17 research outputs found

    OPTIMIZED ARCHITECTURE DESIGN AND IMPLEMENTATION OF OBJECT TRACKING ALGORITHM ON FPGA

    Get PDF
    FPGA based Object tracking implementation is one of the most recent video surveillance applications in embedded systems. In general, FPGA implementation is more efficient than general purpose computers in attaining high throughput due to its parallelism and execution speed. The system need to be designed on a standard frame rate in such a way to achieve optimal performance in real time environment. Optimal design of a system is dependent on minimizing the cost, area (device utility) and power while achieving the required speed. Past research work that investigated object tracking systems' implementation on FPGA achieved a significantly high throughput but have shown high device utilization. This research work aims at optimizing the device utilization under real time constraints. The Adaptive Hybrid Difference algorithm (AHD), which is used to detect the moving objects, was chosen to be implemented on FPGA due to its computation ability and efficiency with regard to hardware implementation. AHD can work at various lighting conditions automatically by determining the adaptive threshold in every period of time

    OPTIMIZED ARCHITECTURE DESIGN AND IMPLEMENTATION OF OBJECT TRACKING ALGORITHM ON FPGA

    Get PDF
    FPGA based Object tracking implementation is one of the most recent video surveillance applications in embedded systems. In general, FPGA implementation is more efficient than general purpose computers in attaining high throughput due to its parallelism and execution speed. The system need to be designed on a standard frame rate in such a way to achieve optimal performance in real time environment. Optimal design of a system is dependent on minimizing the cost, area (device utility) and power while achieving the required speed. Past research work that investigated object tracking systems' implementation on FPGA achieved a significantly high throughput but have shown high device utilization. This research work aims at optimizing the device utilization under real time constraints. The Adaptive Hybrid Difference algorithm (AHD), which is used to detect the moving objects, was chosen to be implemented on FPGA due to its computation ability and efficiency with regard to hardware implementation. AHD can work at various lighting conditions automatically by determining the adaptive threshold in every period of time

    Efficient FPGA implementation and power modelling of image and signal processing IP cores

    Get PDF
    Field Programmable Gate Arrays (FPGAs) are the technology of choice in a number ofimage and signal processing application areas such as consumer electronics, instrumentation, medical data processing and avionics due to their reasonable energy consumption, high performance, security, low design-turnaround time and reconfigurability. Low power FPGA devices are also emerging as competitive solutions for mobile and thermally constrained platforms. Most computationally intensive image and signal processing algorithms also consume a lot of power leading to a number of issues including reduced mobility, reliability concerns and increased design cost among others. Power dissipation has become one of the most important challenges, particularly for FPGAs. Addressing this problem requires optimisation and awareness at all levels in the design flow. The key achievements of the work presented in this thesis are summarised here. Behavioural level optimisation strategies have been used for implementing matrix product and inner product through the use of mathematical techniques such as Distributed Arithmetic (DA) and its variations including offset binary coding, sparse factorisation and novel vector level transformations. Applications to test the impact of these algorithmic and arithmetic transformations include the fast Hadamard/Walsh transforms and Gaussian mixture models. Complete design space exploration has been performed on these cores, and where appropriate, they have been shown to clearly outperform comparable existing implementations. At the architectural level, strategies such as parallelism, pipelining and systolisation have been successfully applied for the design and optimisation of a number of cores including colour space conversion, finite Radon transform, finite ridgelet transform and circular convolution. A pioneering study into the influence of supply voltage scaling for FPGA based designs, used in conjunction with performance enhancing strategies such as parallelism and pipelining has been performed. Initial results are very promising and indicated significant potential for future research in this area. A key contribution of this work includes the development of a novel high level power macromodelling technique for design space exploration and characterisation of custom IP cores for FPGAs, called Functional Level Power Analysis and Modelling (FLPAM). FLPAM is scalable, platform independent and compares favourably with existing approaches. A hybrid, top-down design flow paradigm integrating FLPAM with commercially available design tools for systematic optimisation of IP cores has also been developed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Features extraction for low-power face verification

    Get PDF
    Mobile communication devices now available on the market, such as so-called smartphones, are far more advanced than the first cellular phones that became very popular one decade ago. In addition to their historical purpose, namely enabling wireless vocal communications to be established nearly everywhere, they now provide most of the functionalities offered by computers. As such, they hold an ever-increasing amount of personal information and confidential data. However, the authentication method employed to prevent unauthorized access to the device is still based on the same PIN code mechanism, which is often set to an easy-to-guess combination of digits, or even altogether disabled. Stronger security can be achieved by resorting to biometrics, which verifies the identity of a person based on intrinsic physical or behavioral characteristics. Since most mobile phones are now equipped with an image sensor to provide digital camera functionality, biometric authentication based on the face modality is very interesting as it does not require a dedicated sensor, unlike e.g. fingerprint verification. Its perceived intrusiveness is furthermore very low, and it is generally well accepted by users. The deployment of face verification on mobile devices however requires overcoming two major challenges, which are the main issues addressed in this PhD thesis. Firstly, images acquired by a handheld device in an uncontrolled environment exhibit strong variations in illumination conditions. The extracted features on which biometric identification is based must therefore be robust to such perturbations. Secondly, the amount of energy available on battery-powered mobile devices is tightly constrained, calling for algorithms with low computational complexity, and for highly optimized implementations. So as to reduce the dependency on the illumination conditions, a low-complexity normalization technique for features extraction based on mathematical morphology is introduced in this thesis, and evaluated in conjunction with the Elastic Graph Matching (EGM) algorithm. Robustness to other perturbations, such as occlusions or geometric transformations, is also assessed and several improvements are proposed. In order to minimize the power consumption, the hardware architecture of a coprocessor dedicated to features extraction is proposed and described in VHDL. This component is designed to be integrated into a System-on-Chip (SoC) implementing the complete face verification process, including image acquisition, thereby enabling biometric face authentication to be performed entirely on the mobile device. Comparison of the proposed solution with state-of-the-art academic results and recently disclosed commercial products shows that the chosen approach is indeed much more efficient energy-wise

    Efficient architectures and power modelling of multiresolution analysis algorithms on FPGA

    Get PDF
    In the past two decades, there has been huge amount of interest in Multiresolution Analysis Algorithms (MAAs) and their applications. Processing some of their applications such as medical imaging are computationally intensive, power hungry and requires large amount of memory which cause a high demand for efficient algorithm implementation, low power architecture and acceleration. Recently, some MAAs such as Finite Ridgelet Transform (FRIT) Haar Wavelet Transform (HWT) are became very popular and they are suitable for a number of image processing applications such as detection of line singularities and contiguous edges, edge detection (useful for compression and feature detection), medical image denoising and segmentation. Efficient hardware implementation and acceleration of these algorithms particularly when addressing large problems are becoming very chal-lenging and consume lot of power which leads to a number of issues including mobility, reliability concerns. To overcome the computation problems, Field Programmable Gate Arrays (FPGAs) are the technology of choice for accelerating computationally intensive applications due to their high performance. Addressing the power issue requires optimi- sation and awareness at all level of abstractions in the design flow. The most important achievements of the work presented in this thesis are summarised here. Two factorisation methodologies for HWT which are called HWT Factorisation Method1 and (HWTFM1) and HWT Factorasation Method2 (HWTFM2) have been explored to increase number of zeros and reduce hardware resources. In addition, two novel efficient and optimised architectures for proposed methodologies based on Distributed Arithmetic (DA) principles have been proposed. The evaluation of the architectural results have shown that the proposed architectures results have reduced the arithmetics calculation (additions/subtractions) by 33% and 25% respectively compared to direct implementa-tion of HWT and outperformed existing results in place. The proposed HWTFM2 is implemented on advanced and low power FPGA devices using Handel-C language. The FPGAs implementation results have outperformed other existing results in terms of area and maximum frequency. In addition, a novel efficient architecture for Finite Radon Trans-form (FRAT) has also been proposed. The proposed architecture is integrated with the developed HWT architecture to build an optimised architecture for FRIT. Strategies such as parallelism and pipelining have been deployed at the architectural level for efficient im-plementation on different FPGA devices. The proposed FRIT architecture performance has been evaluated and the results outperformed some other existing architecture in place. Both FRAT and FRIT architectures have been implemented on FPGAs using Handel-C language. The evaluation of both architectures have shown that the obtained results out-performed existing results in place by almost 10% in terms of frequency and area. The proposed architectures are also applied on image data (256 ÂŁ 256) and their Peak Signal to Noise Ratio (PSNR) is evaluated for quality purposes. Two architectures for cyclic convolution based on systolic array using parallelism and pipelining which can be used as the main building block for the proposed FRIT architec-ture have been proposed. The first proposed architecture is a linear systolic array with pipelining process and the second architecture is a systolic array with parallel process. The second architecture reduces the number of registers by 42% compare to first architec-ture and both architectures outperformed other existing results in place. The proposed pipelined architecture has been implemented on different FPGA devices with vector size (N) 4,8,16,32 and word-length (W=8). The implementation results have shown a signifi-cant improvement and outperformed other existing results in place. Ultimately, an in-depth evaluation of a high level power macromodelling technique for design space exploration and characterisation of custom IP cores for FPGAs, called func-tional level power modelling approach have been presented. The mathematical techniques that form the basis of the proposed power modeling has been validated by a range of custom IP cores. The proposed power modelling is scalable, platform independent and compares favorably with existing approaches. A hybrid, top-down design flow paradigm integrating functional level power modelling with commercially available design tools for systematic optimisation of IP cores has also been developed. The in-depth evaluation of this tool enables us to observe the behavior of different custom IP cores in terms of power consumption and accuracy using different design methodologies and arithmetic techniques on virous FPGA platforms. Based on the results achieved, the proposed model accuracy is almost 99% true for all IP core's Dynamic Power (DP) components.EThOS - Electronic Theses Online ServiceThomas Gerald Gray Charitable TrustGBUnited Kingdo

    Towards an embedded board-level tester: study of a configurable test processor

    Get PDF
    The demand for electronic systems with more features, higher performance, and less power consumption increases continuously. This is a real challenge for design and test engineers because they have to deal with electronic systems with ever-increasing complexity maintaining production and test costs low and meeting critical time to market deadlines. For a test engineer working at the board-level, this means that manufacturing defects must be detected as soon as possible and at a low cost. However, the use of classical test techniques for testing modern printed circuit boards is not sufficient, and in the worst case these techniques cannot be used at all. This is mainly due to modern packaging technologies, a high device density, and high operation frequencies of modern printed circuit boards. This leads to very long test times, low fault coverage, and high test costs. This dissertation addresses these issues and proposes an FPGA-based test approach for printed circuit boards. The concept is based on a configurable test processor that is temporarily implemented in the on-board FPGA and provides the corresponding mechanisms to communicate to external test equipment and co-processors implemented in the FPGA. This embedded test approach provides the flexibility to implement test functions either in the external test equipment or in the FPGA. In this manner, tests are executed at-speed increasing the fault coverage, test times are reduced, and the test system can be adapted automatically to the properties of the FPGA and devices located on the board. An essential part of the FPGA-based test approach deals with the development of a test processor. In this dissertation the required properties of the processor are discussed, and it is shown that the adaptation to the specific test scenario plays a very important role for the optimization. For this purpose, the test processor is equipped with configuration parameters at the instruction set architecture and microarchitecture level. Additionally, an automatic generation process for the test system and for the computation of some of the processor’s configuration parameters is proposed. The automatic generation process uses as input a model known as the device under test model (DUT-M). In order to evaluate the entire FPGA-based test approach and the viability of a processor for testing printed circuit boards, the developed test system is used to test interconnections to two different devices: a static random memory (SRAM) and a liquid crystal display (LCD). Experiments were conducted in order to determine the resource utilization of the processor and FPGA-based test system and to measure test time when different test functions are implemented in the external test equipment or the FPGA. It has been shown that the introduced approach is suitable to test printed circuit boards and that the test processor represents a realistic alternative for testing at board-level.Der Bedarf an elektronischen Systemen mit zusätzlichen Merkmalen, höherer Leistung und geringerem Energieverbrauch nimmt ständig zu. Dies stellt eine erhebliche Herausforderung für Entwicklungs- und Testingenieure dar, weil sie sich mit elektronischen Systemen mit einer steigenden Komplexität zu befassen haben. Außerdem müssen die Herstellungs- und Testkosten gering bleiben und die Produkteinführungsfristen so kurz wie möglich gehalten werden. Daraus folgt, dass ein Testingenieur, der auf Leiterplatten-Ebene arbeitet, die Herstellungsfehler so früh wie möglich entdecken und dabei möglichst niedrige Kosten verursachen soll. Allerdings sind die klassischen Testmethoden nicht in der Lage, die Anforderungen von modernen Leiterplatten zu erfüllen und im schlimmsten Fall können diese Testmethoden überhaupt nicht verwendet werden. Dies liegt vor allem an modernen Gehäuse-Technologien, der hohen Bauteildichte und den hohen Arbeitsfrequenzen von modernen Leiterplatten. Das führt zu sehr langen Testzeiten, geringer Testabdeckung und hohen Testkosten. Die Dissertation greift diese Problematik auf und liefert einen FPGA-basierten Testansatz für Leiterplatten. Das Konzept beruht auf einem konfigurierbaren Testprozessor, welcher im On-Board-FPGA temporär implementiert wird und die entsprechenden Mechanismen für die Kommunikation mit der externen Testeinrichtung und Co-Prozessoren im FPGA bereitstellt. Dadurch ist es möglich Testfunktionen flexibel entweder auf der externen Testeinrichtung oder auf dem FPGA zu implementieren. Auf diese Weise werden Tests at-speed ausgeführt, um die Testabdeckung zu erhöhen. Außerdem wird die Testzeit verkürzt und das Testsystem automatisch an die Eigenschaften des FPGAs und anderer Bauteile auf der Leiterplatte angepasst. Ein wesentlicher Teil des FPGA-basierten Testansatzes umfasst die Entwicklung eines Testprozessors. In dieser Dissertation wird über die benötigten Eigenschaften des Prozessors diskutiert und es wird gezeigt, dass die Anpassung des Prozessors an den spezifischen Testfall von großer Bedeutung für die Optimierung ist. Zu diesem Zweck wird der Prozessor mit Konfigurationsparametern auf der Befehlssatzarchitektur-Ebene und Mikroarchitektur-Ebene ausgerüstet. Außerdem wird ein automatischer Generierungsprozess für die Realisierung des Testsystems und für die Berechnung einer Untergruppe von Konfigurationsparametern des Prozessors vorgestellt. Der automatische Generierungsprozess benutzt als Eingangsinformation ein Modell des Prüflings (device under test model, DUT-M). Das entwickelte Testsystem wurde zum Testen von Leiterplatten für Verbindungen zwischen dem FPGA und zwei Bauteilen verwendet, um den FPGA-basierten Testansatz und die Durchführbarkeit des Testprozessors für das Testen auf Leiterplatte-Ebene zu evaluieren. Die zwei Bauteile sind ein Speicher mit direktem Zugriff (static random-access memory, SRAM) und eine Flüssigkristallanzeige (liquid crystal display, LCD). Die Experimente wurden durchgeführt, um den Ressourcenverbrauch des Prozessors und Testsystems festzustellen und um die Testzeit zu messen. Dies geschah durch die Implementierung von unterschiedlichen Testfunktionen auf der externen Testeinrichtung und dem FPGA. Dadurch konnte gezeigt werden, dass der FPGA-basierte Ansatz für das Testen von Leiterplatten geeignet ist und dass der Testprozessor eine realistische Alternative für das Testen auf Leiterplatten-Ebene ist

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link
    corecore