Large networks are useful in a wide range of applications. Sometimes problem
instances are composed of billions of entities. Decomposing and analyzing these
structures helps us gain new insights about our surroundings. Even if the final
application concerns a different problem (such as traversal, finding paths,
trees, and flows), decomposing large graphs is often an important subproblem
for complexity reduction or parallelization. This report is a summary of
discussions that happened at Dagstuhl seminar 23331 on "Recent Trends in Graph
Decomposition" and presents currently open problems and future directions in
the area of (hyper)graph decomposition