327 research outputs found

    The ARIEL Instrument Control Unit design for the M4 Mission Selection Review of the ESA's Cosmic Vision Program

    Get PDF
    The Atmospheric Remote-sensing Infrared Exoplanet Large-survey mission (ARIEL) is one of the three present candidates for the ESA M4 (the fourth medium mission) launch opportunity. The proposed Payload will perform a large unbiased spectroscopic survey from space concerning the nature of exoplanets atmospheres and their interiors to determine the key factors affecting the formation and evolution of planetary systems. ARIEL will observe a large number (>500) of warm and hot transiting gas giants, Neptunes and super-Earths around a wide range of host star types, targeting planets hotter than 600 K to take advantage of their well-mixed atmospheres. It will exploit primary and secondary transits spectroscopy in the 1.2-8 um spectral range and broad-band photometry in the optical and Near IR (NIR). The main instrument of the ARIEL Payload is the IR Spectrometer (AIRS) providing low-resolution spectroscopy in two IR channels: Channel 0 (CH0) for the 1.95-3.90 um band and Channel 1 (CH1) for the 3.90-7.80 um range. It is located at the intermediate focal plane of the telescope and common optical system and it hosts two IR sensors and two cold front-end electronics (CFEE) for detectors readout, a well defined process calibrated for the selected target brightness and driven by the Payload's Instrument Control Unit (ICU).Comment: Experimental Astronomy, Special Issue on ARIEL, (2017

    Modeling and Design of Digital Electronic Systems

    Get PDF
    The paper is concerned with the modern methodologies for holistic modeling of electronic systems enabling system-on-chip design. The method deals with the functional modeling of complete electronic systems using the behavioral features of Hardware Description Languages or high level languages then targeting programmable devices - mainly Field Programmable Gate Arrays (FPGAs) - for the rapid prototyping of digital electronic controllers. This approach offers major advantages such as: a unique modeling and evaluation environment for complete power systems, the same environment is used for the rapid prototyping of the digital controller, fast design development, short time to market, a CAD platform independent model, reusability of the model/design, generation of valuable IP, high level hardware/software partitioning of the design is enabled, Concurrent Engineering basic rules (unique EDA environment and common design database) are fulfilled. The recent evolution of such design methodologies is marked through references to case studies of electronic system modeling,simulation, controller design and implementation. Pointers for future trends / evolution of electronic design strategies and tools are given

    Simulink modeling and design of an efficient hardware-constrained FPGA-based PMSM speed controller

    Get PDF
    The aim of this paper is to present a holistic approach to modeling and FPGA implementation of a permanent magnet synchronous motor (PMSM) speed controller. The whole system is modeled in the Matlab Simulink environment. The controller is then translated to discrete time and remodeled using System Generator blocks, directly synthesizable into FPGA hardware. The algorithm is further refined and factorized to take into account hardware constraints, so as to fit into a low cost FPGA, without significantly increasing the execution time. The resulting controller is then integrated together with sensor interfaces and analysis tools and implemented into an FPGA device. Experimental results validate the controller and verify the design

    Performance Investigation of Digital Lowpass IIR Filter Based on Different Platforms

    Get PDF
    The work presented in this paper illuminates the design and simulation of a recursive or Infinite Impulse Response (IIR) filter. The proposed design algorithm employs the Genetic Algorithm to determine the filter coefficients to satisfy the required performance. The effectiveness of different platforms on filter design and performance has been studied in this paper. Three different platforms are considered to implement and verify the designed filter’s work through simulation. The first platform is the MATLAB/SIMULINK software package used to implement the Biquad form filter. This technique is the basis for the software implementation of the designed IIR filter. The HDL – Cosimulation technique is considered the second one; it inspired to take advantage of the existing tools in SIMULINK to convert the designed filter algorithm to the Very high-speed integrated circuit Hardware Description Language (VHDL) format. The System Generator is employed as the third technique, in which the designed filter is implemented as a hardware structure based on basic unit blocks provided by Xilinx System Generator. This technique facilitates the implementation of the designed filter in the FPGA target device. Simulation results show that the performance of the designed filter is remarkably reliable even with severe noise levels

    Novel load identification techniques and a steady state self-tuning prototype for switching mode power supplies

    Get PDF
    Control of Switched Mode Power Supplies (SMPS) has been traditionally achieved through analog means with dedicated integrated circuits (ICs). However, as power systems are becoming increasingly complex, the classical concept of control has gradually evolved into the more general problem of power management, demanding functionalities that are hardly achievable in analog controllers. The high flexibility offered by digital controllers and their capability to implement sophisticated control strategies, together with the programmability of controller parameters, make digital control very attractive as an option for improving the features of dcdc converters. On the other side, digital controllers find their major weak point in the achievable dynamic performances of the closed loop system. Indeed, analogto-digital conversion times, computational delays and sampling-related delays strongly limit the small signal closed loop bandwidth of a digitally controlled SMPS. Quantization effects set other severe constraints not known to analog solutions. For these reasons, intensive scientific research activity is addressing the problem of making digital compensator stronger competitors against their analog counterparts in terms of achievable performances. In a wide range of applications, dcdc converters with high efficiency over the whole range of their load values are required. Integrated digital controllers for Switching Mode Power Supplies are gaining growing interest, since it has been shown the feasibility of digital controller ICs specifically developed for high frequency switching converters. One very interesting potential benefit is the use of autotuning of controller parameters (on-line controllers), so that the dynamic response can be set at the software level, independently of output capacitor filters, component variations and ageing. These kind of algorithms are able to identify the output filter configuration (system identification) and then automatically compute the best compensator gains to adjust system margins and bandwidth. In order to be an interesting solution, however, the self-tuning should satisfy two important requirements: it should not heavily affect converter operation under nominal condition and it should be based on a simple and robust algorithm whose complexity does not require a significant increase of the silicon area of the IC controller. The first issue is avoided performing the system identification (SI) with the system open loop configuration, where perturbations can be induced in the system before the start up. Much more challenging is to satisfy this requirement during steady state operations, where perturbations on the output voltage are limited by the regular operations of the converter. The main advantage of steady state SI methods, is the detection of possible non-idealities occurring during the converter operations. In this way, the system dynamics can be consequently adjusted with the compensator parameters tuning. The resource saving issue, requires the development of äd-hocßelf-tuning techniques specifically tailored for integrated digitally controlled converters. Considering the flexibility of digital control, self-tuning algorithms can be studied and easily integrated at hardware level into closed loop SMPS reducing development time and R & D costs. The work of this dissertation finds its origin in this context. Smart power management is accomplished by tuning the controller parameters accordingly to the identified converter configuration. Themain difficult for self-tuning techniques is the identification of the converter output filter configuration. Two novel system identification techniques have been validated in this dissertation. The open loop SI method is based on the system step response, while dithering amplification effects are exploited for the steady state SI method. The open loop method can be used as autotunig approach during or before the system start up, a step evolving reference voltage has been used as system perturbation and to obtain the output filter information with the Power Spectral Density (PSD) computation of the system step response. The use of ¢§ modulator is largely increasing in digital control feedback. During the steady state, the finite resolution introduces quantization effects on the signal path causing low frequency contributes of the digital control word. Through oversampling-dithering capabilities of ¢§ modulators, resolution improvements are obtained. The presented steady state identification techniques demonstrates that, amplifying the dithering effects on the signal path, the output filter information can be obtained on the digital side by processing with the PSD computation the perturbed output voltage. The amount of noise added on the output voltage does not affect the converter operations, mathematical considerations have been addressed and then justified both with a Matlab/Simulink fixed-point and a FPGA-based closed loop system. The load output filter identification of both algorithms, refer to the frequency domain. When the respective perturbations occurs, the system response is observed on the digital side and processed with the PSD computation. The extracted parameters are the resonant frequency ans the possible ESR (Effective Series Resistance) contributes,which can be detected as maximumin the PSD output. The SI methods have been validated for different configurations of buck converters on a fixed-point closed loop model, however, they can be easily applied to further converter configurations. The steady state method has been successfully integrated into a FPGA-based prototype for digitally controlled buck converters, that integrates a PSD computer needed for the load parameters identification. At this purpose, a novel VHDL-coded full-scalable hybrid processor for Constant Geometry FFT (CG-FFT) computation has been designed and integrated into the PSD computation system. The processor is based on a variation of the conventional algorithm used for FFT, which is the Constant-Geometry FFT (CG-FFT).Hybrid CORDIC-LUT scalable architectures, has been introduced as alternative approach for the twiddle factors (phase factors) computation needed during the FFT algorithms execution. The shared core architecture uses a single phase rotator to satisfy all TF requests. It can achieve improved logic saving by trading off with computational speed. The pipelined architecture is composed of a number of stages equal to the number of PEs and achieves the highest possible throughput, at the expense of more hardware usage

    Novel load identification techniques and a steady state self-tuning prototype for switching mode power supplies

    Get PDF
    Control of Switched Mode Power Supplies (SMPS) has been traditionally achieved through analog means with dedicated integrated circuits (ICs). However, as power systems are becoming increasingly complex, the classical concept of control has gradually evolved into the more general problem of power management, demanding functionalities that are hardly achievable in analog controllers. The high flexibility offered by digital controllers and their capability to implement sophisticated control strategies, together with the programmability of controller parameters, make digital control very attractive as an option for improving the features of dcdc converters. On the other side, digital controllers find their major weak point in the achievable dynamic performances of the closed loop system. Indeed, analogto-digital conversion times, computational delays and sampling-related delays strongly limit the small signal closed loop bandwidth of a digitally controlled SMPS. Quantization effects set other severe constraints not known to analog solutions. For these reasons, intensive scientific research activity is addressing the problem of making digital compensator stronger competitors against their analog counterparts in terms of achievable performances. In a wide range of applications, dcdc converters with high efficiency over the whole range of their load values are required. Integrated digital controllers for Switching Mode Power Supplies are gaining growing interest, since it has been shown the feasibility of digital controller ICs specifically developed for high frequency switching converters. One very interesting potential benefit is the use of autotuning of controller parameters (on-line controllers), so that the dynamic response can be set at the software level, independently of output capacitor filters, component variations and ageing. These kind of algorithms are able to identify the output filter configuration (system identification) and then automatically compute the best compensator gains to adjust system margins and bandwidth. In order to be an interesting solution, however, the self-tuning should satisfy two important requirements: it should not heavily affect converter operation under nominal condition and it should be based on a simple and robust algorithm whose complexity does not require a significant increase of the silicon area of the IC controller. The first issue is avoided performing the system identification (SI) with the system open loop configuration, where perturbations can be induced in the system before the start up. Much more challenging is to satisfy this requirement during steady state operations, where perturbations on the output voltage are limited by the regular operations of the converter. The main advantage of steady state SI methods, is the detection of possible non-idealities occurring during the converter operations. In this way, the system dynamics can be consequently adjusted with the compensator parameters tuning. The resource saving issue, requires the development of äd-hocßelf-tuning techniques specifically tailored for integrated digitally controlled converters. Considering the flexibility of digital control, self-tuning algorithms can be studied and easily integrated at hardware level into closed loop SMPS reducing development time and R & D costs. The work of this dissertation finds its origin in this context. Smart power management is accomplished by tuning the controller parameters accordingly to the identified converter configuration. Themain difficult for self-tuning techniques is the identification of the converter output filter configuration. Two novel system identification techniques have been validated in this dissertation. The open loop SI method is based on the system step response, while dithering amplification effects are exploited for the steady state SI method. The open loop method can be used as autotunig approach during or before the system start up, a step evolving reference voltage has been used as system perturbation and to obtain the output filter information with the Power Spectral Density (PSD) computation of the system step response. The use of ¢§ modulator is largely increasing in digital control feedback. During the steady state, the finite resolution introduces quantization effects on the signal path causing low frequency contributes of the digital control word. Through oversampling-dithering capabilities of ¢§ modulators, resolution improvements are obtained. The presented steady state identification techniques demonstrates that, amplifying the dithering effects on the signal path, the output filter information can be obtained on the digital side by processing with the PSD computation the perturbed output voltage. The amount of noise added on the output voltage does not affect the converter operations, mathematical considerations have been addressed and then justified both with a Matlab/Simulink fixed-point and a FPGA-based closed loop system. The load output filter identification of both algorithms, refer to the frequency domain. When the respective perturbations occurs, the system response is observed on the digital side and processed with the PSD computation. The extracted parameters are the resonant frequency ans the possible ESR (Effective Series Resistance) contributes,which can be detected as maximumin the PSD output. The SI methods have been validated for different configurations of buck converters on a fixed-point closed loop model, however, they can be easily applied to further converter configurations. The steady state method has been successfully integrated into a FPGA-based prototype for digitally controlled buck converters, that integrates a PSD computer needed for the load parameters identification. At this purpose, a novel VHDL-coded full-scalable hybrid processor for Constant Geometry FFT (CG-FFT) computation has been designed and integrated into the PSD computation system. The processor is based on a variation of the conventional algorithm used for FFT, which is the Constant-Geometry FFT (CG-FFT).Hybrid CORDIC-LUT scalable architectures, has been introduced as alternative approach for the twiddle factors (phase factors) computation needed during the FFT algorithms execution. The shared core architecture uses a single phase rotator to satisfy all TF requests. It can achieve improved logic saving by trading off with computational speed. The pipelined architecture is composed of a number of stages equal to the number of PEs and achieves the highest possible throughput, at the expense of more hardware usage

    Machine Vision for intelligent Semi-Autonomous Transport (MV-iSAT)

    Get PDF
    AbstractThe primary focus was to develop a vision-based system suitable for the navigation and mapping of an indoor, single-floor environment. Devices incorporating an iSAT system could be used as ‘self-propelled’ shopping carts in high-end retail stores or as automated luggage routing systems in airports. The primary design feature of this system is its Field Programmable Gate Array (FPGA) core, chosen for its strengths in parallelism and pipelining. Image processing has been successfully demonstrated in real-time using FPGA hardware. Remote feedback and monitoring was broadcasted to a host computer via a local area network. Deadlines as short as 40ns have been met by a custom built memory-based arbitration scheme. It is hoped that the iSAT platform will provide the basis for future work on advanced FPGA-based machine-vision algorithms for mobile robotics

    Study of a Synchronization System for Distributed Inverters Conceived for FPGA Devices

    Get PDF
    In a multiple parallel-connected inverters system, limiting the circulating current phenomenon is mandatory since it may influence efficiency and reliability. In this paper, a new control method aimed at this purpose and conceived to be implemented on a Field Programmable Gate Array (FPGA) device is presented. Each of the inverters, connected in parallel, is conceived to be equipped with an FPGA that controls the Pulse-Width Modulation (PWM) waveform without intercommunication with the others. The hardware implemented is the same for every inverter; therefore, the addition of a new module does not require redesign, enhancing system modularity. The system has been simulated in a Simulink environment. To study its behavior and to improve the control method, simulations with two parallel-connected inverters have been firstly conducted, then additional simulations have been performed with increasing complexity to demonstrate the quality of the algorithm. The results prove the ability of the method proposed to limit the circulating currents to negligible values

    Study of a synchronization system for distributed inverters conceived for FPGA devices

    Get PDF
    In a multiple parallel-connected inverters system, limiting the circulating current phenomenon is mandatory since it may influence efficiency and reliability. In this paper, a new control method aimed at this purpose and conceived to be implemented on a Field Programmable Gate Array (FPGA) device is presented. Each of the inverters, connected in parallel, is conceived to be equipped with an FPGA that controls the Pulse-Width Modulation (PWM) waveform without intercommunication with the others. The hardware implemented is the same for every inverter; therefore, the addition of a new module does not require redesign, enhancing system modularity. The system has been simulated in a Simulink environment. To study its behavior and to improve the control method, simulations with two parallel-connected inverters have been firstly conducted, then additional simulations have been performed with increasing complexity to demonstrate the quality of the algorithm. The results prove the ability of the method proposed to limit the circulating currents to negligible values
    corecore