
1

A Survey of FPGA Optimization Methods
for Data Center Energy Efficiency

Mattia Tibaldi and Christian Pilato, Senior Member, IEEE

Abstract—This article provides a survey of academic litera-
ture about field programmable gate array (FPGA) and their
utilization for energy efficiency acceleration in data centers.
The goal is to critically present the existing FPGAs energy
optimization techniques and discuss how they can be applied to
such systems. To do so, the article explores current energy trends
and their projection to the future with particular attention to the
requirements set out by the European Code of Conduct for Data
Center Energy Efficiency. The article then proposes a complete
analysis of over ten years of research in energy optimization
techniques, classifying them by purpose, method of application,
and impacts on the sources of consumption. Finally, we conclude
with the challenges and possible innovations we expect for this
sector.

Index Terms—Sustainable computing, Data centers, Cloud,
FPGAs, Power optimizations, PUE

I. INTRODUCTION

The total amount of data generated globally is rapidly
increasing and expecting to reach 180 zettabytes by 2025 [1].
This trend is due to several factors. For example, in 2020, the
amount of data created and replicated reached a new high due
to the COVID-19 pandemic and the boost of smart-working
and contact tracing [2]. Nowadays, this massive amount of data
is processed almost entirely in large data centers, generating up
to 2% of the global CO2 emissions [3], [4]. Since one of the
key challenges for the next years is certainly climate change,
the information technology (IT) sector must necessarily con-
tribute to reducing emissions. In this context, it is no longer
possible to ignore the data center’s contribution, and analyzing
the impact of modern technologies is extremely important to
make educated decisions for their sustainable development [5].

A data center is a physical structure where hundreds to
thousands of servers are allocated, organized, and managed
to provide specific no-stop services. Data centers can be
classified by the type of architecture, i.e., traditional, cloud,
and hyperscale, and by the tier level, i.e., from 1 to 4, based
on their characteristics, like uptime guarantee, downtime per
year, redundancy, concurrently maintainable, and price [6]. A
traditional data center is a small set of IT equipment and
on-premises, often in conjunction with a corporate office.
A cloud data center combines physical servers running a
single operating system with virtualized ones. In this way,
a single physical server can house multiple virtual servers,
increasing the efficiency and scalability of the infrastructure.
When this concept reaches the limit, we have hyperscale data
centers. Hyperscale systems can manage a large network of

M. Tibaldi and C. Pilato are with the Dipartimento di Elettronica, Infor-
mazione e Bioingegneria, Politecnico di Milano, Milan, Italy (Contact email:
mattia.tibaldi@polimi.it).

20
15

20
16

20
17

20
18

20
19

20
20

20
21

40

60

80

100

E
ne

rg
y

de
m

an
d

(T
W

h)

Traditional
Cloud

Hyperscale

Fig. 1: Data Center power demands from 2015 to 2021 [7]

computers (e.g., tens of thousands) to automatically respond
to changes in user requests and assign workloads on demand to
computing, storage, and network resources. Figure 1 shows the
consumption trends for each data center category. Hyperscale
data centers are becoming predominant, and their overall
energy demand reached 86.58 TWh in 2021 [7]. Instead, more
and more companies are abandoning traditional data centers
in favor of cloud or hyper-scale versions. Table I summarizes
the major characteristics of each tier. We need to keep this
hierarchy in mind when we compare it from a data center
energy standpoint. Typically, the higher tiers are also the most
consuming devices.

To reduce the energy consumption of data centers, FPGA
is emerging as a computing technology in this field. With the
Catapult project [8] in 2014, Microsoft introduced FPGAs in
commercial systems. Many IT protagonists such as Alibaba,
Amazon, and Huawei now support FPGAs in their data
centers and make them available to application developers.
Today a market of over 6 billion dollars is estimated for
this technology [9]. However, their long-term adoption in
these venues is not guaranteed. Their simple integration into
data centers does not mean significant reductions in energy
consumption. Managing them requires specific middleware,
hardware virtualization, and domain separation mechanisms
that make designing efficient architectures for such systems
complex [10]. Also, it is not always true that FPGA consumes
less than central processing unit (CPU) or other accelerators
like graphic processing unit (GPU). Only a combination of
specific problems with specific complexity results in immedi-
ate energy saving [11]. Several optimizations must be provided

2

TABLE I: Data Center Tiers Compared

Parameters Tier 1 Tier 2 Tier 3 Tier 4

Uptime guaran-
tee 99.671% 99.741% 99.982% 99.995%

Downtime per
year < 28,8 h < 22 h < 1,6 h < 26,3 min

Redundancy None Partially Partially+ Fully
Concurrently
maintainable No No Partially Fully

Price $ $$ $$$ $$$$

Typical
customer

Small com-
panies

Medium
business

Large busi-
nesses

Government
entities

for FPGAs to make a sustainable system. The configuration
also introduces significant challenges. Traditional energy op-
timization techniques require function calibrations and must
re-evaluate their effectiveness. Many obstacles still exist in
FPGA data center deployment. The main one is the lack of
support for FPGAs in the asset management and data center
monitoring tools. Besides, there is not enough software stack
to allow easy deployment on the cloud. This survey analyzes
this problem, discussing which solutions can be applied at
each level and highlighting the open points and the expected
benefits. After describing the energy targets for the next year
and the European Code of Conduct for Data Center Energy
Efficiency (Section II), and providing an analysis on the current
status of the technology (Section III), we present our main
contributions:

• An overview of the main metrics and methods used in
data centers to analyze energy consumption (Section IV).

• A critical review of the energy optimization techniques
on FPGAs and their possible integration in data centers
(Section V). This part is the core of this work, summariz-
ing over ten years of research and presenting suggestions
on to apply the methods and increase their effectiveness.

• A discussion of the most used solutions and the possible
innovations (Section VI and Section VII, respectively).

The entire article is structured to address and cover all the
points presented in the Code of Conduct concerning the
introduction of new technologies in data centers. We indeed
use this manifest to guide the reader through the work. Finally,
we conclude the article in Section VIII with a summary of the
opportunities and challenges in this domain.

II. ENERGY TARGETS FOR THE NEXT YEARS

Works like [12], [13], [14] identify and classify the biggest
causes of energy consumption in data centers. The energy
consumption devices can be generally classified into four
categories:

• Terminal devices: e.g., CPUs, GPUs, FPGAs, and
servers;

• Network devices: e.g., routers and switches;
• Storage devices: e.g., memories, solid-state disks (SSDs),

and hard-disk drives (HDDs);
• Environmental devices: e.g., cooling, lighting, and

power supply devices;

45%

38%
11%

6%

Terminal

Network

Storage

Environmental

Fig. 2: Main sources of consumption in a data center.

Figure 2 shows how these categories impact data center
consumption. We attribute most of the consumption to the
terminal and environmental devices, representing 45% and
38% of the total absorbed energy, respectively [15]. The ideal
condition is that all the absorbed energy is used entirely by
the IT devices. Currently, few data centers manage to get close
to this ideal condition, and they succeed only thanks to their
particular geographical position. For example, the Norwegian
Green Mountain data center [16] exploits the geological con-
formation of the environment and the harsh climate of the
fjords as a cooling system, almost eliminating the energy
consumption due to environmental devices. Unfortunately, not
all data centers can benefit from such advantageous locations
and other methods are needed to limit their consumption.

In 2008, a voluntary initiative, named European Code of
Conduct for Data Center Energy Efficiency program [17],
was created within the European Union in response to the
increasing energy consumption in data centers and the need
to reduce the related environmental, economic, and energy
supply security impacts. Over 120 organizations participate
in the program, and 289 data centers periodically submit
complete energy data to the initiative. The European Code
of Conduct for Data Center Energy Efficiency poses a series
of guidelines and best practices to help ensure that participants
are committed to a substantial energy-saving effort. They
associate each solution to an application area (e.g., entire data
center, new software, new IT equipment, new build or retrofit,
and optional) and a value from 1 to 5 to indicate the level
of benefit to be expected and the relative priorities. In the
following, we report some of the guidelines for IT equipment
reported with the highest priority:

➊ Include the energy-efficiency performance of the IT device
as a high-priority decision factor in the tender process;

➋ Include the operating temperature and humidity ranges at
the air intake of new equipment as high-priority decision
factors in the tender process;

➌ Formally change the deployment process to include the
enabling of power management features on IT hardware
as it is deployed;

➍ Select equipment that provides mechanisms to allow the
external control of its energy use;

➎ Processes should be put in place to require senior business

3

10203040

0.8

0.9

1

1.1

1.2

Technology (nm)

N
om

in
al

vo
lta

ge
(V

)

Fig. 3: Voltage trends for the main production processes.

approval for any new service that requires dedicated
hardware and will not run on a resource-sharing platform;

Note that new software is reported as fundamental to make
the energy use of the software a primary selection factor.

FPGA technology fully meets the requirements for new
IT devices by the code of conduct, becoming a potential
investment for most of the data centers in the area. However,
their simple integration does not guarantee optimal results
in reducing consumption. Specific knowledge is needed on
the main existing optimization techniques to fully exploit
them, and professionals from different disciplines must work
together to ensure satisfactory results. On this aspect, the
Code of Conduct focuses on the importance of establishing an
“approval board” for each decision including representatives
from all disciplines like senior management, IT, engineer-
ing, applications/software, and procurement. Collaboration is
essential to properly understand the problem and reach an
effective solution in such complex systems. This survey aims
to be a reference tool for deciding whether to invest in
FPGAs within data centers and is structured to respond to
each caveat presented in the Code of Conduct. Section III
highlights the current state of the FPGA technology with the
latest innovations. Section IV discusses potential comparison
metrics between different solutions giving hints for defining
new ones. Each of the five points above (i.e., ➊ to ➎) is
reflected in Section V, where we evaluate existing energy
optimization techniques. For completeness, we have preferred
to discuss all the existing energy optimizations on FPGAs and
give an opinion on their adoption in the data center rather
than limiting ourselves only to the most promising techniques.
Each optimization follows two classifications: one based on the
expected benefits in terms of energy savings (Table II) and one
based on which area of the data center it affects (Figure 5).

III. FPGA INNOVATIONS AND ACTIVE RESEARCHES

FPGA devices are reconfigurable chips based on CMOS
and static random access memory (SRAM) technologies. Their

structure achieves excellent performance and low consump-
tion. On these devices, one can create a customized imple-
mentation of an algorithm that operates on multiple data in
parallel. So, it can be faster and consume less power than
processors with higher clock speeds. Reconfiguration allows
users to change the functionality every time is needed. So,
an FPGA trade offs performance and flexibility, resulting a
suitable product for data centers where the same node can
serve multiple users. In this section, we highlight the main
shortcomings of the technology with today’s solutions and
possible research areas to improve their use inside data centers.

A. The need for efficiency

The integration level of FPGA technologies is currently far
from the CPU world, resulting in reduced efficiency. Great
progress has been made since the first FPGA from Xilinx
appeared on the market in 1985. This initial technology was
with a production process at 2000 nm and the first devices
had 64 configurable logic block (CLB). Today, after almost
40 years of research, we find FPGAs on the market with over
100,000 CLBs made with production processes ranging from
45 nm for AMD-Xilinx Spartan 6 [18] to 10 nm for Intel-
Altera Agilex [19]. Having a clear understanding of the type
of technology and its evolution is essential to identify the
optimizations and challenges of the future, especially in terms
of energy. Also, the Code of Conduct calls for considering
the entire hardware manufacturing process to understand and
estimate which impacts the technology will have inside the
infrastructure. Different production processes correspond to
different supply voltages and different consumption. Figure 3
shows the linear trend of the voltages for the main production
processes, from 1.2 V for 45 nm down to 0.75 V for 10 nm.
Improving the production process allows designers to reduce
the consumption of these devices.

Recently, the media announced the Intel/VMware Cross-
roads 3D-FPGA Academic Research Center as a multi-
university effort to improve the future of FPGA technol-
ogy [20]. By stacking multiple FPGA dies vertically, re-
searchers should be able to achieve a higher transistor density
while also balancing performance, power, and manufacturing
costs. Therefore, the research in this area is far from standing,
and there are ample opportunities for improvement.

B. The need for bandwidth

Due to the proliferation of big data applications [10], the
need to move greater quantities of data has resulted in in-
creasing bus lines inside the FPGA. One of the main problems
that FPGAs suffered was the latency for memory access and
the poor throughput they obtained. With the recent introduc-
tion of high-bandwidth memorys (HBMs), the problem has
been partially addressed [21]. HBM is a 3D-stacked dynamic
random access memory (DRAM) that offers high-bandwidth
and energy-efficient data movements introduced in the latest
generation FPGAs such as AMD Xilinx’s Alveo U280 and
Intel Altera’s Stratix 10. This type of memory allows reaching
throughput of over 460 GB/s, in the case of the Alveo U280,

4

allowing fast memory access and reducing the effect of super-
long-line (SLL), the high latency technology currently used to
access FPGA resources from any of its regions [22]. However,
the HBM technology with large bus lines is difficult to be
fully exploited, demanding hard-crafted solutions or advanced
design methods [23], [24].
C. The need for improved clock structures

Conventional FPGA core architectures have been based
on balanced clock trees, which minimize deterministic skew.
This method has served well for designs up to 500 MHz,
but they need innovative solutions to reach speeds of up
to 1 GHz. The solution must minimize local variation and
skew, and provide a flexible network to serve the numerous
clock regions. For example, to address these challenges, Intel
introduces an entirely new core architecture, called Intel Hy-
perFlex FPGA Architecture [25]. They add additional registers
in every interconnect routing segment and at the inputs of
all functional blocks. With these elements, they can retime
registers to eliminate critical paths, add pipeline registers to
remove routing delays, and optimize the design for best-in-
class performance.

D. The need for simplified development

Creating an “implementation” for FPGA consists in making
a circuit that relates to the resources present in the device. The
process uses hardware description language (HDL) such as
Verilog or VHDL or, more commonly today, C/C++ language
compiled with an high-level synthesis (HLS) compiler for the
circuit definition. We can identify four steps for generating the
FPGA configuration file (i.e., bitstream).

1) Hardware design: HDL codes are manually written
manually or derived from high-level specifications by
means of HLS compilers;

2) Synthesis: HDL codes are compiled and translated into
netlists;

3) Implementation and routing: the synthesized design is
mapped onto the target FPGA resources and the connec-
tions are defined among them;

4) Bitstream generation: the implemented design is trans-
lated into a configuration file (also called “bitstream”)
which can be downloaded onto the FPGA.

Using HDL languages is not simple, and realizing well-
optimized projects requires substantial specific knowledge and
time. Major FPGA manufacturers provide development kits
that simplify this tedious and error-prone process. Both AMD-
Xilinx Vitis suite and Intel-Altera Quartus suite contain HLS
compilers that allows the designer to transform a program writ-
ten with a high-level language like C or C++ into HDL. These
tools allow designers to apply several optimizations such as
pipelining and loop unrolling, making application development
easier and faster [26] by means of specific pragmas (e.g.,
#pragma hls dataflow, #pragma hls array partition, or
#pragma hls inline) that are used by the designers to annotate
the code in order to specify where to apply such optimizations.
In addition to these solutions, there are many open-source HLS
projects such as Bambu [27], Merlin [28], and AutoDSE [29]
that try to make this process even more intuitive and automated

for a programmer without specific knowledge about FPGAs.
Recently, there has been a growing interest in open-source
compilers, not only in academia. For example, Xilinx recently
released the source code of the Vitis HLS Front-End [30] that
can help boost the innovation around HLS tools. Conversely,
the technical specifications of the physical devices (including
the bitstream format) are still mostly closed-source. We argue
that more flexibility from commercial solutions (e.g., clear
API for interaction and analysis of implemented designs) can
further boost research and innovation in this area.

IV. EVOLUTION OF POWER METRICS

In this section, we discuss the metrics for monitoring energy
consumption on the individual FPGA device and the overall
data center environment. Before starting, we want to present
the distinction between power and energy consumption. Mea-
sures of power are most interesting for sizing the data center,
cooling systems, or power units. On the other hand, when we
talk about energy, we consider the integral of power over time.
The second measurement is functional from a green point of
view because it can be quickly transformed into kg of CO2
produced. The Code of Conduct suggests using both units to
have complete visibility into the data center.

A. FPGA power metrics

Complementary metal-oxide semiconductor (CMOS) tran-
sistors are the basic blocks of FPGAs; therefore, we can
divide the power consumption into two categories: dynamic
power and leakage power. Dynamic power occurs from the
switching activities because of the short-circuiting current and
charging and discharging of load capacitance. It is therefore
related to when the circuit is running. As anticipated in the
previous section, each CLB is logic that consumes power
since the power manager unit (PMU) continuously powered it.
Leakage power is always present, and the power dissipation
occurs in the form of leakage current when the system is not
powered or is in standby mode. The total consumption of the
device is given by the sum of these two components, as shown
in Equation 1.

Pfpga = αCFV 2 + gV 3 (1)

where CFV 2 represents dynamic power, and gV 3 is the
leakage one. In addition, α is the activity factor, C the
capacitance, V the supply voltage, F the frequency, and g
the leakage factor, which is an intrinsic factor of the device
under analysis. The dynamic power has a quadratic trend
with increasing voltage, while the leakage power has a cubic
trend. Today, modern packaging techniques allow for high
densities of CMOS per unit area, making leakage power the
main factor in the equation. Further considerations are covered
in Section V-A. Observing Equation 1, we can adjust only
two parameters to improve energy consumption. The first is
the frequency which affects only the dynamic power, and the
second is the voltage which instead reduces both components.
In Section V, we discuss the techniques that operate on these
two parameters, how FPGAs can integrate them, and what
benefits they entail.

5

days

0

250
300

350
hou

rs

0
5

0

5

10

15

20

25

30

(a) Solar energy production

days

0

250
300

350
hou

rs

0
5

0

5

10

15

20

25

(b) Wind energy production

days

0

250
300

350
hou

rs

0
5

0

5

10

15

20

25

30

35

40

(c) Combined energy production

Fig. 4: Energy production of an hypothetical medium energy park in one year. The values are expressed in MWh.

Often the results of the energy consumption of the accel-
erators are related to the number of floating-point operations
performed in the unit of time (FLOPS), leading to the defini-
tion of the FLOPS/Watt [31] metric. This metric allows us to
effectively compare different accelerators and choose the one
with a higher value (i.e., the most energy-efficient one).

The model discussed above does not take into account
the thermal state of the device. A chip subjected to diverse
temperatures consumes a different amount of energy, and
therefore, running the same software will absorb more (less) if
the chip is hotter (cooled). Thermodynamics computing [32]
tries to unify the mathematical model of the information with
the thermodynamic model. The adoption and development
of this model would lead to a better understanding of the
phenomenon illustrated and the possibility of having energy
models that are more accurate and better optimize than the
current ones. The model would also be relevant from the
design of the cooling system viewpoint [33]. We can model
the capacity of the cooling system (C) as in Equation 2.

C = 3

√
Pfan

Thot − Tcold
(2)

Where Pfan is the maximum power absorbed by the board
fans, Thot is the temperature of the exhausting air from
the chip, and Tcold is the operational target temperature,
commonly set to 25 degrees. Studies also show that for every
watt of power utilized during the chip operation, the cooling
equipment consumes an additional 0.5-1 watts to extract the
exhausting air from the IT racks [15]. This example shows how
desirable a model change is and how it fits into the design of
the entire data center. In conclusion, optimizations that can
optimize absorbed energy and dissipated heat simultaneously
are the most suitable for future developments.

B. Data center power metrics

As mentioned in section II, the causes of energy con-
sumption in a data center are many, and we can individuate
four categories: terminal devices, network devices, storage
devices, and environmental devices. The sum of all these
components gives the overall consumption of the data center.
[17] reports the average energy consumption of 289 European
data centers participating in the code of conduct, estimating

an average annual electricity consumption of 13,684 MWh, of
which 7,871 MWh refer only to the IT sector (e.g., terminal
devices and network devices). In a data center, monitoring
systems, included within the power distribution units (PDUs),
continuously control consumption. Each rack has one or more
dedicated PDUs with several outputs equal to the number of
servers allocated (e.g., up to 42 servers per rack). In real time,
it is possible to know how much energy is absorbed by a
specific server, rack, or cluster (e.g., a set of racks). This
solution identifies potential faults in the system and allows the
technician to keep consumption under control. Consumption
data are collected and processed by specific tools that monitor
the progress of the infrastructure. Google is working on new
tools that link consumption with environmental impact and
give complete transparency to the public on what happens in
a data center to raise public awareness of the issue [34].

In this work, we focus on the consumption due to the
IT department and, in particular, the terminal devices. The
consumption of a server can be modeled as the consumption
of the individual parts [35], combined as shown in Equation 3.

Pserver =Pcpuucpu + Pmemoryumemory + Pdiskudisk+ (3)
Pnicunic + Pfpgaufpga

Where Pcpu, Pmemory, Pdisk, Pnic, and Pfpga are the
power consumption of the respective components, while
ucpu, umemory, udisk, unic, and ufpga are the utilization rate
of the different components. In the ideal case, the utilization
of the accelerators should be one, so it is always exploited to
the maximum, reducing the utilization of more power-hungry
components, such as the CPU.

A different model, instead, treats the data center similar to
the one for FPGA [35], dividing the power into dynamic Pvar

and static Pfix. We can model it as follows:

Ptotal = Pfix + Pvar (4)

The idle states of the servers characterize Pfix, while the
moments of use and the actions that occur, like the phases of
data computation or movement between physical memories,
characterize Pvar.

The European Code of Conduct for Data Center Energy
Efficiency defines, in addition to the total power consumption

6

in Watts, a second metric called power usage effectiveness
(PUE) [17], introduced by The Green Grid in 2007. The PUE
helps understand the data center’s efficiency and how to reduce
energy consumption. It is the ratio between the total data center
input power and the power used by the IT equipment (e.g.,
Equation 5).

PUE =
TotalFacilityPower

ITEquipmentPower
(5)

The ideal value is 1, which happens when the entire facility
power is consumed by the IT department and not by lighting,
cooling systems, power distribution units (PDUs), fans, and
other equipment. Higher values imply lower efficiency. The
average PUE of today’s European data centers is 1.8, but the
geographic location of the individual facility is important. For
example, thanks to its particular structure and position, the
Green Mountain data center [16] has a PUE of 1.2.

Concerning point ➊, the Code of Conduct suggests the
introduction of new metrics that distinguish between the en-
ergy consumed from renewable and fossil sources. Renewable
energy is not continuous in time and can assume decidedly
different values according to the period. For example, con-
sider a solar panel. It will produce more during the summer
and sunny hours, rather than during the winter and nights.
Figure 4 shows this variability in the two principal renewable
sources exploited today by studying the energy production of
a hypothetical wind and solar farm on an annual and daily
scale. Figure 4c shows the total renewable energy entering the
data center as a combination of the two production sites. An
interesting metric could consider these production curves and
estimate the over-consumption (i.e., how much non-renewable
energy the data center uses) and the under-consumption (i.e.,
how much renewable energy the data center is produced but
not used). Equation 6 defines this metric:

M(Eu) =

{
αEr−Eu

Er
, if Eu ≤ Er

βEu−Er

Eu
, if Eu > Er

(6)

Where Eu is the instant used energy, Er is the instant
renewable energy, and α|β are two parameters between 0 and
1 to scale the relevance of the contribution. The data center
better uses the available energy when M is close to 1. This
metric can be combined with adaptive systems that regulate
accelerator energy consumption (see Section V-C).

The metrics that we have presented do not consider the
consumption due to the construction of the data center and its
components, as well as do not relate energy consumption with
environmental metrics such as the global warming potential
(GWP) [36] [37] [38]. A model that considers all these aspects
is the life cycle assessment (LCA). LCA is a powerful tool
applicable to the data center sector [39]. In latest years, some
works have been carried out on the subject. [40] present a
complete LCA from cradle to grave of a UK data center.
Their work highlights how the impact on the environment
of a data center is completely attributable to production and
the use of IT equipment (mainly servers). They also observe
how the gap between the impacts of production and use
decreases in the states where energy production has greener.

TABLE II: Expected benefits on the entire data center by
applying each energy optimization. ✽✽✽ identifies techniques
that guarantee substantial energy savings and are directly con-
nected to the Code of Conduct; ✽✽ identifies complementary
solutions for data centers with moderate energy savings, while
✽ identifies optional techniques.

Physical level
Dynamic voltage scaling ✽
Adaptive voltage scaling ✽

Dynamic frequency scaling ✽
Power gating ✽✽

Remodeling ✽✽✽

Register transfer level
Clock gating ✽✽

Efficient routing & placement ✽
Leveraging thermal margin ✽✽

Application logic level
Approximate computing ✽✽

Deployment level
Off-the-shelf vs Custom ✽✽✽

Centralized vs Distributed ✽✽✽

Infrastructure level
FPGA resource virtualization ✽✽✽

Accelerated virtual machine ✽✽
Accelerated job scheduling ✽✽

Reconfiguration ✽✽

[12] proposed a similar study on a Swedish data center,
concluding that new emerging technology can improve the
environmental performance of the IT equipment. Currently, in
the literature, no work proposes an LCA on FPGAs, reducing
only to emphasizing their energy benefits.

V. POWER OPTIMIZATION TECHNIQUES

While there are several techniques to regulate the energy
consumption of FPGAs, not all of them are suitable or attrac-
tive in data centers. In this section, we present the fundamental
solutions classified by levels, from the lowest physical level to
the highest infrastructure level, analyzing their relevance for
the data center. For each subsection, we present a summary
table of the techniques described with the substantial works
that implement them and a complete discussion on how the
optimization impacts the overall data center infrastructure and
power consumption. Figure 5 summarizes the energy opti-
mization techniques described in the section, highlighting the
categories of energy consumption in which they affect, while
Table II classifies the techniques by importance. In particular,
we assign ✽✽✽ to techniques that guarantee substantial energy
savings and are directly connected to the Code of Conduct,
✽✽ to complementary solutions implementable in data centers
with moderate energy savings, and ✽ to optional techniques.

A. Physical level

In Section IV, we discussed the main metrics to measure
the energy consumption of FPGAs, defining the dynamic and
the leakage power. For chips made with production processes
below 90 nm, it turns out that the leakage component prevails

7

EnvironmentalTerminal Network Storage

Dynamic Voltage Scaling

Adaptive Voltage Scaling

Dynamic Frequency Scaling

Power gating

Remodeling

Clock Gating

Efficiency routing & placement

Leveraging thermal margin

Approximate computing

Off-the-shelf vs Custom

Centralized vs Distributed

Accelerated virtual machine

Accelerated job scheduling

Reconfiguration

FPGA resource virtualization

Physical level

Register transfer level

Application logic level

Deployment level

Infrastructure level

Levels

Fig. 5: Summary of the energy optimization techniques described in section V. For each technique, the categories of consumption
on which they affect, both negative or positive influence, have been highlighted through the lined background of the boxes.

over the dynamic one. The smaller the process is, the more
the leakage component is overcome [41]. For today’s products,
optimizations that work on leakage power will be more effec-
tive than those that operate on dynamic power. Unfortunately,
the techniques that can adapt to reduce the leakage power
are few, and the most advantages are applicable only at a
low level since the leakage power is inseparable from the
technology used. At the physical level, we find the following
energy optimization techniques, all of them are directly linked
to point ➊:

• Dynamic voltage scaling (DVS) allows to manipulate
the voltage with which the FPGA is powered. Requires
careful calibration at design time;

• Adaptive voltage scaling (AVS) is based on the same idea
as DVS but the calibration takes place at run time with
a monitoring system;

• Dynamic frequency scaling (DFS) allows to adjust the
frequency and set it to its optimal value;

• Power gating turns off logic when not in use;
• Remodeling redesigns how the FPGAs are internally

structured with an optical push for energy optimization;

Dynamic voltage scaling involves reducing the supply voltage
of a circuit. It can reduce both dynamic and leakage current,
but at the expense of increasing circuit delay, which can
lead to timing violations and, in turn, errors [42] [43]. This
effect happens because the voltage acts as the ”accelerator

pedal” for the signals to propagate. If we have a low voltage
and a high clock frequency, parts of the circuit may work
with the wrong values because of the delay. For best results,
the final design should operate at the voltage that reduces
power consumption as much as possible while maintaining
the circuit working. Finding this threshold is problematic
since the optimum operating voltage changes with time and
between devices. For this reason, the system must be carefully
calibrated to not run into problems. DVS is a best practice in
application-specific integrated circuit (ASIC) design where the
circuit does not change, and there are no further complications
(e.g., timing violation due to the modification of the electric
schema and a wrong DVS configuration). In FPGAs, on the
other hand, more attention is needed since re-configuring the
device also requires a DVS re-calibration to avoid timing
problems with the risk of having an unreliable circuit. Chow
et al. and Qi et al. [44] [45] propose a methodology for
supporting DVS on commercial FPGAs. Their idea estimates
the delay of critical paths by implementing a logic delay
measurement circuit (LDMC) inside the FPGA. The module,
through feedback signals, interfaces directly with the PMU to
regulate the FPGA voltages. This solution effectively reduces
energy consumption by up to 54% with negligible resource
consumption. One advantage of their methodology is that it
does not require additional design effort or changes to the
FPGA itself. The main limitation of this approach is that it

8

requires experimentation to find appropriate threshold values
for each FPGA, and it can markedly lengthen development
time. Ahmed et al. [46] reduce the time due to the calibration
of the LDMC by developing an automated tool (FRoC). FRoC
ensures that the calibration process is invisible to FPGA users
and does not add any extra manual steps to the design process.
The tool generates a calibration table to scale the voltage
while the application is active. A similar approach is also
demonstrated by the authors of Nunez-Yanez et al. [43]. Unlike
the others, they apply the reverse procedure. First, they reduce
voltage and then search for the correct operating frequency.
Significant savings in power and energy are measured from
the nominal value for the Virtex-4 Xilinx FPGA of 1.2 V
down to its limit of 0.9 V.

A different approach to the problem is given by Adaptive
Voltage Scaling. In this case, it eliminates the calibration
problem by introducing a monitor to measure the performance
variability of the silicon. Works such as those proposed by
Nabina and Nunez-Yanez [47] [48] show how these systems
operating in a closed-loop configuration can significantly
improve energy profiles compared with DVS. Implementing
this control system directly within the FPGA can limit the
available resources. To get around the problem, Nunez-Yanez
implements the control and monitoring system on an external
PCB connected to the FPGA board. The results are good,
and it will be useful if FPGA vendors move towards making
their devices more friendly to AVS techniques by adopting
different power planes and introducing more robust built-in
delay monitoring circuits. The works we have just presented
do not consider applications that use the FPGA hard blocks
such as block RAMs (BRAMs). Zhao et al. [49] extend a
previously proposed offline calibration-based DVS approach
to enable DVS for FPGAs with BRAMs. Again the idea is
to run a series of tests to ensure that all used BRAM cells
operate safely while scaling the supply voltage.

An optimization that always goes hand in hand with DVS is
dynamic frequency scaling, leading to the combined acronym
dynamic voltage frequency scaling (DVFS). As we have seen,
when we applied DVS, it can run into timing problems due
to the high frequencies that the circuit should work. Adding
DFS serves to solve this problem, thus, being able to optimize
voltage and frequency together. DFS can adjust the frequency
and set it to its optimal value. The addition of DFS to
DVS results in additional linear power savings [50]. Zhao
et al. [51] presents an offline self-calibration scheme, which
automatically finds the FPGA frequency and core voltage
operating limit. Their idea is to explore two phases, one to
estimate the actual minimum frequencies at which the logic
can operate and one to generate the configuration tables for
the LDMC module. These phases require one reprogramming
of the FPGA each, and a power saving of around 40% justified
the additional time spent in the design phase.

No doubt, the most effective technique for reducing leakage
power on a chip is power gating. The idea is simple, turn off
logic when not in use. Often, the literature uses the term dark
silicon to refer to areas of the chip switched off [52]. The
power gating technique inserts a power switch unit, controlled
by an on/off signal, on the logic to optimize. The power

switch’s inclusion introduces overhead on the resources and
the energy. The fundamental challenge for any power gating
technique is to ensure that the saved leakage power outweighs
the power overhead of the power gating. We can identify
two different implementation styles, the fine-grain (divides
the circuit into small sections) and the coarse-grain (divides
the circuit into large sections) technique. The two styles are
usually combined to seek a trade-off between resources used
and energy saved [53]. The more finely implemented the
control system is, the more the overhead will be relevant
because it is necessary to insert more power switches in
the circuit. Finding the right compromise can be difficult. In
FPGAs, we can safely turn off all the unused resources by
a specific design without any risk. It is always possible to
perform this optimization with negligible overhead since for
how the placement and routing phases on FPGA are made,
the logic consumed is allocated in a single contiguous region,
outlining a clear separation between used and unused sections.
Therefore, by inserting a single power switch, you can turn
off all the unused areas of the FPGA by the implemented
design [54].

There are particular designs where the coarse-grain style
has a greater area overhead than fine-grain. This overhead
happens when the logic zones we want to control are very far
from each other, resulting in long paths that add overhead in
the signal distribution network [55]. On the other hand, in fine-
grain power gating, the higher level of control allows to reduce
the leakage power more. Still, since the power switches are
always running, they increase the consumption of the dynamic
one. Due to these overheads, fine-grain power gating is less
efficient than coarse-grain power gating [54] [56] [57].

Another challenge with power gating is to reactivate the
switched-off logic without creating delay when needed. This
consideration is fundamental when we work with stream ap-
plications where the stream must proceed without interruption.
A possible solution is to add a series of checkpoints along the
computation phases of the streams to reactivate the logic in
time [58]. DVS, AVS, and power gating are techniques not
always applicable to commercial FPGAs. To implement these
techniques, the PMU must be accessible and configurable from
an external component such as a CPU or an ASIC associated
with the FPGA. The level of control we have over the FPGA
and how we can implement these techniques depends on the
PMU structure. Many of the papers presented propose to re-
model FPGAs to implement energetic optimization techniques
more effectively. Qi et al. [59] redesign the FPGAs internal
structure with an optical push for energy optimization. They
offer a custom FPGA that includes native solutions of DVFS
and Power gating, eliminating many of the previously dis-
cussed issues (e.g., interconnect delay, calibration, and so on).
Today, we are shifting towards custom FPGA versions, also
in relation to point ➌ and ➍. Few other techniques consider
these aspects and these new architectures will be taken into
consideration more and more. This increase can be seen both
in the embedded systems field and in the high performance
computing (HPC) field. Projects such as OpenFPGA [60]
facilitate these new architectures prototyping. OpenFPGA al-
lows users to customize their FPGA architectures down to

9

TABLE III: Physical level - Power optimization techniques

Techniques Main works Target power
Dynamic Leakage

Dynamic voltage
scaling

[46] [44] [42] [61]
[43] [45] ✓ ✓

Adaptive voltage
scaling [49] [47] [48] ✓ ✓

Dynamic frequency
scaling [61] [50] [51] ✓ ✓

Power gating [53] [58] [55] [54]
[52] [56] [57] ✗ ✓

Remodeling [59] [60] ✓ ✓

circuit-level details using a high-level architecture description
language and to autogenerate associated Verilog netlists which
can be used in a backend flow to generate production-ready
layouts. We expect this trend to increase, and in the future, we
will probably have FPGA models with specific targets for the
use sectors. Table III summarise the optimization techniques
and the main works presented in this subsection.

OVERALL IMPACTS CONSIDERATION: The opti-
mization techniques presented in this subsection have the main
purpose of limiting the consumption due to leakage power, act-
ing on the voltage of the FPGA and the working frequency of
the circuit. The primary effect obtained is reducing the Pfpga

and, in turn, the energy consumed by the device terminals.
The impacts of these techniques on the environment are not
easy to deduce without a unified model with thermodynamics
that considers FPGAs. Based on the Equation 2 and the
approximation for computer room air conditioning (CRAC)
cooling systems which says that for every 1 Watt saved on the
chip, we also save about 1 Watt from the cooling system [33],
we can still conclude that there is an impact and that it
is positive. However, even though these techniques impact
both ➊ and ➋, we believe that DVS, AVS, and DFS are
valuable solutions for embedded systems but not for data
centers. Therefore, we prefer to consider them optional. On
the other hand, power gating is different, which we think is
a good practice and which the new generation synthesis tools
are adopting by default. As far as the remodeling technique
is concerned, a broader discussion is needed since it could
also impact the network and storage component based on how
the re-modeling is carried out. A remodel pushed towards
network management by inserting specific resources for the
network inside the FPGA could have a significant impact
on the network devices. In contrast, a remodel that leads
the FPGAs to have more types and storage capacities could
favorably impact the second component. Currently, there are
no studies relating the remodel to the consumption categories.
Still, we consider it an extremely good technique that touches
on every aspect listed in the code of conduct.

B. Register Transfer Level

Register transfer level (RTL) is an abstraction level for
defining the digital portions of a design. It is the principal
abstraction used for specifying electronic systems today. HDL

like Verilog and VHDL uses RTL to create high-level repre-
sentations of a circuit, from which specific tools can derive
lower-level abstraction, now integrated into the most common
development kits such as Vivado and Quartus. Thanks to this
level of abstraction, it is possible to conduct an early-stage
dynamic power analysis [62]. The optimization techniques
available at this level focus on reducing the dynamic power
(point ➊), and they operate without having to access specific
components external to the FPGA, as happens instead for the
physical layer that needs the PMU. The dynamic power is
due to the switching activity of the signals, introducing a
continuous charge and discharge of the parasitic capacitance
present in the circuit [63]. Typically the signal with the
highest switching activity is the clock signal. This sentence is
especially true when we consider synchronous digital systems.
At the register transfer level, we find the following energy
optimization techniques:

• Clock gating (CG): disables the clocking of specific
registers when the outputs of those registers are stable;

• Energy-efficient routing and placement: improve the in-
terconnections between FPGA resources to guarantee
energy savings;

• Leveraging thermal margin (LTM): tries to exploit the
FPGA temperature to drop further the voltage;

There is one principal technique that acts on the switching
activities, and it is clock gating. As the term suggests, clock
gating is a way to reduce switching activity on circuit signals
by disabling the clocking of specific registers when the outputs
of those registers are stable [64] [65]. The idea of the clock-
gating technique for ASICs has developed in the late nineties.
Studies indicate that the clock signals in digital computers
consume 15-45% of the system power [66]. Because of its ef-
fectiveness, clock-gating has been a hot topic in many research
areas [67] [68] [69]. Modern FPGAs include several clock
control blocks that allow to shutting down of the clock line in
some parts of the circuit, and to emulate the functionality of
the gated clocks is possible to use feedback multiplexers [70].
Pandey et al. [71] and Liong Tan et al. [72] implement an
energy-efficient arithmetic logic unit (ALU) on FPGA. Both
authors agree on the impossibility of adopting the traditional
ASIC style to implement CG with AND gate because it
will create a glitch in output. In modern FPGA devices, two
buffer types can replace the AND gate and ensure glitch-less
output: Global Clock Buffer (BUFGCE) and HROW Clock
Buffer (BUFHCE). Building CG using these buffers results
in an overhead that includes extra control logic to generate
CG control signal and extra leakage power consumption.
However, the technique saves 40% of the dynamic power [73].
The same idea seen for clock gating can also be applied
to other design-dependent signals and even to the memory
structure, as shown by the works of Sterpone et al. [74] and
Agrawal et al. [75]. Geier et al. [76] present a module that
can easily be added to current designs with memory-mapped
AXI3 or AXI4Stream (AXI4S) interfaces to monitor interface
signals and limit switching activity. The module insertion is
completely transparent to the design and provides a quick
method of applying clock gating on FPGAs.

10

Specific tools such as the one presented by Zhang et
al. [77] or the one developed by Siemens [78] can even
perform automatically clock gating optimization. For example,
powerPro [78], starting from an RTL file and a set of vector
tests runs a series of simulations to verify in the design when
and where it is possible to disable the clock signal. The
execution times depend on the design size and can range from
a few minutes to several hours, but they are acceptable given
the results. Research into automating these optimizations is
critical today. With increasingly stringent power consumption
requirements, they help to provide solutions already in the
early stages of implementation.

Another technique that always acts on the circuit is energy-
efficient routing and placement. This technique improves
the interconnections between FPGA resources to guarantee
energy savings [79] [80]. Essentially, the closer the resources
are to each other, the less energy is consumed. Exploiting
some design rules like avoiding the use of SLL or fast tracks
and using local interconnection can save power dissipation in
FPGAs [81]. Zemani and Esmaili [82] try to do just that by
extending the versatile place and route (VPR) routing algo-
rithm [83] with one more iteration where power is optimized
together with area and circuit performance. Adding different
performance metrics such as those reported in Section IV can
extend the exploration algorithm. Something similar is also
done by the Hao Hoo team [84] and Leming and Nepal [85],
with the only difference being that they propose a new version
for the embedded switch box (SB) of the FPGA. Seifoori et
al. [86] are the first to use a machine learning technique to
design power gating regions in the FPGA routing network.
They define similarity metric, cluster pattern, and power gating
efficiency to design three clustering algorithms based on K-
means clustering. Finally, they evaluate the obtained design
on an Intel Stratix-IV FPGA, obtaining 1.4× higher savings
to other heuristics. Generally, an exploration algorithm based
on the power consumption model combined with the place
and route tool can help to find the optimal solution [83].
Chtourou et al. [87] instead of focusing on routing algorithms
analyze two different routing architectures: the SB tristate
and the SB multiplexer. The first uses bidirectional SB im-
plemented with back-to-back tri-state drivers. The second uses
bidirectional SB implemented using tri-states and multiplexers.
They conclude that SB multiplexer has a significant impact
on power saving compared to SB tristate. This difference
happens because SB tristate always uses the switch in only
one direction, thus increasing the amount of the leakage of
power dissipated by routing resources.

The last technique explained at the register transfer level
is leveraging thermal margin. Compared to the other op-
timizations presented, LTM is much more recent and is a
cross between physical layer techniques such as DVS and
energy-efficient routing and placement [88] [89]. The most
recent work is Khaleghi et al. [90] in 2019. The basic idea is
that a chip at different temperatures exhibits different voltage
limits, and they use this gap to optimize the voltage. If the
chip is ”cold” (e.g., 40 degrees), it is possible to drop further
in voltage compared to one that is ”hot” (e.g., 100 degrees).
It is necessary to organize the logic on the FPGA and thus

TABLE IV: RTL - Power optimization techniques summary

Techniques Main works Target power
Dynamic Leakage

Clock gating

[76] [75] [67] [64]
[65] [68] [70] [73]
[71] [74] [72] [66]
[69]

✓ ✗

Efficient routing &
placement

[87] [85] [86] [80]
[83] [82] ✓ ✓

Leveraging thermal
margin [88] [90] [89] [84] ✓ ✓

improve the existing routing and placement algorithms to
avoid excessive temperature peaks. The technique in its current
state is still complicated and requires several simulations (e.g.,
delay simulation, FPGA architecture simulation, and thermal
simulation) before arriving at a stable solution. Furthermore, if
you want to use an adaptive approach at run time, it requires
access to temperature sensors that are not always available.
However, the technique is promising, improving DVS up to
30%. Table IV summarise the optimization techniques and the
main works presented in this subsection.

OVERALL IMPACTS CONSIDERATION: Considera-
tions similar to those made previously on the impact on
terminal devices and environmental devices are also valid for
the techniques set out in this subsection. The work done by
Khaleghi et al. [90] allows us to expand the discussion on
the FPGA’s impact on environmental devices. Looking at the
thermal resistance θJA, we note that for today’s Intel and
Xilinx FPGA products, a value θJA of 2◦C/Watt and a
pessimistic thermal resistance of 12◦C/Watt are considered.
If now we combine these considerations with equation 2, we
can model Thot as Pfpga×θJA and obtain a consistent model
to estimate the cooling capacity required starting from a sim-
ple energy consumption profile. This consideration acquires
importance, given points ➋ and ➍, by providing innovative
metrics and relevant considerations for the dimensioning of
cooling systems and data centers in general. For this reason,
we consider LTM a technique that can influence more the
data center than efficient routing & placement but close to
clock gating since tools like [77] already adopt it as a
standard. Maybe in the future, thermal optimizations will be
more extensively implemented into synthesis tools.

C. Application Logic Level

By ”Application Logic Level” optimizations, we refer to all
the techniques that modify the application algorithm or the
input/output interfaces to achieve energy efficiency (point ➊).
In general, code optimizations at a high level have a greater
impact on performance than low-level optimizations [91]. A
modification to the algorithm can generate a very different
circuit and exhibit a different energy profile. These tech-
niques go by the name of approximate computing (AC).
Approximate computing is based on the intuitive observation
that while performing an exact computation requires a high
amount of resources, granting selective approximation can
provide extreme gains in efficiency [92]. Many of today’s

11

applications that we find in data centers (e.g., machine learning
applications [93] [94], signal processing applications [95],
data analytics applications [96], and so forth) can effectively
manage a certain degree of approximation without running into
completely wrong computations. For example, for a k-means
clustering algorithm, allowing a classification accuracy loss of
5% can save up to 50x energy [97]. Without going into too
much detail, the main approximation techniques that we find
in the literature are:

• Custom data format: creates smaller components by
changing the precision (bit-width) of input or interme-
diate data to save both leakage and dynamic power [98];

• Custom operator: generates approximate adders and
multipliers to perform partial computation with ef-
fects similar to those obtainable with custom data for-
mat [99] [100] [101];

• Loop perforation: skips some iterations of a loop
to reduce computational overhead and so dynamic
power [102];

• Memoization: stores the results of functions for later reuse
to skip the portion of code in the second run [103]. This
technique reduces the dynamic power but increases the
leakage one. It requires some balance to be applied with
confidence;

• Task skipping: skips memory references, tasks, or input
portions to achieve energy efficiency [104]. Similar idea
and effects as loop perforation;

• Data sampling: samples data from the input queue to
speed up the execution [105]. Similar idea and effects as
loop perforation;

• Custom memory hierarchy: adds more memory layers to
hide the cache miss latency [106]. It reduces the leakage
power due to data transmission over long distances, but
by introducing new logic, it still increases the overall
consumption. Also, in this case, the technique must be
carefully balanced to obtain advantages;

• Multiple inexact program version: utilizes multiple ver-
sions of application code with different trade-offs be-
tween accuracy and overheads (e.g., execution time,
power consumption) and selects at run time which one is
better to use [105];

Applying AC is not always easy and requires wisely choosing
the portion of code where to intervene and the technique
not to have an unacceptable loss of quality. Further, careful
monitoring of the output is required to ensure that quality
specifications are met. New metrics are needed to estimate
the error we are introducing when we use multiple tech-
niques together (e.g., Monte Carlo simulation [107]). The
work presented by Nepal et al. [108] combines application
logic level and RTL techniques in a framework called ABA-
CUS. ABACUS starts by creating an abstract syntax tree
(AST) from the RTL description, and after it applies AC
functions (e.g., custom data type, custom operator, and loop
perforation) to create fair approximate designs. At last, it
identifies the most suitable design along the Pareto frontier
that represents the trade-off between accuracy and power
consumption by exploring the space with all the possible

variants. Only variants with a specific quality-of-service (QoS)
are considered acceptable. Developing frameworks that lower
the difficulty and the knowledge necessary to optimize power
consumption is fundamental for the sector’s evolution. Other
research groups such as Chandrasekaran and Amira [91], Segal
et al. [109], and Gao et al. [110] presented frameworks capable
of implementing approximation techniques and estimating
their effectiveness from the point of view of performance
and energy consumption. Specifically, Gao and Qu suggest
a runtime framework to exploit runtime energy information.
The basic idea is to use a low-cost method like the error-
resilient characteristics of each operator to estimate the impact
of immediate input values on the accuracy of computation and
then decide whether directly use the approximated value or
perform an accurate computation. In general, AC is a powerful
technique that allows saving from 40% up to 80% of the power
consumption. However, if the data to be processed and the
accelerator does not share the same data format, most of these
benefits disappear, and some conversion is necessary [111]. In
our opinion, conversion between data formats is an expensive
operation from both an energy and time point of view;
and it represents one of the biggest challenges within data
centers where the vast heterogeneity of data often requires
conversions. Table V summarise the optimization techniques
and the main works presented in this subsection.

OVERALL IMPACTS CONSIDERATION: Approximate
computing reduces energy consumption by approximating the
logic behind the processing algorithms. This approach impacts
storage, terminal devices, and environmental ones. Many ap-
proximation techniques affect data and how it is read from
memory. We remind you that the consumption of the memories
depends on the amount of memory installed and the number
of reads and write accesses made in the unit of time. Custom
data format, memoization, and custom memory hierarchy are
examples of optimizations that change the amount of memory
used. Custom data format reduces memory usage by simpli-
fying the data format to be more compact in memory. The
technique is, therefore, also effective in reducing consumption
by the storage component. On the contrary, memoization and
custom memory hierarchy increase the amount of memory
required and negatively affect the storage component of the
data center. Optimizations such as data sampling, on the
other hand, act on the number of accesses in the memory,
guaranteeing higher energy savings, similar to the case just
discussed with the custom data format. In conclusion, we
consider the technique advantageous and applicable to data
centers, especially when the main target is reinforcement
learning or deep learning applications, where these techniques
are almost mandatory. As mentioned in Section IV, multiple
inexact program versions can be combined with innovative
metrics to monitor and intervene quickly and autonomously
on the accelerator, keeping its efficiency under control.

D. Deployment level

This subsection discusses the dominant data center boards
currently on the market and how data centers installed them.
It represents an excellent guide to the choice of the product

12

TABLE V: Application logic Level - Power optimization
techniques summary

Techniques Main works Target power
Dynamic Leakage

Approximate computing
[91] [110] [111] [93]
[99] [100] [105] [92]
[108] [95] [109] [101]

✓ ✗

and its installation in the data center, covering fundamental
aspects given by the Code of Conduct, such as points ➌, ➍,
and ➎. A data center is normally structured in areas called
clusters. Racks are the base component of each cluster, and
they can house up to 42 servers. Each rack is powered by a
redundant PDU placed at the bottom of the structure and by at
least one network switch for accessing the primary network. A
secondary network often exists alongside the primary network,
which gives direct access to other racks in the cluster or
between the clusters themselves. Servers integrate FPGAs with
PCI-e connection.

Currently, no cloud provider creates its FPGAs. Hence,
the smallest unit of differentiation is the FPGA board both
Off-the-shelf and Custom are possible [112]. The possible
economic advantage depends on the quantities and the type
of use. Table VI collects information on eleven off-the-shelf
products between AMD Xilinx and Intel Altera. Each one is
a general-purpose board with specific features (e.g., digital
signal processing (DSP), random access memory (RAM),
and HBM). The technologies with access to HBMs are the
most promising for the HPC field since they have a high
throughput at low power consumption. In recent years, Xilinx
has created the product line Alveo specific for the data center
environment. However, we do not find such a clear distinction
for Altera products where the Stratix 10 is probably the best
solution. Altera currently produces its FPGAs with a more
advanced lithographic technology than Xilinx, although on
paper, Xilinx appears to perform better in terms of power
consumption with a ratio of 0.025 Watt/DSP for the Alveo
U280 versus a ratio of 0.048 Watt/DSP for the FALCON
Stratix 10. Figure 6 shows the energy consumption normalized
on the number of DSPs embedded in the board. On the
other hand, with custom FPGA boards, any feature can be
varied, such as form factor, cooling, memory type and size,
and FPGA family. This customization ensures that the boards
closely match the requirements of the target system, which
in many cases are stringent. We rarely encounter data center
platforms designed natively for FPGAs; instead, we easily find
upgrades of existing architectures with specific constraints on
power supply, temperatures, form factor, and cooling system.
Furthermore, in the custom solutions, the PMU is accessible
from the CPU, allowing physical level optimization and better
monitoring of the accelerator that perfectly matches the point
➍. For these systems, it is difficult, if not impossible, to find
such specific boards on the market, and therefore, the design
of a custom board is the only solution [113] [114]. For this
reason, it would be appropriate to move towards boards that
can be assembled through modules, thus reducing the need to
develop custom boards.

0 20 40

FALCON Stratix 10

PAC Arria 10GX

PAC N3000

Alveo U200

Alveo U280

Alveo U30

IPU C5020X

PAC D5005

Alveo U250

Alveo U55C

Alveo U50

48.5

39.1

32.9

32.9

24.9

21.7

18.9

18.6

18.3

16.6

12.6

mWatt per DSP

Fig. 6: Power consumption trends of the main off-the-shelf
FPGA Data center boards.

TABLE VI: Main off-the-shelf FPGA Data center boards
specification

Products Technology DSP RAM HBM

AMD Xilinx
Alveo U30 16 nm 3456 8 GB -

Alveo U50 16 nm 5952 - 8 GB

Alveo U55C 16 nm 9024 16 GB -

Alveo U200 16 nm 6840 64 GB -

Alveo U250 16 nm 12288 64 GB -

Alveo U280 16 nm 9024 32 GB 8 GB

Intel Altera
PAC Arria 10GX 20 nm 1687 8 GB -

IPU C5020X 14 nm 3960 16 GB -

PAC N3000 14 nm 3036 9 GB -

FALCON Stratix 10 14 nm 3960 12 GB 8 GB

PAC D5005 14 nm 11520 32 GB -

Integrating FPGA technology into a platform does not
automatically mean saving energy and having an advantage.
It all depends on the type of interconnectivity the FPGA has
with the other elements inside the data center and on the
actual utilization. If the FPGA does not exploit its resources,
what you get is simply a system with higher losses due to
the introduction of new hardware [115]. Bobda et al. [112]
provide a complete analysis of the future of FPGA acceler-
ation in data centers, describing in detail the currently most
used placement techniques, but do not investigate the energy
impacts that these choices entail. We can therefore identify
two types of placement: distributed and centralized. Having
a distributed FPGA placement means that nodes have their
FPGAs, and other nodes can access it. This solution leads to
greater utilization, more scalability, and more power reduction
since the CPU workload is offloaded more effectively to an

13

FPGA pool [8] [116]. It is also possible to place FPGAs in a
centralized manner. Typically we see this choice for network
architectures, where the single FPGA is coupled to an ASIC
or a CPU to implement a smart network interface card (NIC)
or Smart Switch. Such a deployment needs fewer FPGAs; this
typically translates to easier management, the lower total cost
of ownership (TCO), and smaller average node sizes [112].
We strongly recommend the adoption of FPGAs in network
devices. Due to their structure and composition, the implemen-
tation of network protocols on FPGAs is advantageous with
very high performance. Furthermore, this allows the creation
of custom network protocols with a significant impact on data
analysis applications, or in general, on applications where most
of the time is spent transferring data from storage to computing
nodes.

Virtually all data centers today implement FPGAs in a
distributed way because it ensures the always exploitation of
the resources and that the idle moments of the FPGAs are
at a minimum [117]. If a node does not use its local FPGA,
another node can take possession of it and use it to speed up its
workflow. Implementing a distributed infrastructure involves
many challenges:

1) the power consumption due to the introduction of many
FPGAs must not exceed the amount of power saved by
their use;

2) the internal data center network infrastructure must be
redesigned to allow access to FPGAs between nodes,
increasing other sources of consumption;

3) the management and monitoring are more complex, and
there can be concurrency problems;

Several papers [118] [119] [120] [121] [122] present examples
of architecture of this type. However, in almost all systems, the
network equipment necessary for the communication between
FPGAs is implemented internally to the FPGAs, consuming
resources. Developing and using new switches capable of
supporting FPGAs would be a great help to the increasingly
easy integration of FPGAs [123] [124]. More recent lines of
research focus on the third point, the management of this
new resource within the data center [125] and facilitating
its development [126]. The most famous platforms, such as
Openstack [127] and Kubernetes [128], which instantiate, and
reconfigure data center resources in real-time, can effectively
optimize energy consumption but do not have support for FP-
GAs. A possible new field of research could be to extend these
tools by understanding what it means to optimize FPGAs,
together with the other components already present. Table VII
summarise the optimization techniques and the main works
presented in this subsection.

OVERALL IMPACTS CONSIDERATION: At this level,
the data center architecture is defined, and the choices made
will impact each source of consumption presented. Each
board has a different consumption and amount of memory
as presented in Table VI and Figure 6. In addition to the
memory typology, there is a different kind of cooling system
and network interconnection installed on the board. These
features affect the consumption of the terminals, environmen-
tal, and storage devices. Custom solutions allow the designer

TABLE VII: Deployment Level - Power optimization tech-
niques summary

Techniques Main works Target power
Dynamic Leakage

Off-the-shelf board [118] [119] [120]
[121] [122] ✗ ✓

Custom board [8] [113] [114] [116] ✓ ✓

Distributed placement
[8] [118] [119] [113]
[120] [114] [116]
[121] [122]

✗ ✓

to better balance these aspects by producing boards specific
to the type of architecture designed. Of course, it is not
always possible to opt for solutions of this type due to the
development costs incurred. Also, it is essential to consider
what types of workloads the data center will be computing to
understand whether to adopt FPGAs in the computing nodes,
in the network components, or both. Many applications have
benefits in speeding up communications, and some of the
computations, such as data filtering, can already be applied at
the network level while also reducing the resulting traffic. The
most commonly accepted choice of implementing FPGAs in a
distributed way hurts consumption related to the network that
must allow FPGAs to communicate with each other. The type
of network implemented and the number of networks created
define the overall impact. From the literature analyzed, we
discover that the most common type of network is the torus and
that a maximum of two networks are created [8] [113] [116].
The first network, where the data center exchanges the data
in and out, is called primary. The second is called secondary,
which connects the individual FPGAs, allowing the sharing
of resources. The increase in network consumption that we
obtain is, therefore, a side effect of this solution which can be
considered acceptable given the advantages of flexibility and
use that it guarantees. We believe that particular attention
should be paid to these decisions as they impact the entire
structure of the data center and its final performance. The
last observation we want to report concerns the type of FPGA
adopted. Small FPGAs, in terms of resources, have faster
development times. In about an hour, the hardware designer
has the final configuration file, while for large FPGAs, such
as the Alveo U280, times can go up to 15 hours. So negatively
affects the overall development times. On the other hand,
smaller FPGAs have lower performance than large ones, but
a good network infrastructure and wise use of FPGAs in a
distributed manner can compensate. In the end, we recommend
using the latter solution when considering FPGA integration
in data centers.

E. Infrastructure level

The infrastructure level represents the highest level of
abstraction that we have identified to which it is possible to
apply energy optimizations that include the use of FPGAs.
The techniques presented in this subsection apply to large
data center areas such as clusters because they require a
comprehensive understanding of the current workflow. The
main idea at this level is to reduce the fragmentation of

14

resources, thus increasing their utilization. This idea shrinks
execution to fewer servers, and it is possible to shut down
everything else to save energy. We are therefore talking about
techniques such as:

• FPGA resource virtualization: exposes the internal re-
sources of the FPGA as if they were virtualized, favoring
their full utilization;

• Accelerated virtual machine (AVM) placement: deter-
mines where to allocate the virtual machines (VMs)
according to the type of workflow and energy constraints;

• Accelerated Job scheduling: improves the utilization of
cloud servers equipped with FPGAs;

• Reconfiguration: reconfigures FPGAs at run time accord-
ing to the state of consumption of the data center;

FPGA resource virtualization has always been an am-
bitious idea ever since the early days of partial reconfig-
uration [129]. Popular virtualization techniques used in the
software do not apply to FPGAs since they do not execute
sequential programs but implement parallel circuits [130]. Guo
et al. [131] identify several techniques like slot-based allo-
cation [129], FPGA overlays [132], and standalone resource
sharing [133]. The first divides the FPGA into fixed areas
that accommodate pre-defined circuits and take advantage
of partial reconfiguration at run time to change the type of
behavior. This architecture adds a layer of complexity to the
management of FPGA resources. Examples of this, extended
to data center solution, could be [134] [135] [136]. Bobda et
al. [112] collect many works on the subject in their survey,
finding that the overhead on the consumption of resources
by applying this technique does not exceed 30%. [113] made
similar reasoning, where partial reconfiguration is presented
as one of the most important features that FPGAs offers.
They propose standards for the input/output interface to freely
reconfigure the kernel without ceasing to read the FPGA input
stream. The second technique instead exposes a simplified
layer that increases the programmability and productivity of
FPGAs [137]. With this type of approach, it is possible to
treat FPGAs similarly to CPUs, making it more convenient for
traditional virtualization [138]. In standalone resource sharing,
the hardware resources on the FPGA board can be categorized
based on programmability, identifying the types of resources
present and classifying them into logic, connectivity, or mem-
ory resources [133]. These can then be shared individually
by generating three sharing models. Respectively we will
have: configuration, bandwidth, and capacity sharing. Each of
these models has different properties. Configuration sharing
concerns sharing logic between multiple FPGAs to speed
up the computation. Bandwidth sharing, on the other hand,
aims to share network or memory connectivity to improve the
movement of large amounts of data. Finally, capacity sharing
goes to sharing the memory on the board.

FPGA resource virtualization, therefore, try to increase the
utilization of the FPGA by exposing its resources to more
processes, thus avoiding having to use other accelerators and
saving energy. Of course, sharing FPGAs expose the cloud to
security issues. Different types of attacks and countermeasures
have been proposed over the years. They classify cloud FPGA

attacks into: extraction attacks, with the idea to extract infor-
mation from observable quantities such as power consumption
and frequency [139] [140], fault injection attacks with the
idea to introduce glitches in the hardware in an attempt to
stop the accelerator or extract information [141] and denial
of Service attacks with the idea to disable the use of the
accelerator, for example, by invalidating the shared DRAM
with a row hammers [142] attack. For a discussion on these
attacks, we remained the reader to [143], a complete survey on
the topic. Fortunately, these attacks are known to the research
community, and several countermeasures have already been
implemented. Amazon AWS, for example, implements a bit-
stream antivirus [143] that scans the sent bitstream for harmful
structures before programming the FPGA. Also, it only allows
the loading of bitstreams generated with its execution stream.
Additionally, most recent FPGAs, such as those from AMD
Xilinx, include isolated partial reconfiguration capabilities that
allow for independent partitioning and scheduling of FPGA re-
sources and configure secure access [144]. However, like every
security countermeasure, these solutions negatively impact the
power consumption of the data center.

As we have often pointed out, the high power consumption
of accelerators, along with their under-utilization, can impose
high operating costs [145]. This sentence explains why virtual-
ization is so relevant. AVM placement problem is well known
and discussed in the literature, but not many papers extend
the problem by considering FPGAs. Yarahmadi et al. [146]
introduce a genetic algorithm-based VM placement method
capable of responding to these needs. The goal is to minimize
the postponement of the requests while staying energy-efficient
and compensate for the enormous exploration space created
by limiting the number of chromosomes as a function of the
number of VMs. Zhang et al. [147] present a similar work
with the difference that, in this case, they provide an advanced
energy model of the data center.

Correlated to the placement problem, we always find Ac-
celerated job scheduling problems. Scheduling on FPGA
systems can be considered a classical resource-constrained
scheduling problem (RCSP). We know the classical RCSP
problem as AVM placement is a strongly NP-hard prob-
lem. Thus, the FPGA community dedicates much atten-
tion to the design of heuristics [148]. Many research
groups have approached this problem under different as-
pects [135] [149] [150]. Dhar et al. [151] propose a methodol-
ogy for scheduling heterogeneous tasks across an FPGA con-
sidering the possibility of partial reconfiguration and sharing
of resources. This methodology reduces the resource fragmen-
tation and can optimize spaces and leakage power. Ting Loke
and Yang Koay [152] instead approach the problem from an
innovative point of view. Their idea consists in scheduling
the tasks considering the relative deadline for each one. If a
task has a lot of time available, they increase its latency by
applying DFS optimizations and clock gating at run time. In
this way, they obtain an adaptive model that regulates energy
optimization according to the time available and the type of
task.

We cannot conclude our discussion without talking about
the main functionality that FPGAs offer; the reconfiguration.

15

TABLE VIII: Infrastructure Level - Power optimization tech-
niques summary

Techniques Main works Target power
Dynamic Leakage

FPGA resource virtu-
alization

[134] [129] [137]
[112] [135] [132]
[153] [136]

✗ ✓

Accelerated virtual
machine [146] [147] ✗ ✓

Accelerated job
scheduling

[148] [135] [151]
[149] [152] [150]
[154]

✓ ✓

Reconfiguration [8] [113] ✓ ✓

The ability to reconfigure the hardware allows the data center
to implement different energy policies during computation and
to test optimizations and solutions that would otherwise be
impossible without updating the entire hardware. This feature
is not free, and we must consider the times introduced by the
process. Updating the bitstream of a single FPGA can take
several seconds. Organizing the data center with a distributed
FPGA placement and the use of FPGA overlays greatly
reduces this overhead, guaranteeing rapid updating of entire
clusters contemporary. Table VIII summarise the optimization
techniques and the main works presented in this subsection.

OVERALL IMPACTS CONSIDERATION: The tech-
niques presented in this subsection aim to maximize the use
of FPGAs in the data center to enhance investment. This
procedure increases the energy consumption related to the
individual FPGAs, even if limited, to reduce the workload on
the more traditional CPU-based computing nodes and, there-
fore, their consumption. FPGA resource virtualization harms
network consumption but positively on storage consumption,
allowing to share of memory resources between FPGAs across
the network and maximizing their use. We can do the same
reasoning with accelerated virtual machine placement, where
the aim is to increase the utilization of the single node
and avoid having to switch on more nodes to manage a
specific workload. Finally, we discuss the fundamental feature
of FPGAs reconfiguration. The reconfiguration acts on every
aspect of the data center, allowing the deployment of FPGAs
into servers, network devices, and control systems. The recon-
figuration keeps the data center updated for future challenges
by guaranteeing flexibility and maintainability. We consider
virtualization or resource-sharing techniques on FPGAs to be
vital for the development of efficient and sustainable data
centers.

VI. POWER OPTIMIZATION TRENDS

Data center systems are subject to constraints such as TCO,
PUE, performance, resilience, modularity, and scalability that
reduce the degree of freedom on the possibility. From the
Bobda et al. [112] analysis, all service providers prefer to
have FPGAs in a distributed architecture that guarantees
maximum flexibility and scalability to the system. Integrating
off-the-shelf products such as existing data center upgrades
is rarely possible. The form factor, the cooling system, and

the constraints on the consumption of the single server are
the main reasons why this integration does not take place.
This problem leads to investing in custom solutions, which, in
addition to being specific for a single environment, are also
better designed from an energy point of view, allowing the
board voltages to be monitored and managed more precisely.

Optimization techniques widely used today are power gat-
ing, approximate computing, AVM placement, and accelerated
job scheduling. The reasons are many. Power gating is a
simple technique that does not require calibration systems
and does not introduce further problems as it does for DVS.
Since FPGAs do not have specific hardware for floating-
point computation, optimizations on the type of data used
can almost always be found by preferring solutions where
the calculation is in fixed-point. This practice is common in
data centers where the primary workload is statistical data
analysis. Machine learning algorithms are resilient to data ap-
proximation techniques, guaranteeing the same results. AVM
placement and accelerated job scheduling are extensions of the
already present and widely used VM management algorithms
in the data center. These techniques provide great flexibility
in managing the workload and servers available, which is
essential for the performance, resilience, and modularity that
a data center must have.

VII. POTENTIAL FUTURE INNOVATIONS

We identify areas of potential novelty by considering the
optimization techniques used today and comparing them with
the needs presented in the woks summarized into Tables III,
IV, V, VII, and VIII.

Power models: The most commonly used energy models do
not consider the device temperature. Works such as the one
presented by Khaleghi et al. [90] show us how seeing the
thermal profile of the chip allows more studied optimizations.
The Thermodynamics computing model [32] is an excellent
replacement for today’s model. Unifying the entropy of
Shannon with the entropy in thermodynamics and with the
metrics of Kolmogorov would allow us to estimate the energy
and thermal consumptions from the drafting of the algorithm
alone without having to simulate the obtained solution from
time to time. Some work exists in the literature but is still
very limited and hard to use in real applications [155]. This
model would then find a particular application in FPGAs
where high-level code directly impacts the generation of the
hardware, allowing optimization of energy and temperature of
the chip contemporary. Also, there is a need for new metrics
that consider the type of energy consumed, whether it comes
from renewable sources or fossil sources. Section 3 proposes
an example, but the search field is still open. Finally, data
center providers could consider using energy consumption as
a unit of measurement for the utilization of their resources as
they already do with time units. So, for example, setting a
consumption limit as a constraint for the user.

Type of boards: As discussed in Section VI, the numerous
data center constraints prevent the direct integration of

16

off-the-shelf products. A fundamental step in the diffusion of
FPGAs in this sector is the development of modular boards
that can be assembled according to specific needs [112], thus
reducing the costs of experimenting and designing custom
solutions. The possibility of adding exact control modules
for energy would allow monitoring of the consumption of
individual servers with greater granularity and smoothly
implement optimization techniques on a physical level. This
is also what the data center providers need to respect the
code of conduct (points ➌, ➍, and ➎).

Adaptive systems: Introducing new hardware into an
architecture leads to management challenges. It is not always
possible to individually optimize each accelerator for a
specific workload. Adaptive systems on FPGAs able to adopt
the energy profile best suited to a given workflow would
greatly help to manage this technology and its diffusion.
Systems of this type could strongly limit energy consumption
by identifying invisible configurations at design time, even
going so far as to self-reconfigure to work better.

Management tools: The most famous platforms, such
as Openstack [127] and Kubernetes [128], which instantiate,
and reconfigure data center resources in real-time, can
effectively optimize energy consumption but do not have
support for FPGAs. Extending these tools with FPGA support
is, of course, a way to ensure the continued use of FPGAs
in data centers even in the long term. In particular, the
new possibility should be to virtualize these new resources,
monitor their consumption and possible configuration errors
(as appears for Microsoft’s Catapult II project [113]), and
easily reconfigure them remotely. All act with different
granularity at the single server, rack, or cluster level.

A. Green data distribution and challenges
Recently Google introduced the concept of Carbon-Aware

Computing [156], which exploits flexibility in when, where,
and how computing takes place to reduce carbon emissions.
The idea is not new. Some computing has flexibility in when it
can run, like processing videos, feature extraction and training
large-scale machine learning models, simulation pipelines, and
many other latency-tolerant workloads. So, they shape the load
profile over 24 hours to balance the absorbed pick energy.
Some computing jobs have flexibility in where they can run,
like user-facing services that can be geographically rebalanced
or resourced (common for Microsoft’s applications, Facebook,
and Twitter messaging applications) to a greener data center
like the one with FPGA support. Today there are two deployed
systems Microsoft’s Carbon Aware Kubernetes [157] and
Google’s Carbon-Intelligent computing platform [158]. The
challenges, in this case, consist of understanding which types
of workloads enjoy the properties presented, ensuring that
spatially flexible load ends up in the right location, and how
load shaping affects CO2 emission.

VIII. CONCLUSION

The article exposes today’s state-of-the-art energy opti-
mization techniques involving FPGAs in data centers. These

techniques improve and enhance the benefit given by FPGAs
with a view to sustainable computation. The article focuses
on metrics, monitoring power consumption models, existing
FPGAs power optimization techniques, and open challenges
we must achieve in energy efficiency. Data center designers
must understand this information well to prioritize energy
consumption during design. Optimization techniques widely
used today are power gating, approximate computing, FPGA
resource virtualization, AVM placement, and accelerated job
scheduling. These techniques push the utilization of FPGAs to
the maximum, their performance, and their energy efficiency
while also giving great flexibility in managing the workload
and servers available, which is essential for the performance,
resilience, and modularity that a data center must-have. We
believe that FPGAs, with the proper observations and thanks
to their low latency, high throughput, and energy efficiency,
can be a complementary alternative to CPUs and GPUs.
Especially, when the principal workloads are statistical data
analysis, AI, computer vision, and security. The evolution of
this technology, in the short term, will determine its long-
term use in data centers. Many obstacles are still present.
The main one is the lack of support for FPGAs in the asset
management and data center monitoring tools. Besides, there is
no comprehensive software stack to deploy them on the cloud.
The extension of software such as OpenStack and Kubernetes
to FPGAs is what cloud service providers are looking for to
consider FPGAs an attractive product. Much has been done
and will be done in the future to make FPGAs more attractive.
Just think that FPGAs was born to facilitate the design of
ASICs, and today we find them in the largest data centers in
the world. In the future, we will probably see the birth of
two types of products, one focused on performance and one
focused on consumption and therefore to greater diversity and
applicability of this technology, for sure if we will consider
the need for modular and easily customizable boards.

ACKNOWLEDGMENTS

This work was supported by the Italian Ministry of Uni-
versity and Research (MUR) and the European Union (EU)
under the PON/REACT project and by the Horizon 2020 EU
Research & Innovation Programme under grant agreement No.
957269 (EVEREST project).

REFERENCES

[1] S. R. Department. (2022) Amount of data created,
consumed, and stored 2010-2025. [Online]. Available:
https://www.statista.com/statistics/871513/worldwide-data-created/#:
∼:text=The\%20total\%20amount\%20of\%20data,to\%20more\
%20than\%20180\%20zettabytes.

[2] C. Vinay, H. Vikas, G. Vatsal, and G. Mohsen, “A comprehensive
review of the covid-19 pandemic and the role of iot, drones, ai,
blockchain, and 5g in managing its impact,” IEEE Access, vol. 8, pp.
90 225 – 90 265, May 2020.

[3] T. Bhattacharya and X. Qin, “Modeling energy efficiency of future
green data centers,” in 2020 11th International Green and Sustainable
Computing Workshops (IGSC), 2020, pp. 1–3.

[4] X. Peng and X. Qin, “Energy efficient data centers powered by on-site
renewable energy and ups devices,” in 2020 11th International Green
and Sustainable Computing Workshops (IGSC), 2020, pp. 1–3.

17

[5] I. René, H. Roland, and et al., “Digital transformation—life cycle
assessment of digital services, multifunctional devices and cloud com-
puting,” in The International Journal of Life Cycle Assessment volume,
2020.

[6] M. Wiboonrat, “Data centre optimization for energy efficiency im-
provement,” in 2014 International Conference on Information Science,
Electronics and Electrical Engineering, vol. 3, 2014, pp. 1779–1787.

[7] S. R. Department. (2022) Energy demand in data
centers worldwide from 2015 to 2021, by type.
[Online]. Available: https://www.statista.com/statistics/186992/
global-derived-electricity-consumption-in-data-centers-and-telecoms/

[8] P. A., C. A. M., C. E. S., C. D., C. K., D. J., E. H., F. J., G. G. P., G. J.,
H. M., H. S., H. S., H. A., K. J., L. S., L. J., P. E., P. S., S. A., T. J.,
X. P. Y., and B. D., “A reconfigurable fabric for accelerating large-scale
data center services.” in ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA)., 2014, pp. 13–24.

[9] G. global market insights. (2022) Fpga market in the
last year. [Online]. Available: https://www.gminsights.com/
industry-analysis/field-programmable-gate-array-fpga-market-size#:
∼:text=Industry\%20Trends,computing\%20applications\%20in\
%20data\%20centers.

[10] C. Pilato, S. Bohm, F. Brocheton, J. Castrillon, R. Cevasco, and et al.,
“EVEREST: A design environment for extreme-scale big data analytics
on heterogeneous platforms,” in IEEE/EDAA Design, Automation &
Test in Europe Conference (DATE), 2021, pp. 1–6.

[11] M. Qasaimeh, J. Zambreno, P. H. Jones, K. Denolf, J. Lo, and
K. Vissers, “Analyzing the energy-efficiency of vision kernels on
embedded cpu, gpu and fpga platforms,” in 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2019, pp. 336–336.

[12] J. S.-L. Caspar Honée, Daniel Hedin and M. Fröling, “Environmental
performance of data centres - a case study of the swedish
national insurance administration.” in 2012 Electronics Goes Green
2012+, 2012. [Online]. Available: https://ieeexplore.ieee.org/document/
6360435

[13] X. Chang, S. Yang, Y. Jiang, X. Xie, and X. Tang, “Research on
key energy-saving technologies in green data centers,” in 2020 IEEE
International Conference on Smart Cloud (SmartCloud), 2020, pp.
111–115.

[14] J. Wan, J. Zhou, and X. Gui, “Sustainability analysis of green data
centers with cchp and waste heat reuse systems,” IEEE Transactions
on Sustainable Computing, vol. 6, no. 1, pp. 155–167, 2021.

[15] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption
modeling: A survey,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 732–794, 2016.

[16] H. Svein, Atle and V. Ole, Sten. (2022) Green mountain data center.
[Online]. Available: https://greenmountain.no/

[17] P. B. Maria Avgerinou and L. Castellazzi, “Trends in data centre
energy consumption under the european code of conduct for data
centre energy efficiency.” in ENERGIES, 2017, pp. 147–1480.
[Online]. Available: https://doi.org/10.3390/en10101470

[18] A. Xilinx. (2011) Amd xilinx fpga: Spartan 6. [Online]. Available:
https://www.xilinx.com/products/silicon-devices/fpga/spartan-6.html

[19] I. Altera. (2019) Intel altera fpga: Agilex. [Online]. Available:
https://www.intel.it/content/www/it/it/products/details/fpga/agilex.html

[20] Intel. (2022) Fpga technology at crossroads. [Online]. Available:
https://www.crossroadsfpga.org/

[21] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim, “Hbm
(high bandwidth memory) dram technology and architecture,” in IEEE
International Memory Workshop (IMW), 2017, pp. 1–4.

[22] Y. Choi, Y. Chi, J. Wang, L. Guo, and J. Cong, “When HLS meets
FPGA HBM: benchmarking and bandwidth optimization,” CoRR, vol.
abs/2010.06075, 2020. [Online]. Available: https://arxiv.org/abs/2010.
06075

[23] S. Soldavini, K. F. A. Friebel, M. Tibaldi, G. Hempel, J. Castrillon,
and C. Pilato, “Automatic creation of high-bandwidth memory archi-
tectures from domain-specific languages: The case of computational
fluid dynamics,” ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 2022.

[24] S. Soldavini, D. Sciuto, and C. Pilato, “Iris: Automatic generation of
efficient data layouts for high bandwidth utilization,” in IEEE/ACM
Asia and South Pacific Design Automation Conference (ASP-DAC),
2023.

[25] Intel. (2019) Understanding how the new intel hyperflex fpga
architecture enables next-generation high-performance systems.
[Online]. Available: https://www.intel.com/content/dam/support/us/
en/programmable/support-resources/bulk-container/pdfs/literature/wp/

wp-01231-understanding-how-hyperflex-architecture-enables-high-performance-systems.
pdf

[26] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A survey
and evaluation of fpga high-level synthesis tools,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 10, pp. 1591–1604, 2016.

[27] F. Ferrandi, V. G. Castellana, S. Curzel, and et al., “Invited: Bambu:
an open-source research framework for the high-level synthesis of
complex applications,” in ACM/IEEE Design Automation Conference
(DAC), 2021, pp. 1327–1330.

[28] J. Cong, M. Huang, P. Pan, Y. Wang, and P. Zhang, “Source-to-source
optimization for hls.” in FPGAs for Software Programmers, D. Koch,
F. Hannig, and D. Ziener, Eds. Springer, 2016, pp. 137–163.

[29] S. Atefeh, Y. Cody, Hao, G. Min, and C. Jason, “Autodse: Enabling
software programmers to design efficient fpga accelerators,” in ACM
Transactions on Design Automation of Electronic Systems, vol. 27,
2022, p. 32.

[30] A. Xilinx. (2021) Xilinx vitis hls llvm 2021.2. [Online]. Available:
https://github.com/Xilinx/HLS

[31] W. Wu, H. Chen, K. Li, and J. Yu, “Overview of typical application
energy efficiency optimization in high-performance data centers,” in
2021 IEEE International Conference on Power Electronics, Computer
Applications (ICPECA), 2021, pp. 702–705.

[32] C. Tom, D. Erik, G. Natesh, and e. a. Todd, “Thermodynamic comput-
ing,” in A Computing Community Consortium (CCC) workshop report,
2019, p. 36.

[33] Q. Zhang, Z. Meng, X. Hong, Y. Zhan, J. Liu, J. Dong, T. Bai,
J. Niu, and M. J. Deen, “A survey on data center cooling
systems: Technology, power consumption modeling and control
strategy optimization,” Journal of Systems Architecture, vol. 119,
p. 102253, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1383762121001739

[34] Google. (2021) Announcing new tools to mea-
sure and reduce your environmental impact. [On-
line]. Available: https://cloud.google.com/blog/topics/sustainability/
new-tools-to-measure-and-reduce-your-environmental-impact

[35] S. DIOUANI and H. MEDROMI, “How energy consumption in the
cloud data center is calculated,” in 2019 International Conference of
Computer Science and Renewable Energies (ICCSRE), 2019, pp. 1–10.

[36] V. M. Fthenakis and H. C. Kim, “Greenhouse-gas emissions
from solar electric- and nuclear power: A life-cycle study.”
in Energy Policy., 2006, pp. 2549–2557. [Online]. Available:
https://doi.org/10.1016/j.enpol.2006.06.022

[37] S. Pacca and A. Horvath, “Greenhouse gas emissions from building
and operating electric power plants in the upper colorado river basin.”
in Environ. Sci. Technol., 2002, pp. 3194–3200. [Online]. Available:
https://doi.org/10.1021/es0155884

[38] Unece. (2021) Life cycle assessment of electricity generation
options. [Online]. Available: https://unece.org/sites/default/files/
2021-10/LCA-2.pdf

[39] Y. C. Amip J. Shah and C. E. Bash, “Sources of variability in data
center lifecycle assessment.” in 2012 IEEE International Symposium
on Sustainable Systems and Technology (ISSST), 2012. [Online].
Available: https://doi.org/10.1109/ISSST.2012.6227975

[40] D. Beth and A. S., “The life cycle assessment of a uk data centre,”
in Int J Life Cycle Assess, 2015, p. 332–349. [Online]. Available:
https://doi.org/10.1007/s11367-014-0838-7

[41] V. K., M. G., J. P., and C. F., “Modeling the temperature bias of power
consumption for nanometer-scale cpus in application processors,” in
International Conference on Embedded Computer Systems: Architec-
tures, Modeling, and Simulation (SAMOS XIV), 2014.

[42] T. K., B. P., and T. D., “Voltage scaling based green design on ultra
scale fpga,” in 2013 International Conference on Green Computing,
Communication and Conservation of Energy (ICGCE), 2013, pp. 125–
129.

[43] J. Nunez-Yanez, V. Chouliaras, and J. Gaisler, “Dynamic voltage scal-
ing in a fpga-based system-on-chip,” in 2007 International Conference
on Field Programmable Logic and Applications, 2007, pp. 459–462.

[44] C. Chow, L. Tsui, P. Leong, W. Luk, and S. Wilton, “Dynamic
voltage scaling for commercial fpgas,” in Proceedings. 2005 IEEE
International Conference on Field-Programmable Technology, 2005.,
2005, pp. 173–180.

[45] H. Qi, O. Ayorinde, and B. H. C., “An energy-efficient near/sub-
threshold fpga interconnect architecture using dynamic voltage scal-
ing and power-gating,” in 2016 International Conference on Field-
Programmable Technology (FPT), 2016, pp. 20–27.

18

[46] I. Ahmed, S. Zhao, O. Trescases, and V. Betz, “Measure twice and cut
once: Robust dynamic voltage scaling for fpgas,” in 2016 26th Inter-
national Conference on Field Programmable Logic and Applications
(FPL), 2016, pp. 1–11.

[47] N. Atukem and Nunez-Yanez, “Adaptive voltage scaling in a dynam-
ically reconfigurable fpga-based platform,” in ACM Trans. Reconfig.
Technol. Syst., vol. 5, 2012, p. 22.

[48] J. L. Nunez-Yanez, “Adaptive voltage scaling with in-situ detectors in
commercial fpgas,” IEEE Transactions on Computers, vol. 64, no. 1,
pp. 45–53, 2015.

[49] I. Ahmed, S. Zhao, J. Meijers, O. Trescases, and V. Betz, “Automatic
bram testing for robust dynamic voltage scaling for fpgas,” in 2018
28th International Conference on Field Programmable Logic and
Applications (FPL), 2018, pp. 68–687.

[50] B. Pontikakis, H. T. Bui, F.-R. B., and Y. Savaria, “A low-complexity
high-speed clock generator for dynamic frequency scaling of FPGA
and standard-cell based designs,” in IEEE International Symposium on
Circuits and Systems, 2007, pp. 633–636.

[51] S. Zhao, I. Ahmed, C. Lamoureux, A. Lotfi, V. Betz, and O. Trescases,
“A universal self-calibrating dynamic voltage and frequency scaling
(dvfs) scheme with thermal compensation for energy savings in fpgas,”
in 2016 IEEE Applied Power Electronics Conference and Exposition
(APEC), 2016, pp. 1882–1887.

[52] Z. Seifoori, B. Khaleghi, and H. Asadi, “A power gating switch box
architecture in routing network of sram-based fpgas in dark silicon era,”
in Design, Automation Test in Europe Conference Exhibition (DATE),
2017, 2017, pp. 1342–1347.

[53] A. A. M. Bsoul and S. J. E. Wilton, “An fpga architecture supporting
dynamically controlled power gating,” in 2010 International Confer-
ence on Field-Programmable Technology, 2010, pp. 1–8.

[54] A. Rahman, S. Das, T. Tuan, and S. Trimberger, “Determination of
power gating granularity for fpga fabric,” in IEEE Custom Integrated
Circuits Conference 2006, 2006, pp. 9–12.

[55] S. Ishihara, M. Hariyama, and M. Kameyama, “A low-power fpga based
on autonomous fine-grain power gating,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 19, no. 8, pp. 1394–1406,
2011.

[56] H. T. and L. T. K., “Power gating technique in pacemaker design on
fpga,” in The 2012 International Conference on Advanced Technologies
for Communications, 2012, pp. 14–18.

[57] T. Tuan, A. Rahman, S. Das, S. Trimberger, and S. Kao, “A 90-nm
low-power fpga for battery-powered applications,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 26,
no. 2, pp. 296–300, 2007.

[58] M. Hosseinabady and J. L. Nunez-Yanez, “Energy optimization of
fpga-based stream-oriented computing with power gating,” in 2015
25th International Conference on Field Programmable Logic and
Applications (FPL), 2015, pp. 1–6.

[59] H. Qi, O. Ayorinde, and B. H. Calhoun, “An ultra-low-power fpga for
iot applications,” in 2017 IEEE SOI-3D-Subthreshold Microelectronics
Technology Unified Conference (S3S), 2017, pp. 1–3.

[60] X. Tang, E. Giacomin, B. Chauviere, A. Alacchi, and P. Gaillardon,
“Openfpga: An open-source framework for agile prototyping customiz-
able fpgas,” IEEE Micro, vol. 40, no. 04, pp. 41–48, jul 2020.

[61] J. Luis Nunez-Yanez, M. Hosseinabady, and A. Beldachi, “Energy
optimization in commercial fpgas with voltage, frequency and logic
scaling,” IEEE Transactions on Computers, vol. 65, no. 5, pp. 1484–
1493, 2016.

[62] A. Raghunathan, S. Dey, and N. Jha, “Register-transfer level estimation
techniques for switching activity and power consumption,” in Proceed-
ings of International Conference on Computer Aided Design, 1996, pp.
158–165.

[63] E. Bezati, S. Casale-Brunet, M. M., and J. W. J., “Clock-gating of
streaming applications for energy efficient implementations on fpgas,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 36, no. 4, pp. 699–703, 2017.

[64] P. Georgios, “Clock gating methodologies and tools: a survey,” in
International journal of Circuit theory and Applications, 2015.

[65] S. Huda, M. Mallick, and J. H. Anderson, “Clock gating architectures
for fpga power reduction,” in 2009 International Conference on Field
Programmable Logic and Applications, 2009, pp. 112–118.

[66] Q. Wu, M. Pedram, and X. Wu, “Clock-gating and its application to
low power design of sequential circuits,” IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications, vol. 47, no. 3,
pp. 415–420, 2000.

[67] P. Bhaskar and V. K. Jathar, “Development of processor engine for
fpga based clock gating and performing power analysis,” in 2016

International Conference on Computing Communication Control and
automation (ICCUBEA), 2016, pp. 1–5.

[68] J. P. Oliver, J. Curto, D. B., M. R., and E. B., “Clock gating and clock
enable for fpga power reduction,” in 2012 VIII Southern Conference
on Programmable Logic, 2012, pp. 1–5.

[69] Y. Z., J. Roivainen, and A. Mammela, “Clock-gating in fpgas: A
novel and comparative evaluation,” in 9th EUROMICRO Conference
on Digital System Design (DSD’06), 2006, pp. ‘584–590.

[70] W. Osborne, W. Luk, J. Coutinho, and O. Mencer, “Reconfigurable
design with clock gating,” in 2008 International Conference on Em-
bedded Computer Systems: Architectures, Modeling, and Simulation,
2008, pp. 187–194.

[71] B. Pandey, J. Yadav, M. Pattanaik, and N. Rajoria, “Clock gating
based energy efficient alu design and implementation on fpga,” in
2013 International Conference on Energy Efficient Technologies for
Sustainability, 2013, pp. 93–97.

[72] B.-L. Tan, W.-K. Lee, K.-M. Mok, and H.-G. Goh, “Clock gating
implementation on commercial field programmable gate array (fpga),”
in 2018 4th International Conference on Electrical, Electronics and
System Engineering (ICEESE), 2018, pp. 102–106.

[73] B. Pandey, D. Singh, D. Baghel, J. Yadav, and M. Pattanaik, “Clock
gated low power memory implementation on virtex-6 fpga,” in 2013 5th
International Conference and Computational Intelligence and Commu-
nication Networks, 2013, pp. 409–412.

[74] L. Sterpone, L. Carro, D. Matos, S. Wong, and F. Fakhar, “A new re-
configurable clock-gating technique for low power sram-based fpgas,”
in 2011 Design, Automation Test in Europe, 2011, pp. 1–6.

[75] T. Agrawal, A. Kumar, and S. K. Saraswat, “Design of low power sram
on artix-7 fpga,” in 2016 2nd International Conference of Communi-
cation Control and Intelligent Systems (CCIS), 2016, pp. 203–209.

[76] M. Geier, M. Brändle, and S. Chakraborty, “Insert amp; save: Energy
optimization in ip core integration for fpga-based real-time systems,”
in 2021 IEEE 27th Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), 2021, pp. 80–91.

[77] Y. Z., Q. T., L. Li, W. Wang, K. Choi, J. J., H. J., and S.-Y.
A., “Automatic register transfer level cad tool design for advanced
clock gating and low power schemes,” in International SoC Design
Conference (ISOCC), 2012, pp. 21–24.

[78] Siemens. (2022) Powerpro power analysis and optimization platform.
[Online]. Available: https://eda.sw.siemens.com/en-US/ic/powerpro

[79] V. George, H. Zhang, and J. Rabaey, “The design of a low energy
fpga,” in Proceedings. 1999 International Symposium on Low Power
Electronics and Design (Cat. No.99TH8477), 1999, pp. 188–193.

[80] A. Sharma, R. Ansar, M. S. Gaur, L. B., and V. Laxmi, “Reducing
fifo buffer power using architectural alternatives at rtl,” in 2016 20th
International Symposium on VLSI Design and Test (VDAT), 2016, pp.
1–2.

[81] A. Garcia, L. Perez, and R. Acuna, “Power consumption management
on fpga,” in 15th International Conference on Electronics, Communi-
cations and Computers (CONIELECOMP’05), 2005, pp. 240–245.

[82] M. Zamani and E. Esmaili, “Reducing power consumption in fpga
routing,” in CCECE 2003 - Canadian Conference on Electrical and
Computer Engineering. Toward a Caring and Humane Technology
(Cat. No.03CH37436), vol. 1, 2003, pp. 9–12 vol.1.

[83] B. V., R. J., and M. A., “Architecture and cad for deep-submicron
fpgas,” in Kluwer Academic Publishers, 1999.

[84] C. Hoo, Y. Ha, and A. Kumar, “A directional coarse-grained power
gated fpga switch box and power gating aware routing algorithm,” in
2013 23rd International Conference on Field programmable Logic and
Applications, 2013, pp. 1–4.

[85] G. V. Leming and K. Nepal, “Low-power fpga routing switches using
adaptive body biasing technique,” in 2009 52nd IEEE International
Midwest Symposium on Circuits and Systems, 2009, pp. 447–450.

[86] Z. Seifoori, H. Asadi, and M. Stojilović, “A machine learning approach
for power gating the fpga routing network,” in 2019 International
Conference on Field-Programmable Technology (ICFPT), 2019, pp.
10–18.

[87] S. Chtourou, M. Abid, Z. Marrakchi, and H. Mehrez, “Power dis-
sipation analysis for island-style fpga architecture,” in 2014 5th In-
ternational Conference on Information and Communication Systems
(ICICS), 2014, pp. 1–4.

[88] A. A., A. H., E. T., H. J., and T. M., “Accurate thermal-profile estima-
tion and validation for fpga-mapped circuits,” in Field-Programmable
Custom Computing Machines (FCCM), 2013 IEEE 21st Annual Inter-
national Symposium on, 2013, pp. 57–60.

19

[89] Z. S., A. I., L. C., L. A., B. V., and T. O., “Robust self-calibrated
dynamic voltage scaling in fpgas with thermal and ir-drop compensa-
tion,” in IEEE Transactions on Power Electronics, vol. 33, 2018, p.
8500–8511.

[90] B. Khaleghi, S. Salamat, M. Imani, and T. Rosing, “Fpga energy effi-
ciency by leveraging thermal margin,” in 2019 IEEE 37th International
Conference on Computer Design (ICCD), 2019, pp. 376–384.

[91] S. Chandrasekaran and A. Amira, “Power reduction for fpga im-
plementations : Design optimisation and high level modelling,” in
2006 International Conference on Field Programmable Logic and
Applications, 2006, pp. 1–2.

[92] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys, vol. 48, no. 4, pp. 1–33, May 2016.

[93] C. Jaegul and P. Haesun, “Customizing computational methods for
visual analytics with big data,” IEEE Computer Graphics and Appli-
cations, vol. 33, no. 4, pp. 22–28, 2018.

[94] H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “Algorithmic level
approximate computing for machine learning classifiers,” in 2019 26th
IEEE International Conference on Electronics, Circuits and Systems
(ICECS), 2019, pp. 113–114.

[95] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “Sage:
Self-tuning approximation for graphics engines,” in Proceedings of
the Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2013, pp. 13–24.

[96] A. Vladyslav, “2018 ieee second international conference on data
stream mining & processing (dsmp),” in One Approach of Approxi-
mation for Incoming Data Stream in IoT Based Monitoring System,
2018.

[97] V. Chippa, D. Mohapatra, K. Roy, S. Chakradhar, and A. Raghunathan,
“Scalable effort hardware design,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 22, no. 9, pp. 2004–2016, 2014.

[98] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze,
and D. Grossman, “Enerj: Approximate data types for safe and
general low-power computation,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2011, p. 164–174. [Online]. Available:
https://doi.org/10.1145/1993498.1993518

[99] S. Lee, L. K. John, and A. Gerstlauer, “High-level synthesis of
approximate hardware under joint precision and voltage scaling,” in
Proceedings of the Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017, 2017, pp. 187–192.

[100] C. Li, W. Luo, S. S. Sapatnekar, and J. Hu, “Joint precision op-
timization and high level synthesis for approximate computing,” in
Proceedings of the ACM/EDAC/IEEE Design Automation Conference
(DAC), 2015.

[101] F. Vaverka, R. Hrbacek, and L. Sekanina, “Evolving component library
for approximate high level synthesis,” in Proceedins of the IEEE
Symposium Series on Computational Intelligence (SSCI), 2016, pp. 1–
8.

[102] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop
perforation,” in Proceedings of the ACM SIGSOFT Symposium
and the European Conference on Foundations of Software
Engineering (ESEC/FSE), 2011, p. 124–134. [Online]. Available:
https://doi.org/10.1145/2025113.2025133

[103] A. Rahimi, L. Benini, and R. Gupta, “Spatial memoization: Concurrent
instruction reuse to correct timing errors in simd architectures,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 12,
pp. 847–851, 2013.

[104] G. Inigo, B. Ricardo, N. Santosh, and N. Thu, “Approxhadoop:
Bringing approximations to mapreduce frameworks,” ACM SIGPLAN
Notices, vol. 50, no. 4, pp. 383–397, 2015.

[105] T. Mattia, P. Gianluca, and P. Christian, “Dynamically-tunable dataflow
architectures based on markov queuing models,” Electronics, p. 6,
2022.

[106] M. Sparsh, “A survey of architectural techniques for improving cache
power efficiency,” in Sustainable Computing: Informatics and Systems,
vol. 4, 2014, pp. 33–43.

[107] S. Su, Y. Wu, and W. Qian, “Efficient batch statistical error estimation
for iterative multi-level approximate logic synthesis,” in Proceedings
of the ACM/EDAC/IEEE Design Automation Conference (DAC), 2018.
[Online]. Available: https://doi.org/10.1145/3195970.3196038

[108] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “Abacus: A technique for
automated behavioral synthesis of approximate computing circuits,” in
Proceedings of the Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2014, pp. 1–6.

[109] O. Segal, M. Margala, S. R. Chalamalasetti, and M. Wright, “High
level programming framework for fpgas in the data center,” in 2014
24th International Conference on Field Programmable Logic and
Applications (FPL), 2014, pp. 1–4.

[110] M. Gao and G. Qu, “Energy efficient runtime approximate computing
on data flow graphs,” in Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2017, pp. 444–449.

[111] D. Garg, K. Sharma, and A. Singla, “Designing a green data processing
device using different input/output standards on fpga,” in 2018 Fifth
International Conference on Parallel, Distributed and Grid Computing
(PDGC), 2018, pp. 75–79.

[112] B. Christophe, M. Joel Mandebi, C. Paul, and at all, “The future of
fpga acceleration in datacenters and the cloud.” in 2ACM Transactions
on Reconfigurable Technology and Systems, vol. 15, 2022, pp. 1–42.
[Online]. Available: https://doi.org/10.1145/3506713

[113] E. C. Andrew Putnam, Adrian Caulfield, “A reconfigurable fabric for
accelerating large-scale data center services.” in IEEE Micro., 2015,
pp. 10–22. [Online]. Available: https://doi.org/10.1109/MM.2015.42

[114] E. Dieter, “Competing in artificial intelligence chips: China’s challenge
amid technology war.” in Centre for International Governance Inno-
vation, Special Report. 10/2020, 2020, pp. 1–3.

[115] X. Yu, J. Gao, Y. Wang, J. Miao, E. Wu, H. Zhang, Y. Meng, B. Zhang,
B. Min, and D. Chen, “A data-center FPGA acceleration platform for
convolutional neural networks,” in 29th International Conference on
Field Programmable Logic and Applications, FPL 2019, Barcelona,
Spain, September 8-12, 2019, I. Sourdis, C. Bouganis, C. Álvarez,
L. A. T. Dı́az, P. Valero-Lara, and X. Martorell, Eds. IEEE, 2019, pp.
151–158. [Online]. Available: https://doi.org/10.1109/FPL.2019.00032

[116] A. Francois, W. Jagath, H. Christoph, W. Beat, and P. Stephan, “An
fpga platform for hyperscalers.” in IEEE 25th Annual Symposium on
High-Performance Interconnects., 2017, pp. 29–32.

[117] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, S. Alkalay, and M. Haselman, “Serving dnns in
real time at datacenter scale with project brainwave.” in IEEE Micro,
vol. 38, 2018, pp. 8–20.

[118] G. A. D., H. M. C., L. H., L. A. G., S. J., and Y. C., “Novo-g#:
Large-scale reconfigurable computing with direct and programmable
interconnects.” in IEEE High Performance Extreme Computing Con-
ference (HPEC)., 2016, pp. 1–7.

[119] G. Alan, L. Herman, and S. Greg, “Novo-g: At the forefront of scalable
reconfigurable supercomputing.” in Comput. Sci. Eng., vol. 13, 2010,
pp. 82–86.

[120] C. Chris, T. Ian, E. D., A. Vikas, and G. A., “Narc: Network attached
reconfigurable computing for high performance, network based ap-
plications.” in 8th Annual International Conference on Military and
Aerospace Programmable Logic Devices (MAPLD’05)., 2005, pp. 1–
10.

[121] B. R., B. S., B. M., C. G., P. J., P. M., S. A., T. A., M. A., s. G., S. R.,
C. A., C. R., and G. G., “Maxwell – a 64 fpga supercomputer.” in 2nd
NASA/ESA Conference on Adaptive Hardware and Systems (AHS’07).,
2007, p. 287–294.

[122] L. Thomas, P. Byungchul, B. Hadi, and L.-G. Alberto, “Savi testbed
architecture and federation. in future access enablers of ubiquitous and
intelligent infrastructures.” in Springer., 2015, pp. 3–10.

[123] A. P. Adrian Caulfield, Eric Chung, “A cloud-scale acceleration
architecture.” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO)., 2016. [Online]. Available:
https://doi.org/10.1109/MICRO.2016.7783710

[124] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-attached
fpgas for data center applications,” in 2016 International Conference
on Field-Programmable Technology (FPT), 2016, pp. 36–43.

[125] J. Hoozemans, J. Peltenburg, F. Nonnemacher, A. Hadnagy, Z. Al-Ars,
and H. P. Hofstee, “Fpga acceleration for big data analytics: Challenges
and opportunities,” IEEE Circuits and Systems Magazine, vol. 21, no. 2,
pp. 30–47, 2021.

[126] I. Stamelos, E. Koromilas, C. Kachris, and D. Soudris, “A novel
framework for the seamless integration of fpga accelerators with big
data analytics frameworks in heterogeneous data centers,” in 2018
International Conference on High Performance Computing Simulation
(HPCS), 2018, pp. 539–545.

[127] A. Saghir and T. Masood, “Performance evaluation of openstack
networking technologies,” in 2019 International Conference on En-
gineering and Emerging Technologies (ICEET), 2019, pp. 1–6.

[128] A. Pereira and R. Sinnott, “A performance evaluation of containers
running on managed kubernetes services,” in 2019 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom),
2019, pp. 199–208.

20

[129] C. Bobda, A. Majer, A. Ahmadinia, T. Haller, A. Linarth, and J. Te-
ich, “The erlangen slot machine: increasing flexibility in fpga-based
reconfigurable platforms,” in Proceedings. 2005 IEEE International
Conference on Field-Programmable Technology, 2005., 2005, pp. 37–
42.

[130] N. Gil, S. Amy, L. Felix, R. Dion, and U. Rich, “Intel virtualization
technology: Hardware support for efficient processor virtualization,” in
Intel Technol. J., 2006, p. 10.

[131] J. Guo, L. Zhang, J. R. Hung, C. Li, J. Zhao, and M. Guo,
“FPGA sharing in the cloud: a comprehensive analysis,” Frontiers
Comput. Sci., vol. 17, no. 5, p. 175106, 2023. [Online]. Available:
https://doi.org/10.1007/s11704-022-2127-0

[132] S. Hayden, Kwok-Hay and L. Cheng, “Fpgas for software program-
mers,” in Springer, 2016, pp. 285–305.

[133] I. Gonzalez, S. Lopez-Buedo, G. Sutter, D. Sanchez-Roman, F. J.
Gomez-Arribas, and J. Aracil, “Virtualization of reconfigurable
coprocessors in hprc systems with multicore architecture,” Journal
of Systems Architecture, vol. 58, no. 6, pp. 247–256, 2012.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1383762112000197

[134] A. A. Al-Aghbari and M. E. S. Elrabaa, “Cloud-based fpga custom
computing machines for streaming applications,” IEEE Access, vol. 7,
pp. 38 009–38 019, 2019.

[135] G. Dai, Y. Shan, F. Chen, Y. Wang, K. Wang, and H. Yang, “Online
scheduling for fpga computation in the cloud,” in 2014 International
Conference on Field-Programmable Technology (FPT), 2014, pp. 330–
333.

[136] Z. Ke, C. Yisong, C. Mingyu, B. Yungang, and X. Zhiwei, “Com-
puter organization and design course with fpga cloud,” in 50th ACM
Technical Symposium on Computer Science Education. ACM, 2019, p.
927–933.

[137] A. Brant and G. G. Lemieux, “Zuma: An open fpga overlay ar-
chitecture,” in 2012 IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines, 2012, pp. 93–96.

[138] S. Ma, Z. Aklah, and D. Andrews, “A run time interpretation approach
for creating custom accelerators,” in 2015 25th International Confer-
ence on Field Programmable Logic and Applications (FPL), 2015, pp.
1–4.

[139] S. Moini, S. Tian, D. Holcomb, J. Szefer, and R. Tessier, “Power side-
channel attacks on bnn accelerators in remote fpgas,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 11, no. 2,
pp. 357–370, 2021.

[140] A. Boutros, M. Hall, N. Papernot, and V. Betz, “Neighbors
from hell: Voltage attacks against deep learning accelerators
on multi-tenant fpgas,” in International Conference on Field-
Programmable Technology, (IC)FPT 2020, Maui, HI, USA, December
9-11, 2020. IEEE, 2020, pp. 103–111. [Online]. Available:
https://doi.org/10.1109/ICFPT51103.2020.00023

[141] F. Schellenberg, D. R. Gnad, A. Moradi, and M. B. Tahoori, “An
inside job: Remote power analysis attacks on fpgas,” in 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2018,
pp. 1111–1116.

[142] Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, and
B. Sunar, “Jackhammer: Efficient rowhammer on heterogeneous fpga-
cpu platforms,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2020, no. 3, p. 169–195, Jun. 2020. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/8587

[143] M. K. Ahmed, J. Mandebi, S. K. Saha, and C. Bobda, “Multi-tenant
cloud FPGA: A survey on security,” CoRR, vol. abs/2209.11158,
2022. [Online]. Available: https://doi.org/10.48550/arXiv.2209.11158

[144] E. Karabulut, C. Yuvarajappa, M. I. Shaik, S. Potluri, A. Awad,
and A. Aysu, “Pr crisis: Analyzing and fixing partial reconfiguration
in multi-tenant cloud fpgas,” in Proceedings of the 2022 Workshop
on Attacks and Solutions in Hardware Security, ser. ASHES’22.
New York, NY, USA: Association for Computing Machinery, 2022,
p. 101–106. [Online]. Available: https://doi.org/10.1145/3560834.
3563832

[145] Z. Y., W. Y., and W. X., “Capping the electricity cost of cloud-scale data
centers with impacts on power markets,” in Proceedings of the 20th
international symposium on High performance distributed computing,
2011, pp. 271–272.

[146] A. Yarahmadi and M. Momtazpour, “Vm placement in accelerator-
equipped data centers using variable-length modified genetic algo-
rithm,” in 2021 29th Iranian Conference on Electrical Engineering
(ICEE), 2021, pp. 562–567.

[147] S. Zhang, F. Meng, and Z. Zhang, “A cloud data center virtual machine
placement scheme based on energy optimization,” in 2018 International

Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), 2018, pp. 215–2156.

[148] M. Bertolino, R. Pacalet, L. Apvrille, and A. Enrici, “Efficient schedul-
ing of fpgas for cloud data center infrastructures,” in 2020 23rd
Euromicro Conference on Digital System Design (DSD), 2020, pp. 57–
64.

[149] N. Gebara, J. Meng, W. Luk, and P. Costa, “Scheduling algorithms
for high performance network switching on fpgas: A survey,” in 2018
International Conference on Field-Programmable Technology (FPT),
2018, pp. 166–173.

[150] S. P and V. P, “A green energy optimized scheduling algorithm for
cloud data centers,” in International Conference on Computing and
Network Communications (CoCoNet), 2015, pp. 941–945.

[151] A. Dhar, E. Richter, M. Yu, W. Zuo, X. Wang, N. S. Kim, and D. Chen,
“Dml: Dynamic partial reconfiguration with scalable task scheduling
for multi-applications on fpgas,” IEEE Transactions on Computers, pp.
1–1, 2021.

[152] W. T. Loke and C. Y. Koay, “Energy-aware scheduling for task adap-
tive fpgas,” in 2016 International Conference on Field-Programmable
Technology (FPT), 2016, pp. 173–176.

[153] R. Huigui, Z. Haomin, X. Sheng, L. Canbing, and H. Chunhua,
“Optimizing energy consumption for data centers,” in Renewable and
Sustainable Energy Reviews, vol. 58, 2016, pp. 674–691.

[154] B. d. A. Silva and V. Bonato, “Power/performance optimization in
fpga-based asymmetric multi-core systems,” in 22nd International
Conference on Field Programmable Logic and Applications (FPL),
2012, pp. 473–474.

[155] P. Grünwald and P. M. B. Vitányi, “Shannon information and
kolmogorov complexity,” CoRR, vol. cs.IT/0410002, 2004. [Online].
Available: http://arxiv.org/abs/cs.IT/0410002

[156] A. Radovanovic, R. Koningstein, I. Schneider, B. Chen, A. Duarte,
B. Roy, D. Xiao, M. Haridasan, P. Hung, N. Care, S. Talukdar,
E. Mullen, K. Smith, M. Cottman, and W. Cirne, “Carbon-aware
computing for datacenters,” IEEE Transactions on Power Systems, pp.
1–1, 2022.

[157] Microsoft. (2020) Carbon-aware kubernetes. [On-
line]. Available: https://devblogs.microsoft.com/sustainable-software/
carbon-aware-kubernetes/

[158] Google. (2021) New carbon-intelligent computing platform.
[Online]. Available: https://blog.google/inside-google/infrastructure/
data-centers-work-harder-sun-shines-wind-blows/

Mattia Tibaldi is a Ph.D. candidate at Politecnico di
Milano. He received a Master’s degree in Computer
Science and Engineering from the same university
in 2021. His research interests include reconfigurable
and adaptive systems for cloud applications and data
centers, security-aware design methodologies, and
sustainable computing.

Christian Pilato is an Associate Professor at Po-
litecnico di Milano. He was a Post-doc Research
Scientist at Columbia University (2013-2016) and
Università della Svizzera italiana (2016-2018), and
an Assistant Professor at Politecnico di Milano
(2018-2023). He was also a Visiting Researcher
at New York University, TU Delft, and Chalmers
University of Technology. He has a Ph.D. in In-
formation Technology from Politecnico di Milano
(2011). His research interests include high-level syn-
thesis, reconfigurable systems, and system-on-chip

architectures, focusing on memory and security aspects. He served as program
chair of EUC 2014 and ICCD 2022 and is currently serving on the program
committees of many conferences on EDA, CAD, embedded systems, and
reconfigurable architectures (like DAC, ICCAD, DATE, CASES, FPL, ICCD,
etc.) He is a Senior Member of IEEE and ACM, and a Member of HiPEAC.

