

Università degli Studi di Cagliari

DOTTORATO DI RICERCA

IN INGEGNERIA ELETTRONICA ED INFORMATICA

Ciclo XXVI

NOVEL LOAD IDENTIFICATION TECHNIQUES AND A STEADY

STATE SELF-TUNING PROTOTYPE FOR SWITCHING MODE POWER

SUPPLIES

Settore scientifico disciplinare di afferenza

ING‐INF/01 (Elettronica)

Presentata da: ANDREA CONGIU

Coordinatore Dottorato PROF. FABIO ROLI

Tutor/Relatore PROF. MASSIMO BARBARO

Esame finale anno accademico 2012 – 2013

University of Cagliari

PhD Course in

Electronic and Computer Engineering

Class XXVI

NOVEL LOAD IDENTIFICATION TECHNIQUES AND A STEADY

STATE SELF-TUNING PROTOTYPE FOR SWITCHING MODE POWER

SUPPLIES

Scientific field

ING‐INF/01 (Elettronica)

Author: ANDREA CONGIU

PhD Course Coordinator: PROF. FABIO ROLI

Advisor: PROF. MASSIMO BARBARO

Academic year of PhD defence 2012 – 2013

Abstract

Control of Switched Mode Power Supplies (SMPS) has been traditionally achieved through
analog means with dedicated integrated circuits (ICs). However, as power systems are be-
coming increasingly complex, the classical concept of control has gradually evolved into
the more general problem of power management, demanding functionalities that are hardly
achievable in analog controllers. The high flexibility offered by digital controllers and their
capability to implement sophisticated control strategies, together with the programmabil-
ity of controller parameters, make digital control very attractive as an option for improving
the features of dcdc converters. On the other side, digital controllers find their major weak
point in the achievable dynamic performances of the closed loop system. Indeed, analog-
to-digital conversion times, computational delays and sampling-related delays strongly limit
the small signal closed loop bandwidth of a digitally controlled SMPS. Quantization effects
set other severe constraints not known to analog solutions. For these reasons, intensive sci-
entific research activity is addressing the problem of making digital compensator stronger
competitors against their analog counterparts in terms of achievable performances.
In a wide range of applications, dcdc converters with high efficiency over the whole range of
their load values are required. Integrated digital controllers for Switching Mode Power Sup-
plies are gaining growing interest, since it has been shown the feasibility of digital controller
ICs specifically developed for high frequency switching converters. One very interesting po-
tential benefit is the use of autotuning of controller parameters (on-line controllers), so that
the dynamic response can be set at the software level, independently of output capacitor
filters, component variations and ageing. These kind of algorithms are able to identify the
output filter configuration (system identification) and then automatically compute the best
compensator gains to adjust system margins and bandwidth. In order to be an interest-
ing solution, however, the self-tuning should satisfy two important requirements: it should
not heavily affect converter operation under nominal condition and it should be based on a
simple and robust algorithm whose complexity does not require a significant increase of the
silicon area of the IC controller.
The first issue is avoided performing the system identification (SI) with the system open
loop configuration, where perturbations can be induced in the system before the start up.
Much more challenging is to satisfy this requirement during steady state operations, where
perturbations on the output voltage are limited by the regular operations of the converter.
The main advantage of steady state SI methods, is the detection of possible non-idealities
occurring during the converter operations. In this way, the system dynamics can be conse-
quently adjusted with the compensator parameters tuning. The resource saving issue, re-
quires the development of äd-hocßelf-tuning techniques specifically tailored for integrated

i

digitally controlled converters.
Considering the flexibility of digital control, self-tuning algorithms can be studied and easily
integrated at hardware level into closed loop SMPS reducing development time and R & D
costs. The work of this dissertation finds its origin in this context. Smart power management
is accomplished by tuning the controller parameters accordingly to the identified converter
configuration.
The main difficult for self-tuning techniques is the identification of the converter output fil-
ter configuration. Two novel system identification techniques have been validated in this
dissertation. The open loop SI method is based on the system step response, while dithering
amplification effects are exploited for the steady state SI method. The open loop method
can be used as autotunig approach during or before the system start up, a step evolving
reference voltage has been used as system perturbation and to obtain the output filter infor-
mation with the Power Spectral Density (PSD) computation of the system step response.
The use of ∆Σmodulator is largely increasing in digital control feedback. During the steady
state, the finite resolution introduces quantization effects on the signal path causing low
frequency contributes of the digital control word. Through oversampling-dithering capabil-
ities of ∆Σ modulators, resolution improvements are obtained. The presented steady state
identification techniques demonstrates that, amplifying the dithering effects on the signal
path, the output filter information can be obtained on the digital side by processing with the
PSD computation the perturbed output voltage. The amount of noise added on the output
voltage does not affect the converter operations, mathematical considerations have been
addressed and then justified both with a Matlab/Simulink fixed-point and a FPGA-based
closed loop system.
The load output filter identification of both algorithms, refer to the frequency domain. When
the respective perturbations occurs, the system response is observed on the digital side and
processed with the PSD computation. The extracted parameters are the resonant frequency
ans the possible ESR (Effective Series Resistance) contributes, which can be detected as max-
imum in the PSD output. The SI methods have been validated for different configurations of
buck converters on a fixed-point closed loop model, however, they can be easily applied to
further converter configurations. The steady state method has been successfully integrated
into a FPGA-based prototype for digitally controlled buck converters, that integrates a PSD
computer needed for the load parameters identification.
At this purpose, a novel VHDL-coded full-scalable hybrid processor for Constant Geome-
try FFT (CG-FFT) computation has been designed and integrated into the PSD computation
system. The processor is based on a variation of the conventional algorithm used for FFT,
which is the Constant-Geometry FFT (CG-FFT). Hybrid CORDIC-LUT scalable architectures,
has been introduced as alternative approach for the twiddle factors (phase factors) computa-
tion needed during the FFT algorithms execution. The shared core architecture uses a single
phase rotator to satisfy all TF requests. It can achieve improved logic saving by trading off
with computational speed. The pipelined architecture is composed of a number of stages
equal to the number of PEs and achieves the highest possible throughput, at the expense of
more hardware usage.

ii

Introduction

Consequently at the diffusion of embedded systems, requirements as area optimization,
very high precision regulated voltage, power efficiency and minimization of external compo-
nents become the main goal during the converter design. Dedicated complex analog solu-
tions have been exploited for applications of portable instruments where the efficiency (e.g.
very low ripple requirements) has to be kept as high as possible over a wide range of loads.
The growing regulators complexity and the power management, have highlighted how dig-
ital solutions can be considered especially when resource saving become the main aspect
of the design. The high programmability level and the computational power, both joined
with the possibility to have complex control solutions have pushed the research on digitally
controlled SMPS. An overview of recent developments in digital control strategies for dcdc
switching power converters is presented in[54].
Since 2000 the research approached to digital solution for SMPS control [64, 118, 55, 93].
During the recent years the research community has been much more interested in power
and area optimization for digital ICs dedicated to the SMPS control. Furthermore, most of
research moved to algorithms integration for supporting the digital control and its quality
(e.g. self-tuning techniques). Even if lots of improvements have been done, actually only
about the one third of on market SMPS are digitally controlled. However, interest and know-
how are both growing more and more day by day. During last fifteen years, digital solution
for SMPS has been strongly studied. Most of studies has been focused on DPWM-based
control improvements and digital quantization limits. In [64, 118, 55, 93, 119, 56, 82, 87,
109, 120, 116, 133, 19, 128, 95, 45, 84, 134, 111, 110, 127, 77, 15] digital control improvements
for SMPS has been addressed. Limit Cycle Oscillations (LCOs) contributes, caused by inter-
facing analog-to-digital converters (ADC) and the digital pulse-width modulator (DPWM)
has been addressed in [85] [86], where quantization effects has been modelled. In [63] an
exact small signal discrete-time model for digitally controlled dcdc converters has been in-
troduced. The model, which is based on well-known approaches to discrete-time modelling
and the standard Z-transform, takes into account modulator effects and delays in the con-
trol loop. Quantization noise effect in DPWM-based regulators represents the main limit
of this approach. Because dithering-oversampling-averaging capabilities, Delta-Sigma (∆Σ)
devices are good candidate for resolution increasings [65, 61, 37, 51, 138, 76]. In [76] the
impact of the Noise Transfer Function (NTF) was studied, a third order structure should be
choose to avoid idle tones effects. A ∆Σ-DPWM controller for switching converters was de-
signed and implemented in [51] and the DPWM low resolution increasing was confirmed
also in [138], where undesirable low-frequency LCOs are eliminated and tight output voltage
regulation is obtained.

iii

Feasibility of completely integrated digital controllers was demonstrated for the first time
in [82][87][120], where innovative solutions for the main constituents of a digital controller,
namely the compensator, the A/D converter and the digital pulse-width modulator, were
presented. Based on a look-up table structure, the PID compensator employed in [82] pre-
sented reduced complexity. Delay-line and windowed ADCs were used in these works for
fast conversion times and small area requirements. A ring oscillator-MUX DPWM was im-
plemented in [87], while in [82] a hybrid counter/delay line architecture was considered as
a suitable trade off between resolution, area and power consumption. Further works in the
area exploited ring-oscillator ADCs [120][133].
Proportional Integrative Derivative (PID) compensator has been strongly studied and inte-
grated in digital control loop for dcdc converters. A high frequency control solution with a
PID regulator based on look-up tables was proposed in [92]. In [106], a model reference tun-
ing for PID regulators of dcdc converters was created thanks to crossover frequency analysis,
while A non-linear PID-like regulator has been proposed in [126].
Along with solutions aimed to an increasingly deeper integration, the research activity also
focused on exporting control approaches widespread in the analog world into the digital do-
main, an example being the investigation and development of digital current-mode control
techniques [19, 84]. In [19] a predictive model was introduced, a digital current-mode con-
troller for dcdc converters FPGA-based prototype was designed in [84].
Further improvements for digital control are often based on digital signal processing algo-
rithms, which can be easily designed and integrated. A continuous time digital signal pro-
cessing is used in [140, 137] to achieve very fast transient response. The continuous time DSP
performs also a charge-balance based algorithm to achieve voltage recovery through a sin-
gle on-off action of the power switch. A Middlebrook’s loop-gain measurement technique for
on-line stability margin monitoring in digitally controlled SMPS has been exploited in [74].

The digital approach enables smart solutions for regulators, e.g. self-tuning or autotun-
ing capabilities of a regulator permits to automatically adapt regulator gains over a specific
power plant (on-line controllers). System frequency response can be tuned by adjusting PID
gains [106]. One of the most intense and interesting research activities concerns the devel-
opment and implementation of hardware-effective autotuning techniques for digital com-
pensator [25, 102, 104, 135, 136, 139, 66, 67, 14, 13, 103, 101, 97, 9, 50, 48, 17, 4, 5, 72, 90, 16,
60, 59, 26, 105, 73, 47, 2].

Off-line digitally control feedback for SMPS, presents a static configuration of the com-
pensator. The off-line controllers do not allow the best system bandwidth for a large set of
loads (converter configurations), compensator parameters can be stored in a non-volatile
memory and loaded in a programmable controller at system power-on. In this way, differ-
ent sets of pre-calculated parameters can be run for many environmental conditions on the
same control hardware. Joining the feasibility to identify and/or monitor the dcdc output
filter (system identification), with the dynamic setting of the compensator gains, avoids the
duty to optimize the compensator. More evolved tuning algorithms literally perform an au-
tomatic design of the compensator parameters through a number of on-line measurements
and post-processing operations (on-line controllers).
The system identification (SI) generally falls into two main categories: parametric and non-
parametric methods [57, 58]. Parametric methods return the parameters of the system mo-
del such as the coefficients of a system difference equation, transfer function, or state-space

iv

model. Non-parametric methods return impulse response and/or frequency response data
directly.
Parametric methods require, in addition to the selection of an appropriate input stimulus,
an a priori selection of a parametrized model structure including system order and number
of zeros, construction of a suitable prediction error equation and loss function, and meth-
ods to minimize the loss function [9, 50, 17, 4, 5, 72, 90, 16, 60, 59, 26, 105, 73, 47]. Non-
parametric methods do not assume a system model and require only selection of an ap-
propriate stimulus. The LCO-based self-tuning methods are an example of nonparametric
approaches. System LCOs can be induced either by using a relay [25, 102, 104] or reducing
the DPWM resolution [135, 136, 139]. However, this kind of approach allows to know the
frequency loop response only at the stimulated frequency. Another non-parametric method
is focused on obtaining an approximation of the system impulsive response, that is calcu-
lated exploiting the cross correlation method. For a white noise input the impulse response
of the system is proportional to the cross correlation between input and output, while the
correlation itself rejects any disturbances to the system as long as they are uncorrelated with
the input [57, 58, 66, 67, 14, 13, 103, 101, 97]. In these approaches a Pseudo Random Binary
Sequence(PRBS)is used to emulate a digital white noise source and perturb the closed loop
system. Such identification method has been integrated into auto-regulated digital convert-
ers, with different control techniques.
Beside purely digital control solutions, mixed-signal controllers are worth to be mentioned
[112, 96, 113, 98]. These approaches combine simple integrated analog blocks and digital
provisions with the aim to achieve analog-like dynamic performances, but still retaining the
advantages of digital systems like programmability, low passive component count and con-
trol robustness.
Self-Tuning algorithms are mainly composed by processing approaches based on frequency
domain analysis [66, 67, 14, 13, 103, 101, 97]. The FFT and its hardware implementation has
been largely exploited and wide range of custom FFT processor architectures can be found
in literature. Pipelined structures have both high throughput and computational efficiency,
but when area constraints are stronger than timing, non-pipelined counterparts are usually
preferred. Scalable architectures in terms of number of processing elements (PEs), are flex-
ible solutions. Astola and Akopian [8] introduced a family of hardware-oriented algorithms
resulting in scalable constant geometry (CG) structures. In [107] a not-in-place architecture
targeted for ASIC implementation is proposed. This solution uses data shuffling registers,
thus it does not require a memory for intermediate results.
Classic approaches to FFT designs require a large amount of memory for storing precom-
puted twiddle factors. The CORDIC iterative algorithm presented in [115] allows computa-
tion of twiddle factors at runtime. To this purpose many architectures introduce this algo-
rithm inside the PEs by substituting the complex multipliers with iterative phase rotations.
With this approach, in [130] the number of iterations has been reduced by using optimized
sequences and corresponding scale factors both stored in a LUT. In [122] a multi-bank RAM
structure to reduce memory logic is presented. On the other hand, some systems replace the
twiddle factor storage ROM with a CORDIC-based generation system. Nonethless, CORDIC
hardware implementations can be very expensive in terms of area usage [11, 34], conse-
quently hardly suitable for a scalable FFT approach.

The entire research has been focused on Innovation Project 2010, shared between the
EOLAB group of the University of Cagliari and the Automotive Department of Infineon Tech-

v

nologies AG (Villach-Austria). Aim of this activity is to develop and execute an innovative
self-tuning prototype (on-line controller) for future automation technologies to allow the
integration of power supplies for different set of applications reducing development time
and R & D costs.
Off-line controllers for Switching Mode Power Supplies (SMPS) need worst case considera-
tions on stability margins and closed loop bandwidth. Load characteristics are unknown at
the design stage and the converter is tested with a limited range of loads. On-line controllers
for SMPS, are based on self-tuning algorithms and adjust the system dynamics resulting in
optimal design over the full range of loads. The self-tuning techniques are often two-step
evolving approach: first the SI identify the output filter structure of the converter, then, dur-
ing the regulation step the compensator is set in order to satisfy both system margins and
bandwidth. Non-parametric SI techniques, are based on appropriate stimulus to extract
load information. These kind of approaches can be distinguished in two main categories:

• Steady state system identification technique.

• Open loop system identification technique.

Non-parametric steady state SI techniques, have the constraint to inject very little pertur-
bations and permit to monitor load variation during the steady state. When non-idealities,
like temperature variations occur during the steady state, the ESR contribution in the load
capacitance increases. In this condition, the system can have poor stability margins due to
zero contribution inserted by the ESR. Then, it is fundamental to study the converter control
to output transfer function (identification process) and consequently adapt the PID gains in
order to increase margins and bandwidth. A steady state PRBS-based approach has been
presented in [101].
Non-parametric open loop identification techniques, can introduce a bigger perturbation in
the system because they do not operates during nominal converter operations. They can be
applied before the system start up. Once the algorithm is performed best PID gain can be
computed before closed loop operations, where load parameter variation can be observed
with the steady state identification technique.
In this dissertation two novel techniques of load identification has been introduced and
validated, one refers to the steady state SI technique and the second to the open loop SI
technique. Both techniques are focused on the load parameters extraction in the frequency
domain. Essentially, they extract the output filter resonant frequency (f0) and the zero fre-
quency (fz) due to possible the ESR contribution. Even if the load identification is com-
pletely different, the introduced SI techniques are both focused the same load parameters.
The system response during the respective perturbations, can be recorded in the digital do-
main (ADC output) and processed with Power Spectral Density (PSD) analysis. The resonant
frequency and the ESR contribution can be extracted, in both cases, from the PSD output by
maximum searching analysis. The resonant frequency is detect as maximum in the PSD out-
put, while the ESR contribution is obtained as second peak in the processing output. Both
SI approaches have been patented.

The steady state SI technique has been performed through the dithering amplification.
In this approach a ∆Σ modulator is used to oversample the digital control word and am-
plify the considered quantization noise. Consequently, faster variations of the digital control
word are obtained and automatically averaged by the low-pass configuration of the output
filter. The amplified quantization noise can be considered as independent addictive input

vi

for the closed loop configuration, its effects are reflected on the output voltage through the
digital control. Thanks to the further amount of noise added on the entire range of frequen-
cies, the resonant frequency f0 can be easily detected. For the fz identification in the PSD,
a particular structure of noise shaper has been used. Inserting a notch contribution at the
resonant frequency, the amplified dithering effects are more concentrate on frequency next
to f0. In this way, the ESR contribution can be detect as a second peak when a change of
slope occurs in the PSD output. Perturbations considered for this non-parametric method
have been demonstrated through a mathematical model. For considered system configura-
tion (70M H z clock frequency and 449kH z switching frequency), about 100mV of average
perturbation on the output voltage is introduced when dithering effects have been doubled.
The open loop identification technique is based on the system step response. In this ap-
proach a step evolving reference voltage has been considered as system perturbation. The
system response is observed and processed when steps occur.

In this dissertation, a digitally controlled buck converter has been prototyped (off-line
controller). A fixed-point Matlab/Simulink closed loop system has been modelled to de-
fine the needed hardware resolution. Comparing fixed with floating point closed loop mod-
els, the hardware resolution has been tuned and used during the VHDL design of the con-
trol feedback. To validate the VHDL-coded control loop a mixed signal hardware-software
(VHDL-Matlab) FPGA-based co-simulation model for PID-based SMPS has been realized.
Co-simulation modelling with Xilinx System Generator is one of the actual State of Art ap-
proach used for mixed-signal models verification. The closed loop prototype has been ob-
tained by interfacing the interfacing a Test-Chip (TC) provided by Infineon Technologies AG
with a Virtex-6 FPGA where the VHDL-coded digital control loop has been coded.
The SI algorithms have been first mathematically described and then verified into the fixed-
point model, for different buck converter configurations. The steady state identification al-
gorithm has been also validated into the FPGA-TC prototype, where the dithering amplifica-
tion has been verified with Matlab processing of the hardware ADC output. As last step, an
on-line controller working during the steady state has been prototyped. The steady state SI
has been used, to realise this self-tuning prototype for SMPS, in this closed loop implemen-
tation a VHDL-coded PSD computer has been integrated as processing unit.

As the aim is to obtain a self-tuning platform, the PSD computer has been designed con-
sidering scalability constraints.
The PSD computation algorithm in based on the FFT, in this dissertation the design and
hardware implementation of a scalable processor for the computation of the Fast Fourier
Transform (FFT) is discussed.
The processor is based on a variation of the conventional algorithm used for FFT, which is the
Constant-Geometry FFT (CG-FFT). By performing a perfect shuffle permutation at the end
of every computational stage, the aforementioned algorithm allows to implement a simple
structure composed of parallel Processing Elements (PEs) and an interconnection network.
The number of PEs can be tuned according to the requirements of computational speed and
hardware usage. Each PE implements the basic operation of the FFT, which is called but-
terfly, and involves the complex multiplication for phase factors. These are called Twiddle
Factors (TFs), and in conventional approaches they are retrieved from a ROM. Other solu-
tions involve the usage of a system that computes TFs on-the-fly by micro-rotations, called
CORDIC. In this dissertation, a novel algorithm for TF computation that takes scalability
into consideration is derived. It either calculates each twiddle factor from a previous one, or
it retrieves it from a set of log2N−1 basic TFs, where N is the length of the FFT. This is imple-

vii

mented in two twiddle factors generator architectures, called shared core and pipelined [24].
These hardware structures compute twiddle factors both by retrieving them from a ROM and
by phase rotations. Hence they are called hybrid CORDIC-LUT scalable archtiectures.
The shared core architecture uses a single phase rotator to satisfy all TF requests. It can
achieve improved logic saving by trading off with computational speed. The pipelined ar-
chitecture is composed of a number of stages equal to the number of PEs and achieves the
highest possible throughput, at the expense of more hardware usage.
The architecture of the processor is fully scalable in terms of transform length, data bits and
Processing Elements (PEs). Each PE implements the basic operation of the FFT, and all the
PEs operate in parallel. A processor with many PEs will take less clock cycles to complete
an FFT computation of a given length than a processor with few PEs, but will occupy more
FPGA resources. This tradeoff makes the number of PEs a degree of freedom in the DSP
system design.

This dissertation is organised as follows:

• Chapter 1. In this chapter a brief theoretical introduction to dcdc power supplies has
been presented referring to buck converters. The ideal converter has been introduced
and main characteristic waveforms has been shown. Distinction between CC and DC
conduction modes have been addressed as well as the losses in the converter. Con-
sideration about converter design specifications have been shown in order to be taken
into account during the dissertation.

• Chapter 2. In this chapter, the ac characterisation of the buck converter in CCM has
been presented. Main techniques for the ac small signal characterization are discussed,
and the frequency behaviour of open loop converter is presented with consideration
about ESR effects. A Matlab/Simulink open loop model has been presented and vali-
date though simulations results.

• Chapter 3. In this chapter, the closed loop configuration for digitally controlled buck
converters has been discussed. Firstly, delays effects introduced by the digital con-
trol loop have been characterised in the frequency domain, then design specifications
have been addressed. Considerations about PID compensator design and their effect
in the system bandwidth have been shown. Both AD and DA quantization effects are
largely discussed and, the causes of LCOs during the steady state are highlighted. The
last sections refers to ∆Σ description. The main characteristics of the modulator are
highlighted considering the error feedback consideration.

• Chapter 4. In this chapter the entire discussion have been addressed in order to design
a FPGA-based prototype of the digital control loop. First a fixed-point Matlab/Simulink
model has been realised through comparison with the floating point solutions. Once
resolution consideration about the digital control loop have been drawn, a VHDL de-
sign has been described. Closed loop hardware verifications have been shown with
mixed signal hardware-software (VHDL-Matlab) FPGA-based co-simulations.

• Chapter 5. In this chapter a closed loop prototype, or off-line controller, for digitally
controlled buck converters is realised exploiting the digital control loop prototyped in
the previous section. The closed loop implementation has been realised interfacing
the FPGA with a Test Chip (TC). I/O configuration for the FPGA is discussed together

viii

with the external loop configuration for the TC. Closed loop results have been pre-
sented with oscilloscope-based measurements for the robust prototype.

• Chapter 6. In this chapter main load identification techniques for on-line controllers
have been shown distinguishing between parametric and non-parametric approaches
at the State of Art. Some non-parametric SI approaches have been modelled in the
Matlab/Simulink closed loop floating point model.

• Chapter 7. In this chapter two novel non-parametric SI techniques have been pre-
sented. Mathematical considerations have been drawn. Load identification results
have been shown through the PSD computation for different buck converter configu-
rations.

• Chapter 8. Discussion in this chapter has been done with the aim of obtaining a self-
tuning prototype or on-line controller for SMPS. The steady state SI technique has
been first validated at hardware level, and then integrated into the off-line controller
to realise a self tuning prototype. Identification results have been shown for different
buck converter configurations through the Chipscope Pro tool interface, together with
the regulation step.

• Chapter 9. In this chapter considerations have been addressed up the hardware char-
acterisation of a full-scalable PSD computer. First a scalable FFT architecture has been
designed and then a hybrid CORDIC-LUT algorithm for twiddle factors generation is
introduced. A full scalable hybrid FFT processor is designed and integrated into the
PSD computer.

ix

Contents

Abstract i

1 A general overview of buck converters 1
1.1 Ideal Model . 1
1.2 Continuous Conduction Mode . 3
1.3 Discontinuous Conduction Mode . 5
1.4 Power Losses . 7
1.5 Output filter design considerations . 8

2 Buck Converter in Continuous Conduction Mode 9
2.1 AC small signal model . 9

2.1.1 Transfer functions . 11
2.2 Matlab modelling . 15
2.3 Matlab/Simulink open loop model . 18

3 Digitally controlled buck converters in CCM 23
3.1 The digital control feedback . 23

3.1.1 Delays in the digital loop . 25
3.1.2 The compensator . 27

3.2 Design considerations . 29
3.2.1 PID Compensator . 30

3.3 Digital quantization effects . 32
3.3.1 ADC and DPWM resolution . 32
3.3.2 Compensator resolution . 33
3.3.3 Limit cycles oscillations . 33

3.4 Delta Sigma modulator . 34
3.4.1 Error feedback configuration . 36
3.4.2 Noise transfer function . 37

4 Digital control feedback prototype 39
4.1 Matlab/Simulink closed loop model . 39

4.1.1 ADC modelling . 42
4.1.2 PID compensator modelling . 44
4.1.3 Delta Sigma modulator modelling . 46
4.1.4 DPWM modelling . 48

x

CONTENTS xi

4.1.5 PID tuning tool . 50
4.2 VHDL-coded digital control feedback . 51

4.2.1 PID Compensator design . 53
4.2.2 Delta Sigma modulator design . 54
4.2.3 DPWM design . 57

4.3 FPGA-based co-simulation closed loop system 58

5 Digitally controlled buck converter prototype: Off-line controller 65
5.1 FPGA configuration . 69

5.1.1 Clock generator . 70
5.1.2 Observing FPGA internal signals . 71
5.1.3 FPGA I/O mapping . 72

5.2 Test Chip external loop configuration . 74

6 Modelling of system identification techniques at the State of Art 77
6.1 Non-parametric methods . 79

6.1.1 LCO-based methods . 79
6.1.2 Harmonic response analysis . 82
6.1.3 PRBS-based methods . 84

6.2 Parametric methods . 85

7 Novel non-parametric system identification methods 87
7.1 Open loop system identification technique . 88

7.1.1 Resonant frequency identification results 90
7.1.2 ESR effects identification results . 92

7.2 Steady state system identification technique . 97
7.2.1 Resonant frequency and ESR identification algorithm 98
7.2.2 Resonant frequency identification results 109
7.2.3 ESR effects identification results . 113

7.3 Processing and extraction algorithm design specifications 125

8 Steady state self-tuning prototype: On-line controller 129
8.1 Steady state system identification method validation 129

8.1.1 Results . 132
8.2 Self-tuning prototype . 138

8.2.1 Hardware description . 140
8.2.2 Results . 145

9 Scalable FFT and autocorrelation-based HDL processor 159
9.1 Scalable FFT architecture . 161

9.1.1 Description of the implemented architecture 161
9.1.2 RTL design . 166

9.2 TF module general structure and LUT-based architecture 178
9.2.1 Inside twiddle_factors_system . 178
9.2.2 LUT-based TF generation . 178

9.3 Hybrid CORDIC-LUT twiddle factor generator 181
9.3.1 Properties of the CG-FFT . 181

xii CONTENTS

9.3.2 Overall architectural remarks . 185
9.3.3 Hybrid CORDIC-LUT architecture shared-core 187
9.3.4 Hybrid CORDIC-LUT architecture pipelined 193

9.4 PSD computer . 195
9.4.1 Autocorrelation-based DSP algorithm: PSD computation 195
9.4.2 System architecture . 196
9.4.3 Frequency feature extraction . 208

9.5 Testing and simulation environment . 208
9.5.1 VHDL testbenches . 208
9.5.2 MATLAB simulation scripts . 210

9.6 Simulation and synthesis results . 212
9.6.1 Hybrid twiddle factors generators . 212
9.6.2 Scalable FFT processor . 224
9.6.3 PSD computer . 232

10 Conclusions 237

Bibliography 243

A Quick configuration guide 261
A.1 Configuring the autocorrelation system . 261

A.1.1 Setting the parameters . 261
A.2 Selecting the architecture of the RAM . 261
A.3 Configuring the FFT processor . 262

A.3.1 Setting the parameters . 262
A.3.2 Selecting the twiddle factor generation architecture 262
A.3.3 Initialising the ROM . 262

B Background mathematical concepts 265
B.1 The Fast Fourier Transform . 265
B.2 The CORDIC algorithm . 269
B.3 Theorical remarks on the autocorrelation function 272

C State of Art in FFT hardware architectures 277
C.1 Pipelined structures . 277
C.2 Memory-based structures . 280
C.3 FFT-specific CORDIC . 290

List of Figures

1.1 Buck converter: ideal model. 1
1.2 Buck converter: switching node voltage waveform. 2
1.3 Buck converter: closed loop buck configuration. 3
1.4 Buck converter: Open loop configuration. 4
1.5 Buck converter: inductor voltage waveform. 4
1.6 Buck converter: Inductor current waveform. 4
1.7 Buck converter: asynchronous control configuration. 6
1.8 Buck converter: waveforms in DCM mode. 7

2.1 Linearisation approach for buck converters. 10
2.2 Averaged method analysis: model. 12
2.3 Averaged method analysis: buck converter circuit. 12
2.4 Small signal circuit: ideal buck converter. 13
2.5 Small signal circuit : buck converter with ESR contribution. 13
2.6 Control to Output transfer function: ideal buck converters. 15
2.7 Control to Output transfer function: buck converters with ESR contribution. . . . 16
2.8 Equivalent circuit: buck converter with non-idealities. 16
2.9 Matlab function: buck converter with non-idealities. 17
2.10 Matlab/Simulink model: open loop buck converter. 18
2.11 Simulink user’s defined block. 19
2.12 Matlab function: gate driver. 19
2.13 Simulink: Fixed-step simulations. 20
2.14 Matlab/Simulink: open loop output voltage (D = 0.5, Vi n = 14V). 20
2.15 Matlab/Simulink: open loop zoomed output voltage (D = 0.5, Vi n = 14V). 21

3.1 Digitally controlled buck converter: model. 24
3.2 Control to output transfer function: loop delay effects. 26
3.3 DPWM waveforms. 27
3.4 ADC output characteristic: zero error bin. 28
3.5 Control to output transfer function: PID effects. 31
3.6 PID model: parallel structure. 32
3.7 Digitally controlled buck converter: model with ∆Σmodulator. 35
3.8 ∆Σmodulator: error feedback configuration. 35
3.9 ∆Σmodulator: 2nd order error feedback configuration. 37
3.10 Control to output and noise transfer functions. 38

xiii

xiv LIST OF FIGURES

4.1 Digitally controlled buck converter: Matlab/Simulink model. 40
4.2 Fixed-point closed loop model: output voltage. 41
4.3 Fixed-point closed loop model: zoomed output voltage. 41
4.4 Simulink block: ADC model. 42
4.5 ADC Matlab function: floating point (left side) and fixed-point (right side). 43
4.6 Matlab/Simulink: fixed-point ADC output characteristic. 44
4.7 PID Matlab function: floating point (left side) and fixed-point (right side). 45
4.8 Matlab/Simulink: ∆Σ floating and fixed-point output comparison. 46
4.9 Simulink ∆Σ blocks: floating and fixed-point comparison. 47
4.10 ∆ΣMatlab function: fixed-point. 48
4.11 DPWM waveforms. 49
4.12 Matlab/Simulink floating and fixed-point comparison: model. 49
4.13 Matlab/Simulink floating and fixed-point comparison: Digital resolution tuning. . 50
4.14 PID gains tuning tool. 51
4.15 Digital control feedback: open loop hardware implementation. 52
4.16 VHDL implementation: PID proportional part. 54
4.17 VHDL implementation: ∆Σ dithering function. 55
4.18 VHDL implementation: ∆Σ noise shaper. 56
4.19 VHDL implementation: ∆Σ noise shaper with 2kH z notch. 57
4.20 VHDL/Matlab co-simulation closed loop: model. 59
4.21 VHDL/Matlab co-simulation closed loop: output. 60
4.22 VHDL/Matlab co-simulation closed loop: output (zoomed). 60
4.23 VHDL/Matlab co-simulation closed loop: load step output reaction. 61
4.24 VHDL/Matlab co-simulation closed loop: load step reaction (zoomed). 62
4.25 VHDL/Matlab FPGA-based closed loop buck converter. 62

5.1 FPGA-TestChip: prototype model. 66
5.2 FPGA-Test Chip: prototype . 67
5.3 FPGA-TC: prototype output signals. 68
5.4 FPGA output: ADC clock. 68
5.5 FPGA output: DPWM square wave output. 69
5.6 Co-simulation and FPGA-TC prototype: outputs comparison. 69
5.7 FPGA-TC prototype: load step reaction. 70
5.8 FPGA clocking wizard: 70M H z clock generator. 71
5.9 ChipScope Pro Analyzer interface: input error. 72
5.10 FPGA I/O prototype configuration: UCF file. 73
5.11 Virtex6 FPGA: I/O mapping . 73
5.12 Test Chip GUI interface: external loop configuration. 75
5.13 Test Chip: I/O mapping. 75

6.1 Closed loop configuration and self-tuning algorithm: on-line controller model. . . 78
6.2 Matlab/Simulink model: LCO-based identification method. 80
6.3 Matlab/Simulink model: LCO-based identification method output. 81
6.4 Matlab/Simulink model: harmonic system response identification method. 83
6.5 Matlab/Simulink model: harmonic system response identification method output 83
6.6 Pseudo Random Binary Sequence: Autocorrelation (210samples) 85

LIST OF FIGURES xv

7.1 Non-idealities: ESR contribution effects on the steady state output waveforms. . . 87
7.2 Digitally controlled buck converter: steady state identification model. 89
7.3 Open loop identification method: step evolving reference voltage. 89
7.4 Open loop identification method: step response output voltage. 90
7.5 Open loop identification method: step evolving reference voltage (zoom). 91
7.6 Buck converter configurations: load identification (no ESR contribution). 91
7.7 Open loop identification method result: f0,buck1, ESR = 0Ω 92
7.8 Open loop identification method result: f0,buck2, ESR = 0Ω. 93
7.9 Open loop identification method result: f0,buck3, ESR = 0Ω. 93
7.10 Buck converter configurations: load identification (ESR contribution). 94
7.11 Open loop identification method result: f0,buck1, ESR = 0.5Ω. 95
7.12 Open loop identification method result: f0,buck2, ESR = 1Ω. 95
7.13 Open loop identification method result: f0,buck3, ESR = 1Ω. 96
7.14 Open loop identification method result: f0,buck3, ESR = 1.8Ω. 96
7.15 Digitally controlled buck converter: Matlab/Simulink fixed-point model. 97
7.16 Steady state identification method: ∆Σ error feedback configuration. 98
7.17 Steady state identification method: dithering modelling. 98
7.18 Steady state identification method: dithering effects on the control to output

transfer function (no ESR contribution). 99
7.19 Steady state identification method: dithering amplification effects on the control

to output transfer function (no ESR contribution, f0,buck1). 100
7.20 Control to output transfer function and noise shaper configurations. 101
7.21 Steady state identification method: dithering amplification effects on the steady

state output voltage. 103
7.22 Steady state identification method: PSD of dithering amplification effects on the

control to output transfer function (no ESR contribution). 103
7.23 Steady state identification method: dithering amplification effects on the control

to output transfer function (ESR contribution). 104
7.24 Steady state identification method: dithering amplification effects on the control

to output transfer function (ESR contribution and notch effects). 105
7.25 Steady state identification method: dithering effects on the output voltage. 107
7.26 Steady state identification method: dithering amplification effects on the output

voltage (α= 2). 107
7.27 Steady state identification method: dithering amplification effects on the output

voltage (α= 3). 108
7.28 Steady state identification method: dithering amplification effects on the output

voltage (comparison). 108
7.29 Steady state identification method result: FFT and PSD comparison (f0,buck1,α= 1).109
7.30 Steady state identification method PSD results: f0,buck1, ESR = 0Ω. 110
7.31 Steady state identification method PSD results: f0,buck2, ESR = 0Ω. 111
7.32 Steady state identification method PSD results: f0,buck3, ESR = 0Ω. 112
7.33 Steady state identification method PSD results: f0,buck2, ESR = 0Ω (trial 1). 113
7.34 Steady state identification method PSD results: f0,buck2, ESR = 0Ω (trial 2). 114
7.35 Steady state identification method PSD results: f0,buck2, ESR = 0Ω (trial 3). 114
7.36 Steady state identification method PSD results: f0,buck2, ESR = 0Ω (trial 4). 115
7.37 Steady state identification method PSD results: f0,buck3, ESR = 0Ω (trial 1). 115
7.38 Steady state identification method PSD results: f0,buck3, ESR = 0Ω (trial 2). 116

xvi LIST OF FIGURES

7.39 Steady state identification method PSD results: f0,buck3, ESR = 0Ω (trial 3). 116
7.40 Steady state identification method PSD results: f0,buck3, ESR = 0Ω (trial 4). 117
7.41 Steady state identification method PSD results: f0,buck3, ESR = 0Ω, fn = f0. 118
7.42 Steady state identification method PSD results: f0,buck1, ESR = 0.5Ω (trial 1). . . . 119
7.43 Steady state identification method PSD results: f0,buck1, ESR = 0.5Ω (trial 2). . . . 119
7.44 Steady state identification method PSD results: f0,buck2, ESR = 1Ω (trial 1). 120
7.45 Steady state identification method PSD results: f0,buck2, ESR = 1Ω (trial 2). 120
7.46 Steady state identification method PSD results: f0,buck3, ESR = 1Ω. 121
7.47 Steady state identification method PSD results: f0,buck3, ESR = 1.8Ω (trial 1). . . . 122
7.48 Steady state identification method PSD results: f0,buck3, ESR = 1.8Ω (trial 2). . . . 122
7.49 Steady state identification method PSD results: f0,buck2, ESR = 1.2Ω 123
7.50 Steady state identification method PSD results: f0,buck2, ESR = 0.9Ω. 124
7.51 Steady state identification method PSD results: f0,buck2, ESR = 0.8Ω.. 124
7.52 Steady state identification method: Matlab/Simulink fixed-point model. 126
7.53 Steady state identification method PSD results: linear and log scale (f0,buck1). . . . 127
7.54 Steady state identification method PSD results: linear scale (f0,buck1). 127

8.1 Steady state identification prototype: model. 130
8.2 Steady state identification prototype: testing environment. 131
8.3 Hardware dithering amplification: ∆Σmodulator. 131
8.4 Steady state identification prototype: PSD output for f0,buck1, ESR = 0Ω. 132
8.5 Steady state identification prototype: PSD output for f0,buck2, ESR = 0Ω. 133
8.6 Steady state identification prototype: PSD output for f0,buck3, ESR = 0Ω. 134
8.7 Steady state identification prototype: multiple PSD output for f0,buck1, ESR = 0Ω. 135
8.8 Steady state identification prototype: multiple PSD output for f0,buck2, ESR = 0Ω. 136
8.9 Steady state identification prototype: multiple PSD output for f0,buck3, ESR = 0Ω. 137
8.10 Steady state identification prototype: statistics for f0,buck1, ESR = 0Ω. 137
8.11 Steady state identification prototype: statistics for f0,buck2, ESR = 0Ω. 138
8.12 Steady state identification prototype: statistics for f0,buck3, ESR = 0Ω. 138
8.13 Steady state identification prototype: PSD output for f0,buck1, ESR = 0.5Ω. 139
8.14 Steady state identification prototype: PSD output for f0,buck2, ESR = 1Ω. 140
8.15 Steady state identification prototype: PSD output for f0,buck3, ESR = 1Ω. 141
8.16 Steady state identification prototype: PSD output for f0,buck3, ESR = 1.8Ω. 142
8.17 Self-tuning prototype: hardware description. 144
8.18 Selt tunign algorithm: FSM (reset transitions omitted). 146
8.19 Self-tuning prototype: FPGA I/O configuration. 146
8.20 Self-tuning prototype: DEMO configuration[23]. 147
8.21 Self-tuning prototype: extracted load parameters (f0,buck1,ESR = 0Ω). 148
8.22 Self-tuning prototype: extracted load parameters (f0,buck2,ESR = 0Ω). 148
8.23 Self-tuning prototype: extracted load parameters (f0,buck3,ESR = 0Ω). 149
8.24 Self-tuning prototype: extracted load parameters (f0,buck1,ESR = 0.5Ω). 149
8.25 Self-tuning prototype: extracted load parameters (f0,buck3,ESR = 1Ω). 150
8.26 Self-tuning prototype: extracted load parameters (f0,buck3,ESR = 1.8Ω). 150
8.27 Self-tuning prototype: averaged extracted load parameters (f0,buck2,ESR = 1Ω). . 151
8.28 Self-tuning prototype: averaged extracted load parameters (f0,buck3,ESR = 1.8Ω). 152
8.29 Self-tuning prototype: PID gains regulation (f0,buck2,ESR = 1Ω). 153
8.30 Self-tuning prototype: load step response before the PID gains regulation. 153

LIST OF FIGURES xvii

8.31 Self-tuning prototype: load step response after the PID gains regulation. 154
8.32 Self-tuning prototype: dithering amplification effects on the output voltage. . . . 158

9.1 Data at the end of computation. Picture obtained with 18-bit resolution and scal-
ing factor of 7. 160

9.2 Flowgraph of the CG-FFT. 161
9.3 Example of perfect shuffle. 162
9.4 Structure of the scalable architecture . 164
9.5 Operation of FIFO blocks. 165
9.6 Diagram of architecture pe_structural. 171
9.7 Diagram of architecture seu_behavioral. 173
9.8 Diagram of architecture datapath_structural. 175
9.9 Dataflow diagram of the control of the processor. 177
9.10 Structural diagram of architecture twiddle_factors_structural. 179
9.11 Structural diagram of tfc_datapath_structural . 180
9.12 Radix-2 DIF CG-FFT flowgraph with Is sequences. 182
9.13 Distribution of twiddle factors in the Gauss’plane. 184
9.14 The shared core scalable CORDIC architecture . 187
9.15 Structural diagram of module cordic_core . 189
9.16 Structural diagram of the shared core architecture 191
9.17 Dataflow diagram of the shared core control . 192
9.18 The pipelined scalable CORDIC architecture . 193
9.19 Digital Signal Processing model. 194
9.20 Structural diagram of the datapath of the PSD computer. 199
9.21 Structural diagram of autocorrelation_ram_structural 204
9.22 Examples of addressing and BRAM selection fields. 205
9.23 Functional diagram of the control of the PSD computer. 206
9.24 Organisation of the TSE on the VHDL side. 209
9.25 Organisation of the TSE on the MATLAB side. 211
9.26 Error statistics on {W (k)

N } with rounding disabled. 214

9.27 Error statistics on {W (k)
N } with rounding enabled. 215

9.28 Shared core architecture speedup. 216
9.29 Computational data storage estimates for TF generators. 217
9.30 Synthesis results for the shared core architecture. 219
9.31 Maximum operating frequency of the shared core architecture. 220
9.32 Synthesis results for the pipelined architecture. 221
9.33 Maximum operating frequency of the pipelined architecture. 222
9.34 Synthesis results as a function of B ′−B . 223
9.35 Maximum operating frequency as a function of B ′−B 224
9.36 Samples from the dataset. 225
9.37 Mean relative error as a function of B for the FFT processor. 225
9.38 Computation time of the FFT processor as a function of P 226
9.39 Synthesis results of the FFT processor as a function of P 228
9.40 Maximum operating frequency of the FFT processor as a function of P 229
9.41 Performances of generated architectures. From [100]. 231
9.42 Data at the end of the first processing stage. 233
9.43 Square moduli at the second processing stage before scaling. 233

xviii LIST OF FIGURES

9.44 Data at the end of processing. 234
9.45 Slice resource occupation of the PSD computer as a function of P 235
9.46 DSP blocks occupation as a function of P . 236
9.47 PSD computer maximum frequency as a function of P 236

A.1 Functional diagrams of twiddle factor generators. 263

B.1 The Gentleman-Sande butterfly. 268
B.2 Length-16, Decimation-in-Frequency, In-order input, Radix-2 FFT. From [1]. . . . 270
B.3 Length-16, Decimation-in-Time, In-order output, Radix-2 FFT. From [1]. 271
B.4 Sequence involved in computing an aperiodic discrete convolution. From [78]. . . 273
B.5 Procedure for the periodic convolution of two periodic sequences. From [78]. . . . 274

C.1 Classic types of FFT pipelined architectures. From [39]. 278
C.2 Flowgraph of the radix-22 DIF FFT algorithm. N = 16. From [39]. 278
C.3 Pease’s algorithm flowgraph, N = 8. From [75]. 279
C.4 SPIRAL project architectures. From [70]. 280
C.5 zhang-chen’s structure of parallel FFT with CORDIC. From [132]. 281
C.6 Vite-Frias’ architecture Memory-based radix-4 design scheme. From [114]. 282
C.7 Sung’s architecture 213-point CORDIC-based split-radix design scheme. From [108].283
C.8 Al Sallab’s memory-optimized FFT architecture. From [3]. 284
C.9 Xiao’s memory reduced CORDIC FFT. From [121]. 285
C.10 O’sullivan’s in-place FFT architecture. From [79]. 286
C.11 Comparison of available architectures for Xilinx LogiCORE IP. From [123]. 286
C.12 Xilinx LogiCORE pipelined, streaming I/O architecture. From [123]. 287
C.13 Available Xilinx LogiCORE in-place burst I/O FFT architectures. From [123]. 288
C.14 Available Altera MegaCore in-place FFT architectures. From [6]. 289
C.15 Yu’s CORDIC architecture. From [129]. 290
C.16 Garrido’s FFT-oriented CORDIC. From [33]. 291

List of Tables

1.1 Buck converter: converter specifications. 8

4.1 ADC error encoding. 53
4.2 Digital control prototype: Virtex6 resource usage. 63
4.3 Digital control prototype: resource usage. 64

5.1 Test Chip: LSB ADC possible settings . 67

7.1 Steady state identification method results: Resonant frequency (α= 2). 112
7.2 Steady state identification method results: Resonant frequency (α= 3) 112
7.3 Steady state identification method results: ESR identification (α= 2 fn = f0). . . . 125

8.1 Steady state identification prototype: f0 identification results (ESR = 0Ω). 135
8.2 Steady state identification prototype: ESR identification results. 136
8.3 tab:Self-tuning prototype: extracted, averaged load parameters and desired val-

ues comparison. 152
8.4 Self-tuning prototype: resource usage . 154
8.5 Self-tuning prototype: Virtex6 resource usage. 158

9.1 Naming convention adopted in the design. 167
9.2 Considered values of B −B ′. 213
9.3 Comparison between the proposed architecture and [79] 227
9.4 Synthesis results for the scalable archtiecture with N = 256. 229
9.5 Comparison between the proposed architecture and [125] 230
9.6 Comparison between the scalable hybrid and other architectures. 230

A.1 Matching of fft_global_settings.vhd and autocorrelation_settings.vhd. 262
A.2 Selection of the architecture for the internal ROM. 263

xix

Chapter 1

A general overview of buck
converters

In this chapter a brief theoretical introduction to dcdc power supplies is presented. The
main distinction among dcdc converters, is usually done between step up (boost convert-
ers) and step down (buck converters) configurations. Step up converters output a dc voltage
Vout bigger then the dc input value Vi n , while, the dc output value Vout is lower then Vi n for
step down configurations. The entire dissertation refers to step down dcdc buck convert-
ers, converters overview in the following sections has been addressed just referring to buck
converters. Considerations about efficiency in real converters have been drawn in terms of
power losses.
Once that the theoretical overview has been discussed, considerations about design specifi-
cations are addressed referring to the output filter.

1.1 Ideal Model

CVin R
iC

L

Li

out out

1

2
sv (t) v (t)

Figure 1.1: Buck converter: ideal model.

The ideal buck converter configuration is presented in Fig.1.1. The time variant signal
vs(t), is equal to the dc input voltage Vi n when the switch S is in position 1 and, is null when
it is in position 2. Considering the switch driven by a square wave signal with duty cycle

1

2 CHAPTER 1. A GENERAL OVERVIEW OF BUCK CONVERTERS

D = ton
Ts

and period Ts = 1
fs

, the signal vs(t) is consequently a square wave having frequency
fs (Fig.1.2).

V =DV
out in

v (t)
s

DT s (1-D)T s

V
in

0

1 2switch
position

(t)

Figure 1.2: Buck converter: switching node voltage waveform.

Switch duty cycle variations define the dc value of the output voltage and, from Fourier
analysis, it can be assumed that the dc value of a square wave is equal to its averaged value
in the considered switching period (Fig.1.2). Hence, during a steady state condition the dc
output voltage for a buck converter is equal to the input voltage times the duty cycle of the
square wave which drives the switch S:

Vout = DVi n . (1.1)

Considering the Eq.1.1 the buck converter presents a linear control characteristic, and, be-
cause 0 ≥ D ≤ 1 the output voltage is less than or equal to the input voltage.
The system efficiency of the ideal model in Fig.1.1 is close to 100%. The power dissipated by
the switch is ideally null, when the switch is in the open position the current is equal to zero
and contrariwise the voltage is null during the close position. The second order LC output
filter is required in order to avoid the switching frequency harmonics on the output voltage.
However, a control block is always integrated into a power system. In a buck converter the
output voltage is function of the duty cycle and the feedback control system modulates the
duty cycle in order to obtain the desired dc output level. A closed loop buck converter is
modelled in Fig.1.3, non-idealities as the inductor series resistance (RL) and the Effective
Series Resistance (ESR) on the output capacitor are as well represented. The equivalent of
the ideal switch S (Fig.1.1 is represented with two power-MOS (MHS and MLS) driven by
the square wave generated from the control feedback. The regulation signal outputs from
the controller is computed in order to minimize the difference Vout −Vr e f , where Vr e f is the
desired dc output voltage.

During the steady state Vout ≈ Vr e f and the duty cycle is modulated sinusoidally by the
controller, the output switch voltage contains low frequency components which are reflected
on the output voltage. The LC filter corner frequency is selected both in order to pass the
desired low frequency components of vs(t) and to attenuate the high-frequency switching
harmonics. Considering a real filter, some harmonics generated by the switch give rise to a
ripple voltage vr i ppl e over the dc value Vout :

vout (t) =Vout + vr i ppl e . (1.2)

1.2. CONTINUOUS CONDUCTION MODE 3

L

ESR

C

Vin

R L

MHS

LSM

Vs

Li

i C RVOUT

Controller

Figure 1.3: Buck converter: closed loop buck configuration.

The undesired ripple voltage is then consequent of the incomplete suppression of the switch-
ing harmonics by the low-pass filter, this ac components have to be very little in a well de-
signed converter.

1.2 Continuous Conduction Mode

Continuous conduction mode (CCM) is the most used operative condition for a dcdc con-
verter. Referring for instance to an open loop buck converter (Fig.1.4) the CCM is obtained
when the current (iL) flows continuously every switching step through the inductor (L).

If the ripple voltage on the output dc value can be neglected, the inductor voltage vL

value can be referred only to the Vout (Fig.1.5). Referring to Fig.1.1, vL =Vi n −Vout when the
switch is in position 1 and vL =−Vout in position 0. As consequence of the inductor charac-
teristic equation, is simple to get the inductor current slope iL(t) during the switching period
(Fig.1.6). The inductor current begins at some initial value i (0). During the first subinterval,
with the switch in position 1, the inductor current increases with the slope Vi n−Vout

L . At time
t = DTs the switch changes to position 2. The current then decreases with the constant slope
given by −Vout

L . At time t = Ts the switch changes back to position 1, and the process repeats.
The inductor value can be chosen in order to reduce ripple effects in the inductor current.
Taking into account that for t = DTs the inductor current is equal to two times the ripple
current, it is easy to evaluate the ripple effects:

∆il =
Vi n −Vout

2L
(DTs). (1.3)

The Eq.1.3 is usually used to dimension the inductor L during the converter design. From the
inductor current point of view, the steady state condition is reached when the total current

4 CHAPTER 1. A GENERAL OVERVIEW OF BUCK CONVERTERS

L

ESR

C

Vin

R L

MHS

LSM

Vs

Li

i C RVOUT OUT

 Gate
Driver

Figure 1.4: Buck converter: Open loop configuration.

v (t)

DT s (1-D)T s

1 2switch
position

(t)

L
V

in
-Vout

-Vout

Figure 1.5: Buck converter: inductor voltage waveform.

Figure 1.6: Buck converter: Inductor current waveform.

1.3. DISCONTINUOUS CONDUCTION MODE 5

per switching period is the same even if the duty cycle D changes. Consequently, the current
iL(0) in t = 0 is equal to the current in t = Ts(Fig.1.6):

iL(Ts)− iL(0)

Ts
= 1

LTs

∫ Ts

0
vL(t)d t = 0. (1.4)

By dividing per Ts the Eq.1.4, the averaged value 〈vL〉 in the switching period is null. Consid-
ering Fig.1.5, the averaged inductor voltage can be also written as:

〈vL〉 = 0 = D(Vi n −Vout)+ (1−D)(−V out). (1.5)

The steady state condition in Eq.1.1 can be easily extracted from Eq.1.5. This confirm that,
the duty cycle D will be the main parameter to be considered in order to have a well regulated
converter.

So far ripple effects vr i ppl e on the output voltage has been neglected. Two main factors
contribute to this undesired effect, the first is related to the output capacitor C and the sec-
ond by the ESR (Fig.1.4). Considering a null ESR, the ripple voltage ∆vout can be easily
related to the ripple current ∆iL :

∆v = ∆iLTs

8C
. (1.6)

Considerations on the output capacitance can be drawn from the Eq.1.6, its value is usu-
ally defined fixing the maximum ripple accepted. The ripple on the voltage output can be
expressed by substituting the Eq.1.3 in the Eq.1.6:

∆v = 1

8
Vout (1−D)

T 2
s

LC
. (1.7)

Taking into account both that the switching frequency is fs = 1
Ts

and the resonant frequency

is f0 = 1p
2πLC

, the relative voltage can be expressed in terms of frequency:

∆v

Vout
= π2

2
(1−D)

f 2
0

f 2
s

. (1.8)

From 1.8 can be deduced how choosing a resonant frequency much lower than the switching
frequency, ripple effects can be reduced. Furthermore, because ESR increases ripple effects
on the output voltage, this assumption becomes more significant when the series resistance
in the output capacitor can’t be neglected. Another important parameter which is usually
considered during the converter design is the relationship between the ripple voltage and the
time constant τ= = RoutC . For lower time constants values a smaller output voltage ripple
can be achieved, this assumption comes out from assuming a ripple current piecewise linear.

1.3 Discontinuous Conduction Mode

The Discontinuous Conduction Mode (DCM) is obtained when switches part of the buck
converter are implemented as unidirectional devices. Let us refer to the model in Fig.1.7.
The DCM arises when the inductor current ripple is large enough to cause the polarity re-
versing of the applied switch current, hence the current unidirectional assumptions are vio-
lated. The DCM typically occurs with large inductor current ripple in a converter operating

6 CHAPTER 1. A GENERAL OVERVIEW OF BUCK CONVERTERS

at light load and containing current-unidirectional switches. Since it is usually required that
converters operate with their loads removed, DCM is frequently encountered. Indeed, some
converters are purposely designed to operate in DCM for all loads.
When the output current I out is higher than iL/2 the inductor current flows continuously
and the converter still works in CCM. When Iout < iL/2 the diode conducts and the inductor
current decrease, the inductor discharge its previous stored energy to the output capacitor
until the current drops to zero. Moreover, the diode blocks the reverse current and the in-
ductor current remains zero until the next switching cycle 1.8. Because the inductor currents
is zero for some intervals, this kind of operative mode is called discontinuous.

L

ESR

C

Vin

R L

MHS

Vs

Li

i C RVOUT OUT

 Gate
Driver

Figure 1.7: Buck converter: asynchronous control configuration.

In DCM the properties of the converter change significantly and the steady state condi-
tion previously described in Eq.1.1 is not valid. As described the DCM arises when Iout <
iL/2, it is immediate to correlate this behaviour with the load resistance Rout . The critical
boundary between CCM and DCM is usually described as function of the duty cycle D and
in terms of critical load resistance Rcr i t .

Rcr i t (D) = 2L

(1−D)Ts
. (1.9)

The critical resistance introduced in Eq.1.9, permits to evaluate the converter tendency
to switch from continuous to discontinuous conduction mod. For Rout < Rcr i t the converter
operates in CCM and for Rout > Rcr i t the DCM is triggered.
Because a null inductor current subinterval is obtained, the conversion factor D differs from
CCM and is function of the critical output current (Iout_cr i t i c = Rcr i t Vout):

D = Vout

Vi n

√
Iout /Iout_cr i t

1−Vout /Vi n
. (1.10)

The inductor current ripple ∆iL is equal to the current peak (Fig.1.10) and is equal to:

∆iL = Vi n −V out

L
DTs . (1.11)

1.4. POWER LOSSES 7

Figure 1.8: Buck converter: waveforms in DCM mode.

Considering both Eq.1.1 and Eq.1.10, the averaged duty cycle is lower during the DCM oper-
ative mode. Averaged considerations can be done about the duty cycle D , it results lower in
DCM mode and the output voltage ripple is not considered a constraint during the converter
design.

1.4 Power Losses

Power losses in conventional dcdc converters are typically summarized in three categories
[28]:

Pl oss = Pcond (Iload)+Ps +P f i xed . (1.12)

In Eq.1.12 conduction loss Pcond , switching loss Ps and fixed loss (P f i xed) can be respectively
distinguished.
The conduction losses directly depend on the load current Iload . The finite on-resistance of
the power transistor, the diode forward voltage drop and both inductor (RL) and capacitor
(ESR) series resistance are the main contributions.
The switching losses are related to energy dissipated (Es) for the switching activity. Power
transistors output and gate capacitance, diode capacitance, diode stored minority charge,
inductor and transformer core loss, snubber loss and date driver losses are the all contribu-
tions which affect switching losses.
The fixed losses comprise loss factor which are not part neither of load current nor switch-
ing frequency. Fixed contributions are caused by the controller standby current and all the
leakage currents in the power transistors, diode and capacitor.
In order to reduce the losses, variable frequency converters has been introduced in [28]
and [99]. By reducing the switching frequency as the load current decreases, the converter
standby current is as well decreased by one to two orders of magnitude. At high values of

8 CHAPTER 1. A GENERAL OVERVIEW OF BUCK CONVERTERS

Symbols Constraints
Iout_max Maximum load current
Ipeakl i mi t Switch peak current limit
Vi n Input voltage
Vout Output voltage
∆V out/V out DC output voltage precision
∆V out Output voltage ripple

Table 1.1: Buck converter: converter specifications.

load current the Pcond is dominant and high efficiency is usually achieved replacing the
power diode with a power transistor [27, 68, 69]. The voltage drop across the on-resistance
of the transistor results to be smaller than the forward voltage of the diode thus reducing the
conduction loss. As the output current decreases the inductor current can assume negative
values for a portion of the switching period leading the capacitor C to discharge through the
inductor L and then consuming additional power. For this reason, the converter is usually al-
lowed to work in DCM. Losses mathematical formulas are well known for converters working
in CCM [29]. At the State of the Art, most of approaches tend to approximate the CCM loss
characterization model for describing losses in DCM [49]. The derivation of comprehensive
formulas for estimating both switching and conduction losses in buck converters operating
in DCM-only scenarios is presented in [31].

1.5 Output filter design considerations

During previous sections, indirect considerations regarding the load output filter have been
done. In a dcdc buck converter the output is composed by a second order LC filter. In Equa-
tions 1.6, 1.7 and 1.8, has been shown that the output voltage ripple mainly depends on
the output capacitance and the related ESR contributions. Both assuming a situation where
ripple effects are mainly dependent on the load capacitance and having constraints on the
output voltage ripple, it is possible to extract the resonant frequency f0 from Eq.1.8 and con-
sequently the product LC . In this approach the switching frequency has been imposed to
respect output voltage ripple constraint, however the extracted resonant frequency has to
be at least ten times lower than the switching frequency. To ensure that switching frequency
harmonics are well filtered out, the switching frequency is often chosen twenty times big-
ger. So far a way to find the product LC has been described. Usually the the inductance L
is defined by imposing the inductor current ripple constrain in the Eq.1.3, then considering
LC /L the capacitance value can be easily obtained. The output capacitance can be chosen
to reduce the output voltage ripple, for lower time constant values a smaller output volt-
age ripple can be achieved. Ceramic capacitors are usually preferred because their smaller
time constant, smaller capacitor physical profile and higher reliability. However electrolytic
capacitors are largely used in power supply filter circuits at low frequencies, indeed they pro-
vide high capacitance in a small volume.
Specifications on both current and voltage commonly given during a dcdc converter design,
have been summarised in Tab.1.1.

Chapter 2

Buck Converter in Continuous
Conduction Mode

Aim of this chapter is to introduce the buck converter and to describe its properties dur-
ing the Continuous Conduction Mode (CCM). Theoretical steady state results, obtained in
the previous chapter, will be proven with a parametric Matlab/Simulink modelled buck con-
verter. The first section summarise various approaches used to obtain the ac model of a buck
converter. However, all methods are based on averaging, perturbation and linearisation of
the model. The circuit averaging method has been first presented, then the ac small signal
circuit is deduced with this technique. A further characterization of the converter in the fre-
quency domain, has been done trough the Line to Output and Control to Output transfer
functions. Matlab plots of the control to output transfer function is presented for three LC
output load conditions and also considering Effective Series Resistance (ESR) contributions
on the output capacitor of one buck converter configuration.
Furthermore, a Matlab embedded function has been realised to emulate a buck converter
with parasitic modelling. Firstly, a circuit characterisation of the converter has been intro-
duced, hence, a Matlab embedded function has been coded after the classical circuit anal-
ysis method. The realised function has been integrate into the Simulink model of the open
loop buck converter. The steady state behaviour in CCM operative mode has been then con-
firmed with Simulink simulations. The introduced Matlab/Simulilnk modelling technique
represents an alternative user-friendly approach for converters modelling.

2.1 AC small signal model

Aim of this section is the ac modelling of a CCM buck converter, a small signal reference mo-
del has always to be known when a regulation closed loop system has to be constructed. The
modelling process of a system is always a step by step process. Firstly, the main behaviour is
studied then non-idealities are added. Different methods can be used to obtain a small sig-
nal model of a CCM converter, these are mainly current injected approach, circuit averaging,
and the state-space averaging method. The end results of all these methods are nearly equiv-
alent, however the averaging and small signal linearisation are both key steps for modelling
PWM converters.

9

10 CHAPTER 2. BUCK CONVERTER IN CONTINUOUS CONDUCTION MODE

A classical modelling method is based on averaging the equations over the switching pe-
riod, then when system perturbation occurs (every converter signal is constituted by a steady
state or dc term plus a perturbation one) these equations are linearised around an operating
point. This approach is mainly based on the integration of low frequency components in the
inductor and capacitor waveforms:

L
d〈iL(t)〉Ts

d t
= 〈vL(t)〉Ts , (2.1)

C
d〈vC (t)〉Ts

d t
= 〈iC (t)〉Ts

, (2.2)

Where in 2.1 the expression 〈iL(t)〉 is the average of iL(t) over an interval Ts :

〈iL(t)〉Ts =
1

Ts

∫ t+Ts

t
iL(τ)dτ. (2.3)

As in Chap.1, during the steady state both the inductor volt-second and capacitor charge bal-
ance (Eq.2.1 and Eq.2.2) are zero. These are non-linear equations, which can use to describe
how both the inductor currents and capacitor voltages change when non-zero averaged in-
ductor voltage and capacitor current are respectively considered over a switching period. To
obtain a linear model that is easier to analyse, it is usual to construct a small signal model
linearised around an operating point. Considering for instance the dependence of the steady
state output voltage Vout on the duty cycle D, the steady state equation (Eq.1.1) for the ideal
buck converter is not valid. In Fig.2.1 is shown the linearisation approach for a buck con-
verter operating with a 50% duty cycle. With a non-linear control to output characteristic,
variations on the duty cycle will be reflected as variations on the output voltage. If control
variations are small enough the corresponding output voltage variations can be computed
by the linearisation mechanism.

Figure 2.1: Linearisation approach for buck converters.

2.1. AC SMALL SIGNAL MODEL 11

Two well-known approaches for the ac modelling method are respectively the state-space
averaging and the circuit averaging. Because of their switching operation, power electronic
converters are periodic time-variant systems. The generalized state-space averaging method
is a way to model them as time independent systems, defined by a unified set of differential
equations able to represent circuit waveforms. Therefore, it can be a convenient approach
for designing controllers dedicated to switch converters.
Circuit averaging is another technique for derivation of converter equivalent circuits[117]. In
this approach, the averaging process is applied directly on the converter waveforms directly.
Since circuit averaging involves averaging and small signal linearisation, it is equivalent to
state-space averaging. The key step in circuit averaging is to replace the converter switches
with voltage and current sources to obtain a time-invariant circuit topology. The waveforms
of the voltage and current generators are defined to be identical to the switch waveforms of
the original converter 2.2. Once a time-invariant circuit network is obtained, the converter
waveforms can be averaged over one switching period in order to remove the switching har-
monics. Then, any non-linear element in the averaged circuit model can be perturbed and
linearised leading to the small signal ac model.
In Fig.2.2 is presented the circuit studied during circuit averaging method, while the equiva-
lent model for an ideal buck converter has been shown in Fig.2.3.
The switch network is a two-port network, a classic approach to analyse this block is to
choose two terminals as independent inputs. Referring to the circuit in Fig.2.3, the inde-
pendent inputs are respectively v1(t) = vi n(t) and i2(t) = iL(t). The circuit equations are
firstly averaged, hence the system is perturbed and then linearised. The resulting model gas
been shown in Fig.2.4, where every capital letter indicates the dc value of the signal and every
letter with an hat indicates its small signal ac variation.

The small-sgnal ac equivalent model of the converter is characterized by three equations:

L
dîout (t)

d t
= d̂(t)Vi n +Dv̂i n(t), (2.4)

C
d v̂out (t)

d t
= îout (t)− v̂out (t)

R
, (2.5)

îi n(t) = d̂(t)Iout +Dîout (t). (2.6)

Equations 2.4, 2.2 and 2.6 are respectively the inductor voltage, the capacitor current and
the input current relationships, the system in Fig.2.4 is obtained from these equations. The
function of the averaged switch model (Fig.2.4) is, the transformation of dc and small ac
voltage and current levels according to the 1:D conversion and, the introduction of ac voltage
and current variations into the converter circuit driven by the control input d(t).

2.1.1 Transfer functions

Starting from the small signal ac model introduced in the previous section, it is possible
to deduce the transfer functions of the system. A dcdc converter has usually two external
inputs, its frequency behaviour is then described through two distinct transfer functions.
In addition to the classical line to output transfer function, the control to output transfer
function describes the relationship between the input control (duty cycle) and the output
voltage. Most of cases the control to output transfer relationship has larger interest, if the
input voltage is supposed to be approximately stable, the output voltage in CCM for a buck

12 CHAPTER 2. BUCK CONVERTER IN CONTINUOUS CONDUCTION MODE

Figure 2.2: Averaged method analysis: model.

Figure 2.3: Averaged method analysis: buck converter circuit.

2.1. AC SMALL SIGNAL MODEL 13

L

C R

Switch network

inv (t)
v (t)out

outi (t)

inV + ^
^

outV +
1 v̂ (t)V + 22v (t)^

1
V +

1 1I + ^ ^i (t)
2I + î (t)2 outI +1 : D

2I d̂

V d̂1

Figure 2.4: Small signal circuit: ideal buck converter.

converter is directly related to the duty cycle D (Eq.1.1). In Sec.2.1 a small signal ac model
has been obtained for an ideal buck converter, in case of non-idealities both the circuit in
Fig.2.4 and the transfer function change. Further non-idealities can be, for instance, the ESR
and/or the on-resistance of the Power-MOS where the input control is applied. In Fig.2.5 is
presented the small signal ac model with the ESR contribution.

Figure 2.5: Small signal circuit : buck converter with ESR contribution.

The line to output transfer function is found by setting the duty cycle variations d̂(S)
to zero, and then solving the small signal ac model for the transfer function from v̂i n(s) to
v̂out (s):

Gvi n (s) = v̂out (s)

v̂i n(s)

∣∣∣∣
d̂(s)=0

. (2.7)

The transfer function in Eq.2.7 tells how disturbance in the input voltage are reflected on
the output voltage. For instance if the converter input voltage contains some harmonics,
this transfer function is used to define their effect on the output voltage. On the counterpart
the control to output transfer function is found considering null input voltage variations

14 CHAPTER 2. BUCK CONVERTER IN CONTINUOUS CONDUCTION MODE

(v̂i n(s) = 0) and analysing the equivalent ac model for v̂out (s) as a function of d̂(s):

Gvd (s) = v̂out (s)

d̂i n(s)

∣∣∣∣
v̂i n (s)=0

. (2.8)

The control to output function in Eq.2.8, clarify how duty cycle variations are reflected on
the output voltage. The Gvd (s) is very important for the regulator performance, indeed it is
the main component of the loop gain in closed loop regulators.
A further important parameter is the Converter Output Impedance, which describes how
variations in load current affect the output voltage:

Zout (s) = v̂out (s)

−îload (s)

∣∣∣∣
v̂i n (s),d̂(s)=0

. (2.9)

Referring to a ideal small signal ac model for the buck converter (Fig.2.4), both obtained
transfer functions have the same second order structure:

G(s) =Gd0
1

(s
ω0

)2 + 2
Qω0

+1
. (2.10)

Using conventional circuit analysis, resulting ideal transfer functions are:

Gvi n (s) = v̂out (s)

v̂i n(s)

∣∣∣∣
d̂(s)=0

= D
1

s2LC + s L
Rout

+1
, (2.11)

Gvd (s) = v̂out (s)

d̂i n(s)

∣∣∣∣
v̂i n (s)=0

= Vout

D

1

s2LC + s L
Rout

+1
, (2.12)

Zout (s) = v̂out (s)

−îl oad (s)

∣∣∣∣
v̂i n (s),d̂(s)=0

= sL

s2LC + s L
Rout

+1
. (2.13)

The obtained transfer functions refer to an ideal buck converter structure and its small sig-
nal ac model, an important role is played by the ESR contribution. Including ESR effect in
circuit averaged model (Fig.2.5), the transfer functions change their structure. Because re-
sults in this dissertation refer to the control to output transfer function, the ESR effects in
the frequency response are highlighted only for this kind of transfer function:

Gvd (s) = Vout

D

sC ∗ESR +1

s2LC + s L
Rout

+1
, (2.14)

Compared with the ideal buck converter, the ESR contribution causes a zero insertion in the
transfer function. Hence the control to output transfer function is composed by two complex
conjugated poles and possibly one zero due to the ESR.

In Fig.2.6 is presented the frequency behaviour of the ideal buck converter. In this fig-
ure the control to output transfer function has been modelled in Matlab, the relationship
2.12 has been characterized in terms of Vi n ,L,C ,Rout and then plotted in a Bode digram.
Three different buck configurations has been distinguished, every case is characterized by
an inductance L = 47µH , an input voltage Vi n = 14V and an output resistance Rout = 50Ω
considered. The load capacitance are 22µF (blue curve), 10µF (red curve) and 4.7µF (green

2.2. MATLAB MODELLING 15

Figure 2.6: Control to Output transfer function: ideal buck converters.

curve), through the relationship f0 = 1p
2πLC

the resulting resonant frequencies are respec-

tively 5kH z, 7.3kH z and 10.7kH z. As can be observe for the three curves presented in
Fig.2.6, after the resonant frequency f0 the magnitude goes down with a slope of −40dB/dec
and the phase quickly rolls down at −180°. For this kind of systems, having a good control
loop can be very important in order to increase margins and bandwidth.
In Fig.2.7 the ESR = 0.5Ω contribution has been introduced in the configuration with C =
22µF . The zero contribution at fz = 1

2πESR∗C = 14.5kH z is visible in the red curve both in
terms of magnitude and phase, a larger bandwidth is obtained and the magnitude goes down
with −20dB/dec of slope.

2.2 Matlab modelling

In the previous section, Matlab-based results of the control to output transfer function has
been presented. The aim of this section is to built a Simulink block including the mathemat-
ical behaviour of the buck converter, this model is needed to test the power stage in open
loop mode (constant input duty cycle).
Starting from a converter reference model, it is possible to solve the differential equations
and extract the state variables which characterise the system. These solutions can be ex-
ploited to describe a Matlab function and then, integrated into a Simulink block. This kind
of approach is very useful to emulate the ac behaviour of the converter. The solution can
be computed in cases where non-idealities, losses and parasitics elements can be consid-

16 CHAPTER 2. BUCK CONVERTER IN CONTINUOUS CONDUCTION MODE

Figure 2.7: Control to Output transfer function: buck converters with ESR contribution.

ered, for instance the equations can be computed considering finite on/off resistance of the
power-MOS and many others effects.

Figure 2.8: Equivalent circuit: buck converter with non-idealities.

2.2. MATLAB MODELLING 17

Let’s consider to model a buck converter with the circuit in Fig.2.8. This circuit takes into
account parasitics elements and series resistor both for load inductor and load capacitor.
The power-MOS (high-side and low-side) are modelled like variable resistors (respectively
Rp and Rn) with a parasitic capacitor (C n). This circuit is described with nineteen equations
in nineteen variables, the presence of four memory elements define just as many state equa-
tions. This system of equations can be solved, for instance, by using the MuPAD toolbox just
writing al the relationship simply deduced with the classical circuitry analysis technique.
This approach is very useful when many equations has to be solved, very complicated solu-
tions are easy to meet. In case of the buck converter circuit in Fig.2.8, the MuPAD resulting
solutions can be used to create a Matlab Function which models the converter.

Figure 2.9: Matlab function: buck converter with non-idealities.

In Fig.2.9 is shown the Matlab implementation of the model in Fig.2.8, equations in this
figure has been cut for plotting reasons. The function buck_CCM receives as input the in-
put voltage Vi n, the load resistor value R, the pointer parameters and both the driver sig-
nals pmos_on and nmos_on which emulate the input square wave of duty cycle D . The
pointer parameters permits the access to the structure Buck which contains the constant
parameters of the system, for instance the inductance value L which can be easily accessed

18 CHAPTER 2. BUCK CONVERTER IN CONTINUOUS CONDUCTION MODE

with the entry parameters.Buck.L. The global variables are declared with the key word persis-
tent, among these there are load components comprising the series resistance (L,Rl ,C ,Rc),
the power-MOS with non-idealities representation (Rp,Rn,C n,C p) and the state variables
(V co,V cno,V cpo,V co). The variables initialisation is done with the function isempty() and
thanks to the parameters file. Among them variables is the time step T , which is step of the
computations used during the simulations. In this case T is coincident with the switching
frequency which drives the power-MOS. Still referring to Fig.2.9, after the initialisation there
is the power-MOS representation. The variable resistances Rp and Rn can be equal either
to their on or off value, indeed when the input signal pmos_on is high the Rp is equal to its
on value and Rn to its off value and vice versa. Both on and off resistance values are defined
in the paramters structure. Then, the equations related to the circuit in 2.8 solved through
MuPAD are just copied and pasted in the Matlab description after the converter parame-
ters. As visible in the block equations from solver in Fig2.9, every time step the function
computes the state variables related to memory elements and the output voltage (V r). The
output computed from the buck_CCM function are, the output voltage, the inductor current
and the switching voltage V s which correspond to switching node V sw in the circuit model.

2.3 Matlab/Simulink open loop model

Once the converter has been modelled through a Matlab function (Fig.2.9), the open loop
system (as in Fig.1.7) can be modelled in a Simulink-based behavioural system. The em-
bedded function described in Fig.2.9, can be integrated in a Simulink block for testing and
characterizing the power plant in CCM.

Figure 2.10: Matlab/Simulink model: open loop buck converter.

In Fig.2.10 is shown the Simulink model used for testing the buck converter. The block
buck_r is the Simulink representation of the embedded function described in the previous
chapter (2.10). In Fig.2.11 is shown the buck_r block implementation, it contains only the
function needed to recall the Matlab modelled converter (Fig.2.9). As in the modelled func-
tion, this block receives the load resistance value R, the input voltage V i n and the signals
pmos_on and nmos_on to emulate the input control square wave. Moreover the outputs are
the output voltage V r , the inductor current I l and the switching node voltage V sw .

A further block and its related embedded function is needed to generate the gate driver
function (Fig.2.10), the Simulink gate_driver block contains directly the implementation de-

2.3. MATLAB/SIMULINK OPEN LOOP MODEL 19

Figure 2.11: Simulink user’s defined block.

scribed in Fig.2.12. This function receives the square wave D , generated with a Simulink
built-in Pulse_Generator, and outputs both signals to drive the high side and low side power-
MOS (Fig.1.7).
Starting from the circuit representation and passing through the Matlab embedded function
realization, has been described how is possible to arrive to a Simulink modelling of an open
loop buck converter. Next to the realization is the model test parameter choice, for the buck
converter has been chosen R = 100Ω, V i n = 14V . Signals pmos_on and nmos_on can be
alternatively either 1 or 0, depending on the Pulse_Generator. The generated square wave
has a fifty percent duty cycle and a switching frequency fs one hundred times slower than the
clock frequency (fs = fclk /100), it means that a fifty percent duty cycle square wave is gener-
ated every one hundred clock cycles. The term clock used in this context refers to the interval
between two computations done by the Simulink simulation solver (fixed-step simulation in
Fig.2.13).

Figure 2.12: Matlab function: gate driver.

In Fig.2.13 has been shown two windows related to timing configuration of the simula-
tion. Let’s call the clock as F di g and, because the simulation frequency is a global parameter,
its value is initialized through the parameters structure. A clock of F di g = 70M H z has been
chosen for the simulation. The right window in Fig.2.13 is related to the Simulink solver,
the simulation is a fixed-step type with a sample time time equal to 1/70M H z = 14.3nsec.
Moreover, the left window in the same figure is related to the Pulse_Generator configura-
tion, the configuration define a fifty percent duty cycle square wave with a switching time
one hundred times bigger than the clock time.

Simulation results has been summarised both in Fig.2.14 and 2.15, where signals con-
nected to the block Scope of Fig.2.10 has been shown. In Fig.2.14 is shown the output voltage
V r . Can be concluded that the main steady state relationship (Eq.1.1) for buck converters
working in CCM has been confirmed. The output voltage is equal to the input voltage times

20 CHAPTER 2. BUCK CONVERTER IN CONTINUOUS CONDUCTION MODE

Figure 2.13: Simulink: Fixed-step simulations.

Figure 2.14: Matlab/Simulink: open loop output voltage (D = 0.5, Vi n = 14V).

2.3. MATLAB/SIMULINK OPEN LOOP MODEL 21

Figure 2.15: Matlab/Simulink: open loop zoomed output voltage (D = 0.5, Vi n = 14V).

the duty cycle of the square wave applied at the gate driver block. Considering V i n = 14V
and D = 0.5 the expected output voltage is of 7V , the steady state condition is proven in
Fig.2.14. In Fig.2.15 has been shown a steady state zoom of the, output voltage (V r), induc-
tor current I l , the switching voltage V sw and the fifty percent duty cycle input square wave.
From this picture some observations can be drawn. Firstly the output voltage is very close
the expected value and ripple effects at the switching frequency (fs = F di g /100 = 700kH z)
can be observed. The inductor current i l has the expected steady state behaviour for a CCM
buck converter, as discussed in the previous chapter and showed in figure 1.6 it results null
every switching period and max in the on/off transition of the square wave. The switching
node (V sw) as well confirms the expected behaviour. It is a square wave having the same
duty cycle of the input square wave and, is equal to the input voltage when the high side
power-MOS on (and the low-side is off) or equal to zero when the low side is off (and high
side is on).

Chapter 3

Digitally controlled buck converters
in CCM

Reducing ripple effects on the output voltage, more precision requests on the dc output level
and avoiding low frequency noise, are all factors that make necessary to move from an open
to a closed loop system to compute the control duty cycle every switching period Ts . In this
chapter theoretical considerations about the digital control loop are introduced referring to
buck converters. The control loop computes the duty cycle needed to reach the desired dc
output voltage Vr e f and, at the same time, it has to improve the system dynamic. Consid-
erations in the frequency domain, are shown through Matlab obtained Bode diagrams of
the transfer functions related to control loop blocks in Fig.3.1. Moreover, theoretical design
basics of the Proportional Integrative Derivative (PID) compensator are introduced and, im-
provements in terms of both margins and bandwidth are considered.
Consideration about the effects of the finite loop resolution are drawn together with loop
design considerations. The Loop resolution improvements through the dithering effects are
considered. The ∆Σmodulator in its Error Feedback configuration is characterized and dif-
ferent noise shaper structures are compared.

3.1 The digital control feedback

A digitally controlled buck converter in presented in Fig.3.1, the control structure is mainly
the digital representation of a classical analog control structure for power converters. The
digital compensator represents the main block for a regulation loop, most of cases the best
choice for CCM buck converters control is the Proportion Integrative Derivative (PI D) com-
pensator. Proportional Derivative compensator (PD) leads to better rejection of high fre-
quency disturbances, indeed is used both to improve the phase margin and extend the band-
width of the feedback loop. Proportional Integrative (PI) compensator leads both to better
rejection of low frequency disturbances and very small steady state error, because the low
frequency loop gain is increased. The PID compensator or regulator, combines these prop-
erties in order two achieve the advantages of both approaches.

In Cha.1, the steady state relationship which drives the buck converter is Vout = DVi n has

23

24 CHAPTER 3. DIGITALLY CONTROLLED BUCK CONVERTERS IN CCM

Figure 3.1: Digitally controlled buck converter: model.

been introduced. The regulation loop has to be designed to compute the duty cycle con-
trol word. The desired output voltage or the reference voltage is indicated with Vr e f , every
switching step the error between the actual Vout and Vr e f is computed. The error e[n] is then
digitalized thanks to the ADC, it depends on the ADC resolution and represents the amount
that the regulator have to compensate. The PID receives the error and computes the new
high resolution duty cycle dhr [n] to compensate the error. The DPWM block considers the
MSB (Most Significant Bits) of dhr [n] to generate the related square wave d(t) to drive both
high and low side power-MOS (MHS and MLS). This general overview of the digital control
feedback loop, highlights that in this kind of approach the main constraint is the resolution
and the quantization effects [93]. Both the ADC and the DPWM introduce quantizations ef-
fects which are important to be modelled and taken into account. This kind of problems
have been addressed in [85, 86], the most important considerations during a digital loop de-
sign refer to the relationship between quantizations effects introduced by the ADC and the
DPWM, these blocks represent the real interface with the buck converter and are essentially
non-linear quantizer which could introduce limit cycle oscillation (LCO) in the output volt-
age (Sec.3.3.3). If this oscillation occurs, the converter stability could be affected and cannot
be predicted by the stability theory developed for linear time invariant systems. Therefore,
additional conditions have to be considered during the design of the digital controller in or-
der to avoid LCO.
Furthermore, delays introduced by DPWM and ADC in a control loop have to be considered
during the design phase. In digitally controlled dcdc converters all the converter variables
are sampled at a sampling period T . The output voltage is monitored at instants t = nT
where n is an integer number in the range [0,+∞]. The sampling of the converter variables,

3.1. THE DIGITAL CONTROL FEEDBACK 25

together with the delay introduced by each control block, will introduce a delay in the feed-
back. The sampling period of the ADC converter has to be chosen properly to avoid aliasing
in the spectrum of the sampled error voltage. Because of the periodic behaviour, the most
intuitive choice is to set the sampling frequency equal to the switching frequency of the con-
verter (T = Ts). In this case, all signals of the digital controller will be updated once every
switching cycle and the power consumption can be limited. An exact small signal discrete
time model for digitally controlled pulse-width modulated (PWM) dcdc converters operat-
ing in constant frequency continuous conduction mode (CCM) with a single effective AD
sampling instant per switching period, has been introduce in [63]. The model takes into ac-
count sampling, modulator effects and delays in the control loop.

3.1.1 Delays in the digital loop

During the control loop design ,the delay introduced by each block involved in the regulation
have to be considered. Let’s call td the total delay in the loop:

td = tc + td1 + td pwm , (3.1)

where tc is the ADC conversion time, td1 is the delay introduced by the digital compensator,
td pwm is the DPW M delay and tg is the gate driver propagation delay. The main contribu-
tion to this delay is represented by delay introduced both to ADC and DPWM quantizers.
Referring to the control to output transfer function in Eq.2.8 and considering that a delay in
the S-domain has the expression exp−std , the resulting transfer function becomes:

Gvd (s)|td =Gvd (s)e−std . (3.2)

This contribution introduces high frequency poles in the transfer function, without having
consequences for the magnitude. In Fig.3.2 delay contribution has been considered in the
Bode plot, for a buck converter with resonant frequency f0 = 5kH z and switching frequency
fs = 449kH z. In the example a total time delay close to the switching period has been cho-
sen, in a real implementation this values are very close because the new control world com-
putation takes td and have to be done before the switching period ts = 1/ fs .

Hence the first constraint which has to be considered during the digital control system is
the compromise between delays introduced by the feedback loop and the switching period.
The new duty cycle has to be computed before every switching period, the sampling time T
of the new error plus the computation time td has to be less then Ts .
The continuous square wave d(t) is output from the DPWM, it translates the digital con-
trol word in a time continuous square wave and can be seen as a digital to analog converter
(DAC). The combination of DAC and ADC blocks might originate a delay in the feedback loop
that is approximately equal to half of the sampling period T , where T = Ts. The modulator
delay depends on its structure, single and double edge are the most used. Moreover, hybrid
DPWM structures has been presented in [127, 111].

This section is focused on single edge DPWM, the duty cycle dhr [n] is sampled at the be-
ginning of each switching cycle and its value is constant until the next cycle 3.3. The DPWM
can be modelled as a ramp, it samples the duty cycle at switching time and at the same time
activates the on period of the square wave d(t). When the ramp reaches the sampled duty

26 CHAPTER 3. DIGITALLY CONTROLLED BUCK CONVERTERS IN CCM

Figure 3.2: Control to output transfer function: loop delay effects.

cycle the off period of d(t) start. This behaviour is summarised in Fig.3.3. There is no delay
from the sampling instant of the duty cycle and the turn on instant of the signal output by
the DPWM, but there is a delay between the sampling instant of the duty cycle and the turn
off instant of the output signal. The modulator delay, in this case, can be easily determined
to be td pwm = DTs , where D is the average duty cycle value.
Form the digital point of it results natural to think at the DPWM as a counter. Because this
counter is activate every switching step to count at the system clock frequency (fclk), its
minimum resolution nDPW M depends on the relationship between clock and switching fre-
quency:

nDPW M =
∣∣∣∣log2

(
fclk

fs

)∣∣∣∣ . (3.3)

For instance, for fclk = 70M H z and a switching frequency fs = 449kH z a 8 bits DPWM is
needed. The main advantages of this approach are that, counter-based modulators are able
to reduce or avoid LCOs and only one counter is used in terms of resources. On the counter-
part, the main disadvantages is need of high clock frequency [93, 127, 110].
According to what said, the DPWM transfer function can be easily deduced:

GDPW M (s) = KDPW M exp(−stDPW M) = 1

2nDPW M −1
. (3.4)

Further quantization effects in a control loop are introduced from the non-linear ADC struc-
ture. The ADC transfer function is defined as:

G ADC (s) = K ADC exp(−stc)

1+ s
ωADC

. (3.5)

In Fig.3.4 is shown the ADC characteristic related to the model used in the entire thesis.
A zero error bin can be introduced to model the ripple voltages. During the steady state

3.1. THE DIGITAL CONTROL FEEDBACK 27

Figure 3.3: DPWM waveforms.

the error should be ideally null (Vout = Vr e f), but ripple effects are introduced by both the
switching frequency harmonics and the quantization noise. This kind of ADC permits to
achieves effectively higher resolution in digitally controlled dcdc converters ans, a non-zero
scheme for output voltage error coding, increases the LCO frequency beyond the resonant
frequency f0[134].

3.1.2 The compensator

The compensator design approach usually starts from the continuous time domain and then
moves to the digital domain. To design the digital compensator both the control to out-
put transfer function Gvd (s) and the total delay in the digital control loop has to be known
(Sec.3.2). Two main approaches can be adopted to study the compensator transfer function:

• The Direct design approach works directly in the Z-domain and the transfer function
Gc (z) can be directly obtained without passing for the S-domain.

• The Emulation approach take the advantage of the knowledge about compensator de-
sign in the continuous domain.

28 CHAPTER 3. DIGITALLY CONTROLLED BUCK CONVERTERS IN CCM

Figure 3.4: ADC output characteristic: zero error bin.

The numerical integration and the pole-zero mapping are numerical techniques exploited by
the emulation approach. The numerical integration technique approximates a system de-
scribed by a set of linear differential equations, while the pole-zero mapping find the equiv-
alent discrete expression of a continuous transfer function just substituting a pole locate in
s = s0 with the equivalent z = e s0Ts in the Z-domain.
The numerical integration technique writes the transfer function in terms of system differ-
ential equations, then the derivative of the state variables are approximate with Forward
rectangular,Backward rectangular or Trapezoid rule. These three approaches bring to an
equivalent between s and z, it means that starting from a transfer function in the S-domain
the equivalent in the Z-domain is obtained substituting s with its equivalent z:

• Forward rectangular rule:

s → z −1

Ts
, (3.6)

• Backward rectangular rule:

s → z −1

zTs
, (3.7)

• Trapezoid rule or bilinear transformation:

s → 2

Ts

z −1

z +1
. (3.8)

Some considerations about the stability of the system during the mapping in the Z-domain
can be done. The discrete time system obtained with the trapezoid method, is stable if and

3.2. DESIGN CONSIDERATIONS 29

only if the continuous time system is stable. When the backward method is used, the condi-
tion is necessary but not sufficient.
Another mapping approach is the bilinear with prewarping, it is consequence of the trape-
zoid method and is obtained imposing that the discrete time transfer function must have
exactly the same gain and phase of its continuous equivalent. In this case the relationship
between s = jω0 and z is the trapezoid rule or bilinear transformation:

s → ω0

tan(ω0Ts/2)

z −1

z +1
. (3.9)

Proportional Integrative Derivative (PID) compensator is usually used for buck converters
regulation, it combines both PD and PI properties. The PD leads to better rejection of high
frequency disturbances and is used both to improve the phase margin and extend the band-
width of the feedback loop. Proportional Integrative (PI) compensator leads both to better
rejection of low frequency disturbances and very small steady state error, because the low
frequency loop gain is increased. The PID compensator or regulator, combines these prop-
erties in order two achieve the advantages of both approaches.
Let’s call GPI D (s) the PID compensator transfer function, it’s composed by two zeros and one
pole at s=0:

GPI D (s) = KPI D

(
1+ s

2π fz1

)(
1+ s

2π fz2

)
. (3.10)

The PID gain (KPI D) and the related zero positions can be chosen by considerations on the
control to output structure of the converter, indeed the compensator is usually exploited to
modify the dc gain, margins and bandwidth in order to obtain the best system dynamic. In-
creasing the dc gain, means to obtain a more precise output voltage, moreover bandwidth
and margins of the closed loop system can be adjusted in order to improve the system dy-
namic.

3.2 Design considerations

Once that both the control to output transfer function of the buck converter and the con-
trol loop delay are modelled, the design of a closed loop converter can be addressed. As
mentioned in the previous chapter the control to output transfer function in the continuous
domain can be obtained from the small signal model after the circuit averaging analysis.
During the steady state the ADC works mainly around the zero error bin and the LSB ADC is
mainly related to the ripple constraints. Taking into account the Eq.1.8, for an output volt-
age of 5V , a resonant frequency of 5kH z and a switching frequency of 449kH z, the expected
ripple voltage magnitude is in the range of few tens of mV
Just considering the ratio between the clock and the switching frequency, the resolution in
counter based DPWM is automatically chosen by the Eq.3.3.
It is well know, that DA converters are affected by the The Zero Order Hold (ZOH). It is a
mathematical model of the practical signal reconstruction done by a conventional digital
to analog converter (DAC) and, describes the effect of converting a discrete time signal to a
continuous time one by holding each sample value for one sample interval. This effect only
occurs in real systems where the samples are converted back to the analog world through a
filtering operation, hence this is not critical in dcdc converters. The DPWM is not performing
any filtering action, but the some related problems could appear if the duty cycle changes

30 CHAPTER 3. DIGITALLY CONTROLLED BUCK CONVERTERS IN CCM

before the next duty cycle. In counter based DPWM this effects is not present, but has to be
considered if any small signal variation is present.
The design of the feedback loop is mainly focused on the regulator structure. The compen-
sator design is usually done with frequency considerations, it has to adjust the closed loop
system dynamics. From the implementation point of view, it computes the digital control
world for the DPWM. Once that the resolution of the DPWM has been decided, the MSB of
the digital control world must be respected form the digital implementation of the converter.

3.2.1 PID Compensator

The compensator is usually designed in the continuous domain and then the equivalent in
the Z-domain is computed (Sec.3.1.2). Its design is done considering the delayed control to
output transfer function (Fig.3.2). The open loop considered transfer function, is composed
by the product among the converter control to output, the ADC and the DPWM transfer
functions:

Gc (s) =Gvd (s)GDPW M (s)G ADC (s)e td , (3.11)

where Gvd (s), GDPW M (s) and G ADC respectively refers to Eq.2.14,3.4 and 3.5.
To properly design the digital compensator an accurate model of the analog plant is required.
The control to output transfer function Gvd (s) is derived by averaging the converter signals
over the switching period and, therefore, it is an approximate model of the converter. The
model, thus, does not take into account of high frequency effects which cannot be neglected
when designing digital dcdc converters with bandwidth higher than fs/20. In order to maxi-
mize the convert bandwidth a standard approach is to fix the desired bandwidth fc = fs/20.
The Gvd (s) structure is mainly composed by two complex conjugated poles (Fig.2.6), the PID
structure presented in Eq.3.10 can be set in order to increase the bandwidth up to fs/20 and
then adjust the system dynamic.
Referring to GPI D (s) in Eq.3.10, there are two main approaches to chose the zeros position in
order to increase the bandwidth of Gc (s). Both fz1 and fz2 can compensate the conjugated
pole pair of Gvd , otherwise can be placed close to the resonant frequency f0 of the converter.
Once that the zeros of the regulator are placed, the required bandwidth can be obtained ad-
justing the gain KPI D .

Delays on the control to output transfer function has been considered in Fig.3.5, for a sys-
tem having f0 = 5kH z and a bandwidth of fc = 19.7kH z. Considering a switching frequency

fs = 449kH z, a good compromise is to obtain a bandwidth close to fC = fsw
20 = 22.5kH z. The

green curve is the PID shape, in this case the two zeros are respectively at 0.7 f0 and 0.9 f0 and
the bandwidth of Gvd (s)GPI D is adjusted considering a PID gain KPI D = 6000. The obtained
system bandwidth is of f c = 25.1kH z, while 14.3dB and 59.4Âř are respectively gain and
phase margins. It can be observed as starting from an unstable system, the PID brings the
system into a stability condition by adjusting both bandwidth and margins.
Once the controller has been studied the equivalent in the Z-domain can be easily computed
in Matlab by considering the bilinear with prewarping numerical integration approach. Start-
ing from:

GPI D (s) = 6000
(
1+ s

2π0.7

)(
1+ s

2π0.9

)
, (3.12)

3.2. DESIGN CONSIDERATIONS 31

Figure 3.5: Control to output transfer function: PID effects.

its equivalent in the Z-domain with fs = 449kH z is:

GPI D (z) = 109
(

1.31z2 +2.63z +1.31

z2 −1

)
. (3.13)

From the implementation point of view the compensator has to compute every switching Ts

the new high resolution control word dhr [n] starting from the ADC output error e[n]. Several
implementation of GPI D [z] can be considered, for a real implementation the best choice is
always dealing between resource saving and computation time. The most used implemen-
tation come directly out from the continuous implementation of the PID regulator:

d(t) = K

(
e(t)+ 1

TI

∫ t

0
e(τ)dτ+TD

de(t)

d t

)
, (3.14)

with a related transfer function in the S-domain:

GPI D (s) = KP + K I

s
+KD s, (3.15)

Where the gains K = KP , K I = K
TI

and KD = K TD are respectively proportional, integrative
and derivative coefficients. The expression of the converter in the Z-domain can be obtained
from Eq.3.15 or more easily from the discrete expression of Eq.3.14:

d [n] = d [n−1]+kp e[n]+Ki e[n]+kd (e[n]−e[n−1]) = kp e[n]+Ki

n∑
r=0

e[r]+kd (e[n]−e[n−1]).

(3.16)

32 CHAPTER 3. DIGITALLY CONTROLLED BUCK CONVERTERS IN CCM

The transfer function in the Z-domain can be directly obtained from its discrete equivalent
(Eq.3.16) whit the advantage of having the same gains:

GPI D (z) = Kp +Ki
z

z −1
+Kd

z −1

z
. (3.17)

In this way, the well known parallel structure for the PID has been obtained in Fig.3.6.

Figure 3.6: PID model: parallel structure.

The computation time is optimized in parallel structures because no delay is present on
the signal path, but the request of hardware resources could be high due to multipliers use.
A solution used to avoid the use of multipliers, is to exploit Look Up Tables (LUTs) where the
pre-computed product between gain and error is stored.

3.3 Digital quantization effects

Digital system are always affected by quantizations effects. Considering the digital control
loop introduced in Fig.3.1, the ADC, the DPWM and the digital compensator are sources of
quantization noise. Truncation effects due to the finite resolution, can be considered the
main difference between digital and continuous control. The problem of modelling quan-
tization effects in digitally controlled buck converters has been addressed in [85, 86]. Dig-
ital control structure for SMPS are usually designed with fixed-point considerations, hence
uniform quantizers are used because the resolution of control world is constant during the
entire computation.

3.3.1 ADC and DPWM resolution

The AD converter introduces the first quantization step in the regulation loop, it outputs a
finite resolution error e[n]. If the converter resolution is not enough the entire loop resolu-
tion loop can be compromise. Let’s define nadc as the digital resolution of the error and FSR

3.3. DIGITAL QUANTIZATION EFFECTS 33

as the full scale range of the converter, the quantization step qadc on the voltage error signal
can be expressed as:

qadc =
F SR

2nadc
. (3.18)

During the steady state e[n] is close to zero and variations less than 1LSB cannot be con-
verted. To increase the resolution and avoid strong limit cycle effects, an ADC with zero
error bin mapping can improve the resolution even if the same quantization step is used.
Using zero error bin mapping characteristic (Fig.3.4), it means to don’t map the zero as dig-
ital output world. During the steady state an error comprises between ±1

2 LSB ADC is always
read by the compensator which always react. The dc value of the output voltage is related
to D = Vout

Vi n
which usually is not a natural number. During the steady state oscillations occur

due to the finite resolution and are then considered in the zero error bin of the ADC and fil-
tered out by the buck converter. In this way the compensator could react and adjust the duty
cycle with a sinusoidal trend. These oscillation are averaged by the low pass structure of the
buck converter and the resulting averaged dc value of duty cycle is then more precise even if
the same resolution is kept. The LSB ADC is usually chosen with considerations on the out-
put voltage ripple in Eq.1.8, small ripple effects are obtained when the switching frequency
is much more high then the resonant frequency.

The resolution of the DPWM is simple the resolution of a one step counter which has to
be reset every switching step (see Sec.4.1.4). This reason the minimum number of bits is de-
fined by the Eq.3.3 and the maximum is limited by hardware resources constraints. The high
resolution control world dhr [n] is then truncated in a low resolution one dl r [n] to output
d(t).
Increasing the DPWM resolution more bits of the compensated duty cycle can be considered
(bigger MSB) and consequently more resolution is reflected on d(t)(Fig.3.3).

3.3.2 Compensator resolution

Once that the discrete expression of the comparator has been obtained it has to be designed
in the digital world with a finite resolution. If the number of employed bits is not enough
the system could be unstable because zeros/poles position in the frequency domain has not
been respected. Zeros, high and low frequency poles all require a high number otherwise
they cannot be distinguished each other. Moreover, a large number of bits is needed espe-
cially when hardware multiplication exists in the implementation.
However the number of bits should be large enough to ensure the system stability, then both
zeros and poles have to be distinguished. Assuming the system stability, is like to consider
the compensator resolution so high that quantization effects introduced in the digital loop
are only depending on the ADC and the DPWM. Indeed, the DPWM is mainly a counter, only
nDPW M bits (MSB) of the PID output are considered. Moreover, the considered input error
is output from the ADC and if it results compromised the entire regulation will be compro-
mised as well.

3.3.3 Limit cycles oscillations

Limit cycle oscillations (LCOs) are periodic oscillations of Vout , which occurs during the
steady state and are not due the DPWM switching activity[85, 86]. These persistent oscilla-

34 CHAPTER 3. DIGITALLY CONTROLLED BUCK CONVERTERS IN CCM

tions present a frequency much lower than the switching frequency and are hard to predict.
Non-linearities introduced by the ADC and DPWM quantizers could be source of LCOs.
There are two main kind of steady state LCOs, static and dynamic. Static conditions are
mainly related to the loop resolution, when a dc solution for the output voltage does not ex-
ist the zero error bin is never reached. On the counterpart, dynamic conditions refer to the
non-linear quantizers transfer functions (describing functions).

The static conditions are obtained assuming that quantization effects for the digital com-
pensator can be neglected, in this case a dc value for the output voltage could or could not
exists. Steady state cycling is then related to both ADC and DPWM quantization effects. The
first condition can be intuitively understood. If there is no DPWM quantization level that
maps the output voltage in the ADC zero error bin, then the system will exhibit limit cycle
oscillations. It results that to avoid LCOs the DPW M resolution has to be larger than the
ADC one:

nd pwm > nadc . (3.19)

The just mentioned condition (Eq.3.19) is not sufficient to avoid steady state cycling on the
output voltage, further considerations have to be done regarding the integral gain of the PID
compensator. If during a perturbation of the output voltage, the gain of the integrator Ki is
not low enough to map the output voltage inside the zero error bin limit cycle oscillations
will occur. The condition can be summarised in:

0 <Gvd Ki =Vi nKi > 0.5 (3.20)

Dynamic conditions are less intuitive to find and involve complex mathematical analysis,
them are mainly related to non-linear system stability theory and are here omitted. The LCOs
are often exploited during the identification phase of the autoregulation algorithms (Cha:6).
Static conditions are exploited in [135, 136, 139]and dynamic conditions in [25, 102, 104].

3.4 Delta Sigma modulator

Delta Sigma (∆Σ) modulation reminds the basic idea used in modern data converters. It
exploits the feedback of the quantization error in order to improve the output resolution.
This method usually encode high resolution signals into lower resolution ones. Referring to
∆Σ-based AD, an high resolution analog signal is encoded in a digital signal using the error
feedback (dithering). The digital low resolution signal changes faster than the higher resolu-
tion one and is averaged through low pass filtering.
This principle could be used not only during a data conversion, but also in a digital loop
wherever it is needed to convert the high resolution word in a lower one. The considered
digital control loop is showed in 3.7, the ∆Σ modulator can be inserted between the digital
compensator and the DPWM. As mentioned, the DPWM introduces quantization effects on
the high resolution word output from the compensator. In counter-based DPWM (Sec.4.1.4)
the high resolution PID output dhr [n] (nh bits) is truncated in a lower resolution one dl r [n]
(nl bits). For this reason, a ∆Σmodulator block is inserted between the digital compensator
and the DPWM, in order to consider the quantization noise of nh −nl bits. Its configuration
for digital control loop is called error feedback (Fig.7.16), the quantization error introduced
by the DPWM is considered during next switching cycles and added to high resolution con-
trol word.

The ∆Σmodulator works exploiting three main basics:

3.4. DELTA SIGMA MODULATOR 35

Figure 3.7: Digitally controlled buck converter: model with ∆Σmodulator.

Figure 3.8: ∆Σmodulator: error feedback configuration.

• Dithering. The shaped quantization noise is added on the signal path.

• Oversampling. During the steady state sinusoidal duty cycle variations are obtained
due to the quantization effects. The quantization noise can be considered an inde-
pendent additive white noise uniformly distributed inside [±LSBDPW M

2]. If f is the fre-
quency of this sinusoidal contribution and, the sampling frequency fs is much higher
then the Nyquist rate (2 f), then signal at frequency f results to be oversampled. This
assumption permits to reduce the noise at the frequency of interest. The same quan-
tization noise, is distributed in the range [0 : 2 f] for Nyquist converters while, is dis-
tributed over a larger range [0 : fs] for ∆Σmodulators.
The oversampling is implicit in digitally controlled buck converters, indeed, the switch-
ing frequency fs is much higher then the input signal frequencies that are limited to
the output filter bandwidth.

36 CHAPTER 3. DIGITALLY CONTROLLED BUCK CONVERTERS IN CCM

• Averaging. Due to dithering and oversampling, the lower resolution signal changes
faster then the higher resolution input. The low pass characteristic of a buck converter
automatically permits to average faster duty cycle variations.

3.4.1 Error feedback configuration

The∆Σmodulation for digital loops is used to improve the resolution of the digital word each
time we move from a high resolution word to a lower one. The error feedback configuration
is shown in Fig.7.16, this configuration is mainly composed by two adders, one quantizer
and one high pass filter or noise shaper (NTF(z)). Three main reasons make very attractive
the ∆Σ:

• unitary signal transfer function, indeed none delay is added on the signal path and no
phase contributes are added to the control to output converter transfer function.

• resolution improving of the DPWM.

• resource saving oriented device. From the digital design point of view it is mainly com-
posed by a high pass filter.

A digital design of the error configuration modulators has been presented in [51] and has
been integrated in digitally controlled SMPS in[65, 61, 37]. The DPWM resolution improving
due to the modulator and ADC zero error bin has been presented in[138] for low resolution
controllers.
The order of the simulator is defined by the noise transfer function (NTF(z)) described in
3.4.2. A digital implementation of a second order modulator is presented in 3.9. This er-
ror feedback configuration is ideal for the digital implementation, it exploits adders which
are difficult to implement in the analog world. Because quantizers are free in a digital im-
plementation, the hardware costs are mainly depending on the noise shaper order and the
considered resolution (nh and nl bits). Both the noise transfer function (NTF(z)) and signal
transfer function (STF(z)) can be obtained from the model shown in Fig.3.9:

Y (z) = X (z)+(1+H(z))∗E2(z) = X (z)+(1−2z−1+z−2)∗E2(z) = X (z)+(1−z−1)∗E2(z). (3.21)

The resulting signal transfer function from Eq.3.21 is unitary, therefore none delay on the
signal path is added:

ST F (z) = Y (z)

X (z)
= 1, (3.22)

while the second order noise shaper is:

N T F (z) = Y (z)

E2(z)
= (1− z−1)2. (3.23)

The discrete time representation of the model shown in Fig.7.16 is:

dl = dh +N T F (z)∗qe . (3.24)

The DPWM resolution improving is demonstrated in [65, 61, 37, 138, 76] and can be easily
intuitively justified. Let’s refer to Fig.3.9, the high resolution digital representation is an nh

bits length word, it is composed by both most and least significant bits which are respectively

3.4. DELTA SIGMA MODULATOR 37

Figure 3.9: ∆Σmodulator: 2nd order error feedback configuration.

nl and nh−nl bits length words. The quantized low resolution word is composed only by the
MSB and the introduce quantization error is the LSB. Let’s consider a non natural number
for the high resolution duty cycle during the steady state:

• Without modulator, the quantization error is neglected and the low resolution word
presents a sinusoidal behaviour inside one LSBDPW M .

• Introducing a∆Σmodulator the quantization noise contribution inside the LSBDPW M

is considered (dithering) and results distributed in the range of frequencies up to the
switching frequencies (oversampling). In this way the duty cycle change faster with
different frequency contributes, while the noise can be high pass filtered (next section)
and added on the signal path (dithering).

In order to obtain a duty cycle value closer to the desired one, this fast low resolution duty cy-
cle need to be averaged. In digitally controlled SMPS the averaging function is automatically
done through the low pass characteristic of the output filter. During the steady state the out-
put voltage have to stay inside the zero error bin of the ADC, this means that the resolution
improvements nx in function of nh can be defined in terms of maximum voltage error[76]:

nx = max
nh≥nl+1

[
min

(
(nh −nl), log2

(
Vi n/2nl

|Ver r |max

))]
(3.25)

3.4.2 Noise transfer function

The noise transfer function NTF(z) defines the order of the modulator. The modulator feed-
back is a discrete time filter 1−N T F (z)(Fig.3.9), it operates at the same rate fs of the DPWM
and processes nh−nl bits (quantization error). The Noise Transfer Function is usually a high
pass filter used to shape the quantization noise at higher frequencies. In order to evaluate
both the best solution and the effect of the modulator loop insertion, different noise shaper
structures has been analysed in[76].
Different noise shaping structures has been shown in Fig.7.20, together with a buck con-
verter control to output transfer function . Considered noise transfer functions are first order
(N T F1(z) = 1− z−1), second order (N T F2(z) = (1− z−1)2), third order (N T F3(z) = (1− z−1)3)

38 CHAPTER 3. DIGITALLY CONTROLLED BUCK CONVERTERS IN CCM

Figure 3.10: Control to output and noise transfer functions.

and third order modified. The third order modified transfer function is based on a third order
structure:

N T F3k (z) = (1− z−1)(1−kz−1 + z−2), (3.26)

where K = 2cos(2π fn
fsw

) permits to insert a notch effect at f = fn . For each order of the
N T F (z), the noise is suppressed at low frequencies. For any structure the power noise is the
same, but how the order increases the low frequency contribute is lower the high frequency
one increases. In the third order modified modulator the zero position could be adjusted
attenuating the noise around at the resonance frequency of the output filter. The first and
second order noise shaper, introduces higher noise level at the resonance frequency of the
output filter without killing high frequencies noise. The third order NTF is the best compro-
mise, furthermore, it prevents non-linearities due to the interaction between∆Σmodulators
and the DPWM quantizer. This interaction can produce limit cycles contributes, which result
in significant spectral spikes (idle tones). When the quantizer output is periodic, idle tones

with frequency f = fsw

2nh−nl are generated, the third order modulators avoid this issue[76].

Chapter 4

Digital control feedback prototype

A Matlab/Simulink based modelling technique, has been introduced in Cha.2 to character-
ize the open loop configuration of the buck converter. Moreover, this approach has been to
verify the introduced theoretical considerations. The same approach is used in this chapter
to model and verify the digitally controlled closed loop power supply.
Theoretical considerations for digitally controlled buck converters have been drawn in Cha.3
considering, the introduced loop delay, the quantization effects and the limit cycles issues.
Main blocks as ADC, PID, and ∆Σ have been presented with design considerations here ex-
ploited during the close loop system realization. In Matlab-based approaches, digital con-
trol modules are described as functions which are integrated into Simulink blocks. The en-
tire feedback modelling flow, moves from a floating point implementation to a fixed-point
model which can be used as reference model during the HDL (Hardware Design Language)
encoding of the digital control. The FPGA prototyping of the control feedback is described
and the hardware-software (VDHL-Matlab) FPGA-based co-simulation model is presented
and characterised.
Results in this chapter have been considered in order to validate the all presented mod-
els up to the digital control VHDL design. Float and fixed-point Matlab/Simulink models,
are compared in order to define the digital control loop resolution. Hardware/software co-
simulation results are presented to validate the VHDL-coded control feedback. With this
kind of approach, the closed loop configuration can be obtained exploiting Matlab/Simulink
models for the analog blocks (ADC and buck converter) while the digital part is directly
mapped on a Virtex6 FPGA. In this way the hardware testing is verified avoiding the use
of user coded testbenches. From syntheses, results a maximum frequency of 124.748M H z.
The hardware resource usage is summarised in Tab.4.3 and Tab.4.2, which respectively refer
to the digital control resources usage and the FPGA resources usage.

4.1 Matlab/Simulink closed loop model

A user defined floating point Matlab/Simulink closed loop system is presented in Fig.7.15.
Buck converter and gate driver blocks introduced in Cha.2 are controlled through the dig-
ital feedback. The entire implementation is based on the theory presented in the previous
chapter. A zero error bin mapping ADC has been used, both third order ∆Σ and DPWM

39

40 CHAPTER 4. DIGITAL CONTROL FEEDBACK PROTOTYPE

counter-based are used to compute the low resolution duty cycle dl r [n]. A PID-based com-
pensator is used to compute the high resolution control word starting from the error e[n].
Parameters configuration, is the same in Sec.2.3 to model the open loop buck converter (f0 =
5kH z and fs = 449kH z). The switching frequency is ensured by setting a DPWM counter

from 0 to fclk
fs

= 156 for clock frequency of 70M H z. The clock frequency has been emulated
through the fixed-step Matlab solver configuration. A reference voltage Vr e f = 3.3V and
input voltage Vi n = 14V are used in this implementation. In Fig.4.2 is presented the out-

Figure 4.1: Digitally controlled buck converter: Matlab/Simulink model.

put voltage (called Vr as in model in Fig.2.10) and the reference voltage, for the fixed-point
model implementation. As desired, the output voltage is equal to the reference one dur-
ing the steady state. Moreover, a soft start-up is obtained thanks to the linear evolution of
the reference voltage Vr e f . In Fig.4.3 is shown a zoom taken during the steady state. It is
visible how the output voltage is very close to desired value. Frequency contributes during
steady state are far from a single tone contribute (LCO), this due to the ADC zero ero bin,
the ∆Σ modulator and the high resolution PID. As mentioned in the previous chapter, all
these contributes brings to be close to a desired output voltage even if an ideal duty cycle of
D =Vr e f /Vi n = 0.2357.
Having a fixed-point reference model can be very useful when it is desired to move to a dig-

ital hardware implementation of the control law. In the next section the model presented in
Fig.7.15 is described comparing block by block the floating with the fixed-point implemen-
tations.
Moving to a fixed-point implementation starting to a floating, is usually done by a dedicated
Matlab toolbox. An alternative way to implement the fixed-point behaviour is to insert in the
floating point implementation some devices:

• If we want to work with a 9 bit signed number we must consider an integer within±256.
Operations like additions, subtractions and multiplications are simple to handle and
possible overflows have to be evaluated by floor functions.

• In a digital implementation shifting operations are fundamentals, the Matlab equiva-
lent can be obtained by handling these operations:

• left shit by K of y is y = 2k

4.1. MATLAB/SIMULINK CLOSED LOOP MODEL 41

Figure 4.2: Fixed-point closed loop model: output voltage.

Figure 4.3: Fixed-point closed loop model: zoomed output voltage.

42 CHAPTER 4. DIGITAL CONTROL FEEDBACK PROTOTYPE

• right shit by K of y is y = 2−k

• Overflows handling is related to the number which has to be checked:

– For N bits unsigned number x, the modulus operation (mod) can be used: x=
mod(x, 2N)

– For N bit signed number a function have to be introduced:

function y = wrap_around_signed(x,N);
while x > (2^(N-1)-1)

x = x - 2^N;
end
while x < (-2^(N-1))

x = x + 2^N;
end
y = x;

end

The function wrap_around_signed takes as input the number x and outputs x
only if this is less of the clamping values ±2N−1.

• To extract 5 bits REGISTER(7 downto 3) from a register REGISTER(7 downto 0):

x = floor(REGISTER/2^3);
x = mod(\textbf{x},2^5);

Normal Matlab instructions are enough for building a fixed-point model if these properties
are exploited. During algorithms implementation, for every computation both overflows
checking and integer part extraction (using the floor() Matlab function) permit to obtain a
fixed-point model.

4.1.1 ADC modelling

To consider a zero error bin ADC permits to achieve higher resolution for digitally controlled
dcdc converters and, furthermore, a non-zero scheme for output voltage error coding in-
creases the LCOs frequency beyond the resonant frequency f0[134]. For this reason the mod-
elled ADC presents the same theoretical approach considered in Cha3, where the zero error
bin configuration is preferred. The Simulink block is presented in Fig.4.4, its inputs are the
buck converter output voltage or feedback voltage V f b , the reference voltage and the start
of conversion (adc_sample) which comes from the DPWM. The implemented Matlab func-

Figure 4.4: Simulink block: ADC model.

4.1. MATLAB/SIMULINK CLOSED LOOP MODEL 43

Figure 4.5: ADC Matlab function: floating point (left side) and fixed-point (right side).

tion for a 4-bit ADC is presented in Fig.4.5 both for floating (left hand side) and fixed-point
(right hand side) version. The quantization step V q is defined as a converter parameter and
is equal to 15mV . The ADC is designed to convert a small voltage range (window) and his
zero error bin is centred around the target output voltage (window ADC) during the steady
state.

Floating point

When the start of conversion is high (adc_sample), the voltage error verr is computed sim-
ply mapping the error V f b −Vr e f in one among the sixteen levels comprises between [7∗
15mV ,−8∗15mV]. If the value exceeds this voltage levels a clamping function is coded. The
mapping of the error voltage in the ADC scale is simply computed through calculating the
related level and multiplying per Vq the integer value (raw six of floating point point imple-
mentation). The zero error bin considered LSB is ±Vq /8, the entire ADC scale presents an
offset due to the zero error bin equal to 1/8 and the null voltage error corresponding code is
not contemplated.

Fixed-point

The fixed-point implementation is obtained removing the Vq voltage from the floating point
mapping function. In raw 9 of fixed-point code, the error is an integer value in the interval
[7,−8] and a clamping function is here considered in order to do not exceed this interval.
When the start of conversion is high, the error e[n] (indicated as error_temp) is computed
and every time multiplied for 23 in order to gain 3 bits in terms of resolution. This means that
the error input to the PID will be an integer in the interval [56,−64] and that LSB ADC = 8. The
zero error bin is considered, the digital code do not map e[n] = 0 and only considers levels
±1 around the zero.
It can be noticed that in both configurations the zero error bin is equal to LSB ADC /8, indeed

44 CHAPTER 4. DIGITAL CONTROL FEEDBACK PROTOTYPE

in the fixed point this assumption is still valid thanks to the added 3 bits. The ADC behaviour
for a linear evolving input is shown in Fig.4.6. Just removing the quantization step and mul-
tiplying the level for 23, the same result is obtained for the floating point model.

Figure 4.6: Matlab/Simulink: fixed-point ADC output characteristic.

4.1.2 PID compensator modelling

The considered PID parallel structure has been described in Sec.3.2.1 of the previous chap-
ter. This approach comes from the Eq.3.16, the main advantage is that starting from the
discrete PID expression its equivalent in the Z-domain can be obtained without gains factor
computation. Moreover, the equivalent in the S-domain can be obtained by using the back-
ward relationship (Eq.3.9).
The digital compensator computation is activated through the signal pid_sample generated
by the DPWM every switching step. In the implemented model the ratio, f0/ fs = 156 is called
OS_factor and is defined as system parameter. Compensator gains are considered as param-
eters of the system and read out from the parameters structure. The PID Matlab modelling
is shown in Fig.4.7, where both floating (left hand side) and fixed-point (right hand side)
models can be distinguished.

Floating point

When the computation is activated the PID parallel algorithms is applied to the ADC output
error voltage Ver r (raw 3). After every new duty cycle computation three steps are always re-
peated. Firstly the new duty cycle has to be clamped to prevent overflows because it cannot
exceed the maximum value (OS_factor). Last two steps are respectively related to both to in-
tegral part and error updating for the derivative part. The integral part updating is necessary
because, the computation involves all previous computed integral contributes (Eq.3.16). The

4.1. MATLAB/SIMULINK CLOSED LOOP MODEL 45

Figure 4.7: PID Matlab function: floating point (left side) and fixed-point (right side).

error updating is related to the derivative contribute, indeed every step the differential part
is computed considering both the actual error and the previous input error. Compensator
gains are stored in the parameters structure and in this implementation are natural numbers
in the interval [1,16].

Fixed-point

This implementation refers to a down-counter DPWM (Fig.4.11), for this reason the com-
puted low resolution duty cycle is called Toff. The model is organized as the floating point
and the duty cycle computation is followed by the clamping and the updating phase. The
high resolution duty cycle (dhr [n]) is called Toff_full_res, the model output dhr [n] to the ∆Σ
modulator and also the low resolution duty cycle when only the DPWM is used. During the
entire computation typical fixed-point function are used. In this example a full resolution of
32 bits is used, but considering 4 bits respectively for mantissa and exponent of the PID gains
a resolution of 28 bits is resulted enough to approximate the results of the floating point mo-
del. Because fixed-point compensator gains are organised in mantissa and exponent, the
entire computation of the full resolution have to be divided in two phases. Firstly mantissa

46 CHAPTER 4. DIGITAL CONTROL FEEDBACK PROTOTYPE

contributes are computed and then the exponent parts are integrated in the computation.
The full resolution word is composed with 12 bits LSB, indeed the low resolution duty cycle
is obtained in raw 30 where a right shift of 12 bits is computed. Clamping is done both on
high and low resolution duty cycle, the integral part has been clamped as well to avoid LCOs.
Hence, a digital compensator with 28 bits MSB and 12 bits LSB has been modelled. Compen-
sator gains are organised with 4 bits both for mantissa and exponent, the model can output
dl r and dhr which corresponds to the off time for down-counter DPWM.

4.1.3 Delta Sigma modulator modelling

The modulator modelling, refers to the third order error feedback configuration which avoid
idle tones. The main function of this block is the dithering, the output duty cycle is com-
puted considering also previous quantization effects. Because differences between floating
and fixed-point ∆Σ are just related to overflows checks and floor functions, the model de-
scription is addressed only for the fixed-point implementation in Fig.4.10. The main differ-
ent between fixed and floating point representations is related to the source of quantization
noise. Because the DPWM is a one-step counter, it introduces always a quantization effects
on the high resolution duty cycle. The PID output in the floating point implementation is
a real number, the introduced quantization noise is related to the floor() function applied
to computed the low resolution duty cycle. On the counterpart, the quantization noise in
the fixed-point representation is equal to 12 bits LSB considered during the high resolution
compensator computation. The output comparison between fixed and floating point im-
plementations is shown n Fig.4.8, the considered resolution (28 bits MSB and 12 bits LSB)
ensures a very good match. This result is obtained for a constant input applied to the Mat-
lab/Simulink model presented in Fig.4.9.

Figure 4.8: Matlab/Simulink: ∆Σ floating and fixed-point output comparison.

4.1. MATLAB/SIMULINK CLOSED LOOP MODEL 47

Figure 4.9: Simulink ∆Σ blocks: floating and fixed-point comparison.

Fixed-point

Every switching step the computation is enabled by the DPWM through the signal pid_sample.
The modulator does not add any delay on the signal path, for this reason the enable compu-
tation signal can be the same used for the digital compensator. In this model the overflow
is checked over a parametric number of bits through the parameter sd_res, the considered
number of bits is the same of the compensator resolution (28 bits).
The first computation step is the dithering consideration, the full resolution duty cycle
(duty_st) is computed taking into account the shaped quantization noise of previous step
(shaped_error_Z1). Once that duty_st has been computed, the low resolution duty cycle for
the DPWM is obtained just eliminating the LSB (q_error). This quantization error is saved
in the variable q_error_Z1, it is the component z−1 of the next noise shaping computation
(shaped_error).

At every step the noise shaping computation involves three previous quantization errors
(Eq.4.1)and is saved in the variable shaped_error_Z1 in order to be ready for the dithering
during the next cycle.

1−N T F (z) = 3z−1 −3z−2 + z−3. (4.1)

The shaped_error computation is based on a three entries vector (error_vect), which is up-
dated after every noise shaping computation in order to prepare z−1,z−2 and z−3 quanti-
zation error elements for the next computation. The duty cycle is computed considering
the previous noise shaper output (shaped_error_Z1), at the same time the next noise shaper
output (shaped_error) can be already computed because it is based on previous quantization
errors.

48 CHAPTER 4. DIGITAL CONTROL FEEDBACK PROTOTYPE

Figure 4.10: ∆ΣMatlab function: fixed-point.

4.1.4 DPWM modelling

The DPWM is a one-step counter, then there is not distinction between floating and fixed-
point implementation. If a down-counter from OS_factor to 0 is considered, the computed
duty cycle represents the off time. Let’s refer to Fig.4.11, for OS_factor−dl r [n] clock cycles the
square wave is high (on-period) and for duty cycle clock periods the is equal to 0. The DPWM
outputs also signals needed to enable control word computations every switching cycle, this
counter can be seen as the main control of the system. The entire computation latency has
to be then the switching time (Fig.4.11). The fixed-point computation does not take into ac-
count the real hardware delay, indeed when the computation is enabled just one fixed-step
(Tclk) is needed. This reason only two clock cycles are need for the entire fixed-step compu-
tation, the pid_sample activates the compensator one time per cycle after that the ADC start
of conversion (adc_sample) is high and e[n] is computed. In Fig.4.12 is presented the model
used to compare fixed and floating points models in order to very the digital resolution. The
open loop structure of the controller comprises the ADC, the PID and ∆Σ, the model has
been realised to emulate a steady state condition and to validate the chosen loop resolution.
Both ADC models receive as input a constant 3.3V reference voltage and a feedback voltage
V f b which a sinusoid with unitary magnitude and dc value equal to the reference voltage.
As described the compensator compute the high resolution duty cycle, the modulator adds
quantization noise contributes and generates the low resolution duty cycle (To f f) for the
DPWM. The result of the simulation is shown in Fig.4.13. The resolution for the fixed point
implementation can be considered sufficient, both models present the same behaviour and

4.1. MATLAB/SIMULINK CLOSED LOOP MODEL 49

Figure 4.11: DPWM waveforms.

the fixed-point implementation can be used as reference model for the hardware implemen-
tation. The closed loop fixed-point model has been presented in Fig.7.15, the number of bits

Figure 4.12: Matlab/Simulink floating and fixed-point comparison: model.

using for the regulation loop has been fixed through comparisons with the floating point mo-
del. Once comparable results has been obtained (Fig.4.13), the hardware realisation of the

50 CHAPTER 4. DIGITAL CONTROL FEEDBACK PROTOTYPE

Figure 4.13: Matlab/Simulink floating and fixed-point comparison: Digital resolution tun-
ing.

digital regulation loop can be designed referring to the fixed-point closed loop model.

4.1.5 PID tuning tool

All theoretical consideration addressed in the previous chapter and the fixed-point PID mo-
del can be used to realize a GUI (Graphical User Interface) to quickly chose the compensator
gains in order to adjust system bandwidth. In Fig.4.14 is shown the gui_buck user inter-
face, where it is possible to choose al parameters related to a buck converter and the com-
pensator gains. Once parameters have been chosen, pushing on the buttom Calculate Bode
Diagram the system automatically runs the related relationships and plot the plant both in
S-domain and Z-domain, the compensator structure and the open loop transfer function
(GPI D (s)Gvd (s)). The buck converter transfer function is calculated with non-idealities, the
on resistance of the power-MOS and the ESR effects can be included. Moreover a dual capac-
itor load can be evaluated, with the possibility to model the ESR contribution for both capac-
itors. The global parameters include the input voltage and desired output voltage, while the
switching frequency is calculated automatically when the clock frequency and the division
factor (OS_factor) have been selected. Compensator gains are related to the fixed-point im-
plementation, 4 bits numbers respectively for mantissa and exponent can be set. The open
loop transfer function Gc (z)Gvd (z) has 58°and 5dB respectively for phase and gain margin.
This approach can be very useful when compensator gains have to set for a new buck con-
verter or to observer system changing when global parameters change as well.

4.2. VHDL-CODED DIGITAL CONTROL FEEDBACK 51

Figure 4.14: PID gains tuning tool.

4.2 VHDL-coded digital control feedback

Once that fixed-point model has been realised and verified, the hardware representation can
be coded with same resolution considerations. The Digital compensator, the modulator and
the DPWM has been VHDL coded and mapped on Virtex6 FPGA. The hardware description
of the digital control loop is shown in Fig.4.15. Because the ADC scale is centred around the
zero error bin, the error_calc block handles the error from the ADC to generate both two’s
complement and signed magnitude representation for the PID compensator. This operation
does not add nay delay, indeed the error_calc is asynchronous. In Tab.4.1 is summarised the
signed magnitude representation generated form the ADC output. This encoding technique
considers the first bit of the ADC output digital code as the sign (0 is for positive and 1 for
negative), while the magnitude is the ADC output or its complement respectively for pos-
itive and negative numbers. The sign and magnitude values (respectively sign_error_i and
abs_error_s) are input to the compensator, they respectively represent the first bit and left
over four bits of the signed magnitude column in Tab.4.1.

The start_fsm is necessary for closed loop configuration. Only when the start up phase
ends, this state machine activates the PID and ∆Σ computation in order to close the loop
during the steady state phase. The start up is done in an open loop configuration where the
low resolution duty cycle (Toff) is generated inside the DPWM.

52 CHAPTER 4. DIGITAL CONTROL FEEDBACK PROTOTYPE

Figure 4.15: Digital control feedback: open loop hardware implementation.

4.2. VHDL-CODED DIGITAL CONTROL FEEDBACK 53

ADC error [LSBadc] 4bits ADC output Signed Magnitude
8 0111 00111
7 0110 00110
6 0101 00101
5 0100 00100
4 0011 00011
3 0010 00010
2 0001 00001
1 0000 00000
-1 1111 10000
-2 1110 10001
-3 1101 10010
-4 1100 10011
-5 1011 10100
-6 1010 10101
-7 1001 10110
-8 1000 10111

Table 4.1: ADC error encoding.

4.2.1 PID Compensator design

The PID hardware implementation shown in Fig.4.15, receives the error from the
asynchronous block error_calc that simply translates the ADC output error. The compu-
tation of the new control word is done every switching step and is activated with the signal
abs_error_en generated by the DPWM. The PID computation is activated only during the
steady state (through the signal pwm_en) generated by the start_fsm).
The compensator implementation has the same resolution discussed during the fixed-point
modelling. Gains factors are represented with 4 bits respectively for the mantissa and for the
exponent, and can be chosen by using the GUI presented in Sec.4.1.5. The computed duty
cycle duty_full_res is a 28 bits word 12 bits LSB.
The entire PID computation, is done considering a signed magnitude representation as in
Tab.4.1 for a window ADC designed to convert a small voltage range around the target output
voltage. During the steady state, only the zero error bin is involved (ADC error ±1), there-
fore, the sign changes and the magnitude is always equals to zero. As for the fixed-point
implementation, errors related to the zero error bin are considered equal to one, while all
the others are eight times bigger. The implementation of the proportional part (integral and
differential are computed with the same approach) has been shown in Fig.4.16. When the
absolute value of the error is null the error sign could be ±1, the proportional mantissa is
equal to the positive or negative proportional gain respectively if the sign is positive or neg-
ative. When the absolute value is not null the error magnitude is multiplied by 23 (as in the
fixed-point implementation) and the computed mantissa is equal to the product between
the shifted error and the gain factor. The sign is considered inside the PID gain, for negative
input errors the gain Kp_m_n_i is used and Kp_m_n_i is used for positive signs.
Proportional, Integrative and Derivative calculations are done in parallel, the computations
are respectively activated in the same way just described and the same time. This reason, it
can be concluded that the designed PID introduces a latency of one clock cycle for the par-

54 CHAPTER 4. DIGITAL CONTROL FEEDBACK PROTOTYPE

allel computation plus one clock cycle to compute the sum of the three contributes (output
has been registered to reduce the critic path between PID and modulator). After two clock
cycles the full resolution duty cycle is ready.

Figure 4.16: VHDL implementation: PID proportional part.

4.2.2 Delta Sigma modulator design

The∆Σhardware block used in the model shown in Fig.4.15, have to be designed considering
that no further delay cannot be added on the signal path. The dithering effect has to be in-
troduced when the high resolution duty cycle is ready. To respect this timing constraint, it is
necessary that both the noise shaping and the PID output are ready together. The modulator
adds noise shaped contributes to PID computed high resolution word, these contributes are
computed considering quantization noise from previous steps (Eq.4.1). The compensator
computation latency is of two clock cycles, the noise shaping computation can be enabled
with the same signal of the PID start of computation (abs_error_en_i), in this way the the
high resolution computation and shaped noise are ready at the same time and can be added
together in asynchronously (asynchronous dithering). The modulator works with a full res-
olution of 28 bits and 12 bits LSB, as presented for the fixed point. Like the compensator and
the DPWM, the ∆Σ computation is enabled only when the steady state is reached. More-
over, through the signal delta_sigma_en_i generated by the start_fsm, is possible to exclude
this block form the control loop. When the modulator is not used, the low resolution duty
cycle is obtained just discharging 12 bits LSB form the high resolution input duty cycle (no
dithering).

4.2. VHDL-CODED DIGITAL CONTROL FEEDBACK 55

Figure 4.17: VHDL implementation: ∆Σ dithering function.

Consideration addressed up to now, are shown in Fig.4.17 where both dithering and low
resolution VHDL implementation are described. The full resolution duty cycle
(duty_first_full_res_s)is calculated at every clock cycle and is the sum of the input full reso-
lution duty cycle (duty_full_res_i) with the noise shaped error (duty_ntf_error_s). Low reso-
lution duty cycle computation generates both signals duty_low_res_s and duty_quant_err_s
respectively considering the MSB and the LSB of duty_first_full_res_s. The signal quantiza-
tion error duty_quant_err_s is the actual error and is used as z−1 contribute during the next
computation.
The noise shping function design is shown in Fig.4.18. Every clock cycle the computation

on previous quantization errors is enabled through the signal delta_sigma_en_calc_i. This
signal is simply equal to the PID start of computation emphabs_error_en_i, indeed the noise
shaped error duty_ntf_error_s computation is activated in the same instant of the compen-
sator so that these two computations can be ready together. The 1−N T F3(z) (rows 57, 58
and 59 of Fig.(4.18) is coded by shifting previous quantization errors and its output is stored
in the register duty_ntf_error_s. The signal ntf_mod_en_s is used to distinguish between nor-
mal noise shaper and modified noise shaper. The normal third noise shaper (N T F3(z)) refers
to Eq.4.1, while the modified noise shaper refers to Eq.3.26. When a zero insertion is consid-
ered in the noise shaping function, the signal duty_ntf_error_s is computed considering the
digital implementation of:

1−N T F (z) = (k +1)z−1 − (k +1)z−2 + z−3, (4.2)

where K = 2cos(2π fn
fsw

) permits to insert the notch at fn . From the digital point of view, a
solution have to be used for the cosine computation. When none zero is inserted fn = 0 and
k = 2, the classical third order NTF is considered. Let’s introduce H = k +1 and consider a

56 CHAPTER 4. DIGITAL CONTROL FEEDBACK PROTOTYPE

Figure 4.18: VHDL implementation: ∆Σ noise shaper.

desired zero introduced in fn = 2kH z, then:

H = 1+2cos

(
2π

fn

fsw

)
= 2.99922. (4.3)

The noise shaper expression which has to be designed becomes:

1−N T F (z) = (H)z−1 − (H)z−2 + z−3. (4.4)

A way to obtain a digital representation of H, is based on adding resolution and rounding to
obtain an integer number. Let,s considering 10 bits shift left on the H value:

H ∗210 = 3071.2. (4.5)

A little amount of error is introduced in the zero representation if the value of H is rounded
to 3071, indeed considering 3071/210 the zero position results in fn = 2.24kH z. Assuming to
accept this error, the expression of the noise shaper becomes:

1−N T F (z) = (
3071

210
)z−1 − (

3071

210
)z−2 + z−3. (4.6)

From the digital encoding point of view, is easy to represent 3071 as a power of two (211 +
210 −1), consequently the polynomial expression in Eq.4.6 can be easily coded:

4.2. VHDL-CODED DIGITAL CONTROL FEEDBACK 57

• noi se_shaped_v = (211 +210 −1)∗quanti zati on_er r or [n −1].

• noi se_shaped_1_v = noi se_shaped_v+(211+210−1)∗quanti zati on_er r or [n−2].

• noi se_shaped_2_v = noi se_shaped_1_v/210 +quanti zati on_er r or [n −3].

The just mentioned approach is summarised in Fig.4.19 for fn = 2kH z and can be observed
in rows 62, 63 and 64 of Fig.4.18, where the case fn = 8kH z has been integrated in the noise
shaper design to generate the signal duty_ntf_error_s.

Figure 4.19: VHDL implementation: ∆Σ noise shaper with 2kH z notch.

4.2.3 DPWM design

The DPWM module shown in Fig.4.15, receives the MSB of the computed high resolution
duty cycle (with or without dithering). In a down-counter configuration the low resolution
duty cycle is the off time of the generated square wave. From the VHDL encoding point of
view, this block is mainly a counter that generates a square having an off time equal to the
low resolution duty cycle 4.11. Furthermore, the DPWM works as control for the system,
handling the start up phase and to generate enabling signals for each block.
During the start up both PID and ∆Σ modulator are disabled, the system is in an open loop
configuration where only the ADC and the DPWM are used. In this phase the To f f is not
an input, its initial value is set close to the maximum (for instance OS_ f actor − 4) when
the DPWM is initialised, hence, a minimum duty cycle square wave is generated. During
the start up phase the DPWM generates also the start of conversion signal for the ADC and
reads the error magnitude from the error_calc (Fig.4.15). Step by step (in order to have a soft
start up, every step could be for instance 3Ts) the DPWM decrements the off time and reads
the magnitude of the error abs_error_s. Consequently, the duty cycle increases until when a
magnitude error equal to zero is reached and the desired dc output voltage value is obtained.
The steady state condition is triggered, and the DPWM output start_up_finished is high. This
signal is read from the start_fsm which enables both PID and∆Σmodulator, and only in this
moment the DPWM outputs the obtained off time to initialize the compensator which will
compute next high resolution To f f (dhr [n]) considering the sampled ADC output error.
In order to update the duty cycle every Ts , the closed loop computation have to compute
the new dl r [n], needed from the DPWM to generate the square to drive the power-MOS
(Fig.4.11). During steady state computations, the timing of the system is managed by the
DPWM. Every switching cycle, it activates the ADC, the PID and the noise shaper computa-
tion respectively generating the signals adc_start_of_conversion and abs_error_en (Fig.4.15).
To manage the timing, the DPWM block analyses firstly the low resolution To f f (dl r [n]) and
then generates the respective start signals preparing the system for the next computation,
with this scheme:

58 CHAPTER 4. DIGITAL CONTROL FEEDBACK PROTOTYPE

• the adc_start_of_conversion is generate at To f f /2.

• One clock cycle later the ADC start of conversion, the signed magnitude error is ready
(error_calc is an asynchronous block). The PID computation can be enabled and the
signal abs_error_en is high.

• Because dithering effects on high resolution To f f , the noise shaping computation is
activated together with the PID.

Considering an ASIC implementation, PID output and dithering effects could be computed
with asynchronous mode. The global latency needed to compute the new To f f is basically
of only two clock cycles (one for the ADC conversion e one for the PID computation). Just
presented block designs are though for a FPGA prototyping. In order to increase the maxi-
mum frequency of the digital control (system speed-up), both PID and∆Σ outputs are regis-
tered signals. This way, the critical path between the compensator (which uses multipliers)
and the modulator is avoided, therefore, two more clock cycles have to be added. the global
latency for the computation is of four clock cycles. This latency is automatically a constraint
on the minimum To f f , the computed low resolution duty cycle cannot be less than four.
Consideration about the max frequency of the regulation loop has been addressed in the
next section. The hardware interfacing in an open loop configuration of modules just de-
scribed has been shown in Fig.4.15, where also the testing environment has been integrated.

4.3 FPGA-based co-simulation closed loop system

First verifications at hardware level have been addressed in an open loop configuration pre-
sented in Fig.4.15. The VHDL-coded modules (error_calc, start_fsm, PID, ∆Σ and DPWM)
have been integrated into a VHDL top module called digital_control_loop. This module has
been used as DUT in a VHDL testbench (open_loop_tb), the stimuli to generate for the open
loop configuration are the ADC error, the clock system and the reset signal. In order to em-
ulate both start up and steady state conditions, the error sequence has been recorded from
Matlab fixed-point model simulations (using the model 7.15) and used as input for the DUT.
The digital_control_loop top module has been synthesized in Virtex6 FPGA and a maxi-
mum frequency of 124.748M H z can be reached, the open loop simulation can be clocked at
70M H z.

Once that the debug of the open loop system has been done, the aim is to obtain a close
loop system integrating the ADC and the buck converter in the VHDL open loop configura-
tion just described. Both ADC and buck converter are analog blocks, hence a mixed-signal
approach is needed to realize the complete system and verify the VHDL implementation
without generating any stimulus.
Xilinx System Generator permits to integrate the VHDL-coded structures in the
Matlab/Simulink environment and the mixed-signal co-simulation can be directly managed
with Simulink. VHDL-Matlab co-simulations integrates both the ADC fixed-point point mo-
del and the Matlab/Simulink modelled buck converter within the digital_control_loop. This
approach is very useful from the debug point of view especially in mixed signal designs, all
signals can be monitored with Simulink scopes and VHDL outputs can be debugged di-
rectly during closed loop simulations. The closed loop system during co-simulations has

4.3. FPGA-BASED CO-SIMULATION CLOSED LOOP SYSTEM 59

Figure 4.20: VHDL/Matlab co-simulation closed loop: model.

been shown in Fig.4.20. Grey coloured blocks with the Xilinx symbol (X) represent the digi-
tal_control_loop (Fig.4.15), the ADC and the Power plant are described as the
Matlab/Simulink functions shown in Fig.7.15. The interface between VHDL blocks and Simulink
blocks has done with three main blocks:

• Assert blocks are needed to the software simulator to understand the starting point
of the computation. They work for hardware loops as like as z−1 works for Simulink
loops between blocks. Among the options for this block the sample rate have to be set
to define clock frequency or the computation step (Tclk = 1/70M H z).

• Gateway-In block are used as inputs to a Xilinxs blocks.

• Gateway-Out are used as outputs from a Xilinx blocks.

Hardware/Software co-simulations needs clock gating considerations to synchronize
both types of computations. In every VHDL module a clock gating logic has to be inserted in
order to synchronize the hardware simulator (Xilix iSim) with the software one (Simulink for
ADC and buck converter). The VHDL-coded blocks cannot be simulated as Simulink blocks
and with a double click on Xilinx blocks is necessary to set the hardware simulator. A de-
fault choice is the Xilinx’s built-in simulator. Communications between these simulators are
possible thanks both the clock gating logic in the VHDL and gateway blocks in the Simulink
model.

The buck converter output voltage V r and the inductor current during the co-simulation
are shown in Fig.4.21, a reference voltage of 3.3V has been considered. The result is obtained
with same settings of previous simulations fclk = 70M H Z and fsw = 449kH z(os_ f actor =
156). Compensator, modulator, DPWM, error_calc and start_fsm do not defer form the
hardware description in the previous section, as well as both the fixed point ADC and the
buck converter from the previously defined models. The considered buck converter presents
a resonant frequency f0 = 5kH z (C = 22µF,L = 47µH ,ESR = 0Ω), an output resistance R =

60 CHAPTER 4. DIGITAL CONTROL FEEDBACK PROTOTYPE

Figure 4.21: VHDL/Matlab co-simulation closed loop: output.

10Ω and input voltage Vi n = 10V . In Fig.4.22 a zoom on the output voltage is shown, the
switching voltage and the inductor current shows some ripple. The zoom confirms that the
loop resolution set with fixed/floating point comparison (Fig.4.12), is sufficient to obtain a
regulated output voltage very close to the reference value.

Figure 4.22: VHDL/Matlab co-simulation closed loop: output (zoomed).

To validate the designed regulation loop, the closed loop system can be tested during a
load jump of the output resistance. The system is considered robust if is able to react and

4.3. FPGA-BASED CO-SIMULATION CLOSED LOOP SYSTEM 61

compensate sharp output voltage variations, either during a positive or negative load jump.
In Fig.4.23 can be observed that, even if a sharp load jump occurs, the system soon reacts
driving the output voltage close to the desired dc level. Moreover, in Fig.4.24 the system
response has been zoomed. The regulation loop is able to react to the load variations in both
senses.

Figure 4.23: VHDL/Matlab co-simulation closed loop: load step output reaction.

Another approach to consider hardware/software mixed-signal co-simulations, is based
on post-synthesis simulations. In the model considered in Fig.4.20 the analog blocks are
still simulated in the same way (Simulink), while VHDL-coded blocks can be mapped on the
FPGA to avoid any hardware simulator use. This way, the post-synthesis simulation output
of digital blocks can be observed directly on Simulink Scopes. When this approach is used,
the System Generator runs the synthesis of the top module digital_control_loop (Fig.4.15).
The post-synthesis closed loop system has been shown in Fig.4.25. As in the open loop con-
figuration the digital_control_loop reads the ADC output error and outputs both the ADC
start of conversion (adc_sample_s) and the square wave (pwm_o) to drive the buck converter.
The digital control design has been synthesize considering a Virtex6 FPGA, and the clock sys-
tem is now provided by the FPGA built-in ring oscillator. Post-synthesis simulation results
are equal to previously obtained, the regulation loop is confirmed to be robust and well de-
signed.

In the model shown in Fig.4.25, the digital_control_loop presents some additional sig-
nals if compared with the same top module introduced in Fig.4.15 for the open loop simu-
lations. The signal pwm_num_ext_dc_i is a test input used when the digital control and the
external duty cycle value are given directly as input to the DPWM (as modelled in Fig.1.4).

62 CHAPTER 4. DIGITAL CONTROL FEEDBACK PROTOTYPE

Figure 4.24: VHDL/Matlab co-simulation closed loop: load step reaction (zoomed).

Figure 4.25: VHDL/Matlab FPGA-based closed loop buck converter.

4.3. FPGA-BASED CO-SIMULATION CLOSED LOOP SYSTEM 63

The input startup_sw_period_i represents the number of switching cycles that, during the
start up, the DPWM waits before reducing the To f f . In the closed loop system in Fig.4.25,
the DPWM waits three switching cycles before changing the off time of the output square
wave (soft start up).
The digital_control_loop design has been synthesized on a Virtex6 FPGA, a maximum fre-
quency of 124.748M H z can be reached. The Virtex6 resources usage is presented in Tab.4.2,
while, the involved hardware resources summarised in the HDL synthesis report has been
shown in Tab.4.3), while

Virtex6 FPGA resources
Slice Logic Utilization
Number of Slice Registers 402 out of 301440 0%
Number of Slice LUTs 1123 out of 150720 0%
Number used as Logic 1123 out of 150720 0%
Slice Logic Distribution:
Number of LUT Flip Flop pairs used 1203
Number with an unused Flip Flop 801 out of 1203 66%
Number with an unused LUT 80 out of 1203 6%
Number of fully used LUT-FF pairs 322 out of 1203 26%
Number of unique control sets 38
IO Utilization:
Number of IOs 81
Number of bonded IOBs 77 out of 600 12%
Specific Feature Utilization:
Number of BUFG/BUFGCTRLs 1 out of 32 3%

Table 4.2: Digital control prototype: Virtex6 resource usage.

64 CHAPTER 4. DIGITAL CONTROL FEEDBACK PROTOTYPE

Prototype resources usage
Multipliers 4
7x5-bit multiplier 4
Adders/Subtractors 31
12-bit adder 3
12-bit subtractor 3
13-bit adder 3
14-bit subtractor 1
27-bit adder 2
28-bit adder 4
28-bit addsub 1
28-bit subtractor 8
29-bit adder 1
5-bit adder 2
6-bit subtractor 1
7-bit subtractor 1
8-bit subtractor 1
Registers 57
1-bit register 28
12-bit register 9
28-bit register 13
5-bit register 3
6-bit register 2
7-bit register 2
Comparators 15
11-bit comparator lessequal 1
12-bit comparator equal 2
12-bit comparator greater 4
13-bit comparator greater 2
28-bit comparator greater 1
29-bit comparator greater 2
5-bit comparator lessequal 1
6-bit comparator lessequal 1
7-bit comparator lessequal 1
Multiplexers 96
1-bit 2-to-1 multiplexer 15
12-bit 2-to-1 multiplexer 20
28-bit 16-to-1 multiplexer 2
28-bit 2-to-1 multiplexer 32
29-bit 2-to-1 multiplexer 17
5-bit 2-to-1 multiplexer 4
5-bit 4-to-1 multiplexer 1
6-bit 2-to-1 multiplexer 3
7-bit 2-to-1 multiplexer 2
FSMs 1

Table 4.3: Digital control prototype: resource usage.

Chapter 5

Digitally controlled buck converter
prototype: Off-line controller

The hardware realisation and verification of the digital control loop has been presented in
the previous chapter. Starting from floating point point realisation and moving to a fixed-
point Matlab/Simulink modelling, a robust VHDL-coded control loop has been designed
and tested through hardware/software closed loop co-simulations. The system has been
synthesized on a Virtex6 FPGA, presenting a maximum frequency beyond 120M H z. Fixed-
point models has been used as reference during the hardware design to fix the resolution.
Prototyping of the digital control law has been done through post-synthesis co-simulations,
the synthesised digital_control_loop (Fig.4.15) has been interfaced with Matlab/Simulink
models of the ADC and buck converter, avoiding in this way any testbench for stimuli gen-
eration (Fig.4.20).
Aim of this chapter, is to introduce a tool-independent FPGA-based closed loop prototype
of digitally controlled buck converters. In order to have a full-custom off-line controller, it is
necessary to design the analog blocks that have been modelled up to now and, then, study
the interface between these blocks and the digital control loop mapped on the FPGA.
The analog blocks have been designed by the company Infineon Technologies AG as part of
a custom Test Chip (TC). This TC can be configured in different operative modes, the exter-
nal loop configuration mode is one among those. With this operative mode, the ADC start
of conversion or ADC clock sampling (adc_sample) and the DPWM square wave (d(t)), are
both inputs to the TC and can be output from digital_control_loop mapped on the FPGA.
The prototyping idea has been shown in Fig.5.1 where, the TC is in its external loop configu-
ration and the FPGA contains the digital_control_loop configured to be interfaced with the
TC. The ADC realised in the TC is totally equivalent to the one modelled up to now. It is de-
signed to convert a small voltage range (window) around the target output voltage (window
ADC). The resolution of the ADC is 4 bits and the nominal quantization step in the case of a
Buck converter is around 15mV . In this model the LSB size can be programmed (Sec.5.2) in
5 steps according to Tab.5.1.

The closed loop prototype realisation together with the measurement systems, have been
shown in Fig.5.2. the TC and FPGA settings needed to configure the closed loop system are
presented in the next sections. All the analog signal in the TC can be monitored directly
using an oscilloscope, while, signals of the digital control can be monitored on the FPGA.

65

66CHAPTER 5. DIGITALLY CONTROLLED BUCK CONVERTER PROTOTYPE: OFF-LINE CONTROLLER

Figure 5.1: FPGA-TestChip: prototype model.

67

Configuration LSB size [mV]
00000 10.00
00001 15.75
00010 20.25
00011 24.75
00100 30.00
Other Not defined

Table 5.1: Test Chip: LSB ADC possible settings

ChipScope Pro is a Xilinx tool for real time monitoring of designs mapped on the FPGA.

Figure 5.2: FPGA-Test Chip: prototype

In Fig.5.3 is shown the oscilloscope imagine of the buck converter output voltage (yel-
low curve), inductor current (violet curve) and the DPWM output (blue curve). It is visible
how the prototype works, the closed loop prototype evolves from start up to steady state
condition. In this example, the output voltage is regulated considering a 5V reference volt-
age and 10V input voltage. The clock frequency is of 70M H z and the switching frequency

68CHAPTER 5. DIGITALLY CONTROLLED BUCK CONVERTER PROTOTYPE: OFF-LINE CONTROLLER

is of 449kH z. As for previous results, the buck converter is configured to have a resonant
frequency f0 = 5kH z. In Fig.5.4 and Fig5.5, the ADC clock (adc_sample) and the DPWM out-
put (d(t)) has been shown. The ADC start of conversion is generated one time per switching
cycle, indeed the frequency measured from the oscilloscope is closed to the switching fre-
quency. As expected, the DPWM output during steady state is a 50% duty cycle square wave
(D =Vr e f /Vi n = 0.5).

Figure 5.3: FPGA-TC: prototype output signals.

Figure 5.4: FPGA output: ADC clock.

5.1. FPGA CONFIGURATION 69

Figure 5.5: FPGA output: DPWM square wave output.

In order to validate the prototype structure, the comparison between the co-simulation
and the prototype TC has been shown in Fig.5.6. The output voltage evolution of these mod-
els is the same and the same start up latency is obtained. The load step test on the prototype
model has been shown in Fig.5.7, a robust digital control system has been then realised and
verified.

Figure 5.6: Co-simulation and FPGA-TC prototype: outputs comparison.

5.1 FPGA configuration

To configure the FPGA for the closed loop system in Fig.5.2, some features have to be added
to the digital_control_loop used in the previous chapter for the co-simulation. Three main

70CHAPTER 5. DIGITALLY CONTROLLED BUCK CONVERTER PROTOTYPE: OFF-LINE CONTROLLER

Figure 5.7: FPGA-TC prototype: load step reaction.

aspects have to be considered:

• VHDL design of clock_generator block (Fig.5.1).

• Observing post-synthesis internal signals.

• I/O mapping to manage the communication between FPGA and TC.

When these aspects have been addressed the final system is ready for the digital design flow.
After the classical approach (Synthesys, Translate, Map and Place& Route) the bitstream file
is generated, the Xilinx tool iMPACT permits to map the entire design (digital_control_loop
in Fig.5.1) on the FPGA.

5.1.1 Clock generator

During hardware/software co-simulation the clock of the system was managed through clock
gating logic inserted in the VHDL. To have a tool independent system, it is necessary to insert
in the system a block to generate the desired clock system.
Let’s refer to Fig.5.1, the digital_control_loop used during co-simulations (Fig.4.20)has been
integrated with the clock_generator block. This further block generates the desired clock
system (for instance fclk = 70M H z) starting from the reference one in the FPGA.
With the Xilinx ISE Design Suite is possible to generate automatically the VHDL code re-
lated to the clock_generator block, in order to insert it inside the top level module to feed the

5.1. FPGA CONFIGURATION 71

computational blocks (Fig.5.1). For this purpose, in Fig.5.8 is the clock wizard that permits to
set the clock_generator input and output clocks. In the example, a differential input clock of
200M H z and a single ended output clock of 70M H z has been chosen. The ml605 evaluation
board (Virtex6 FPGA) has an internal reference clock of 200M H z, the output of the wizard
is the VHDL implementation of a clock_generator able to generate 70M H z from 200M H z
input differential clock.

Figure 5.8: FPGA clocking wizard: 70M H z clock generator.

5.1.2 Observing FPGA internal signals

One of the advantages of the co-simulation is the easy debugging feature, digital signals
(from simulation or from the FPGA) can be observed directly with Simulink Scopes. Once
the design moves to a full-custom prototyping, ChipScope Pro tool allows to view any inter-
nal signal on the FPGA. Signals are captured in the system at the clock frequency and brought
out through a programming interface.
ChipScope Pro tool is mainly composed of two tools, Chipscope Pro Core Inserter and Chip-
Scope Pro Analyzer. The first permits to generate a hardware module, that contains sig-
nals to capture inside the FPGA. This module is inserted in the hierarchy inside the top
level ((digital_control_loop)). Captured signals are displayed and analysed using the GUI
of ChipScope Pro Analyzer tool, this software works as a real oscilloscope and permits to ob-
serve signal and buses without using any FPGA I/O resource. The interface of the ChipScope

72CHAPTER 5. DIGITALLY CONTROLLED BUCK CONVERTER PROTOTYPE: OFF-LINE CONTROLLER

Pro Analyzer tool, when Chipscope Pro Core Inserter have been set to monitor the ADC error
(4 bits) output from the TC, have been shown in Fig.5.9 there is.

Figure 5.9: ChipScope Pro Analyzer interface: input error.

5.1.3 FPGA I/O mapping

To manage I/O on the FPGA is necessary add the UCF file into the design hierarchy. This
file contains a list of implementation constraints given to the FPGA implementation tools to
direct the mapping, placement, timing or other guidelines for the implementation tools to
follow while processing an FPGA design. Implementation constraints are generally placed in
the UCF file, but may exist in the HDL code, or in a synthesis constraints file.

Examples of implementation constraints are both LOC (placement) and PERIOD (tim-
ing) constraints. The UCF in Fig.5.10 is related to the system digital_control_loop, it com-
promises constraints to configure the clock generator, the reset signal and the I/O related to
the FPGA-TC interface. The clock_generator is a block which generates a 70M H z clock from
a differential input clock of 200M H z, the constraint is needed to drive the differential clock
to this block. In the ml605 evaluation board the position of the 200M H z ring oscillator is J9
and H9, for this reason the LOC constraints refers to these positions (raw 3 and 4). Moreover,
the timing constraint of 200M H z has been used. The constraint on the clock_generator
output clock (70M H z) is LOC=W34, this is needed to drive the clock system to an SMA con-
nector of the Virtex6. A further LOC constraint is related to reset of the system, inside the
top module this signal is connected to each block (Fig.5.1) of the system and with the UCF is
connected to a push-button in position H10.
The 4 bits ADC error coming from the TC are read respectively in position AE12, AK11, AK12
and T28. The DPWM output (pwm_o or d(t)) and the ADC clock (sample_adc) have been
respectively located on V34 and M22 (SMA connectors).

5.1. FPGA CONFIGURATION 73

Figure 5.10: FPGA I/O prototype configuration: UCF file.

The I/O mapping have been summarised in Fig.5.11, where three SMA connectors have been
used to bring the ADC clock, the DPWM output and the clock system to the TC. Furthermore,
the reset on a push-button and the connector for the incoming 4 bits (ADC error) have been
highlighted.

Figure 5.11: Virtex6 FPGA: I/O mapping

74CHAPTER 5. DIGITALLY CONTROLLED BUCK CONVERTER PROTOTYPE: OFF-LINE CONTROLLER

Through the constraints file and the clock wizard, the FPGA have been set for the pro-
totyping realisation (Fig.5.1). Moreover, using the Chipscope Pro tool, signals can be mon-
itored directly on the FPGA. With these setting, the FPGA is ready to be connected with the
TC to realise the system in Fig.5.2

5.2 Test Chip external loop configuration

The Test Chip configuration for the prototyping is modelled in Fig.5.1. The external con-
trol loop configuration, permits to use both the buck converter and the 4 bits ADC to obtain
the model in Fig.5.2. In this configuration the analog block are not emulated (as for the co-
simulation) and the TC can be interfaced with the digital_control_loop. The external loop
TC setting is obtained via-SPI programming interface (Fig.5.2). In Fig.5.12 is the graphical in-
terface used to set the TC for the communication with the FPGA, this configuration is written
on the TC registers thanks to the SPI interface. This TC6 Control Software is used to set the
POM and both the ADC and buck converter registers. The ADC_CTRL1 register through its
filed ADC_CLK_EXT, permits to configure the AD converter in order to be externally clocked.
The start of conversion signal is then received from the FPGA through the SMA interface
(Fig.5.13). Optionally, in the the ADC_CTRL2 the DIV_IDAC_LSB register can be set to move
the the ADC LSB size according with Tab.5.1.
The register MODE_CTRL1 among Buck General Registers comprises the path EXT_LC. This
setting is the external loop configuration for the buck converter, the square wave to drive the
power-MOS on the TC have to come from the FPGA through the SMA interface (Fig.5.13).
The POM is an eight bit configurable I/O register, the graphical interface permits to chose
each signal can be read/write from the 8 pin port in Fig.5.13. In Fig.5.12, the POM is set to
write the 4 bits ADC output respectively on 4 pins (a fifth one can be optionally used as debug
function, to write out the ADC clock received from the FPGA). The POM I/O interface on the
TC is highlighted on the TC in Fig.5.13, the ADC output is read through a 4 pins connection
on the FPGA (5.11).

The TC I/O mapping have been summarised in Fig.5.13, where three SMA connectors
have been used to receive the ADC clock, the DPWM output and the clock system to from
the FPGA. Furthermore, the POM with 4 bits ADC output error have been highlighted.

Once that the FPGA and the TC have been configured with the respective prototyping
settings, the interfacing (modelled in Fig.5.1) has been realised with three SMA connectors
(to connect the clock system, DPWM square wave and the ADC clock sample) and four pins
(to connect the ADC bits).
When the TC has been configured in external loop, the digital_control_loop as in Fig.5.1 can
be mapped on the Virtex6 in order to realize the closed loop prototype. The setting of the
entire system proposed in Fig.5.1 has been realised and shown in Fig.5.2. Digital control sig-
nals can be monitored on the FPGA (Fig.5.9) and signals on the TC through the oscilloscope
(Fig.5.3). The closed loop configuration have been tested, in Fig.5.5 a 50% duty cycle is ob-
tained for Vr e f = 5V and Vi n = 10V . In Fig.5.3 an output voltage of 5V is obtained through
FPGA-based regulation.

5.2. TEST CHIP EXTERNAL LOOP CONFIGURATION 75

Figure 5.12: Test Chip GUI interface: external loop configuration.

Figure 5.13: Test Chip: I/O mapping.

Chapter 6

Modelling of system identification
techniques at the State of Art

The high programmability level and the computational power, both joined with the possibil-
ity to have complex control solutions have pushed the research on digitally controlled SMPS.
The digital approach enables smart solutions for regulators, e.g. self-tuning or autotuning
capabilities of a regulator. The main goal of an autotuning algorithm is the optimization
of the control law for the closed loop system, compensator gains can be automatically set
after that load (dcdc output filter) considerations have been drawn. The dynamic adjust-
ment of PID coefficients to improve margins and bandwidth of the system, permits to use
the same control loop to integrate power supplies for different set of applications, hence, re-
ducing development time and R & D costs. The static configuration of a compensator does
not allow the best system bandwidth for a large set of loads (off-line controllers). Joining the
feasibility to identify and/or monitor the dcdc output filter, with the dynamic setting of the
compensator gains, avoid the duty to study the compensator (on-line controllers). The digi-
tal PID compensator can be automatically set after the load identification, furthermore, the
coefficient dynamic adjustment can be done during the steady state through the load mon-
itoring. If non-idealities like the ESR contribution occurs, the load identification have be
performed during the steady state. Monitoring joined with the consequent PID coefficient
change overcome the problem to have situations of non-optimal regulation. In Fig.6.1 has
been modelled the on-line controller approach, where the classical control feedback loop is
combined with the self-tuning algorithm.
The algorithm is able to identify the load and automatically set the controller configura-
tion. The same digital control loop can be automatically optimized for each load over a wide
range.

.
The system identification (SI) generally falls into two main categories: parametric and

non-parametric methods [57, 58]. Parametric methods return the parameters of the system
model such as the coefficients of a system difference equation, transfer function, or state-
space model. Non-parametric methods return impulse response and/or frequency response
data directly.
Parametric methods require, the selection of an appropriate input stimulus, a priori selec-
tion of a parametrized model structure including system order and number of zeros, the

77

78 CHAPTER 6. MODELLING OF SYSTEM IDENTIFICATION TECHNIQUES AT THE STATE OF ART

Figure 6.1: Closed loop configuration and self-tuning algorithm: on-line controller model.

construction of a suitable prediction error equation and loss function, and methods to min-
imize the loss function [17, 4, 5, 72, 90, 16, 60, 59, 26, 105, 73, 47]. Non-parametric methods
do not assume a system model and require only selection of an appropriate stimulus. The
LCO-based self-tuning methods are an example of non-parametric approaches.
System LCOs can be induced either by using a relay [25, 102, 104] or reducing the DPWM
resolution [135, 136, 139]. However, this kind of approach allows for the frequency loop
response to be known only at the stimulated frequency. Another non-parametric method,
obtains an approximation of the system impulsive response exploiting the cross-correlation
method. For a white noise input the impulse response of the system is proportional to the
cross-correlation between input and output, while the correlation itself rejects any distur-
bances to the system as long as they are uncorrelated with the input [57, 58, 66, 67, 14,
13, 103, 101, 97]. In these approaches a Pseudo Random Binary Sequence(PRBS)is used to
emulate a digital white noise source and perturb the closed loop system. Such identifica-
tion method has been integrated into autoregulated digital converters, with different control
techniques. In this chapter, main non-parametric methods are presented with their mod-
elling in the floating point models presented in Cha.4.
Nowadays, the distinction between parametric and non-parametric methods is not so de-
fined and fully shared by researchers in this field. This chapter is mainly focused on non-
parametric models, the interest is to highlight the main approaches to obtain the system
impulse response using only stimulus injection and avoiding mathematical models. In non-
parametric algorithms the autoregulation is usually based on two steps. Firstly a signal is
injected for the load identification step, then the best compensator gains are computed (reg-
ulation). Some parametric approaches are based on mathematical models that minimize the
error by changing the compensator gains, hence, the regulation step is part of the identifica-
tion.

Among non-parametric SI, a further distinction can be done between steady state SI

6.1. NON-PARAMETRIC METHODS 79

and open loop SI technique. The steady state SI adds a little perturbation during nominal
converter operations and is able to monitor possible non-idealities occurring during steady
state operations. For the on-line controllers based on this approach, the PID tuning can be
repeated during the steady state and possible ESR contributions (due to temperature varia-
tions) can be compensated. On the counterpart, open loop SI techniques can be performed
before the system start up in order to set the best PID configuration in relationship with the
identified load. However this kind of approach does not permit to update the PID configura-
tion during the converter operations, indeed they cannot be performed during closed loop
operations. The LCO-based approaches are mainly open loop SI techniques, while, PRBS-
based approach can works during the steady state.

6.1 Non-parametric methods

Non-parametric methods are based on the injection of signal to identify the load. In this
approach the identification of the load is the heart of the algorithm and, for instance, com-
pensation gains can be pre-computed and stored in a LUT where can be retrieved to increase
the bandwidth of identified output filter. The main non-parametric methods are based on:

• causing Limit cycle oscillations (LCOs) [25, 102, 104, 135, 136, 139]

• studying the harmonic response [48]

• injecting pseudo random binary sequence (PBRS) [66, 67, 14, 13, 103, 101, 101, 97]

The main disadvantage of the LCOs and harmonic response techniques is that the load
identification is strongly reflected on the output voltage and the closed loop system cannot
be used during the load identification. These techniques cannot be used to monitor load
variations monitoring during the steady state.

6.1.1 LCO-based methods

As mentioned in Sec.3.3.3, LCOs are unwanted oscillations of the output voltage. Some load
identification approaches exploit the LCOs to extract load information as, for instance, the
output filter resonant frequency. The LCO-based methods induce oscillation by causing the
absence of one these conditions:

• the DPWM resolution must be smaller the LSB ADC . (static condition)

• the Nyquist criteria must be respected. (dynamic condition)

Methods based on the lack of the static condition have been presented in [135, 136, 139],
while the dynamic condition has been exploited in [25, 102, 104].
The dynamic condition method is basically related to the Nyquist criteria:

N (a)G(jωx) =−1, (6.1)

where N (a) is constant with frequency and is the relay describing function presented in
Eq.6.2. On the basis of Eq.6.1, the oscillations at ωx will occur when the phase of the sys-
tem G(jω) is −180°.

N (a) = 4Dr

π
p

a2 −ε2 + jε
. (6.2)

80 CHAPTER 6. MODELLING OF SYSTEM IDENTIFICATION TECHNIQUES AT THE STATE OF ART

In Eq.6.2 Dr is the magnitude of the relay output square waveform, while ε is the width of the
hysteresis needed to avoid multiple zero crossing due to the noise in the sensed variable. Be-
cause imaginary contribution in the describing function can be neglected, the function 1

N (a)
can be considered on the real axis in the complex plane and the system continue to oscillate
when the phase of G(s) is very closed to −180 °.
The identification technique is interested on the identification of the resonant frequency f 0.
The buck converter control to output transfer function (Gvd (s)) is mainly composed of two
complex conjugated poles, then, the phase displacement at f 0 is of −90°. Adding an integra-
tor in the control loop, a further contribution of −90°is inserted over all the frequencies and,
a phase contribution of −180°will result at the resonant frequency ω0 = 2π f0. Inserting then
a relay in the control loop, the system will oscillate at the resonant frequency.
This approach has been verified in the floating point model introduced in Cha.4. Let’s con-
sider the closed loop system is shown in Fig.6.2 (G(s) = Gvd (s)), the compensator (PID) is
removed and both the relay block and the pole (1/s) are inserted. The further −90°phase
displacement inserted by the integrator, joined with the relay induce oscillation in the sys-
tem at the output filter resonant frequency (f0 = 1

2π
p

LC
). In Fig.6.3 are shown the out-

Figure 6.2: Matlab/Simulink model: LCO-based identification method.

put voltage, the inductor current and the relay output related to the system presented in
Fig.6.2. The LCOs frequencies at the resonant frequency can be observed on the output
voltage, moreover, both the error voltage and the duty cycle have the same oscillation fre-
quency. A square waveform results much easier to be processed, just counting zero cross-
ings is easy to extract the resonant frequency from the relay output waveform. In the Mat-
lab/Simulink model shown in Fig.6.3, three block are dedicate to extract the resonant fre-
quency from the oscillations, two blocks are used to eliminate the firsts stabilizing oscilla-
tions (non-constant period) and the zero cross counter to calculate the cut-off frequency f 0.
The counter is enabled for two periods after the first zero crossing. In this example the ideal

6.1. NON-PARAMETRIC METHODS 81

Figure 6.3: Matlab/Simulink model: LCO-based identification method output.

resonant frequency is f0 = 1
2π

p
LC

= 8.9kH z (L = 10µHC = 31µF), the extracted frequency is

f0,extr acted = 2 fclk
counter = 2∗140M H z

36476 = 7.67kH z, about 1kH z lower than the ideal value. The dif-
ference can be attributed mainly to the imaginary contribution introduced by the hysteresis.
This approach is concentrated on obtaining the frequency response of the system at one
frequency, non-idealities like the ESR contributions are neglected and could be considered
only through the PID coefficients tuning. An iterative procedure is done to calibrate the PID
gains, the first zero is fixed at the extracted resonant frequency, while, both second zero and
the gain are set with an iterative procedure to respectively satisfy phase margins and the
required bandwidth [25]. The same LCO-based procedure is used for the identification pur-
poses in[135], the main difference is related on the tuning of the PID gain. The PID gain is
adjusted by considering the phase displacement between the duty cycle and an introduced
sinusoidal perturbation, having frequency and phase respectively equal to the desired band-
width and margin. This method to monitor both phase margin and bandwidth, comes di-
rectly from the Middlebrook’s method ([29]), it is well known in the analog world and ex-
ploited in [74] to design an on-line stability margin monitor for a digitally controlled SMPS.

Different LCO-based approaches exploits the static condition. A controller temporally
reduces the DPWM resolution and, when oscillations occur, the extraction of the cut-off fre-
quency and load information are read from the duty-cycle behaviour. The amplitude and
the period of the LCO are both influenced by the input voltage and the compensator gains
and parameters extraction is however complicated from a mathematical point of view.

82 CHAPTER 6. MODELLING OF SYSTEM IDENTIFICATION TECHNIQUES AT THE STATE OF ART

6.1.2 Harmonic response analysis

This kind of approach has been exploited in[48]. The harmonic response of a system y(t) is
defined for a sinusoidal input x(t):

x(t) = Asi n(ωx t) → X (f) = A

(∞∑
0

x(t)e jωt
)

. (6.3)

y(t) = A
∣∣G(jωx)

∣∣ si n(ωx t +ar g (G(jωx))) → Y (f) = A
∣∣G(jωx)

∣∣(∞∑
0

x(t)e jωt
)

e jω[ar g (G(jωx))].

(6.4)
On the basis of Eq.6.3 and Eq.6.4, for a sinusoidal input at frequency ωx the system re-

sponse in the frequency domain (Y (f)) have an amplitude equal to the product between
its amplitude and the gain of the system transfer function (G(j w)) at the same frequency.
Moreover, its phase is shifted respect to the input signal by the phase of the system response
at ωx . Making the ratio between output and input in the frequency domain, the frequency
response at ωx is obtained in terms of module and phase. Let’s refer these assumptions to
the control to output transfer function (Gvd (s)) of a digitally controlled SMPS:

Vout (f)

D(f)
= Y (f)

X (f)
= ∣∣Gvd (jωx)

∣∣e jω[ar g (G(jωx))]. (6.5)

for each considered ωx , the control to output transfer function can be obtained in terms of
magnitude and phase through the ratio Eq.6.5. In Fig.6.4 is shown the floating point digital
control loop and, in the lower part, blocks needed for the harmonic response identification
technique (Eq.6.5). An oscillator is needed to generate sine and cosine signals at the de-
sired frequency ωx , while four correlator blocks are needed to evaluate real and imaginary
part both for input and output signals. The implemented correlator function summarised in
Eq.6.6 for a generic function f (t), is applied in the model shown Fig.6.4 both for the input
sinusoidal duty cycle and the output voltage.∫ ∞

0
f (t)e jωt d t =

∞∑
0

f (t)e jωt =
∞∑
0

f (t)(cos(ωt)+ j si n(ωt)). (6.6)

Input sinusoidal duty cycle and the converter output voltage are respectively represented
as complex numbers at the correlator output and, then, expressed in terms of magnitude
and phase to compute the Eq.6.5. Computing the ratio between output and input modules
and the subtraction between output and input phases, respectively magnitude and phase of
G(iω)|ωx are obtained.
This technique is a point-wise calculation of the bode diagram related to the control to out-
put transfer function of the converter, for each chosen ωx the computation have to be re-
peated and can be expansive in term of latency of the identification process. Results for the
harmonic technique applied at the resonant frequency (ωx =ω0) can be observed in Fig.6.5.
The dc value of the control to output transfer function is related to the input voltage, a mag-
nitude value of 13V /V is obtained for an input voltage of 14V . The expected phase contri-
bution of Gvd (jω) at the resonant frequency is of −90°, the obtained one in our model is of
−91°.
This approach could be used for the PID parameters tuning, a sinusoidal signal is inserted at
the desired bandwidth and compensator gains adjusted according with the system response.

6.1. NON-PARAMETRIC METHODS 83

Figure 6.4: Matlab/Simulink model: harmonic system response identification method.

Figure 6.5: Matlab/Simulink model: harmonic system response identification method out-
put

84 CHAPTER 6. MODELLING OF SYSTEM IDENTIFICATION TECHNIQUES AT THE STATE OF ART

6.1.3 PRBS-based methods

This technique is mainly based on the properties of the cross-correlation for a input white
noise signal. Considering small signal disturbance, a power converter during steady state
is assumed as linear time-invariant discrete time system. The sampled system can be de-
scribed by the Eq.6.7, where y(n) is the sampled output, h(k) the discrete time system im-
pulse response, u(k) the input digital control signal and v(n) the disturbances (for instance
both switching and quantization noise).

y(n) =
∞∑

K=1
h(k)u(n −k)+ v(n). (6.7)

The cross-correlation Ruy (m) between the input control signal u(n) and output signal y(n)
is obtained substituting the Eq.6.7:

Ruy (m) =
∞∑

n=1
u(n)y(n +m) =

∞∑
n=1

h(k)Ruu(m −n)+Ruv (m), (6.8)

where Ruu(m) is the autocorrelation of the input signal and Ruv (m) is the cross-correlation
between input and noise.
Let’s consider autocorrelation properties when the input control u(k) is an ideal white noise
signal: {

Ruu(m) = δ(m)

Ruu(m) = 0,
(6.9)

the autocorrelation of the white noise is an ideal delta function, and the cross-correlation
between the white noise and the disturbances v(n) is ideally zero. Assuming these consider-
ations, the cross-correlation for a white noise input is the discrete time impulse response:

Ruy (m) = h(m). (6.10)

The control to output transfer function in the frequency domain can be derived by applying
the discrete Fourier transform (DFT) to the cross-correlation output Eq.6.10:

Ruy (m) →Gvd (jω) (6.11)

All this assumptions are true if the input control signal is an ideal white noise. Practical
digital implementations emulate the white noise considering a finite number of bits. The
Pseudo Random Binary Sequence (PRBS) based on the Maximum Length Sequence (MLS),
is used to approximate the white noise. A PRBS is a deterministic periodic signal that can
be easily generated in hardware using a shift register and feedback taps[62]. For a p-bit shift
register, the location of the taps can be selected so that the period of the resulting sequence
of 0’s and 1’s has the maximal length of N = 2p −1. If an approximation of the white noise
is obtained, the autocorrelation of a finite length PRBS is not a perfect impulse and some
noisy components are present around δ(m) (Fig.6.6). This undesired effect is reflected on
the obtained control to output transfer function, indeed, a big amount of noise appears at
the high frequencies Gvd (jω)) introducing some resolution problems on Gvd (jω). A first
approach to reduce the high frequency noise is to use a maximum length PRBS repeated L
times, so the result is an L-period PRBS. Then, the cross-correlation is averaged over multiple
periods to get the system impulse response. Whit this approach the noise is reduced but not
eliminated yet. Many PRBS-based identification methods at the State of the Art, try to reduce
the noise at medium-high frequencies. There are mainly two further approaches:

6.2. PARAMETRIC METHODS 85

Figure 6.6: Pseudo Random Binary Sequence: Autocorrelation (210samples) .

• delaying the sampling of the output voltage by half of the test sequence clock period,
the Gvd (jω) dynamics are better captured. The control sequence During each clock cy-
cle has only a single value of perturbation and the output changes continuously within
the same interval.

• Knowing the approximation of the true impulse response, a windowing effects can im-
prove the high frequency estimation [103].

6.2 Parametric methods

Parametric methods require the selection of an appropriate input stimulus and a priori se-
lection of a parametrised model structure, that includes system order and number of zeros.
The construction of a suitable prediction error equation and methods to minimize the loss
function are both necessary as well. The least square
method has been introduced in [29][57]. This approach is an off-line parameter estimation
method based on a set of measurements like:

ȳ(k) = f̄ (k, p)+ ē(k), (6.12)

where k is the number of measurements, ȳ(k) is the measurements vector, f̄ (k, p) is the
known vector function and ē(k) is the unknown error vector. The fundamental notion of
least square estimation, is to evaluate the unknown parameters that minimizes the sums of
squared differences between the known model and the measurements. It tries to minimize
the error function[9, 50, 4, 5, 90, 47].
knowing the approximation of the control to output transfer function the least squares
method could be used for the model fitting procedure. The PRBS-based method could be
used to approximate the control to output transfer function (noise contributions are present
at medium-high frequencies), then the least squares parametric method can be applied to

86 CHAPTER 6. MODELLING OF SYSTEM IDENTIFICATION TECHNIQUES AT THE STATE OF ART

fit the approximated plant with a parametric model[9]. The parametric model Eq.6.14, is a
rational function where N and M are respectively numerator and denominator order. Nu-
merator and denominator coefficients are grouped respectively in two vectors, Ā and B̄ re-
spectively for the numerator and denominator coefficients.

Gcandi d ate (s) = AN sN + AN−1sN−1 + ...+ A0

BN sN +BN−1sN−1 + ...+B0
. (6.13)

The fitting problem is to find the coefficients of the candidate plant, in order to minimize the
error model described by the fitting error ε f i t = (jωk):

ε f i t = (jωk) = ∣∣Gcandi d ate (s)−Guy (s)
∣∣

s= jωk
. (6.14)

To evaluate the quality of the fitting, the method least squares uses the cost function JW LS

defined as the weighted sum of the ε f i t over the frequency indices of interest:

JW LS =∑
k

W (jωk)∗ (
Gcandi d ate (s)| jωk

−Guy (s)
)2 . (6.15)

The coefficients of the candidate plant are managed by iterative numerical methods (such
as Gaussian-Newton algorithm) to minimize the cost function. The choice of the weight-
ing function can be done taking care about the model to fit. It has been observed that, the
control to output transfer function obtained whit the non-parametric correlation method
is usually noisy in the upper decade of the interested frequency range, then, the weighting
function has to equally prioritize the fitting across the frequency range of interest and the
importance of fitting can be logarithmically de-emphasized with increasing frequency[9].

Chapter 7

Novel non-parametric system
identification methods

Two novel system identification (SI) technique for self-tuning algorithms are proposed and
analysed in this chapter. Compensator parameters are usually static and set to work on a
wide range of loads (off-line controller), knowing the load configuration is possible to set the
best PID coefficients for each buck converter configuration in order to optimize bandwidth
and margins (on-line controllers). The self-tuning method is most of times a two step ap-
proach, after the load identification (buck converter output filter) the best compensator is
set to improve the system bandwidth.
As introduced in the previous chapter, non-parametric identification techniques are based
on system perturbation. Most of them do not work during the steady state. This kind of
approach cannot be used for monitoring possible load variations during the steady state,
where some non-idealities (e.g. the ESR contribution) can change the system dynamic. On
the counterpart, the identification techniques that work during the steady state (steady state
SI), are able to identify these non-idealities and consequently adapt the PID coefficients.
When non-idealities like temperature variations occur, the ESR contribution and the related

Figure 7.1: Non-idealities: ESR contribution effects on the steady state output waveforms.

87

88 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

zero contribution can bring the system to have poor stability margins. The load step sys-
tem response for the same system configuration (same PID) has been shown in Fig.7.1, both
when the ESR contribution is null (at room temperature) and its contribution increases (cold
temperature). When the ESR contribution is considered, the system recovery time is much
longer and LCOs are induced in the output voltage. Having poor stability margins, it brings
the system to be slower in terms of recovery time of the output voltage and, moreover, big-
ger ripple effects are visible on the output voltage. In this case, is fundamental to study the
buck converter control to output transfer function (identification process) and consequently
adapt the PID gains in order to increase margins and bandwidth.

The SI algorithms presented in this chapter, are both focused on extracting the output
filter resonant frequency (f0) and the ESR contribution (zero contribution fz).
The open loop SI technique, exploits the relationship between the step and impulsive re-
sponse of the system in order to extract the control to output transfer function of the buck
converter. It can be applied during the system start up in order to identify the load and con-
sequently tune the PID parameters before that the steady state is reached.
The steady state SI extracts the load parameters through the amplification of dithering effect
introduced by the∆Σmodulator. The dithering amplification is reflected on the output volt-
age during the steady state, consequently its effects can be observed in the ADC output error
e[n]. Observing the product between ∆Σ noise transfer function (N T F (z)) and the control
to output transfer function (Gvd (s)) of the buck converter, information about the output fil-
ter in the frequency domain can be obtained. The basic idea, is to amplify the quantization
noise in order identity the output filter parameters. During the steady state, perturbation
effects can be observed inside the ADC zero error.
Results presented in this chapter, refer to the fixed-point model described in Cha.5 and mod-
elled in fig.7.2. For the steady state identification method two further inputs have to be con-
sidered for the ∆Σmodulator, α is used to amplify the dithering and fn to introduce a notch
in the noise transfer function during the ESR identification.

7.1 Open loop system identification technique

The system start up is related to the reference voltage behaviour. In real implementations a
soft start up is preferred, for instance, it can be obtained with a linear evolution from 0 to the
desired dc output value Vr e f of the reference voltage.
Let’s considered the start up open loop configuration presented in Sec.4.2.3. During the start
up both PID and∆Σmodulator are excluded and the system evolution is handled only by the
DPWM. The DPWM increases the duty cycle step by step and detect the steady state condi-
tion when the difference between the reference and the output voltage is e[n] = 0. A step
evolving reference voltage could cause intermediate open loop steady states conditions. In
Fig.7.3 is shown the example of a reference voltage that evolves with three steps before reach-
ing Vr e f = 3.3V . The output voltage evolution has been shown in Fig.7.4, some intermediate
steady states containing the buck converter step response can be induced in the output volt-
age. In Fig.7.5 is shown the output voltage consequent to a Vr e f step.
Because reference voltage steps occur in a open loop configuration, the system in this case is
mainly represented by the buck converter control to output transfer function Gvd (s). The
system step response contains information about poles and zeros of the Gvd (s) and it is
strictly related to the impulsive response through a derivative connection. The output volt-

7.1. OPEN LOOP SYSTEM IDENTIFICATION TECHNIQUE 89

Figure 7.2: Digitally controlled buck converter: steady state identification model.

Figure 7.3: Open loop identification method: step evolving reference voltage.

90 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

Figure 7.4: Open loop identification method: step response output voltage.

age response can be observed at the ADC output, the error e[n] during the intermediates
open loop steady state contains the digital representation of the step response. The step
response y(t) for a buck converter Gvd (s) is the Laplace anti-transform of:

y(t) =L −1 Gvd (s)

s
= 1− e−δωn t

p
1−δ2

sen(ωt +φ), (7.1)

where ω := ωn

p
1−δ2,σ := −δωn and φ := arctan

p
1−δ2

δ2 . Both the damping factor δ and the
natural frequencyωn of the system influence the position of the poles p1,2 =σ± jω in Gvd (s):

Gvd (s) = 1

1+2δ s
ωn

+ s2

ωn
2

, (7.2)

The natural frequency related to a second order LC filter is the resonant frequencyω0 = 1p
LC

.

Then impulsive response and the step response in the frequency domain are strictly related
(Eq.7.3) and information about buck converter load parameters can be obtained from the
step response in the frequency domain.

Y (s) =L
Gvd(s)

s
. (7.3)

7.1.1 Resonant frequency identification results

The ADC output during the step response is recorded at the simulation clock frequency
(fclk = 70M H z), but the ADC clock is generated once per switching cycle from the DPWM.
The error is updated at the switching frequency fs = 449kH z, a downsampling factor of
fclk / fs = 156 have to be considered before processing the recorded ADC output vector. Let’s
consider the system step response for three different buck converter configurations f0,buck1 =
4.9kH z (L = 47µH ,C = 22µF), f0,buck2 = 7.3kH z (L = 47µH ,C = 10µF) and f0,buck3 = 10.7kH z
(L = 47µH ,C = 4.7µF), summarised in Fig:7.6. The PSD computation of the system step re-
sponse for these configurations has been shown respectively in Fig.7.7, Fig.7.8 and Fig.7.9,
the maximum of the PSD computation is very close to the resonant frequency. The PSD
has been computed just after that the Vr e f step occurs, the consequent error e[n] has been

7.1. OPEN LOOP SYSTEM IDENTIFICATION TECHNIQUE 91

Figure 7.5: Open loop identification method: step evolving reference voltage (zoom).

Figure 7.6: Buck converter configurations: load identification (no ESR contribution).

92 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

recorder for N Ts = 0.285msec (N = 128 samples and Ts = 1/449kH z). Fixing both the num-
ber of points N considered to compute the PSD and the switching frequency fs , the resolu-
tion ∆ f between frequencies which can be distinguished in the PSD is:

∆ f = fs

2N
= 1.754kH z. (7.4)

With a resolution ∆ f = fs
2N = 1.754kH z the resonant frequencies can be obtained as maxi-

mum of the PSD. As visible in Fig.7.7, Fig.7.8 and Fig.7.9, the obtained maximums are f01 =
4.2kH z, f02 = 6.35kH z and f03 = 10.6kH z respectively for configuration f0,buck1, f0,buck2

and f0,buck3. These values are not far from the resonant frequencies of the buck converter
configurations presented in Fig.7.6. Then a frequency response trend can be observed and
a maximum value related to the resonant frequency can be detect in the PSD computation.
For different load conditions, it results that the maximum extracted from PSD analysis is very
close to the expected resonant frequency.

Figure 7.7: Open loop identification method result: f0,buck1, ESR = 0Ω .

7.1.2 ESR effects identification results

In the buck converter configurations shown in Fig.7.10, the ESR contribution is considered
for three buck converter with respectively f0,buck1 = 4.9kH z (L = 47µH ,C = 22µF , ESR =
0.5Ω), f0,buck2 = 7.3kH z (L = 47µH ,C = 10µF , ESR = 1Ω) and f0.buck3 = 10.7kH z (L =
47µH ,C = 4.7µF , ESR = 1Ω). The zero contribution (fz = 1/(2πESR ∗C)) has been intro-
duce in fz,buck1 = 14.5kH z for f0,buck1, fz,buck2 = 15.9 for f0,buck2 and fz,buck3 = 33.8 for

7.1. OPEN LOOP SYSTEM IDENTIFICATION TECHNIQUE 93

Figure 7.8: Open loop identification method result: f0,buck2, ESR = 0Ω.

Figure 7.9: Open loop identification method result: f0,buck3, ESR = 0Ω.

94 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

Figure 7.10: Buck converter configurations: load identification (ESR contribution).

f0,buck3. In Fig.7.11 is shown the PSD computation when the ESR contribution is consid-
ered in the configuration f0,buck1, the obtained resonant frequency can be still observed and
the zero contribution can be detect at fz1 = 0.03796 fs = 17.1kH z. However, is confirmed
that the output filter structure can be observed through the PSD computation of the sys-
tem step response. In the result shown in Fig.7.12, the ESR contribution for f0,buck2 is at
fz2 = 0.02844 fs = 12.8kH z and the obtained resonant frequency is f02 = 8.49kH z. In this
case the obtained values are not far from the ideal values but a little error, due also to the
finite resolution introduced by the processing, is introduced. The same analysis has been
presented in Fig.7.13, and also in this case a non-dramatic overestimation is introduced on
the obtained resonant frequency. The ESR contribution is difficult to observe, a change of
slope can be detect at fz3 = 0.05701 fs = 25.6kH z. In the configuration f0,buck3 the ESR con-
tribution introduces a zero far from the resonant frequency (fz,buck3 = 33.8) and, then, out
from the bandwidth of the buck converter(Fig.7.10). For this reason its contribution is little
in terms of magnitude and it is difficult to observe. Let’s consider a bigger ESR contribu-
tion for the configuration f0,buck3 (L = 47µH ,C = 4.7µF , ESR = 1Ω). For ESR = 1.8Ω the
expected zero is at fz,buck3 = 1/(2π1.8∗4.7µF) = 18.8kH z. In Fig.7.14 is shown the PSD com-
putation which refers to this configuration of buck converter. For a bigger contribution of
ESR, a second peak can be easily detect at fz3 = 0.04272 fs = 19.2kH z that is very close to the
expected zero position. Moreover, the resonant frequency information related to the maxi-
mum in the PSD is also in this case very precise. With the introduced open loop SI method,
is then possible to obtain information about the buck converter configuration through the
PSD computation of the system step response. The system step response approach, cannot

7.1. OPEN LOOP SYSTEM IDENTIFICATION TECHNIQUE 95

Figure 7.11: Open loop identification method result: f0,buck1, ESR = 0.5Ω.

Figure 7.12: Open loop identification method result: f0,buck2, ESR = 1Ω.

96 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

Figure 7.13: Open loop identification method result: f0,buck3, ESR = 1Ω.

Figure 7.14: Open loop identification method result: f0,buck3, ESR = 1.8Ω.

7.2. STEADY STATE SYSTEM IDENTIFICATION TECHNIQUE 97

be adopted to monitor load variations during the steady state voltage regulation, this kind
of perturbation can be dangerous for loads supplied by the dcdc converter. Anyway it can
be adopted during the start up of the system to compute the first PID configuration. From
PSD analysis results that, this kind of approach is able to discern close resonant frequencies
for different buck converter configurations and, moreover, it can be distinguished also when
ESR contribution is present.

7.2 Steady state system identification technique

Steady state non-parametric identification methods are designed to be exploited by the
closed loop configuration (Fig.7.2), with the aim to identify the buck convert in terms of
resonant frequency (f0) and ESR contribution during the steady state phase. Let’s consider
the closed loop Matlab/Simulink fixed point model shown in Fig.7.15 and the ∆Σ converter
shown in Fig.7.16.

Figure 7.15: Digitally controlled buck converter: Matlab/Simulink fixed-point model.

The ∆Σmodulator has been introduced in Sec.3.4, where the DPWM resolution increas-
ing demonstrated in[76] has been justified. During the steady state quantization effects
are introduced by the DPWM. If this quantization noise is not added on the signal path
(no dithering), sinusoidal variation at a certain frequency f are obtained for the low reso-
lution duty cycle. Introducing a ∆Σ modulator the quantization noise contribution inside
the LSBDPW M is considered (dithering) and, due to the oversampling (fs >> f), it results
distributed in the range of frequencies up to the switching frequencies. In this way the duty
cycle change faster with different frequency contributes.
Every switching step the quantization noise is high pass filtered and added to the high reso-
lution digital control word. It is an independent additive white noise uniformly distributed
inside [±LSBDPW M

2]. Then, modelling of dithering contribution can be done with a further in-
put for the system the system (Fig.7.17). Considering this model, dithering effects on Gvd (s)

98 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

Figure 7.16: Steady state identification method: ∆Σ error feedback configuration.

can be observed at the ADC output by observing the product Gvd (s)N T F (z). Let’s consider

Figure 7.17: Steady state identification method: dithering modelling.

the three different buck converter configurations introduced in Fig.7.6. For these cases, the
product between the control to output transfer function and the third order N T F3(z) has
been considered in Fig.7.18. The output filter resonant frequency con be observed for all
considered converter configurations. This confirms that output filter informations can be
observed at the ADC output when the dithering effect is present.

7.2.1 Resonant frequency and ESR identification algorithm

Let’s consider the factor α ∈N as the amplification factor (α> 1) of the quantization noise in
input to the N T F (z). It can be introduced in the ∆Σ:

d ′
l r [n] = dhr [n]+N T F (z)∗αqe . (7.5)

In Fig.7.19 has been shown the effect on Gvd (s)N T F3(z) for f0,buck1 = 4.9kH z, when dither-
ing contributions are amplified. For α> 1, the magnitude of Gvd (s)N T F3(z) at the resonant
frequency is amplified, then further amount of white noise is injected on the signal path over
the entire range of frequencies.
The amplification of quantization noise can be modelled as a lowering of the DPWM resolu-
tion, it has always the same range of frequencies [0 : fs] but, is uniformly distributed inside a
bigger LSBDPW M . The ∆Σ reduces its resolution of a factor α to amplify the quantization er-
ror, hence, the DPWM resolution is forced to be N ′

DPW M = Vi n
2nDPW M /α = Vi n

2n′DPW M
. The resonant

frequency identification idea is related to the dithering amplification:

7.2. STEADY STATE SYSTEM IDENTIFICATION TECHNIQUE 99

Figure 7.18: Steady state identification method: dithering effects on the control to output
transfer function (no ESR contribution).

• When the steady state identification is on, the factor α is more than 1 and a noisy low
resolution control word d ′

l r [n] is output from the DPWM. In this way a bigger amount
of noise is injected on the signal path in the range [0 : fs] of frequencies. Duty cy-
cle fast variations, due to the dithering, are amplified with α increasing and infor-
mation about the resonant frequency can be observed inside the ADC zero error bin
(Gvd (s)N T F3(z)).

• When the steady state identification is off, the factor α is 1 and the normal ∆Σ imple-
mentation is obtained:

dl r [n] = dhr [n]+N T F (z)∗qe . (7.6)

In this case the same hardware used during the identification can be used to increase
the control loop resolution[76].

For a DPWM down-counter d ′
l r [n] is the off-time, hence the duty cycle becomes function of

α:

d(αqe)[n] = Ton

Ton +To f f
= 2n′

DPW M −d ′
l r [n]

Tsw
, (7.7)

during the steady state Vout = d(t)Vi n and any perturbation is reflected on the ADC zero
error bin through d ′

l r [n].
In order to observe all the components of Gvd (s)N T F3(z) and the resonant frequency,

the factor α have to amplify the noise effects on the output voltage in the range of interested

100 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

Figure 7.19: Steady state identification method: dithering amplification effects on the con-
trol to output transfer function (no ESR contribution, f0,buck1).

frequencies. If information at a specified frequency have to be detected, the noise inserted
have to be bigger then the ADC zero error bin:

∆vout (jω) > LSB ADC . (7.8)

Let’s define ∆d(f) as the perturbation αqe (f) in the frequency domain. Considering the
dithering effect as an additional input in the signal path (Fig.7.17), the expression of Eq.7.8
in function of δd(f) is:

∆vout (s) =∆d(s) |DPW M | |Gvd (s)| , (7.9)

where |DPW M | = 1/2nDPW M . To detected the resonant frequency, the Eq.7.9 have to be sat-
isfied for s = jω0:

∆vout (jω)
∣∣

jω= jω0
= ∆d(jω)

∣∣
jω= jω0

1

2nDPW M

∣∣Gvd (jω)
∣∣

jω= jω0
> LSB ADC . (7.10)

For a buck converter, the control to output magnitude at the resonant frequency is greater
than the input voltage Vi n (depending on the damping factor), considering

∣∣Gvd (jω0)
∣∣≈Vi n

approximates the magnitude of the output voltage oscillations:

∆vout (f)
∣∣

f = f0
≈ ∆d(f)

∣∣
f = f0

Vi n

2nDPW M
> LSB ADC . (7.11)

7.2. STEADY STATE SYSTEM IDENTIFICATION TECHNIQUE 101

In order to detect output voltage variations due to the noise injection, the factor∆d(f) could
be used to amplify the injected quantization noise. Considering for instance 2nDPW M = 100
and Vi n = 10V :

∆vout (f)
∣∣

f = f0
≈ ∆d(f)

∣∣
f = f0

10

100
=∆ f 100mV =αqe (f)100mV. (7.12)

The quantization noise qe (f) is an additive white noise present in the entire range of fre-
quencies. For instance, observing the |N T F3(z)| (Fig.7.20) in the range of frequency of f0

and fz , a shaped quantization error of about qe =−40dB can be considered. Then the noise
injected in the range of interested frequencies in the analysed case is:

∆vout (f) ≈α10−2100mV =αmV. (7.13)

Considering the Eq.7.13, the perturbation on the output voltage is then strictly related to the
noise amplification factorα. This assumption has been done assuming that

∣∣Gvd (jω)
∣∣

jω= jω0
=

V i n . Considering buck converters control to output transfer functions (Fig.7.6), the magni-
tude at the resonant frequency is always more then Vi n because the damping factor of com-
plex conjugated poles. Let’s consider a worst case condition of 20dB more than the input
voltage:

∆vout ≈α10mV , (7.14)

an amplification noise factor of α= 2 can introduce tens of millivolts on the output voltage
(Eq.7.14). Referring to the model introduced in Cha.4, a noise amplification factor α = 2
could be considered enough to detect the perturbations response with LSB ADC = 15mV .

Figure 7.20: Control to output transfer function and noise shaper configurations.

Further consideration have to be done in terms of the resolution in the frequency range.
Let’s consider the ∆Σ modulator shown in Fig.7.16, the noise shaper process nh −n bits re-
lated to the quantization error. The minimum value of this resolution, defines the minimum

102 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

frequency f which is stimulated through the noise:

f = fs

2nh−n −1
, (7.15)

where fs is the system switching frequency. In case of load identification, the minimum
frequency of interest is related to the resonant frequency f0. Considering as f = 1kH z the
minimum frequency to stimulate and fs = 449kH z, a minimum resolution of nh −n = 9 bits
is needed.

The Power Spectral Density (PSD) of Gvd (s)N T F3(z) can be analysed in order to chose
α. As discussed, a further amount of noise can be injected to detected the output filter
frequency inside the LSB ADC and is important to understand how this amount of noise is
distributed over the range of frequencies. The quantization noise is a white noise and is con-
stant over the entire range of frequencies, while, when a noise shaper is used the power of
the noise is more concentrated at medium high frequencies. Considering α variations in the
PSD of Gvd (s)N T F3(z), is important to understand both how the further amount of noise is
shaped in frequency and if, enough noise is concentrated around the resonant frequency. In
7.22α variations has been considered for the PSD of Gvd (s)N T F3(z). It can be deduced that,
the noise is observable in the range of interested frequencies and. Comparing α = 1 with
α = 2 is visible how more power is concentrated around the resonant frequency, the noise
amplification is reflected on the overall range of interested frequencies and its effects can be
detected inside the LSB ADC during the steady state. The output variations can be observed
on the ADC output error and processed to extract the output filter frequency information,
the resolution of the qe have to ensure that output filter range frequencies for a fixed value of
switching frequency are stimulated. In Fig.7.21 is shown the dithering effects on the output
voltage, when α= 2 the noise amplification is reflected on the magnitude of the oscillations
on the output voltage and steady state behaviour persists. In this example a switching fre-
quency fs = 449kH z is considered for fclk = 70M H z and Vr e f = 3.3V , the buck converter is
configured with f0,buck1 = 4.9kH z.

As deduced up to now, a further amount of shaped noise can permits to observe out-
put filter information at the ADC output. The discussion has been addressed focusing on
the resonant frequency f0, some considerations can be done to the ESR identification. In
the buck converter configurations shown in Fig.7.10, the ESR contribution is considered for
three buck converter with respectively f0,buck1 = 4.9kH z (L = 47µH ,C = 22µF , ESR = 0.5Ω),
f0,buck2 = 7.3kH z (L = 47µH ,C = 10µF , ESR = 1Ω) and f0,buck3 = 10.7kH z (L = 47µH ,C =
4.7µF , ESR = 1Ω). The zero contribution has been introduce in fz,buck1 = 14.5kH z for
f0,buck1, fz,buck2 = 15.9 for f0,buck2 and fz,buck3 = 33.8 for f0,buck3. In Fig.7.23 has been con-
sidered α= 2 in Gvd (s)N T F3(z), for the three cases presented in Fig.7.10. Information about
the buck convert output filter can be observed in the frequency domain, even if a large ESR
in the output capacitor. Moreover, both the resonant frequency and the change of slope due
to the zero presence can be distinguished. The identification idea is to amplify the white
noise overall the entire range of frequencies, in order to detect both the resonant frequency
and the zero presence at the ADC output. Results shown in Fig.7.23 are useful only to ob-
serve the information related to the resonant frequency, the ESR effects can be very difficult
to observe. To highlight the ESR contribution respect to the resonant frequency, could be
helpful to use the modify third order NTF introduced introduce in Cha.3.4.2. The third order

7.2. STEADY STATE SYSTEM IDENTIFICATION TECHNIQUE 103

Figure 7.21: Steady state identification method: dithering amplification effects on the steady
state output voltage.

Figure 7.22: Steady state identification method: PSD of dithering amplification effects on the
control to output transfer function (no ESR contribution).

104 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

modified NTF with a zero at the resonant frequency is:

N T F3k (z) = (1− z−1)(1−kz−1 + z−2), (7.16)

where K = 2cos(2π fn
fs

) permits to insert a notch at fn = f 0. In Fig.7.24 is shown the
Gvd (s)N T F3k (z) withα= 2 for the three buck converter configurations presented in Fig.7.10.
The zero contribution at the resonant frequency permits to inject less noise at the resonant
frequency, in this way the peak of Gvd (s)N T F3k (z) related to the resonant frequency can be
attenuated and, on the counter part, the ESR contribution is highlighted.

Figure 7.23: Steady state identification method: dithering amplification effects on the con-
trol to output transfer function (ESR contribution).

The noise amplification on the overall range of frequencies is reflected on the LSB ADC

and can ensures that oscillation can be detected on the digital side. This effect, can be seen
as a resolution improvement for the load information detection. The further amount of noise
is shaped at medium high frequencies and from PSD analysis results that the noise contri-
bution is concentrated on the range of interested frequencies. Furthermore, to distinguish
resonant frequency information from the zero contribution due to the ESR, a modified NTF
can be used to shape the noise. The zero in the NTF can be placed close to the resonant
frequency to attenuate the noise injection at this frequencies.
The mathematical equations of the described approach are mainly two. Firstly, every uni-
tary amplification of the quantization noise add a perturbation∆v(f) on the output voltage.

7.2. STEADY STATE SYSTEM IDENTIFICATION TECHNIQUE 105

Figure 7.24: Steady state identification method: dithering amplification effects on the con-
trol to output transfer function (ESR contribution and notch effects).

Moreover, the noise increasing can be seen as DPWM resolution decreasing of the same fac-
tor α. The effective DPWM resolution N ′

DPW M during the noise injection, has to be however
bigger than the ADC to avoid LCOs [86]. Choosing the factor α the lost of resolution have to
be taken into account as well.

Mathematical relationships for the steady state identification model can be summarised
as follow:

• d ′
l r [n] = dhr [n]+N T F (z)∗αqe where α > 1. A further amount of quantization noise

can be added through the dithering amplification. high frequency variations are ob-
tained in the digital control world, thanks to dithering and oversampling. Consider-
ing Gvd (s)N T F (z), information about the buck converter resonant frequency f0 can
be distinguished, while the ESR contribution is exalted by considering a notch in the
noise shaper.

• f = fs

2nh−n−1 . The minimum quantization error resolution has to be calculate with re-
spect to the switching frequency and the minimum stimulated frequency f . Comput-
ing the resolution in this way, permits to be sure that the noise can have contributions
into the desired range of converters configurations.

• ∆vout (jω) =∆d(jω) 1
2nDPW M

∣∣Gvd (jω)
∣∣> LSB ADC . The noise amplification factor α has

to be computed considering the magnitude of the output voltage perturbation. Ap-
proximations can be done to consider

∣∣Gvd (jω)
∣∣
ω0

. A factor α = 2 can be considered

106 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

enough with fs = 449kH z, Vi n = 10V and LSBadc = 15mV . This consideration permits
to be sure that, dithering amplification effects can be detect at the ADC output.

• N ′
DPW M = Vi n

2nDPW M /α = Vi n

2n′DPW M
. The factor α automatically reduces the DPWM resolu-

tion.

• 2n′
DPW M > 2nadc . To avoid LCOs during steady state the static condition introduce in

Sec.3.3.3 have to be respected. This represent the upper limit to chose α.

In the next two sections, results are presented for a defined case of study having the same
characteristics of systems presented in Cha.4. In these configurations, typical automotive
parameters has been considered: fclk = 70M H z and fs = 449kH z defines a nDPW M = 8
bits DPWM down-counter to count from 0 to fclk / fs = 156. The buck converter configu-
rations are the same of Fig.7.6 (f0,buck1, f0,buck2, f0,buck3) and Fig.7.10 where the ESR con-
tributions (fz,buck1, fz,buck2, fz,buck3) have been considered. The DPWM resolution is re-
duced to n′

DPW M = 7 bits (when α= 2) and LCOs are avoided considering a 4 bits ADC with
LSBadc = 15mV . Moreover, results are presented comparing α = 1, α = 2 and α = 3 which
still avoid LCOs. In order to evaluate the Gvd (s)N T F (z) results are presented considering
the noise injection effects at ADC output, the error e[n] is then processed in terms of PSD
computation. The PSD computation has been preferred to simply FFT-based analysis both
to exalt frequency information and simplify the detection of both f0 and ESR load parame-
ters.
The considered closed loop model has been shown in Fig.7.2, where the ∆Σ model refers
to the one in Fig.7.16. A third order noise shaper has been considered taking into account
observation drawn during analysis in the previous section. The entire closed loop imple-
mentation refers to models described in Cha.4, where the design has been described up to
the VHDL implementation with Matlab-VHDL co-simulation of the digital control loop.
The output voltage behaviour due to the amplification of dithering effects for f0,buck1 =
5kH z (ESR = 0Ω) has been shown in Fig.7.25, Fig.7.26, Fig.7.27 respectively for α= 1, α= 2
and α = 3. With the increasing value of α, the quantization noise is reflected on the output
voltage. This amplification does not bring the system to instability even if α = 3 is consid-
ered, the identification technique . In Fig.7.28 is shown the output voltage considering the
difference between α= 2 and α= 1. Doubling the quantization noise the maximum magni-
tude of the noise amplification is of 150mV .

The PID configuration during the steady state identification method is set with a priori
consideration on the buck converter range of loads. Because the algorithm has to work both
during the first load identification (when the output filter is unknown) and for monitoring
load variations, the PID configuration is static and set in order to have a system stable in the
considered range of possible loads that can be identified. The range of loads is automatically
chosen by fixing the switching frequency, the resonant frequency of the output filter have to
be lower than fs/20 because ripple reasons on the output voltage. Once that the load is iden-
tify or monitored, the self-tuning algorithm have to change the generic PID into the one opti-
mized (in terms of margins and bandwidth) for the obtained output filter. Results presented
in the next subsections, are obtained with an open loop system bandwidth (PI D(z)Gvd (s))
lower than the range of considered buck converters (Fig.7.6 and Fig.7.10) and positive phase
margin around 10Âř. This kind of PID configuration can be called slow, indeed if a load step
occurs the time to recover the steady state dc value can be longer

7.2. STEADY STATE SYSTEM IDENTIFICATION TECHNIQUE 107

Figure 7.25: Steady state identification method: dithering effects on the output voltage.

Figure 7.26: Steady state identification method: dithering amplification effects on the output
voltage (α= 2).

108 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

Figure 7.27: Steady state identification method: dithering amplification effects on the output
voltage (α= 3).

Figure 7.28: Steady state identification method: dithering amplification effects on the output
voltage (comparison).

7.2. STEADY STATE SYSTEM IDENTIFICATION TECHNIQUE 109

To extract the buck converter information from the N T F3(z)Gvd (s), the ADC output error
is processed with the PSD computation. The Power Spectral Density computation is an
autocorrelation-based algorithm (Sec.9.4.1) and the autocorrelation is often used with fil-
tering purposes to remove huge amounts of noise. The difference between the FFT and the
PSD computation of the ADC output error e[n], can be observed in Fig.7.29 for an ADC out-
put window recorded during the steady for α = 1 and f0,buck1. The PSD computation out-
put, is more clean than the FFT and it is easier to detect information about the output filter.
However, the shape of both considered processing related to e[n] can be attributed to an im-
pulsive response shape and, moreover, the maximum of the PSD is at f01 = 2.65∗104/2π =
4.22kH z which is very close to f0,buck1 (Fig.7.6). All processing results of this section are ob-

Figure 7.29: Steady state identification method result: FFT and PSD comparison (f0,buck1,
α= 1).

tained considering N = 27 = 128 samples of e[n], recorded at the switching frequency during
the steady state. From the practical implementation point of view, the error is updated ev-
ery switching frequency. On the counterpart, a finite resolution in the processing results is
introduced and frequency information about the output filter are limited to the resolution
∆ f (Eq.7.4).

7.2.2 Resonant frequency identification results

The resonant frequency identification for the steady state SI method, is related to the quan-
tization noise amplificationα. To limit the magnitude on the oscillations on the output volt-
age the dithering effect is doubled (Fig.7.26) and tripled (Fig.7.27). From previous section,
results that for the chosen system configuration parameters this amplification values can

110 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

be used for the steady state SI. Moreover, the information about f0 have been obtained as
maximum in the PSD of the ADC output error (Fig.7.29). Let’s consider the α effects on con-
figurations f0,buck1 = 4.9kH z, f0,buck2 = 7.3kH z and f0,buck1 = 10.7kH z (Fig.7.6). In Fig.7.30
is shown the PSD computed on e[n] for the α factor increasing, in this case the resonant fre-
quency obtained as maximum of the PSD is f01 = 4.22kH z. However, can be observed that
increasing the quantization noise the shape of the PSD is more clear, for α = 2 and α = 3
the sharp maximum can be distinguished while with α= 1 information around the resonant
frequency are less selective. Considerations about amplification dithering effects related to

Figure 7.30: Steady state identification method PSD results: f0,buck1, ESR = 0Ω.

the resolution increasing on the resonant identification, are presented for f0,buck2 in Fig.7.31.
Increasing the resonant frequency makes necessary a further amount of noise to observe at
the ADC output a maximum related to f0. With α= 1 two peaks can be distinguished in the
range of the resonant frequency, then uncertainty on the resonant frequency identification
is introduced. Increasing the dithering effect with α= 2 a resonant frequency f02 = 6.35kH z
can be obtained as maximum on the PSD. On the counterpart, with α= 3 the injected noise
can move the obtained resonant frequency up to 8.5kH z, more precision is obtained with
α= 2.
From this analysis can be deduced that, the amplification of the quantization noise on the
signal path stimulates the output voltage and the more accurate information about the out-
put filter can be obtained. The third case of the steady state SI refers to f0,buck3. The PSD
of e[n] in function of α has been shown in Fig.7.32. In this case is visible as for α = 1 the
obtained maximum resonant frequency is not precise, while increasing the injected noise
(α = 2 and α = 3) the identification results to be more precise. In particular, for α = 2 the
obtained resonant frequency (f02) is equal to the desired one (f0,buck2) and is not far when

7.2. STEADY STATE SYSTEM IDENTIFICATION TECHNIQUE 111

Figure 7.31: Steady state identification method PSD results: f0,buck2, ESR = 0Ω.

α= 3 is considered.
From these analysis can be deduced as theoretical observations have been confirmed. The
further amount of quantization noise due to the dithering permits to stimulate the buck
converter output filter, even if the system still remains in the steady state. Moreover, output
filter information can be obtained at the ADC output and the resonant frequency extracted
as maximum of the PSD. In this range of considered loads and switching frequency, accurate
identification results can be obtained with α = 2, while, with α = 1 results are not reliable
and α = 3 is less precise. Increasing the resonant frequency, the further amount of injected
noise permits to identify the resonant frequency and for α= 2 obtained values are very pre-
cise. Considerations just addressed, refer to samples e[n] recorded during the same steady
state window of N Ts = 0.285msec (N = 128 and Ts = 1/449kH z). Fixing both the number
of points N considered to compute the PSD and the switching frequency fs , a finite reso-
lution ∆ f (Eq.7.4) between frequencies which can be distinguished is obtained. The PSD
processing results are then affected by the error between the obtained resonant frequencies
and desired values values, because only values proportional to ∆ f can be obtained.
Because both α = 2 and α = 3 increase the precision on the identified resonant frequency
and for α= 2 results are very precise, a verification over more different acquisition N Ts can
be done to confirm that α = 2 ensures enough injection of white noise. The comparison
between α = 2 and α = 3 is done considering four more different trials obtained for differ-
ent acquisition windows N Ts . The trend is verified both for f0,buck2 (Fig:7.33,7.34,7.35,7.36)
and f0,buck3 (Fig:7.37,7.38,7.39,7.40) because higher resonant frequencies are resulted much
more affected from α variations. Results are summarised in Tab.7.1 and Tab.7.2, respectively
for α = 2 and α = 3. Comparing averaged results in Tab.7.1 and Tab.7.2, can be observed

112 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

Figure 7.32: Steady state identification method PSD results: f0,buck3, ESR = 0Ω.

f02[kH z] f03[kH z]
window 1 8.5 10.6
window 2 6.4 8.5
window 3 6.4 10.6
window 4 8.5 10.6
average 7.45 10.075

Table 7.1: Steady state identification method results: Resonant frequency (α= 2).

f02[kH z] f03[kH z]
window 1 6.4 8.5
window 2 6.4 10.6
window 3 4.2 8.5
window 4 8.5 10.6
average 6.38 9.55

Table 7.2: Steady state identification method results: Resonant frequency (α= 3)

7.2. STEADY STATE SYSTEM IDENTIFICATION TECHNIQUE 113

that for α = 2 the obtained resonant frequency is always very close to the desired ones and
for α = 3 bigger oscillation in the results are obtained. Results obtained with α = 3 can be
compensated with averaging among the identifications, however α = 2 ensures more pre-
cise results and lower perturbation on the output voltage.
Most of times the same best compensator can be use for buck converter configurations with
close resonant frequency, indeed the magnitude of the LC-structure quickly rolls down to
the resonant frequency with a slope −40db/dec. Consequently, a little error in the resonant
frequency is not a dramatic from the regulation point of view. However, even if a little er-
ror could occur in some identifications, it can be compensated with averaging over the set of
identification outputs or, considering the maximum inside of a set of extractions. The steady
state methods cannot insert a big perturbation on the output voltage and a non-dramatic
error on some identification can be accepted and easily compensated just with results aver-
aging.

Figure 7.33: Steady state identification method PSD results: f0,buck2, ESR = 0Ω (trial 1).

7.2.3 ESR effects identification results

Non-idealities can modify the frequency behaviour of the control to output transfer func-
tion (Fig:7.1). The ESR contribution is strictly related to temperature increasing, the result-
ing zero at fz can modify both bandwidth and margins of the system. Because the aim of the
self-tuning algorithm is to design the best compensation law for the system and obtain both
good margins and bandwidth, the compensator design have to take into account a possible
zero close to system bandwidth. For this reason is important to have a steady state identifi-
cation method which permits to monitor load configuration changing during the time life of

114 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

Figure 7.34: Steady state identification method PSD results: f0,buck2, ESR = 0Ω (trial 2).

Figure 7.35: Steady state identification method PSD results: f0,buck2, ESR = 0Ω (trial 3).

7.2. STEADY STATE SYSTEM IDENTIFICATION TECHNIQUE 115

Figure 7.36: Steady state identification method PSD results: f0,buck2, ESR = 0Ω (trial 4).

Figure 7.37: Steady state identification method PSD results: f0,buck3, ESR = 0Ω (trial 1).

116 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

Figure 7.38: Steady state identification method PSD results: f0,buck3, ESR = 0Ω (trial 2).

Figure 7.39: Steady state identification method PSD results: f0,buck3, ESR = 0Ω (trial 3).

7.2. STEADY STATE SYSTEM IDENTIFICATION TECHNIQUE 117

Figure 7.40: Steady state identification method PSD results: f0,buck3, ESR = 0Ω (trial 4).

the converter.
Analysis in this section refers to the buck converter configurations shown in Fig.7.10 for
α= 2, the zero contribution have been considered respectively at fz,buck1 = 14.5kH z (ESR =
0.5Ω) for f0,buck1 = 4.9kH z, fz,buck2 = 15.9 (ESR = 1Ω) for f0,buck2 = 7.3kH z and fz,buck3 =
33.8kH z (ESR = 1Ω) for f0,buck3 = 10.7kH z. Results presented in this section refers to these
three cases, the fz identification is discussed referring to the comparison between N T F3(z)
(fn = 0) and the N T F3k (z) (fn 6= 0), where the notch effect fn is inserted at the resonant fre-
quency obtained from the PSD computation with N T F3(z). The injected noise (α = 2) can
be shaped through the N T F3k (z) structure in order to concentrate a larger amount of noise
on the range of interested frequencies. Because the zero contribution is close to the resonant
frequency, the noise shaper structure can be modified (N T F3k (z)) inserting a zero at the res-
onant frequency (fn = f0). In this way a further amount of noise can be concentrated on the
range of the fz and, moreover, the ESR contribution can be exalted while the maximum at
the resonant frequency is reduced.
In order to verify that the zero in the noise shaper can be used to reduce the noise injec-
tion into a defined frequency, the notch in N T F3k (z) can be introduced at fn = f0,buck3

when no ERS contribution is considered. The dithering effect for α= 2 in the configuration
f0,buck3 = 10.7kH z and fz = 0Ω, has been considered in in Fig.7.41. If none ESR contribution
is considered, the zero inserted at fn = f0,buck3 in the noise shaper attenuates the peak at
the resonant frequency while it exalts the information on the following range of frequencies.
This is result proofs both that the further amount of noise is reflected on the output and that
the noise shaper can be used to extrapolate output filter information through the modelling
of the quantization noise shaper. Results shown in Fig.7.42 and Fig.7.43, refer to ESR = 0.5Ω

118 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

Figure 7.41: Steady state identification method PSD results: f0,buck3, ESR = 0Ω, fn = f0.

(fz,buck1 = 14.5kH z) contribution for the configuration f0,buck1 = 4.9kH z. In Fig.7.42 both
curves shown the maximum very close to the resonant frequency (f02 = 4.2kH z), in the blue
curve (no notch) a third order N T F3(z) has been considered while in the red plot a zero at
fn = f02 = 4.2kH z has been inserted in the noise shaper. Considering a third order mod-
ified N T F3k (z) a second peak can be detected at fz = 0.0332 fs = 14.9kH z, while with the
third order noise shaper just a little change of slope can be observe in the frequency related
to the ESR contribution. The same situation is repeated for the second example shown in
Fig.7.43. The zero contribution due to the ESR is exalted concentrating the dithering in the
frequencies following the resonant frequency. In these cases the blue curve does not show
clear information about fz , modifying the noise transfer function a clear peak related to the
ESR contribution can be detect.

Results in Fig.7.44 and Fig.7.45 refer to ESR = 1Ω (fz,buck2 = 15.9kH z) contribution for
the configuration f0,buck2 = 7.3kH z. In Fig.7.44 the main consequences to the zero insertion
can be observed. In the blue curve (fn = 0) the dithering amplification permits to identify the
resonant frequency at f02 = 8.5kH z and, inserting a zero at this obtained frequency in the
noise shaper (fn = f02), the ESR contribution can be highlighted. Considering the N T F3(z),
the resonant frequency can be detected as maximum of the PSD even if the presence of the
ESR, while the ESR contribution cannot be clearly distinguished. Considering N T F3k (k) in
the red curve, a second peak related to the zero contribution is presents at fz = 0.0332 fs =
14.9kH z. Almost the same considerations can be done referring to Fig.7.45. In this case none
error is inserted in both detected resonant frequencies f02, however the ESR contribution is
highlighted at fz = 0.03796 fs = 17.1kH z in the red curve with fn = f02.

In results shown in Fig.7.46, the ESR = 1Ω (fz,buck3 = 33.8kH z) contribution is con-

7.2. STEADY STATE SYSTEM IDENTIFICATION TECHNIQUE 119

Figure 7.42: Steady state identification method PSD results: f0,buck1, ESR = 0.5Ω (trial 1).

Figure 7.43: Steady state identification method PSD results: f0,buck1, ESR = 0.5Ω (trial 2).

120 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

Figure 7.44: Steady state identification method PSD results: f0,buck2, ESR = 1Ω (trial 1).

Figure 7.45: Steady state identification method PSD results: f0,buck2, ESR = 1Ω (trial 2).

7.2. STEADY STATE SYSTEM IDENTIFICATION TECHNIQUE 121

sidered for the configuration f0,buck3 = 10.7kH z. As said during the Open loop SI con-
siderations for this converter configuration, the ESR contribution in this case is very far
from the corner frequency that is close to the resonant frequency of the output filter for
a second order LC filter. Indeed, the consideration drawn in this case can be the same
done for the results shown in Fig.7.41, where the notch effect in the noise shaper is visi-
ble when none ESR is presents. In the results shown in Fig.7.46, the notch presence is vis-
ible at f = 0.02368 fs = 10.656kH z in the red plot, indeed, the zero in the noise shaper has
been inserted at the resonant frequency fn = f03 = 10.6kH z derived from the blue curve.
When the notch is detectable, the ESR contribution have to be observe at higher frequen-
cies. When the notch effect noise shaper ends its contribution (f = 0.03796 fs = 17.1kH z in
the red curve) the following frequencies are good candidates for the fz detection. The first
peak after 17.1kH z is at f = 0.06177 fs = 27.8kH z which is close to fz,buck3.

Figure 7.46: Steady state identification method PSD results: f0,buck3, ESR = 1Ω.

In the results shown in Fig.7.47 and Fig.7.48 the ESR = 1.8Ω contribution (fz,buck3 =
18.8kH z) has been evaluated for the configuration f0,buck3 = 10.7kH z. In these examples
the trend described for f0,buck2 and f0,buck1 is confirmed. Even if the ESR presence, a clas-
sic third order N T F (z) permits to identify the resonant frequency as maximum in the PSD.
Inserting a zero in the noise shaper at this frequency a second peak related to the ESR con-
tribution can be observed. The red curves obtained for N T F3k (z) present a second peak
at fz = 0.04272 fs = 19.2kH z very close to fz,buck3 = 18.8kH z, while the resonant frequency
is still close to the calculated one but less precise then the blue curve where none zero in
the noise shaper is inserted. To validate the algorithm three different ESR values has been
introduced in the configuration f0,buck2, related results have been presented in Fig.7.49,
Fig.7.50 and Fig.7.51 respectively for ESR = 1.2Ω(fz,buck2 = 13.3kH z), ESR = 0.9Ω(fz,buck2 =

122 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

Figure 7.47: Steady state identification method PSD results: f0,buck3, ESR = 1.8Ω (trial 1).

Figure 7.48: Steady state identification method PSD results: f0,buck3, ESR = 1.8Ω (trial 2).

7.2. STEADY STATE SYSTEM IDENTIFICATION TECHNIQUE 123

17.6kH z) and ESR = 0.8Ω(fz,buck2 = 19.9kH z). For this buck converter configuration four
different ESR contributions are evaluated in order to verify the precision of the detected fz .
For ESR = 1.2Ω (Fig.7.49), the resonant frequency can be obtained as maximum in the PSD
with N T F3(z) (fn = 0) while information related to the ESR contribution can be obtained
from the red curve where fn = f03. A second peak is present at fz = 0.02844 fs = 12.8kH z
and is very close to the expected zero contribution fz,buck2 = 13.3. For ESR = 0.9Ω (Fig.7.50)
the zero contribution detected in the red curve through the N T F3k (z), is at fz = 0.03796 fs =
17.1kH z very close to fz,buck2 = 17.6kH z. In Fig.7.51 a lower ESR contribution correspond-
ing to fz,buck2 = 19.9kH z is considered and, the insertion of notch effect in the noise shaper
highlights a second peak at fz = 0.04272 fs = 19.2kH z. A third order noise transfer function,

Figure 7.49: Steady state identification method PSD results: f0,buck2, ESR = 1.2Ω

combined with the amplification of the dithering effect (α = 2) permits to detect the reso-
nant frequency even if an ESR contribution is considered. From PSD analysis on e[n], the
resonant frequency can be detected as the maximum of processing, while, the zero intro-
duced by the ESR contribution can be detect as a second peak in the PSD only if the noise
shaper is modified. Through the notch effect inserted at the resonant frequency, a third or-
der modified N T F3k (z) ensures to address the amplified noise in the range of frequencies
related to the ESR contributions. In this way the zero contribution can be stimulated and
detected as well with peak searchings.
The fz identification results are summarised in Tab.7.3, where the obtained ESR contribu-
tions (fz1, fz2 and fz3) for the related buck converter configurations (f0,buck1, f0,buck2 and
f0,buck3) are compared with the expected values fz,buck1, fz,buck2 and fz,buck3 defined for
each considered ESR contribution. When the ESR contributions are close to the resonant
frequency their contribution is detect with good precision, while a error occurs when the

124 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

Figure 7.50: Steady state identification method PSD results: f0,buck2, ESR = 0.9Ω.

Figure 7.51: Steady state identification method PSD results: f0,buck2, ESR = 0.8Ω..

7.3. PROCESSING AND EXTRACTION ALGORITHM DESIGN SPECIFICATIONS 125

ESR[Ω] fz1[kH z] fz,buck1[kH z] fz2[kH z] fz,buck2[kH z] fz3[kH z] fz,buck3[kH z]
0.5 14.9 14.5 - - - -
0.8 - - 19.2 19.9 - -
0.9 - - 17.1 17.6 - -
1 - - 14.9 15.9 27.8 33.8

1.2 - - 12.8 13.3 - -
1.8 - - - - 18.8 18.8

Table 7.3: Steady state identification method results: ESR identification (α= 2 fn = f0).

contribution is far from f0. When considerable ESR contribution are very close, the algo-
rithm permits to distinguish the related fz . Indeed, for f0,buck the fz contribution can be
distinguished between ESR = 0.8Ω and ESR = 0.9Ω.

7.3 Processing and extraction algorithm design spec-
ifications

The extraction algorithm is based on the PSD computation results and is aim is to extract
the resonant frequency f0 and the fz related to the ESR contribution. The model presented
in Fig.7.52, represents the approach used in the previous sections to show the results of the
steady state identification method. The output voltage from the buck converter is read in
digital domain at the ADC output, the error is recorded during the steady state for a window
length of N Ts and processed through the PSD computation. All results have been shown in
logarithmic scale, while the extraction algorithm have to be designed on the linear scale of
the PSD output. The algorithm used to compute the PSD is based on the FFT of the autocor-
related N -length window of errors e[n]:

cor r (e[n], N) =F−1{F {e[n]}F {e[n]}∗}. (7.17)

The Eq.7.17 computes through the FFT algorithm the autocorrelation of N -length e[n] which
is long four times N . After the zero padding the FFT of Eq.7.17 have to be computed in order
to obtain the PSD. The comparison between logarithmic and linear PSD output is presented
in Fig.7.53 for the buck converter f0,buck1. Blue curves are related to ESR = 0Ω, while in the
red ones ESR = 0.5Ω has been considered. A second peak related to fz1 = 14.1kH z can be
observed (in both red curves), next to the maximum related to the resonant frequency.

In Fig.7.54 is shown the PSD output in linear scale computed for N = 29 samples of e[n],
the results is a 4N length vector. It can be observed as, the processing output is a four time
mirrored vector, and just one fourth can be studied to extract the load information. The
extraction algorithm can easily define as a maximum searching function, that that have to
distinguish two peaks on one fourth of the PSD output.

A VHDL-coded PSD computer has been designed and tested during a M.S. thesis work
(Sec.9.4). The hardware implemented processing algorithm, refers to considerations just
drawn and is based on these main steps:

• autocorrelation computed as in Eq.7.17. This imply the FFT, the complex conjugate
and the computation of a hardware multiplication.

126 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

Figure 7.52: Steady state identification method: Matlab/Simulink fixed-point model.

• Inverse FFT computation and zero padding.

• FFT transform.

The hardware PSD computation involves the computation of three FFT, one inverse FFT and
one hardware multiplication. Fast Fourier Transform and its hardware implementation are
largely exploited, a wide range of custom FFT processor architectures can be found in lit-
erature. Pipelined structures have both high throughput and computational efficiency, but
when area constraints are stronger than timing, non-pipelined counterparts are usually pre-
ferred. Scalable architectures in terms of number of processing elements (PEs), are flexi-
ble solutions. Astola and Akopian [8] introduced a family of hardware-oriented algorithms
resulting in scalable constant geometry (CG) structures. In [107] a not-in-place architec-
ture targeted for ASIC implementation is proposed. This solution uses data shuffling regis-
ters, thus it does not require a memory for intermediate results. Classic approaches to FFT
designs require a large amount of memory for storing precomputed twiddle factors. The

7.3. PROCESSING AND EXTRACTION ALGORITHM DESIGN SPECIFICATIONS 127

Figure 7.53: Steady state identification method PSD results: linear and log scale (f0,buck1).

Figure 7.54: Steady state identification method PSD results: linear scale (f0,buck1).

128 CHAPTER 7. NOVEL NON-PARAMETRIC SYSTEM IDENTIFICATION METHODS

CORDIC iterative algorithm presented in [115] allows computation of twiddle factors at run-
time. To this purpose many architectures introduce this algorithm inside the PEs by substi-
tuting the complex multipliers with iterative phase rotations. With this approach, in [130]
the number of iterations has been reduced by using optimized sequences and correspond-
ing scale factors both stored in a LUT. In [122] a multi-bank RAM structure to reduce memory
logic is presented. On the other hand, some systems replace the twiddle factor storage ROM
with a CORDIC-based generation system. Nonethless, CORDIC hardware implementations
can be very expensive in terms of area usage [11, 34], consequently hardly suitable for a scal-
able FFT approach.
Observing the twiddle factor dataflow during the FFT computation (App.B), a novel hybrid
algorithm for twiddle factor generation has been presented in [24] as core function of the
FFT processor implemented in Sec.9.1. Only a reduced set of phase factors have to be stored
in a LUT, missing twiddle factors can be generated from these with a simple CORDIC mul-
tiplication(Sec.9.3). Considering this observation, in [24] a novel scalable CORDIC-LUT ap-
proach related to the twiddle factor computation has been introduced in a standard CG-FFT
computer. This way a full-custom scalable hybrid CORDIC-LUT processor for Constant-
Geometry FFT computations has been implemented during the thesis work. The new HDL-
coded architecture for Digital Signal Processing has been designed and integrated in the
FPGA, providing 100% flexibility for concept customization thanks to full scalability both
in terms of resource saving and computational latency.
A complete description of the atucorrelation-based DSP has been presented in Cha.9, to-
gether with the implemented scalable hybrid FFT architecture. The PSD hardware com-
putation has been optimized considering its mirrored output (Fig.7.54), at the end of the
computation just samples from 2N to 4N could be stored in a memory. Referring to Fig.7.54
where the PSD is computed for N = 29 samples, the HDL coded extraction algorithm have
to work on samples from 1024 to 2048 which have the mirrored information which contain
samples from 0 to 1023.
The information about the resonant frequency is obtained as maximum searching within
the range of samples from 3N to 4N . This range has been zoomed in Fig.7.54 for N = 512,
as shown in Fig.7.53 the maximum in this range corresponds to the resonant frequency. Re-
garding the fz extraction, it results easier to search the peak that occurs after the firs change
of slope met scanning the range of samples from 2N to 3N .

Chapter 8

Steady state self-tuning prototype:
On-line controller

Aim of this chapter, is the hardware validation of the steady state identification algorithm
and the realisation of a self-tuning FPGA-TC based on-line controller prototype (Fig.6.1).
The hardware validation of the steady state SI, has been done considering the FPGA-TC pro-
totype described in Cha.5. The external loop configuration presented in Sec.5.2 is used to
observe the ADC output e[n] directly on the FPGA. The validation model has been shown
in Fig.8.2. In this approach, processing results are computed with Matlab fixed-point em-
ulation model of the VHDL-coded PSD computer described in Sec.9.4 and, introduced in
Sec.7.3. The PSD fixed-point model described in Sec.9.5, has been coded to debug the hard-
ware implementation of the PSD computer.

Once the SI algorithm and the PSD computer have been verified, the steady state self-
tuning on-line controller has been prototyped. This model is presented in Fig.8.1 and repre-
sents the on-line controller approach shown in Fig.6.1). The digital control loop (Fig.5.1) de-
signed for the off-line controller, has been integrated together with the hardware needed for
the identification algorithm (Extraction-regulation and PSD computation block). The PSD
computation is based on the VHDL-coded system presented in Sec.9.4. The implemented
load parameters identification method, is performed in two steps. A first step is used for the
resonant frequency identification and a second one is used for the fz identification. Once
that the identification and the extraction algorithm (introduced in Sec.7.3 and implemented
in Sec.9.4.3) end their computation, the regulation PID gains are consequently changed. To
distinguish among these phases a Finite State Machine (FSM_proc) is introduced in the self-
tuning model. The self-tuning prototype has been presented in[23].

8.1 Steady state system identification method val-
idation

Identification results presented in this section, are obtained considering the FPGA-TC proto-
type (Cha.5). The ChipScope interface (Fig.5.9) permits to record and save the ADC output,
this dataset can be saved and processed with the Matlab fixed-point emulation model of the
full scalable PSD computer. The model used for the validation algorithm has been shown

129

130 CHAPTER 8. STEADY STATE SELF-TUNING PROTOTYPE: ON-LINE CONTROLLER

Figure 8.1: Steady state identification prototype: model.

in Fig.8.2. The aim of this approach is to validate the steady state SI technique, to study the
extraction algorithm and debug the PSD computer.
The steady state identification results have been presented in Sec.7.2.3 and Sec.7.2.2, re-
spectively for the resonant frequency and the ESR contribution identification. It has been
demonstrated that dithering doubling joined with the modified noise shaper, permits to ob-
serve the buck converter frequency parameters (f0 and fz) through the PSD computation
of e[n]. Referring to ∆Σ modulator presented in Fig.7.16, the inputs α and fn respectively
permit to amplify the dithering effect and to insert a zero at fn in the noise shaper. The
hardware solution related to the notch insertion has been presented in Sec.4.2.2. The noise
shaper process nh −n bits when α = 1. During the identification, α = 2 and the quantiza-
tion noise is doubled, hence, one more bit have to be considered in the noise contribute. In
Fig.8.3 is shown the∆Σ hardware encoding used to compute the duty cycle (duty_low_res_s).
As described in Sec.4.2.2, when the modulator is used (delta_sigma_en_i=1) the dithering ef-
fect is considered on the signal path otherwise the incoming high resolution duty cycle is
directly output (duty_low_res_s <= duty_low_res_i). When dithering effects are considered,
the signal duty_first_full_res_s is computed by summing the high resolution input duty cycle
with the quantization noise computed by the noise shaper during the previous switching cy-
cle. The amplification of dithering effect is selected through the signal res_quant_ds_i which
represents α−1. The dithering effect is related to αqe , when res_quant_ds_i=00 the quan-
tization noise is not amplified (α = 1, no identification). When the identification method
is activated, the signal res_quant_ds_i=01 and the quantization noise in input to the noise

8.1. STEADY STATE SYSTEM IDENTIFICATION METHOD VALIDATION 131

Figure 8.2: Steady state identification prototype: testing environment.

shaper duty_quant_err_s is doubled (al pha = 2).

Figure 8.3: Hardware dithering amplification: ∆Σmodulator.

132 CHAPTER 8. STEADY STATE SELF-TUNING PROTOTYPE: ON-LINE CONTROLLER

8.1.1 Results

On the basics of the previous chapter, doubling the quantization noise during the identi-
fication permits to identify the output filter resonant frequency as maximum of the PSD
computed on the error e[n]. The ESR contribution is then detected, by inserting a notch at
the extracted resonant frequency (fn = f0). In this section results related to the steady state
identification method are then presented for α = 2. A 70M H z clock system and a switch-
ing frequency of 449kH z are considered, the buck converter configurations are the same
used during the previous section: f0,buck1 = 4.9kH z (L = 47µH ,C = 22µF), f0,buck2 = 7.3kH z
(L = 47µH ,C = 10µF), f0,buck3 = 10.7kH z (L = 47µH ,C = 4.7µF) and possible zero contribu-
tions are fz,buck1 = 14.5kH z (ESR = 0.5Ω for f0,buck1), fz,buck2 = 15.9 (ESR = 1Ω for f0,buck2)
and fz,buck3 = 18.8 (ESR = 1.8Ω for f0,buck3).
The load parameters extraction used to present all the next results has been introduced in
Sec.7.3, refers to a Matlab implementation used as reference model for the PSD hardware
algorithm encoding presented in Sec.9.4.3. It works on N = 128 samples, and considered
analysis are obtained on the mirrored second half of the PSD output as described in Sec.7.3.
Because the PSD output is mirrored, the relationship ∆ f ∗ (X − N) have to be considered
to convert a sample X among the N = 128 samples. As defined in Eq.7.4, the resolution of
detectable frequencies through the PSD for N = 128 is ∆ f = 1.754kH z.

Figure 8.4: Steady state identification prototype: PSD output for f0,buck1, ESR = 0Ω.

8.1. STEADY STATE SYSTEM IDENTIFICATION METHOD VALIDATION 133

Figure 8.5: Steady state identification prototype: PSD output for f0,buck2, ESR = 0Ω.

Steady state algorithm results obtained for α = 2 and ESR = 0Ω have been shown in
Fig.8.4, Fig.8.4 and fig.8.6. Results related to the buck converter configuration f0,buck1 are
presented in Fig.8.4, the obtained resonant frequency as maximum of the PSD is f01 =∆ f ∗
(128−125) = 5.26kH z. In the results shown in Fig.8.4, the extracted resonant frequency is
f02 =∆ f ∗ (128−124) = 7.02kH z, essentially equal to f0,buck2. The result related to the third
configuration f0,buck3 has been shown in Fig.8.6, the extracted resonant is f03 = ∆ f ∗ (128−
122) = 10.52kH z and it is practically equal to the desired value.
To validate the trend, a set of ten trials has been considered for the respective configurations
with ESR = 0Ω. Results in Fig.8.7, Fig.8.8 and Fig.8.9, have been shown multiple PSD re-
spectively for configurations f0,buck1, f0,buck2 and f0,buck3. The concentration of extracted
resonant frequencies has not big variations, a trend of all the converter configurations can
be distinguished. Results related to these multiple acquisitions are summarised in Fig.8.10,
Fig.8.11 and Fig.8.12, where the number of occurrence and the average among the extracted
resonance frequencies has been shown respectively for the configurations f0,buck1, f0,buck2

and f0,buck3. The average value obtained for f0,buck1 is f01 = ∆ f ∗ (128− 125.5) = 4.38kH z
(Fig.8.10), this value is very close to the desired one and even if some extraction contribu-
tions are at f = ∆ f ∗ (128− 126) = 3.5kH z (which is just one kHz lower the desired value)
the average permits to compensate oscillations around the resonant frequency and the fi-
nite resolution ∆ f . The trend is confirmed for multiple acquisitions related to the other two

134 CHAPTER 8. STEADY STATE SELF-TUNING PROTOTYPE: ON-LINE CONTROLLER

Figure 8.6: Steady state identification prototype: PSD output for f0,buck3, ESR = 0Ω.

configurations, the average value obtained for f0,buck2 is f02 = ∆ f ∗ (128−124.4) = 6.32kH z
(Fig.8.11) while for f0,buck3 is f03 = ∆ f ∗ (128−122.4) = 9.82kH z (Fig.8.12). All the obtained
values result to be very close to the desired ones and, moreover, the averaging among eight
acquisitions permits to compensate the few wrong occurrence among the extracted reso-
nant frequencies. Moreover, it can be noticed that the few wrong occurrence are however
not very far from the desired values.
The obtained results for the resonant frequency identification have been presented in Tab.8.1,
where also statistics among ten acquisitions have been integrated for the extracted values
f01, f02 and f03.

The steady state identification method for the ESR contribution identification has been
introduced in Sec.7.2. A noise shaper with a notch at the resonant frequency (fn = f0) is
used to manipulate the dithering and exalt the zero at fz in the PSD of e[n]. Also during the
ESR identification, the quantization noise is doubled (α = 2). In the results in Fig.8.13, the
configuration f0,buck1 and fz,buck1 = 14.5kH z (ESR = 0.5Ω) has been considered. A sec-
ond peak is obtained and is detect in the left-hand side of the PSD output (Sec.7.3), the
extracted contribution is at fz = 10∆ f = 17.5kH z. Similar results have been obtained in
Fig.8.14 for the configuration f0,buck2 and fz,buck2 = 15.9kH z (ESR = 1Ω), the detected zero

8.1. STEADY STATE SYSTEM IDENTIFICATION METHOD VALIDATION 135

Figure 8.7: Steady state identification prototype: multiple PSD output for f0,buck1, ESR = 0Ω.

f01[kH z] f0,buck1[kH z] f02[kH z] f0,buck2[kH z] f03[kH z] f0,buck3[kH z]
f0 5.26 4.9 7.02 7.3 10.52 10.7
statistics 4.38 - 6.32 - 9.82 -

Table 8.1: Steady state identification prototype: f0 identification results (ESR = 0Ω).

is at fz2 = 9∆ f = 15.8kH z. As discussed in the previous section, considering ESR = 1Ω
(fz,buck3 = 33.8kH z) in the buck converter f0,buck3 inserts a zero contribution out of the
bandwidth which is not easy to detect. In the results shown in Fig.8.14, this trend has been
confirmed. When a zero at the resonant frequency has been inserted the ESR contribution
is been detected at fz3 = 15∆ f = 26.3kH z. A bigger ESR contribution for the third con-
figuration has been considered in the results shown in Fig.8.16. For ESR = 1.8Ω the zero
contribution is inserted at f0,buck3 = 18.8kH z and the related second peak is extracted at
fz3 = 10∆ f = 17.5kH z. When the contribution becomes bigger and closer to the resonant
frequency, a second peak is easier to be detected. Extraction results related to fz have been
summarised in Tab.8.2.

136 CHAPTER 8. STEADY STATE SELF-TUNING PROTOTYPE: ON-LINE CONTROLLER

Figure 8.8: Steady state identification prototype: multiple PSD output for f0,buck2, ESR = 0Ω.

ESR[Ω] fz1[kH z] fz,buck1[kH z] fz2[kH z] fz,buck2[kH z] fz3[kH z] fz,buck3[kH z]
0.5 17.5 14.5 - - - -
1 - - 15.8 15.9 26.3 33.8
1.8 - - - - 17.5 18.8

Table 8.2: Steady state identification prototype: ESR identification results.

8.1. STEADY STATE SYSTEM IDENTIFICATION METHOD VALIDATION 137

Figure 8.9: Steady state identification prototype: multiple PSD output for f0,buck3, ESR = 0Ω.

Figure 8.10: Steady state identification prototype: statistics for f0,buck1, ESR = 0Ω.

138 CHAPTER 8. STEADY STATE SELF-TUNING PROTOTYPE: ON-LINE CONTROLLER

Figure 8.11: Steady state identification prototype: statistics for f0,buck2, ESR = 0Ω.

Figure 8.12: Steady state identification prototype: statistics for f0,buck3, ESR = 0Ω.

8.2 Self-tuning prototype

The Self-tuning prototype has been presented in [23], its implementation is based on the
identification obtained in the previous chapter and validated in the previous section. The
FPGA-TC prototype presented in Cha.5, has been integrated both with the PSD computer
(Sec.9.4) and the extraction-regulation block needed for the self-tuning technique (Fig.8.1).
The PSD computer implements a full-scalable VHDL-coded PSD computer, based on a novel
technique for the FFT computation [24]. The extraction block has been realised as described
in Sec.7.3. In the previous section results for the identification of f0 and fz have been pre-
sented in terms of number of sample related to the RAM address where the PSD output is
store. The hardware implementation of extraction block, is the hardware representation of
the algorithm used in the previous chapter to extract the parameters from the PSD output
computed with the fixed-point emulation of the PSD computer. In the the PSD processing

8.2. SELF-TUNING PROTOTYPE 139

Figure 8.13: Steady state identification prototype: PSD output for f0,buck1, ESR = 0.5Ω.

results in the previous section, the extraction algorithm locates the resonant frequency on
the right-hand side of the PSD output (red circle), while the ESR contribution is detected on
the left-hand side of the processing (green circle). The hardware extraction simply scan a
RAM where the PSD output is stored, for N = 128 the resonant frequency is detected as the
maximum contained in the addresses interval [N /2 : N] and the ESR contribution as a peak
in [0 : N /2]. Because the output of the fixed-point computer is equal to the hardware imple-
mentation (Cha.9), in the previous section the algorithm has been validate with extractions
essentially equals to the hardware PSD output.

The regulation algorithm in this prototype has been realised with a LUT (Look Up Table),
the PID coefficients have to be changed according with the identification algorithm results
in order to obtain the best system bandwidth and margins. In the LUT are stored the PID
gains Kp ,Ki and Kd , for each combination f0 and fz which can be obtained from the identi-
fication algorithm. The pair f0 and fz can be limited. Once that the switching frequency fs

is defined the resonant frequencies have to lower than fs/20 while.

140 CHAPTER 8. STEADY STATE SELF-TUNING PROTOTYPE: ON-LINE CONTROLLER

Figure 8.14: Steady state identification prototype: PSD output for f0,buck2, ESR = 1Ω.

8.2.1 Hardware description

The hardware description of the FPGA-TC based prototype of the model shown in Fig.8.1 has
been presented in Fig.8.17, the digital control prototype described in Cha.5, and used in the
previous section, has been integrated in the FPGA with the PSD computation, the RAM, the
Extraction and the Regulation block. The external loop I/O configuration for the closed loop
communication between the TC and the FPGA is the same presented in Cha.5.
A finite state machine (FSM_proc) and a counter has been integrated in the FPGA to define
the evolution of the self-tuning model. Input signals to the FSM_proc are:

• proc_en_i. This signal is driven by the user through a push button (see UCF files in
Sec.5.1.3) and is used to activate the algorithm sequence.

• activate_compensation_i. This signal is driven by the user through a push button, it ac-
tivates the PID gains changing after that the load parameters identification have been
completed.

• esr_2be_detected_i. Used to distinguish the extraction algorithm which has to be ac-
tivate, with this signal the extraction of the resonant frequency can be distinguished
from the extraction of fz .

8.2. SELF-TUNING PROTOTYPE 141

Figure 8.15: Steady state identification prototype: PSD output for f0,buck3, ESR = 1Ω.

• adc_sample_i. Is the ADC clock sample and it is used to give to synchronize the PSD
computer with the ADC sample.

• startup_finished_i. This signal is used to activate the FSM, because the SI identification
occurs during the steady state the algorithm is activated only when this condition is
reached.

• over_i and nready_i. These are signals used to understand when the PSD computer
ends the processing.

• counter_i. Is the output of the counter block and it used at the beginning of the pro-
cessing. When the algorithm is activated the dithering amplification is enable for some
switching cycles (10Ts for instance) before starting the acquisition of samples to pro-
cess. During this period the quantization noise is amplified.

• abs_error_i. The FSM receives the ADC output error in terms of absolute values, when
the algorithm is enabled this 4 bit signal is output to the PSD computer block.

• pid_coeff_ready_i. This signal is high when the new PID gains are ready to be output
from the regulation block to the PID.

142 CHAPTER 8. STEADY STATE SELF-TUNING PROTOTYPE: ON-LINE CONTROLLER

Figure 8.16: Steady state identification prototype: PSD output for f0,buck3, ESR = 1.8Ω.

• extracted_data_ready_i. When the extraction algorithm ends, this signal is high and
the FSM is designed to decide either to activate the regulation or to wait for a new
identification.

Output signals to the FSM_proc are:

• res_quant_ds_o. As described in the previous section, this signal is used to amplify the
∆Σ quantization noise when the identification algorithm is activated.

• ntf_mod_enable_o. When the ESR contribution exists, this signal enables the notch
insertion at the extracted resonant frequency value.

• processing_en_o. Is used to activate the PSD computation.

• processing_en_counter_o. This signal enables the counter block at the beginning of the
algorithm.

• abs_error_o. Is used to outputs the absolute value of e[n] to the PSD computer when
the processing is enabled.

• regulation_en_o. It enables the regulation block for the best PID gains computation.

8.2. SELF-TUNING PROTOTYPE 143

• avg_en_o. Is used to enable the averaging over eight successive extractions. Averaging
is done both on the extracted f0 and fz .

• extraction_en_o. When the PSD computation ends, this signal enables the extraction
algorithm for the resonant frequency identification.

• extraction_esr_en_o. This signal is high when the identification algorithm have to ex-
tract both the ESR contribution and the resonant frequency.

The finite state machine shown in Fig.8.18 represents the control used to implement the
SI self-tuning algorithm. The steady state identification conclusions addressed in the previ-
ous section and in the previous chapter had brought to a two step process, when also the
ESR contribution have to be considered. Because the SI techniques work during steady
state, the FSM moves from the IDLE state when the signal start_up_finished_i generated
from the DPWM is high. The next state is the state WAIT PROC. In this state the FSM is wait-
ing for starting the algorithm, all the outputs are equal to zero as for the IDLE state. When
the signal proc_en_i is high the FSM enables the counter block (processing_en_counter_o
is high) and amplifies the dithering introduced through the modulator (res_quant_ds_o as-
sumes the value α−1, to have α= 2 is res_quant_ds_o=01 as described in Fig.8.3). The signal
proc_en_i is driven by the user with a push button on the FPGA, through the UCF file (see
Sec.5.1.3) is possible to map the signal on a push button (LOC = G17 on SW7 pushbutton).
Once that the counter is enabled, one clock cycle later the FSM is in the state INSERT NOISE
where the dithering amplification continues to be inserted. The FSM remains in this state for
some switching cycles (10Ts in this example) before starting the processing. This state has
been inserted to delay the start of the PSD computation respect to the noise amplification.
The outputs in this state are the same of the state WAIT PROC (processing_en_counter_o is
high and res_quant_ds_o=01). After ten switching cycles the FSM start the PROCESSING,
in this state the counter is disabled (processing_en_counter_o=0), the dithering amplifi-
cation is enabled for the entire processing and a classical third order noise shaper is used
(ntf_mod_enable_o=0). The FSM receives the ADC output error (abs_error_i) and the clock
of the ADC (adc_sample_i), during the PROCESSING the error e[n] is output to the PSD com-
puter. The FSM moves from the PROCESSING state when the PSD has been computed, the
latency related to this state depends mainly on the number of point N considered for the
computation and the number of processing elements (PEs) used for the FFT computation
(cha:9.4). When the PSD computer ends the processing both signals over_i and nready_i
go high, the FSM moves to the state EXTRAC where amplification of the dithering is dis-
abled (res_quant_ds_o=00). In this state the extraction algorithm is enabled (extraction_en_o
is high) to extract the resonant frequency (f0) as maximum in the PSD output. When the
extraction is enabled the algorithm scan the RAM through the signal read_address_o and
read its content, the incoming data (PSD_data_o) are saved in the extraction block and only
the maximum is saved at the end of the algorithm (Fig.8.17). In this phase only the reso-
nant frequency is searched and only RAM addresses from N /2 to N are considered. When
the extraction ends (extracted_data_ready_i is high) the FSM moves to AVG ENABLE or NTF
MOD state receptively if the ESR has not to be or vice versa has to be detected. The dis-
tinction between this two signals is done considering the signal esr_2be_detected_i, which
is set at the beginning from the user through a switch in the FPGA (LOC = K21 on SW1 DIP
switch) mapped through the UCF file. If the signal esr_2be_detected_i is high the ESR con-
tribution have to be detected and the next state is NTF MOD. In this state the zero in noise

144 CHAPTER 8. STEADY STATE SELF-TUNING PROTOTYPE: ON-LINE CONTROLLER

Figure 8.17: Self-tuning prototype: hardware description.

8.2. SELF-TUNING PROTOTYPE 145

shaper (fn = f0) is inserted at the resonant frequency extracted when the FSM was in EX-
TRAC, hence, the output ntf_mod_enable_o is high and the dithering amplification is acti-
vated (res_quant_ds_o=01). Once that the NTF has been modified the FSM moves to the state
PROC ESR, which is equal to state PROC but with the difference that the entire processing
have to be computed considering a modified noise shaper. Once that the PSD computation
ends (over_i and nready_i are both high, the next state is EXTRAC ESR and the dithering
amplification is disabled (res_quant_ds_o=00). In this state the extraction procedure is en-
abled through extraction_esr_en_o=1, the extraction block read the RAM content from 0 to
N /2 to search the ESR contribution and from N /2 to N to detect the resonant frequency.
However, when the extraction block ends, the signal extracted_data_ready_i is high and the
FSM moves in the state AVG ENABLE. In this state all the outputs except avg_en_o are null
and the averaging function is enabled. This function simply counts and saves the last eight
extractions to compute the average among them. As for the results presented in the previous
section, the averaging permits to compensate some wrong extraction. One clock cycle later
the FSM in the WAIT state where the user can decide for a new identification (proc_en_i=1)
or to change the PID coefficients (activate_compensation_i=1) according with the extracted
f0 and/or fz . The signal activate_compensation_i has been mapped trough the UCF file on a
push button (LOC = A18 on SW6 push button). If the processing is activated from the user the
next state is COUNT ENABLE and the algorithm repeats, otherwise, if the user press on acti-
vate_compensation_i the next state is REGULATION. In this state the signal regulation_en_o
is high and new PID coefficients are output from the PID compensator. In this way the sys-
tem reaches the best compensation in terms of bandwidth and margins, a robust system is
obtained when moving from a compensator studied for a wide range of loads to the best one
defined for the identified load. When the regulation block ends the computation of the new
coefficients (in this prototype has been done simply with a LUT), the block outputs the sig-
nal pid_coeff_ready_i=1 and the FSM moves to the state WAIT PROC to repeat the sequence
when the user likes.
The IDLE state can be reached from every state thorough the reset condition (reset signal on
LOC= H10 push button), this transitions are omitted in Fig.8.18.

8.2.2 Results

In Fig.8.19 is shown the Virtex6 FPGA with the considered IO mapping done for the self-
tuning prototype through the UCF file, the external loop FPGA-TC prototype configuration
presented in Fig.5.11 has been integrated with signal to drive the FSM needed for the self-
tuning algorithm. The Test Chip external loop configuration is the same as presented in
Sec.5.2, the prototype global setting is shown in Fig.8.20.

Let’s consider the system configuration as in the entire dissertation. A 70M H z clock sys-
tem and a switching frequency of 449kH z are considered, while, the buck converter configu-
rations are the same used during the steady state method discussion: f0,buck1 = 4.9kH z (L =
47µH ,C = 22µF), f0,buck2 = 7.3kH z (L = 47µH ,C = 10µF , ESR = 1Ω), f0,buck3 = 10.7kH z
(L = 47µH ,C = 4.7µF) and possible zero contributions are fz,buck1 = 14.5kH z for f0,buck1

(ESR = 0.5Ω), fz,buck2 = 15.9kH z for f0,buck2 (ESR = 1Ω), fz,buck3 = 18.8kH z and fz,buck3 =
33.8kH z respectively with ESR = 1.8Ω and ESR = 1Ω for f0,buck3. The self-tuning prototype
results are presented through a ChipScope interface, where it is possible to read the extracted
parameters (f0 and fz) both in terms of extracted sample in the PSD output and in terms of
frequency. Moreover, the PID gains have been shown. When the regulation is activated from

146 CHAPTER 8. STEADY STATE SELF-TUNING PROTOTYPE: ON-LINE CONTROLLER

Figure 8.18: Selt tunign algorithm: FSM (reset transitions omitted).

Figure 8.19: Self-tuning prototype: FPGA I/O configuration.

8.2. SELF-TUNING PROTOTYPE 147

Figure 8.20: Self-tuning prototype: DEMO configuration[23].

the user, these values are computed considering the extracted parameters in order to set
the best configuration for the identified load. The PID hardware design, as the entire digital
control loop, is the same described in Cha.4 for the off-line controller. Only the ∆Σ has been
modified (dithering amplification and notch insertion in the noise shaper) to implement the
identification algorithm.

The prototype identification results, for the considered buck converter configurations
when ESR = 0Ω have been presented in Fig.8.21, Fig.8.22 and Fig.8.23. Results shown in
Fig.8.21 refer to the buck converter configuration f0,buck1. The last identified resonant fre-
quency is of 3.5kH z and the averaged value over eight acquisitions is f01,av g = 5.3kH z very
close to the desired value f0,buck1. The configuration f0,buck2 has been considered to show re-
sults in Fig.8.22, in this case the averaged resonant frequency results to be at f02,av g = 7kH z
essentially equal to the desired value. Results referring to the third case f0,buck3 has been
shown in Fig.8.23, in this case the averaged value results to be f03,av g = 12.3kH z not far from
f0,buck3.

148 CHAPTER 8. STEADY STATE SELF-TUNING PROTOTYPE: ON-LINE CONTROLLER

Figure 8.21: Self-tuning prototype: extracted load parameters (f0,buck1,ESR = 0Ω).

Figure 8.22: Self-tuning prototype: extracted load parameters (f0,buck2,ESR = 0Ω).

8.2. SELF-TUNING PROTOTYPE 149

Figure 8.23: Self-tuning prototype: extracted load parameters (f0,buck3,ESR = 0Ω).

Figure 8.24: Self-tuning prototype: extracted load parameters (f0,buck1,ESR = 0.5Ω).

150 CHAPTER 8. STEADY STATE SELF-TUNING PROTOTYPE: ON-LINE CONTROLLER

Figure 8.25: Self-tuning prototype: extracted load parameters (f0,buck3,ESR = 1Ω).

Figure 8.26: Self-tuning prototype: extracted load parameters (f0,buck3,ESR = 1.8Ω).

8.2. SELF-TUNING PROTOTYPE 151

The ESR contribution identification has been considered in results shown in Fig.8.24,
Fig.8.25 and Fig.8.26, respectively for the configurations fz,buck1 = 14.5kH z,
fz,buck3 = 33.8kH z (ESR = 1Ω for f0,buck3) and fz,buck3 = 18.8kH z (ESR = 1.8Ω for f0,buck3).
These results have been obtained, considering a notch at the extracted resonant frequency
(fn = f0) in the third order modulator during the dithering amplification (see the process-
ing FSM in Fig.8.18). In results shown in Fig.8.24, the extracted resonant frequency is f01 =
5.3kH z and the ESR contribution is fz1 = 15.8kH z. Considering ESR = 1Ω in f0,buck3, the
identified zero is at fz3 = 29.8kH z when a notch at fn = f0 = 10.5kH z is inserted in the third
order noise shaper. When the ESR contribution is approaching the bandwidth is confirmed
that its contribution is detectable. In results presented in Fig.8.26, a larger contribution
is considered in the configuration fz,buck3 = 18.8kH z (ESR = 1.8Ω), with a notch effect at
fn = f03 = 10.5kH z the extracted zero contribution fz3 = 19.3kH z is very precise.

Figure 8.27: Self-tuning prototype: averaged extracted load parameters (f0,buck2,ESR = 1Ω).

The averaged results after eight acquisitions, have been shown in Fig.8.27 and Fig.8.28,
respectively for fz,buck2 = 15.9kH z (f0,buck2 = 7.3kH z and ESR = 1Ω) and fz,buck3 = 18.8kH z
(f0,buck3 = 10.7kH z and ESR = 1.8Ω). For the configuration f0,buck2 the averaged values are
f02,av g = 7kH z and fz2,av g = 15.8kH z, both obtained values results to be very close to the
desired values (Fig.8.27). The averaged ESR contribution for the configuration f0,buck3 is
fz3,av g = 17.5kH z (Fig.8.28).
The just presented results have been summarised in Tab.8.2.2, where averaged and extracted
values have been compared with desired ones. Obtained values are very close with ones
obtained both with the fixed-point model (previous chapter) and the hardware model with
the PSD computed with the Matlab fixed-point emulation model (previous section). In this
table the averaged and obtained values are compared with desired ones.

The ChipScope view when the regulation is activated is shown in Fig.8.29. After the
identification presented with previous results, the PID coefficients change. As presented in
Sec.4.2.1 for the PID hardware implementation, the compensator gains have been expressed

152 CHAPTER 8. STEADY STATE SELF-TUNING PROTOTYPE: ON-LINE CONTROLLER

Figure 8.28: Self-tuning prototype: averaged extracted load parameters (f0,buck3,ESR =
1.8Ω).

ESR fz1,av g fz,buck1 f01,av g f0,buck1 fz2,av g fz,buck2 f02,av g f0,buck2 fz3,av g fz,buck3 f03,av g f0,buck3

Ω [kH z] [kH z] [kH z] [kH z] [kH z] [kH z] [kH z] [kH z] [kH z] [kH z] [kH z] [kH z]
0.5 15.8 14.5 5.3 4.9 - - - - - - - -
1 - - - - 15.8 15.9 7 7.3 29.8 33.8 10.5 10.7

1.8 - - - - - - 19.3 18.8 10.5 10.7
0 - - 5.3 4.9 - - 7 7.3 12.3 10.7

Table 8.3: tab:Self-tuning prototype: extracted, averaged load parameters and desired values
comparison.

in terms of mantissa and exponent. When the regulation has been activated new parameters
have been output from the regulation block to the PID. New gains are retrieved from a LUT.
The LUT has been configured considering the range of possible buck converter configura-
tions (f0 < fs/20), its entries are related to the possible extracted values which are limited
to the finite resolution (∆ f = fs/2N) imposed by choosing N = 128 and the switching fre-
quency. Moreover the PID coefficients for these possible entries can be easily defined by
using the automated PID tuning tool presented in Sec.4.1.5. After the load identification,
is possible to obtain the best PID configuration (in terms of bandwidth and margins) for
the related buck converter configuration. In Fig.8.30 is shown the system reaction to a load
step of 100m A. In this case, the PID configuration is the one used during the identification
(kpm = 1,kim = 1,kdm = 15,kpe = 9,kie = 9,kde = 15). This configuration is chosen to be
stable on the interested range of frequencies. Once the load has been identified and the reg-
ulation activated Fig.8.29, the PID gains change according with the identification. The load
step system reaction after the regulation has been shown in Fig.8.31. The time needed to
recover the output voltage after the step before changing the PID configuration (Fig.8.30) is
about 1.6mses while, when the PID is changed after the identification, the recovery time is
770µsec. Adjusting both margins and bandwidth of the system, in order to achieve the best

8.2. SELF-TUNING PROTOTYPE 153

Figure 8.29: Self-tuning prototype: PID gains regulation (f0,buck2,ESR = 1Ω).

regulator settings related to the identified buck converter, permits to decrease the system re-
covery time. Then, if a load step occurs when the best compensation is obtained the system
is able to faster recover the output voltage. The dithering amplification effects on the out-

Figure 8.30: Self-tuning prototype: load step response before the PID gains regulation.

154 CHAPTER 8. STEADY STATE SELF-TUNING PROTOTYPE: ON-LINE CONTROLLER

Figure 8.31: Self-tuning prototype: load step response after the PID gains regulation.

put voltage, has been shown in the previous chapter for the fixed-point model and for α= 2
(Fig.7.28). To validate this result and the hardware VHDL-coded model, in Fig.8.32 has been
shown the output voltage (V _OU T in yellow) when, the dithering effect is doubled and the
identification is enabled. The violet signal PROC _E in this figure, is triggered with the signal
proc_en_i (which enable the self-tuning algorithm) and stay high for the entire self-tuning
algorithm (when the FSM comes back to the state WAIT PROC). When PROC _E is zero, the
output voltage corresponds to the normal dithering condition (α = 1) for the third order
modulator. When the signal PROC _E is high (proc_en_i is high) the dithering is doubled
(res_quant_ds_o = 01) and its effects is reflected on the output voltage. An averaged increas-
ing of about 150mV can be observed in the oscilloscope output (Fig.8.32). The magnitude of
the perturbation can be assumed equal as expected and the theoretical model introduced in
Sec.7.2 has been validated.

The digital system in Fig.8.17, have been synthesized considering a Virtex6 FPGA for
a PSD computer working on N = 128 samples. The obtained maximum frequency is of
91.861M H z [23]. and the hardware resource usage is summarised in Tab.8.4, while in Tab.8.5
is the resource usage related to the Virtex6 FPGA.

Table 8.4: Self-tuning prototype: resource usage

Prototype resources use #

RAMs 2
64x32-bit single-port distributed Read Only RAM 2

Table 8.4: continues into the next page

8.2. SELF-TUNING PROTOTYPE 155

Table 8.4: continues from the previous page

Prototype resources use #

MACs 10
16x16-to-33-bit MAC 4
17x16-to-33-bit Mult with pre-adder 2
17x16-to-34-bit MAC with pre-adder 4
Multipliers 8
16x16-bit multiplier 4
6x5-bit multiplier 4
Adders/Subtractors 470
12-bit adder 3
12-bit subtractor 3
13-bit adder 3
13-bit subtractor 1
17-bit adder 12
17-bit subtractor 10
2-bit adder 1
20-bit adder 10
21-bit adder 76
22-bit adder 152
27-bit adder 2
28-bit adder 4
28-bit addsub 1
28-bit subtractor 3
29-bit adder 1
4-bit adder 3
5-bit adder 2
5-bit subtractor 2
6-bit adder 1
6-bit subtractor 1
7-bit adder 3
7-bit addsub 1
7-bit subtractor 2
8-bit subtractor 10
81-bit adder 80
81-bit subtractor 80
9-bit subtractor 3
Adder Trees 3
20-bit / 6-inputs adder tree 2
28-bit / 4-inputs adder tree 1
Counters 3
2-bit up counter 1
28-bit up counter 1
4-bit up counter 1

Table 8.4: continues into the next page

156 CHAPTER 8. STEADY STATE SELF-TUNING PROTOTYPE: ON-LINE CONTROLLER

Table 8.4: continues from the previous page

Prototype resources use #

Accumulators 3
10-bit up loadable accumulator 2
4-bit up loadable accumulator 1
Registers 15549
Flip-Flops 15549
Comparators 38
1-bit comparator greater 1
11-bit comparator lessequal 1
12-bit comparator equal 2
12-bit comparator greater 4
13-bit comparator greater 2
16-bit comparator greater 3
28-bit comparator greater 1
29-bit comparator greater 2
3-bit comparator greater 2
4-bit comparator greater 1
5-bit comparator greater 1
5-bit comparator lessequal 1
6-bit comparator greater 2
6-bit comparator lessequal 1
7-bit comparator greater 8
7-bit comparator lessequal 2
9-bit comparator lessequal 4
Multiplexers 1908
1-bit 2-to-1 multiplexer 843
1-bit 4-to-1 multiplexer 5
12-bit 2-to-1 multiplexer 19
16-bit 128-to-1 multiplexer 4
16-bit 2-to-1 multiplexer 171
16-bit 3-to-1 multiplexer 4
16-bit 4-to-1 multiplexer 4
20-bit 2-to-1 multiplexer 154
28-bit 16-to-1 multiplexer 2
28-bit 2-to-1 multiplexer 31
29-bit 2-to-1 multiplexer 17
3-bit 2-to-1 multiplexer 12
4-bit 2-to-1 multiplexer 14
5-bit 2-to-1 multiplexer 5
6-bit 2-to-1 multiplexer 7
7-bit 2-to-1 multiplexer 46
8-bit 6-to-1 multiplexer 4
80-bit 2-to-1 multiplexer 560

Table 8.4: continues into the next page

8.2. SELF-TUNING PROTOTYPE 157

Table 8.4: continues from the previous page

Prototype resources use #

9-bit 2-to-1 multiplexer 6
Logic shifters 4
7-bit shifter logical left 2
7-bit shifter logical right 2
FSMs 6
Xors 8
1-bit xor2 8

Table 8.4: ends from the previous page

158 CHAPTER 8. STEADY STATE SELF-TUNING PROTOTYPE: ON-LINE CONTROLLER

Figure 8.32: Self-tuning prototype: dithering amplification effects on the output voltage.

Virtex6 FPGA resources
Slice Logic Utilization
Number of Slice Registers 7491 out of 301440 2%
Number of Slice LUTs 21583 out of 150720 14%
Number used as Logic 21135 out of 150720 14%
Number used as Memory 448 out of 58400 0%
Number used as SRL 448
Slice Logic Distribution:
Number of LUT Flip Flop pairs used 23190
Number with an unused Flip Flop 15699 out of 23190 67%
Number with an unused LUT 1607 out of 23190 6%
Number of fully used LUT-FF pairs 5884 out of 23190 25%
Number of unique control sets 311
IO Utilization:
Number of IOs 196
Number of bonded IOBs 194 out of 600 32%
Specific Feature Utilization:
Number of BUFG/BUFGCTRLs 2 out of 32 6%
Number of DSP48E1s 14 out of 768 1%

Table 8.5: Self-tuning prototype: Virtex6 resource usage.

Chapter 9

Scalable FFT and
autocorrelation-based HDL
processor

In this Chapter, a complete description of the autocorrelation-based DSP block (PSD com-
puter) is given. The original base design of the system, which is discussed in [89, 24], consists
in an autocorrelation-based processor whose central part is a scalable FFT module. The here
described DSP block is the PSD computer exploited in the previous chapter for the on-line
controller prototyping. This is composed of P processing elements that operate in parallel.
The bigger P , the faster the computation but also the larger the requested chip area. P is
a degree of freedom of the designer and must be chosen accordingly to the previous con-
siderations. In the SMPS system case, resource usage requirements are tight and the clock
frequency must be at least 70M H z (as for results presented in the entire dissertation).

The implemented algorithm is a variation of the FFT called Constant Geometry Structure
FFT (CG-FFT). This algorithm allows data shuffling from one computational stage to another
to keep the same structure. Thus, the data flow follows a constant scheme with benefits in
terms of control complexity.

The architecture of the processor is fully scalable in terms of transform length, data bits
and Processing Elements (PEs). Each PE implements the basic operation of the FFT, and all
the PEs operate in parallel. A processor with many PEs will take less clock cycles to com-
plete an FFT computation of a given length than a processor with few PEs, but will occupy
more FPGA resources. This tradeoff makes the number of PEs a degree of freedom in the
PSD computer design. The structure of the design was chosen considering resource usage
requirements, while allowing improving of timing performances if necessary, thanks to scal-
ability.

Computation of FFTs is performed by using sums, differences and multiplications by uni-
tary module complex values called twiddle factors (TF). In conventional approaches twiddle
factors are either retrieved from a Look-Up Table (LUT), or they are computed at runtime by
exploiting a CORDIC pipeline-based system. For this final year project, a novel algorithm
for twiddle factors generation exploiting the properties of CG-FFT was ideated, with the
goal of reducing resource requirements by achieving an improved PE-scalability. Two hy-

159

160 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

brid CORDIC-LUT hardware architectures implementing the algorithm were designed. The
first, called shared core, uses a single module to perform phase rotations of TFs while the sec-
ond, called pipelined, achieves a higher throughput than the former but uses more hardware
resources. Both architectures prove to be more efficient in terms of resource usage if com-
pared to other architectures in the State of the Art. Furthermore, an analysis based on results
comparing with MATLAB built-in functions fft and xcorr, showed that, accuracy being equal,
the designed models always use less resources than the traditional approach.

The whole project was developed by using VHDL RTL, while the test environment was
based on MATLAB. A fixed-point library implementing the rounding algorithms of the stan-
dard IEEE fixed_pkg VHDL package was written. A set of functions models every block of
the processor and high-level language scripts generate stimuli and test vectors for the VHDL
testbenches. This allows us to test the overall system and all the single blocks for every con-
figuration of the parameters.

A PSD computer based on autocorrelation embedding the FFT scalable processor was
implemented. The whole system was synthesized on Xilinx Virtex-5 FPGA showing complete
fullfillment of design requirements and good accuracy performance, as seen in Fig. 9.1.

Figure 9.1: Data at the end of computation. Picture obtained with 18-bit resolution and
scaling factor of 7.

9.1. SCALABLE FFT ARCHITECTURE 161

9.1 Scalable FFT architecture

Constant geometry FFTs are algorithms that perform the same data shuffle at every stage.
The first CG-FFT algorithm as a modified version of the radix-2 FFT was introduced in [83].
Since then, other authors have contributed with novel variations [7][7]. The implemented ar-
chitecture takes advantage of the constant structure obtained by both approaches to achieve
PE-scalability. In this chapter the family of architectures introduced in [107] and based on [7]
is described. Furthermore, its VHDL RTL implementation is covered, with particular atten-
tion to the hierarchical structure of modules and custom data types used.

9.1.1 Description of the implemented architecture

A constant geometry algorithm for different classes of trigonometric transforms, like the
FFT, the Discrete Harley Transform (DHT), the Discrete Sine and Cosine Transform (DST
and DCT) was introduced in [7]. In the case of FFT, the regularity of the algorithm is due
to the same ordering between the stages as in Peases’s FFT [83], but with a generalisation
to any radix. It is possible to observe that in the radix-2 FFT case the algorithms have the
same structure, thus for the rest of the dissertation CG-FFT will be used to denote the result
of both approaches without ambiguity.

An example dataflow of CG-FFT is shown in Fig. 9.2. The data shuffle performed between
each stage is called perfect shuffle or Faro shuffle. This is represented in Pease’s algorithm,
whose formulation is in Eq. C.1, with LN

N
2

. The concept can be made clearer by using an ex-

ample with a deck of cards. A perfect shuffle is performed when the deck is perfectly split
into two and a card of one of the obtained decks is alternated with one from the other, as
shown in Fig. 9.3. Shuffling the deck k times results in a perfect shuffle of order k. Moreover,
a perfect shuffle of order k = log2 N , when N is a power of two, does not affect the original
order of elements. The idea behind the architecture in [107], is to decompose this permuta-
tion in order to obtain scalable structures. Considering data at the beginning of each step

Figure 9.2: Flowgraph of the radix-2 DIF CG-FFT with N = 8.

162 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Figure 9.3: Example of perfect shuffle with a deck of cards. From [46].

of the CG-FFT as a vector, it is possible to associate an address to every element [107]. The
address of element ai from vector a is the binary representation of its index i written as

bin(i) = [x, y, z] = [xu , . . . , x1︸ ︷︷ ︸
x

, yv , . . . , y1︸ ︷︷ ︸
y

, zw , . . . , z1︸ ︷︷ ︸
z

], (9.1)

where xk , yk , zk can be 0 or 1. The derivation of the architecture is based on the interpretation
of binary addresses and x, y, z which are called address fields.

• w is equal to the radix of the algorithm, and z is the address field referring to the path.
The corresponding decimal value indicates an input of the basic butterfly.

• If P ∈ N, equal to a power of two, is the number of PEs in the architecture, then v =
log2 P . Field y is said to be address field referring to the PE, which is associated to a
natural number p ranging from 0 to P −1.

• The remaining address field x refers to the cycle at which data is available for compu-
tation. Because at every stage s, where s = 0, . . . , log2 N , N data have to be processed,
the number of cycles per stage is C = N

2P . Cycles are indicated in this text with c, thus
c = 0, . . . ,C −1.

For example considering data element a13, if N = 16 and P = 2, it results

bin(13) = [1,1︸︷︷︸
x

, 0︸︷︷︸
y

, 1︸︷︷︸
z

].

This means that element a13 must be fed to the first input of PE 0 at cycle 4. Note that u +
v +w = n with n = log2 N . Moreover, being C = 4, the overall computation will take 16 clock
cycles.

A permutation R of the elements of vector a can be seen as the application of an operator
ρ to their addresses. Two operators ρ1 and ρ2 may be applied in sequence

ρ2
(
ρ1[an−1 . . . a0]

)= ρ2[bn−1 . . .b0],

9.1. SCALABLE FFT ARCHITECTURE 163

where [an−1 . . . a0] is the address of a the generic element of vector v and [bn−1 . . .b0] is the
address of the same element after the application of ρ1. The operator associated to the per-
fect shuffle permutation LN

N
2 (k)

of order k is σ(k), which is defined as follows:

σ(k)[x, y, z] = [
[xu−k , . . . , x1, yv , . . . , yv−k+1],

[yv−k , . . . , x1, zw , . . . , zw−k+1],

[zw−k , . . . , y1, xu , . . . , xu−k+1]
]
.

(9.2)

This corresponds to a circular shift of the address bits from right to left of k positions. The

circular shift of two of the address fields, f1 and f2, can be indicated as σ f1 f2

(k) . It is possible to
prove [131] that

σ(k) =σxz
(k)σ

y z
(k). (9.3)

In Suleiman’s architecture operatorσy z
(k) is implemented by a wire interconnection called Per-

fect Shuffle Network (PSN), and operator σxz
(k) by a special network calld Sequential Perfect

Shuffle and/or Un-shuffle Network (SPSN).

Architectural structure

A block diagram illustrating the architecture is shown in Fig. 9.1.1. Both new samples and
data from previous computations feed the PE, implementing a butterfly operation. After the
execution of the PE, the PSN performs the first shuffling phase, and the FIFO blocks fulfil
permutation LN

N
2 (1)

implementing the SPSN.

Fig. 9.1.1 represents the structure of a PE realising the radix-2 DIT butterfly. The feeder
block selects which data input to consider, while another input comes from a ROM, or a TF
generator, to feed a complex multiplier.

The structure of FIFO blocks is illustrated in Fig. 9.1.1: every block is composed of log2
N
P −

1 levels of Shift-Exchange Units (SEUs) that properly delay computational data. Each SEU is
composed of two delay element arrays with a size equal to two power the level of the SEU,
and a criss-cross switch. These blocks are cascaded and ordered inside the FIFO from the
lowest level, which is 0, to the highest. When two data xin and yin feed the SEU, xin is sent to
the second delay array or directly to the output yout depending on the state of the criss-cross
switch, while yi n is directly inserted into the first delay element array. Each clock cycle, data
stored in delay arrays move of one position, until they are output to the criss-cross switch
(first array) or to xout (second array). The state of the criss-cross switch changes according
to its level: if this is i , transition will occur every 2i clock cycles. Overall operation of FIFO
modules is illustrated in Fig. 9.5, for a single PE and N = 8. In the given example only one
FFT stage is considered, with input vector [0,1,2,3,4,5,6,7]ᵀ, then data feeding the block is
assumed to be constant and equal to zero to allow a clearer representation. In the particular
case P = 1, the PSN results in a simple non-crossed connection, consequently the output of
SEU modules in the diagram is expected to be the perfect shuffle of the input vector. This is
validated in the second stage, as observed in the right column of Fig. 9.5.

The permutation chain composed of PSN and FIFO constitutes an interruptible data ex-
change and ordering approach that differs from most of the solutions in the state of the art.
Among pipelined architectures, the most similar is the iterative structure from the SPIRAL
project which is shown in Fig. C.1. This is because of the coincidence between Pease and
Astola-Akopian algorithms in the current case of study. A structure similar to FIFOs and

164 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Figure 9.4: Structure of the scalable architecture. From [107].

9.1. SCALABLE FFT ARCHITECTURE 165

Figure 9.5: Operation of FIFO blocks. N = 8, P = 1.

166 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

SEUs is also discussed in the SPIRAL-related paper of 2005 [75]. The difference, though, is in
the implementation of the PE, which is pipelined in [75] and single-clock in [107]. While pos-
sibly reducing the operating frequency of the design, the last solution can be more hardware-
efficient, so more suitable to the requirements of the commissioned design. Moreover, the
architectural family in [107] hardly supports pipelined PEs, because data shuffling and but-
terfly computations are supposed to have the same timing. Other pipeline structures such
as conventional MDC and SDF have the number of PEs fixed and depending on N . With
Suleiman’s approach, this becomes a tunable parameter which is expected to allow improved
flexibility.

The concept of single-clock PE is also present in [3] (Fig. C.8), but in this paper a RAM is
used to perform reading and writing, thus an address generator must be used. On the con-
trary, in [107] no address management is necessary because all shuffling is performed clock
by clock in the PSN and FIFO system. A similar structure with shuffling registers and anal-
ysed in section C.2 [132], but this structure (Fig. C.2) needs to manage RAM addresses for the
output radix-2 stages. This observation can be extended in general to in-place architecture
by noticing that in Suleiman’s architecture, data are not written in the same register they are
taken from. Consequently in [107] the structure is classified as not-in-place.

9.1.2 RTL design

The forementioned architecture has been implemented in VHDL RTL. The chosen standard
of the language is VHDL93, which allows more advanced constructs if compared with the
previous VHDL83 version, while mantaining a high compatibility with synthesis tools.

The whole project takes advantage of the IEEE fixed_pkg package [12]. This standard
package is built-in in every VHDL200X tool, like Xilinx ISE, but needs a compatibility ver-
sion to work with VHDL93. The package defines the types ufixed (unsigned fixed-point),
and sfixed (signed fixed-point) with their unresolved matching types u_ufixed and u_sfixed.
Fixed_pkg also introduces arithmetic and conversion functions. One of the features of this
package is the possibility to select between truncation and rounding and between saturation
or wrap when resizing a binary word. This is extensively used in the design both as a default
or as an optional selectable capability, increasing the flexibility of the processor.

Throughout the design the naming convention in Tab. 9.1 was adopted for the coding of
entities, architectures and packages. The name of architectures is obtained by adding _be-
havioral or _structural at the end of the name of the matching entity. When more than one
architecture are available for a specified entity, then the suffix is descriptive of their features.

Global VHDL packages

The realised implementation is centered on a hierarchy of VHDL packages of constants. De-
pending on its context, each module imports some of these packages. In fft_global_settings
the following editable constants are defined:

global_points_c is the number of points of the FFT, equal to N . It must be a power of two
and the default value is 1024.

global_pes_c is the number of PEs of the processor. It must be equal to a power of two, and
the default value is 4. It corresponds to P .

9.1. SCALABLE FFT ARCHITECTURE 167

Table 9.1: Naming convention adopted in the design.

Suffix Usage

_i Input signals.
_o Output signals.
_ty Data types.
_g Generics.
_c Constants.
_s Internal signals.
_v Variables.
_p Processes.

global_accuracy_int_c is the number of bits of the integer part in the signed fixed-point
representation of data. One bit is necessarily a sign bit. The default value is 8.

global_accuracy_frac_c is the number of bits of the fractional part in the fixed-point repre-
sentation of data. The default value is 10.

global_tf_accuracy_int_c is the number of bits of the integer part in the signed fixed-point
representation of twiddle factors. The default value is 1, which means that only the
sign bit is used.

global_tf_accuracy_frac_c is the number of bits of the integer part in the signed fixed-point
representation of twiddle factors. The default value is 15.

global_pe_multipliers_rounding_c is the rounding type performed inside the PE. The de-
fault value is fixed_truncate.

All these constants are global: every module imports this package so that editing any of these
values consequently causes a change in the structure of the architecture without needing
modifications to further VHDL code. fft_global_settings also defines:

global_accuracy_tot_c equal to B , is the total number of bits of data words. It is obtained
as:

global_accuracy_int_c+global_accuracy_frac_c.

global_stages_c equal to log2 N is the number of stages of the FFT.

global_cycles_per_stage_c is the number of cycles that the computation of every stage takes.
It is equal to

global_points_c

2 ·global_pes_c
.

global_seu_levels_c is the number of SEU levels of every FIFO structure. It is equal to

log2
global_points_c

global_pes_c
−1.

168 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Package fft_types defines the global types used throughout the whole design. These types
are used both inside the modules and in their interfaces. The choice of using custom data
types for interfaces instead of the more common std_logic_vector default type allows easier
debugging for strucures with many PEs.

complex_part_ty is a signed number in fixed-point representation. The number of bits of its
integer part is global_accuracy_int_c and of its fractional part is global_accuracy_frac_c.
A complex_part_ty type signal or variable represents either the real or the imaginary
part of computational data. It is defined with the following VHDL code:
subtype complex_part_ty is
u_sfixed(global_accuracy_int_c-1 downto

-global_accuracy_frac_c);

complex_part_vector_ty is an array of complex_part_ty elements.

complex_ty is a record of two complex_part_ty defined as follows:
type complex_ty is

record
real_p: complex_part_ty;
imag_p: complex_part_ty;

end record;

It represents an input or an output of a PE. An array of complex_ty is a complex_vector_ty.

twiddle_factor_part_ty is a signed number in fixed-point representation. It is composed
of global_tf_accuracy_int_c for the integer part and global_tf_accuracy_frac_c for the
fractional part. Its VHDL definition is
subtype twiddle_factor_part_ty is
u_sfixed(global_tf_accuracy_int_c-1 downto

-global_tf_accuracy_frac_c);

twiddle_factor_ty represents a twiddle factor in the architecture of the processor. It is de-
fined as the record
type twiddle_factor_ty is
record
real_p: twiddle_factor_part_ty;
imag_p: twiddle_factor_part_ty;

end record;

Like previously described types, the twiddle_factor_ty data type has its own array coun-
terpart twiddle_factor_vector_ty.

Package math_utils defines mathematical functions that are either to be implemented
on hardware or used at compilation time. Almost every module and package, including
fft_global_settings uses its features to implement the full scalability of the processor in terms
of PEs, bit width of data words and number of elements to process.

Datapath

VHDL entity pe is implemented in architecture pe_structural, whose diagram is shown in
Fig. 9.6. The first mode_mux block allows to choose what data to compute between datafbk,
that are complex values output by the FIFO, and dataext, or rather data coming from an ex-
ternal source. Selection is driven with signal sel_i. Module complex_ty_adder performs both

9.1. SCALABLE FFT ARCHITECTURE 169

complex addition and subtraction, saturating their values in case of overflow. This is possi-
ble by using to the resize function from packge fixed_pkg, which allows to choose both satu-
ration and truncation type. Complex_value_multiplier implements complex multiplication
with three real multipliers by exploiting Gauss’Alg. [21]. Its VHDL fully-parametric interface
is in Lst. 9.1. Considering the two complex numbers a + j b and c + j d , their product λ is
obtained applying:

m1 = (a +b) · c

m2 = (d + c) ·b

m3 = (d − c) ·a

ℜ{λ} = m1 −m2

ℑ{λ} = m1 +m3.

(9.4)

Module complex_value_multiplier too takes advantage of fixed_pkg: the rounding type is
selectable by editing constant global_pe_multipliers_rounding _c in fft_global_settings that
matches generic rounding_g of the entity interface when instantiated. Enabling round-
ing results in increased accuracy but also in usage of more logic [12], thus for default this
is disabled. The complete implementation of Eq. (9.4) in architecture complex_ty_ multi-
plier_behavioral is shown in Lst. 9.2. In [107] Suleiman implements the proposed architec-
ture by using four real multipliers for each PE. By choosing the full-parametric Gauss-based
complex multiplier in the given listing, we expect to achieve a saving in terms of FPGA re-
sources. Nonethless, Eq. (9.4) defines a procedure that requires three additional real addi-
tions or subtractions if compared to the traditional approach [21]. This could increase the
critical path in the design. We consider this a minor drawback, given the tight resource usage
requirements from the customer. In Fig. 9.6 signal sum_s realizes yl = xl + xl+N

2
while signal

Listing 9.1: Interface of entity complex_value_multiplier.
library ieee;
use ieee.std_logic_1164.all;
library ieee_proposed;
use ieee_proposed.fixed_float_types.all;
use ieee_proposed.fixed_pkg.all;
use work.fft_types.all;

entity complex_value_multiplier is
generic(a_int_g : integer := 8;

a_frac_g : integer := 10;
b_int_g : integer := 8;
b_frac_g : integer := 10;
out_int_g : integer := 8;
out_frac_g : integer := 10;
rounding_g : fixed_round_style_type := fixed_round);

port(datain_a_real_i : in u_sfixed(a_int_g-1 downto -a_frac_g);
datain_a_imag_i : in u_sfixed(a_int_g-1 downto -a_frac_g);
datain_b_real_i : in u_sfixed(b_int_g-1 downto -b_frac_g);
datain_b_imag_i : in u_sfixed(b_int_g-1 downto -b_frac_g);
dataout_real_o : out u_sfixed(out_int_g-1 downto -out_frac_g);
dataout_imag_o : out u_sfixed(out_int_g-1 downto -out_frac_g));

end entity complex_value_multiplier;

product_s realizes zl = (xl − xl+N
2

)W l
N , thus implementing the Gentleman-Sande butterfly.

Choosing radix-2 DIF instead of DIT like in [107], brings an advantage in terms of control

170 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Listing 9.2: Behavioral architecture of module complex_value_multiplier.
library ieee_proposed;
use ieee_proposed.fixed_pkg.all;
use ieee_proposed.fixed_float_types.all;
use work.fft_types.all;
use work.fft_global_settings.all;

architecture complex_value_multiplier_behavioral of
complex_value_multiplier is

begin
compute_p: process(datain_a_real_i,datain_a_imag_i,

datain_b_real_i,datain_b_imag_i)
-- Temporary results are such that they can contain
-- the result of a multiplication and a sum
constant upper_bound_c : integer :=
sfixed_high(datain_a_real_i,’*’,datain_b_real_i)+1;

constant lower_bound_c : integer :=
sfixed_low(datain_a_real_i,’*’,datain_b_real_i);

variable x_v : sfixed(upper_bound_c downto lower_bound_c);
variable y_v : sfixed(upper_bound_c downto lower_bound_c);
variable z_v : sfixed(upper_bound_c downto lower_bound_c);

begin

-- First step of Gauss’ algorithm
x_v := datain_b_real_i*(datain_a_real_i+datain_a_imag_i);
y_v := datain_a_imag_i*(datain_b_real_i+datain_b_imag_i);
z_v := datain_a_real_i*(datain_b_imag_i-datain_b_real_i);

-- Assigning output and possible rounding
dataout_real_o <= resize(x_v-y_v,

out_int_g-1,
-out_frac_g,
fixed_saturate,
rounding_g);

dataout_imag_o <= resize(x_v+z_v,
out_int_g-1,
-out_frac_g,
fixed_saturate,
rounding_g);

end process compute_p;
end architecture complex_value_multiplier_behavioral;

that will be explained in the following section 9.1.2. Being PE operations necessarily iter-
ated throughout the execution of the FFT, performing additions can lead to a saturation of
all data. Consequently, a one-place arithmetic right shift of both signals is necessary. This
can be considered a division by N of the whole FFT, as required in Eq. (B.8). The second
mode_mux multiplexer is driven by signal mode_i and selects between uncomputed data
from the first multiplexer and post_shift signals. Its output feeds the out_reg output regis-
ters.

The PSN is implemented with a simple behavioral architecture, which is in Lst. 9.3. A
variation of the number of PEs results in a different PSN structure, and this is managed with
the global constants package fft_global_settings. Moreover this light solution shows the ad-
vantages of Suleiman’s architecture. Permutation of data between PEs is achieved in few
lines, without needing any memory nor control for information coherence and concurrent
access. Constant complex_zero_c is a complex_ty value with all fields equal to zero. It is de-
fined in fft_types.

9.1. SCALABLE FFT ARCHITECTURE 171

Figure 9.6: Diagram of architecture pe_structural.

172 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Listing 9.3: Behavioral architecture of module psn.
use work.fft_types.all;
use work.fft_global_settings.all;

architecture psn_behavioral of psn is
begin
process(datain_i)
begin
for i_v in 0 to 2*global_pes_c-1 loop
-- first half of datain_is
if i_v<=global_pes_c-1 then
dataout_o(2*i_v)<=datain_i(i_v);

-- second half of datain_is
elsif i_v>=global_pes_c then
dataout_o(2*(i_v-global_pes_c)+1)<=datain_i(i_v);

else
dataout_o(i_v)<=complex_zero_c;

end if;
end loop;

end process;
end architecture psn_behavioral;

In order to analyse the implementation of FIFO blocks, it is necessary to explore the ar-
chitecture of module seu. Delay arrays are implemented by the chain signals as a chain of
registers. This structural choice avoids an overhead in the usage of FPGA built-in RAM mod-
ules that could be too many to be instantiated. Management of chain signals requires three
processes:

• criss_cross_p implements the criss-cross switch of the SEU, and is driven by signal
state_ty.

• chain_comb_p is a combinatorial process that computes the next state of register chains.
When it is enabled with en_i, it performs a single-position shift of data in the chain and
the insertion of a new element at the top. The behaviour is comparable to the classic
FIFO queue.

• chain_upd_p is a sequential process that implements the actual registers forming the
queue. Every clock cycle, it updates the queue according to the output of the previous
chain_comb_p block.

A diagram depicting the behavioral architecture of a SEU is shown in Fig. 9.7. The output
of the SEU module is taken from the criss-cross switch or from signal chain_2_s as its last
element, taking advantage of its VHDL attributes with expression chain_2_s’high.

SEU modules are instantiated inside fifo structures by using the generate VHDL construct
and generics. The structural scheme obtained is illustrated in Fig. 9.1.1.

Another fundamental module, whose architecture will be covered in the following chap-
ter of this dissertation, is twiddle_factors_system. This provides the correct twiddle factors to
the PE at each clock cycle. The module is driven by an enable signal. Internal counters keep
trace of stage and cycle of the TFs that are being computed, and more sets of twiddle fac-
tors are in involved in the generation process at the same time. A single-bit signal specifies
the transform type, if it is direct or inverse. Timing is managed by a ack-nack protocol: the
twiddle_factors_system module outputs a high valid_o signal whenever the computation of

9.1. SCALABLE FFT ARCHITECTURE 173

Figure 9.7: Diagram of architecture seu_behavioral.

174 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

a set of P twiddle factor is complete, and keeps generating TFs unless the en_twiddle_calc_i
signal is driven to a low level by the control of the processor.

The complete dataflow of the processor is illustrated in Fig. 9.8. A std_ulogic register
stores the requested transform type when enabled. Its output feeds the twiddle_factors_system
module. This block receives an enable signal (en_twiddle_calc_i) and a synchronous clear as
further inputs, and its twiddle_valid output is directly taken to the output of the datapath. A
counter is used both to manage the state of fifo modules and to signal the reaching of the last
cycle or of the last stage. dataout_o is an array of complex_ty values with P elements. These
are taken at the output of the PEs, following the CG-FFT flowgraph shown in Fig.9.2.

9.1. SCALABLE FFT ARCHITECTURE 175

Figure 9.8: Diagram of architecture datapath_structural. P = 2. Clock and asynchronous
reset signals are omitted for simplicity.

176 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Control

The control of the processor is realized with a Moore state machine, whose dataflow dia-
gram is shown in Fig. 9.9. The first two states are used to initialise the processor. State
wait_transf_type indicates by using the signal nready_o if the system is ready or not to ac-
quire the transform type. The system will be in this state until the signal req_i driven by an
external module or by the user will be high.

When req_i is set to one, the state machine moves to acq_transf_type, driving
en_transform_type_o to one. The std_logic_register in the datapath samples the bit speci-
fying the transform type, and in the following clock cycle the state becomes wait_data. Be-
tween states wait_data and acq_data, the behaviour of the processor is similar to the states
wait_transf_type and acq_transf_type. The difference is that in the first case data is sampled
in the internal registers of the PEs and subsequently shifted through the FIFOs, while in the
first only one bit is stored in the std_ulogic_register in Fig. 9.8. When in these states, signal
sel_o is be set to one so that the input of each PE is not selected from the feedback con-
nection and mode_o is be zero, allowing input data to be sampled without performing any
computation on them (Fig. 9.6). When reach_cycle_i becomes high, all FIFO locations have
been filled, thus calculation can start.

The first computational stage comp_tf is needed to require the generation of the first
twiddle factors. The processor waits until twiddle_factors_system signals that TFs are avail-
able by driving twiddle_valid_i. The Moore machine commutes to state comp, unless the
TF generator sets twiddle_valid_i to zero, or counting is completed. A loop between comp
and comp_tf ensures a correct synchronization of both the twiddle_factors_system and data
inside the PEs.

When both reach_stage_i and reach_cycle_i are set to one because counting is complete
(Fig. 9.8), the state changes to either ret or ret_tf depending on signal twiddle_valid_i. If this
is equal to one, then the transition is towards ret: this state is analogous to comp, except that
over_o is set to one. This is an output to the external world, to signal that the computation
is complete. Similarly, ret_tf matches comp_tf, but in the last case, outputs are unchanged.
Indeed, from the following clock cycle after the reaching of ret, dataout_o is the bit-reversed
output of the FFT, thus the change of signal over_o can be used as a trigger to sample the final
output of the FFT. If over_o was high in state ret_tf this advantage would not be exploitable.
A transition from ret to ret_tf is not possible because the twiddle factor generator outputs a
constant value throughout the whole last cycle. If the implemented FFT algorithm was radix-
2 DIT, the TFs of the last stage would have been different one to the other, with an increase
of computational time. Moreover, a more complex protocol should have been used. This
is not the implemented case, nonethless the Moore machine considers the eventuality of a
transition for improved robustness.

When the counter in Fig. 9.8 sets reach_cycle_i to one, the computation terminates and
the processor re-initialises. This is also possible when stop_i is driven to one by the user,
requesting immediate interruption of data return, but not in any state other than ret and
ret_tf.

9.1. SCALABLE FFT ARCHITECTURE 177

Figure 9.9: Dataflow diagram of the control of the processor.

178 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

9.2 TF module general structure and LUT-based ar-
chitecture

The conventional approach to obtain Twiddle Factors (TF) for FFT computation is to have
them stored in a Lookup Table (LUT). When a particular phase rotation is required, the index
of the corresponding TF is called, according to B.10. In this chapter, the overall description of
the TF system module is given. Then, the particular case of LUT-based structure is analysed
in its implementation detail.

9.2.1 Inside twiddle_factors_system

Fig. 9.10 shows the architecture of module twiddle_factors_system_structural and how Alg. 1
fits into this structure. Two counters (cycle_count_i and stage_count_i) keep trace of the cur-
rent cycle and stage in the computation of the FFT. Modules addr_calc implement Eq. (9.10)
and are enabled by the ready_for_new_address_s wire. Notably, each addr_calc matches a PE
and generates the indexes of TFs that feed it throughout the whole computation. In the dia-
gram, custom data type address_ty is the binary representation of a TF index and its match-
ing array type is address_vector_ty. Both are defined in package fft_global_types.

Module tfc is fed with address_ty data, a bit indicating the transform type and the external
enable signal. Both the proposed implementations of Alg. 1 are architectures of this module.
Signal ready_for_new_address_s is set to one each time new addresses are needed. When
the computation of the a set of TFs is complete, signal valid_o is driven to one, and in the
following clock cycle results can be found in array dataout_o.

There are two possible architectures for module tfc: tfc_lut, which is illustrated in the
following section, and tfc_generator, whose detail are shown in chapter 9.3.

9.2.2 LUT-based TF generation

Datapath

The datapath of architecture tfc_lut is shown in Fig.9.11. The tfc_mapper block receives the
requested addresses (i.e. indexes) of TFs. Each index i satisfies

0 ≤ i ≤ N

2
−1 (9.5)

and matches a complex number in the third and fourth quadrant of Gauss’ plane. As a conse-
quence, it is possible to map any twiddle factor to the circular segment of angles 0 ≤φ≤ π

4 by
using simple trigonometry rules. The output of the module is so a reduced_address_ty value,
which is an integer value expressed with less bits than the address_ty, and a mapping_code_ty
value. This is a three-digit code such that:

• if the phase of the mapped TF and the number of digits for its representation are so
small that it is undistinguishable from TF of index 0, then the first digit is 1. Else, it is 0;

• the remaining two digits enumerate the original π4 -sized sector the TF is mapped from.

With this encoding, it is possible to perform the mapping and storing just the TFs of
indexes i = 0, . . . , N

8 in module lut_rom. Moreover, considering the number of digits for TF

9.2. TF MODULE GENERAL STRUCTURE AND LUT-BASED ARCHITECTURE 179

Figure 9.10: Structural diagram of architecture twiddle_factors_structural, P = 2.

180 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Figure 9.11: Structural diagram of tfc_datapath_structural, P = 2. Clock and asynchronous
reset are omitted.

9.3. HYBRID CORDIC-LUT TWIDDLE FACTOR GENERATOR 181

representation allows the output of the module to identical to the one of a naive N
2 -sized LUT.

There are two possible architectures for this ROM: a behavioral implementation and a bram
version, which exploits BRAM blocks of FPGAs to have multiple inputs as well as multiple
outputs.

The mapping_code_ty registers synchronise inputs to module lut_unmapper, which sim-
ply performs the inverse mapping of TFs.

Control

The control of architecture tfc_lut is made by a simple Moore machine that allows to reach
a throughput of P twiddle factors per clock cycle, where P is the number of PEs. Two states
(mapping and load_first) are necessary to fill the pipeline in the very first stage of computa-
tion.

9.3 Hybrid CORDIC-LUT twiddle factor generator

Classic approaches to FFT designs require a large amount of memory for storing precom-
puted twiddle factors. The CORDIC iterative algorithm presented in [115] allows computa-
tion of twiddle factors at runtime. To this purpose many architectures introduce this algo-
rithm inside the PEs by substituting the complex multipliers with iterative phase rotations.
With this approach, that we call in-processor rotator, in [129] the number of iterations has
been reduced by using optimized sequences and corresponding scale factors both stored
in a LUT. In [121] a multi-bank RAM structure to reduce memory logic is presented. On the
other hand, some systems replace the storage ROM with a CORDIC-based twiddle factor gen-
eration system [3]. Nonethless, CORDIC hardware implementations can be very expensive
in terms of area usage [10, 33], consequently hardly suitable for a scalable FFT approach.

In this chapter we discuss two novel hybrid CORDIC-LUT systems designed to generate
twiddle factors in FFTs. In the next section mathematical considerations are drawn on the
addressing scheme for twiddle factors in CG-FFT, in order to reduce the dimension of the
considered set of TFs. In section 9.3.1 a novel algorithm to compute twiddle factors taking
advantage of PE-scalability is introduced. In the further sections two PE-scalable CORDIC
architectures are presented with their VHDL implementation.

9.3.1 Properties of the CG-FFT

An important feature of radix-2 DIF CG-FFT is the sequence of twiddle factors in the flow-
graph in Fig. 9.12. In general, the twiddle factor of index i is defined as in expression (B.10),
here reported:

W i
N = e− j 2π

N i , (9.6)

where N is the number of input points to the FFT. i ranges from 0 to N
2 −1. In Radix-2 im-

plementations, the FFT is computed in log2 N stages, indexed considering s ranging from 0
to log2 N−1. For each stage N

2 twiddle factors must be considered. If the base algorithm is
radix-2 DIF the sequence of indexes Is is the following:

Is =
{
0, . . . ,0︸ ︷︷ ︸

2s

,1·2s , . . . ,1·2s︸ ︷︷ ︸
2s

,2·2s , . . . ,2·2s︸ ︷︷ ︸
2s

, . . .
}
, (9.7)

182 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

and can be summarized in Is = {i (0), . . . , i (N /2−1)}. The derivation for radix-2 DIT is similar,
and can be obtained by using index s′ = log2 N −1− s: the last sequence in the DIF case will
be the first of the DIT and vice-versa for the first one.

Figure 9.12: Flowgraph of an 8-point Radix-2 DIF CG-FFT with underlined Is sequences

Let us define
P ∈ {

x ∈N | x = 2y , y ≥ 0
}

(9.8)

equal to the number of parallel PEs, which are enumerated by using index p ranging from
0 to P−1. The twiddle factor generation system must output P values at the same instant,
one for each PE. Consequently, as discussed in section 9.1.1, every stage s is split in C = N

2P
cycles, indexed as c = 0, . . . ,C−1, and similarly sequence Is is divided into C subsequences
Jsc of indexes:

Is =
{
Js0, . . . ,Jsc , . . . ,Js(C−1)

}
, (9.9)

where Jsc =
{
isc0, . . . , iscp , . . . , isc(P−1)

}
. The twiddle factor needed on step c of stage s by the

p-th PE has index

iscp =
⌊p + cP

2s

⌋
2s . (9.10)

The number of considered indexes can be reduced from N
2 to log2 N −2, by taking advan-

tage of the following observations.

Observation 9.3.1. Consecutive elements i (k) in Is are either the same index or differ by 2s .

Proof. Two consecutive elements in Is can be expressed either by

{iscp , isc(p+1)} p = 0, . . . ,P −2 (9.11a)

{isc(P−1), is(c+1)0}. (9.11b)

In the first case, the elements belong to the same subsequence Jsc . If we write

p + cP

2s
= m +γ m ∈N, 0 ≤ γ< 1

9.3. HYBRID CORDIC-LUT TWIDDLE FACTOR GENERATOR 183

we obtain, by substituting in (9.10),

isc(p+1) − iscp =
(⌊p +1+ cP

2s

⌋
−

⌊p + cP

2s

⌋)
2s

=
(⌊

m +γ+ 1

2s

⌋
−

⌊
m +γ

⌋)
2s

=
(
m +

⌊
γ+ 1

2s

⌋
−m

)
2s

=
⌊
γ+ 1

2s

⌋
2s .

Being 0 ≤ γ< 1 and 1
2s ≤ 1, statement 9.3.1 holds.

We now consider the case in Eq. (9.11b), corresponding to the last element of subse-
quence Jsc and the first of subsequence Js(c+1). If we write

(c +1)P −1

2s
= m′+γ′ m′ ∈N, 0 ≤ γ′ < 1,

we have similarly

is(c+1)0 − isc(P−1) =
(⌊ (c +1)P

2s

⌋
−

⌊P −1+ cP

2s

⌋)
2s

=
(⌊ (c +1)P −1+1

2s

⌋
−

⌊ (c +1)P −1

2s

⌋)
2s

=
(⌊

m′+γ′+ 1

2s

⌋
−

⌊
m′+γ′

⌋)
2s

=
(
m′+

⌊
γ′+ 1

2s

⌋
−m′

)
2s .

This leads to

is(c+1)0 − isc(P−1) =
⌊
γ′+ 1

2s

⌋
2s =

{
0, if γ′+ 1

2s < 1,

2s , if γ′+ 1
2s ≥ 1.

Observation 9.3.2. The first elements isc0 of each subsequence Jsc (which represent inputs to
the first PE) can be the same or differ by a power of 2.

Proof. To prove this, we proceed similarly to the proof of observation 9.3.1 and write

cP

2s
= m +γ m ∈N, 0 ≤ γ< 1.

Then, we manipulate the following expression

is(c+1)0 − isc0 =
(⌊ (c +1)P

2s

⌋
−

⌊cP

2s

⌋)
2s

=
(⌊

m +γ+ P

2s

⌋
−

⌊
m +γ

⌋)
2s

=
(
m +

⌊
γ′+ P

2s

⌋
−m

)
2s

=
⌊
γ+ P

2s

⌋
2s .

(9.12)

184 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Substituting Eq. (9.8) in (9.12) we have

is(c+1)0 − isc0 =
⌊
γ+ P

2s

⌋
2s = ⌊

γ+2y−s⌋2s . (9.13)

If y ≥ s the result is 2y , which is of course a power of two. If y < s we have

is(c+1)0 − isc0 =
{

0, if γ+2y−s < 1

2s , if γ+2y−s ≥ 1.

This confims that observation 9.3.2 is correct.

Observation 9.3.3. For every i , W i
N is a complex number with unitary module falling either

in the third or fourth quadrant of the Gauss plane. With basic trigonometry all N
2 different

twiddle factor values necessary during computation can be calculated using indexes in the set
M = {

0, . . . , N
8

}
.

The first remark is immediate from Eq. (9.6), while the considerations on set M can be

drawn by observing Fig. 9.13. We can notice that twiddle factor W
N
8

N corresponds to an angle
of −π

4 .

Figure 9.13: Distribution of twiddle factors in the Gauss’plane.

Observation 9.3.4. Multiplication by W i
N is an angular rotation of − j 2π

N i .

This is well known from the basic theory of complex numbers.
As a consequence of the forementioned observations, the smallest set of indexes that will

be considered in the derived models is the subset M ′ ⊂ M

M ′ = {
m = 0∨m = 2x , x = 0,1, . . . , log2 N−3

}
. (9.14)

In other terms, we consider only TFs with an index that is equal to a power of two, plus
twiddle factor W 0

N , in the first quarter of the negative half circumference.

9.3. HYBRID CORDIC-LUT TWIDDLE FACTOR GENERATOR 185

Scalable rotational algorithm

We present here a scalable rotational algorithm for computing the twiddle factor sequence
{W (k)

N }. The procedure, illustrated in Alg. 1, requires a set W (M ′) of precomputed twiddle
factors with indexes in M ′.

Algorithm 1 The proposed scalable rotational algorithm.
Require: Is , N ,C ,P,W (M ′)

k ← 0
for c = 0 to C−1 do

for p = 0 to P−1 do
qscp ← iscp reflected in {0, . . . , N

8 }
5: if c = 0 and p = 0 then

l ← 0
else if p = 0 then

l ← qs(c−1)(P−1) or l ← qs(c−1)0

else
10: l ← qsc(p−1)

end if
if qscp ∈ M ′ then

W (k)
N ←W (qscp)

else if qscp = l then

15: W (k)
N ←W (k−1)

N
else {CORDIC iteration}
α←±(qscp − l), |α| ∈ M ′

W (k)
N ←W (k−1)

N ·W (α)
end if

20: W (k)
N ←W (k)

N reflected in (−π,0)
k ← k +1

end for
end for

Ensure: {W (k)
N }.

In most approaches, CORDIC algorithms need precomputed scale factors and converge
towards results in a number of steps depending on the resolution bits B [115, 129]. Taking
advantage of statement 9.3.4, each element of the twiddle factor output sequence is obtained
in only one iteration, without the need of any gain correction. Also, observation 9.3.3 has
been used in line 4, in order reduce the number of indexes to N

8 +1. Moreover, exploiting
considerations given in 9.3.1, the presented algorithm (lines 12 and 14) does not require any
arithmetic operation both when reflected index qscp belongs to M ′ and when qscp is equal
to the index l of the previous step.

We distinguish between two versions of the same algorithm: if we decide to exploit the
observation given in 9.3.1 then l ← qs(c−1)(P−1), otherwise considering 9.3.2, l ← qs(c−1)0.

9.3.2 Overall architectural remarks

The architectures presented in this section are twiddle factor generation modules imple-
menting the two versions of Alg. 1 respectively. Both these modules receive P parallel un-

186 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

signed signals corresponding to subsequences Jsc and output P twiddle factors belonging
to sequence {W (k)

N } in signed fixed-point format.
We refer to shared core (Fig. 9.14) when l ← qs(c−1)(P−1). This means that the computation

on subsequence Js(c−1) must be completed before the start of calculations on Jsc .
When l ← qs(c−1)0 the first element of subsequence Jsc can be processed before the end

of calculations on subsequence Js(c−1), using only the data from the computation of the
first element (p = 0) of Js(c−1). This leads to another architecture, referred to as pipelined
(Fig. 9.18), which parallelizes the for loop on line 2 of the algorithm by using different pipeline
stages.

Alg. 1 can require to perform a rotation by using twiddle factors resulting from CORDIC
iterations themselves. This can be an issue in terms of error propagation. In order to com-
pensate this effect, we perform internal operations by using B ′≥B bits and then rounding to
B-bit words, where B is the resolution of the output twiddle factors. To this purpose, a new
data type, high_res_twiddle_factor_ty is defined in package cordic_types as follows:

subtype high_res_twiddle_factor_part_ty is
u_sfixed(global_tf_accuracy_int_c-1 downto

-cordic_high_res_tf_frac_accuracy_c);

Constant cordic_high_res_tf_frac_accuracy_c is defined in package fft_cordic_settings and its
default value is 17.

Referring to the structure of module twiddle_factors_system described in the previous
chapter, both twiddle factor generators are included in architecture tfc_generator. This is
made of two modules: tfc_mapandstep and tfc_cordic.

tfc_mapandstep

This module performs mapping operations and computes the difference between indexes
for CORDIC iterations. The component blocks are:

• Module tfc_mapper, which realizes the first step of Alg. 1 (line 4). This is in order to
output the mapping of the incoming requested array of P indexes to the set M , repre-
senting the portion (−π

4 , . . . ,0) of the complex plane.

• Block tfc_step_computer_pipeline, that analyses the output array of tfc_mapper with
the purpose of determining α (line 17 of Alg. 1). That is the ROM address where step
data is stored, needed to compute the CORDIC iteration.

• mapping_code_ty_registers behave like described in the previous chapter, and syn-
chronise outputs of tfc_mapandstep.

• A counter, which keeps trace of how many subsequences are currently being processed
in the module.

The whole tfc_mapandstep is a pipeline structure, which must be filled at the beginning
of computation. With this technique the downstream tfc_cordic module can pop a subse-
quence out of it whenever it needs, by just driving signal ready_for_new_address_i.

The two hybrid TF generators are architectures of module tfc_cordic.

9.3. HYBRID CORDIC-LUT TWIDDLE FACTOR GENERATOR 187

9.3.3 Hybrid CORDIC-LUT architecture shared-core

Datapath

Figure 9.14: Functional diagram of the shared core scalable CORDIC architecture

Fig. 9.14 illustrates the hardware structure implementing shared_core with a simple block
diagram. In this section, we will describe the general behaviour of each module before giving
a detailed analysis in terms of VHDL architectures.

Then reference builder scans input addresses comparing every value with the preceeding
ones, determining if this array needs computing of a new twiddle factor or not. If compu-
tation is not necessary, data can be immediately retrieved because either the twiddle factor
has already been obtained by CORDIC iteration or it belongs to W (M ′). The implemented
procedure is formalized in Alg. 2, where a is a P-sized array of requested TF indexes, i is the
the number of the current request, l is the P-th request of the past clock cycle. In the realised
design r is called reference and s is the core request signal. Reference builder outputs to reg-
ister bank the information for selecting data used by reference module. Request of CORDIC
core usage is done by propagating signal core request. This is high when all the following
conditions occur at the same time:

• the index of the current called TF is not in M ′,

• the index of the current called TF is not equal to the last request l (line 14 of Alg. 2)

• no other request before the current involves the same TF.

The P+1 port ROM stores the set W (M ′): it outputs a nonzero value only when the ad-
dress belongs to M ′. Implementing this module is an issue on FPGAs: the majority of them
contains only dual-port block RAMs, also called BRAMs in Xilinx products. Synthesizing a
bare multi-port RAM consequently results in expanding the memory into many slices, with
an overhead in terms of resource usage. The adopted solution is to pack couples of requests
and direct each of them to a BRAM port, consequently expecting the synthesizer to instanti-
ate P

2 +1 memory blocks. On the other hand implementation on ASIC technology does not
imply any particular expedient.

188 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Algorithm 2 Building of references and request of CORDIC iteration.
Require: a, i , l ,P, M ′

k ← i
while ak−1 = ai and k > 0 do

k ← k −1
end while

5: if k = 0 then
if ai = l then

r ←−1
else

r ← k
10: end if

else
r ←−1

end if
s ← (ai = l) or (ai = 2x , x ∈N) or (ai = 0)

15: s ← (r = k) and not s
Ensure: r, s

Combinatorial block reference module selects data from the ROM or from CORDIC re-
sults and manages the case of consecutive same-valued indexes (line 14 of Alg. 1) by reading
reference information in register bank. The behaviour of this module can be analysed in
more detailed terms by considering VHDL Lst. 9.4. A first set of multiplexers is driven by a
signal coming from the control, sel_data_i, selecting between data from the memory or from
the CORDIC core. A second set of multiplexers solves the references: each of them outputs
the data pointed by signal curr_references_i (whose value is r from Alg. 2). Consequently, if
the reference for request p has value p, data is propagated directly from the previous multi-
plexer. Else, if the reference has value k 6= p, data is taken from the result of the k-th request.

The CORDIC core reads the core request signal. Then, it serves the pending requests by
using a complex multiplier, composed of three real multipliers. Initialization data is taken
from the output of reference module and the product is performed by using step data accor-
ding to line 18 of Alg. 1. The structural diagram of the datapath is illustrated in Fig. 9.15.
Module cordic_fifo implements a classic FIFO queue and is loaded when fifo_ready is driven
to high by the cordic_core control. Elements inside the queue are in increasing order of re-
quest number (i.e. p). Starting from the next clock cycle, elements of cordic_fifo are output
one by one to caller_s. Depending on the value of this signal, the multiplexers select the data
to initialise the CORDIC rotation following line 18 of Alg. 1, and input signal step_sign_i de-
termines the direction of rotation. Moreover, de-multiplexers select an output register for
writing and set a bit of output array cordic_end_o to one. This signals to other modules that
computation is complete and that starting from the following clock cycle data will be avail-
able in the matching output register.

When computations are executed, twiddle factors feed block unmapper reflecting the
obtained results to the third and fourth quadrant of the complex plane. This block imple-
ments line 20 of Alg. 1. Furthermore, it converts TF data from the B ′-bits format to the B-bit
format. By default, this is performed by rounding and not by truncation, thus increasing
the accuracy of obtained results. The used routines are part of the fixed_pkg IEEE VHDL

9.3. HYBRID CORDIC-LUT TWIDDLE FACTOR GENERATOR 189

Figure 9.15: Structural diagram of module cordic_core. P = 2. Clock and asynchronous reset
are omitted for simplicity.

190 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Listing 9.4: Behavioral architecture of reference_module.
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.fft_global_settings.all;
use work.math_utils.all;
use work.fft_types.all;
use work.cordic_types.all;

architecture cordic_reference_module_structural of
cordic_reference_module is

signal memory_or_cordic_data_s
: high_res_twiddle_factor_vector_ty(0 to global_pes_c-1);

begin

-- Choosing between data coming from memory or from the
-- CORDIC core
memory_cordic_mux_gen : for i in 0 to global_pes_c-1 generate
with sel_data_i(i) select
memory_or_cordic_data_s(i) <=
mem_data_i(i) when ’0’,
cordic_results_i(i) when ’1’,
high_res_twiddle_factor_zero_c when others;

end generate;

-- Solving references
references_mux_gen : for i in 0 to global_pes_c-1 generate
curr_data_o(i) <=
memory_or_cordic_data_s(
to_integer(signed(curr_references_i(i))))

when (signed(curr_references_i(i))>=0) else last_data_i;
end generate;

end architecture cordic_reference_module_structural;

package. If the transform_type_i bit is set to one, then module unmapper also computes the
conjugate of the TFs by inverting their imaginary part.

Control

The control of the implemeted cordic_core architecture is realised by P Moore machines,
each one matching a request of TF computation. In order to illustrate its mechanism, we
consider Fig. 9.16, picturing the complete implemented datapath, and Fig. 9.17 showing a
dataflow diagram of the control.

When the overall computation of the FFT starts, all the Moore machines are in state
idle. Then, the control of the processor sets signal en_twiddle_calc_i to high, and a tran-
sition occurs for all the machines towards state load_addr. In this state, all the controls set
a single bit signal, en_addreg_o, to one, requesting to sample data in the cordic_ref_ty and
cordic_mapping_cod_ty registers. Moreover they request the enabling of the ROM. The reg-
ister bank in the simplified diagram of Fig. 9.14, is implemented by registers Cordic_ref_ty
and cordic_mapping_cod_ty.

When all Moore machines are in state load_addr, signal tot_en_addreg_i, which is ob-
tained by a bitwise and of all en_addreg_o signals, is driven to one. Complete information
about the next steps are thus available: if a request needs usage of module cordic_core this
is initialised, if data is available from another request the proper reference has been built.

9.3. HYBRID CORDIC-LUT TWIDDLE FACTOR GENERATOR 191

Figure 9.16: Structural diagram of the datapath of shared core with P = 2. Clock and asyn-
chronous reset are omitted for simplicity.

192 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Figure 9.17: Dataflow diagram of the shared core control.

9.3. HYBRID CORDIC-LUT TWIDDLE FACTOR GENERATOR 193

Thus, depending on the request type, each machine reaches state use_cordic or ref. In the
first case, it waits until the CORDIC iteration is complete, by listening to single bit signal
cordic_end_i. When data is ready, state becomes end_cordic, and the computed TF flows
through the reference_module (Lst. 9.4) according to signal sel_data_o. In the case of state
ref no operation is performed. The machine simply requests sampling of data at the output
of cordic_reference_module, in its matching cordic_high_res_twiddle_factor_ty_register (see
Fig. 9.16).

At the same time, both in the end_cordic and ref states, a new sampling of addresses and
references is enabled, allowing a continous chain of request serving. The needs_cordic_i sig-
nal specifies the new state for the transition so that no clock cycle is wasted for interpretation
of new requests.

9.3.4 Hybrid CORDIC-LUT architecture pipelined

Figure 9.18: Functional diagram of the pipelined scalable CORDIC architecture. P = 2.

The structure of architecture pipelined is illustrated in Fig. 9.18. Modules mapper, step
calculator and unmapper are the same used in architecture shared core. The main differ-
ence between the two solutions is that in the pipelined one the mechanism of references is
unnecessary. Consequently synchronisation of modules and control is much easier. More-
over, the register bank is less hardware expensive if compared to the implementation given
in Fig. 9.16. This is because no register is needed to store obtained references, but it is always
necessary to propagate the proper information for TF unmapping.

Module init_step_calculator computes the rotational step considering only the first ele-
ments of adjacent Jsc request arrays. That is, it computes α using l = qs(c−1)0 in Alg. 1 by
taking advantage of observation 9.3.2.

Another element of difference between the pipelined and the shared core structures is
in the ROM. In this case a (P+2)-port block is needed. The implementation considerations
remain the same of the former solution, both for FPGA and ASIC technologies.

The actual pipeline structure is composed of P +2 stages. The first one, called inv stage,
performs the inversion of the imaginary part of the step data (α in Alg. 1) used in CORDIC
iterations, depending on the direction of rotation. This operation was performed inside the
cordic core module in the shared core architecture. Being the pipelined solution expressly

194 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Figure 9.19: Digital Signal Processing model.

oriented towards higher throughput applications, it is separated from CORDIC iterations.
With this expedient we expect to achieve an increase of the operating clock frequency.

Zero stage serves the requests for p = 0, by either reading data propagated from the ROM
or performing rotations. In the latter case, step data conforms to the address computed by
init-step calculator. The behaviour of the following stages is similar, but each stage matches
a different value of p, from 1 to P − 1. For these stages iteration step data accords to the
output of step calculator. Following Alg. 1, three events can occur:

1. CORDIC iteration is needed. The iteration is performed from the TF data of the last
stage by using a complex_value_multiplier, module whose code is in Lst. 9.2. Con-
sequently, each stage block contains three real multipliers and the total number of
multipliers expected to be synthesized is 3P .

2. The requested TF has the same index as the one in the last stage. If p is the number of
the current served request, then data is selected from request p −1, and propagated to
the following stage.

3. The index of the current requested TF is in set M ′. Data is directly propagated without
any change because it was already retrieved in the ROM.

Similarly to architecture shared core, the last pipeline stage is the unmapper block.
The control of each stage is easily implemented with a two state Moore machine. In the

first state, called idle, the module simply waits to become functional. When it is enabled by
the previous stage, it reaches state comp. Here, it enables the internal registers of the block
and propagates a valid_o signal, in order to enable the following stage.

The two implemented shared core and pipelined solutions differ from the FFT CORDIC
approaches in the state of the art, both because they take into account system scalability in
terms of PE and because TF phase rotations are performed without needing any scale factor
correction. We expect this to allow an improved scalability in terms of hardware resource
usage both in the case of FPGA and ASIC implementations. Nevertheless the choice be-
tween the two architectures is expected to condition overall system performances critically.
The shared core structure has been designed for severely tight hardware usage requirements.
On the other hand the pipelined architecture takes into account resource efficiency but is
thought for achieving improved timing performances. Simulation and synthesis results in
a following chapter will formalise our expectations and give evaluation metrics to this pur-
pose.

9.4. PSD COMPUTER 195

9.4 PSD computer

The examined processor has been embedded in a PSD computer, with application to the
self-tuning algorithm for digital control of switched-mode power supplies (SMPS). These
devices perform a conversion of a DC input voltage from one level to another [91]. The gen-
eral scheme of the system is associated to the conventional DSP problem that is illustrated in
Fig. 9.19: the processing of a sampled signal to obtain another signal. In the commissioned
design, part of the processing is based on the autocorrelation, which is performed by using
a FFT-based technique.

The digital control is implemented on FPGA, as a first development step. Being part of a
research project, the PSD computer must guarantee good implementation flexibility. More-
over, the lowest bound of the operating frequency given by the customer is 70M H z. This
value takes into account the final application of the design, which requires low resource us-
age more than high speed. Simultaneously, computation time must be small enough for the
control to achieve a correct response. The implemented PE-scalable architecture has been
chosen to fullfil all these requirements, but, being it part of a more complex PSD computer,
the design of all the other blocks must follow the same approach. Furthermore, the whole
project will migrate to ASIC platform in the future, thus it is necessary for the DSP solution
to have good performances when synthesized in both technologies.

In this chapter the implemented autocorrelation PSD computer for the PSD computation
is analysed. First, the algorithm is illustrated and some important remarks are drawn. These,
lead to the hardware structure which is analysed block by block in the next section. Following
subsection 9.4.2 explores the control of the system.

9.4.1 Autocorrelation-based DSP algorithm: PSD computation

The PSD computer evaluates the operation

autocorrelation
∣∣fft(x)

∣∣, (9.15)

where x is a (210 ×1) array of real samples. In order to understand the amount of resources
that have to be instantiated in the implementation, it is necessary to make some observa-
tions on the autocorrelation function.

The processing performed by the PSD computer is related to the PSD computation, it
has been shown in Alg. 3. Computations require an array x of 1024 samples and a constant
s, which is called scaling factor and is needed for hardware reasons. This will be discussed in
the next section.

The first stage of the processing is the computation of the absolute value of the FFT of
input samples. The second and third stages need calculations on 211-sized sequences, so it
will be necessary to instantiate a 2048-point processor. In order to use this hardware, com-
putation is performed during stage one on the doubled vector [dfirst;dfirst]. This is illustrated
in line 2. This results in a sequence interleaved with zero-valued data. Noticing that the out-
put of the processor is bit-reversed, only the first half of the output cycles will contain valid
data, so only the first 1024 output complex values are considered. After the computation of
the modulus, the resulting real data is scaled and then stored in bit-reversed order (line 6).

In the second processing stage, the 1024 data from the previous stage is input to the pro-
cessor, immediately followed by 1024 zero values. This implements the zero-padding as dis-
cussed in section B.3. After the computation of the square modulus of complex data and

196 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Algorithm 3 Algorithm executed by the PSD computer for the PSD computation.

Require: x ∈R1024, s
dfirst ← x {First stage: FFT}
rfirst ← FFT([dfirst;dfirst])
rfirst ← [rfirst,0, . . . ,rfirst,1023]ᵀ

rfirst ←|rfirst|
5: rfirst ← rfirst/s

dsecond ← bitrevorder(rfirst) {Second stage: FFT}
rsecond ← FFT([dsecond;0])
rsecond ←|rsecond|2
rsecond ← rsecond/s

10: rsecond ← bitrevorder(rsecond)
dthird ← [rsecond,0, . . . ,rsecond,1024]ᵀ {Third stage: IFFT}
rthird ← IFFT([dthird,0, . . . ,dthird,1024,dthird,1023, . . . ,dthird,0])
rthird ←|rthird|
rthird ← rthird/s

15: rthird ← bitrevorder(rthird)
y ← [rsecond,0, . . . ,rsecond,1023]ᵀ

Ensure: y

scaling, only the first 1025 values are stored. This expedient takes advantage of the simmetry
of the DFT. Storage is done with bit-reversed ordering (line 11).

The third stage computes the IFFT of stored data. 2048 values are given to the processor
by first considering elements from 0 to 1024, and then from 1023 to 0. The modulus of pro-
cessed data is computed and then scaled. After another bit-reversed ordering, data is ready
to be output.

9.4.2 System architecture

The design principles used for the PSD computation are the same used in chapter 9.1. A
hierarchy of packages definining constants and types is used ad a structure for coding. Also,
naming convention in Tab. 9.1 holds.

Package autocorrelation_settings defines all the global constants used in the design. It is
comparable to fft_types from the FFT processor design. On the counterpart, fft_types is en-
capsulated in the VHDL code of the processor with all the other packages used in the previ-
ous design. In order to separate the code of the processor from the design of the
autocorrelation-based PSD computer, constants are re-defined in autocorrelation_settings.
Thus, in case of editing this last package, it is necessary to ensure the correct match of set-
tings in
fft_global_settings. Among the additional editable constants defined in
autocorrelation_settings we have

input_sample_int_c Defines the number of bits for the integer part of input data. The de-
fault value is 4.

input_sample_frac_c Is the number of bits of for the fractional part of input data, equal to
0 by default.

9.4. PSD COMPUTER 197

parallel_words_c Being the processor based on a parallel structure, this value is equal to the
number of words in the bus. global_pes_c in package fft_global_settings must match
this value: the number of words propagating in parallel in the bus is equal to the num-
ber of PEs of the processor multiplied by two. As a consequence, throughout the rest
of this chapter, this parameter will be indicated with 2B . By default the value of paral-
lel_words_c is equal to 8.

scaling_factor_c This natural value is related to the scaling factor s applied during the pro-
cessing (see Alg. 3) and, by default, this is equal to 7.

Also, considering the discussion in the previous section, package autocorrelation_types
defines non-editable parameters such as:

ext_address_size_c is the length of the address field used to retrieve data. Given that 1024
data must be addressed, this is fixed to 10.

ram_address_size_c Is the length of the address field in the internal bus. Noticing that 1025
memory locations are addressed, its value is fixed to 11.

The implemented system architecture is based on the same custom types described in
chapter 9.1. Although package autocorrelation_types re-defines them, it also adds other
types. Package modulus_types defines other custom data types which are necessary to un-
derstand the datapath of the PSD computer. The following list describes the most important
new types introduced in this design.

ram_address_ty This data type is defined in autocorrelation_types and represents the input
address to the RAM. It is defined with the following VHDL code

subtype ram_address_ty is
std_ulogic_vector(ram_address_size_c-1 downto 0);

An array of ram_address_ty elements is a ram_address_vector_ty.

square_complex_part_ty This type is defined in modulus_types as a signed fixed-point num-
ber. It is sized so that a squared complex_part_ty can fit into it without any rounding. It
is defined with the following VHDL code, which takes advantage of the IEEE fixed_pkg
standard package.

subtype square_complex_part_ty is
sfixed(sfixed_high(complex_part_ty’high,complex_part_ty’low,

’*’,
complex_part_ty’high,complex_part_ty’low)

downto
sfixed_low(complex_part_ty’high,complex_part_ty’low,

’*’,
complex_part_ty’high,complex_part_ty’low));

square_modulus_ty Defined in package modulus_types, this is an unsigned fixed-point num-
ber representing the square modulus of a complex_ty element. Consequently, it is sized
to contain the sum of two square_complex_part_ty numbers.

subtype square_modulus_ty is
ufixed(ufixed_high(square_complex_part_ty’high,

square_complex_part_ty’low,
’+’,
square_complex_part_ty’high,

198 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

square_complex_part_ty’low)
downto
ufixed_low(square_complex_part_ty’high,

square_complex_part_ty’low,
’+’,
square_complex_part_ty’high,
square_complex_part_ty’low));

An array of square_modulus_ty elements is a data of type square_modulus_vector_ty.

Datapath

The structure of the datapath is shown in Fig. 9.20. The input to the system is given by a serial
to parallel converter, s2p, that converts samples to the complex_part_ty custom type and
builds an array. The output is taken from the external port of module autocorrelation_ram,
and is addressed with signal ext_addrin_i. This choice allows the downstream processing to
exploit already instantiated RAM resources and takes into consideration the requests from
the custormer.

The complex_ty_conv_mux block is a particular multiplexer. Depending on input signal
sel_in_mux_i different operations are performed.

• When sel_in_mux_i is ‘00’, data is selected from input A. Each complex_part_ty ele-
ment of the array is packed with a zero-valued imaginary part into a complex_ty ele-
ment.

• When sel_in_mux_i is ‘01’, data is selected from input B. The behaviour of the module
is similar to the former case.

• In all other cases, the output is composed of zero-valued complex_ty elements. This
allows to perform the zero-padding in an easy way.

Module fft_processor is the processor designed in chapter 9.1. This is instantiated in the
design by using its interface, illustrated in Lst. 9.5. In order to make the design as portable
as possible, all inputs and outputs are defined by using standard types std_ulogic_vector and
std_ulogic. The length of arrays is managed by loading package fft_global_settings. The con-
tent of this package does not conflict with autocorrelation_settings because common con-
stants have been defined with different names. Moreover, in Lst. 9.5 the fft_types package
is not loaded, thus avoiding any possible type mismatch. A negative aspect of this solu-
tion is the necessity of defining conversion functions from and to the complex_ty and com-
plex_vector_ty custom types and the standard types. These are in the package body of au-
tocorrelation_types. Another approach that could have been used to interface the designed
processor to the rest of the PSD computer is based on generics. This technique introduces
the possibility of a mismatch between processor settings and instance parameters, because
of the lack of a package generics mechanism like the one in VHDL200X. Moreover, this usage
of generics differs from the followed design philosophy. In the whole design generics are em-
ployed only when the same block is used in different parts of the architecture or instantiated
many times.

Block square_modulus computes the square modulus of the input complex_part_ty by
using two real multipliers. Its output register is enabled with the en_modulus_i signal.

9.4. PSD COMPUTER 199

Figure 9.20: Structural diagram of the datapath of the PSD computer. 2P = 4. Clock and
asynchronous reset are omitted for simplicity.

200 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Listing 9.5: Interface of entity fft_processor.
library ieee;
use ieee.std_logic_1164.all;
use work.fft_global_settings.all;

entity fft_processor is
port(clk_i : in std_ulogic;

rst_i : in std_ulogic;
req_i : in std_ulogic;
transform_type_i : in std_ulogic;
stop_i : in std_ulogic;
datain_i : in std_ulogic_vector(

0 to (2*global_pes_c)*(global_accuracy_tot_c*2)-1);
dataout_o : out std_ulogic_vector(

0 to (2*global_pes_c)*(global_accuracy_tot_c*2)-1);
nready_o : out std_ulogic;
over_o : out std_ulogic);

end entity fft_processor;

The square root of each element of signal modulus_data_s is computed inside the
square_root modules. The implemented algorithm is called non-restoring square root algo-
rithm [53]. In order to describe the algorithm, an integer 2B-bit value D is considered [22].
If Q is its integer square root and R the remainder, the following equation holds:

D =Q2 +R, (9.16)

where Q is expressed with B bits and R with B +1 bits. Definining r0 = D2−2B , at every step
the remainder can be computed by inverting Eq. (9.16) and obtainining

ri+1 = r022(i+1) −q2
i+1. (9.17)

Noticeably, at step B−1 Eq. (9.16) and Eq. (9.17) correspond. In the here illustrated algorithm,
the quotient q is updated as follows

qi+1 = 2qi +Qi+1 Qi+1 =
{

1, if ri+1 ≥ 0

0, otherwise
. (9.18)

This means that, at every step, data bits are shifted left by one position and the last bit of the
obtained word is set depending on the remainder. Substituting Eq. (9.18) into Eq. (9.16) it
results

ri+1 = r022(i+1) − (2qi +Qi+1)2

= 4r022i − (4q2
i +Q2

i+1 +4Qi+1qi)

= 4ri − (4qi +Qi+1)Qi+1.

(9.19)

When Qi+1 = 1, then ri+1 = 4ri − (4qi + 1). But if the result is negative, it means that the
iteration made qi+1 too big. Thus a compensation must be performed by adding (4qi + 1)
back, obtaining ri+1 = 4ri , and setting Qi+1 = 0. Considering ri < 0, this should be restored
by setting ri = 4ri−1 and qi = 2qi−1 +0. Instead, in the following iteration the remainder is

9.4. PSD COMPUTER 201

computed as

ri+1 = 4ri − (4qi +1)

= 4(4ri−1)− (4qi +1)

= 4
[
ri + (4qi−1 +1)

]− (4qi−1 +1)

= 4
[
ri + (2qi +1)

]− (4qi−1 +1)

= 4ri + (4qi +3).

(9.20)

The result is that in the non-restoring square root algorithm there is no interruption of com-
putation, but this continues with ri+1 = 4ri + (4qi +3). The complete procedure is illustrated
in Alg. 4. Among the advantages of this algorithm, if compared with other approaches, is that
its hardware implementation does not need additional registers and control logic to manage
the case of a negative remainder. Moreover, it is suitable for a pipelined architecture.

Algorithm 4 The non-restoring square root algorithm. From [22].
Require: D,B

r0 ← D ×2−2B

q0 ← 0
for i = 0 to B −1 do

if ri ≥ 0 then
ri+1 ← 4ri − (4qi +1)

else
ri+1 ← 4ri + (4qi +3)

end if
if ri+1 ≥ 0 then

qi+1 ← 2qi +1
else

qi+1 ← 2qi

end if
end for

Ensure: qB

The realised implementation of Alg. 4 takes advantage of its structure and is composed
of B pipeline stages, where B is the number of bits in a complex _part_ty data. The number
of stages can not be reduced due to operating frequency constraints. In fact, although mul-
tiplications in lines 5 and 7 of Alg. 4 can be performed by a simple arithmetic left shift, the
operation requires a cascade of two B-bit adders. Furthermore its result is used in order to
compute qi+1. From these consideration we expect that including two iteration steps in a
single pipeline stage would decrease the clock frequency below the requirements.

In order to perform the computation, it is necessary that the input word to block
square_root is composed of an even number of bits. Being this value an editable parame-
ter of the system, the chosen approach is shown in Lst. 9.6. Fixed-point square_modulus_ty
data is extended in such a way that both its integer and fractional part are composed of an
even number of bits. This allows to obtain the correct value from Alg. 4 by simply shifting the
obtained result left or right. Moreover, function root_size_low allows to add more bits at the
end of the word to obtain a longer result that can be rounded, thus achieving an improved
accuracy of results.

202 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Listing 9.6: VHDL functions and constants in architecture square_root_structural.
-- Function "root_size_low" computes the lower bound for the
-- radicand of the squared root so that the number of bits of
-- the fractional part is even.
-- Two bits are added to have a better resolution.
function root_size_low(square_low_bound : integer) return integer is
begin

if ((-square_low_bound mod 2)=0) then
return square_low_bound - 2*square_root_guard_bits_c;

else
return square_low_bound-1 - 2*square_root_guard_bits_c;

end if;
end function root_size_low;
-- Function "root_size_high" computes the high bound for the
-- radicand of the squared root so that the number of bits of
-- the integer part is even.
function root_size_high(square_high_bound : integer)

return integer is
begin

if ((square_high_bound mod 2)=0) then
return square_high_bound+1;

else
return square_high_bound;

end if;
end function root_size_high;

-- Bounds for the data. They are such that for the radicand the
-- number of bits of both the integer and the fractional part
-- are even.
constant radic_bound_high_c : integer

:= root_size_high(square_modulus_ty’high);
constant radic_bound_low_c : integer

:= root_size_low(square_modulus_ty’low);
constant radicand_int_c : integer := radic_bound_high_c+1;
constant radicand_frac_c : integer

:= radic_bound_high_c+1-radic_bound_low_c;
constant remainder_int_c : integer

:= radic_bound_high_c+1-radic_bound_low_c;
constant remainder_frac_c : integer

:= radic_bound_high_c+1-radic_bound_low_c;
constant quotient_int_c : integer

:= (radic_bound_high_c+1-radic_bound_low_c)/2;
constant quotient_frac_c : integer := (-radic_bound_low_c)/2;

The rescaling operation is performed either by modules root_shifter or modulus_shifter
as an arithmetic left shift of scaling_factor_c positions. Consequently, the value of s in Alg. 3
results set to

s = 2scaling_factor_c.

Also, it is possible to choose the rouding type by editing constant scaling_rounding_c. This
constant is defined in package autocorrelation_settings and allows an improved accuracy at
the expense of resource saving. By default, this parameter is set to fixed_round. This allows
the right accuracy for the control system to achieve its function.

Another fundamental is the autocorrelation_ram_addresser. This module implements
different addressing schemes depending on input signal
mode_ram_addr_i.

• When it is ‘000’, addressing is linear. All the addresses that are propagated in parallel
in signal systemside_addr_i have consecutive values.

9.4. PSD COMPUTER 203

• When mode_ram_addr_i is ‘001’ the address is initially computed as case ‘001’. Then,
all the bits but the first are reversed. This allows to perform the bit-reversed addressing
of 1024 values and is necessary to implement line 6 of Alg. 3.

• Case ‘010’ is similar to the former, but all address bits are involved in the reversal. With
this technique the bit-reversed ordering of 2048 values can be achieved as required in
line 10 of Alg. 3.

• Addressing scheme is bit-reversed and mirrored when mode_ram_addr_i is ‘011’. This
means that data referring to location 1023 in the simple bit-reversed case is addressed
to location 0. This mode is not used by default, but it can be by modifying the control.
Its application is related to the ordering of final data.

• When mode_ram_addr_i is ‘100’ addressing is linear but inverted. The first address is
thus 1024, and adjacent values differ of −1. This scheme allows to read the RAM from
the last location to the first, and is necessary to exploit spectral simmetry.

The design of block autocorrelation_ram is essentially based on timing considerations.
The achieved goal is that, at every clock cycle, all read and write operations are performed
simultaneously. Given the sequence of data accesses in Alg. 3, the RAM must be capable
of serving 2P requests at the same time. This guarantees the correct timing for the whole
PSD computer. The only constraint on synchronization is that when a read operation is
requested, the result must be available on the next clock cycle. Fig. 9.21 shows the internal
structure of module autocorrelation_ram. Block complex_part_ty_register implements data
location 1025, while all the others are contained in the ram_core module.

The ram_router block selects data depending on its address and manages the routing of
output data. It is composed of a decoding logic, a register bank and a set of multiplexers.
The decoding logic determines the data to write into the register bank. At every clock cy-
cle, if en_ext_i is set to zero, the module considers requests coming from the internal side
of the PSD computer. If the i -th address, with 0 ≤ i ≤ 2P −1, refers to location 1025, then a
binary word referring to the complex_part_ty_register is written in register i . Else, the word
refers to port i of the autocorrelation_ram block, either to write signal sys2core_data_s or to
read core2sys_data_s. The first bit of the address is cut away, and the remaining bits define
a internal_ram_address_ty type. These feed the RAM module. The register bank drives the
multiplexers, so that in the following clock cycle address data is correctly available at output
port i . If en_ext_i is high, the system-side ports of the RAM are disabled, and only read re-
quests from the external port are served. All non-valid read requests are managed by simply
referring to the RAM ports, but the impossibility of this eventuality comes from the discus-
sion on block autocorrelation_ram_addresser.

Non-valid write requests are managed by block and write_checker, as seen in Fig. 9.21.
Its function is simply to set the write bit to zero whenever the called location has an address
above 1025.

The implementation of module ram_core can be different, depending on the chosen
technology. If the design is implemented on an ASIC platform, this block is no more than
a simple 2P-port RAM. All the addressing schemes explored when analysing block autocor-
relation_ram_addresser and Alg. 3 itself guarantee that no overlap between read and write
steps is possible. Moreover, it is not possible that the same address is requested simulta-
neously. The only problem holds when the write_checker module modifies some requests

204 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Figure 9.21: Structural diagram of architecture autocorrelation_ram_structural.

9.4. PSD COMPUTER 205

from write to read. But in this case, the system is expecting to perform a write operation,
thus the effect of the forementioned module is simply to let the request fall unserved. By
consequence, the memory coherence management is extremely simple. Nevertheless, on an
ASIC platform, two-port RAM blocks place a fixed limit on the implementation. In order to
understand the design of this module, we examine Fig. 9.22. From Alg. 3 we know that the
bit-reversed addressing is necessary whenever a write operation must be performed, while
the linear addressing is essentially used for reading. Holding the fact that both operations
must be simultaneous on 2P ports, it is possible to give an interpretation of address inter-
nal_ram_address_ty based on fields. Supposing to have default settings, it is 2P = 8 and thus
we consider

a9a8a7︸ ︷︷ ︸
w

a6a5a4a3︸ ︷︷ ︸
l

a2a1a0︸ ︷︷ ︸
r

, (9.21)

where w is the write index, r is the read index and l is the BRAM location addressed. Con-
sequently, in the FPGA case the problem is solved by implementing a (2P)2 matrix of BRAM
blocks in which every element is addressed with (w,r). This approach may lead to hardware
overhead, and also decrease the operating clock frequency, depending on how the scheme is
realised. On the other hand, considering the final ASIC orientation of the overall design, the
given solution may be considered as a compromise for a rapid FPGA prototipation.

Figure 9.22: Examples of addressing and BRAM selection fields.

The hardware structure implementing the address scheme described by Eq. (9.21), fol-
lows the same architecture of autocorrelation_ram. A bram_router module, whose behaviour
is similar to the one of ram_router, selects the correct BRAM block depending on fields w and
r of the address. Thus, location l of block (w,r) is requested. The same mechanism involving
a register bank and a set of multiplexers, as described before, allows the correct timing for
read operations.

Control

The control of the PSD computer is performed by a Moore machine. Because of its com-
plexity both in terms of number of states and in terms of signals involved, its behaviour is
illustrated in Fig. 9.23 with a functional diagram, instead of a full dataflow.

The first stage of the control inolves initialisation of the FFT processor and communica-
tion with the serial to parallel converter. Whenever this module completes an entire column
of 2P samples, these are sent through the complex_ty_conv_mux in Fig. 9.20 to the processor.

206 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Figure 9.23: Functional diagram of the control of the PSD computer.

9.4. PSD COMPUTER 207

Also, these samples are sent to the RAM to be stored in linear-addressed order. Note that this
is the only case in which writing is performed with linear addressing. When 1024 samples
are read, the counter in Fig. 9.20 propagates a reach signal. More samples from the serial to
parallel converter are ignored and samples stored in the RAM are read in linear order and
then sent to the processor.

When the processor signals the end of computation by driving signal over_cgs_fft_o to
one, modules square_modulus and square_root in Fig. 9.20 are initialised. After that, while
square moduli and square roots are computed and then scaled, data is written into the RAM
with bit-reversed addressing scheme specified by mode_ram_addr_i set to ‘001’. When 1024
values are read, the interruption of FFT data return is achieved by driving signal stop_cgs_fft_o
to one.

The second stage of processing, as described by Alg. 3, starts with the initialisation of the
FFT processor in order to perform the direct transform. Subsequently, the first 1024 data are
read by direct linear addressing from the RAM. The remaining 1024 values are zeros, and are
input to the processor by exploiting the features of block complex_ty_conv_mux. With this
expedient, the zero-padding is performed as in line 7 of Alg. 3.

When the processor is ready to output results, the square_modulus block in Fig. 9.20 is
initialised. The square moduli of all the 2048 complex data are computed and then scaled,
before being written to the RAM. The requested addressing scheme in this case is the con-
ventional bit-reversed one, specified by setting mode_ram_addr_i to ‘010’.

The last processing step is the computation of the IFFT. As in the previous algorithmic
stages, the FFT processor is initialised first, and the inverse transform is requested by setting
signal transform_type_cgs_fft_i to one. Then, data feeding the processor are read first by
linear addressing and then by inverse linear addressing from the RAM. When the processor
is ready to output results, both the square_modulus and square_root modules are initialised
for the last time. Values are then scaled and written to the RAM in bit-reversed order.

When signal over_o is driven to one by the control, valid data is available in the RAM of
the PSD computer. The external port of block autocorrelation_ram is enabled on the fol-
lowing clock cycle and read operations can be performed. This is possible until new data is
available from the serial to parallel converter and signal queue_filled_i is set to one again.
The communication protocol of the PSD computer is thus interely managed by the over_o
and nready_o signals.

over_o This signal refers to the output of the processing system. It his high whenever valid
data is contained in the ROM.

nready_o This signal refers to the input port of the system. It is high whenever the system is
processing data. When nready_o is set to one, the external port of the RAM is disabled
and every input from the user is ignored.

With this remarks, it is possible to use over_o as a trigger to start reading computation results,
and nready_o as a confirmation signal to validate user inputs.

The implemented PSD computer takes advantage of the parallelism, which is a feature
of the scalable FFT processor described in the former chapters. By a simple editing of global
settings, we expect to achieve design flexibility and resource saving as requested by the cus-
tomer. Moreover, the communication protocol is kept easy in order to simplify the interface
with downstream modules. Nonetheless, a major complexity of the overall design is in the
Moore machine that implements the control. We expect this to allow an easier editing and

208 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

improving of the single blocks, while keeping all the possible synchronization issues con-
fined to the global control.

9.4.3 Frequency feature extraction

When the sample array is processed by module autocorrelation, its result is located inside
the module’s RAM. Another block, extraction_data, performs a linear search on it in order to
extract some features which are necessary for SMPS control purposes.

The behaviour of extraction_data can be summarised few steps:

1. it initialises some internal registers containing data and addresses to be requested.

2. it performs a backwards one-by-one scan from the last element of the processed array
to element specified by generic end_search_g. If a local maximum is found, the module
stops earlier.

3. if the found maximum value is above f0_threshold_g, then another search is performed
starting from start_esr_search_g to end_search_g.

4. If a local minimum is found, then another search starts from this element towards
end_search_g in order to find another local maximum.

5. When data feature extraction is complete, signal extraction_data_ready is set to 1 for
one clock cycle.

9.5 Testing and simulation environment

As seen in the past chapters, the design of a FFT scalable processor is complex both in terms
of modules and synchronisation of components. The development of the autocorrelation-
based PSD computer described in chapter 9.4 is even more critical. The main reason is that
the design must be tested for a lot of different configurations to check its correct behaviour.
For example, in the case of scalable hybrid TF generators, it is necessary to vary the number
P of processing elements, the number of word bits B ′ and the number of FFT points N , in
order to ensure a good coding of the architecture. The possible combinations are various,
and a bug can be evident in only one of them. Also, the forementioned systems are supposed
to process many points, in different stages. It is possible that a peculiar type of error occurs
only when a certain set of data is given to the module. From these issues arises the necessity
of a structured Testing and Simulation Environment (TSE).

In this chapter, the organsation of the employed TSE is covered. First of all, the structure
of VHDL testbenches is analysed, then MATLAB simulation scripts are explained. The devel-
oped fixed-point binary library allows to simulate the VHDL fixed_pkg package and to create
a full software model of the systems.

9.5.1 VHDL testbenches

The VHDL part of the TSE is organised as shown in Fig. 9.24. The illustration refers to the
FFT processor, but the TSE for the PSD computer follows the same approach. All custom
global packages are contained in the work library of the design and are related one to the

9.5. TESTING AND SIMULATION ENVIRONMENT 209

other as discussed in Sec. 9.1.2. Standard VHDL packages are contained in a separate library,
ieee_proposed. Every module instantiates one or more of these packages. In VHDL terms,
every module is called entity and has its own declaration construct in the language. An entity
is like a black box, with one or more architectures associated to it. In the developed TSE, a
testbench is coupled with the entity too.

Figure 9.24: Organisation of the TSE on the VHDL side.

All testbenches follow the same structure.

1. All signals in the testbench are declared by using either standard types or custom types
defined in the forementioned packages.

2. Clock management with the following statement:

clk_s <= not clk_s after clock_period_c/2;

This allows to set the clock frequency, by modifying constant clock_period_c.

3. Instantiation of the Unit Under Test (UUT).

4. A test_p process reads file tb_module_test, containing both inputs and test vector. An
example test file is shown in Lst. 9.7. The file format can change for every testbench,
but its file header always specifies it clearly. Inside the process, inputs are always given
to the UUT before checking results. If a mismatch is found, this is notified to the de-
signer by exploiting the presented VHDL standard function. When test is complete,
message ‘Test completed’ is printed to screen.

210 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Listing 9.7: Testfile for entity square_root.
--
-- tb_square_root_test.txt
-- This file contains stimuli for testbench "tb_square_root.vhd".
-- Generated using "tb_square_root_gen.m".
-- Guard bits : "3".
--
-- Template:
-- <time> <rst> <en>
-- <datain> <dataout>
--
-- Resetting
0 1 0
00000000000000000.00000000000000000000 00000000.0000000000
-- Requesting radix of 0.00000
110 0 1
00000000000000000.00000000000000000000 00000000.0000000000
-- Requesting radix of 131.20320
120 0 1
00000000010000011.00110100000001010010 00000000.0000000000
-- Requesting radix of 262.40641
130 0 1
00000000100000110.01101000000010100100 00000000.0000000000
-- Requesting radix of 393.60961
140 0 1
00000000110001001.10011100000011110110 00000000.0000000000
-- Requesting radix of 524.81281
150 0 1
00000001000001100.11010000000101001000 00000000.0000000000

The software used to run testbenches is the ISE Simulator (ISim) from Xilinx. This tool
is freely available with Xilinx ISE Project Manager, which is the software used for the whole
coding and project organisation.

9.5.2 MATLAB simulation scripts

Given the previously discussed issues about testing different combinations of parameters
and inputs, some software tools were developed in order to validate simulation results.

First of all, the fixed-point binary MATLAB library was coded to allow simulation of all
fixed-point mathematical operations. The standard MATLAB data used in this library to rep-
resent a fixed-point binary number is the string. No object-orientation was adopted for the
design of the library. A string is accepted as valid by fixed-point binary if it contains only the
characters ‘0’, ‘1’ and a dot, although the dot may not be present if the value is an integer.
The fixed-point binary library also takes advantage of MATLAB built-in fixed-point toolbox
for performing mathematical operations. Nonetheless, many functions have been written
from scratch to make hardware debugging easier and more punctual.

Among the most important functions of the library we have bin2dec_mod. This was de-
veloped to substitute the built-in MATLAB bin2dec function, which can convert binary dot-
free strings to decimals only if the string has less than 52 characters. This is an issue espe-
cially when simulating the hybrid TF generator with a high number of guard bits.
A central role is covered by the resize_binary function, which emulates the behaviour of
VHDL resize function. This allows to change the number of bits of the integer or fractional
part of a fixed-point value, and takes care of resulting overflows and underflows. In particu-
lar, when rounding from a word with a longer fractional part to a shorter one, the remainder

9.5. TESTING AND SIMULATION ENVIRONMENT 211

is checked first. If the most significant bit of the remainder is a ‘1’ and the less significant
bit of the unrounded result is a ‘1’ or the lower bits of the remainder include a ‘1’, then the
result will be rounded. This means that ‘1’ is added to the lowest bit of the unrounded result.
If saturation is enabled, whenever a value exceedes the largest representable number, the
maximum possible value is returned, given its integer and fractional part bits.

The structure of the TSE on the MATLAB side is shown in Fig. 9.25. The fixed-point binary
library is employed either by a library of components and by scripts. Components are im-
plemented as functions and are called inside simulation scripts. When the test of a module
is passed, then a function is made out of the script and it becomes a component. This allows
a bottom-up approach to design testing.

Figure 9.25: Organisation of the TSE on the MATLAB side.

The structure of a MATLAB test script is the following:

1. Script initialisation. Previous data is removed from the MATLAB workspace and simu-
lation constants are declared.

2. The test file header is written, specifying all simulation parameters. If the simulated
system is particularly complicated, a logfile is also opened and its header written.

3. Data is generated either in a random way or by importing a file from the test_data
folder. This allows to repeat the simulation on the same data but changing the param-
eters.

212 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

4. Following the test scheme of the script, the actual simulation is performed. At every
step, the test file is compiled according to its format. Also, the possible logfile keeps
trace of variables, whose names are identical to the ones used in the RTL design.

5. When simulating complex systems, such as the DSP, the FFT processor or a TF genera-
tor, a plot of simulation results is shown. This depicts data during every computational
stage and final statistics on error.

6. Logfiles and test files are closed. A message saying ‘Job done!’ is printed to screen.

Being the TSE organised in two separate VHDL and MATLAB parts that must match, an
issue occurs whenever a test fails. The problem can be not in the RTL coding but on the MAT-
LAB side, in the custom fixed-point binary library, in the simulation scripts or in a compo-
nent. The followed approach in this case is cross-validation of both parts: with the develope-
ment of MATLAB code, a deeper understanding of hardware bugs is achieved and solutions
are prototyped more easily. Moreover, the advantage of the used TSE is in the possibility of
running many simulations sequentially and automatically collecting results.

9.6 Simulation and synthesis results

In this chapter, all results related to the implemented architectures are covered. We can dis-
tinguish between accuracy, timing and synthesis results. These are illustrated for the hybrid
twiddle factors generators, for the FFT processor and for the overall PSD computer. Con-
sidering scalable architectures, the results are presented by highliting the variation of per-
formances and resource occupation with different parametric configurations. The effect of
editing parameters is analysed in depth for all the metrics.

Because of the orientation of the whole project towards a future ASIC implementation,
other metrics than FPGA-based values may be necessary. When possible, an expression de-
scribing the expected value of the metric is derived and then validated through experimental
results.

9.6.1 Hybrid twiddle factors generators

Accuracy

The hybrid CORDIC-LUT twiddle factors generators described in chapter 9.3 was simulated
with the testing and simulation environment discussed in chapter 9.5.

In section 9.3.2 it was noted that the scalable rotational algorithm computes TFs by using
results of previous computations, and this can be an issue in terms of error propagation. The
adopted solution is to use B ′ ≥ B bits, where B is the bit length of outputs, for the internal
representation of twiddle factors. We expect the problem to be the most relevant in the first
stage, s = 0, following the notation introduced in chapter 9.3. In this stage all TF indexes are
adjacent, thus error propagation is more visible. Given sequence {W (k)

N ,obtained} of twiddle fac-

tors obtained at stage zero, and sequence {W (k)
N ,exact}, of twiddle factors computed in MATLAB

with full resolution, the relative error is defined as follows:

E =
|W (k)

N ,obtained −W (k)
N ,exact|

|W (k)
N ,exact|

= |W (k)
N ,obtained −W (k)

N ,exact|. (9.22)

9.6. SIMULATION AND SYNTHESIS RESULTS 213

Fig. 9.26 shows mean value and standard deviation of E as a function of B ′−B . These val-
ues are computed considering B fixed to 16 and N set to 1024. The curves related to the clas-
sic CORDIC algorithm are obtained with MATLAB cordicsincos built-in function. It is evident
that in hybrid CORDIC-LUT architectures a certain amount of error must be accepted, if the
number of bits of the internal representation of data is not increased from B . Nonetheless,
by incrementing this value of few units, comparable results to the conventional approach
are met. Values in Fig. 9.26 are obtained when rounding inside the complex multiplier is
disabled, thus with default settings.

When rounding is enabled, we expect the hybrid architectures to achieve better accuracy
if compared to the former case. A validation of this hypothesis is shown in Fig. 9.27. Con-
ventionally in the classic CORDIC approach the number of steps that are taken in the com-
putation is equal to B , and no rounding is performed at the end of the procedure [115, 33].
The first points of the curves in figures 9.26 and 9.27 refer to this solution. The mean relative
error is of about 0.004% and the standard deviation of the relative error is fixed at 0.0023%.
Thus, we note that a comparable result between pure CORDIC and the proposed hybrid so-
lution in terms of mean error can be achieved by choosing B ′−B = 2 in the case of Fig. 9.26,
or B ′ = B in the case of Fig. 9.27, for the pipelined architecture. If the shared-core architec-
ture is chosen, then values are B ′−B = 4 in the case of Fig. 9.26, or B ′−B = 3 in the case
of Fig. 9.27. Approximately equal results in terms of standard deviation in the rounding dis-
abled case require B ′ to be at least one bit bigger than the value considered before. In the
case of Fig. 9.27, it must be at least B ′ −B = 3 for the scalable pipelined architecture and
B ′−B = 4 for the shared-core structure. In order to minimise hardware resource usage, we
require the mean relative error to be near the conventional CORDIC value and accept a big-
ger standard deviation. Consequently, we consider the values for B −B ′ listed in Tab. 9.2.

Table 9.2: Considered values of B −B ′ depending on architecture and rounding.

Architecture Rounding off Rounding on

Shared core 3 4
Pipelined 2 0

Notably, in figures 9.26 and 9.27 all the curves tend to stabilise to the same value when the
difference B ′−B increases. This is because the effect of error propagation between adjacent
terms of sequences is easily compensated by the large number of guard bits. However, using
such a representation of computational data can lead to both severely hardware-espensive
implementations and low operational frequencies. Sure enough, it must be remembered
that setting B ′ also means using larger multipliers and adders. Similarly, enabling rounding
means increasing the depth of the critical path, either inside the shared rotational core or
inside the pipeline stages. Consequently, accepting a certain amount of error as a drawback
may be preferred in some cases.

Speedup effect

While the pipelined architecture can generate P twiddle factors per clock cycle, the shared
core solution has a variable troughput until it reaches the maximum value P . The trend is
shown in Fig. 9.28. This is because as the stage number increases, the sequence of N

2 twiddle

214 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Figure 9.26: Relative error statistics on TF output sequence {W (k)
N } with rounding disabled.

B = 16, N = 210, s = 0.

9.6. SIMULATION AND SYNTHESIS RESULTS 215

Figure 9.27: Relative error statistics on TF output sequence {W (k)
N } with rounding enabled.

B = 16, N = 210, s = 0.

216 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

factors contains less different elements. Consequently, less iterations have to be performed
and immediate retrieval of data becomes more effective. We call this the speedup effect of
the shared core architecture.

Figure 9.28: Shared core architecture speedup. N = 1024, P = 4.

This feature of the hybrid CORDIC-LUT system exploits the structure of the proposed
scalable rotational algorithm (Alg. 1). In [129] the number of iterations, thus the latency of
the system, is reduced by using a lookup-table containing optimised rotational sequences.
This leads to variable scale factors that must be correctly compensated in order to perform
the FFT. The minimum number of iterations achieved in [129] is B

2 , where B is the bit length
of twiddle factors. In the analysed architecture scaling is not necessary because rotations are
performed with complex multiplications. Moreover, all parallel requests involving the same
TF index are satisfied at the same time, consequently latency is not a function of B .

Synthesis results

In order to have a technology-independent estimate of resource usage, we want to derive an
expression for the number of stored bits in both architectures. We consider only bits of com-
putational data (i.e. twiddle factors) in any representation. For the shared core architecture,
as shown in Fig. 9.14, we count the following contributes:

• 2BP bits in the output registers of module unmapper.

• 2B ′P bits in the registers that store the output of the reference module, as illustrated in
Fig. 9.16,

• 2B ′P bits in the output registers of the CORDIC core.

• 2B ′(log2 N −1) bits inside the ROM.

9.6. SIMULATION AND SYNTHESIS RESULTS 217

Figure 9.29: Computational data storage estimates as a function of P . B = 16 and N = 1024.

After summing and ordering the contributes, we obtain the estimateβshared expressed by the
equation

βshared = 2(2B ′+B)P +2B ′(log2 N −1). (9.23)

From Fig. 9.18 we obtain the contributes that give the estimate for the pipelined scalable
hybrid architecture.

• 2BP bits in the output registers of module unmapper.

• 2B ′(P+1)P bits in the output registers of the P+1 pipeline stages composing the struc-
ture.

• 2B ′(log2 N −1) bits inside the ROM.

Thus, the estimate in the pipelined case is

βpipelined = 2
[
B ′(P +1)+B

]
P +2B ′(log2 N −1). (9.24)

In the conventional CORDIC approaches [81, 108, 121] or even in the particularly efficient
solution [33], B pipeline stages containing a 2B-bit register are instantiated for each of the P
output elements. Consequently we consider

βclassic = 2B 2P (9.25)

as our estimate of computational data storage. Fig. 9.29 is obtained by evaluating equa-
tions (9.23), (9.24) and (9.25), for a 1024 point system with B = 16 and B ′ = 19. In the shared
core case B ′ = 19 is chosen, while B ′ = 16 is set for the pipelined architecture. This takes into
account the remarks related to accuracy in subsection 9.6.1.

218 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

From Fig. 9.29 we note that when the number of PEs is below the value of B , then the
proposed scalable architectures are more efficient in terms of computational data storage.
When P = B , then the hybrid pipelined architecture is expected to require about the same
storage resources of the conventional CORDIC. However, the estimate for the shared core
architecture is always lower if compared to the other architectures. It is also noticeable that
when P = 1 all architecture use almost the same amount of computational data storage.

Another technology-independent metric that can be given is the number of real multi-
pliers used in the designs. This value can be deduced from the discussion in in chapter 9.3
and is 3 in for the shared core structure and 3P for the pipelined architecture.

In order to validate the estimate in equations (9.23) and (9.24), we now illustrate synthe-
sis results for both the proposed scalable hybrid systems and confront them with a classic
CORDIC architecture freely available at Opencores.com [41]. These are synthesized on a Xil-
inx Virtex-5 XC5VLX330T-2FF1738 FPGA. The used synthesis tool is Xilinx XST, with speed as
the optimization goal. The settings for all the systems are N = 1024 and B = 16, or rather the
defaults.

The shared core architecture is synthesized with both rounding disabled (thus B ′−B = 4)
and rounding enabled (B ′−B = 3). Results are shown in figures 9.30 and 9.31. We first note
that the trend for the slice registers occupation is almost perfectly exponential, and no bend-
ing like in Fig. 9.29 is visible. This is because this value does not take into account the con-
tribute given by the ROM, which was considered in Eq. (9.23). However, register resource
saving is deduced from the figure both in the case with rounding enabled and the one with
rounding disabled. Slice LUT occupation is instead much similar for all the examined cases.
This is due to the resource mapping performed by the synthesizer, that must instantiate big-
ger multiplexers as P increases. Also, hardware for mathematical operations is much heavier
in the shared core architecture, because B ′ is bigger than B of some bits.
Another important figure of merit that must be taken into consideration is operating fre-
quency, whose plot is in Fig. 9.31. The classic CORDIC approach in [41] works at frequencies
of about 400M H z. On the other hand, the shared core solution has a maximum frequency
around 95M H z when P < 8 and rounding is disabled, while when rounding is enabled, op-
erating frequency is around 75M H z in the same range. This is expected from the chosen
design philosophy, which tries to achieve hardware resource saving if compared to the con-
ventional approach.

Synthesis results for the pipelined architecture are shown in Fig. 9.32. In this case, syn-
thesis parameters are B ′−B = 2 for the structure with rounding disabled and B ′ = B for the
one with rounding enabled, according to Tab. 9.2. Fig. 9.6.1 shows the same feature as dis-
cussed for the shared core architecture regarding the bending of the estimate curve. The
approximation is well followed, and slice register saving is shown until P = B , or rather until
the number of pipeline stages of the hybrid architecture becomes equal to the one of the
conventional CORDIC approach. Interesting results are also illustrated in Fig. 9.6.1: the plot
proves that, independently from P , the hybrid pipelined architecture always uses less LUTs
on the FPGA if compared to the classic solution.
Moreover, Fig. 9.33 shows the low sensitivity of operating frequency with P . This is always
around 114M H z in the case of rounding turned off and 91M H z in the other one. Both curves
prove that the given design requirements can be satisfied with the designed structures, thus
guaranteeing resource saving as well as good throughput.

The synthesis figures show that, being the mean relative error approximately equal, the
shared core solution is heavier in terms of FPGA LUTs than the pipelined one. The main

9.6. SIMULATION AND SYNTHESIS RESULTS 219

Figure 9.30: Synthesis results for the shared core architecture as a function of P .

220 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Figure 9.31: Maximum operating frequency of the shared core architecture as a function of
P .

reason is that the shared core architecture needs to instantiate much hardware to manage
the serving of requests. This includes many multiplexers, which are also wider, in relation to
word length, because of error compensation. This does not happen in the pipelined struc-
ture, which also results to be less sensitive to variations of P in the maximum operating fre-
quency. Another fact must be taken into account, which is the usage of DSP blocks, or rather
real multipliers. As discussed before, this happens to be three times bigger in the pipelined
architecture than in the shared core one. This can be an issue when implementing the de-
sign on ASIC, and possibly leads to different values of metrics than expected. However, ASIC
synthesis must be done to validate estimates in this case. In general, we can state that the
shared core architecture saves more hardware resources, compared to the pipelined one,
if a bigger error can be accepted on output TFs. In this case B ′ can be reduced and LUTs
saved, as shown in Fig. 9.34. The plots show that, being P fixed, the shared core architecture
requires both less slice registers and less slice LUTs if compared to the pipelined solution.
However a remark regarding the pipelined architecture with rounding disabled can be done.
In Fig. 9.6.1, values referring to this architecture are below the ones of the shared core TF
generator with rounding enabled, until B −B ′ = 3. This can be explained by observing that
in the figure B = 16, and each DSP block of the FPGA contains a 18×18 real multiplier. When
B ′ > 18 signals must be routed so that two DSP can be used to perform a real multiplication,
and this becomes an issue in the pipelined architecture, which instantiates 24 DSPs instead
of 12. The shared core system besides uses only 6 DSP blocks instead of 3, so resource map-
ping on the FPGA chip is more efficient. From Fig. 9.34 we also note that the pipelined hybrid
architecture with rounding enabled requires more slice LUTs than the others when B ′ = B .
But Fig.9.6.1 proves that, in order to achieve the same accuracy performances, other solu-
tions require B ′ > B , thus using more LUTs and registers.

9.6. SIMULATION AND SYNTHESIS RESULTS 221

Figure 9.32: Synthesis results for the pipelined architecture as a function of P .

222 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Figure 9.33: Maximum operating frequency of the pipelined architecture as a function of P .

Fig. 9.35 shows the plot of maximum operating frequency as a function of B ′−B , being N
fixed at 1024, P = 4 and B = 16. As expected, the architectures with the highest value of this
figure of merit are the ones with rounding turned off. In particular, the pipelined architecture
achieves a frequency above 110M H z when B −B ′ ≤ 2. On the other hand, the shared core
architecture with rounding enabled falls welow the required 70M H z when B ′ is bigger than
B of five bits. We also note that the pipelined architecture with rounding enabled operates
in a range of clock frequencies of about 10M H z around 90M H z when B ′ = B and 80M H z
when B ′−B = 5.

Given the considerations in Sec. 9.3.3, synthesized ROM blocks are in a number of P +1
for the shared core architecture and P + 2 for the pipelined one. These are implemented
into LUTs by XST in order to maximize timing performances. The multi-port ROM of both
hybrid architectures stores log2 N −1 values, like the LUT described in [129]. The CORDIC
architecture described in [33] uses no ROM, but hardware resources requested by the control
are noted to be a drawback for FFTs of less than 1024 points. Furthermore, being based on
Alg. 1, the proposed architectures do not perform any gain correction. Their drawback is in
the maximum frequency, which is lower than in the forementioned architectures in the state
of the art.

Considering required hardware efficiency, operating frequency constraints and accuracy,
the best choice in the case of the commissioned project is the pipelined design with round-
ing enabled. This achieves both low register and LUT usage while setting the operating fre-
quency above the lower limit of 70M H z. In the general case, the most suitable architecture is
determined by considering error constraints in the first place and then choosing the desired
tradeoff between accuracy and resource usage.

9.6. SIMULATION AND SYNTHESIS RESULTS 223

Figure 9.34: Synthesis results of hybrid architectures as a function of B ′−B . N = 1024, P = 4
and B = 16.

224 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Figure 9.35: Maximum operating frequency of hybrid architectures as a function of B ′−B .
N = 1024, P = 4 and B = 16.

9.6.2 Scalable FFT processor

Accuracy

In order to study the accuracy of the implemented scalable FFT processor, we consider the
set of input data given by the customer as a benchmark. The first 100 samples belonging
to this array are shown in Fig. 9.36. These values are the output of an ADC converter and
the parameters of the implemented processor are determined by considering the features of
their processing.

Determination of bit width for both twiddle factors and coefficients data of the processor
takes accuracy into consideration together with hardware resource saving. If Xexact is the
exact result of the FFT, and Xobtained is the array of obtained complex values, we define the
mean relative error as

E = mean

(|Xobtained −Xexact|
|Xexact|

)
. (9.26)

Fig. 9.37 shows the trend of E as a function of both TF and coefficient length expressed in
bit. The plot is obtained by simulating the processor with a hybrid pipelined TF generator
with rounding enabled. For the coefficient data, five bits are reserved to the integer part
of the word, in order to avoid possible saturation when computing sequences other than the
benchmark. Considering that the processor may operate multiple times on the same dataset,
like required from Alg. 3, it is necessary to guarantee low error propagation. If we choose to
impose E ≤ 1%, We note that at least 16 bits are needed both for TFs and coefficients. By
setting the number of coefficient word width to 18bi t , we ensure E to be under 0.5%.

9.6. SIMULATION AND SYNTHESIS RESULTS 225

Figure 9.36: Samples from the dataset.

Figure 9.37: Mean relative error as a function of the length of twiddle factors and coefficients
of the FFT processor. N = 1024.

226 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Timing

As discussed in Sec. 9.1.1, the number of clock cycles to perform the computation of the
FFT depends on the number of PEs P . Considering that a stage consists in calculating N

2
butterflies, we have

Tcomp = N

2P
(log2 N −1), (9.27)

where Tcomp is the computation time in clock cycles. When the chosen architecture for the
TF generator is the shared core one, Eq. (9.27) is not valid anymore. Considering the im-
plementation discussed in Sec. 9.3.3, every time that a CORDIC iteration is performed, one
clock cycle is used for the synchronisation between Moore machine and shared core. This is
additional to the necessary cycles for the actual computation. Moreover the speedup effect
must be taken into consideration. This makes the formula for Tcomp a complicated function
of P and N .

Evaluating Eq. (9.27) for N = 1024 and N = 2048 leads to the trend in Fig. 9.38. Notably,
choosing P = 4 leads to Tcomp = 1152 if N = 1024 and Tcomp = 2560 if N = 2048. Given results
in Sec. 9.6.1, we choose this number of PEs as a compromise between hardware efficiency
and computational speed.

Figure 9.38: Computation time of the FFT processor as a function of P .

Synthesis results

The scalable FFT processor with hybrid TF generators is synthesized on the forementioned
Xilinx Virtex-5 FPGA with different parametric configurations. In order to reduce the space
of parameters, only the pipelined architecture with rounding enabled and internal repre-
sentation of data of 16bi t is considered. Likewise, the length of data words for the processor
is fixed at 18bi t , given accuracy considerations in Sec. 9.6.2. Fig. 9.39 illustrates synthesis

9.6. SIMULATION AND SYNTHESIS RESULTS 227

results for different values of N as a function of the number of PEs P . Both the plot of of
occupied slice registers and LUTs have an exponential trend, as expected. We can also note
that, while data for N = 512 and N = 1024 do not differ very much for the same value of P ,
in order to achieve similar resource occupation with a bigger N it is necessary to reduce P .
However, this also implies a reduction of Tcomp, as discussed before. On the other hand, the
trend for the maximum operating frequency (Fig. 9.40) is almost independent from P until
this reaches P = 8. When such a number of parallel PEs is instantiated, the figure of merit
is evidently reduced. This is because the step_computer block described in Sec. 9.3.3, which
computes the needed step for rotational iterations, must examine more mapped addresses
(see Alg. 1). Moreover, with the increase of N , these signals become also wider, and this im-
plies an additional reduction of frequency. Despite this fact, the range of interest of P for
practical applications falls inside the range (0,4). If necessary, the frequency reduction ef-
fect can be easily compensated by implementing the step_computer block with a pipelined
structure.

Discussed synthesis results show the basic advantage of the scalable architecture against
pipelined FFTs, which is the possibility of choosing the number of PEs in function of desired
hardware resource occupation. For example, the MDC pipelined architecture implemented
in [79] on a Xilinx Virtex-5 FPGA for N = 1024 and 16bi t for computational data uses much
more DSP slices (i.e. real multipliers) if compared to the proposed approach. This can be
seen in Tab. 9.3. Nonetheless, the scalable architecture with pipelined hybrid TF generator
takes less clock cycless to perform the computation. On the contrary, the MDC structure
requires less registers and LUTs but 20 BRAM blocks. As previously observed, the ROM in
the hybrid TF generator is realised by the synthesizer with LUT blocks. Additionally, the
whole scalable architecture is based on shifting registers and does not use any RAM. This
explains hardware overhead observed in Tab. 9.3. We accept this considering the future ASIC
implementation of the design, and the fact that the design will not be mapped on existing
hardware like in the FPGA case. A remark can be done on the in place architectures discussed
in [79], in particular on the one with five PEs. Although it requires less slice registers than the
scalable FFT, it uses more LUTs together with BRAM blocks. Despite this, its computational
latency is more than two times higher than the value referring to the scalable architecture.

Table 9.3: Comparison between the proposed architecture and [79]. N = 1024, B = 16.

Scalable In place In place
MDC

(4 PEs) (1 PE) (5 PEs)

Slice registers 6465 601 2384 2545
Slice LUTs 6901 4656 7453 2480
BRAM blocks 0 0 14 20
DSP slices 24 4 20 40
Computation time [clock cycles] 1152 6144 3687 2055

Another set of architectures specifically designed for automatic generators like [79] was
proposed in [100]. The goal of these architectures is to put together hardware optimisation
and design flexibility, like in the scalable FFT architecture. The difference is in the approach,
which in [100] is fully-pipelined both in the radix-2 and radix-4 solutions. The used FPGA
device belongs to the Xilinx Virtex-5 family, and synthesis results are given in Fig. 9.41. A
synthesis with comparable parameters was performed by choosing N = 256, 8bi t of reso-

228 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Figure 9.39: Synthesis results of the FFT processor as a function of P .

9.6. SIMULATION AND SYNTHESIS RESULTS 229

Figure 9.40: Maximum operating frequency of the FFT processor as a function of P .

lution of both twiddle factors and coefficients (i.e. computational data) and four PEs. The
results are shown in Tab. 9.4. From the figures it is evident that the proposed architecture
achieves improved slice saving as well as a similar operating requency. Because of its scala-
bility, the architecture allows good timing performances. indeed, with 4 PEs it is possible to
compute the transform in only 224 clock cycles.

Table 9.4: Synthesis results for the scalable archtiecture with N = 256, B = 8 for both TFs and
coefficients and P = 4.

Metric Value

Used slices 3114
Maximum frequency [MHz] 92

XionLogic [125] releases competitive FFT cores with an open source license. Among
these, there is also a CG-FFT module. Synthesis results on a Xilinx Spartan-6 LX-16 FPGA
are given by the producer. In Tab. 9.5, these are shown together with the ones of the scal-
able architecture, for a system with one PE, 10bi t twiddle factors and 8bi t computational
data representation. The proposed architecture is proved to have lower operating frequency
and greater slice register occupation if compared to all the considered architectures. This
is the drawback of the FPGA implementation of the scalable architecture. This uses regis-
ters to perform data shuffling instead of memory addressing. On the other hand, it is worth
noticing that the R22SDF architecture uses more LUTs, BRAM blocks and DSP if compared to
the scalable approach. Also, all architectures implement memory with BRAM blocks, while,
given the small dimensions of the ROM used by the hybrid TF generator, this is synthesized
on other LUTs. Each BRAM block of a Spartan-6 FPGA contains up to 18K bi t of data [124],
thus even if XionLogic designs are optimized for FPGA applications, hardware saving is not

230 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

guaranteed for ASIC platforms. Furthermore, CORDIC approaches are more effective as N
increases, while conventional LUT-based solutions require bigger memories.

Table 9.5: Comparison between the proposed architecture and [125]. N = 1024, B = 8.

Scalable XionLogic XionLogic XionLogic
(1 PE) R22SDF DIF CG

Slice registers 1256 927 438 392
Slice LUTs 1426 1987 388 331
BRAM blocks 0 2.5 4 6
DSP slices 6 16 4 4
Operating frequency [MHz] 52.982 100 100 100

In general, the advantage given by the scalable approach is in the tradeoff between com-
putational speed and hardware saving. As shown in Tab. 9.6, hybrid CORDIC-LUT scalable
architectures extend this concept in the state of the art [107, 75] by introducing scalabil-
ity into TF generation. With this expedient, the total storage for twiddle factors is reduced
depending on N from a linear to a logarithmic trend. Also, the choice of using three real
multipliers instead of four, according to Eq. (9.4), allows to compensate their usage in hybrid
TF generators at the expense of a reduced operating frequency. Being the design expressly
oriented towards applications in which frequency is not critical, this is an acceptable com-
promise.

Table 9.6: Comparison between the proposed scalable hybrid CORDIC-LUT architecture and
other architectures in the state of the art.

Architecture total TF storage Real Multipliers

Scalable hybrid shared core log2 N −1 3(P +1)
Scalable hybrid pipelined log2 N −1 6P
Scalable [107] N 4P
Pipelined [32] 3

8 N −1 4(2log2 N −4)
Scalable [75] N 4P
In place [114] N /4 3
In place [3] N 4

9.6. SIMULATION AND SYNTHESIS RESULTS 231

Figure 9.41: Performances of generated architectures. From [100].

232 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

9.6.3 PSD computer

Accuracy

The processing perfomed by the PSD computer is composed of several steps, each one in-
volving the computation of a direct or inverse FFT, a square modulus, possibly a square root
and a scaling. Moreover, if input data differs from the benchmark and parameters are too
much optimized on the given data set, the system lacks of robustness. Therefore, finding
metrics to evaluate the accuracy of the system can be an issue. We note that a slightly dif-
ferent sequence of samples for input, can lead to the saturation of a value in one step of the
FFT and consequently lead to a big mean relative error. Thus, the mean relative error is not
very suitable to the discussed case.

Considering the specific application of the PSD computer as given by the customer, what
matters for the downstream modules is the identification of a trend. The chosen metric is
subsequently the correlation coefficient [80], defined for two random sequences x and y as

ρx,y = cov(x, y)

σxσy
,

where cov(x, y) is the covariance of x and y . In the discussed case, ρx,y is a (2×2) matrix, and
the actual coefficient can be found in the top right or bottom left elements. The correlation
coefficient is a value between −1 and 1. In particular, its absolute value is 1 when x = αy ,
with α ∈R. We thus consider

ρ = |ρobtained,exact| (9.28)

as the accuracy metric for the PSD computer, where aexact and aobtained are respectively the
evaluation of Eq (9.15) with MATLAB in full resolution and the output array.

Discussions from the former sections of this chapter have explored in detail the effect of
varying the number of bits in the twiddle factor representation. In order to maximise the ac-
curacy metric in Eq. (9.28), we simulate the behaviour of the system by taking advantage of
the software environment described in Cha. 9.5. Experimentally, 18bi t for data representa-
tion and a scaling factor value of 6 allow to achieve a high value of ρ. With these settings, data
in the RAM memory has values in the range (0,16) at the end of the first stage of the overall
DSP processing, as shown in Fig. 9.42. Moreover, values are symmetrical from the center of
the obtained array. Possibly the most critical stage is the second one. The output of the FFT
processor can have very small square moduli, as illustrated in Fig. 9.42, consequently the
value of the scaling factor is essential to achieve a good result in the following processing.
By setting parameter scaling_factor_c to 3, at the end of the third stage of Alg. 3, data is like
in Fig. 9.44. We can see that the profile of the reference result computed with MATLAB is
well followed, and the accuracy metric ρ is equal to 0.9978. Consequently we can say that
accuracy requirements are fulfilled by the implemented architecture.

Synthesis results

The PSD computer was synthesized on the forementioned Xilinx Virtex-5 FPGA. Being accu-
racy fixed from previous considerations, the only parameter that can vary depending on de-
sired timing performances is the number of parallel words of the bus P . Increasing P means
not only instantiating a bigger FFT processor, but also implementing a more dense matrix
of BRAM blocks inside the ROM, together with more modules working in parallel. This is
deducible from the datapath of the system in Fig. 9.20.

9.6. SIMULATION AND SYNTHESIS RESULTS 233

Figure 9.42: Data at the end of the first processing stage.

Figure 9.43: Square moduli at the second processing stage before scaling.

234 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Figure 9.44: Data at the end of processing.

Slice resource occupation of the synthesized PSD computer is shown in Fig. 9.45. From
the figures, it is evident that the number of requested LUTs grows faster than slice registers.
This is because the increase of P leads to the instanstiation of more logic for routing of data
among different channels inside the system bus. In particular, the multiplexers that manage
data routing towards BRAM blocks become wider and less hardware-effective. The complex-
ity of the system is evident if we consider that the Virtex-5 model used is one of the largest
FPGAs of its device family, but it is nearly saturated by setting P = 8. Moreover, the matrix of
RAM units described in Sec. 9.4.2 is implemented with BRAMs only in the case P = 1, else it
is expanded into LUTs in order to achieve the speed goal. The usage of DSP blocks is shown
in Fig. 9.46: as expected, the followed trend is exponential.

The maximum operating frequency of the system as a function of P is shown in Fig. 9.47.
The plot shows fulfilment of frequency costraints in all the cases, as expected from the pre-
vious analysis.

9.6. SIMULATION AND SYNTHESIS RESULTS 235

Figure 9.45: Slice resource occupation of the PSD computer as a function of P .

236 CHAPTER 9. SCALABLE FFT AND AUTOCORRELATION-BASED HDL PROCESSOR

Figure 9.46: DSP blocks occupation as a function of P .

Figure 9.47: PSD computer maximum frequency as a function of P .

Chapter 10

Conclusions

The entire research presented in this thesis has been focused on Innovation Project 2010,
shared between the EOLAB group of the University of Cagliari and the Automotive Depart-
ment of Infineon Technologies AG (Villach-Austria). Aim of this activity is to develop and
execute an innovative self-tuning prototype (on-line controller) for future automation tech-
nologies to allow the integration of power supplies for different set of applications reducing
development time and R & D costs. On-line controllers for digitally controlled Switching
Mode Power Supplies (SMPS), are able to automatically set the PID compensator gains for a
specific identified load, while, off-line controllers have static compensator parameters tuned
over a wide range of loads. Self-tuning algorithms for SMSP are part the on-line controllers.
They have the capability to identify the output filter configuration of the converter and, con-
sequently, adjust both bandwidth and margin of the system. The load identification (or
system identification) phase is usually performed by injecting a perturbation in the system
(non-parametric approach). In the realised self-tuning prototype, the system identification
(SI) can be accomplished during steady state operations of the converter. The algorithm, is
able to set the best PID configuration even if non-idealities occur during the converter oper-
ations. When temperature variations occurs the system dynamic can be compromised by the
ESR contribution on the output capacitor. Steady state system identification (SI) algorithms
are able to compensate this non-idealities, the zero introduced by the ESR contribution can
be detected and the both margin and bandwidth can be modified by changing the compen-
sator structure. On the counter part, open loop SI approaches do not run during the steady
state, and load identification is done before or during the system start up. Consequently, the
PID configuration is set for the identified load but cannot be updated during steady state
operations. The main advantage of open loop SI methods is, that the perturbation is not
injected during converter operations, however, steady steady SI approach has to perturb the
system without compromising the nominal operating conditions of the converter.
The self-tuning prototype has been designed for automotive applications, it has been ac-
complished and qualified integrating a digitally controlled buck converter (off-line controller)
with a full-scalable VHDL-code PSD computer for the Self-Tuning algorithm execution. It of-
fers a fully customizable prototype as a development platform for future concepts.

With this purpose, a FPGA-based digital control loop for SMPS has been design. The pro-
totype has been mapped on Virtex6 FPGA presenting a maximum frequency of 124.748M H z,

237

238 CHAPTER 10. CONCLUSIONS

using respectively 402 and 1123 of slice registers and slice LUTs. The implemented control
loop has been designed for the FPGA prototyping. In order to increase the maximum fre-
quency of the digital control (system speed up), the signals among the main control blocks
have to be registered and the obtained latency of computation is of four clock cycles. Avoid-
ing output registers in the design, the digital feedback prototype could be used for low-
latency ASIC implementations. However, the obtained maximum frequency is enough for
automotive purposes.
The digital resolution of the control feedback is of 28 bits for the PID compensator and 12
bits respectively for the∆Σmodulator and the DPWM. The tuning of these values have been
first addressed comparing fixed and floating point Matlab/Simulink closed loop models. The
resolution validation has been accomplished with mixed signal hardware-software (VHDL-
Matlab) FPGA-based co-simulations. The robustness of the designed control loop has been
proven with the capability to recover the dc output voltage level when a load step occurs.

A robust digitally controlled buck converter (off-line controller), has been realised in-
terfacing the aforementioned FPGA-based digital control loop with a Test Chip (TC) where
analog blocks were already implemented. Having the feature to be externally driven, the
TC permits to verify the closed loop implementation. The system robustness has been con-
firmed. The designed FPGA-TC digitally controlled buck converter prototype has been vali-
dated and it can be exploited for future applications up to 124.748M H z.

Two novel non-parametric system identification (SI) algorithms have been theoretically
introduced and then validate into a fixed-point Matlab/Simulink closed loop model. The
open loop SI technique is based on the system step response, while, the steady state SI
method on the amplification of dithering effects on the signal path of the digital control
feedback. In both cases, output filter information are obtained in the frequency domain in
terms of resonant frequency f0 and possible ESR contribution at frequency fz . When the
respective perturbations occur, the output voltage is observed on the digital side at the ADC
output and processed with PSD computation. The resonant frequency contribution repre-
sents the maximum in the PSD output while the fz can be detected as second peak in the
processing output. All identification results have been presented for systems having typi-
cal automotive specifications. A clock frequency fclk = 70M H z and a switching frequency
fs = 450kH z, are considered for buck converters having a corner frequency in the range of
frequencies below the upper limit of fs/20. The PSD computation is considered on a dataset
of N = 128 samples, introducing a finite resolution∆ f = fs/2N = 1.754kH z for the identified
f0 and fz .
The open loop SI method identification outputs very precise results for all considered f0

identification, the little amount of error in the identification result is due to the finite res-
olution of the processing. For instance, considering a buck converter configuration having
resonant frequency f0,buck = 4.9kH z, the obtained maximum in the PSD is f0 = 4.2kH z.
When ESR contributions are considered inside the buck convert bandwidth or very close to
its corner frequency, a maximum error of 2∆ f is introduced in the identified fz . Moreover,
the resonant frequencies obtained with ESR contributions are still precise, only an error of
1∆ f is obtained for one buck converter configuration. A maximum error in the fz identifica-
tion, occur when the ESR contribution is approaching the system bandwidth (fz = 3 f0).
The steady state SI analysis have been deeper characterized with multiple acquisitions. The
first validation of the algorithm has been done in Matlab/Simulink closed loop model, then

239

dithering amplification effects have been evaluated into the off-line controller prototype.
The perturbations considered for this non-parametric method have been characterised
through a mathematical model and confirmed in every step, up to the self-tuning prototype
realisation. The dithering amplification factor α has been studied in the Matlab/Simulink
model, both in terms of perturbation of the output voltage and of impact on the load identi-
fication results. For considered system configuration (70M H z clock frequency and 449 kHz
switching frequency) about 100mV of average perturbation on the output voltage is intro-
duced doubling the dithering effects (α= 2), and f0 identification results very precise for all
considered converter configurations. To validate identification results with α = 2, multiple
processing have been considered. The related averaged values are very close to the desired
ones and the little amount of introduced error is related only to the finite resolution ∆ f .
The fz identification results, have been obtained trough comparison between two different
third order noise shaper structures when dithering effects are doubled. With a classical third
order noise shaper, the identified resonant frequencies are very precise while the ESR contri-
butions cannot be detect. Inserting a notch at frequency f = f0 in the noise shaper, permits
to detects the fz contributions as peak in the PSD output. In this way, the dithering ampli-
fication effects are more concentrated on frequency where the ESR contribution is present.
This trend has been confirmed considering four different values of ESR and precise results
are obtained. When the ESR contribution is approaching the bandwidth, the introduced er-
ror on fz is of about 3∆ f .
The identification results based on dithering amplification during steady state, have been
validated inserting the α factor in the off-line controller. Results for the digitally controlled
FPGA-TC, have been shown considering a fixed-point emulation of the PSD computer. In
this case, the resonant frequency identification for α = 2 has been averaged among eight
acquisitions for each considered buck converter configuration. The obtained mean values
are f01,av g = 4.38kH z, f02,av g = 6.32kH z and f03,av g = 9.82kH z respectively for the buck
converter configurations f0,buck1 = 4.9kH z, f0,buck2 = 7.3kH z and f0,buck3 = 10.7kH z. Iden-
tified results are very close to the desired ones, and the error is lower the 1∆ f when averaging
is computed. The ESR contribution has been obtained with the same approach used for the
Matlab/Simulink fixed-point model. The ESR contribution can be detected as a second peak
thanks to the combined effects of both dithering amplification and modified noise shaper.
If for instance a ESR = 1Ω is considered for f0,buck = 7.3kH z, the zero contribution is iden-
tified at fz = 15.8kH z for an expected value of fz,buck = 15.9. The bigger error is obtained
when the ESR contribution is approaching the bandwidth (4∆ f), however, the ESR contri-
bution in this case is vary little and has been considered for a frequency fz three times bigger
than f0.
After that the steady state SI method has been validated, this algorithm has been integrated
into the digitally controlled buck converter. An on-line steady state self-tuning prototype has
been realised. This controller is able to identify the resonant frequency and, when the zero
contribution is present, it extracts fz modifying the noise shaper. In this case two steps are
needed, the first to identify f0 and the second to modify the third order noise shaper insert-
ing a notch at fn = f0. To prototype the entire self-tuning SI algorithm, a full-scalable PSD
computer has been VHDL-coded and integrated into the FPGA. Identification results can be
observed directly on the FPGA and presented through a Chipscope Pro Analyzer interface,
where the extracted f0 and fZ are shown in terms of frequency corresponding to the related
sample of the PSD output (f = fs/2N). When eight successive acquisitions are performed,
the identified results are averaged. The user can activates the SI algorithm, after every iden-

240 CHAPTER 10. CONCLUSIONS

tification he can decide either to repeat the identification or to change the PID coefficients.
New compensator gains are retrieved from a LUT in this implementation.
The trend for the resonant frequency identification is confirmed, precise average results can
by obtained by doubling dithering effects. Moreover, the extracted resonant frequency are
not affected by the ESR contribution. When ESR contribution are considered, the two step
SI algorithm is able to output results very close to the desired fz .
During the identification, PID gains are the same used with the off-line controller approach.
They are fixed for the entire range of considered loads. The on-line controller permits to
tune the PID configuration for the identified load. Once that the identification is computed,
the PID gains can be updated consequently to the identification to adjust system dynamics
in term of bandwidth. In this case, the recovery time when a load step occurs, can be more
than 1ms shorter than the PID gains configured for the off-line controller.
The steady state SI algorithm have the main advantage to identify non-idealities during the
converter operations, without adding any overhead in terms of resources. Dithering ampli-
fication can be easily obtained playing on the quantizer resolution, the hardware overhead
in the on-line prototype is added by the PSD computer. For a Virtex6 FPGA, the maximum
frequency of the digital control loop is reduced at 91.86M H z when the PSD computer is
introduced, while, the FPGA resource usage is 21583 and 21135 respectively for Slice Regis-
ters and Slice LUTs. However, the PSD computer is composed by Processing Elements (PEs)
which are operating in parallel, its scalability permits to reduce the resource usage increas-
ing the latency of the computation. For these reasons, different scalable FFT structures have
been VHDL-coded and integrated into the PSD computer to find the best compromise be-
tween computation latency and resource usage.
Considering this requirements of scalability, a scalable FFT architecture in the state of the art
was modified and extended by using a novel approach to twiddle factor generation. The pro-
cedure, takes into consideration the structure of the CG-FFT algorithm in order to compute
twiddle factors from a diminutive set sized log2 N −1, where N is the length of the FFT. Each
element of the obtained sequence of TFs is either computed starting from another one or
directly retrieved from the forementioned set. This also contains the data which is necessary
to perform rotations. There are two possible variations of the algorithm, depending on the
interpretation followed and on the chosen property of the CG-FFT that one wants to exploit.
Each of them leads to a different architecture for the TF generator. Being both based on the
usage of a LUT and iterations, these systems have been called hybrid CORDIC-LUT twiddle
factor generators.
The shared core architecture uses a single rotational engine to perform all computations.
Requests for TFs are scanned and then organised to allow the shared core to compute each
different value only once. Thus, if two requests are referred to the same twiddle factor, only
one iteration is performed and both are satisfied at the same time. The pipelined architec-
ture is composed instead of a number of stages equal to the PEs of the system. Each stage
performs the computation of a request by possibly applying phase rotations. Both archi-
tectures achieve the calculation of TFs by using complex multipliers realised with three real
multipliers, as in Gauss’complex product algorithm. The design of the processor is based
on a tradeoff between operating frequency and hardware resource saving. By exploiting the
novel scalable rotational algorithm, the number of hardware stages used to compute TFs on
the fly during the FFT is reduced according to the number of PEs. Depending on desired
timing and hardware usage, the parameters of the processor can be adjusted to fulfil all re-
quirements.

241

The whole system and all its components were tested by using a simulation and testing envi-
ronment, composed of a set of MATLAB software and VHDL testbenches. The environment
was developed to allow an easy testing of many combinations of parameters.
The designed processor and the PSD computer were both synthesized on a Xilinx Virtex-5
FPGA. While the pipelined structure achieves the highest possible throughput, the shared
core architecture must serve different requests in sequence, and thus it is slower. But as the
processing of the FFT goes on, the number of different requested TFs decreases, so the sys-
tem shows a speed up. If a bigger error is acceptable, the shared core architecture is proved
to be even more hardware efficient if compared to the pipelined one.
Given the same mean relative error of the classic CORDIC case, the pipelined architecture
uses less hardware because it can more easily compensate error propagation than the shared
core structure. Compared to the conventional CORDIC, both solutions are proved to be more
hardware efficient as the number of PEs of the system increases. Estimates based on stored
computational data bits are derived and validated in order to figure resource occupation de-
pending on the variation of parameters. All CORDIC structures in the state of the art are
based on the same basic hardware structure, thus the latency of their processing is a func-
tion of the number of resolution bits of the word. Moreover, they require additional logic
to perform the compensation of a scale factor, which can be different from iteration to it-
eration depending on the particular architecture. The proposed structures do not need any
gain compensation, and their latency does not depend on data word length. The drawback
of the proposed approach is in frequency reduction.
A study of the accuracy of the FFT is firstly given by examining the mean relative error as a
function of the number of bits of both twiddle factors and computational data representa-
tion. The processor can achieve a value of this figure of merit of less than 0.5%, if 16 bits
are chosen for TFs and 18 bits are chosen for coefficients. Latency of FFT processing is con-
firmed to decrease as the number of PEs of the system increases, and four PEs are observed
to be the best compromise in the discussed implementation case. The processor has been
synthesized on the same FPGA device as the TF generators. The design of the scalable archi-
tecture is based on a set of registers that implement the perfect shuffle permutation, while
other processors in the state of the art take advantage of the RAM blocks of the FPGA. For
this reason, slice LUT occupation can be higher than in other architectures. On the contrary,
the effects of scalability are well shown both in used multipliers, or rather DSP blocks, and in
the ROM location count for TFs. The majority of FFT processors require a memory of a size
which is proportional to the number of points of the transform. The implemented proces-
sor uses a memory whose size is the logarithm of the FFT length. This make the discussed
approach more convenient if compared to other ones as the length increases. Also, both the
designed versions of the FFT tend to have a lower operating frequency if compared to other
approaches, that are usually oriented towards general purpose applications or telecommu-
nications. This is expected, because the whole system is coded in order to achieve improved
hardware efficiency at the expense of frequency, considering is particular application.
The complete PSD computer system was both tested and implemented on FPGA. The cho-
sen metric for accuracy is the absolute value of the correlation coefficient between results
obtained with MATLAB bult-in functions and actual output of the PSD computer. The achie-
ved value is 0.9978, which means that the trend of the output follows almost perfectly refer-
ence values. Synthesis results prove the scalability of the whole design as well as require-
ments fulfilment.

Future developments of this work, can refer to an on-line controller which integrates the

242 CHAPTER 10. CONCLUSIONS

open loop SI technique into the steady state self-tuning prototype. In this way, the SI can
be performed before the system start up and the steady SI technique can be used to mon-
itor possible non-idealities during the converter operations. Both presented SI approaches
extract load parameters through the PSD computation, this solution can be easily imple-
mented without adding any resource overhead. Furthermore, the fully-customizable self-
tuning prototype can be applied for different application. The entire discussion have been
addressed with automotive specifications, but the approach can be extended to other fields.
The SI algorithms have been described for buck converters, but they can by applied to other
converter configurations.
A possible direction of the following design effort on the scalable processor is in the deriva-
tion of a generalised hybrid architecture. This could be a compromise between the shared
core and the pipelined structure. Such a system could be composed of a tunable number
of pipeline stages, each one containing a shared cordic core that would serves a small set of
adjacent requests. This approach would allow to achieve improved hardware saving if com-
pared to the pipelined architecture while guaranteeing better timing performances than the
shared core architecture.
Another possible improvement of the architecture is the increase of its operating frequency.
This would allow the system to be more general purpose, and could be achieved by improv-
ing the design of existing modules and by substituting used multipliers with synchronous
multipliers. The first case involves the study of efficient solutions in order to achieve compu-
tation of TFs in the smallest possible time, while breaking the critical path or possibly adding
other pipeline stages. The second approach requires an in-depth analysis of available mul-
tiplier architectures and possibly the design of a module that would allow clock frequency
increase without adding too much latency in the processing. This development process can
also be tightly linked to the future ASIC implementation of the processor, with the use of
optimized custom hardware, whose layout should be carefully designed.

Bibliography

[1] Fast fourier transforms. [cited at p. xviii, 270, 271]

[2] J.A. Abu Qahouq and V. Arikatla. Online closed-loop autotuning digital controller for switch-
ing power converters. Industrial Electronics, IEEE Transactions on, 60(5):1747–1758, 2013.
[cited at p. iv]

[3] A.A. Al Sallab, H. Fahmy, and M. Rashwan. Optimized hardware implementation of fft proces-
sor. In Design and Test Workshop (IDT), 2009 4th International, pages 1–5, 2009. [cited at p. xviii,

166, 181, 230, 283, 284, 290]

[4] M. Algreer, M. Armstrong, and D. Giaouris. Adaptive pd+i control of a switch-mode dcdc
power converter using a recursive fir predictor. Industry Applications, IEEE Transactions on,
47(5):2135–2144, 2011. [cited at p. iv, v, 78, 85]

[5] Maher Algreer, Matthew Armstrong, and D. Giaouris. Active online system identification of
switch mode dcdc power converter based on efficient recursive dcd-iir adaptive filter. Power
Electronics, IEEE Transactions on, 27(11):4425–4435, 2012. [cited at p. iv, v, 78, 85]

[6] Altera Corporation. FFT MegaCore Function. [cited at p. xviii, 280, 285, 289]

[7] J. Astola and D. Akopian. Architecture-oriented regular algorithms for discrete sine and cosine
transforms. Signal Processing, IEEE Transactions on, 47(4):1109–1124, 1999. [cited at p. 161]

[8] J. Astola and D. Akopian. Architecture-oriented regular algorithms for discrete sine and cosine
transforms. Signal Processing, IEEE Transactions on, 47(4):1109–1124, Apr. 1999. [cited at p. v, 126]

[9] Adam Barkley, Roger Dougal, and Enrico Santi. Adaptive control of power converters using
digital network analyzer techniques. In Applied Power Electronics Conference and Exposition
(APEC), 2011 Twenty-Sixth Annual IEEE, pages 1824–1832. IEEE, 2011. [cited at p. iv, v, 85, 86]

[10] R. Bhakthavatchalu, N. Abdul Kareem, and J. Arya. Comparison of reconfigurable fft processor
implementation using cordic and multipliers. In Recent Advances in Intelligent Computational
Systems (RAICS), 2011 IEEE, pages 343–347, 2011. [cited at p. 181, 291]

[11] R. Bhakthavatchalu, N. Abdul Kareem, and J. Arya. Comparison of reconfigurable fft processor
implementation using cordic and multipliers. In Recent Advances in Intelligent Computational
Systems (RAICS), 2011 IEEE, pages 343–347, Sept. [cited at p. v, 128]

[12] David Bishop. Fixed Point Package User’s Guide. [cited at p. 166, 169]

243

244 BIBLIOGRAPHY

[13] M. Botao, R. Zane, and D. Maksimovic. Automated digital controller design for switching con-
verters. In Power Electronics Specialists Conference, 2005. PESC ’05. IEEE 36th, pages 2729–2735,
2005. [cited at p. iv, v, 78, 79]

[14] M. Botao, R. Zane, and D. Maksimovic. Practical on-line identification of power converter dy-
namic responses. In Applied Power Electronics Conference and Exposition, 2005. APEC 2005.
Twentieth Annual IEEE, volume 1, pages 57–62 Vol. 1, 2005. [cited at p. iv, v, 78, 79]

[15] T. Carosa, R. Zane, and D. Maksimovic. Digital multiphase modulator; a power d/a perspec-
tive. In Power Electronics Specialists Conference, 2006. PESC ’06. 37th IEEE, pages 1–6, 2006.
[cited at p. iii]

[16] Ye-Then Chang and Yen-Shin Lai. Novel on-line parameter tuning technique for predictive
current mode control operating in boundary conduction mode. In Energy Conversion Congress
and Exposition, 2009. ECCE 2009. IEEE, pages 715–722, 2009. [cited at p. iv, v, 78]

[17] Ye-Then Chang and Yen-Shin Lai. Online parameter tuning technique for predictive current-
mode control operating in boundary conduction mode. Industrial Electronics, IEEE Transac-
tions on, 56(8):3214–3221, 2009. [cited at p. iv, v, 78]

[18] Yun-Nan Chang and K.K. Parhi. An efficient pipelined fft architecture. Circuits and Systems II:
Analog and Digital Signal Processing, IEEE Transactions on, 50(6):322–325, 2003. [cited at p. 277]

[19] Jingquan Chen, A. Prodic, R.W. Erickson, and D. Maksimovic. Predictive digital current pro-
grammed control. Power Electronics, IEEE Transactions on, 18(1):411–419, 2003. [cited at p. iii,

iv]

[20] Chao Cheng and K.K. Parhi. Low-cost fast vlsi algorithm for discrete fourier transform. Circuits
and Systems I: Regular Papers, IEEE Transactions on, 54(4):791–806, 2007. [cited at p. 282]

[21] Eleanor Chu and Alan George. Inside the FFT Black Box. Serial and Parallel Fast Fourier Trans-
form Algorithms. CRC Press, 2000. [cited at p. 169, 265, 267, 268]

[22] Wanming Chu and Yamin Li. Cost/performance tradeoff of n-select square root implemen-
tations. In Computer Architecture Conference, 2000. ACAC 2000. 5th Australasian, pages 9–16,
2000. [cited at p. 200, 201]

[23] A. Congiu, M. Barbaro, A. Picciau, E. Bodano, and D. Hammerschmidt. Prototype of a novel
steady-state load identification technique for digitally controlled dc-dc power supplies. In De-
sign and Architectures for Signal and Image Processing (DASIP), 2013 Conference on, pages 355–
356, 2013. [cited at p. xvi, 129, 138, 147, 154]

[24] A. Congiu, A. Picciau, M. Barbaro, and E. Bodano. Scalable hybrid cordic-lut architectures for
cg-fft processors. In Ph.D. Research in Microelectronics and Electronics (PRIME), 2013 9th Con-
ference on, pages 105–108, 2013. [cited at p. viii, 128, 138, 159, 262]

[25] L. Corradini, P. Mattavelli, and D. Maksimovic. Robust relay-feedback based autotuning for
dc-dc converters. In Power Electronics Specialists Conference, 2007. PESC 2007. IEEE, pages
2196–2202, 2007. [cited at p. iv, v, 34, 78, 79, 81]

[26] Alessandro Costabeber, P. Mattavelli, S. Saggini, and A. Bianco. Digital autotuning of dcdc con-
verters based on a model reference impulse response. Power Electronics, IEEE Transactions on,
26(10):2915–2924, 2011. [cited at p. iv, v, 78]

BIBLIOGRAPHY 245

[27] Ognjien Djekic and Miki Brkovic. Synchronous rectifiers vs. schottky diodes in a buck topology
for low voltage applications. In Power Electronics Specialists Conference, 1997. PESC’97 Record.,
28th Annual IEEE, volume 2, pages 1374–1380. IEEE, 1997. [cited at p. 8]

[28] Robert Erickson and Dragan Maksimovic. High efficiency dc-dc converters for battery-
operated systems with energy management. Worldwide Wireless Communications, Annual Re-
views on Telecommunications, pages 1–10, 1995. [cited at p. 7]

[29] Robert W Erickson and Dragan Maksimovic. Fundamentals of power electronics. Springer, 2001.
[cited at p. 8, 81, 85]

[30] CASPER (Collaboation for Astronomy Signal Processing and Electronics Research) project Wiki.
The polyphase filter bank technique. Online, accessed 2nd April 2013. [cited at p. 283]

[31] Wei Fu, Siang Tong Tan, and A. Fayed. Switching and conduction loss analysis of buck convert-
ers operating in dcm-only scenarios. In Circuits and Systems (ISCAS), 2013 IEEE International
Symposium on, pages 921–924, May 2013. [cited at p. 8]

[32] JesÃžs GarcÃŋa, Juan A. Michell, Gustavo Ruiz, and Angel M. BurÃşn. Fpga realization of a split
radix fft processor. Proceedings of SPIE, 6590, 2007. [cited at p. 230, 278, 280]

[33] M. Garrido and J. Grajal. Efficient memoryless cordic for fft computation. In Acoustics, Speech
and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, volume 2, pages
II–113–II–116, 2007. [cited at p. xviii, 181, 213, 217, 222, 290, 291]

[34] M. Garrido and J. Grajal. Efficient memoryless cordic for fft computation. In Acoustics, Speech
and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, volume 2, pages
II–113–II–116, April. [cited at p. v, 128]

[35] M. Garrido, J. Grajal, M.A. Sanchez, and O. Gustafsson. Pipelined radix-2k feedforward fft archi-
tectures. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 21(1):23–32, 2013.
[cited at p. 280]

[36] Mario Garrido Galvez. Introduction to the fft algorithm and its hardware architectures.
[cited at p. 277]

[37] Shuibao Guo, Yanxia Gao, Yanping Xu, Xuefang Lin-Shi, and B. Allard. Digital pwm controller
for high-frequency low-power dc-dc switching mode power supply. In Power Electronics and
Motion Control Conference, 2009. IPEMC ’09. IEEE 6th International, pages 1340–1346, 2009.
[cited at p. iii, 36]

[38] Jason HandUber. Systolic arrays, 2003. Online, accessed 2nd April 2013. [cited at p. 282]

[39] Shousheng He and M. Torkelson. A new approach to pipeline fft processor. In Parallel Process-
ing Symposium, 1996., Proceedings of IPPS ’96, The 10th International, pages 766–770, 1996.
[cited at p. xviii, 277, 278]

[40] Shousheng He and M. Torkelson. Designing pipeline fft processor for ofdm (de)modulation. In
Signals, Systems, and Electronics, 1998. ISSSE 98. 1998 URSI International Symposium on, pages
257–262, 1998. [cited at p. 277]

[41] Richard Herveille. Cordic core, 2009. Online, accessed 20th April 2013. [cited at p. 218]

246 BIBLIOGRAPHY

[42] Benjamin Heyne and Jürgen Götze. A pure cordic based fft for reconfigurable digital signal
processing. In 12th European Signal Processing Conference (Eusipco2004), volume 7, 2004.
[cited at p. 281, 283]

[43] H. Ho, V. Szwarc, and T. Kwasniewski. Hardware optimization for a reconfigurable polyphase-
fft design using common sub-expression elimination. In Circuits and Systems, 2007. MWSCAS
2007. 50th Midwest Symposium on, pages 650–653, 2007. [cited at p. 283]

[44] Y.H. Hu. Cordic-based vlsi architectures for digital signal processing. Signal Processing Maga-
zine, IEEE, 9(3):16–35, 1992. [cited at p. 269]

[45] M.M. Islam, D.R. Allee, S. Konasani, and A.A. Rodriguez. A low-cost digital controller for
a switching dc converter with improved voltage regulation. Power Electronics Letters, IEEE,
2(4):121–124, 2004. [cited at p. iii]

[46] Gary Kacmarcik. Perfect shuffles. Online, accessed 6th April 2013. [cited at p. 162]

[47] A. Kelly and K. Rinne. Control of dc-dc converters by direct pole placement and adaptive feed-
forward gain adjustment. In Applied Power Electronics Conference and Exposition, 2005. APEC
2005. Twentieth Annual IEEE, volume 3, pages 1970–1975 Vol. 3, 2005. [cited at p. iv, v, 78, 85]

[48] Stewart Kenly and W Latham II Paul. Methods and systems for power supply adaptive control
utilizing transfer function measurements, 2013. US Patent 8,344,716. [cited at p. iv, 79, 82]

[49] Volkan Kursun, Siva G Narendra, Vivek K De, and Eby G Friedman. Analysis of buck converters
for on-chip integration with a dual supply voltage microprocessor. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 11(3):514–522, 2003. [cited at p. 8]

[50] Tze Leung Lai and Ching Zong Wei. Least squares estimates in stochastic regression models
with applications to identification and control of dynamic systems. The Annals of Statistics,
pages 154–166, 1982. [cited at p. iv, v, 85]

[51] Pui-Kei Leong, Chun-Hung Yang, Chi-Wai Leng, and Chien-Hung Tsai. Design and implemen-
tation of sigma-delta dpwm controller for switching converter. In Circuits and Systems, 2009.
ISCAS 2009. IEEE International Symposium on, pages 3074–3077, 2009. [cited at p. iii, 36]

[52] Jian Li, Feng Liu, Teng Long, and Erke Mao. Research on pipeline r22sdf fft. In Radar Conference,
2009 IET International, pages 1–5, 2009. [cited at p. 280]

[53] Yamin Li and Wanming Chu. A new non-restoring square root algorithm and its vlsi implemen-
tations. In Computer Design: VLSI in Computers and Processors, 1996. ICCD ’96. Proceedings.,
1996 IEEE International Conference on, pages 538–544, 1996. [cited at p. 200]

[54] Yan-Fei Liu, E. Meyer, and Xiaodong Liu. Recent developments in digital control strategies for
dc/dc switching power converters. Power Electronics, IEEE Transactions on, 24(11):2567–2577,
2009. [cited at p. iii]

[55] Yan-Fei Liu and P.C. Sen. Digital control of switching power converters. In Control Applications,
2005. CCA 2005. Proceedings of 2005 IEEE Conference on, pages 635–640, 2005. [cited at p. iii]

[56] Yan-Fei Liu and P.C. Sen. Digital control of switching power converters. In Control Applications,
2005. CCA 2005. Proceedings of 2005 IEEE Conference on, pages 635–640, 2005. [cited at p. iii]

[57] Lennart Ljung. System identification. Springer, 1998. [cited at p. iv, v, 77, 78, 85]

BIBLIOGRAPHY 247

[58] Lennart Ljung and Keith Glover. Frequency domain versus time domain methods in system
identification. Automatica, 17(1):71 – 86, 1981. [cited at p. iv, v, 77, 78]

[59] Z. Lukic, S.S. Ahsanuzzaman, A. ProdicÌĄ, and Zhenyu Zhao. Self-tuning sensorless digital
current-mode controller with accurate current sharing for multi-phase dc-dc converters. In
Applied Power Electronics Conference and Exposition, 2009. APEC 2009. Twenty-Fourth Annual
IEEE, pages 264–268, 2009. [cited at p. iv, v, 78]

[60] Z. Lukic, Zhenyu Zhao, S.S. Ahsanuzzaman, and A. ProdicÌĄ. Self-tuning digital current esti-
mator for low-power switching converters. In Applied Power Electronics Conference and Expo-
sition, 2008. APEC 2008. Twenty-Third Annual IEEE, pages 529–534, 2008. [cited at p. iv, v, 78]

[61] Zdravko Lukic, Nabeel Rahman, and Aleksandar Prodic. Multibit σ–âĹĘ pwm digital controller
ic for dc–dc converters operating at switching frequencies beyond 10 mhz. Power Electronics,
IEEE Transactions on, 22(5):1693–1707, 2007. [cited at p. iii, 36]

[62] F Jessie MacWilliams and Neil JA Sloane. Pseudo-random sequences and arrays. Proceedings
of the IEEE, 64(12):1715–1729, 1976. [cited at p. 84]

[63] D. Maksimovic and R. Zane. Small-signal discrete-time modeling of digitally controlled dc-dc
converters. In Computers in Power Electronics, 2006. COMPEL ’06. IEEE Workshops on, pages
231–235, 2006. [cited at p. iii, 25]

[64] D. Maksimovic, R. Zane, and R. Erickson. Impact of digital control in power electronics. In
Power Semiconductor Devices and ICs, 2004. Proceedings. ISPSD ’04. The 16th International
Symposium on, pages 13–22, 2004. [cited at p. iii]

[65] M.W. May, M.R. May, and J.E. Willis. A synchronous dual-output switching dc-dc converter
using multibit noise-shaped switch control. In Solid-State Circuits Conference, 2001. Digest of
Technical Papers. ISSCC. 2001 IEEE International, pages 358–359, 2001. [cited at p. iii, 36]

[66] Botao Miao, R. Zane, and D. Maksimovic. A modified cross-correlation method for system iden-
tification of power converters with digital control. In Power Electronics Specialists Conference,
2004. PESC 04. 2004 IEEE 35th Annual, volume 5, pages 3728–3733 Vol.5, 2004. [cited at p. iv, v, 78,

79]

[67] Botao Miao, R. Zane, and D. Maksimovic. System identification of power converters with
digital control through cross-correlation methods. Power Electronics, IEEE Transactions on,
20(5):1093–1099, 2005. [cited at p. iv, v, 78, 79]

[68] Rais Miftakhutdinov and Joseph Zbib. Synchronous buck converter with increased efficiency.
In Applied Power Electronics Conference, APEC 2007-Twenty Second Annual IEEE, pages 714–
718. IEEE, 2007. [cited at p. 8]

[69] Rais Miftakhutdinov and Joseph Zbib. Synchronous buck converter with increased efficiency.
In Applied Power Electronics Conference, APEC 2007-Twenty Second Annual IEEE, pages 714–
718. IEEE, 2007. [cited at p. 8]

[70] P. A. Milder. Dft/fft ip core generator. Online, accessed 3rd April 2012. [cited at p. xviii, 280]

[71] Peter A. Milder, Franz Franchetti, James C. Hoe, and Markus Püschel. Formal datapath repre-
sentation and manipulation for implementing DSP transforms. In Design Automation Confer-
ence (DAC), pages 385–390, 2008. [cited at p. 279, 283]

248 BIBLIOGRAPHY

[72] J. Morroni, L. Corradini, R. Zane, and D. Maksimovic. Adaptive tuning of switched-mode power
supplies operating in discontinuous and continuous conduction modes. Power Electronics,
IEEE Transactions on, 24(11):2603–2611, 2009. [cited at p. iv, v, 78]

[73] J. Morroni, R. Zane, and D. Maksimovic. Design and implementation of an adaptive tuning sys-
tem based on desired phase margin for digitally controlled dcdc converters. Power Electronics,
IEEE Transactions on, 24(2):559–564, 2009. [cited at p. iv, v, 78]

[74] J. Morroni, R. Zane, and D. Maksimovic. An online stability margin monitor for digitally con-
trolled switched-mode power supplies. Power Electronics, IEEE Transactions on, 24(11):2639–
2648, 2009. [cited at p. iv, 81]

[75] Grace Nordin, Peter A. Milder, James C. Hoe, and Markus Püschel. Automatic generation of
customized discrete Fourier transform IPs. In Design Automation Conference (DAC), pages 471–
474, 2005. [cited at p. xviii, 166, 230, 277, 278, 279]

[76] M. Norris, L.M. Platon, E. Alarcon, and D. Maksimovic. Quantization noise shaping in digital
pwm converters. In Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, pages 127–
133, 2008. [cited at p. iii, 36, 37, 38, 97, 99]

[77] E. O’Malley and K. Rinne. A programmable digital pulse width modulator providing versatile
pulse patterns and supporting switching frequencies beyond 15 mhz. In Applied Power Elec-
tronics Conference and Exposition, 2004. APEC ’04. Nineteenth Annual IEEE, volume 1, pages
53–59 Vol.1, 2004. [cited at p. iii]

[78] A. V. Oppenheim and R. W. Schafer. Discrete-time Signal Processing. Prentice Hall, 1989.
[cited at p. xviii, 272, 273, 274]

[79] J. O’Sullivan, S. Weiss, and G. Rice. Automatic fft code generation for fpgas with high flexibil-
ity and human readability. In Signals, Systems and Computers (ASILOMAR), 2011 Conference
Record of the Forty Fifth Asilomar Conference on, pages 2197–2201, 2011. [cited at p. xviii, xix, 227,

284, 286]

[80] Athanasios Papoulis and S. Unnikrishna Pillai. Probability, Random Variables and Stochastic
Processes - Fourth Edition. Mc-Graw Hill. [cited at p. 232, 272]

[81] Sang Yoon Park, Nam-Ik Cho, Sang-Uk Lee, Kichul Kim, and Jisung Oh. Design of 2k/4k/8k-
point fft processor based on cordic algorithm in ofdm receiver. In Communications, Computers
and signal Processing, 2001. PACRIM. 2001 IEEE Pacific Rim Conference on, volume 2, pages
457–460 vol.2, 2001. [cited at p. 217, 280, 283]

[82] B.J. Patella, A. Prodic, A. Zirger, and D. Maksimovic. High-frequency digital controller ic for
dc/dc converters. In Applied Power Electronics Conference and Exposition, 2002. APEC 2002.
Seventeenth Annual IEEE, volume 1, pages 374–380 vol.1, 2002. [cited at p. iii, iv]

[83] Marshall C. Pease. An adaptation of the fast fourier transform for parallel processing. J. ACM,
15(2):252–264, April 1968. [cited at p. 161, 279]

[84] Hao Peng and D. Maksimovic. Digital current-mode controller for dc-dc converters. In Ap-
plied Power Electronics Conference and Exposition, 2005. APEC 2005. Twentieth Annual IEEE,
volume 2, pages 899–905 Vol. 2, 2005. [cited at p. iii, iv]

[85] Hao Peng, A. Prodic, E. Alarcon, and D. Maksimovic. Modeling of quantization effects in digi-
tally controlled dc ndash;dc converters. Power Electronics, IEEE Transactions on, 22(1):208–215,
2007. [cited at p. iii, 24, 32, 33]

BIBLIOGRAPHY 249

[86] A.V. Peterchev and S.R. Sanders. Quantization resolution and limit cycling in digitally
controlled pwm converters. Power Electronics, IEEE Transactions on, 18(1):301–308, 2003.
[cited at p. iii, 24, 32, 33, 105]

[87] A.V. Peterchev, J. Xiao, and S.R. Sanders. Architecture and ic implementation of a digital vrm
controller. Power Electronics, IEEE Transactions on, 18(1):356–364, 2003. [cited at p. iii, iv]

[88] A.A. Petrovsky and S.L. Shkredov. Automatic generation of split-radix 2-4 parallel-pipeline fft
processors: Hardware reconfiguration and core optimizations. In Parallel Computing in Elec-
trical Engineering, 2006. PAR ELEC 2006. International Symposium on, pages 181–186, 2006.
[cited at p. 277]

[89] Andrea Picciau. Design and implementation of a novel scalable fft processor with hybrid
cordic-lut twiddle factors generator. [cited at p. 159, 261, 262]

[90] G.E. Pitel and P.T. Krein. Real-time system identification for load monitoring and transient
handling of dc-dc supplies. In Power Electronics Specialists Conference, 2008. PESC 2008. IEEE,
pages 3807–3813, 2008. [cited at p. iv, v, 78, 85]

[91] Dinkar Prasad. Introduction to switched-mode power supply (smps) circuits. Online, accessed
14th April 2013. [cited at p. 195]

[92] A. Prodic and D. Maksimovic. Design of a digital pid regulator based on look-up tables for con-
trol of high-frequency dc-dc converters. In Computers in Power Electronics, 2002. Proceedings.
2002 IEEE Workshop on, pages 18–22, 2002. [cited at p. iv]

[93] Aleksandar Prodic, Dragan Maksimovic, and Robert W Erickson. Design and implementation
of a digital pwm controller for a high-frequency switching dc-dc power converter. In Industrial
Electronics Society, 2001. IECON’01. The 27th Annual Conference of the IEEE, volume 2, pages
893–898. IEEE, 2001. [cited at p. iii, 24, 26]

[94] M. Puschel, J. M F Moura, J.R. Johnson, D. Padua, M.M. Veloso, B.W. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R.W. Johnson, and N. Rizzolo. Spiral: Code gen-
eration for dsp transforms. Proceedings of the IEEE, 93(2):232–275, 2005. [cited at p. 278]

[95] S. Saggini, M. Ghioni, and A. Geraci. An innovative digital control architecture for low-voltage,
high-current dc-dc converters with tight voltage regulation. Power Electronics, IEEE Transac-
tions on, 19(1):210–218, 2004. [cited at p. iii]

[96] S. Saggini, P. Mattavelli, and M. Ghioni. High-performance mixed-signal voltage-mode con-
trol for dc-dc converters with inherent analog derivative action. In Applied Power Electronics
Conference, APEC 2007 - Twenty Second Annual IEEE, pages 28–33, 2007. [cited at p. v]

[97] S. Saggini, W. Stefanutti, E. Tedeschi, and P. Mattavelli. Digital deadbeat control tuning for dc-
dc converters using error correlation. Power Electronics, IEEE Transactions on, 22(4):1566–1570,
2007. [cited at p. iv, v, 78, 79]

[98] S. Saggini, D. Trevisan, P. Mattavelli, and M. Ghioni. Synchronous ndash;asynchronous digi-
tal voltage-mode control for dc ndash;dc converters. Power Electronics, IEEE Transactions on,
22(4):1261–1268, 2007. [cited at p. v]

[99] Biranchinath Sahu and Gabriel A Rincon-Mora. An accurate, low-voltage, cmos switching
power supply with adaptive on-time pulse-frequency modulation (pfm) control. Circuits and
Systems I: Regular Papers, IEEE Transactions on, 54(2):312–321, 2007. [cited at p. 7]

250 BIBLIOGRAPHY

[100] T.E. Schmuland, M.B. Longbrake, P.E. Buxa, and M.M. Jamali. Automatic vhdl generation soft-
ware tool for parameterized fpga based fft architectures. In Aerospace and Electronics Confer-
ence (NAECON), Proceedings of the IEEE 2010 National, pages 306–309, 2010. [cited at p. xvii, 227,

231, 280]

[101] M. Shirazi, R. Zane, and D. Maksimovic. An autotuning digital controller for dc-dc power con-
verters based on online frequency-response measurement. Power Electronics, IEEE Transac-
tions on, 24(11):2578–2588, 2009. [cited at p. iv, v, vi, 78, 79]

[102] M. Shirazi, R. Zane, D. Maksimovic, L. Corradini, and P. Mattavelli. Autotuning techniques
for digitally-controlled point-of-load converters with wide range of capacitive loads. In Ap-
plied Power Electronics Conference, APEC 2007 - Twenty Second Annual IEEE, pages 14–20, 2007.
[cited at p. iv, v, 34, 78, 79]

[103] Mariko Shirazi, Jeffrey Morroni, Arseny Dolgov, Regan Zane, and Dragan Maksimovic. Integra-
tion of frequency response measurement capabilities in digital controllers for dc–dc convert-
ers. Power Electronics, IEEE Transactions on, 23(5):2524–2535, 2008. [cited at p. iv, v, 78, 79, 85]

[104] W. Stefanutti, P. Mattavelli, S. Saggini, and M. Ghioni. Autotuning of digitally controlled buck
converters based on relay feedback. In Power Electronics Specialists Conference, 2005. PESC ’05.
IEEE 36th, pages 2140–2145, 2005. [cited at p. iv, v, 34, 78, 79]

[105] W. Stefanutti, S. Saggini, L. Corradini, E. Tedeschi, P. Mattavelli, and D. Trevisan. Closed-loop
model reference tuning of pid regulators for digitally controlled dc-dc converters based on
duty-cycle perturbation. In Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Con-
ference of the IEEE, pages 1553–1558, 2007. [cited at p. iv, v, 78]

[106] W. Stefanutti, S. Saggini, E. Tedeschi, P. Mattavelli, and P. Tenti. Simplified model reference
tuning of pid regulators of digitally controlled dc-dc converters based on crossover frequency
analysis. In Power Electronics Specialists Conference, 2007. PESC 2007. IEEE, pages 785–791,
2007. [cited at p. iv]

[107] A. Suleiman, A. Hussein, K. Bataineh, and D. Akopian. Scalable fft architecture vs. multiple
pipeline fft architectures; hardware implementation and cost. In Systems, Man and Cybernetics,
2009. SMC 2009. IEEE International Conference on, pages 3792–3796, Oct. [cited at p. v, 126, 161, 162,

164, 166, 169, 230, 277, 283]

[108] T. Y Sung. Memory-efficient and high-speed split-radix fft/ifft processor based on pipelined
cordic rotations. Vision, Image and Signal Processing, IEE Proceedings -, 153(4):405–410, Au-
gust. [cited at p. xviii, 217, 282, 283]

[109] A. Syed, E. Ahmed, and D. Maksimovic. Digital pwm controller with feed-forward compen-
sation. In Applied Power Electronics Conference and Exposition, 2004. APEC ’04. Nineteenth
Annual IEEE, volume 1, pages 60–66 Vol.1, 2004. [cited at p. iii]

[110] A. Syed, E. Ahmed, D. Maksimovic, and E. Alarcon. Digital pulse width modulator architectures.
In Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, volume 6,
pages 4689–4695 Vol.6, 2004. [cited at p. iii, 26]

[111] T. Takayama and D. Maksimovic. Digitally controlled 10 mhz monolithic buck converter. In
Computers in Power Electronics, 2006. COMPEL ’06. IEEE Workshops on, pages 154–158, 2006.
[cited at p. iii, 25]

BIBLIOGRAPHY 251

[112] O. Trescases, Z. Lukic, Wai-Tung Ng, and A. Prodic. A low-power mixed-signal current-mode
dc-dc converter using a one-bit delta; sigma; dac. In Applied Power Electronics Conference and
Exposition, 2006. APEC ’06. Twenty-First Annual IEEE, pages 5 pp.–, 2006. [cited at p. v]

[113] D. Trevisan, S. Saggini, P. Mattavelli, L. Corradini, and P. Tenti. Analysis of a mixed-signal control
for dc-dc converters based on hysteresis modulation and estimated inductor current. In Power
Electronics and Drive Systems, 2007. PEDS ’07. 7th International Conference on, pages 391–397,
2007. [cited at p. v]

[114] J.A. Vite-Frias, Rd.J. Romero-Troncoso, and A. Ordaz-Moreno. Vhdl core for 1024-point radix-4
fft computation. In Reconfigurable Computing and FPGAs, 2005. ReConFig 2005. International
Conference on, pages 4 pp.–24, 2005. [cited at p. xviii, 230, 282, 283]

[115] Jack E. Volder. The cordic trigonometric computing technique. Electronic Computers, IRE
Transactions on, EC-8(3):330–334, Sept. 1959. [cited at p. v, 128, 181, 185, 213, 269]

[116] K. Wang, N. Rahman, Z. Lukic, and A. Prodic. All-digital dpwm/dpfm controller for low-power
dc-dc converters. In Applied Power Electronics Conference and Exposition, 2006. APEC ’06.
Twenty-First Annual IEEE, pages 5 pp.–, 2006. [cited at p. iii]

[117] G.W. Wester and R.D. Middlebrook. Low-frequency characterization of switched dc-dc con-
verters. Aerospace and Electronic Systems, IEEE Transactions on, AES-9(3):376–385, May 1973.
[cited at p. 11]

[118] A.M. Wu, J. Xiao, D. Markovic, and S.R. Sanders. Digital pwm control: application in voltage
regulation modules. In Power Electronics Specialists Conference, 1999. PESC 99. 30th Annual
IEEE, volume 1, pages 77–83 vol.1, 1999. [cited at p. iii]

[119] A.M. Wu, J. Xiao, D. Markovic, and S.R. Sanders. Digital pwm control: application in voltage
regulation modules. In Power Electronics Specialists Conference, 1999. PESC 99. 30th Annual
IEEE, volume 1, pages 77–83 vol.1, 1999. [cited at p. iii]

[120] J. Xiao, A.V. Peterchev, Jianhui Zhang, and S.R. Sanders. A 4-µa quiescent-current dual-mode
digitally controlled buck converter ic for cellular phone applications. Solid-State Circuits, IEEE
Journal of, 39(12):2342–2348, 2004. [cited at p. iii, iv]

[121] Xin Xiao, E. Oruklu, and J. Saniie. Reduced memory architecture for cordic-based fft. In Circuits
and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, pages 2690–2693,
2010. [cited at p. xviii, 181, 217, 284, 285]

[122] Xin Xiao, E. Oruklu, and J. Saniie. Reduced memory architecture for cordic-based fft. In Circuits
and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, pages 2690–2693,
30 2010-June 2. [cited at p. v, 128]

[123] Xilinx. LogiCORE IP Fast Fourier Transform v.7.1. [cited at p. xviii, 280, 285, 286, 287, 288]

[124] Xilinx. Spartan-6 FPGA Block RAM Resources. [cited at p. 229]

[125] XionLogic. Radix-22sdf fft core, 2012. Online, accessed 2nd April 2013. [cited at p. xix, 229, 230, 280]

[126] V. Yousefzadeh and S. Choudhury. Nonlinear digital pid controller for dc-dc converters. In
Applied Power Electronics Conference and Exposition, 2008. APEC 2008. Twenty-Third Annual
IEEE, pages 1704–1709, 2008. [cited at p. iv]

252 BIBLIOGRAPHY

[127] V. Yousefzadeh, T. Takayama, and D. Maksimovic. Hybrid dpwm with digital delay-locked loop.
In Computers in Power Electronics, 2006. COMPEL ’06. IEEE Workshops on, pages 142–148, 2006.
[cited at p. iii, 25, 26]

[128] V. Yousefzadeh, Narisi Wang, D. Maksimovic, and Zoya Popovic. Digitally controlled dc-dc con-
verter for rf power amplifier. In Applied Power Electronics Conference and Exposition, 2004.
APEC’ 04. Nineteenth Annual IEEE, volume 1, pages 81–87 Vol.1, 2004. [cited at p. iii]

[129] Cheng-Ying Yu, Sau-Gee Chen, and J. C. Chih. Efficient cordic designs for multi-mode ofdm fft,
2006. [cited at p. xviii, 181, 185, 216, 222, 290]

[130] Cheng-Ying Yu, Sau-Gee Chen, and J.-C. Chih. Efficient cordic designs for multi-mode ofdm
fft. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE Inter-
national Conference on, volume 3, pages III–III, May. [cited at p. v, 128]

[131] E.L. Zapata and F. Arguello. A vlsi constant geometry architecture for the fast hartley and
fourier transforms. Parallel and Distributed Systems, IEEE Transactions on, 3(1):58–70, 1992.
[cited at p. 163]

[132] Guoping Zhang and F. Chen. Parallel fft with cordic for ultra wide band. In Personal, Indoor
and Mobile Radio Communications, 2004. PIMRC 2004. 15th IEEE International Symposium
on, volume 2, pages 1173–1177 Vol.2, 2004. [cited at p. xviii, 166, 281, 283, 290]

[133] Jianhui Zhang and S.R. Sanders. A digital multi-mode multi-phase ic controller for voltage
regulator application. In Applied Power Electronics Conference, APEC 2007 - Twenty Second
Annual IEEE, pages 719–726, 2007. [cited at p. iii, iv]

[134] Yang Zhang, Xu Zhang, R. Zane, and D. Maksimovic. Wide-bandwidth digital multi-phase con-
troller. In Power Electronics Specialists Conference, 2006. PESC ’06. 37th IEEE, pages 1–7, 2006.
[cited at p. iii, 27, 42]

[135] Zhenyu Zhao, Huawei Li, A. Feizmohammadi, and A. Prodic. Limit-cycle based auto-tuning
system for digitally controlled low-power smps. In Applied Power Electronics Conference and
Exposition, 2006. APEC ’06. Twenty-First Annual IEEE, pages 1143–1147, 2006. [cited at p. iv, v, 34,

78, 79, 81]

[136] Zhenyu Zhao and A. Prodic. Limit-cycle oscillations based auto-tuning system for digitally
controlled dc-dc power supplies. Power Electronics, IEEE Transactions on, 22(6):2211–2222,
2007. [cited at p. iv, v, 34, 78, 79]

[137] Zhenyu Zhao and A. Prodic. Continuous-time digital controller for high-frequency dc-dc con-
verters. Power Electronics, IEEE Transactions on, 23(2):564–573, 2008. [cited at p. iv]

[138] Zhenyu Zhao and A. ProdicÌĄ. Non-zero error method for improving output voltage regula-
tion of low-resolution digital controllers for smps. In Applied Power Electronics Conference and
Exposition, 2008. APEC 2008. Twenty-Third Annual IEEE, pages 1106–1110, 2008. [cited at p. iii,

36]

[139] Zhenyu Zhao, A. Prodic, and P. Mattavelli. Self-programmable pid compensator for digitally
controlled smps. In Computers in Power Electronics, 2006. COMPEL ’06. IEEE Workshops on,
pages 112–116, 2006. [cited at p. iv, v, 34, 78, 79]

[140] Zhenyu Zhao, V. Smolyakov, and A. Prodic. Continuous-time digital signal processing based
controller for high-frequency dc-dc converters. In Applied Power Electronics Conference, APEC
2007 - Twenty Second Annual IEEE, pages 882–886, 2007. [cited at p. iv]

BIBLIOGRAPHY 253

[141] Bin Zhou, Yingning Peng, and David Hwang. Pipeline fft architectures optimized for fpgas.
International Journal of Reconfigurable Computing, 2009:9, 2009. [cited at p. 280]

List of Publications Related to the
Thesis

Patents

• A. Congiu, E. Bodano, D. Hammerschmidt, Converter Circuit and Method for Convert-
ing an Input Voltage to an Output Voltage. United States Application Number or PCT
International Appln. No.61/815,787, April 2013. (Relation to Chapter 7)

Published papers

Conference papers

• A. Congiu, M. Barbaro, E. Bodano, D. Hammerschmidt, Low-Perturbation Load Identification
Techniques for Digitally Controlled DC-DC Power Supplies, in 45th annual meeting of the Asso-
ciazione Gruppo Italiano di Elettronica, pp.123–124, Udine, Italy, June 2013. (Relation to Chap-
ter 7)

• A. Congiu, M. Barbaro, A. Picciau, E. Bodano, Scalable Hybrid CORDIC-LUT Architectures for
CG-FFT Processors, in IEEE Proc. of 9th Conf. on Ph.D. Research in Microelectronics and Elec-
tronics, pp.105–108, Villach, Austria, June 2013. (Relation to Chapter 9)

• A. Congiu, M. Barbaro, A. Picciau, E. Bodano, D. Hammerschmidt, Prototype of a novel Steady-
State Load Identification Technique for Digitally Controlled DC-DC Power Supplies, in IEEE
Proc. of DASIP 2013 Conf. on Design and Architectures for Signal and Image Processing, pp.355–
356, Cagliari, Italy, October 2013. (Relation to Chapter 8)

255

Appendices

257

Appendix

259

Appendix A

Quick configuration guide

How to use this guide

This Appendix explains how to set-up the whole PSD computer, without deepening the details of each
configuration or module. More details can be found in [89].

The process can be resumed in the following steps:

1. Configure the PSD computer

a) Set the parameters of the autocorrelation system.

b) Select the architecture of the RAM.

2. Configure the FFT processor

a) Set the parameters of the fft_processor according to step 1.

b) Select the architecture of the twiddle factor generator.

A.1 Configuring the autocorrelation system

A.1.1 Setting the parameters

Configuration of the global PSD computer in terms of parameters is easily performed by editing the
file autocorrelation_settings.vhd. Each entry in this file is briefly described in the same configuration
file, and default values are given.

A.2 Selecting the architecture of the RAM

Selection of the RAM architecture is performed by editing file autocorrelation_ram_structural. Unser
the declaration of the ram_core component, a configuration declaration allows to choose between

ram_core_fpga This architecture is necessary for FPGA implementation. The multi-port RAM is re-
alised as a matrix of BRAM blocks.

ram_core_simple A simple multi-port RAM code, which is preferred for an ASIC implementation.

261

262 APPENDIX A. QUICK CONFIGURATION GUIDE

A.3 Configuring the FFT processor

A.3.1 Setting the parameters

The parameters of the processor can be set by editing fft_global_settings.vhd according to fft_global_settings.vhd,
as shown in Tab. A.1. Other parameters, such as global_tf_accuracy costants can be set in order to
achieve the proper tradeoff between accuracy and hardware resource saving.

Table A.1: Matching of fft_global_settings.vhd and autocorrelation_settings.vhd.

FFT processor Autocorrelation

global_points_c sequence_size_c*2
global_pes_c parallel_words_c/2

global_accuracy_int_c data_int_c
global_accuracy_frac_c data_frac_c

A.3.2 Selecting the twiddle factor generation
architecture

Twiddle factors can be generated in two different ways. This can be selected by editing a line in the
declaration section of architecture twiddle_factors_system_structural. Two options are available:

tfc_lut Conventional approach, a LUT is used to retrieve twiddle factors.

tfc_generator A novel system based on the CG-FFT twiddle factor scheme taking advantage of the
scalability of the processor. This is more hardware efficient as the number of points to process
increases. Two different sub-architectures can be selected by editing a line in the declaration
section of file tfc_generator.vhd:

• tfc_cordic_shared_core

• tfc_cordic_pipelined

The settings of these two sub-architectures can be edited by modifying the file fft_cordic_settings.vhd.

The proposed architectures are slightly different than the ones in [89] and [24], but their behaviour
is similar. The only difference is in the fact that the step-computer module here is pipelined, follows
the mapper, but preceedes all the other blocks. A functional diagram of twiddle factor generators is
shown in Fig. A.1

Once the twiddle factor generation mechanism is selected (either if it is the LUT or one of the
hybrid CORDIC systems), the architecture of the internal ROM must be chosen. This is achieved by
editing a file and configuring a component in its declaration section according to Tab. A.2. Architec-
tures of the fpga type implement a multi-port ROM by using more BRAM blocks, while the behavioral
versions are more suitable to an ASIC implementation.

A.3.3 Initialising the ROM

The internal ROM must be initialised according to accuracy and transform size settings. This is per-
formed by running a MATLAB script which can be found in the sw folder. The name of the script
is:

A.3. CONFIGURING THE FFT PROCESSOR 263

Figure A.1: Functional diagrams of twiddle factor generators.

Table A.2: Selection of the architecture for the internal ROM.

Architecture File to edit Component to configure Possible architectures

LUT tfc_lut_datapath_structural.vhd lut_rom lut_rom_fpga or
lut_rom_behavioral

shared-core tfc_cordic_shared_core_datapath_structuralcordic_rom cordic_rom_fpga or
cordic_rom_behavioral

pipelined cordic_pipeline_init_datapath_structuralcordic_rom cordic_rom_fpga or
cordic_rom_behavioral

264 APPENDIX A. QUICK CONFIGURATION GUIDE

lut_rom_content_synth_gen if tfc_lut is selected.

cordic_rom_content_synth_gen if tfc_generator is selected.

In both cases the parameters of the script must be set according to the parameters of the processor.
Each one of the scripts creates a file in the rtl\vhdl directory, called either lut_rom_content_synth.txt
or cordic_rom_content_synth.txt. The content of the file must be copied in the declaration section of
the specific ROM, defining costant rom_c. The files to copy data into has the same name of the chosen
ROM architecture (see Tab. A.2).

Appendix B

Background mathematical concepts

B.1 The Fast Fourier Transform

In order to understand how the processor works and draw further mathematical considerations, it is
necessary to derive the expression of the Discrete Fourier Transform (DFT). An interesting technique
uses function interpolation theory [21].
Let us consider f (θ) a periodic function defined on (0,2π) such that f (θ) = f (θ+2π). The goal of the
mathematical derivation is to interpolate this function with the trigonometric polynomial

p(θ) = a0 +
n∑

k=1
ak coskθ+bk sinkθ. (B.1)

The coefficients of the polynomial are N = 2n +1, thus interpolation is done at N points θl that we
assume to be equally spaced

θl = l
2π

N
l = 0, . . . , N −1. (B.2)

By using Euler identities

cosθ = e jθ+e− jθ

2
sinθ = e jθ−e− jθ

2 j
(B.3)

and substituting in expression B.1 we obtain

p(θ) =
(an + j bn

2

)
e−n jθ+·· ·+

(al + j bl

2

)
e j lθ+·· ·+

(an − j bn

2

)
en jθ

= X−ne− j nθ+ . . . Xl e j lθ+·· ·+Xne j nθ.
(B.4)

Using B.2 note that
e jθl = e j lθ1 =W l

N l = 0, . . . , N −1.

Also, the following properties are valid

W l±N
N =W l

N (B.5a)

W −l±N
N =W −l

N (B.5b)

W N
N = 1 (B.5c)

(W 1
N)

N
2 =−1 (B.5d)

W 1
N
2
=W 2

N (B.5e)

265

266 APPENDIX B. BACKGROUND MATHEMATICAL CONCEPTS

because all the W l
N coefficients are complex values equispaced in the unitary module circle of the

Gauss plane. By exploiting these properties and letting xl = p(θl) one can obtain the following from
Eq. B.4:

xl = X0 +X1W l
N +·· ·+Xl W l 2

N +·· ·+X2nW 2nl
N .

Considering l = 0, . . . ,2n this leads to the system of equations

1 1 1 1 . . . 1
1 W 1

N W 2
N W 3

N . . . W 2n
N

1 W 2
N W 4

N W 6
N . . . W 4n

N
1 W 3

N W 6
N W 9

N . . . W 6n
N

...
...

...
...

. . .
...

1 W 2n
N W 4n

N W 6n
N . . . W 4n2

N

X0

X1
...

Xl
...

XN−1

=

x0

x1
...

xl
...

xN−1

,

that can be written as the matrix equation

M X = x . (B.6)

Introducing M as the matrix in which every element is the complex conjugate of the matching ele-

ment in M , and observing that W l
N =W −l

N , it is possible to compute

M M =

N 0 0 0 . . . 0
0 N 0 0 . . . 0
0 0 N 0 . . . 0
0 0 0 N . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . N

.

This leads to M−1 = 1
N M . Inverting B.6 we obtain

X0

X1
...

Xl
...

XN−1

=

1 1 1 1 . . . 1
1 W −1

N W −2
N W −3

N . . . W −2n
N

1 W −2
N W −4

N W −6
N . . . W −4n

N
1 W −3

N W −6
N W −9

N . . . W −6n
N

...
...

...
...

. . .
...

1 W −2n
N W −4n

N W −6n
N . . . W −4n2

N

x0

x1
...

xl
...

xN−1

. (B.7)

Eq. B.7 leads to the following formula

Xr = 1

N

N−1∑
l=0

xl W −r l
N r = 0, . . . , N −1. (B.8)

that is also called the Discrete Fourier Transform (DFT). Its inverse counterpart (IDFT) can be ex-
pressed as

xl =
N−1∑
r=0

Xr W r l
N l = 0, . . . , N −1. (B.9)

It is worth noticing that during the whole demonstration N is supposed to be odd. DFTs with
N = 2s s ∈ N, s ≥ 0 are the most efficient to compute. One solution to this issue is to choose the
following interpolator trigonometric polynomial

p(θ) = a0

2
+ an+1

2
cos(n +1)θ+

n∑
k=1

ak coskθ+bk sinkθ,

B.1. THE FAST FOURIER TRANSFORM 267

which allows to consider N = 2n +2 and does not affect B.8 nor B.9.
The computational complexity of B.8 is O(N 2), such as a multiplication of a matrix by a vector. To

improve this figure of merit, the basic idea is to exploit the divide and conquer paradigm: the prob-
lem is divided into two or more problems of a smaller size that are solved recursively or iteratively.
When these sub-problems are small enough, the recursion terminates, and the solution of the origi-
nal problem is obtained as a combination of theirs. This approach is used to obtain the Fast Fourier
Transform (FFT).

An important parameter discriminating classes of FFT algorithms is the radix [21]. An algorithm
is said to be radix-2 when a problem is divided into two sub-problems of half the size. This type
of algorithm is probably the most used in practical applications, but it is possible to find radix-4,
radix-8, mixed-radix and split-radix FFTs, which combine different radix types to achieve improved
computational complexity. Each division is called a step of the algorithm, consequently if N is the
length of the array that must be processed and R is the radix of the algorithm, logR N steps are nec-
essary to perform the whole computation. Once the radix is defined, another distinction is based on
the decimation type [21], that can be Decimation-In-Time (DIT) or Decimation-In-Frequency (DIF).
Decimation refers to how sub-problems are defined during the execution of the algorithm.

Our implementation is based on radix-2 DIF. It is obtained by splitting Xr into two separate sets:
the even-indexed set {X2k | k = 0, . . . , N

2 −1} and the odd-indexed set {X2k+1 | k = 0, . . . , N
2 −1}. To derive

this basic FFT algorithm firstly it is necessary to define, with a slight abuse of notation,

W i
N = e− j iθ1 = e− j 2π

N i i ∈N (B.10)

as the twiddle factor (TF) of index i . Being properties B.5 valid for twiddle factors, they are intensely
exploited throughout the whole derivation of every FFT algorithm. With B.10 Eq. B.8 becomes

Xr = 1

N

N−1∑
l=0

xl W r l
N r = 0, . . . , N −1. (B.11)

Splitting Xr into the two sets we obtain for r = 0, . . . , N −1

Xr = 1

N

N
2 −1∑
l=0

xl W r l
N + 1

N

N−1∑
l= N

2

xl W r l
N

= 1

N

N
2 −1∑
l=0

xl W r l
N + 1

N

N
2 −1∑
l=0

xl+ N
2

W
r (l+ N

2)
N

= 1

N

N
2 −1∑
l=0

(
xl +xl+ N

2
W

r N
2

N

)
W r l

N .

(B.12)

For r even, using B.5d and B.5e in B.12 yelds to

X2k = 1

N

N
2 −1∑
l=0

(
xl +xl+ N

2
W kN

N

)
W 2kl

N

= 1

N

N
2 −1∑
l=0

(
xl +xl+ N

2

)
W kl

N
2

k = 0, . . . ,
N

2
−1.

By defining Yk = X2k and yl = xl +xl+ N
2

one half-size sub-problem is written as:

Yk =
N
2 −1∑
l=0

yl W kl
N
2

k = 0,1, . . . ,
N

2
−1. (B.13)

268 APPENDIX B. BACKGROUND MATHEMATICAL CONCEPTS

Figure B.1: The Gentleman-Sande butterfly.

For r odd, using B.5c and B.5e in B.12 results in

X2k+1 =
1

N

N
2 −1∑
l=0

(
xl +xl+ N

2
W

(2k+1) N
2

N

)
W (2k+1)l

N

= 1

N

N
2 −1∑
l=0

((
xl −xl+ N

2

)
W l

N

)
W kl

N
2

k = 0, . . . ,
N

2
−1.

Thus, with Zk = X2k+1 and zl =
(
xl −xl+ N

2

)
W l

N the second half-size sub-problem is written as:

Zk =
N
2 −1∑
l=0

zl W kl
N
2

k = 0,1, . . . ,
N

2
−1. (B.14)

After the two sub-problems have been solved, no further operation is needed to obtain final re-
sults. The division in sub-problems and computation of yl and zl as in B.13 and B.14 is called the
Gentleman-Sande butterfly [21] and is graphically represented as in Fig. B.1.

It has been observed that computation of yl and zl in B.13 and B.14 requires N complex additions
and N

2 complex multiplications. Each complex addition is equal to two real additions and each com-
plex multiplication can be thought as equal to three real multiplications and three real additions. By
counting each real addition or multiplication as one operation one computes the arithmetic cost of
the FFT. It is possible to show that this is

T (N) = 5N log2 N = O(N log2 N), (B.15)

much less than the DFT basic formula which has a O(N 2) complexity [21].
A pseudocode version of the radix-2 DIF FFT algorithm is illustrated in Alg 5.
Every FFT algorithm is very often featured with a flowgraph or dataflow diagram that gives a visual

depiction of how data is managed during processing. An example flowgraph of radix-2 DIF is shown
in Fig. B.2. Decimation in frequency is visible, and in the last step butterflies are computed by using
adjacent values. By contrast, a dataflow diagram of the DIT conterpart of radix-2 is illustrated in
Fig. B.3. This different algorithm is derived by splitting xl (and not Xr) into two separate sets, thus
obtaining a different butterfly structure called Cooley-Tukey butterfly [21].

Another characterization of FFT algorithms, more related to their implementation, can be done
by discriminating the order of input and output values. In classic FFTs one of the two is bit-reversed,
or rather the actual sequence of values can be obtained by reading the address of each of them in
reversed order. Permutation of input or output values is thus a computational step that must be
taken into account when implementing FFT hardware. A common practice is to discern types of
algorithms by using two subscript characters, the first for input and the second for output ordering.
N is used when no permutation is needed while R indicates that bit-reversal must be performed. The
FFT algorithm implemented in the hardware design for this thesis is based on radix-2 DIFNR.

B.2. THE CORDIC ALGORITHM 269

Algorithm 5 The iterative radix-2 DIF FFT algorithm.
Require: x ,W

N ← length(x)
NumPr ← 1
Pr Si ze ← N
while Pr Si ze > 1 do

5: H al f Si ze ← Pr Si ze/2
for k = 0 to NumPr −1 do

j f i r st ← kPr Si ze
jl ast ← j f i r st +H al f Si ze −1
l ← 0

10: for j = j f i r st to jl ast do
W ←Wl

q ← x j

x j ← q +x j+H al f Si ze

x j+H al f Si ze ←W (q −x j+H al f Si ze)
15: l ← l +NumPr

end for
end for
NumPr ← 2NumPr
Pr Si ze ← H al f Si ze

20: end while
Ensure: X

B.2 The CORDIC algorithm

The CORDIC (COordinate Rotation Digital Computer) was introduced in 1959 by Volder [115]. The
iterative algorithm has two different working modes. Rotation mode computes sine and cosine of an
angle β ∈ (−π

2 , π2), which are represented in a fixed-point format. The vectoring mode performs the
inverse operation. For the purposes of this thesis, rotation mode is the most significant version of
CORDIC, consequently it will be analysed in its general formulation [44]. Iterations are initialised
with vector

v0 =
[

1
0

]
.

Every iteration can be represented by the rotation matrix

Ri =
[

cosγi −sinγi

sinγi cosγi

]
(B.16)

and written as a matrix equation:
vi = Ri vi−1 (B.17)

where vi is the vector obtained at iteration i and vi−1 is the vector obtained from the previous itera-
tion. By subsituting the trigonometric identities

cosα= 1p
1+ tan2α

sinα= tanαp
1+ tan2α

in Eq. B.17 we find

vi = 1√
1+ tan2γi

[
1 − tanγi

tanγi 1

][
xi−1

yi−1

]
. (B.18)

270 APPENDIX B. BACKGROUND MATHEMATICAL CONCEPTS

Figure B.2: Length-16, Decimation-in-Frequency, In-order input, Radix-2 FFT. From [1].

It is possible to choose rotation angles γi such that tanγi can be written as ±2−i , thus obtaining the
famous CORDIC relationship

vi = Ki

[
1 −σi 2−i

σi 2−i 1

][
xi−1

yi−1

]
. (B.19)

in whom Ki = 1p
1+2−2i

. The direction of rotation at every step, thus the value ofσi in B.19 is determined

considering the remainder angle
βi =βi−1 −σiγi

in the following expression

σi =
{
+1 if βi−1 ≥ 0,

−1 if βi−1 < 0.
(B.20)

If n is the number of iterations, Kn is also called CORDIC gain or scale factor. This can be indiffer-
ently

• retrieved from a lookup-table,

B.2. THE CORDIC ALGORITHM 271

Figure B.3: Length-16, Decimation-in-Time, In-order output, Radix-2 FFT. From [1].

• ignored throughout the iterative process and compensated in the last iteration by multiplica-
tion,

• corrected in the first iteration by properly scaling v0.

An pseudocode example of CORDIC is shown in Alg. 6. It is worth noticing that the values of
γi = tan−1 2−i and the scale factor Kn must be necessarily stored to perform iterations. The number
of iterations n depends on the desired precision. Usually, it is assumed that n is equal to the number
of bits B of output results.

272 APPENDIX B. BACKGROUND MATHEMATICAL CONCEPTS

Algorithm 6 The CORDIC algorithm
Require: β,n,γ,K

v0 ← [0;0]
β0 ←β

for i = 0 to n −1 do
if βi ≥ 0 then

5: σi ← 1
else
σi ←−1

end if
q ←σi 2−i

10: Ri ← [1,−q ; q,1]
vi+1 ← Ri vi

βi+1 ←βi −σiγi

end for
vn ← vnKn

Ensure: vn

B.3 Theorical remarks on the autocorrelation func-
tion

The Wiener-Khinchin theorem states that, if x(t) is a wide-sense stationary (WSS) process and S(f) is
its power spectral density. then its autocorrelation can be written as [80]

R(τ) =
∫ ∞

−∞
S(f)e j 2π f τd f . (B.21)

This means that the autocorrelation of a WSS process is the inverse Fourier Transform of its power
spectral density. In the discrete case, an interesting derivation of the properties of the autocorrelation
sequence is based on the forementioned theorem and the introduction of estimates [78]. If WSS signal
x(t) is sampled with sampling time Ts , sequence x[n] is obtained as:

x[n] = x(nTs).

Considering a finite record of x[n] we have

v[n] =
{

x(nTs), for 0 ≤ n ≤Q −1,

0, otherwise.
(B.22)

An estimate of the autocorrelation sequence is thus

φ̂xx [m] = 1

Q

Q−|m|−1∑
n=0

x[n]x[n +|m|], (B.23)

for |m| ≤ M −1. Observing that in B.23

Q−|m|−1∑
n=0

x[n]x[n +|m|] =
Q−|m|−1∑

n=0
x[n]x[|m|− (−n)] = x[n]∗x[−n],

we can say that φ̂xx is an aperiodic discrete convolution. An example of this operation is shown in
Fig. B.4, with two different sequences x[k] and h[n −k].

B.3. THEORICAL REMARKS ON THE AUTOCORRELATION FUNCTION 273

Figure B.4: Sequence involved in computing an aperiodic discrete convolution. From [78].

274 APPENDIX B. BACKGROUND MATHEMATICAL CONCEPTS

Figure B.5: Procedure for the periodic convolution of two periodic sequences. From [78].

B.3. THEORICAL REMARKS ON THE AUTOCORRELATION FUNCTION 275

A different type of convolution is the circular convolution. This is based on the Discrete Fourier
Series (DFS), which is defined by

X̃ [k] =
N−1∑
n=0

x̃[n]W kn
N , (B.24)

where W kn
N is a twiddle factor, whose definition can be found in Eq. B.10, x̃[n] is a periodic discrete

sequence and X̃ [k] is the sequence of its DFS coefficients. Given two periodic sequences with pe-
riod N , x̃1 and x̃2, their discrete Fourier series coefficients are denoted with X̃1[k] and X̃2[k]. If the
following equation holds

X̃3[k] = X̃1[k]X̃2[k],

then the periodic sequence x̃3[n] with Fourier series coefficient X̃3[k] is obtained as

x̃3[n] =
N−1∑
m=0

x̃1[m]x̃2[n −m]. (B.25)

A convolution in the form of Eq. B.25 is called periodic convolution. An example illustrating some
steps involved in the operation is in Fig. B.5. Similarly to the periodic case, one can consider two
finite-duration sequences of length N , x1[n] and x2[n], corresponding to one period of x̃1 and x̃2

respectively, with DFTs X1[n] and X2[n]. If X3[k] = X1[k]X2[k], sequence x3[n] whose DFT is X3[k],
corresponds to one period of x̃3[k]. Consequently, by using Eq. B.25,

x3[n] =
N−1∑
m=0

x̃1[m]x̃2[n −m], 0 ≤ n ≤ N −1. (B.26)

Introducing the notation
((m))N = m mod N ,

leads to
x̃[n] = x[((n))N], (B.27)

and it is possible to note that that ((m))N = m for 0 ≤ m ≤ N −1. By using Eq. B.27, former Eq. B.26
can be written as

x3 =
N−1∑
m=0

x1[((m))N]x2[((n −m))N]

=
N−1∑
m=0

x1[m]x2[((n −m))N],

0 ≤ n ≤ N −1. (B.28)

Eq. B.28 represents the circular convolution of x1 and x2. As derived, a circular convolution is fun-
damentally a periodic convolution. Thus, by confronting Fig. B.4 and Fig. B.5, it is possible to show
the differences between this approach and the aperiodic convolution. In the last case (Fig. B.4), one
signal is time-reversed and then linearly shifted. The values of the superposition product are then
summed. On the other hand, in the circular convolution (Fig. B.5) the second sequence is circularly
time reversed and then circularly shifted before performing products and sums.

Another remark must be done on the simmetry property of the DFT. Considering periodic se-
quence x̃, it is easy to obtain, from the definition of the DFS,

X̃ [k]∗ =
(N−1∑

n=0
x̃[n]W kn

N

)∗
=

N−1∑
n=0

x̃∗[n]W k(−n)
N

=
N−1∑
n′=0

x̃∗[−n′]W kn′
N ,

276 APPENDIX B. BACKGROUND MATHEMATICAL CONCEPTS

where n′ =−n. By using Eq. B.27, the previous result can be extended to the DFT case, obtaining

X ∗[k] ↔ DFTx∗[((−n))N]. (B.29)

Back to the estimate in Eq. B.23, one possibility to compute the aperiodic discrete convolution is
to exploit equations B.28 and B.29. First, it can be noted that, being φ̂xx [−m] = φ̂xx [m], one can con-
sider only nonnegative values of m, thus 0 ≤ m ≤ M −1. Considering the N -point DFT of x[n], X [k],
computed with an FFT algorithm. If this is multiplied by X ∗[k], the DFT of the circular convolution
of x[n] and x[((−n))N] is obtained. This holds assuming sequence x[n] to be real. By augmenting
sequence x[n] with zero-valued samples, the circular autocorrelation is forced to be equal to the ape-
riodic autocorrelation in Eq. B.23 for 0 ≤ m ≤ M − 1. This operation is called zero-padding. Such
transition from the frequency domain to the time domain can be performed because of the precon-
ditions on the stochastic process given by the Wiener-Khinchin theorem. Also, it is worth noticing
that while the direct evaluation of Eq. B.23 has a O(N 2) computational complexity, the FFT-based
technique has a complexity of O(2N log2 N). The value of N , which determines the number of zero
samples to add to the sequence, can be chosen by noticing that it must be a power of two. Conse-
quently, it results M =Q and it is suitable to choose N = 2Q. The FFT-based technique for computing
the autocorrelation is composed of the following steps.

1. Given x[n], sequence of length Q, this is augmented with Q zero-valued samples (zero-padding),
obtaining an N -valued sequence.

2. The N -point FFT of x[n] is computed, obtaining X [k].

3. |X [k]|2 is evaluated.

4. Computation of the inverse FFT of |X [k]|2.

Appendix C

State of the art in FFT hardware
architectures

The two main approaches to FFT implementation in industry are called pipelined and memory-
based [107, 36]. Pipelined architectures are characterised by the fact that all the butterflies of the
same stage of the flowgraph are computed by the same hardware butterfly, also called Processing
Element (PE). Thus, each stage of the pipeline computes a whole stage of the algorithm. These ar-
chitectures process a continuous flow of data and are suitable for high-throughput applications. In
memory-based, also called in-place, architectures only one butterfly is used and data is written to the
same register or the same memory from which it is read. These structures tend to occupy less area
than the former ones but they have a lower throughput. Also, they are not suitable for processing a
continuous flow of data. Although this categorisation is generally valid, the literature also gives us
examples of hybrid structures [75].

C.1 Pipelined structures

The most important innovation about pipelined architectures of the last years is possibly the intro-
duction of the radix-22 FFT Alg. [39]. In this paper, a distinction is made between Multi-path De-
lay Commutator (MDC), also called feedforward, and Single-path Delay Feedback (SDF), also called

feedback, architectures. Feedback architectures have a throughput of 1sample
c ycle and need to store N

locations, while feedforward architectures achieve a higher thoughput at the cost of a larger area oc-
cupation. The two types are illustrated in Fig. C.1. The radix-22 algorithm has the same multiplicative
complexity as radix-4 algorithms, but retains the radix-2 butterfly structures. Consequently it uses
less adders and multipliers if compared to radix-2 and radix-4 solutions. The flowgraph of the algo-
rithm is shown in Fig. C.2. The concept behind radix-22 was later generalised with the class of radix-2k

algorithms [40].
An interesting pipelined architecture was designed in[18], by observing that the feedforward scheme

can achieve better hardware utilization while the feedback scheme can lead to memory saving. Thus,
a structure composed of two radix-2 DIT based SDF stages followed by radix-4 MDC is discussed. Op-
erations inside the first two stages are bit-serialised. The scheme halves the required memory for TFs
by exploiting symmetry in the complex plane.

An automatic generator of split-radix parallel pipeline FFT processors is described in [88]. The de-
sign is thought as a flexible part of speech-processing, noise and echo canceling systems and shows
good timing performances if compared to commercial IPs. Operating frequency, throughput, CLB-

277

278 APPENDIX C. STATE OF ART IN FFT HARDWARE ARCHITECTURES

Figure C.1: Classic types of FFT pipelined architectures. From [39].

Figure C.2: Flowgraph of the radix-22 DIF FFT algorithm. N = 16. From [39].

count and power dissipation are selectable parameters of the discussed tool. But, being operating
clock fixed at 65M H z, figures suggest that FPGA resource occupation tends to be higher than in drop-
in IP modules. Another split-radix-based design aiming at computation time minimization was pro-
posed in [32]. The main blocks are of two types: computing elements (CE) and delay commutators
(DC). The architecture is of the MDC type and it is obtained by alternating CE and DC in the strucutre
of the pipeline. Although the minimum requirements for both data and signal length are of 16 bits
(because of SNR features), the maximum clock rate is of 350M H z and computation time is well below
values obtained with IPs of FPGA vendors. The drawback of the design is in resource occupation: the
number of needed complex multipliers is 2log2 N − 4, thus with N = 256 the count of used 18× 18
FPGA multipliers is 48.

The SPIRAL project, started at Carnegie Mellon University [94] with the goal of developing a
fully automatic trigonometric transform code generation system capable of optimizing its output on
specified software architectures. In [75] this approach is extended to hardware thanks to the Pease

C.1. PIPELINED STRUCTURES 279

Alg. [83], given by the factorization

X = RN

(log2 N−1∏
i=0

Ti (I N
2
⊗F2)LN

N
2

)
︸ ︷︷ ︸

DFTN

x . (C.1)

In this equation RN denotes the bit-reversal permutation matrix and Ti is a diagonal matrix that mul-
tiplies the elements of a vector by the proper TFs at stage i . I N

2
⊗F2 is a (N ×N) block matrix with F2

blocks in its diagonal and zeros elsewhere. LN
N
2

is the matrix representing the perfect shuffle permuta-

tion which, in the case of N = 8 is

L8
4 : [0,1,2,3,4,5,6,7]ᵀ → [0,4,1,5,2,6,3,7]ᵀ.

Eq. C.1 states that the DFT operation consists in repeating log2 N times the following sequence of
steps, given input array x :

1. apply the perfect shuffle permutation LN
N
2

to the current data array.

2. for each couple of adjacent elements in the data array, apply the butterfly, which is represented
by matrix F2.

3. Multiply by the twiddle factors in Ti .

At the end of the procedure, the bit-reversal permutation RN is applied. The flowgraph of the al-
gorithm is shown in Fig. C.3 for the case N = 8 and butterflies based on radix-2 DIF. In [71] it was
observed that the tensor product I N

2
⊗F2 which indicates N

2 parallel instantiations of block F2 can be

conceived as reuse in time or streaming reuse. Similarly, product
∏log2 N−1

i=0 An can be thought not as a
cascade of log2 N equal An blocks, but as an iterative reuse of the same block. The combination of the
two concepts leads to different architectures whose parameters are computed via sophisticated op-
timization algorithms depending on desired performances. Pipelined architectures can be thought
of as a particular case in which full streaming reuse and no iterative reuse are selected as shown in
Fig. C.4.

Figure C.3: Pease’s algorithm flowgraph, N = 8. From [75].

280 APPENDIX C. STATE OF ART IN FFT HARDWARE ARCHITECTURES

Figure C.4: SPIRAL project architectures. From [70].

The forementioned radix-22 algorithm was implemented on a Xilinx Virtex-4 FPGA in [52], where
the resource usage were analysed for a 214-point processor. The obtained clock frequency is 105M H z,
but used multipliers are 24, well below the result obtained in the [32]. Anyway it is noted that to re-
move twiddle factors storage it is necessary to resort to the CORDIC algorithm. Better results in terms
of clock frequency are achieved in [141], reaching 235.6M H z on the same FPGA family as the former
paper. In this last paper it is also noted that the R22SDF is not suited for adding pipeline registers
within individual butterfly elements because this would break the timing for the data feedback path.
Thus CORDIC could not be used inside the butterfly in place of a complex multiplier.

In [100] another automatic RTL code generator of pipelined FFT processors is illustrated and ex-
tensively explored. The tool is also capable of simulating the generated VHDL core and extracting all
the figures of merit of the selected implementation. Architectures are based on fixed-radix algorithms
(radix-2 or radix-4) and use a fixed-point representation of internal data. Code for multiplication, ad-
dition, substraction, rounding and two’s complement is contained in a package that is separated from
the generated data, so that it is possible to use vendor-specific hardware code if desired. Flexibility is
the strength of this approach, but sensitivity of clock frequency is its weakness. With 8bi t precision
of twiddle factor representation, pipeline clocking speed falls below 100M H z for all the generable
architectures.

In most of the cases custom architectures (both pipelined and in-place) are compared to com-
mercial IPs. Xilinx LogiCORE FFT [123] and Altera FFT MegaCore [6] are the most famous drop-in
modules. A radix-22SDF FFT open-source IP core was also released by XionLogic in [125]. The most
recent pipelined approaches such as [35] are oriented towards optimization of hardware resource
usage by exploiting innovative variations of radix-2k, without abandoning the strong MDC scheme.

C.2 Memory-based structures

The context of memory-based architectures is more varied than its counterpart. This is conceivably
because the number of PEs is not necessarily fixed with N , so new solutions involving different overall
structures can be explored, instead of focusing on the optimization of butterflies.

A processor for OFDM receivers with PEs based either on radix-4 or radix-8 was proposed in [81].

C.2. MEMORY-BASED STRUCTURES 281

Complex multiplications are performed by using a complex multiplier, realised with three Booth real
multipliers, or with a CORDIC rotator. The system uses two memories: a transposition memory (TM)
and a shuffle memory (SM), and both reading and writing are managed by partitioning the clock cy-
cle. The two approaches to multiplication are compared, showing that the CORDIC scheme uses
more logic gates than the other solution. The drawback of the design is in the complexity of memory
control.

A novel parallel-pipelined architecture for FFT using CORDIC was proposed in [132]. Its structure
is illustrated in Fig. C.2 in the case of N = 128. Four radix-4 butterflies are fed in parallel by a multi-
plexer. Computations inside the PEs are pipelined, with the first stages implementing algebric sums
and the last performing CORDIC rotations to compute complex multiplications, as shown in Fig. C.2.
The feedback connection allows the feeding of input buffers again after data shuffling, which is per-
formed thanks to cross-connections. The output stage is composed of radix-2 FFT hardware that
contains memory elements. This architecture is particularly suitable for high-speed telecommunica-
tion systems, but its drawback is in the necessity of two different types of computing PEs. Also, the
radix-2 stages are used only when radix-4 calculations are completed, thus hardware usage is not at
its optimum.

Figure C.5: zhang-chen’s structure of parallel FFT with CORDIC. From [132].

A pure CORDIC-based FFT is obtained in [42] by expressing the DFT as seen in Eq. B.7 and re-
lating the expression to CORDIC rotations. Scale factor correction is performed at the end of all the

282 APPENDIX C. STATE OF ART IN FFT HARDWARE ARCHITECTURES

computations. Compared to the conventional multiplier approach, this is slightly slower but has an
improved accuracy.

The strength of memory-based architectures is in the compactness of the design. This is shown
in [114], where architecture illustrated in Fig. C.6 is described. The proposed scheme is based on
radix-4 DIT and uses a single butterfly engine. Operation of the PE is managed by a sequencer, which
selects twiddle factors stored in a ROM, input data from a RAM, and output locations to a second
RAM. The design was coded in VHDL, tested on a Xilinx Spartan-3 FPGA and compared to the Xilinx IP.
Although this solution is slower than the device-optimized module of the vendor, improved hardware
usage is shown.

Figure C.6: Vite-Frias’ architecture Memory-based radix-4 design scheme. From [114].

An innovative split-radix FFT processor with a modified CORDIC-based butterfly was proposed
in [108]. The global structure is shown in Fig. C.7. Like in the previously discussed paper, a sin-
gle PE performs the computations, and both memory access and twiddle factors are managed by
an overall controller. By contrast, in this case all multiplications are performed with CORDIC en-
gines, both inside the twiddle factor generator and inside the butterfly processor. An extra CORDIC
pipeline stage is needed for gain correction. It is possible to implement a multi-butterfly system, thus
having both parallelism and sequential processing. The design is oriented towards a VLSI implemen-
tation, consequently metrics are given in terms of equivalent gates. It is shown that the proposed
CORDIC-based approach implements the arithmetic unit with 18000equi valent g ates, against the
32000equi valent g ates of the classic approach with clocked Booth multipliers and ROM for TFs.

The case of prime N -length DFT is analyzed in [20]. An architecture based on cyclic convolution
algorithm is used to solve small-length FFTs and the Winograd FFT algorithm is used to manage the
case of a larger number of input points. The obtained structure is modeled by using systolic arrays.
A systolic array is a regular array of simple processors connected in such a manner that each pro-
cessor may exchange information with only its neighbour to the right and left and processors at the
beginning and end of the row are used for input and output respectively [38]. With this technique,
computational complexity of the DFT is reduced to O(log N), controlling at the same time the num-
ber of required multipliers. The advantage of this solution is in the possiblity of computing even and
prime-length DFTs, but its drawback is in system complexity.

C.2. MEMORY-BASED STRUCTURES 283

Figure C.7: Sung’s architecture 213-point CORDIC-based split-radix design scheme.
From [108].

A peculiar type of implementation is based on polyphase filter banks (PFB). These filters help
reduce DFT leakage when it is an important issue [30] by lowering the sampling rate (decimation), fil-
tering the signal and then interpolating. Among the architectures using PFB, one proposed by in[43]
is worth noticing: Common Sub-Expression Elimination (CSE), a technique tipically used by com-
pilers, is applied to hardware in order to reduce multipliers. The logic needed in comparison the
conventional PFB approach is shown to be less, but usage of multipliers formed by blocks of look-up
tables instead of built-in FPGA blocks leads to a lower throughput.

Another typical memory-based design was proposed in [3]. The base algorithm used is Radix-2
DITRN and the goal of the design is to achieve a complete butterfly operation in one clock cycle. The
architecture design is buffered, meaning that all the input samples must be available before the execu-
tion can start, and its structure is illustrated in Fig. C.8. Samples are supplied to a bit-reversal module
until an N -sized buffer is filled. Then, a butterfly operation is executed at every clock cycle until
computation is complete. Similarly to [114] an address generator selects input and output addresses
for data and the twiddle factor index. A State Machine Manager works as global controller. TFs can
be retrieved from a look-up table (LUT) or from a CORDIC-based generation system.This approach
differs from [81, 132, 42] because complex multiplications are still performed by using conventional
multipliers inside the PE, and CORDIC is only used as a generation algorithm. This reduces butterfly
computation latency while avoiding the usage of ROM. In [108] the CORDIC-based TF generator was
conceived merely as a technique for computing the rotational angle θl , and the actual complex value
was not calculated. The discussed memory-based design uses fixed-point configurable logic, and
offers an optional magnitude calculation block, which can be used in applications where complex
results are not needed. The architecture was implemented on an Altera Cyclone III device and tested
against Altera’s reference design and other architectures in literature: while the clock cycle count
is near the reference design, memory and FPGA resource saving is evident from both the proposed
structure and the figures.

Suleiman proposed a FFT hardware implementation of a Constant Geometry (CG) algorithm for
trigonometric transforms [107]. The architecture is not pipelined, but its structure is similar to [71].
The designer of the overall PSD computer can choose how many PE to instantiate in the processor:
the more the PE, the faster the execution of the algorithm. All the PEs compute butterflies belonging
to the same stage of the flowgraph in parallel, and shuffling of data is performed thanks to a particular

284 APPENDIX C. STATE OF ART IN FFT HARDWARE ARCHITECTURES

Figure C.8: Al Sallab’s memory-optimized FFT architecture. From [3].

interconnection structure composed of a perfect shuffle network and a FIFO queue. No memory is
used because shuffling is performed thanks to criss-cross connections between registers, thus the
structure can be classified as not-in-place CG-FFT. The architecture’s flexibility makes it particularly
suitable for both high-speed and resource-saving designs.

In [121] an addressing scheme and matching generator logic expressely designed in order to avoid
any ROM usage for TF was proposed and explored. First it is observed that for different FFT stages,
the angles increase always one step per clock cycle. Thus, the structure of an angle generator, which is
illustrated in Fig. C.2, is described. The accumulator is driven by a control depending on the current
FFT butterfly stage and RAM address bits. This approach generalises the FFT algorithm from radix-2
to any radix. The symmetrical achitecture in Fig. C.2 takes advantage of this observation by reducing
the total amount of memory bits up to 20% for radix-2 and up to 33% for radix-r . CORDIC micro-
rotations are performed inside the butterfly which has an internal pipelined structure. The avoidance
of TF or angle storage ROM leads to a reduction of total memory bits, and, in a lesser amount, of logic
elements.

An automatic FFT code generator for FPGAs with the possiblity to choose between pipelined and
in-place architectures, both oriented towards continuous throughput applications, was presented
in [79]. The generated pipelined architecture is a conventional radix-2 MDC architecture with mem-
ory buffers for the reordering stage. The in-place counterpart is available both with a single butterfly

engine and multiple PEs. In the last case, the number of PEs is obtained as d log2 N
2 e, thus it is not a

degree of freedom for the designer. The number of memory blocks is equal to the number of PEs plus
two modules for input and output streaming. Fig. C.10 shows the discussed multi-butterfly struc-
ture. Each memory block must be accessible from each butterfly block, as well as input and output
modules. Thus, for large values of N both large multiplexers and capacious memory blocks must be
instantiated. Another issue is the necessity to have a TF LUT for each butterfly. Consequently, syn-
thesis results on Xilinx Virtex-5 show that the MDC solution is more resource-efficient if compared to

C.2. MEMORY-BASED STRUCTURES 285

Figure C.9: Xiao’s memory reduced CORDIC FFT. From [121].

the forementioned in-place approach.
The most cited FFT core is possibly LogiCORE IP FFT from Xilinx [123]. The vendor’s IP is highly

configurable, permitting many transform sizes and arithmetic types. Selectable architectures are
from the fastest to the lightest (as shown in Fig. C.11):

• Pipelined, streaming I/O.

• Radix-4, burst I/O.

• Radix-2, burst I/O.

• Radix-2 Lite, burst I/O.

The first solution uses several radix-2 PEs to in order to offer continuous data processing. The archi-
tecture, which is represented in Fig. C.12, is of the radix-2 SDF type. The IP module expects the input
to be in natural order, and if natural order is also requested for output values, a shuffling block using
additional memory resource is utilized. The user has flexilbity to select the number of stages using
block RAM for data and TF storage, and the remaining stages use distributed memory (FPGA LUTs).
The counterpart burst I/O architectures use a single PE engine, as shown in Fig. C.13 that loads and
unloads data separately from calculating the transform. Data loading and unloading from memory
can be overlapped if data is unloaded in digit-reversed order. The radix-2 lite version of Fig. C.2 uses
one shared adder/subtractor reducing resource usage but increasing computation time. Also, one
cycle is used to multiply real values and the second to multiply complex values. Xilinx’ competitor Al-
tera proposes its MegaCore FFT [6]. This IP core allows the same customizability of the former, with
different structural solutions. Four different I/O data flow architectures are selectable:

Streaming Allows continuous processing of input data, and outputs a continuous complex data
stream.

Variable Streaming Produces a continuous stream of data, similarly to the Streaming architecture.

286 APPENDIX C. STATE OF ART IN FFT HARDWARE ARCHITECTURES

Figure C.10: O’sullivan’s in-place FFT architecture. From [79].

Figure C.11: Comparison of available architectures for Xilinx LogiCORE IP. From [123].

Buffered Burst Requires fewer memory resources than the streaming I/O data flow, but trades off
with an average block throughput reduction.

Burst Operates similarly to the Buffered Burst architecture, except that the burst architecture re-
quires even lower memory resources.

Block Floating Point (BFP) is used throughout the designs as a compromise between fixed-point and
full floating-point to mantain a high signal to noise ratio.Depending on the I/O data flow architecture
and the arithmetic chosen, the FFT MegaCore Function can implement different structures.

C.2. MEMORY-BASED STRUCTURES 287

Figure C.12: Xilinx LogiCORE pipelined, streaming I/O architecture. From [123].

• Radix-22 SDF, as in Fig. C.1 is composed of log2N pipeline stages and is used for fixed-point
streaming variations.

• Mixed radix-4/2 is a pipelined architecture for floating point streaming variations. Each stage
contains a single butterfly unit and a feedback delay unit. In each stage the number of cycles
of delay set by the feedback delay unit is one quarter of the number of cycles of delay in the
previous stage. This operation aligns input samples correctly for the calculations. The output
of the pipeline is in index-reversed order.

• Quad-output FFT engine architecture is used for streaming, buffered burst and burst variations
when transform time is to be minimized. The structure of the FFT is shown in Fig. C.2. Input
complex values are read in parallel and re-ordered by a switch (SW). All the four outputs of the
PE are processed together in a single clock cycle, by using TFs stored in three different ROMs.
Three complex multipliers are needed. Block Floating-Point Units (BFPU) evaluate the results
and perform a scaling of the representation depending on accuracy requirements.

• Single-output FFT engine architecture is used both for buffered burst and burst variations. The
architectural structure is illustrated in Fig. C.2. Compared to the former solution, this occupies
less resources because both SWs are substituted by Time Division Multiplexers (TDM), and the
same approach is used to manage a single complex multiplier.

Although both vendor designs are very hardware-optimized and flexible, their drawback is in the lack
of portability towards ASIC technology.

288 APPENDIX C. STATE OF ART IN FFT HARDWARE ARCHITECTURES

Figure C.13: Available Xilinx LogiCORE in-place burst I/O FFT architectures. From [123].

C.2. MEMORY-BASED STRUCTURES 289

Figure C.14: Available Altera MegaCore in-place FFT architectures. From [6].

290 APPENDIX C. STATE OF ART IN FFT HARDWARE ARCHITECTURES

C.3 FFT-specific CORDIC

Considering papers analysed in sections C.1 and C.2, we discern two different approaches to CORDIC
in FFT hardware architectures: the in-processor rotator, which is more common, and the the twiddle
factor generator. An example of in-processor rotator can be seen in [132], where the CORDIC pipeline
structure is embedded in the PE as a substitute for the complex multiplier. Thus, in this case compu-
tation of a butterfly requires two complex data and the TF angle. The counterpart of this approach is
in [3], where the TF LUT is replaced with a CORDIC generation system, but the PE retains its structure.
Consequently, the computation of a butterfly requires two complex data and the complex value of the
TF. In the latter case, multiplication is usually performed by using conventional hardware multipliers.

In [129] the design of a CORDIC-based pipelined PE is explored. The proposed scheme uses only
B
2 shift-and-add operations for the computation of each TF, where B is the length of data represen-
tation in bits. The idea behind the design is the decomposition of micro-rotations into coarse com-
ponent and fine component, which satisfies the approximation rule tan2−i ≈ 2−i with i ≥ B

3 . The
architecture of the proposed CORDIC system is illustrated in Fig. C.15. At stage k = 0, . . . , log2 N −1,

requested twiddle factors are a multiple of W 2k−1

N , so a log2 N -sized memory is necessary for storing
both rotation angles and optimized rotation sequences. Moreover, it must be noted that in the de-
sign many redundant micro-rotations are skipped, thus it is necessary to compensate variable scale
factors either using the LUT or computing the CORDIC gain depending on iteration step i .

Figure C.15: Yu’s CORDIC architecture. From [129].

The first category of CORDIC FFT hardware is also discussed in [33]. In this paper a CORDIC FFT-
optimized algorithm is derived from the angle sequence of TFs for any radix. The rotation generator
computes the first micro-rotations such as a conventional CORDIC, checking the remainder angle
and setting the direction according to Eq. B.20. The rest of computations are performed considering
the following approximations:

αi ≈ tanαi

αi

αi+1
≈ 2.

C.3. FFT-SPECIFIC CORDIC 291

Furthermore, in the proposed design the 45◦ rotation is not performed, so the scaling factor is set
equal to

K =
M∏

i=1
cos(tan−1 2−i) ≈ 0.8588

and afterwards approximated with

K ≈ 0.8594 = 1−2−3 −2−6.

Consequently, CORDIC gain compensation is performed as a simple shift-and-add routine. The over-
all structure of the proposed CORDIC system is summarized in Fig. C.3. The advantage of this design,
or rather its lack of a ROM for angles storage, becomes effective when the number of input points of
the FFT is above 210, as shown in Fig. C.3. When N is below this value, the high complexity of the
control makes the design less appropriate if compared to the conventional approach.

Figure C.16: Garrido’s FFT-oriented CORDIC. From [33].

Implementation of CORDIC in FFT is a critical issue. It has been noted that since large-N com-
putations require a number of processors, choosing a CORDIC-based PE increases the area of the
design if compared to the classic multiplier-based approach [10]. CORDIC processors, on the coun-
terpart, tend to have higher operating clock frequencies: the tradeoff determines the right structural
approach.

