10,774 research outputs found

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    CONFIGURABLE 2k/4k/8k FFT-IFFT CORE FOR DVB-T AND DVB-H

    Get PDF
    Modulation technique uses a modifier module IFFT signal data from frequency domain to time domain. While at the demodulation part, FFT module is used to change the return signal from the output of the IFFT and converted them from the time domain into the frequency domain. FFT�IFFT modules are made to support 2k/4k/8k FFT and IFFT algorithms. FFT�IFFT 2k/4k/8k Core are built using the radix 2, radix 4 and radix 8. Core is designed to be able to receive data continuously, without buffer (temporary data container). The FFT�IFFT 2k/4k/8k module designs started with the functional description in model. Then the design of hardware architecture is made based on functional design in model. Then the architecture design will be used in making model bit precision. Furthermore the model bit precision design is used as a foundation in designing RTL. The result of FFT�IFFT modules meet the standard specified by the DVB consortium, with a maximum test frequency of FFT�IFFT 2k/4k/8k Core is 69.36 MHz using FPGA STRATIX II EP2S60-F1020C3 that surpass the requirements in the standard DVB�T/DVB�H (40 MHz). In addition, the module has a high throughput with the average of 39.82 M sym /

    Characterization and Verification Environment for the RD53A Pixel Readout Chip in 65 nm CMOS

    Full text link
    The RD53 collaboration is currently designing a large scale prototype pixel readout chip in 65 nm CMOS technology for the phase 2 upgrades at the HL-LHC. The RD53A chip will be available by the end of the year 2017 and will be extensively tested to confirm if the circuit and the architecture make a solid foundation for the final pixel readout chips for the experiments at the HL-LHC. A test and data acquisition system for the RD53A chip is currently under development to perform single-chip and multi-chip module measurements. In addition, the verification of the RD53A design is performed in a dedicated simulation environment. The concept and the implementation of the test and data acquisition system and the simulation environment, which are based on a modular data acquisition and system testing framework, are presented in this work

    Smart technologies for effective reconfiguration: the FASTER approach

    Get PDF
    Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows

    Experimental study of artificial neural networks using a digital memristor simulator

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a fully digital implementation of a memristor hardware simulator, as the core of an emulator, based on a behavioral model of voltage-controlled threshold-type bipolar memristors. Compared to other analog solutions, the proposed digital design is compact, easily reconfigurable, demonstrates very good matching with the mathematical model on which it is based, and complies with all the required features for memristor emulators. We validated its functionality using Altera Quartus II and ModelSim tools targeting low-cost yet powerful field programmable gate array (FPGA) families. We tested its suitability for complex memristive circuits as well as its synapse functioning in artificial neural networks (ANNs), implementing examples of associative memory and unsupervised learning of spatio-temporal correlations in parallel input streams using a simplified STDP. We provide the full circuit schematics of all our digital circuit designs and comment on the required hardware resources and their scaling trends, thus presenting a design framework for applications based on our hardware simulator.Peer ReviewedPostprint (author's final draft

    FPGA-Assisted Assertion-Based Verification Platform

    Get PDF
    In this paper, field programmable gate array (FPGA)-assisted verification platform is devised to enhance the assertion-based verification methodology to address the issues of high demand of integrated circuit with the advanced features to be delivered to market within tight Time-To-Market. The concept of SystemVerilog Assertion (SVA) checker generator is introduced to translate non-synthesizable verification coding into hardware so-called assertion checker in Verilog. A lookup table, which comprises of SVA operators mapped to their corresponding synthesizable Verilog coding was developed to generate assertion checker, which produces a single bit 1 when the assertion fails. Collection module implemented using a memory block and an arbiter was devised to be simple and fast enough to collect assertion results from the assertion checker. Since assertion checker can produce assertion result at any time, an arbiter is required to act as an interface between assertion checker and collection module. Case studies have been conducted on the proof-of-concept designs, which are the firstin-first-out (FIFO), up-down counter and Context Adaptive Variable Length Coding (CAVLC) to evaluate the effectiveness of the proposed FPGA-assisted verification platform. In the case studies, we have shown that the proposed FPGA-assisted verification platform works correctly. Besides, we also evaluated the method in area utilizations (ALMs). It has been proven that simulation-based verification time can be reduced for as much as 50% for complexity of VLSI design. Thus, implementing assertions using hardware such as FPGA becomes a solution to alleviate issue of long simulation time
    • …
    corecore