Abstract

Large networks are useful in a wide range of applications. Sometimes problem instances are composed of billions of entities. Decomposing and analyzing these structures helps us gain new insights about our surroundings. Even if the final application concerns a different problem (such as traversal, finding paths, trees, and flows), decomposing large graphs is often an important subproblem for complexity reduction or parallelization. This report is a summary of discussions that happened at Dagstuhl seminar 23331 on "Recent Trends in Graph Decomposition" and presents currently open problems and future directions in the area of (hyper)graph decomposition

    Similar works

    Full text

    thumbnail-image

    Available Versions