, take R; to be Rj. Furthermore, the
path P satisfies the subpath constraint R; U R;, so (P,w)
is a feasible solution for (G, R U{R; U R;} \ {R;, R;}).

(«) Let R; and R; be directly-compatible subpaths
that both contain e. Let (P, w) be a feasible solution to
(G, RU{R; UR;}\ {R;, R;}). It follows that there exists a
path P € P that covers R; U R;. Clearly, P also covers R;
and Rj, so (P, w) is also a feasible solution for (G,R). O

Corollary 12.1. Let (G, R) be an FDSC instance. If there are no
compatible subpaths R; and R; containing some overdemanded
edge e, then (G, R) is infeasible.

364 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

Lemma 12 suggests that we can determine feasibility by
finding combinations of subpath constraints that are satis-
fied by the same paths. We can then think of merging these
subpath constraints together to form an equivalent instance
without overdemanded edges. One way to determine feasi-
bility, then, would be to consider every possible way of
merging subpaths; however, there are an exponential num-
ber of such possibilities.

To do this it polynomial time, we define a new graph
built from the subpath constraints, and show that certain
path coverings in this graph correspond to valid ways to
merge the subpath constraints. If no such path cover exists,
then the instance is infeasible.

We first define the new graph.

Definition 13 (Constraint graph). Let (G,R) be an FDSC
instance. We define its constraint graphG® as the graph where
the vertices are constraints in R and an edge (R;, R;) indicates
that R; and R; are directly compatible.

An example constraint graph for an FDSC instance is
shown in Fig. 2.

Let L be the total length of all subpath constraints and
recall that ¢ denotes the number of subpath constraints. We
can construct the constraint graph G¢ in O(L + ¢3) time by
first using Gusfield’s algorithm for all pairs suffix-prefix
overlaps in O(L + ¢?) time [26] and then finding the transi-
tive reduction of this relation in O(¢®) time using Aho's
algorithm with standard matrix multiplication [27]. (Note
that the original all pairs suffix-prefix overlap relation is
acyclic since no subpath constraint is properly contained
inside another, and G is a DAG.)

Remark 14. G¢is a DAG.

Definition 15 (Edge-induced subgraph). Let e be an edge
in G. The edge-induced subgraph G¢(e) is the subgraph of
G° consisting of all vertices R; in G (and induced edges) such
that e € R,

We now show that a certain path cover of the constraint
graph corresponds to a valid way to merge subpath
constraints.

Lemma 16. Let (G, R) be an FDSC instance and let G¢ be its
constraint graph. (G, R) is feasible if and only if there is a ver-
tex-disjoint path cover P° of G¢ such that, for every edge e in
G, at most f(e) paths in P° visit G*(e).

Proof. (—) Assume (G,R) is feasible. By Lemma 12 and
Corollary 12.1, it is possible to merge subpath constraints
until no edge is overdemanded. The resulting constraint
subpaths are each formed from the union of original con-
straint subpaths in G that were directly compatible, so
each resulting subpath corresponds to a path in G*. Since
each original subpath belongs to exactly one of the final
subpaths, all such paths provide a vertex-disjoint path
cover P° of G¢. Let e € G. Since e is not overdemanded,
the number of paths from P° that visit G°(e) is at most
fe).

(<) Let P° be a vertex-disjoint path cover for G¢ such
that, for every edge e in G, at most f(e) paths in P° visit
G*(e). Create a new FDSC instance (G, R') as follows: For

each path in P°, add a single subpath constraint to R’
that corresponds to union of the subpath constraints in
the path. In (G, R’) no edge is overdemanded, since no
edge in G had more associated paths in P than its flow.
Thus (G, R') is feasible and has a solution (P, w). Since
any path covering a merged subpath constraint must
cover the original un-merged subpath constraints it con-
tains, (P, w) also provides a solution to (G, R). O

There is a simple greedy strategy (Algorithm 1 and
Fig. 2) to find a vertex-disjoint path cover P° of G that mini-
mizes the number of paths intersecting G“(e) for all edges e
inG.

Algorithm 1. Greedy Algorithm to Find a Vertex-Disjoint
Path Cover for G¢ Such That for all Edges e in G, the Min-
imum Possible Number of Paths in the Cover Visit G¢(e)

1: function PathCover(G,R), G°
2: V< topological sorting Ry, ..

., Ry of vertices of G¢

3 P

4: forR;, € Vdo

5: U «+ all in-neighbors of R;

6: if |[U| > 0 then

7 u; < the u € U with greatest number of edges in suf-

fix-prefix overlap with R;

8: Extend the path ending at u; to end at R;

9: else
10: Add new path starting and ending at R; to P°
11: end if
12: end for

13: return P°
14: end Function

Lemma 17. In O(¢?) time, Algorithm 1 finds a vertex-disjoint
path cover for G¢ such that for every edge e in G, the minimum
possible number of paths in the cover visit G¢(e).

Proof. Consider any vertex R in G, with incoming edges
from Ry,...,R,. Clearly, at most one such edge (R;, R)
can belong to any vertex-disjoint path cover. Observe that
for any edge e in G, whether (R;, R) belongs to a path in
the cover only affects the number of cover paths visiting
G“(e) provided both R; and R belong to G¢(e); in other
words, e belongs to both R; and R. For each incoming
edge (R;, R) in G*, consider the set of e € G for which e
belongs to both R; and R; these edges form a path in G
that is a prefix of R. Thus, choosing (R;, R) will benefit—
i.e.,, not increase—the visitation counts to exactly those
edges in this prefix of R. It follows that simply choosing
the (R;, R) that has the longest suffix-prefix overlap will
minimize all visitation counts. By considering the vertices
in topological order, we can extend paths in O(1) time.

Since G* has ¢ vertices, we can perform the topological
sort in O(/?) time. Each edge is examined once during
the algorithm, and we assume that suffix-prefix overlaps
have been pre-computed during the construction of G¢,
so the total running time of this step is O(¢?). O

Because we can find an optimal path cover in polynomial
time, we can check the feasibility of an FDSC instance (and,
if it is feasible, find a solution) in polynomial time.

WILLIAMS ET AL.: FLOW DECOMPOSITION WITH SUBPATH CONSTRAINTS

Theorem 18. Let (G,R) be an FDSC instance with |R| = ¢,
total length of all subpath constraints L, and at least one over-
demanded edge. In O(L + 03) time, we can determine whether
(G, R) is feasible, and if so, reduce (G, R) to an equivalent FD
instance with at most ¢ additional edges.

Proof. As discussed above, G¢ and the suffix-prefix over-
laps can be found in O(L + ¢*) time. We can then use
Algorithm 1 to find an optimal vertex-disjoint path cover
P¢ of G° in O(¢?) time. Because the path cover is optimal,
Lemma 16 tells us that (G, R) is feasible if and only if for
every edge e of G, at most f(e) paths in P° visit G¢(e); this
can be checked in O(L) time. If the instance is feasible, by
Lemma 16, we can merge the subpath constraints in each
path found by Algorithm 1, yielding an equivalent FDSC
instance with no overdemanded edges. Then, we can use
the method of Lemma 7 to transform that FDSC instance
into an equivalent FD instance with at most ¢ additional
edges. O

3.2 A Heuristic Algorithm for MFDSC

In practice, we can run an MFD heuristic algorithm to deter-
mine a solution to the FD instance found via the reduction
in the previous section. We use greedy-width, first pro-
posed in [11], which greedily chooses the heaviest
(“widest”) paths in order to decompose the flow.! As G’ is a
DAG, a greedy-width path can found in O(|V|+ |E| + ¢)
time, by standard dynamic programming. In [11] it is shown
that at most |E| — |V| 4 2 greedy-width paths can be found,
so the total time to find an FD solution is O(|E|(|V| + |E| +
?)). Translating the FD solution back to the original graph
(following Lemma 8) yields a path decomposition for the
FDSC problem. However, in applications, we are often
interested in finding solution to the MFDSC problem, i.e.,
finding a solution with the minimum number of paths. The
introduction of bridge edges in the reduction described
above may lead to more paths being required to decompose
the reduced FD instance than the original FDSC instance.
This is because we now must find paths through bridge
edges, as well as in the original flow network. For this rea-
son, we apply a bridge reweighting heuristic before decom-
posing the network in order to reduce the number of paths.
For some arbitrary ordering of the bridge edges, we do the
following;:

1) For each bridge edge, find the minimum flow f,
over the flow values on the edges of its correspond-
ing subpath constraint in the original network. Since
the FDSC is feasible, fi,i, > 0.

2) Subtract fii, from each of the subpath constraint
edges, and add fni, to the bridge edge.

Since the bridge edge starts at the first node of the sub-
path constraint and ends at the last, flow conservation
holds and the mapping of the bridge paths back to the
original network again provides a solution to the FDSC
instance. Fig. 3 demonstrates the reduction to an FD
instance and the bridge reweighting step on an example
FDSC instance.

1. Greedy-width is a common heuristic algorithm for MFD. Other
heuristics such as Catfish [17] could also be substituted.

365

3.3 An FPT Scheme for MFDSC

In this section, we describe an extension of Toboggan [9], an
FPT algorithm for decomposing DAG flows, to also handle
subpath constraints. Toboggan is able to find a k-path
decomposmon for a flow network G = (V,E, f), if one
exists, in 200). (V]| + \)) time, where) is the logarithm of
the largest flow value present. To solve MFD, Toboggan
tests increasing k values until a solution is found. We briefly
describe Toboggan’s approach and then discuss how to
modify the algorithm so that it can also check if an FD solu-
tion satisfies subpath constraints.

Toboggan considers the vertices of G in topological order
and computes a table 7T; for each vertex v; using dynamic
programming. Table entries are of the form (g, L), where g
indicates how paths from the previous table 7;_; are
extended, and L is a linear system indicating how the
weights of these paths are constrained to satisfy the flow
requirements on all edges encountered so far. This linear
system can be written as Aw =b, where A is a binary
matrix of k columns representing whether each row’s edge
is covered by each column’s path, w is the length £ solution
vector, and b is the flow on the row’s edge. Because there
are k weights and all coefficients are integers, each linear
system can be reduced to k linearly independent rows. As
noted in [9], testing an integer linear system L for feasibility
and finding a solution can be done in O(k*%*°(*)|L|) time,
where || is shown to be k() \.

When the final vertex in the order is reached, these linear
systems indicate the path flow constraints on all edges in G,
and so, if a particular system is feasible, the corresponding
paths and weights provide an FD solution.

To modify Toboggan to also consider the subpath con-
straints, for the final table T}y, we add a second linear sys-
tem to simultaneously satisfy of the form Aw > b, where A
is an ¢ x k binary matrix and b” = (i, ..., d;). Here A(i, j) €
{0,1} indicates whether path P; contains R;. We give an
updated version of a lemma [9, Lemma 5] that bounds the
number of distinct linear systems in the final table.

32 ké

Lo distinct linear

Lemma 19. The final table has at most <
systems.

Proof. We follow the proof of [9, Lemma 5]. Since A is an
¢ x k binary matrix, there are 2¥ possible systems of the
second form. We must multiply this by the number of
flow m%ztching systems which was bounded ([9, Lemma
5]) by 7 - So, the total number of possible combined lin-

_ P 0
T

ear systems is 2/ 4

Theorem 20. Let (G, R) be an FDSC instance with |R| = ¢ and
X is the logarithm of the largest flow value in the input. Modify-
ing the Toboggan algorithm as described provzdes an FPT algo-
rithm for MFDSC with running time 200°)|V|4 200 +k)
(k+0)°W,

Proof. Kloster et al. prove ([9, Lemma 4]), that in any table
T;, the number of distinct g values present is at most
VE(0.649k)". This implies (following [9, Theorem 7]) that
there are at most

2kl
4k +5

f4k‘2+’%—‘0.649k
KKk

VE(0.649k)" = b

366 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

final linear systems L to check for integer solutions. The
encoding size of a linear system L is now bounded by
(k+0)?), where A is the logarithm of the largest flow
value in the input. Checking feasibility and finding a
solution for L can now be done in (k250 (k4)01))
time, so the total time needed to check all such linear sys-
tems is at most

AFH50 6495 o

. 5k+o(k) o(1)
\/%7k! Ok (k+0)°N)
< O L3R 7655 620 (4)PV N), (5)

using the fact that % < ¢*. The total running time of the
algorithm becomes 200)|V/| + 200k (k; 4)01 O

4 HARDNESS OF RELATED FLOW
DECOMPOSITION PROBLEMS

In this section we add to the computational complexity pic-
ture around the FDSC problem by studying two natural
application-oriented variants of it. In contrast to the FDSC
problem, where deciding if the instance is feasible can be
done in polynomial time (recall Theorem 18), for both of
these problems feasibility checking is NP-complete in the
strong sense (i.e. even if the input flow values are bounded
by a polynomial in the size of the input; in fact, the former
one is NP-complete even when all flow values equal 1).
Since their application setting is slightly different from the
one of the FDSC problem (see our FDSC experiments in Sec-
tion 5), in this paper we do not give algorithms for them,
and leave that for future work.

First, we consider the version of the problem where the
subpath constraints have associated demands that must be
met by the flow assigned to a path that covers them. This
problem could arise if we would like a subpath constraint
to be covered by at least one flow path of higher weight,
since a more heavily-weighted path may be less likely to be
result of noisy data.

Definition 21 (Flow decomposition with subpath con-
straints and demands). Let G = (V, E, f) be a flow net-
work. Let R = {Ry, ..., R} be a set of subpath constraints in
G,and let D = {ds, . .., d;} be a set of demands, where each d;
is associated to subpath constraint R;. We say that a flow
decomposition (P, w) of G satisfies subpath constraints R and
demands D if and only if

VR; € R 3P; € P such that R; € P; and d; < w;. (6)

Problem 22 (FDSCD). Given a flow network G = (V, E, f)
and subpaths constraints R and demands D, the flow decom-
position with subpaths constraints and demands problem
is to determine if there exists, and if so, find a flow decomposi-
tion (P, w) satisfying (6).

We note that FDSC is a special case of FDSCD, where all
demands are equal to one. The following proof is very simi-
lar to the NP-completeness proof of [11] for MFD.

Theorem 23. FDSCD is NP-complete in the strong sense.

Proof. Clearly, FDSCD belongs to NP. For NP-hardness, we
reduce from the 3-PARTITION problem. The input of this

flep) = q

fb) =8

fle) =a,

fles) = as,

fib) =B

Fig. 4. Given an instance of 3-PARTITION A = {ay,as,...,a3,} with
D eca @ =qB , we construct the flow network with edges ey,..., e,
1,.. b, For all ie{1,...,3q}, we set f(e;) =a;, and for all je
{1,...,q} we set f(b;) = B. For each ¢; we add the single-edge subpath
constraint [e;] with demand d; = a;.

problem consists of a set of positive integers A =
{a1,as,...,a3,}, where >~ _,a=¢Band B/4 < a < B/2
for all a € A. The question is whether there exists a parti-
tion of A into ¢ disjoint subsets, each with exactly three
elements summing up to B.

Given an input for 3-PARTITION, we construct the
flow network G = (V, E, f) with subpath constraints R
with demands D as in Fig. 4. We claim that this is a YES
instance for 3-PARTITION if and only if the reduction
creates a YES-instance for FDSCD.

(=) Assume {{a;,,a;,,a;,|j € {1,...,q}}} is a proper
3-partition of A. For each j € {1,...,q}, we build the three
flow paths (e;,b;), (ej,,b;), (ejy,b;), with weights
aj,, aj,, aj,, respectively. This is possible since f(b;) =
B= 22:1 aj,. As such, each subpath constraint [e;] of
demand gq; is satisfied.

(«) Let (P, w) be a flow decomposition with subpath
constraints R and demands D of G as indicated. Since
the demand of each constraint [e;] is a;, and f(e;) = q; it
follows that each edge e; is used by exactly one flow path
of weight a;, and thus that P consists of exactly 3¢ paths
Py, ..., Py, with weights a;,as, ..., a3, respectively. For
each j € {1,...,q}, consider the flow paths passing thor-
ough b,. Since B/4 < a < B/2 holds for all a € 4, there
are exactly 3 such paths, say P; , P;,, Pj,, each of weight
a;,,aj,,a;, respectively, passing through b;. As such,
{{aj,,aj,,a;, 17 € {1,...,q}}} is a proper 3-partition of A.

Finally, since 3-PARTITION is NP-complete in the
strong sense [28], it follows that FDSCD is as well. m|

Our second problem variant is motivated by paired-end
reads, which naturally induce pairs of subpath constraints
that must be covered by the same flow path (since e.g., they
are sequenced from the same RNA transcript).

Definition 24 (Flow decomposition with paired sub-
path constraints). Let G = (V,E, f) be a flow network.
Paired subpaths constraints are defined to be a set of pairs of
simple paths R ={(R1,R)),...,(Ri,R))} in G. A flow
decomposition (P,w) satisfies the paired subpaths constraints
if and only if

V(RL,RZ) eR E'P/ € P such that R; € P] and Ri S PI @)

Problem 25 (FDPSC). Given a flow network G = (V, E, f) and
paired subpaths constraints R, the flow decomposition with
paired subpaths constraints problem is to determine if there
exists, and if so, find a flow decomposition (P, w) satisfying (7).

Our NP-completeness proof below is similar to the NP-
completeness proof of the minimum path cover problem

WILLIAMS ET AL.: FLOW DECOMPOSITION WITH SUBPATH CONSTRAINTS

367

Vi
\%
“ o m.... @
Yj

| [Le= 0y |

Vertex part

Fig. 5. Given an undirected graph G = (V, E), with V' = {v;, v, ..

Edge part

., v }, We construct a flow network G* as illustrated. For every vertex v; we add three

parallel edges, labelling one of them with v;. For every edge e = (v;,v;) of G, we add three parallel edges, one labeled v; and one labeled v.. For e we
also add one constraint pairing the edge labeled v; from the vertex part, with the edge labeled v/, and one constraint pairing the edge labeled v; from

the vertex part with the edge labeled /. The flow value of every edge is 1.

with paired subpath constraints from [29]. Note that hard-
ness holds even if all flow values equal 1.

Theorem 26. FDPSC is NP-complete even when all flows values
are 1.

Proof. Clearly, FDPSC belongs to NP. For NP-hardness, we
reduce from the problem of deciding whether the chro-
matic number of an undirected graph G = (V,FE) is 3.
Given G, we construct the flow network G* = (V*, E*, f),
with paired subpaths constraints R, as in Fig. 5. We claim
that the chromatic number of G is 3 if and only if (G*, R)
is a feasible FDPSC instance.

(—) Let Vi, V5, V3 be a partition of V such that no
edge of G has endpoints in the same Vj,. Then, we can
construct a flow decomposition (P, P, P;) of G¥,
where each path has weight 1, as follows. In the vertex
part of G*, suppose v; € Vj; Py follows the edge labeled
v;, and the other two paths follow the other two edges
parallel to it, respectively. In the edge part of G*, for
each edge e = (v;, v;), where v; € V; and v; € ij., path
P, follows the edge labeled v; and path P, follows the
edge labeled v/. The remaining path follows the middle
unlabeled edge. Clearly, all subpath constraint pairs
are satisfied.

(<) Any flow decomposition of G* has exactly 3
paths, each of weight 1. Let P, %, P; be a flow decompo-
sition with paired subpaths constraints of (G*,R). We
construct a partition Vi, Vs, V3 of V: in the vertex part of
G*, an edge labeled v; belongs exactly to one Py, and we
assign v; to Vi. Assume for a contradiction that some
edge e = (v;,v;) of G has endpoints in the same V},. Recall
that for e, R contains a constraint pairing the edge
labeled v; with the one labeled v}, and one constraint
pairing the edge labeled v; with the one labeled .
Because of these constraints, since P, passes through
both v; and v; (in the vertex part of G*), in the edge part
of G* corresponding to e we have that P, passed through
both the edge labeled v; and the one labeled v, which is
a contradiction. 0

5 EXPERIMENTS

The algorithms described in Section 3 were implemented in
Python in a package called Coaster.”> We refer to the algo-
rithm of Section 3.2 as heuristic MFDSC and Section 3.3 as
FPT MFDSC. Experiments were performed on a high

2. Coaster is based on the codebase for Toboggan [30] and is avail-
able at github.com/msu-alglab/coaster

performance research cluster, where each run was executed
on a single Intel Xeon Ivy Bridge E (3.4 Ghz) or similar
CPU. We denote the number of groundtruth paths for an
instance by k, and set a CPU time limit of 30 seconds for
smaller instances (2 < k < 8) and 1 hour for larger instances
(k= 9,10). For fairness of comparison, we report only on
graph instances that ran to completion for all algorithm and
parameter combinations, unless otherwise mentioned.
Overall, we find that heuristic MFDSC completes for all test
instances in under one second, and FPT MFDSC completes
in under 30 seconds for all instances with k£ <5, which
includes the majority of instances. We give additional
details and results in the following sections.

5.1 Datasets

As in previous studies on flow decomposition methods for
RNA-Seq assembly [8], [9], [17], we use a simulated RNA-
Seq dataset from [17] where each instance is a flow network
generated by simulating RNA transcripts and their abun-
dances with Flux-Simulator [31]. The original dataset
includes human, mouse, and zebrafish genes, but we restrict
our attention to instances in the human dataset, which con-
tains 100 independently generated transcriptomes. As
in [8], [9], we use only instances with at least two ground
truth paths (since a single ground truth path is trivial to
decompose). We also restrict the dataset to instances with
10 ground truth paths or fewer, yielding a total of 528,544
instances. Because the transcripts and abundances are
known, we have ground truth paths and weights for each
splice graph instance. We measure accuracy as the propor-
tion of instances for which the algorithm returns the ground
truth set of paths and weights exactly.

5.2 Simulating Subpath Constraints

In order to simulate subpath constraints, we take sub-
paths of the ground truth paths according to two param-
eters: the number of subpaths ¢, and a fixed length for
all subpaths |R|. As noted in [9, Lemma 8], we can sim-
plify the graph by bypassing any vertex with out-degree
or in-degree equal one. We set |R| as the length of sub-
paths in this contracted graph. To generate subpath con-
straints that are consistent across experiments, we fix an
arbitrary ordering for the ground truth paths for each
instance, and take the first |R| edges of the first ¢ (con-
tracted) paths as the subpaths. We note that the method
of generating subpath constraints described here does
not yield any overdemanded edges.

github.com/msu-alglab/coaster

368

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

TABLE 1
Accuracy Results Using the MFDSC With Bridge-Reweighting Heuristic Algorithm (labeled “H-br”) and the MFDSC FPT Algorithm
(labeled “FPT”)

|R| =3 |R| =4
n pc alg =0 /=1 (=2 {=3 /=4 /=1 {=2 {=3 /=4
291734 100% H-br 0.992 0.999 0.999 1.000 1.000
FPT 0.991 0.999 0.999 1.000 1.000
3 130867 100% H-br 0.961 0.977 0.983 0.986 0.985 0.993 0.994
FPT 0.969 0.983 0.990 0.994 0.986 0.996 0.998
4 58167 100% H-br 0.901 0.926 0.941 0.948 0.958 0.942 0.964 0.974 0.979
FPT 0.934 0.952 0.964 0.974 0.983 0.958 0.976 0.987 0.995
5 25933 100% H-br 0.822 0.853 0.873 0.887 0.900 0.876 0.911 0.930 0.944
FPT 0.892 0.913 0.928 0.940 0.953 0.922 0.944 0.962 0.976
6 11774 99.6% H-br 0.727 0.763 0.784 0.805 0.816 0.787 0.831 0.862 0.883
FPT 0.849 0.870 0.885 0.898 0.911 0.881 0.906 0.928 0.944
7 5095 94.6% H-br 0.617 0.659 0.692 0.706 0.729 0.681 0.738 0.775 0.802
FPT 0.810 0.835 0.855 0.871 0.883 0.845 0.872 0.894 0.912
8 2109 83.7% H-br 0.495 0.523 0.558 0.589 0.611 0.545 0.607 0.664 0.702
FPT 0.787 0.808 0.822 0.833 0.845 0.819 0.840 0.863 0.884
9 1323 83.14% H-br 0.455 0.495 0.527 0.565 0.592 0.522 0.582 0.643 0.698
FPT 0.714 0.731 0.742 0.762 0.781 0.745 0.769 0.795 0.821
10 699 69.53% H-br 0.420 0.442 0.459 0.484 0.508 0.465 0.506 0.541 0.578
FPT 0.726 0.747 0.757 0.772 0.784 0.757 0.776 0.807 0.825

For k = 2 through k = 8 we use a CPU time limit of 30 seconds; for k = 9,10 we use 1 hour. We only report instances that finished in the time limit for all £,|R),
and for both algorithms for each k; the “pc” column reports the percentage of instances that completed for all runs for each k value. The italicized values agree with
the ones reported in [9, Fig. 31, with some slight differences due to the fact that we restrict to the human dataset (they studied two additional datasets) and timeout

differences.

5.3 Accuracy Results

To study the effect of the subpath constraints on the accu-
racy of the RNA-Seq assembly, we vary ¢ and |R| indepen-
dently, letting ¢ € [0,4] and |R| € {3,4}. Because instances
become more difficult to solve correctly as the number of
ground truth paths increases, we separate results by k.
Accuracy results for both algorithms are reported in Table 1.
For each k value, we also report the percentage of instances
that completed for all parameter combinations tested. As
already shown by Kloster et al. [9], the MFD solutions found
by Coaster for £ = 0 (for them, Toboggan) do correspond to
the the ground truth paths and weights most of the time.
However, for larger k values, we can see that FPT MFD sol-
utions (without subpath constraints) do not necessarily
recover the correct set of paths and weights. For k = 7, for
example, only 81% of the optimal decompositions produced
by Coaster are the ground truth decomposition that we are
seeking. Similarly, we see that FPT MFDSC solutions tend
to be correct, with accuracy decreasing as k increased. How-
ever, FPT MFDSC has higher accuracy for all parameter
combinations than FPT MFD at the same k value. For k =7,
when we add four subpath constraints of length four each,
the ground truth decomposition is found 91% of the time, a
13% increase over FPT MFD.

When ¢ = 0, our heuristic MFDSC algorithm is equiva-
lent to the often-used greedy-width heuristic for MFD; our
results show that adding subpath constraints to greedy-
width increases its accuracy considerably for larger k val-
ues, for example, by 30% when k = 7. The increased accu-
racy of heuristic MFDSC is also good news for the use of
MFDSC in practical methods, since heuristic MFD meth-
ods are already commonly used in RNA-Seq tools. In fact,
the inclusion of many long subpath constraints makes heu-
ristic MFDSC more accurate than FPT MFD for k values up

to 5, which account for 95.6% of the full dataset studied
(all £ > 2).

Part of the success of the heuristic MFDSC can be attrib-
uted to the fact that it finds optimal solutions in most cases.
Without subpath constraints, heuristic MFDSC (i.e. greedy-
width MFD) finds an optimal solution in 98.0% and the
ground truth solution in 95.3% of instances in our dataset.
With two subpath constraints of length 4, that increases to
99.0% and 98.1%, respectively. (For ¢ > 2, small k values
are excluded, so results are not comparable with £=10
experiments.)

With and without subpath constraints, the vast majority
of incorrectly predicted path decompositions are due to the
algorithm returning an optimal decomposition of the same
size as the ground truth one, but different from it, rather
than a too-small optimal decomposition. As found in [9], in
nearly all instances, the ground truth path decomposition is
also an optimal decomposition. (They find that 0.043% of
instances of all ground truth k that ran to completion in 50
seconds had non-optimal ground truth decompositions; we
find that 0.100% of instances that completed in 30 seconds
for all parameter combinations and had ground truth % less
than 9 had non-optimal ground truth decompositions.)
However, most instances are solved correctly, so it could be
the case that the few instances that are not solved correctly
are those that had non-optimal ground truths. This tends
not to be the case. Overall, only 0.027% of instances for
which the FPT for MFD yields incorrect solutions have non-
optimal ground truth path decompositions. This is domi-
nated by the k=2 instances, however, for which no
instance had a non-optimal ground truth; for £ = 3 through
k=38, between 0.1% and 0.3% of instances that were pre-
dicted incorrectly had non-optimal ground truths. With
many and longer subpath constraints (|R| =4 and ¢ = 4), it

WILLIAMS ET AL.: FLOW DECOMPOSITION WITH SUBPATH CONSTRAINTS 369
TABLE 2
Accuracy Values for FD Heuristic With (“H-br”) and Without (“H-b”) Bridge Reweighthing,
Averaged Over all Instances With 2 < k£ < 10
IR =3 |R| =4

=0 (=1 (=2 =3 =4 =1 (=2 (=3 (=4
H-br 0.951 0.965 0.970 0.942 0.899 0.971 0.979 0.963 0.930
H-b 0.951 0.926 0.809 0.582 0.379 0.945 0.913 0.793 0.633

If all bridges are kept at weight one, subpath constraints reduce the accuracy of the path decomposition, though less if they are longer.

is still only a very small number — 0.052% — of incorrect solu-
tions that have non-optimal ground truth path decomposi-
tions. Thus, this implies that the addition of subpath
constraints restricts the solution space, allowing the algo-
rithm to return the correct one more frequently and explain-
ing the increase in accuracy when they are included.

5.4 Effect of the Bridge Reweighting

To confirm the effectiveness of the bridge reweighting heu-
ristic for MFDSC, as opposed to simply using a path decom-
position found by the method of Lemma 8, we measured
the accuracy of the FDSC algorithm without bridge
reweighthing on the same dataset studied above. In that
case, the addition of subpath constraints in our experiments
reduces the accuracy of the path decompositions returned,
as shown in Table 2. Bridge reweighting allows the maxi-
mum flow that can cover a subpath constraint to do so,
without introducing extra weight-one paths.

5.5 Performance Results

We measured CPU runtime of the implementation for both
algorithms using all instances for the given k range, even
those that timed out for some experimental conditions. For
heuristic MFDSC on 2 < k < 8 instances, the average, mini-
mum, and maximum runtimes were 0.0059s, 0.00096s, and
0.977s. For FPT instances, they were 0.076s, 0.001s, and 30s
(the maximum time allowed). On k = 9,10 instances, the
average, minimum, and maximum runtimes were 0.018s,
0.004s, 0.155s for heuristic MFDSC and 289.3s, 0.932s, and
3600s (the maximum time allowed) for FPT FDSC.

Because of the optimizations made in Toboggan [9] on
which our FPT MFDSC implementation is based, memory
use is generally very limited even as k increases. We mea-
sured the peak memory use for large instances (k =9,10)
with a timeout limit of 1 hour for all experimental combina-
tions (¢ and |R| values) for the FPT MFDSC algorithm. All
but four instances used under 100MB of memory in all
experimental combinations; the average memory use over
all instances and all experimental combinations, even those
that timed out after an hour, was 47 MB. For most instances,
the memory use is dominated by loading the required
Python packages (about 40 MB).

6 DiISCuUSSION

In this work, we initiate the formal study of the MFDSC
problem, which is used as a model in applications such as
RNA sequencing and viral quasispecies assembly. We give
both a heuristic algorithm, based on a novel reduction to
flow decomposition, and an FPT algorithm, which extends

the FPT MFD algorithm of Kloster ef al. [9]. Through experi-
ments on a previously-studied simulated transcriptomics
dataset, we verify the base assumption underlying the use
of MFDSC in practical RNA-Seq tools: that the minimum-
size path decomposition should correspond to the ground
truth set of paths and weights. Additionally, we show that
the use of subpath constraints increases accuracy when
compared to MFD without subpath constraints. We also
find that our heuristic algorithm is practical, completing in
less than 1 second for all instances studied, and achieves
accuracy levels near those of FPT MFDSC. This is an encour-
aging result, because while RNA sequencing data tends
toward very small ground truth path sets, other multias-
sembly problems such as viral quasispecies assembly may
not — for example, some benchmarking datasets of [32] con-
tain 10 and 15 strains, meaning that MFDSC (or even MFD
without subpath constraints) would be intractable without
a heuristic.

The research presented here suggests a number of future
directions. One is to develop MFDSC algorithms for graphs
containing cycles. Though splice graphs for RNA assembly
are usually DAGs, graphs for de novo assembly of viral or
other genomes would likely contain cycles due to repeated
sequences. Another is to explore additional methods to
increase the accuracy of the decompositions found. Our
experiments show that as the size of ground truth gets large,
accuracy decreases because there are multiple optimal solu-
tions to choose from, even with the maximum length and
number of subpath constraints that we tested. To increase
accuracy, either more subpath constraints are needed
(which may be possible, depending on the domain), or addi-
tional optimality criteria could be used. For example, the
two FDSC variants considered in Section 4 (together with
yet to be discovered algorithms for them and possible prob-
lem generalizations) could guide the search for such opti-
mality criteria.

REFERENCES

[11 W. Li, J. Feng, and T. Jiang, “IsoLasso: A LASSO regression
approach to RNA-Seq based transcriptome assembly,” J. Comput.
Biol., vol. 18, no. 11, pp. 1693-1707, 2011. [Online]. Available:
http:/ /dx.doi.org/10.1089/cmb.2011.0171

[2] A.I Tomescu, A. Kuosmanen, R. Rizzi, and V. Makinen, “A novel
min-cost flow method for estimating transcript expression with
RNA-Seq,” BMC Bioinf., vol. 14, no. S-5, 2013, Art. no. S15.
[Online]. Available: http://dx.doi.org/10.1186/1471-2105-14-S5-
S15

[3] E.Bernard, L. Jacob, J. Mairal, and J. Vert, “Efficient RNA isoform
identification and quantification from RNA-Seq data with net-
work flows,” Bioinformatics, vol. 30, no. 17, pp. 2447-2455, 2014.
[Online]. Available: http://dx.doi.org/10.1093/bioinformatics/
btu317

http://dx.doi.org/10.1089/cmb.2011.0171
http://dx.doi.org/10.1186/1471--2105-14-S5-S15
http://dx.doi.org/10.1186/1471--2105-14-S5-S15
http://dx.doi.org/10.1093/bioinformatics/btu317
http://dx.doi.org/10.1093/bioinformatics/btu317

370

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 20, NO. 1, JANUARY/FEBRUARY 2023

M. Shao and C. Kingsford, “Accurate assembly of transcripts
through phase-preserving graph decomposition,” Nature Biotech-
nol., vol. 35, no. 12, pp. 1167-1169, 2017.

M. Pertea, G. M. Pertea, C. M. Antonescu, T.-C. Chang, J. T.
Mendell, and S. L. Salzberg, “Stringtie enables improved recon-
struction of a transcriptome from RNA-Seq reads,” Nature Bio-
technol., vol. 33, no. 3, pp. 290-295, 2015.

J. A. Baaijens, L. Stougie, and A. Schonhuth, “Strain-aware assem-
bly of genomes from mixed samples using flow variation graphs,”
in Proc. Int. Conf. Res. Comput. Mol. Biol., 2020, pp. 221-222.

J. A. Baaijens, B. V. der Roest, J. Koster, L. Stougie, and
A. Schonhuth, “Full-length de novo viral quasispecies assembly
through variation graph construction,” Bioinformatics, vol. 35, no.
24, pp. 5086-5094, 2019. [Online]. Available: https://doi.org/
10.1093 /bioinformatics /btz443

L. Williams, G. Reynolds, and B. Mumey, “RNA transcript assem-
bly using inexact flows,” in Proc. IEEE Int. Conf. Bioinf. Biomed.,
2019, pp. 1907-1914.

K. Kloster ef al., “A practical FPT algorithm for flow decomposi-
tion and transcript assembly,” in Proc. 20th Workshop Algorithm
Eng. Exp., 2018, pp. 75-86.

T. Steijger et al., “Assessment of transcript reconstruction methods
for RNA-Seq,” Nature Methods, vol. 10, no. 12, pp. 1177-1184, Dec.
2013. [Online]. Available: http://dx.doi.org/10.1038 /nmeth.2714

B. Vatinlen, F. Chauvet, P. Chrétienne, and P. Mahey, “Simple
bounds and greedy algorithms for decomposing a flow into a min-
imal set of paths,” Eur.]. Oper. Res., vol. 185, no. 3, pp. 1390-1401,
2008.

T. Hartman, A. Hassidim, H. Kaplan, D. Raz, and M. Segalov,
“How to split a flow?,” in Proc. IEEE Conf. Comput. Commun.,
2012, pp. 828-836.

V. Suppakitpaisarn, “An approximation algorithm for multiroute
flow decomposition,” Electron. Notes Discr. Math., vol. 52, pp. 367
374, 2016. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/51571065316300531

K. Pientkosz and K. Kottys$, “Integral flow decomposition with
minimum longest path length,” Eur. |. Oper. Res., vol. 247, no. 2,
pp- 414-420, 2015.

B. Mumey, S. Shahmohammadi, K. McManus, and S. Yaw, “Parity
balancing path flow decomposition and routing,” in Proc. IEEE
Globecom Workshops, 2015, pp. 1-6.

G. Baier, E. Kohler, and M. Skutella, “The k-splittable flow prob-
lem,” Algorithmica, vol. 42, no. 3/4, pp. 231-248, 2005.

M. Shao and C. Kingsford, “Theory and a heuristic for the mini-
mum path flow decomposition problem,” IEEE/ACM Trans. Com-
put. Biol. Bioinf., vol. 16, no. 2, pp. 658-670, Mar./Apr. 2019.

T. Yu, Z. Mu, Z. Fang, X. Liu, X. Gao, and]. Liu, “TransBorrow:
Genome-guided transcriptome assembly by borrowing assem-
blies from different assemblers,” Genome Res., vol. 30, no. 8,
pp- 1181-1190, 2020. [Online]. Available: http://genome.cshlp.
org/content/30/8/1181.abstract

C. Trapnell et al., “Transcript assembly and quantification by
RNA-Seq reveals unannotated transcripts and isoform switch-
ing during cell differentiation,” Nature Biotechnol., vol. 28,
pp- 511-515, 2010.

O. Zagordi, A. Bhattacharya, N. Eriksson, and N. Beerenwinkel,
“ShoRAH: Estimating the genetic diversity of a mixed sample
from next-generation sequencing data,” BMC Bioinf., vol. 12, no. 1,
2011, Art. no. 119.

R. Rizzi, A. I. Tomescu, and V. Makinen, “On the complexity of
minimum path cover with subpath constraints for multi-
assembly,” BMC Bioinf., vol. 15, no. S-9, 2014, Art. no. S5. [Online].
Available: https://doi.org/10.1186/1471-2105-15-59-55

A. Kuosmanen, A. Sobih, R. Rizzi, V. Makinen, and A. I. Tomescu,
“On using longer RNA-Seq reads to improve transcript prediction
accuracy,” in Proc. 9th Int. Joint Conf. Biomed. Eng. Syst. Technol.,
2016, pp. 272-277. [Online]. Available: https://doi.org/10.5220/
0005819702720277

E. Bao, T. Jiang, and T. Girke, “Branch: Boosting RN A-Seq assem-
blies with partial or related genomic sequences,” Bioinformatics,
vol. 29, no. 10, pp. 1250-1259, 2013.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

A. Kuosmanen, T. Norri, and V. Makinen, “Evaluating
approaches to find exon chains based on long reads,” Brief. Bioinf.,
vol. 19, no. 3, pp. 404414, 2018.

J. Bang-Jensen and G. Z. Gutin, Digraphs Theory, Algorithms and
Applications, 1st ed. Berlin, Germany: Springer-Verlag, 2000.

D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. New York, NY, USA: Cam-
bridge Univ. Press, 1997.

A. V. Aho, M. R. Garey, and J. D. Ullman, “The transitive reduc-
tion of a directed graph,” SIAM]. Comput., vol. 1, no. 2, pp. 131-
137,1972.

M. R. Garey and D. S. Johnson, “Complexity results for multipro-
cessor scheduling under resource constraints,” SIAM |. Comput.,
vol. 4, no. 4, pp. 397411, 1975.

R. Rizzi, A. I. Tomescu, and V. Makinen, “On the complexity of
minimum path cover with subpath constraints for multi-
assembly,” BMC Bioinf., vol. 15, no. 59, 2014, Art. no. S5.

K. Kloster et al., “Toboggan: Version 1.0,” Jun. 2017. [Online].
Available: http://dx.doi.org/10.5281/zenodo.821634

T. Griebel et al., “Modelling and simulating generic RNA-Seq
experiments with the flux simulator,” Nucleic Acids Res., vol. 40,
no. 20, pp. 10 073-10 083, 2012.

J. A. Baaijens, A. Z. El Aabidine, E. Rivals, and A. Schonhuth, “De
novo assembly of viral quasispecies using overlap graphs,”
Genome Res., vol. 27, no. 5, pp. 835-848, 2017.

Lucia Williams received the BS degree from the
University of Washington, Seattle, Washington, in
2014. She is currently working toward the PhD
degree in computer science with Montana State
University, Bozeman, Montana.

Alexandru |. Tomescu received the PhD
degree in computer science from the University
of Udine, ltaly, in 2012. Between 2012 and 2020,
he worked with the University of Helsinki, Fin-
land, in several postdoctoral positions on Algo-
rithmic Bioinformatics, including the Academy of
Finland Postdoctoral fellow (2014-2017), and
researcher (2019-). In 2020 he was appointed
as associate professor with the University of Hel-
sinki, Finland, where he currently leads the
Graph Algorithms team, of the wider Algorithmic
Bioinformatics research group. In 2019 he
obtained the ERC Starting Grant.

Brendan Mumey received the PhD degree in
computer science and engineering with the Uni-
versity of Washington, Seattle, Washington, in
1997 and joined the faculty with Montana State
University, Bozeman, Montana, in 1998 where he
currently serves as professor of computer sci-
ence. In the spring of 2020, he held a visiting Ful-
bright-Nokia Distinguished chair position with the
University of Helsinki, Finland. He served as the
editor of ACM SIGACT News, a quarterly periodi-
cal for the theoretical computer science commu-
nity, from 2008 to 2015.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1093/bioinformatics/btz443
http://dx.doi.org/10.1038/nmeth.2714
http://www.sciencedirect.com/science/article/pii/S1571065316300531
http://www.sciencedirect.com/science/article/pii/S1571065316300531
http://genome.cshlp.org/content/30/8/1181.abstract
http://genome.cshlp.org/content/30/8/1181.abstract
https://doi.org/10.1186/1471--2105-15-S9-S5
https://doi.org/10.5220/0005819702720277
https://doi.org/10.5220/0005819702720277
http://dx.doi.org/10.5281/zenodo.821634

