

urn:nbn:de:gbv:ilm1-2016000605

Towards an Embedded
Board-Level Tester

Study of a Configurable Test Processor

Dissertation

Zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing)

vorgelegt in der Fakultät für Informatik und Automatisierung der
Technischen Universität Ilmenau

von Herrn Ing. Jorge Hernán Meza Escobar,
geboren am 18.01.1984 in Cali, Kolumbien

Datum der Einrichtung: 15.06.2016 (vorliegende Revision vom 29.11.2016)

Datum der Verteidigung: 21.11.2016

Gutachter: 1. Prof. Dr.-Ing. habil. Andreas Mitschele-Thiel,
Technische Universität Ilmenau

 2. Prof. Dr.-Ing. Sebastian Michael Sattler,
Friedrich-Alexander Universität Erlangen-Nürnberg

 3. Prof. Dr. Raimund-Johannes Ubar,
Tallinn University of Technology

III

Acknowledgments

First, I would like to express my deepest and sincere gratitude to my advisors Dr.-Ing.
Heinz-Dietrich Wuttke and Prof. Dr.-Ing. habil. Andreas Mitschele-Thiel. Thank you for
letting me be part of the ICS group, for the excellent scientific guidance of my thesis, and
for your constructive reviews, suggestions, and discussions, which significantly improved
this work.

I would also like to express my gratitude and appreciation to my whole family, especially
to my parents Jorge and Leonor, my brother Kike, and my sister Leonor. Thank you for
your support and for encouraging me to pursue my dreams. Special thanks go to Pamela
for all her love, support, and encouragement. I would also like to thank my cousin Grace
Lewis for her grammar and text corrections.

I would like to thank the HW/SW systems group, especially Steffen Ostendorff and Jörg
Sachße. The embedded board-level tester and the test processor would surely not be able to
work without your contributions! My special thanks go to Dr.-Ing. Karsten Henke and all
ICS group members. Thanks for having an open ear for discussing various aspects of my
theoretical and practical work.

I would like to thank the organizational and technical staff, Nicole Sauer, Nadine Wolf,
and specially Jürgen Schmidt. I would also like to thank the reviewers for investing their
time in reading and evaluating this work.

Finally, I would like to express my gratitude and recognize that this research would not
have been possible without the financial assistance of the Thüringer Aufbaubank (TAB),
the Zentrales Innovationsprogram Mittelstand (ZIM), and the TU Ilmenau. I am also very
thankful to Göpel Electronic and Thomas Wenzel for the opportunity to develop this
research with the collaboration of an industry partner.

V

Abstract

The demand for electronic systems with more features, higher performance, and less power
consumption increases continuously. This is a real challenge for design and test engineers
because they have to deal with electronic systems with ever-increasing complexity
maintaining production and test costs low and meeting critical time to market deadlines.

For a test engineer working at the board-level, this means that manufacturing defects must
be detected as soon as possible and at a low cost. However, the use of classical test
techniques for testing modern printed circuit boards is not sufficient, and in the worst case
these techniques cannot be used at all. This is mainly due to modern packaging
technologies, a high device density, and high operation frequencies of modern printed
circuit boards. This leads to very long test times, low fault coverage, and high test costs.

This dissertation addresses these issues and proposes an FPGA-based test approach for
printed circuit boards. The concept is based on a configurable test processor that is
temporarily implemented in the on-board FPGA and provides the corresponding
mechanisms to communicate to external test equipment and co-processors implemented in
the FPGA. This embedded test approach provides the flexibility to implement test
functions either in the external test equipment or in the FPGA. In this manner, tests are
executed at-speed increasing the fault coverage, test times are reduced, and the test system
can be adapted automatically to the properties of the FPGA and devices located on the
board.

An essential part of the FPGA-based test approach deals with the development of a test
processor. In this dissertation the required properties of the processor are discussed, and it
is shown that the adaptation to the specific test scenario plays a very important role for the
optimization. For this purpose, the test processor is equipped with configuration
parameters at the instruction set architecture and microarchitecture level. Additionally, an
automatic generation process for the test system and for the computation of some of the
processor’s configuration parameters is proposed. The automatic generation process uses
as input a model known as the device under test model (DUT-M).

In order to evaluate the entire FPGA-based test approach and the viability of a processor
for testing printed circuit boards, the developed test system is used to test interconnections
to two different devices: a static random memory (SRAM) and a liquid crystal display
(LCD). Experiments were conducted in order to determine the resource utilization of the
processor and FPGA-based test system and to measure test time when different test
functions are implemented in the external test equipment or the FPGA. It has been shown

VI Abstract

that the introduced approach is suitable to test printed circuit boards and that the test
processor represents a realistic alternative for testing at board-level.

VII

Zusammenfassung

Der Bedarf an elektronischen Systemen mit zusätzlichen Merkmalen, höherer Leistung und
geringerem Energieverbrauch nimmt ständig zu. Dies stellt eine erhebliche
Herausforderung für Entwicklungs- und Testingenieure dar, weil sie sich mit
elektronischen Systemen mit einer steigenden Komplexität zu befassen haben. Außerdem
müssen die Herstellungs- und Testkosten gering bleiben und die Produkteinführungsfristen
so kurz wie möglich gehalten werden.

Daraus folgt, dass ein Testingenieur, der auf Leiterplatten-Ebene arbeitet, die
Herstellungsfehler so früh wie möglich entdecken und dabei möglichst niedrige Kosten
verursachen soll. Allerdings sind die klassischen Testmethoden nicht in der Lage, die
Anforderungen von modernen Leiterplatten zu erfüllen und im schlimmsten Fall können
diese Testmethoden überhaupt nicht verwendet werden. Dies liegt vor allem an modernen
Gehäuse-Technologien, der hohen Bauteildichte und den hohen Arbeitsfrequenzen von
modernen Leiterplatten. Das führt zu sehr langen Testzeiten, geringer Testabdeckung und
hohen Testkosten.

Die Dissertation greift diese Problematik auf und liefert einen FPGA-basierten Testansatz
für Leiterplatten. Das Konzept beruht auf einem konfigurierbaren Testprozessor, welcher
im On-Board-FPGA temporär implementiert wird und die entsprechenden Mechanismen
für die Kommunikation mit der externen Testeinrichtung und Co-Prozessoren im FPGA
bereitstellt. Dadurch ist es möglich Testfunktionen flexibel entweder auf der externen
Testeinrichtung oder auf dem FPGA zu implementieren. Auf diese Weise werden Tests at-
speed ausgeführt, um die Testabdeckung zu erhöhen. Außerdem wird die Testzeit verkürzt
und das Testsystem automatisch an die Eigenschaften des FPGAs und anderer Bauteile auf
der Leiterplatte angepasst.

Ein wesentlicher Teil des FPGA-basierten Testansatzes umfasst die Entwicklung eines
Testprozessors. In dieser Dissertation wird über die benötigten Eigenschaften des
Prozessors diskutiert und es wird gezeigt, dass die Anpassung des Prozessors an den
spezifischen Testfall von großer Bedeutung für die Optimierung ist. Zu diesem Zweck
wird der Prozessor mit Konfigurationsparametern auf der Befehlssatzarchitektur-Ebene
und Mikroarchitektur-Ebene ausgerüstet. Außerdem wird ein automatischer
Generierungsprozess für die Realisierung des Testsystems und für die Berechnung einer
Untergruppe von Konfigurationsparametern des Prozessors vorgestellt. Der automatische
Generierungsprozess benutzt als Eingangsinformation ein Modell des Prüflings (device
under test model, DUT-M).

VIII Zusammenfassung

Das entwickelte Testsystem wurde zum Testen von Leiterplatten für Verbindungen
zwischen dem FPGA und zwei Bauteilen verwendet, um den FPGA-basierten Testansatz
und die Durchführbarkeit des Testprozessors für das Testen auf Leiterplatte-Ebene zu
evaluieren. Die zwei Bauteile sind ein Speicher mit direktem Zugriff (static random-access
memory, SRAM) und eine Flüssigkristallanzeige (liquid crystal display, LCD). Die
Experimente wurden durchgeführt, um den Ressourcenverbrauch des Prozessors und
Testsystems festzustellen und um die Testzeit zu messen. Dies geschah durch die
Implementierung von unterschiedlichen Testfunktionen auf der externen Testeinrichtung
und dem FPGA. Dadurch konnte gezeigt werden, dass der FPGA-basierte Ansatz für das
Testen von Leiterplatten geeignet ist und dass der Testprozessor eine realistische
Alternative für das Testen auf Leiterplatten-Ebene ist.

IX

Table of Contents

List of Tables .. XIII

List of Figures ... XV

Acronyms... XVII

1 Introduction .. 1
1.1 Motivation ... 1
1.2 Problem statement and research questions ... 2
1.3 Publications related to this work .. 3
1.4 Structure of the dissertation and contributions .. 4

2 Background .. 7
2.1 Testing, what is it? ... 7

2.1.1 Introduction .. 7
2.1.2 Errors and defects .. 8
2.1.3 Validation, verification, and testing ... 9
2.1.4 Fault and fault models .. 9
2.1.5 Diagnosis .. 15
2.1.6 Test quality metrics and test costs ... 18

2.2 Printed circuit board testing ... 19
2.2.1 Manufacturing process ... 19
2.2.2 Board-level testing ... 21
2.2.3 Board-level test techniques .. 23

2.3 Embedded board-level test techniques... 28
2.3.1 Processor-based testing .. 29
2.3.2 FPGA-based testing ... 31

2.4 Soft-core and test processors ... 31
2.4.1 Soft-core processors ... 32
2.4.2 Test processors ... 33

3 Processor in FPGA-based testing .. 41
3.1 FPGA-based testing ... 41

3.1.1 Building blocks .. 41
3.1.2 Test scenario, application field, DUT, and faults .. 42
3.1.3 Test phases ... 43
3.1.4 Design automation in FPGA-based testing .. 46

3.2 FPGA-based testing in the literature ... 46
3.2.1 Ad-hoc FPGA test instruments .. 47

X Table of Contents

3.2.2 Generic FPGA test instruments ... 48
3.2.3 Summary of embedded FPGA test instruments ... 50

3.3 ROBSY approach... 50
3.3.1 Modeling the test functionality .. 51
3.3.2 FBTS architecture .. 54

3.4 Processor in the FPGA-based test system .. 58
3.4.1 Processor impact .. 58
3.4.2 Analysis of L1 .. 61
3.4.3 Analysis of L2 .. 65
3.4.4 Analysis of L3 .. 67
3.4.5 Analysis of L4 and L5.. 67
3.4.6 Analysis of interfaces I1, I2 and I3 .. 68

3.5 Summary ... 70

4 Concept of the ROBSY processor.. 71
4.1 Introduction .. 71
4.2 General design aspects ... 71

4.2.1 ROBSY processor requirements .. 72
4.2.2 Analysis of pre-designed processors .. 74
4.2.3 Fundamental design choices .. 78

4.3 Processor specialization for testing .. 80
4.3.1 Tailoring the processor for testing ... 81
4.3.2 Test operations ... 83
4.3.3 Interfaces I2 and I3 .. 88

4.4 Adaptation to the test scenario ... 90
4.4.1 General adaptation mechanisms .. 91
4.4.2 Adaptation mechanism of the ROBSY processor .. 92

4.5 Summary ... 93

5 ROBSY processor ... 95
5.1 Introduction .. 95
5.2 Instruction set architecture ... 95

5.2.1 Native data types .. 95
5.2.2 Programmer visible state and I/O .. 96
5.2.3 Instruction set ... 100
5.2.4 Interrupts and exceptions ... 107

5.3 Microarchitecture .. 109
5.3.1 Top level view.. 109
5.3.2 Program, data, and stack memories ... 110
5.3.3 Data controller ... 110
5.3.4 Stack controller .. 111
5.3.5 Central processing unit .. 111

Table of Contents XI

5.4 Debug-Interface .. 116
5.4.1 Debug-commands .. 116
5.4.2 Access to the JTAG port .. 117
5.4.3 Structure of the debug-interface ... 118

5.5 Configuration parameters ... 121
5.6 Summary ... 122

6 Automatic generation process ... 125
6.1 Introduction .. 125
6.2 Overview of the automatic generation process ... 125
6.3 ATE program generator .. 127

6.3.1 ATE/FBTS communication ... 127
6.3.2 Software compiler .. 129
6.3.3 Auxiliary software generator and supported ATE tools 129

6.4 FPGA based test system generator ... 130
6.4.1 Processor/co-processor communication ... 132
6.4.2 Reorganization of the configuration parameters .. 132
6.4.3 Embedded software generator .. 135
6.4.4 Hardware generator .. 138
6.4.5 Synthesis tool ... 138

6.5 Summary ... 138

7 Experimental phase ... 141
7.1 Introduction .. 141
7.2 Experimental setup .. 141

7.2.1 Hardware setup .. 141
7.2.2 Software setup .. 143
7.2.3 Processor and FBTS variants ... 144
7.2.4 Resource utilization and performance metrics ... 145

7.3 Devices under test .. 146
7.3.1 SRAM .. 146
7.3.2 LCD .. 148

7.4 Resource utilization ... 149
7.4.1 Effect of the dependent configuration parameters 149
7.4.2 Processor variants .. 151
7.4.3 Layer partition .. 156
7.4.4 FPGA capacity ... 159

7.5 FBTS active time .. 160
7.5.1 Processor variants .. 160
7.5.2 Layer partition .. 163

7.6 Test time .. 165
7.6.1 ATE/FBTS communication delays .. 165

XII Table of Contents

7.6.2 Experimental results... 167
7.6.3 FPGA configuration time ... 168

7.7 Comparison to other approaches ... 168
7.7.1 ROBSY vs Nios II ... 168
7.7.2 ROBSY vs VLSR .. 171

7.8 Summary ... 173
7.8.1 Resource utilization ... 174
7.8.2 FBTS active time ... 175
7.8.3 Test time... 177
7.8.4 Comparison to Nios II and VLSR .. 177
7.8.5 Synthesis tool ... 178
7.8.6 Selection of a processor variant ... 179

8 Conclusions ... 181
8.1 Introduction .. 181
8.2 Summary of the dissertation ... 181
8.3 Achievements .. 184
8.4 Impact ... 185
8.5 Limitations .. 185
8.6 Future work .. 186

Bibliography ... 189

Erklärung .. 201

XIII

List of Tables

Table 2.1: Effects of aggressor signals [22] .. 15
Table 2.2: Test set for DUT ... 17
Table 2.3: Full response list fault dictionary ... 17
Table 2.4: Pass/fail two dimensional fault dictionary ... 18
Table 2.5: Comparison of different test techniques ... 29
Table 2.6: General purpose soft-core processors... 34
Table 2.7: Test processors ... 39
Table 3.1: Properties of boundary scan, ad-hoc and generic FPGA test instruments 50
Table 3.2: Properties of the ROBSY approach.. 51
Table 3.3: DUTs directly connected to FPGA .. 64
Table 4.1: Walking one/zero, modified counting, and interleaved true/complement

sequences .. 84
Table 4.2: Maximum aggressor fault sequences for glitches and delays 84
Table 5.1: ROBSY processor instructions ... 100
Table 5.2: Branching instructions .. 101
Table 5.3: Procedure call instructions ... 101
Table 5.4: STOP and NOP instructions ... 102
Table 5.5: LOAD and STORE instructions ... 102
Table 5.6: PUSH and POP instructions ... 102
Table 5.7: ADD and SUB instructions .. 103
Table 5.8: Logic instructions ... 104
Table 5.9: Shift and rotate instructions .. 104
Table 5.10: Test instructions ... 104
Table 5.11: Sequence of patterns 8-bit LFSR with 0xB8 feedback polynomial 105
Table 5.12: Exception codes .. 108
Table 5.13: Debug commands ... 116
Table 5.14: Configuration parameters ... 121
Table 6.1: Reorganization of processor and debug-interface configuration parameters ... 133
Table 7.1: 112 possible processor variants .. 144
Table 7.2: SRAM DUT-M (fault diagnosis) properties .. 147
Table 7.3: LCD DUT-M (LCD test) properties ... 148
Table 7.4: SRAM DUT. Dependent configuration parameters (L4-L2) 150
Table 7.5: LCD DUT. Dependent configuration parameters (L4-L2) 150
Table 7.6: M9K blocks for stack, data, and program memories I16.0-I16.1/I16.8-I16.9 (L4-L2)

 .. 153

XIV List of Tables

Table 7.7: M9K blocks for stack, data, and program memories I8.0-I8.1/I8.8-I8.9 (L4-L2) .. 154
Table 7.8: Dependent configuration parameters for all processor variants (L3)............... 156
Table 7.9: Test time of ROBSY test system. SRAM DUT ... 167
Table 7.10: Test time of ROBSY test system. LCD DUT .. 167
Table 7.11: Properties of the Nios II cores .. 168
Table 7.12: ROBSY vs Nios II test time. SRAM DUT (L4-L2) 171
Table 7.13: ROBSY vs VLSR test time. SRAM DUT-M (all layer partitions) 172
Table 7.14: ROBSY vs. VLSR test time. LCD DUT-M (all layer partitions) 173

XV

List of Figures

Figure 1.1: Structure of the dissertation .. 4
Figure 2.1: Development flow of an electronic system ... 7
Figure 2.2: Stuck-at-0 AND gate with truth table [17] ... 11
Figure 2.3: Wired AND/OR and dominant bridging fault models with truth table [17] 12
Figure 2.4: Example of a delay fault [13] .. 13
Figure 2.5: Glitch, overshoot, and undershoot distortions [22] ... 14
Figure 2.6: Maximum aggressor fault model .. 15
Figure 2.7: Diagnostic tree [13] ... 17
Figure 2.8: Example of an assembly line [31] ... 20
Figure 2.9: Short defect [29] and crack in ball grid array solder joint [34]......................... 22
Figure 2.10: Lifted lead and insufficient solder defects [29] .. 22
Figure 2.11: Misaligned and tombstone component defects [29] 22
Figure 2.12: General test strategy during PCB assembly .. 23
Figure 2.13: ICT equipment [29] ... 25
Figure 2.14: Simplified architecture of an 11.49.1 compliant IC [37] 26
Figure 2.15: Testchip architecture [76] ... 35
Figure 2.16: Simplified architecture of the test processor presented in [81] 37
Figure 2.17 Simplified architecture of the test processor presented in [89] 38
Figure 3.1: FBT building blocks ... 41
Figure 3.2: FBT test phases ... 43
Figure 3.3: BScan test phases .. 45
Figure 3.4: PBT test phases ... 45
Figure 3.5: FPGA test instruments classification .. 47
Figure 3.6: Organization of the layers and interfaces .. 52
Figure 3.7: FBTS domains .. 55
Figure 3.8: Layer concept with processor co-processor interface 56
Figure 3.9: Architecture of an FBTS domain .. 57
Figure 3.10: Complete FBTS architecture ... 58
Figure 3.11 ROBSY layer partitions ... 69
Figure 4.1 FBTS domains with DRs used for communication with ATE 89
Figure 5.1: ROBSY processor registers .. 98
Figure 5.2: ROBSY processor address spaces... 99
Figure 5.3: 8-bit LFSR with 0xB8 feedback polynomial .. 105
Figure 5.4: Code for LFSR with 0x800B35 feedback polynomial and 8-bit data_width . 105
Figure 5.5: Instruction formats .. 107

XVI List of Figures

Figure 5.6: ROBSY processor top level view ... 109
Figure 5.7: Data controller finite state machine .. 111
Figure 5.8: Stack controller finite state machine ... 111
Figure 5.9: Three-stage pipelined processor ... 112
Figure 5.10: FSM of multicycle (left) and pipeline (right) processor 113
Figure 5.11: FSM of exception module .. 115
Figure 5.12: JTAG components and interconnections in an FPGA device 117
Figure 5.13: Block diagram of the debug-interface .. 118
Figure 5.14: Switching state machine ... 119
Figure 5.15: FSM of debug-interface for multicycle (left) and pipeline(right) processor 120
Figure 6.1: Overview of automatic generation process for a single DUT-Model 126
Figure 6.2: ATE program generator .. 127
Figure 6.3: FBTS generator ... 131
Figure 6.4: Embedded software generator. Phase 1 (top left), 2 (top right), 3 (bottom) ... 136
Figure 7.1: Hardware setup (no ATE). VarioTap coach (top) and DE2-115 (bottom) 142
Figure 7.2: Processor logic elements I16.0-I16.15. SRAM and LCD DUTs (L4-L2) 152
Figure 7.3: Processor M9K blocks and 9x9 multipliers I16.0-I16.15. SRAM and LCD DUTs

(L4-L2) ... 152
Figure 7.4: Processor M9K blocks I8.0-I8.15. SRAM and LCD DUTs (L4-L2) 154
Figure 7.5: Processor logic elements I8.0-I32.15. SRAM and LCD DUTs (L4-L2) 155
Figure 7.6: Processor M9K blocks and 9x9 multipliers I8.0-I32.15. LCD DUT (L4-L2) 155
Figure 7.7: Processors logic elements I8.0-I32.15. SRAM DUT (L4-L2 and L3) 157
Figure 7.8: Processors M9K blocks I8.0-I32.15. SRAM DUT (L4-L2 and L3) 157
Figure 7.9: Processors 9x9 Multipliers I8.0-I32.15. SRAM DUT (L4-L2 and L3) 157
Figure 7.10: FBTS logic elements (average). SRAM and LCD DUTs (all layer partitions)

 .. 158
Figure 7.11: FPGA capacity. SRAM DUT (L4-L2) ... 159
Figure 7.12: FBTS active time I16.0-I16.15. SRAM DUT (L4-L2) 160
Figure 7.13: FBTS active time I16.0-I16.15. LCD DUT (L4-L2) ... 161
Figure 7.14: FBTS active time I8.0-I32.15. SRAM DUT (L4-L2) 162
Figure 7.15: FBTS active time I8.0-I32.15. LCD DUT (L4-L2) ... 162
Figure 7.16: FBTS active time I8.0-I32.15. SRAM DUT (all layer partitions) 163
Figure 7.17: FBTS active time I8.0-I32.15. LCD DUT (all layer partitions) 164
Figure 7.18: Nios II vs ROBSY logic elements. SRAM DUT (L4-L2) 170
Figure 7.19: Nios II vs ROBSY M9Ks and 9x9 multipliers. SRAM DUT (L4-L2) 170
Figure 7.20: Nios II vs ROBSY FBTS active time. SRAM DUT (L4-L2) 171
Figure 7.21: VLSR vs ROBSY logic elements. SRAM DUT (L4-L2) 172

XVII

Acronyms

ACK Acknowledge
ALU Arithmetic logic unit
AOI Automated optical inspection
ATE External automatic test equipment
AXI Automated X-ray inspection
ASIC Application-specific IC
BGA Ball grid array
BIDIR Bidirectional
BILBO Built-in logic block observer
BIST Built-in self-test
BScan Boundary scan
CISC Complex instruction set computer
CPI Clock cycles per instruction
CPU Central processing unit
CS Chip select
DI Device interface
DDR Double data rate
DR Data register
DRAM Dynamic RAM
DUT Device under test
DUT-M DUT-model
DT Data transfer
EDA Electronic design automation
ESW Embedded software
FBT FPGA-based testing
FBTS FPGA-based test system
FPGA Field programmable gate array
FPT Flying probe test
FSM Finite state machine
GPR General purpose register
HDL Hardware Description Language
HW Hardware
I Index
I1 - I3 Interface 1 – Interface 3
I/O Input/output
IC Integrated circuit

XVIII Acronyms

ICT In-circuit test
ILP Instruction level parallelism
IP Intellectual property
IPC Instructions per clock cycle
IR Instruction register
ISA Instruction set architecture
JTAG Joint test action group
L1 - L5 Layer 1 - Layer 5
LCD Liquid crystal display
LE Logic element
LFSR Linear feedback shift register
LSB Low significant bit
LUT Look-up table
MISR Multiple input signature register
MSB Most significant bit
PBT Processor based testing
PC Program counter
PCB Printed circuit board
RAM Random access memory
RISC Reduced instruction set computer
ROBSY Reconfigurable on-board test system
RTL Register-transfer level
SDR Single data rate
SFR Special function register
SMT Surface mount technology
SoC System on chip
SP Stack pointer
SRAM Static RAM
SW Software
TAP Test access port
TCK Test clock
TDI Test data in
TDO Test data out
THT Through-hole technology
TMS Test mode select
TRST Test reset
VLIW Very large instruction word
VLSR Variable length shift register
VHDL VHSIC HDL
VHSIC Very-high-speed integrated circuit

1

1 Introduction

1.1 Motivation

The world is more and more dependent on electronic systems. Today, they are a
fundamental tool in medicine, healthcare, communication, automotive, navigation, space
exploration, agriculture, etc. In all these fields, the demand for electronic systems with
more features, higher performance, and less power consumption increases continuously.
This is a real challenge for design and test engineers because they have to deal with
electronic systems with ever-increasing complexity maintaining production and test costs
low and meeting critical time to market deadlines.

For a test engineer, this means that manufacturing defects must be detected as soon as
possible. Therefore, the manufacturing stage of every electronic system is escorted by
several test phases hierarchically organized for early defect detection and diagnose. To
fulfill this purpose, several test techniques have been developed and successfully used.
But these techniques are not able to cope with test requirements of modern electronic
systems, and in the worst case, they cannot be used at all.

At the board-level, this is mainly due to modern packaging technologies, a high device
density, and the high operation frequencies of modern printed circuit boards. One
example of this phenomenon is boundary scan (BScan) [1], which is a popular test
technique developed thirty years ago and since then successfully used. Unfortunately, it is
reaching its limits due to the properties of modern printed circuit boards. Basically, it is
inadequate to handle defects with dynamic behavior because it cannot execute tests at the
normal operation frequencies (at-speed test) of devices located at the board. Additionally,
the high number of devices and pins per device results in very long test times and high
test costs. Therefore, there is a growing interest in the research community and industry to
investigate and develop new board-level test techniques that improve test quality metrics
and reduce costs.

New developed test techniques and test standards tend to embed more of the test
functions in the electronic system, whether the electronic system represents a printed
circuit board (PCB) or a system entirely implemented in silicon such as a system on chip
(SoC). In this way, access to internal structures and functions of the electronic system is
enhanced, improving the observability, controllability, and test quality in a cost effective
way.

2 1 Introduction

Two emerging embedded test techniques at the board-level have gained considerable
importance. The first one corresponds to processor-based testing (PBT), where processors
or microcontrollers located on the board are used to execute part of the test functions. The
second technique is known as FPGA-based testing (FBT). Instead of processors or
microcontrollers, this technique uses field programmable gate arrays (FPGAs) to
implement part of the test functions. Both techniques are very attractive because they do
not require the modification or addition of new components to the board, and allow the
detection of defects with a dynamic behavior.

In the case of PBT, the difficulty lies in the development of mechanisms for the automatic
generation of descriptions necessary to access different processors or microcontrollers
from the external automatic test equipment (ATE). The access should be guaranteed
independently if the processor or microcontroller is implemented as a stand-alone
integrated circuit or as part of a SoC. In the case of FBT, the complexity lies in the
development of the test system implemented in the FPGA, which is known as the FBT
system (FBTS). For the development of such a system, it is necessary to provide an
answer to the following questions:

• What is the structure of the FBTS?
• Which components are used for its implementation?
• How should the FBTS communicate with the ATE?
• Which mechanisms can be used to facilitate the work of test engineers?

In this dissertation the research is linked to the development and implementation of a
configurable test processor as part of an FBT approach.

1.2 Problem statement and research questions

This dissertation targets the study and development of a configurable test processor as
part of a new FBT approach. The FBT approach should be able to execute tests at-speed
and in short time, adapt to the PCB and test requirements, and hide implementation
details from test engineers in order to facilitate its utilization. The goal is to provide a
better understanding of whether the use of a test processor as part of an FPGA-based
testing approach is a good alternative to tackle test challenges imposed by modern PCBs,
so that classical test techniques such as boundary scan can be complemented.

Although there are some FBT approaches found in the literature (Section 3.2), none of
them makes use of a test processor or is able to provide all the advantages that the FBT

1 Introduction 3

approach proposed in this dissertation provides. Based on these considerations, the central
research questions are defined as follows:

• Is it possible to design a resource and computational efficient FBT approach and
obtain the advantages already mentioned based on a test processor?

• What are the architecture characteristics of an FBTS that use a test processor as
central component?

• Which adaptation and abstraction mechanisms should be included in order to
customize the FBTS to the test scenario and hide implementation details?

• Which instruction set architecture and microarchitecture features should be
included in the test processor?

• What are the test functions that the test processor can efficiently execute in terms
of resource utilization and execution time?

• Is it possible to use this approach in real manufacturing scenarios?
• Are the results concerning test quality metrics better in comparison to other FBT

approaches?
• What are the limitations?

Literature research shows that these questions have not been answered in the related work
so far, which ultimately motivates the development of this dissertation.

1.3 Publications related to this work

In the context of this work several papers have been published on national and
international conferences. In [2, 3] the general concept of the FBT approach and targeted
test processor is presented. The provided solution describes the layer concept and a first
proposal for the FBTS architecture and automatic generation process. In [4] the concept is
further developed and emphasis is given to the automatic generation of the complete test
system. In [5] the main subject is the test processor and the use of configuration options at
the instruction set architecture and microarchitecture level as a mechanism for the
processor adaptation to the PCB and test requirements. In [6] the processor is used as part
of a novel verification approach of register transfer level (RTL) designs. Finally, [7]
presents results of the approach with focus on the test processor.

The publications cover basic aspects of the FBT approach proposed as part of this
dissertation. This dissertation provides an extension of the work and a more detailed
analysis of the FBTS, test processor, and automatic generation process. These aspects are
extended with further improvements of the concept.

4 1 Introduction

1.4 Structure of the dissertation and contributions

The structure of the dissertation is divided into eight chapters, as indicated in Figure 1.1.

Chapter 1: Introduction

Chapter 8: Conclusions

Chapter 2: Background

Chapter 3: Processor in FPGA-based testing

Chapter 4: Concept of the ROBSY processor

Chapter 5: ROBSY processor

Chapter 6: Automatic generation process

Chapter 7: Experimental phase

Figure 1.1: Structure of the dissertation

Chapter 2 provides the theoretical basis of the dissertation. It presents an overview on
testing, testing of printed circuit boards, and test techniques. Additionally, it provides
information about the state of the art of soft-core processors and test processors.

Chapter 3 begins with a discussion about FPGA-based testing and the state of the art of
FPGA-based testing approaches. The approaches are reviewed and classified under the
aspects of external/embedded test instrumentation, application speed, test time, and
design methodology. Based on the literature review, the FPGA-based testing approach
proposed in this dissertation is presented. At the end of Chapter 3, an analysis of the use
of a processor in FPGA-based testing is performed.

Chapter 4 presents the concept of the ROBSY (Reconfigurable On-Board test System)
processor based on the analysis performed in Chapter 3. This chapter discusses the
processor general design aspects, specialization for testing, and adaptation mechanisms to
the PCB and test requirements.

1 Introduction 5

Chapter 5 presents the implementation details of the ROBSY processor. It shows its
instruction set architecture, microarchitecture, and debug-interface. Additionally, Chapter 5
presents the configuration parameters supported by the processor.

Chapter 6 provides an overview of the automatic generation process for an FBTS
composed of a processor/co-processor pair. The automatic generation process includes
the generation of software for the ATE, embedded software for the ROBSY processor,
and hardware descriptions that represent the co-processor. Furthermore, the automatic
generation process is in charge of adapting the processor by defining the value of the
configuration parameters known as dependent configuration parameters.

Chapter 7 presents the experimental results obtained with the proposed FBT approach.
The chapter analyzes the implementation of test functions on the ATE and FPGA, as well
as the effect of the processor configuration parameters known as the dependent and
independent configuration parameters. It analyzes the resource utilization of the FPGA,
the time that the FBTS is active during the whole test execution, and the total test time. At
the end of the chapter the results obtained with the ROBSY test system are compared
against the results obtained with a generic test instrument and with FBTS variants
implemented based on the Nios II cores. The results show the advantages of the ROBSY
approach and the ROBSY processor.

Finally, Chapter 8 summarizes the dissertation and provides an outlook on further
research opportunities.

7

2 Background

2.1 Testing, what is it?

2.1.1 Introduction

In order to provide a proper definition for the word testing, it is necessary to take a look at
the general development flow of an electronic system presented in Figure 2.1. In the
figure, the specification of the electronic system represents the starting point of the
development flow, in which the requirements of the electronic system, as seen from its
environment, are defined. This comprises the definition of the product’s overall
functionality, interfaces to the environment, performance requirements, etc. [8, 9].

Specification

Netlist

Electronic system

Design

Manufacturing Testing

Verification

Figure 2.1: Development flow of an electronic system

Based on the specification, the internal structure of the system is defined during the
design stage. In this stage several solutions can be explored, based on different
technologies, architectures, hardware/software partitions, and so on [10]. The outcome of
the design stage is documented in a structural description or netlist of the physical objects
and their interconnections. Depending on the level of abstraction, these objects are
transistors, gates, integrated circuits (ICs), or even multiple printed circuit boards (PCBs).

The second stage is the fabrication of the electronic system, which is known as the
manufacturing stage. Depending on the level of abstraction, the manufacturing stage

8 2 Background

might deal with the fabrication of ICs based on silicon wafers or the fabrication of PCBs,
which involves the assembly of ICs in an insulated base with firmly attached conductors.

It is possible that the resulting electronic system behaves in an undesired way due to
errors introduced during its development, or errors appearing during electronic system
operation. In the first case, these errors were introduced during the elaboration of the
specification, design or manufacturing stage. In the second case, these errors appear in the
field.

In order to avoid or minimize the probability of incorrect behavior and detect possible
causes as soon as possible, additional stages are included in the development flow, which
are known as validation, verification, and testing [9].

2.1.2 Errors and defects

An error is essentially the observed effect of an incorrect behavior, which may be caused
by diverse factors such as specification-errors, design-errors, fabrication-errors,
fabrication-defects, or physical-failures [9, 11].

• Specification-errors occur due to an ambiguous or incomplete specification. In
many cases, they are caused by an operation scenario not properly described in the
specification, or even worse, an operation scenario not described at all [9].

• Design-errors are produced during the design of the electronic system. They are
originated by an incorrect interpretation of the specification, violations of design
rules, usage of defective design tools, etc. [9].

• Fabrication-errors and fabrication-defects appear during the manufacturing
process. The former are directly attributable to a human act, such as the use of
wrong devices, incorrect wiring, improper soldering, etc., while the latter are not
directly attributable to a human act because they result from an imperfect
manufacturing process [11].

• Physical-failures occur during the operation of the electronic system, and are
caused due to wear out, aging, and environmental factors affecting the electronic
system [11].

Fabrication-errors, fabrication-defects and physical-failures are collectively referred to in
the literature as physical faults [11], manufacturing faults [9], or defects [12, 13]. They
can be found anywhere: in a die, in one or multiple layers, in packages, in PCBs, etc.
Additionally, they can be presented in arbitrary areas and can have different electrical
properties, which means that they manifest themselves in different ways such as changing

2 Background 9

a logical value on a node, increasing the steady state supply current, changing timing
properties, or causing discrepancy in other parameters.

In this dissertation, the term defect is adopted to refer to fabrication-errors, fabrication-
defects, and physical-failures, and the term error is the observed incorrect behavior
produced by a defect.

2.1.3 Validation, verification, and testing

There are different ways to look for errors and defects, depending on the electronic
system development stage.

Validation is carried out to detect and minimize specification-errors. During the
validation process, the specification is analyzed to determine if it describes the desired
behavior and whether it is complete, unambiguous, and consistent [9].

As seen in Figure 2.1, verification is performed during the design stage. The goal is to
continually prove if the structural model resulting from the design stage fulfills all the
functional and nonfunctional requirements provided in the specification [9, 14]. There are
different ways to perform verification, either using formal verification methods (model
and equivalence checking) or functional verification.

In contrast, testing is the process responsible for detecting all defects (fabrication-errors,
fabrication-defects, and physical-failures) introduced during the manufacturing process or
operation of an electronic system [11, 12]. In this context, testing is an experiment in
which the system is exercised and the resulting response is analyzed to ascertain whether
it behaved correctly. If incorrect behavior is detected, a second goal of testing may be to
diagnose the defect causing the misbehavior. Testing requires the generation, application,
acquisition, and analysis of test patterns, which are defined depending on required test
quality metrics and allowed costs (Section 2.1.6).

2.1.4 Fault and fault models

Ideally, a test should detect all defects produced in the manufacturing stage and let only
functionally good devices pass. Unfortunately, the number of potential defects that appear
during the manufacturing stage can be very large, and their effect on properties and
behavior of the electronic system can be very complex and difficult to understand.

Faults and fault models are used to address this problem.

10 2 Background

A fault is defined as a representation of the defect at an abstract function level [13], which
means that it is a representation of the effect of a defect on the operation of the system.
Consequently, a fault model is a mathematical or formal description of a fault. Fault
models bridge the gap between the physical reality and mathematical abstracts, and they
reduce test complexity, given that [11]:

• Many defects can be represented by the same fault model.
• Some fault models can be used for different technologies because they are

technology independent.
• Tests derived from fault models may be used for defects whose effect in the

circuit behavior is not completely understood or is too complex to be analyzed.

Unsurprisingly, there is a trade-off when working with fault models. The more simple and
abstract the fault model is, the more difficult it is to associate the fault with a real defect,
which makes defect location and diagnosis more difficult. Therefore, one alternative is to
work at different abstraction levels, starting with the development of tests for fault models
at high abstraction levels, and then develop tests targeted at low-level faults that were not
covered by the high-level fault models [15]. Which fault model is best and which type of
testing is necessary depends on technology and defect manifestation.

In the next sections, fault models relevant for this thesis are presented: stuck-at, bridging,
and dynamic fault models.

2.1.4.1 Stuck-at faults

The stuck-at fault is considered a static fault model because the defects that it represents
are manifested at all frequencies. It is the logic-level fault model most commonly used in
research as well as industry, being an industrial standard since 1959. Its death has been
predicted but several reasons and properties have made the stuck-at fault model to
continue to be used for testing [13]:

• Simplicity: It is easy to apply to a device under test (DUT).
• Logical behavior: Fault behavior is determined logically, so simulation is

straightforward and deterministic.
• Measurability: The defect represented by a stuck-at fault is easy to detect.
• Adaptability: It can be used on transistors, gates, registers, systems, etc.

Stuck-at faults are mapped to interconnections between devices. Under faulty conditions,
the affected line is assumed to be stuck-at a logic level (0 or 1) and the value cannot be
altered by input stimuli. According to the value of the affected line, the fault is called

2 Background 11

either stuck-at-0 or stuck-at-1. Usually, open lines or lines shorted to ground or power
behave like stuck-at faults [16].

Figure 2.2 shows an example of a stuck-at-0 fault located at the input of an AND gate.

x1 x0 y0 y'0

0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 0

x0

x1

stuck-at-0

y0

Figure 2.2: Stuck-at-0 AND gate with truth table [17]

In general, several stuck-at faults can be simultaneously present. A DUT with n lines can
have 3n − 1 possible stuck-at line combinations. This is because each line can be in one
of the three states: stuck-at-1, stuck-at-0, or fault-free. Clearly, even a moderate value of n
will generate an enormously large number of multiple stuck-at faults. However, it is a
common practice to work with single stuck-at faults [11, 12, 17, 18]. In this case, an n-
line DUT can have at most 2𝑛𝑛 single stuck-at faults.

2.1.4.2 Bridging faults

Same as the stuck-at fault model, a bridging fault is considered a static fault model
because the defects that it represents are manifested at all frequencies. It is also a very
common fault model and it is still one of the fault models most widely accepted in
industry [16]. A bridging fault considers that two or more lines are unintentionally
connected.

There are two bridging fault models that are frequently used in practice: the wired-
AND/wired-OR bridging fault model and the dominant bridging fault model [17]. The
wired-AND bridging fault is also known as 0-dominant bridging fault because a 0 on one
of the faulty lines determines the logic value on both lines in the same way as a logic 0 at
any input of an AND gate. Similarly, the wired-OR bridging fault is also known as 1-
dominant bridging fault.

The dominant bridging fault model was developed to more accurately reflect the behavior
of some shorts, in which the logic value at the destination end of the shorted lines is
determined by the line with the strongest drive capability. As a consequence, the driver
for one line “dominates” the driver for the other line. Figure 2.3 shows the four bridging
fault models.

12 2 Background

x0

x1

resistive
short

x'0

x'1

x0

x1

wired
and

x'0

x'1

x0

x1

wired
or

x'0

x'1

x0

x1
x0 dominant x1

x'0

x'1

x0

x1
x1 dominant x0

x'0

x'1

x1 x0 x'1 x'0 x'1 x'0 x'1 x'0 x'1 x'0

0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 1 1 0 0
1 0 0 0 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1

dominant
x0 dominant x1 x1 dominant x0

fault free
wired AND/OR

wired AND wired OR

Figure 2.3: Wired AND/OR and dominant bridging fault models with truth table [17]

In general, several bridging faults can be simultaneously present in the DUT. In this case,
a DUT with n lines can have 5𝑛𝑛 − 1 possible bridging fault combinations. However, in
the same way as stuck-at faults, it is a common practice to work with single bridging
faults [11, 12, 17, 18]. An n-line DUT can have at most 4𝑛𝑛 single bridging faults.

2.1.4.3 Dynamic faults

In contrast to stuck-at and bridging faults, dynamic faults represent defects that show up
only at high frequencies. In order to detect this kind of fault, it is necessary to execute test
at-speed, which means applying patterns at the operation frequency of the DUT [12].
Additionally, while stuck-at and bridging faults require the application of a single pattern
for their detection, dynamic faults typically require the application of two patterns: the
first one for value initialization and the second one for the activation of the fault. They
can be separated into two main classes, known as delay faults and signal integrity faults.

Delay faults

Delay fault models are associated to interconnection or component defects that cause the
non-fulfillment of timing specifications. This means, defects that cause that a DUT whose
operation is logically correct, to not perform at the required working frequency [13, 17].
In this case, an expected signal value is delayed and the actual measured output signal is
therefore not correct within a pre-specified timing constraint. An example of this behavior
is illustrated in Figure 2.4 using a NOR gate with a delay fault, whose output value
changes from 0 to 1 after a larger time interval in comparison to the time interval defined
in the timing specification.

2 Background 13

00 x0

01 x1
y0 0

1

delay
Figure 2.4: Example of a delay fault [13]

At the transistor level, defects modeled as delay faults can result from under- or over-
etching during the fabrication process, which produces transistors with channel widths
that are much narrower or channel lengths that are much longer than intended, such that,
some paths through the circuit may not meet performance specifications. Other causes are
a drop in the power supply, shifts in the transistor threshold voltage, increment of
parasitic capacitance, high resistance shorts, etc. [13].

At the gate level, delay faults are further categorized into specific delay fault models,
such as gate-delay faults, transition-delay faults, path-delay faults, line-delay faults, and
segment-delay faults [12, 13, 19, 20].

The gate-delay fault model is a quantitative model in which delays are represented by
time intervals. Each gate has a pre-specified nominal delay, but a faulty gate is
characterized by a considerably larger delay. Therefore, the gate delay fault is an added
delay of certain magnitude in the propagation of a rising or falling transition from the gate
inputs to the gate output. The number of gate-delay faults is twice the number of gates.

The transition-delay fault model is one of the basic delay fault models. Faults according
to this model make slow signal changes on a line. There are two possible fault types,
slow-to-rise and slow-to-fall. In this case, it is assumed that a defect on a line is large
enough to affect any path that includes it. The total number of faults is twice the number
of lines.

The path-delay fault model considers the cumulative delay of paths from primary inputs
to primary outputs, and therefore it is a more realistic fault model in comparison to the
gate-delay and transition-delay fault models. Same as for transition-delay faults, two
faults (rising and falling transitions) have to be considered for each path. Because many
paths exist at the gate level, the use of this model is limited to a selected subset of paths
specified as the critical paths.

Segment-delay faults consider slow-to-rise and slow-to-fall defects on segments, whose
length L represents a chain of combinational gates. If L is equal to 1 then the segment-
delay fault is identical to the transition-delay fault, and if L is the maximum logic depth, it
is identical to the path-delay fault. The goal of the segment-delay fault is to reduce the

14 2 Background

number of faults that have to be considered in comparison to the path-delay fault. On the
other hand, the line-delay fault model considers rising or falling delays on a given line. In
contrast to the transition-delay fault model, where the defect affects any path that includes
the line, the line-delay fault is propagated only to the longest path of the circuit.

A detailed discussion about delay faults is presented in [19] and recommended for further
reading. The discussion includes delay fault properties, advantages and disadvantages,
and a classification.

Signal integrity faults

In comparison to delay faults, signal integrity faults are related to signal integrity issues
of the DUT interconnections [21–24]. These issues are due to coupling effects between
interconnections, ground bounce, power supply noise, electromagnetic interference,
reflections, electro migration problems, and even high resistance in the interconnections
produced by cracks or narrow width of lines caused by fabrication errors. Their effect on
the DUT is the appearance of signal delays and signal distortions (noise) in the form of
glitches, overshoots, and undershoots.

A glitch is produced when a signal that should maintain a constant value changes its value
to the opposite value temporarily. Signal overshoots and undershoots elevate or drop the
signal value respectively, stressing the DUT and increasing the probability of early
failures. Figure 2.5 illustrates glitch, overshoot, and undershoot distortions.

Lo
gi

c
0

Lo
gi

c
1

Δt T

V

Lo
gi

c
0

Lo
gi

c
1

T

V
overshoot

overshoot

undershoot

Figure 2.5: Glitch, overshoot, and undershoot distortions [22]

Testing of signal delays and crosstalk effects produced by coupling requires the use of
signal integrity fault models. The most frequently used fault model is the maximal
aggressor fault model [25]. Figure 2.6 shows one victim and two aggressor lines, where

2 Background 15

the coupling between aggressor and victim lines is represented by a generic component Z.
Here, the worst case results in multiple aggressor lines having the same transition at the
same time. In this case, the voltage level on all aggressor lines is assumed to be the same,
which results in no influence between the aggressor lines, whereas all aggressors couple
energy to the victim, as shown by the arrows in Figure 2.6.

Z

Z

aggressor line

victim line

aggressor line
Figure 2.6: Maximum aggressor fault model

The impact of coupling effects depends on the properties of the transition on the
aggressor line as well as the properties of the victim line. While a signal change on the
aggressor line originates the fault effect, the signal on the victim line can be stable as well
as changing in the same or opposite direction of the aggressor lines. Because of coupling,
different effects can occur, ranging from a speedup or slow-down of the affected signal to
hazards on stable signals. Table 2.1 shows the possible combinations.

Victim signal Aggressor signal(s): rising Aggressor signal(s): falling

Stable 0 Positive glitch Negative overshoot (negative glitch)

Rising Speed-up Slow-down

Stable 1 Overshoot (positive glitch) Negative glitch

Falling Slow-down Speed-up

Table 2.1: Effects of aggressor signals [22]

The speed-up phenomenon will normally not cause problems for proper functioning of
the DUT, while the effect of a slow-down of the victim line signal causes at least a delay.
The negative (positive) glitch on the stable 0 (1) victim signal will not alter the DUT
logical behavior but may stress it, resulting in a shorter life time. And the positive
(negative) glitches on stable 0 (1) victim signal may cause an incorrect logical behavior of
the DUT.

2.1.5 Diagnosis

Diagnosis consists of locating the faults in a structural model of the DUT. In other words,
diagnosis maps the observed misbehavior of the DUT into faults affecting its devices or
interconnections [11].

16 2 Background

When faults are detected, diagnostic procedures are used for two main purposes, the
identification and replacement of faulty devices, or the improvement of the quality of the
manufacturing process [17]. In the first case, a diagnostic procedure is carried out in order
to replace the faulty component. This can take place during the manufacturing process or
after the DUT fails in the field. In the second case, diagnosis provides information about
faults that are likely to occur during the manufacturing process. This information is used
to tune the manufacturing process in order to improve its quality.

There are two main methods used for diagnosis, sequential and combinational fault
diagnosis [13]. Sequential fault diagnosis, also known as adaptive testing, is a process, in
which the fault location is carried out step by step. In this case, the next step depends on
the result of the previous step, a behavior that is represented in the form of a diagnostic
tree. An example is shown in Figure 2.7, where the diagnostic tree is composed of a set of
potential faults {F1, F2, F3, F4, F5, F6, F7} and a set of test patterns {T1, T2, T3, T4}.
Every test pattern is a node in the diagnostic tree that defines the next step to carry out
(next pattern to apply) depending on the test result for the actual pattern (pass P or fail F).
In this case, the set of faults that remains after each step represents faults that are
equivalent (undistinguishable) under the currently applied test set.

On the other hand, combinational fault diagnosis is based on explicit fault dictionaries
that associate each fault to a set of test patterns [13]. To locate a fault, it is necessary to
match the test results with one of the precomputed expected results stored in the fault
dictionary. This method is called combinational fault diagnosis, because a look-up
process in the fault dictionary is carried out to identify the corresponding fault.

There are two main types of fault dictionaries and two methods used to store them [26].
In a “full response dictionary” the DUT response is stored for every fault and every test
pattern. On the other hand, in a “pass/fail dictionary” the pass/fail result is stored for
every fault and every test pattern. The two storage methods are the “list storage method”
and the “two-dimensional storage method”. The former is a list that stores for every test
pattern the number of faults detected and additional information depending on the fault
dictionary type. The latter is a two dimensional matrix, in which each row corresponds to
a fault and each column to one of the applied patterns. In this case, the information stored
in each matrix element depends on the type of fault dictionary.

2 Background 17

F1, F2, F3, F4, F5, F6, F7

F1, F4, F5, F6, F7

F1, F4 F5, F6, F7

F6F5, F7

T4

F5 F7

T3

T2

T1

T3

F2, F3

F3F2

PF

F P PF

FP

PF

Figure 2.7: Diagnostic tree [13]

Table 2.2 presents the test set (four test patterns) for a DUT with 4 inputs and two outputs
with the corresponding fault free response.

Test pattern Index Test pattern Fault-free response

0 10010 00

1 01111 00

2 11010 11

3 10101 11

Table 2.2: Test set for DUT

In Table 2.3, the “full response fault dictionary” for ten single stuck-at faults in the DUT
is presented. For every test pattern, the list of faults detected by each test pattern together
with indices of the faulty DUT outputs is stored.

Test pattern index Number of faults Faults

0 4 1(0,1) 3(0) 4(0) 7(1)

1 2 0(0) 2(0,1)

2 3 3(0) 5(0,1) 9(0,1)

3 4 2(1) 6(0) 8(1) 9(0)

Table 2.3: Full response list fault dictionary

In Table 2.4, the “pass/fail two dimensional fault dictionary” is presented. In this case, for
every fault and test pattern a single bit is stored. The bit ‘1’ value indicates that the fault
is detected by the given pattern.

18 2 Background

Fault
Test pattern index

0 1 2 3

0 0 1 0 0

1 1 0 0 0

2 0 1 0 1

3 1 0 1 0

4 1 0 0 0

5 0 0 1 0

6 0 0 0 1

7 1 0 0 0

8 0 0 0 1

9 0 0 1 1

Table 2.4: Pass/fail two dimensional fault dictionary

2.1.6 Test quality metrics and test costs

Test quality metrics and test costs are used for two main purposes: as a mean to specify
test requirements and as a way to determine the advantages and disadvantages of different
test techniques.

Test quality metrics are employed to quantify the quality of a given test or test technique.
In this case, the main test quality metrics used are fault coverage, vertical testability and
diagnostic resolution.

Fault coverage provides information about the effectiveness of a given test. In its simplest
form, this metric is defined as the ratio of the number of detected faults to the total
number of faults considered. Here, it is important to know the targeted fault types (e.g.
dynamic or static faults) and the existence of additional factors that influence the fault
coverage, such as faults that are undetectable or potentially detectable [17].

Vertical testability is related to the application range of a specific test technique. It
defines the application level in which the given test technique can be used. For example,
built-in self-test (BIST) is a test technique with high vertical testability because it can be
used at the wafer, IC, printed circuit board, and even at the system level [17].

Diagnostic resolution indicates the level of fault location achieved by a specific test or
test technique [17]. For example, a printed circuit board test that is able to map a fault to
an interconnection of an IC has a higher diagnostic resolution than a printed circuit board
test that is just able to identify the IC with the faulty interconnection.

Cost is a measurable quantity that plays a very important role in testing. In [27], the
authors consider that an ideal test solution should not add any costs to an electronic

2 Background 19

system during its design or manufacturing. However, they claim that this is not a real
situation because test costs are a significant part of the overall development of modern
electronic systems due to their complexity, high-speed, and the lack of test access. Test
costs are mainly a function of the test time and resources spent on test development and
execution.

Higher test quality translates to higher test costs. Therefore, it is necessary to achieve a
balance between the required test quality and costs [12, 15].

2.2 Printed circuit board testing

The main focus of this dissertation is manufacturing test of printed circuit boards (PCBs)
in the digital domain. Therefore, this section presents details about the PCB
manufacturing process and aspects related to PCB testing.

2.2.1 Manufacturing process

The manufacturing process of PCBs is examined from the point of view of the PCB
assembly process, which consists of populating bare boards with the corresponding
devices. A bare board is composed of layers of conductors separated by insulating layers
that together provide the electrical connections and physical structure for mounting and
holding devices. The conductors are typically made of copper, and the insulators are
usually some form of fiberglass composite with epoxy resin [28, 29].

Devices assembled on the bare board are classified as passive or active devices [29]. The
former are resistors, capacitors, and inductors, while the latter are devices capable of
controlling voltages and generating signals with switching behavior (e.g. diodes,
transistors, and integrated circuits (ICs)). Active and passive devices use two different
technologies for their attachment to the bare board: through-hole technology (THT) and
surface mount technology (SMT), respectively. THT attaches devices by inserting their
leads to the board through mounting holes. In SMT, the devices do not have leads. They
are designed in such a way that they can be directly attached to the surface of the board.

Figure 2.8 shows an example of a board assembly line for mounting THT and SMT
devices. Here, some of the stages are dedicated to the assembly of the bare board, while
other stages are used for testing purposes. The inclusion of test stages at different points
of the assembly line is realized in order to identify different types of faults as soon as
possible. This is based on the “rule of ten”, which states that finding a fault at any
production stage costs 10 times more than finding the same fault at a previous stage. This

20 2 Background

rule can be applied to the manufacturing of a complete electronic system, as well as to the
PCB manufacturing process [30].

Figure 2.8: Example of an assembly line [31]

In comparison to THT devices, SMT devices are mounted to the board at earlier stages of
the assembly process [29]. In Figure 2.8, the first six stages from left to right are used to
mount SMT devices, and the two following stages are used to mount THT devices. These
stages are presented in Sections 2.2.1.1 to 2.2.1.3 in more detail.

2.2.1.1 Application of the solder paste

In this stage, the solder paste is applied to the metal contacts of the bare board in which
SMT devices will be mounted. This can be done by pneumatic dispensing using special
syringes, or by paste printing methods based on special printers and a stencil to define the
locations of the solder paste. The application of the solder paste can be skipped if the
wave soldering method is used to solder SMT devices to the bare board.

This stage is normally followed by a test stage (first defect prevention stage in Figure
2.8), which checks the amount and location of the solder paste.

2.2.1.2 Placement

In this stage, the SMT devices are mounted on the bare board by matching their metal
terminations with the board regions covered with the solder paste. In case that the wave
soldering method is used to solder the SMT devices, the attachment is done using an
adhesive to hold the devices in the correct position.

2 Background 21

On the other hand, the placement of THT devices does not involve the application of a
solder paste to the board. In this case, leads are inserted through the board holes, and then
they are bent, formed, and cut in order to provide the required attachment. For THT ICs,
the bending, forming, and cutting actions are not necessary.

In the same way as for solder paste application, a test stage follows the placement. This
stage checks that devices are not missing and that they are properly oriented and aligned.

2.2.1.3 Soldering

After device placement, the soldering stage is carried out. During this stage, the board and
metallic terminations of the devices are joined together in an intermolecular bond to the
board interconnections in order to guarantee the electrical continuity of the joint. Two of
the automatic methods used for this purpose are reflow and wave soldering. Both methods
are classified as mass soldering methods because they are able to make several solder
joints simultaneously.

• Wave soldering is the standard method used for leaded THT devices. It is done by
passing the populated board held in a horizontal position over the crest of an
artificially created wave of molten solder. Once the board is exposed to the molten
solder, the joints are created.

• Reflow soldering creates a joint by re-melting the previously applied solder paste.
This is carried out by the application of heat, which is produced through
convection of a hot gas, infrared radiation, or heat panels.

After soldering and final assembly process, several test stages are carried out to test the
PCB. Their purpose is to avoid shipping faulty PCBs and increase the quality of the
manufacturing process [32]. In this thesis, all the test actions carried out during the
assembly process are referred to as board-level testing.

2.2.2 Board-level testing

Over the last decade, board-level testing has changed its focus from finding component
failures towards finding defects produced during the PCB manufacturing process [29, 33].
This has led to the development of test strategies that assume that devices populating the
PCB work properly, and therefore the dominant manufacturing defects are located at the
soldering joints [16, 32].

22 2 Background

2.2.2.1 Defects at the board level

The occurrence of defects is caused by process variations during the PCB assembly. They
are caused by inaccurate placement of devices, solder melting problems, low
temperatures, excessive exposure to heat, oxidation, organic residues, and the usage of
excessive flux [29].

Examples of defects appearing in the PCB are shorts between joints and cracks (Figure
2.9), lifted leads or leads with insufficient solder (Figure 2.10), and misaligned or
tombstone devices (Figure 2.11). Other types of defects are missing or misplaced devices
and damage of the bare board during the assembly process.

These defects manifest themselves in dissimilar ways, causing the PCB to operate outside
its specification. At the logic level, their effect on the PCB operation can be modeled by
stuck-at, bridging, or dynamic faults.

Figure 2.9: Short defect [29] and crack in ball grid array solder joint [34]

Figure 2.10: Lifted lead and insufficient solder defects [29]

Figure 2.11: Misaligned and tombstone component defects [29]

2 Background 23

2.2.2.2 Test strategies

Modern PCBs are considered to have high design and manufacturing complexity. They
are characterized by several wiring layers, small dimensions, and a dense population of
devices with different packaging technologies. In order to obtain competitive test quality
metrics, it is necessary to employ test strategies that rely on multiple and complementary
test techniques [35, 36].

A general test strategy is presented in Figure 2.12. It comprises three main steps, which
are known as inspection, structural test, and functional test. In Figure 2.8, manual
inspection, X-ray inspection and optical inspection are part of the inspection step,
whereas in-circuit test (ICT) forms part of the structural test step. After these two steps
are carried out, functional tests are typically applied to the PCB. Section 2.2.3 presents
board-level test techniques in more detail.

Inspection Structural
Test

Functional
Test

Figure 2.12: General test strategy during PCB assembly

2.2.3 Board-level test techniques

In this section an overview of widely used test techniques is provided. For this purpose, a
description of the main properties of these techniques is presented, with the aim of
showing their purpose, advantages and disadvantages.

2.2.3.1 Inspection

Inspection relies on visual or image information about the PCB that is used to evaluate if
it is faulty or not. Therefore, it is not necessary to power up the PCB or to physically
access it with some test instrumentation. However, inspection by itself cannot determine
if a PCB works, because the PCB is not stimulated with any input signals and no output
signals are measured. It can only determine that a PCB looks correct [33].

Visual inspection is usually used after application of the solder paste, placement, and
soldering stages. In the first case, it inspects the quality of the solder paste, while in the
second case it looks for missing devices, alignment, and orientation problems. Here, the
repair costs are low because the soldering stage has not been carried out. Visual
inspection is done manually by visual inspectors that make use of inspection equipment
such as magnifiers or microscopes.

24 2 Background

The inspection actions carried out after the soldering stage target the solder joints
between the board and the devices. For this purpose, automatic inspection techniques are
utilized because they provide better reliability in comparison to a manual process. One of
the automatic inspection techniques is known as automated optical inspection (AOI). This
technique takes an image of an entire or a part of the PCB, and matches it against a
proven correct variant. The limitation of AOI is that it is not effective in examining
hidden solder joints such as solder joints of ICs with ball grid array (BGA) or land grid
array (LGA) packages. To overcome this problem, automated X-ray inspection (AXI) is
used. AXI is able to look through the ICs and the PCB, allowing the inspection of hidden
solder joints, double-sided boards and even inner interconnection layers [29, 33].

2.2.3.2 Structural test

Smaller devices and denser populated boards complicate and increase the costs of the
inspection process due to the need for a high image resolution, which increases the
camera positioning and image-processing time. This slows down the inspection process
and increases the likelihood of falsely flagging defect-free PCBs as defective [33].
Therefore, structural test techniques are incorporated into the test strategy in order to
electrically stimulate the PCBs and find defects not detected with inspection techniques.

Structural test techniques check the structure of the PCB instead of the function that the
PCB should perform. The idea is to apply suitable test patterns targeted at sensitizing
specific faults in a way that a faulty circuit will produce an erroneous response. Their
advantage over functional tests is that these techniques can be used to obtain high fault
coverage based on a small set of patterns, reducing test time dramatically [12].

Structural tests make use of classical test techniques, which are generally divided into two
main classes, invasive and noninvasive.

Invasive test techniques

Invasive test techniques are characterized by external test instrumentation that makes
physical contact with different parts of the PCB (test points). Two popular invasive test
techniques are known as in-circuit testing (ICT) and flying probe testing (FPT).

ICT was one of the first structural test techniques on the market [32]. Figure 2.13 shows
the typical architecture of an in-circuit tester. The tester consists of a test fixture with a
bed of nails, a vacuum port used to firmly attach the PCB to the test equipment, and a
receiver connected to an external computer in control of the testing process. The bed of
nails comprises multiple fixed test probes that are used to access the PCB test points.

2 Background 25

ICT can provide very high fault coverage in cases where good external test access is
provided. Practically all structural faults, such as opens, shorts, wrong or defective
devices, can be covered. Additionally, ICT is easily automated and provides good
diagnostic resolution. Unfortunately, the cost of ICT is very high due to the expensive
equipment and the PCB-specific test fixture required for every new PCB. Additionally,
the increasing density and continuous miniaturization of PCBs, as well as the use of SMT
ICs with BGA or LGA packages significantly limit test access [32].

Figure 2.13: ICT equipment [29]

The effort and costs related to the adaptation of the test fixture to the PCB led to the
development of the FPT technique [32]. In this case, instead of having a fixed test fixture,
high-speed test probes that move across the PCB are used. The probes can reach test
points and devices located across the board, and therefore they can perform all kind of
electrical tests. In this case, it is necessary to program the movement of the probes.

The FPT equipment is more flexible and independent of the target PCB, reducing test
development costs. Nevertheless, its main advantage is also its main disadvantage,
because the movement of the probes clearly slows down the test execution in comparison
to ICT [32].

The main disadvantage of both test techniques is the physical contact required to access
the PCB, making their use very problematic in modern PCBs. This led to the development
of noninvasive test techniques.

Noninvasive test techniques

Noninvasive test techniques do not use external test instrumentation to contact test points
on the PCB in order to have access to it. They use embedded test resources located in the
ICs, which are accessed through external automatic test equipment (ATE).

The most popular noninvasive test technique is known as Boundary Scan (BScan). In
1985, the Joint Test Access Group (JTAG), made up of companies primarily from Europe

26 2 Background

and North America, was set up with the goal of developing a new technology that could
provide test access to the PCB without the utilization of physical test probes. The
technology received positive feedback from industry, and therefore it was adopted by the
Institute of Electrical and Electronics Engineers (IEEE) and standardized as “IEEE
1149.1 Test Access Port and Boundary Scan Architecture” in 1990. Several revisions
have been made to the standard, with IEEE 1149.1-2013 being the latest one of them [1].
The standard is often referred to as JTAG, due to its history of development [37]. In
comparison to ICT and FPT, BScan allows easier and faster test development, making it
possible to obtain better test quality metrics and reduce test costs [38, 39].

Figure 2.14 shows the BScan architecture included in BScan compliant ICs. The access to
the IC is done by means of a serial test bus, which provides access to the IC and
input/output (I/O) pins.

Bypass
ID Register

Instruction Register

TAP Controller
(Control signals)

Core
Logic

IC

TDOTDI

TMS
TCK

TRST

I/OsI/Os

Bscan
Cell

Figure 2.14: Simplified architecture of an 11.49.1 compliant IC [37]

The Test Access Port (TAP) comprises five pins, which are used to transfer information
to the embedded test resources. Test Clock (TCK), Test Mode Select (TMS), and the
optional pin Test Reset (TRST) are input pins used to synchronize and control the transfer

2 Background 27

of information. Test Data In (TDI) and Test Data Out (TDO) are used to shift data in and
out of the IC serially.

In the IC die, there is a finite state machine known as the TAP Controller. It responds to
the TCK, TMS, and TRST values, generating control signals used to control the
instruction register (IR) and data registers (DR) forming part of the BScan architecture.

The instruction Register (IR) is accessed through the TDI and TDO pins, and it is used to
load instructions that set the mode of operation of one or more Data Registers (DRs).
Figure 2.14 shows three DRs, which are known as the BScan, Bypass, and ID registers.
The BScan DR is composed of serially connected BScan cells located between the IC
pins and core logic. Its main purpose is to separate the pins from the core logic in order to
control and observe the pins’ activity during the test execution. The Bypass DR consists
of a single cell used to reduce the shifting path (TDI to TDO) of an IC. On the other hand,
the Device Identification (ID) DR is optional, and it is used to identify the IC.

The BScan compliant ICs are connected together forming a serial scan chain or scan path,
which is used to shift in test patterns and shift out test responses. The main limitations of
this technique are the serial structure of the chain and low TCK frequencies. They cause
low coverage values for dynamic faults and prohibitively long test times, affecting the test
quality and cost [40, 41].

The time it takes to shift in and out a single test vector is known as the test access time,
which is calculated as presented in [30]. For this purpose, Equation (2.1) describes the
total length of the BScan chain CTotal based on n BScan compliant devices, each of them
with a BScan register of length l𝑖𝑖 .

 𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �𝑙𝑙𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (2.1)

If FTCK is the clock frequency of TCK, then the test access time TACC is equal to:

 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 =
𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇

+ 𝛿𝛿𝑠𝑠 + 𝛿𝛿ℎ + 6 ∙
1

𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇
 (2.2)

In this case, δs represents the software delay and δh the hardware delay of the ATE. The
additional 6 TCK cycles include the transition of the TAP state machine from the Shift-
DR TAP state to the Update-DR state and then back to the Shift-DR state. The application
speed achieved with BScan FAPP is the opposite to TACC and is calculated as follows:

28 2 Background

 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 =
1

𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴
 (2.3)

Equations (2.2) and (2.3) are an important way to calculate the test time and application
speed achieved with BScan for a given PCB. For this purpose, δs and δh are typically
approximated to 7 ∙ 1

FTCK
.

Nowadays, the standard is not only used for testing purposes but also as a multipurpose
access port for communication, debugging, or even programming of ICs [42, 43]. A
detailed description of the BScan operation and architecture is presented in [1, 37] and
recommended for further reading.

2.2.3.3 Functional test

After all devices and connections of the PCB are structurally tested, it is necessary to
check the functional behavior of the board. This is performed by functional tests at the
end of the manufacturing process. A functional tester exercises the PCB through its edge
or test connector [33]. The tester applies a signal pattern that resembles the normal
operation of the board, and then examines output pins to ensure a valid response. In some
cases, in order to complement edge and test connectors, a modified bed of nails is used
for observation purposes only.

In contrast to structural tests, a functional test is performed in a normal operation mode,
providing the capability to check the board in close to real life situations. This means that
it can be used to verify the board performance, mimicking its behavior in the end product.
A functional test is carried out at full speed, thereby uncovering racing and other dynamic
problems that escape static or low-speed tests.

This technique is very expensive because it cannot be standardized. Typically, there are
no fully automatic generation tools, making it necessary to develop all tests manually for
each type of PCB, which is a very complex and time consuming task. Additionally, a
functional test only can determine whether the board functionality corresponds to its
specification or not. This does not include any diagnostic information, and therefore it is
not possible to locate the defects that produce the incorrect behavior [33, 44].

2.3 Embedded board-level test techniques

Test strategies for modern PCBs cannot rely on classical structural and functional test
techniques due to the high test costs and the impossibility to guarantee good test quality
metrics in a modern PCB manufacturing process. Columns two to four of Table 2.5

2 Background 29

summarize main properties and limitations of these techniques. The information was
obtained from [30, 35, 45, 46].

It can be observed that ICT and FPT have high static fault coverage and test automation
values, but they have access and cost limitations. BScan provides better test access to the
PCB given that it is a noninvasive test technique. But it is not able to detect dynamic
faults and requires long test times. Functional test provides high functional fault coverage
values, making it possible to detect defects that appear at the DUT operation speed.
However, it is difficult to automate, provides low diagnosis resolution, and has high costs.

 FPT ICT BScan Functional Embedded

DUT access mechanism Flying probes Fixed nails Scan cells Edge connector Embedded

Test access Low Low High Low High

Static fault coverage High High High Uncountable High

Dynamic fault coverage No High No Uncountable High

Functional fault coverage Uncountable Uncountable Uncountable High High

Diagnosis High High High Low High

Test time Very high Low High High Low

Test automation High High High Low High

Test cost High Very high Low High Low

Table 2.5: Comparison of different test techniques

Based on the comparison of test techniques, there is no ideal technique that meets all test
requirements. Therefore, in order to overcome the limitations of classical test techniques,
modern test strategies complement them by means of embedded test techniques.
Embedded test techniques have a high level of access to the PCB and ICs, and they are
able to execute tests at-speed, in short time, with high diagnosis resolution, and at low
cost. The last column of Table 2.5 represents the ideal properties of an embedded test.

During the last years a large amount of research has been done in this area, whether
altering the BScan technique [40, 47], using embedded custom test circuits [41, 48] or
smart devices already available in the PCB. The use of smart devices already available on
the PCB has gained considerable importance in the last decade because it does not require
the modification or addition of new devices to the PCB. In this case, these devices
correspond to processors or field programmable gate arrays (FPGAs) that are also used
during normal operation of the PCB.

2.3.1 Processor-based testing

Processor emulation was a popular approach in the 80’s and early 90’s [45, 49, 50]. It
relied on the insertion of processor specific pods into the processor socket that allowed

30 2 Background

replacing the processor with an external processor emulator. In this way it was possible to
take control over the PCB bus for testing and debugging purposes. However, the
decreasing physical access and increasing clock rates of modern PCBs made emulators
difficult or impossible to design.

It was not until the advent of on-chip debug interfaces that the idea of processor
emulation was reconsidered, giving birth to Processor-based testing (PBT). The debug
interface, embedded in the microprocessor die, provides the required control and
observation features necessary to carry out traditional emulation actions. For example, it
can be used to stop the processor, read/write memory and I/Os, set breakpoints, execute
single steps, and trace code. This technique is commonly implemented using the JTAG
interface as the main communication link between the debug interface and the ATE, and
it is available in commercial tools such as VarioTap [45] and Processor-controlled Test
[49, 50].

In PBT, the processor on the PCB becomes an embedded tester. It is in charge of
accessing the ICs and executing test functions. During the test execution, the ATE takes
control over the processor via its debug interface and performs tests based on two
possible operation modes, which are known as online and offline modes [46, 51–53].

In offline mode, the complete test program is translated into a set of microinstructions
that is loaded into the processor memory. The translation and loading process is carried
out by the ATE, which is also in charge of starting the program execution. During the test
execution, the processor works independently and does not interact continuously with the
ATE. The test program stores pass or fail results in one or more general purpose registers
accessible through the debug interface. These results are read by the ATE for further
evaluation and diagnosis.

Due to the autonomous operation of the processor, the offline operation mode requires a
large memory space to store the complete test algorithms, test patterns, and analysis
functions. However, in some cases, it is possible to make use of special algorithms as part
of the test program (e.g. walking one, counting sequence, pseudo random pattern
sequence, etc.) that generate driving and expected values on the fly, reducing the memory
requirements.

In online mode, test steps are executed separately under strict control of the ATE. For this
purpose, the test program is split into a sequence of steps and a special interpreter is
loaded into the processor internal memory. Test steps are basically a sequence of
microinstructions that describe the actions necessary to apply a test pattern to a given
DUT. They are transferred to the processor and received by the interpreter, which is in

2 Background 31

charge of executing them. After each step, results are stored in the processor registers and
retrieved by the ATE.

The main drawback of online mode in comparison to offline mode is the speed at which
test patterns are applied. The online mode is considerably slower due to the continuous
communication overhead between the ATE and the processor, and the application of a
sequence of test patterns at-speed is not guaranteed. The latter can be an issue for the
detection of dynamic faults [46].

PBT is a very interesting test technique due to low test costs and the potential to execute
tests at-speed. In order to reach the ideal properties of an embedded test (Table 2.5), it is
necessary to automate the development flow and provide support for a large spectrum of
debug interfaces and processors [46, 51–53]. The fulfillment of these tasks has been
proven to be very difficult, and therefore additional research is still needed [46].

2.3.2 FPGA-based testing

Instead of using processors, FPGA-based testing (FBT) employs field programmable gate
arrays (FPGAs) located on the PCB for testing purposes. On this subject, different
approaches have been investigated [30, 54–58], and commercial tools such as ChipVorx
[59] and FPGA-controlled test [60] are already on the market.

In the same way as PBT, FBT has the potential to execute tests at-speed, and therefore it
can be used for detection of static and dynamic faults. It is a low cost approach because it
does not require the addition of test points, special devices, or expensive ATE. In this
case, the main challenge is the development of a test system embedded in the FPGA that
is able to fulfill the properties of an embedded test technique as presented in Table 2.5.

Given that FBT is the main research topic of this dissertation, Chapter 3 presents a
detailed analysis of FBT features, available approaches, and the approach followed in this
work.

2.4 Soft-core and test processors

This section presents soft-core processors and test processors found in the literature. Soft-
core processors are configurable cores that are synthesized and instantiated on the FPGA
just like any other FPGA-based design. Compared to hard-core processors, soft-core are
more flexible because the hardware description of the soft-core processor can be changed.
However, they have lower performance because they are implemented using the

32 2 Background

configurable blocks and routing resources of the FPGA. Test processors are application-
specific processors developed for testing purposes. In comparison to general purpose
processors, they are tailored and specialized for the execution of test functions in order to
obtain higher performance values and reduce test cost.

2.4.1 Soft-core processors

Soft-core processors are classified into two basic categories:

• Proprietary soft-core processors
• Open source soft-core processors

Proprietary soft-core processors are developed by intellectual property (IP) design
companies or FPGA vendors. They are fully verified and have good software
development tool support, libraries, and documentation. Their main disadvantages are the
cost of license fees, restricted access to the source code, limited support for vendor-
specific or family-specific FPGAs, and that developers are forced to use vendor-specific
development tools for object code generation, debugging, verification, and design
instantiation purposes.

On the other hand, open source soft-core processors are mainly developed for educational
and research purposes. They follow the GNU philosophy, making the source code
available and editable without any license fees. Their implementation is not restricted to a
specific FPGA family or vendor, and development tools are in most cases open source.
Depending on processor popularity and acceptance, they might not be fully operational or
fully verified.

Open source soft-core processors are further divided into processors with an original
instruction set architecture (ISA) or with a cloned ISA. The former have their own ISA,
while the latter are developed based on popular ISAs or a subset of them. Cloned soft-
core processors are compatible with libraries and development tools of the original
processor. On the other hand, the development of all libraries and software tools is
necessary for processors with their own ISA.

Table 2.6 shows the most relevant proprietary and open-source soft-core processors found
in the literature. The selection was made based on their popularity in the research
community, development stage (stable or beta release), and existing support. The columns
Type and Clone map the processor in one of the categories. The ISA column provides
information about the ISA, and the Release stage column shows the status of the current
release. The number of bits necessary for coding the content of a register or an instruction

2 Background 33

is shown in the Data width and Instruction width columns, respectively. Multiple data
width values indicate either the existence of various processor versions (Ensilica 1600
and 32X0) or a configurable data width (Proteus). The value 8x in the instruction width of
the T48 µcontroller indicates instructions of variable length (byte multiples), which are
typical in CISC processors.

The Pipeline stages column presents the number of pipeline stages supported by the
processor. A hyphen indicates a multi-cycle implementation (no pipeline). Multiple
values indicate various processor versions (Nios II, Amber) or a configurable pipeline
(Microblaze, Xtensa LX6, Plasma, and Proteus). The Configurable/extensible column
indicates support for configuration parameters and extension of the instruction set.
Configuration parameters are used to activate/deactivate complete processor modules and
define the value of properties such as number of registers, memory sizes, number of
pipeline stages, etc. Extension of the instruction set indicates support for implementation
of new instructions.

Finally, the FPGAs column indicates the supported FPGAs. As shown in the table, the
Nios II, Microblaze, and Picoblaze processors are restricted to a specific vendor, while
the Ensilica and Xtensa LX6 can be implemented in FPGAs supported by the vendor.
Open-source processors do not have any FPGA restrictions, but they may require editing
the source code in order to use vendor-specific components such as multipliers, RAM
blocks, JTAG interfaces, etc.

2.4.2 Test processors

Application-specific processors developed exclusively for testing purposes are of great
interest to the research community. They are equipped with specialized test functions in
order to improve test execution time and adjust their properties to the test scenario.

They are classified into two basic categories:

• Hardwired test processors.
• Programmable test processors.

2.4.2.1 Hardwired test processors

The first category comprises processors that are not instruction programmable. They are
equipped with hardwired linear feedback shift registers (LFSRs) for generation of
patterns, signature registers for the analysis of test responses, and special interfaces.

34 2 Background

Soft-core processor Type Clone ISA Release
stage

Data
width

Instruction
width

Pipeline
stages

Configurable/
extensible FPGAs Begin-end

development

Nios II [61] proprietary no Nios II stable 32 32 -, 5, 6 yes/yes Altera FPGAs only 2004-2015

Microblaze [62] proprietary no Microblaze stable 32 32 3, 5 yes/yes Xilinx FPGAs only 2002-2015

Picoblaze [63] proprietary no Picoblaze stable 8 18 - no/no Xilinx FPGAs only 2003-2014

Ensilica cores [64] proprietary no eSI_RISC stable 16, 32 16, 32 5 yes/yes vendor1 2009-2011

Xtensa LX6 [65] proprietary no Xtensa stable 32 16, 24 5, 7 yes/yes vendor1 1999-2015

T48 µcontroller [66] open source yes MCS-48 (CISC) stable 8 8x - no/no all 2004-2009

Plasma [67] open source yes MIPS I (TM) stable 32 32 2, 3 yes/no all 2001-2013

Copyblaze [68] open source yes Picoblaze stable 8 18 - no/no all 2011-2013

Leon 3 [69] open source2 yes SPARC-v8 stable 32 32 7 yes/no all 2003-2015

aeMB [70] open source yes Microblaze beta 32 32 3 yes/no all 2004-2009

Amber [71] open source yes ARM-7 stable 32 32 3, 5 no/no all 2010-2013

OpenRisc 1200 [72] open source no OpenRisc 1000 stable 32 32 5 yes/yes all 2001-2015

Mico8 [73] open source no Lattice Mico8 stable 8 18 - yes/no all 2005-2013

Mico32 [74] open source no Lattice Mico32 stable 32 32 6 yes/no all 2006-2015

Proteus [75] open source no Proteus beta 8, 16 16 3, 43 yes/yes all 2009-2009

Table 2.6: General purpose soft-core processors

1Supported FPGAs are defined by the soft-core processor vendor.
2 Open source license if the processor is used for education or research purposes.
3 The soft-core processor uses two clock cycles per pipeline stage.

2 Background 35

The first member is the Testchip [76], which was developed for research and educational
purposes to test VLSI circuits in 1990. The goal was to reduce test costs by replacing a
high-cost ATE with a low-cost ATE and a Testchip. The Testchip is included in the PCB
as an additional IC to carry out test functions typically performed by the high-cost ATE.
The Testchip is used for pattern generation, pattern application, test result acquisition, and
signature analysis. The adaptation to a DUT is carried out based on configuration
registers and random access memory (RAM) accessed through a bus interface in order to
configure the test lengths and weights of the pattern generators. The pattern generators
produce weighted random patterns, which are applied in parallel to the primary inputs of
the DUT and serially (via scan-path) to the internal registers of the DUT. A signature
analyzer is able to compact the acquired parallel and serial test responses into a signature,
which is sent to the ATE for further analysis.

Figure 2.15 shows the architecture of the Testchip. The control unit is in charge of the
coordination of the test execution and communication with the ATE. The pattern
generators are implemented as LFSRs, and they use RAM to store the configuration
information of the pattern sequences. The shift register is in charge of serial-to-parallel
and parallel-to-serial conversions for the execution of scan-path tests. The signature
register generates the signatures based on the test responses.

FPGA

Testchip

Signature
register

Shift
register

Bus interface

Control Unit

Scan out Scan inParallel out Parallel in Control

Pattern generator
(LFSR)RAM

Pattern generator
(LFSR)RAM

Figure 2.15: Testchip architecture [76]

A similar test processor, called the Test processor chip, is presented in [77–80]. The
concept, field of application, and adaptation mechanism share the same concepts of the
Testchip. In this chip, the pattern generation is based on multiple polynomial LFSR
reseeding [77–79] and generalized LFSRs [80].

2.4.2.2 Programmable test processors

The second group of test processors is instruction programmable, which makes it possible
to implement test algorithms in a more flexible way. They are used to test ICs, and they
˗or at least some of their modules˗ are embedded in the DUT. Additionally, they have

36 2 Background

special circuits for the generation and application of patterns, configuration options for
adaptation to the test scenario, and serial interfaces for the execution of scan-path tests.

The test processor presented in [19, 81–86] is a standard 16-bit reduced instruction set
computer (RISC) used for testing the components and interconnections of a system on
chip (SoC). It is embedded in the SoC in order to improve the test observability and
controllability, and reduce test costs. It is equipped with special test functions, and
different versions of the processor are available for adaptation purposes.

In [81] the test processor is introduced to the scientific community for the first time. It is
presented as a minimum-size processor designed using the hardware description language
VHDL. This version supports 32 basic instructions and two special test instructions for
pattern generation and compaction. The special instructions use two registers of the
register file to implement an LFSR or a multiple input signature register (MISR) based on
the built-in logic block observer (BILBO) scheme. The test processor supports
deterministic instruction execution given that it is not equipped with pipeline stages or
cache memories. A specialized I/O controller applies patterns and acquires test responses.
The I/O controller has four parallel ports, one serial scan-path port, and dedicated
circuitry to perform a fast comparison of test responses. For this purpose, special
structures known as bus reflectors [82] are placed at the other end of the interconnections.

Figure 2.16 shows the architecture of the test processor, which comprises four basic
modules: memory, control-path, data-path, and I/O controller. Registers g and h of the
register file are used to implement a LFSR or MISR. The I/O controller has five ports to
access the DUT and ATE, a configuration register to configure the ports, and test,
rollback, and switch (TRS) controllers that perform the fast comparison of patterns.

In [82–84] emphasis is given to a hierarchical test scheme. The processor is equipped
with self-testing and on-line test features that improve its reliability. For this purpose, two
different processor versions are presented. The first version has specialized structures for
the processor self-test. The second version includes online-testing capabilities for the
control- and data-path. In [19, 85, 86] more importance is given to the adaptability to the
test and area requirements of the SoC. For this purpose, four main processor versions are
presented. The basic version is equipped with eight registers and no interrupts. The
second version is equipped with 16 registers, interrupts, and self-test structures. The third
version supports online test features, and the fourth version supports special hardware for
multiplication and division. A fifth processor version with pipelining is also mentioned,
but there is no further information about it.

2 Background 37

FPGA

Test processor

 Data path

Shifter

Reg a
Reg b
Reg c
Reg d
Reg e
Reg f

Reg g/h or
LFSR/MISR

ALU

Instructions
and data

 I/O controller
Configuration

register Serial port

Parallel port 3

Parallel port 2

Parallel port 1

Parallel port 0

TRS
controller

TRS
controller

Control pathMemory

Data, control, statusData, control, status

Figure 2.16: Simplified architecture of the test processor presented in [81]

Another instruction programmable processor was developed for the functional test of
asynchronous circuits [87–89]. It supports the timing and arbitration indeterminism of
asynchronous circuits. The first versions [87, 88] are based on the test processor
introduced in [81], while the version presented in [89] follows a different approach.

The test processor in [87] is a 16-bit RISC processor designed with the processor
description language known as language for instruction set architecture (LISA). It can be
implemented in the SoC, ATE, or as a combination of both options. It supports 53
instructions with two operands per instruction. Some of these instructions are used for the
implementation of asynchronous handshake protocols, generation of patterns, and
compaction of test responses. The processor has separate data and program memories,
four pipeline stages with result forwarding, and sixteen registers, in which four of the
registers are used to implement two LFSRs or MISRs. It is equipped with an I/O interface
with eight I/O ports and four asynchronous handshake ports that are used to generate the
asynchronous signaling. The asynchronous handshake ports can be configured, allowing
adjustable and programmable communication.

The work presented in [88] tries to solve the problems of the previous version, namely the
pattern storage capacity and pattern application speed. In order to improve the storage
capacity, the ISA of the processor is extended to 32 bits. Additionally, it uses three
operands per instruction, and supports a variety of logic, arithmetic, and control flow
operations. It uses any of the registers of the register file as a LFSR/MISR, and is
equipped with 16 I/O ports and asynchronous handshake ports. In order to improve the
pattern application speed, the processor is equipped with special instructions that perform
complex operation sequences. For pattern application purposes, a single instruction can
read a pattern from memory, or generate the pattern using an LFSR, and subsequently
transfers the pattern to one of the processor I/O ports. For result acquisition purposes, a

38 2 Background

single instruction acquires a test response from one of the I/O ports, and subsequently it
can compare the test response to a value stored in memory, or compact it using a MISR.

In [89] the concept presented in [87, 88] is reorganized to focus exclusively on the
application and acquisition of patterns, and the processor is exclusively implemented in
the ATE. The idea is to avoid the limitations of the previous test processor versions, in
which the data transfers between DUT and test processor are still the bottleneck of the
approach. In order to avoid these limitations, the test processor proposed in [89] relies on
three independent units: a port switch, a memory access controller, and a sequencer.

The port switch couples asynchronous handshake ports with I/O ports, allowing a quick
configuration of the ports and the possibility to carry out parallel data transfers between
the DUT and test processor. The memory access controller coordinates and performs
independent data transfers between the data memory and I/O ports. The sequencer is a
small instruction programmable unit, which is used to coordinate the flow of data and
configure the port switch and memory access controller. It is described in VHDL, has a
32-bit data bus and a 24-bit instruction bus, two pipeline stages, and eight registers. It
supports a limited instruction set with 22 instructions, most of them implementing
complex sequences necessary to configure and control the two other units.

Figure 2.17 shows a simplified illustration of the test processor architecture. The data and
program memories are independent from each other, and there are communication links
between the sequencer, handshake (HS) ports, memory access controller, and port switch.
Although not shown in the figure, access to the test processor is carried out by means of
an external interface included in the sequencer.

FPGA

 Test processorProgram
Memory

Data
Memory

Sequencer Memory access
controller

Port
switch

I/O
Port

I/O
Port

I/O
Port

HS
Port

DataInstructions
Data,

control,
configuration

Configuration Data,
control

Data,
control

Data,
control

HS
Port

HS
Port

Control,
configuration

Control,
configuration

Control,
configuration

Control
Control

Control Status
Status Status

... ...

Figure 2.17 Simplified architecture of the test processor presented in [89]

Table 2.7 shows a summary of the test processors. The first column of the table is the
processor name, the second column maps the processor to one of the categories, the third
column is the application field, and the last column presents some of their main features.

2 Background 39

Test processor Category Target Features

Testchip [76] Hardwired On board
device test

− Pattern generation and analysis based on weighted LFSRs
− Communication with ATE via bus interface
− Access to DUT’s primary I/Os and registers (via scan-path)
− Adaptation based on register and RAM

Test processor
chip [77–80] Hardwired On board

device test

− Same concept of Testchip
− Different LFSR implementations
o LFSR reseeding and generalized LFSRs

Test processor
for SoC test

[81]
Program-

mable SoC test

− 16-bit RISC processor described in VHDL
o Deterministic execution (no pipeline and no cache)
o 32 basic instructions + 2 special test instructions

− 8 general purpose registers
o 2 registers for LFSR/MISR using BILBO scheme

− Configurable I/O controller for ATE/DUT communication

Test processor
for SoC test

[82–84]

Program-
mable SoC test

− 2 processor versions with fixed ISA based on [81]
o 1st version with self-test features
o 2nd version with on-line test features

− 2 pairs of registers for LFSR/MISR

Test processor
for SoC test
[19, 85, 86]

Program-
mable SoC test

− 4 processor versions with fixed ISA
o Basic [81], self-test [82–84], on-line test [82–84]
o 4th version with multiplication and division

− No serial port for scan-path test (separate scan-path module)

Test processor
for

asynchronous
chip test [87]

Program-
mable

Asynchro-
nous chip

test

− 16-bit RISC processor based on [81] and described in LISA
o 4 pipeline stages with result forwarding (no cache)
o 53 instructions
o 8 registers (2 pairs of registers for LFSR/MISR)

− 12 I/O ports
− Configurable asynchronous handshake ports

Test processor
for

asynchronous
chip test [88]

Program-
mable

Asynchro-
nous chip

test

− 32-bit RISC processor based on [87] and described in LISA
o 4 pipeline stages with result forwarding (no cache)
o Instructions based on complex sequences
o LFSR/MISR operations with all registers
o Load/store for transfers between memory and I/Os

− 32 I/O ports
− Asynchronous handshake ports (not configurable)

Test processor
for

asynchronous
chip test [89]

Program-
mable

Asynchro-
nous chip

test

− Three main modules designed in VHDL
o Port switch couples asynchronous and synchronous ports
o Memory access controller coordinates memory I/O transfers
o Sequencer manages data flow during test

− Sequencer architecture
o 32-bit data and 24-bit instruction coding
o 2 pipeline stages (no cache)
o 22 complex instructions to configure/couple ports
o 8 registers reserved for special purposes
o No LFSR/MISR support

Table 2.7: Test processors

41

3 Processor in FPGA-based testing

3.1 FPGA-based testing

In this section an introduction to FPGA-based testing is provided. For this purpose,
building blocks, test phases, and approaches found in the literature are presented.

3.1.1 Building blocks

A test system comprises all hardware and software components used during the test
process. In the case of FBT, the test system is composed of two main components: The
external automatic test equipment (ATE) and the system embedded in the FPGA, which is
known in this dissertation as FPGA-based test system (FBTS). Figure 3.1 shows a top
view of the PCB and test system. In this case, each IC populating the PCB and directly
connected to the FPGA is known as a device under test (DUT).

The ATE operates as the interface between the test engineer and the PCB. It is the
platform used to develop the FBTS, configure the FPGA, visualize test results, and
monitor, control and execute test functions. It is equipped with a test controller for the
configuration of the FPGA and communication via the available test interface, and
appropriate software tools for visualization, test development, processing, and
communication purposes. These tools are commonly integrated in a framework that
facilitates the design and development.

Test
interface

FPGA

DUT

ATE

DUT

DUT

DUT

DUT

PCB

DUTFBTS

Test system

Figure 3.1: FBT building blocks

42 3 Processor in FPGA-based testing

The FBTS corresponds to the part of the test system that is embedded in the PCB. It is
responsible for accessing the ICs connected to the FPGA and executing test functions.
After the test process is completed, the FPGA is reconfigured for its original operation or
for the execution of functional tests.

3.1.2 Test scenario, application field, DUT, and faults

An important term used in this dissertation is test scenario. It represents the PCB
properties and set of test requirements that are defined for a specific case. In FBT, the
PCB properties correspond to the FPGA, ATE-FPGA communication infrastructure,
access mechanisms to DUTs, working frequencies, timing and electrical characteristics of
pins, number of interconnections, etc. The set of test requirements is defined by the test
engineer and represents the selection of interconnections under test as well as the
definition of test quality metrics such as fault coverage, test time, and diagnosis
resolution.

In order to define the application field of FBT, it is important to remember that test
strategies used at the board-level assume that devices populating the PCB work properly.
The predominant manufacturing defects are caused by missing or misplaced devices, and
problems at the soldering joints (Section 2.2.2). Defects caused by missing, misplaced or
incorrectly assembled devices are targeted by inspection and classical structural test
techniques. Therefore, the application field of FBT is the detection and diagnosis of
defects located at the PCB interconnections and soldering joints.

In order to perform tests, FBT requires accessing and using the functionality provided by
devices connected at the other side of the interconnections given that test resources are
only located at the FPGA side. Although these devices are labeled as DUTs, it is
important to clarify that they provide the required accessibility and functionality to
perform the interconnection test, but tests do not target defects in their internal structure.

As already mentioned, FBT is used to improve the quality of a given test strategy, in
cases where other test techniques are not able to fulfill the test requirements. For this
purpose, FBT takes advantage of the direct access to DUTs and interconnections, the
potential to perform tests at the FPGA clock frequency, and the low costs associated with
FPGA reuse. As a consequence, FBT offers a great potential for the reduction of test time
and the execution of tests at-speed.

3 Processor in FPGA-based testing 43

3.1.3 Test phases

Figure 3.2 shows the three test phases required for FBT, which are known as pre-test, test,
and post-test phases. The pre-test phase is carried out on the ATE before test execution
and consists of two essential steps. The first step is the analysis of the PCB properties and
test requirements and the design and evaluation of potential solutions. The second step is
compilation of the software and hardware descriptions and FPGA configuration.

pre-test phase test phase post-test phase

Analysis of test scenario

Design and evaluation of
potential solutions
(function mapping and
architecture)

Analysis and design

Compilation of software
functions

Synthesis of hardware
descriptions

FPGA configuration

Compilation and programming

ATE ↔ FBTS communication

Execution of test algorithms
for fault detection and
diagnosis

Test

ATE ↔ FBTS communication

Visualization of go/no-go and
diagnosis results

FPGA reconfiguration

Result acquisition

Figure 3.2: FBT test phases

The test phase comprises the execution of the test and communication between ATE and
FBTS. The post-test phase comprises the acquisition and presentation of final test results.
At the end of this phase the FPGA can be reconfigured for normal operation or for the
execution of functional tests. In the following subsections, each of the test phases is
discussed in greater detail.

3.1.3.1 Pre-test phase

The analysis of the test scenario is the first step in the development of the FBTS. An
example of two test scenarios for a PCB equipped with an FPGA and memory devices is
as follows.

• Test scenario 1: Detection of static faults at the interconnections between the
FPGA and memories. Diagnosis resolution at device-level is sufficient, and test
execution time does not represent a critical issue.

• Test scenario 2: Detection of static and dynamic faults at the interconnections
between the FPGA and memories. It is necessary to diagnose faults at the
interconnection-level and minimize the test execution time.

After the analysis of the test scenario, potential solutions are designed and evaluated. A
potential solution for the first test scenario is the implementation of a short scan chain in
the FPGA, leaving all test and DUT-related access functions on the ATE. On the other
hand, the implementation of test and access functions in the FBTS is more appropriate for
the second test scenario because it has more demanding test requirements.

44 3 Processor in FPGA-based testing

The compilation and programming step is in charge of synthesizing the FBTS, compiling
test functions for the ATE, and configuring the FPGA. The compilation and synthesis is
done by means of electronic design automation (EDA) tools and it is carried out once for
a specific test scenario. On the other hand, the FPGA configuration has to be carried out
for each PCB under test.

3.1.3.2 Test phase

During the test phase two main operations are carried out: ATE/FBTS communication
and test execution.

ATE/FBTS communication refers to the exchange of control commands, status
information, test patterns, and test results through the test interface. Depending on the
functions implemented in the FBTS, a different type and amount of data is transmitted.

During the test execution the PCB is exercised with test patterns and the acquired test
responses are analyzed for the detection and localization of faults. For this purpose,
pattern generation, pattern application, and pattern analysis tasks are carried out.

Pattern generation produces pattern sequences that target a specific fault coverage
(number of faults and fault types) and diagnosis resolution. These patterns are generated
before the test execution and stored in memory, or during test execution.

Pattern application applies test patterns to the DUT and acquires the corresponding test
responses. In comparison to structural test techniques such as BScan, FBT requires the
use of the DUT access functions for the application of test patterns and acquisition of test
responses. This has large repercussion on the test process because it makes it necessary to
consider the DUT functional and timing properties. If the access functions are not
implemented properly, this can lead to low fault coverage or even the incapability to
perform any test.

Pattern analysis evaluates obtained test responses. This evaluation is performed during the
execution of the test algorithm for fault detection and diagnosis. It can be performed only
if the DUT is able to deliver test responses.

Section 3.4.3 provides more information about the type of test patterns and test responses
that are used with FPGA-based testing approaches.

3.1.3.3 Post-test phase

The last phase is the post-test phase. During this phase the ATE acquires the final results
from the FBTS and processes this information in order to present final test results to the

3 Processor in FPGA-based testing 45

test engineer. In this way, the test engineer obtains information about detected faults and
their location.

After the processing and presentation of test results, a final (optional) step is the
reconfiguration of the FPGA for normal operation or execution of functional tests.

3.1.3.4 Comparison to boundary scan and processor-based testing

The test phases of FBT and other test techniques such as BScan and PBT have essential
differences. Most of them are found in the pre-test phase given that BScan and PBT do
not require the design of any hardware.

Figure 3.3 shows the typical test phases in BScan. In this case, there is no embedded test
system to design because the TAP controller and corresponding instruction and data
registers already are part of the BScan-compliant devices. The pre-test phase is just used
to define the BSDL models and describe the BScan shifting operations. On the other
hand, the test and post-test phases are very similar to the FBT phases, with the difference
that it is not necessary to configure an FPGA or program an embedded tester.

pre-test phase test phase post-test phase

Analysis of test scenario

Definition of BSDL
models and development
of BScan shift opeartions

Analysis and design

Compilation of BScan test
sequences

Compilation

Visualization of go/no-
go and diagnosis
results

Result acquisition

ATE ↔ Bscan devices
communication

Execution of test algorithms for
fault detection and diagnosis

Test

Figure 3.3: BScan test phases

pre-test phase test phase post-test phase

Analysis of test
scenario

Development of ATE
and processor
software routines

Analysis and design

Compilation of software
functions

Processor programming

Compilation and programming

ATE ↔ processor
communication

Visualization of go/no-
go and diagnosis
results

Result acquisition

ATE ↔ processor
communication

Execution of test algorithms for
fault detection and diagnosis

Test

Figure 3.4: PBT test phases

Figure 3.4 shows the test phases of PBT. As can be seen in the figure, PBT has more
aspects in common with FBT. The design step includes the development of software
routines that correspond to the test or interpreter functions used in offline and online
operation modes. The software routines are subsequently compiled and the corresponding
machine code downloaded in the processor memory. The main difference with FBT is the
design of hardware modules. This is not necessary in PBT because the central processing
unit (CPU), debug-interface, and DUT controllers are already available in the die.

46 3 Processor in FPGA-based testing

3.1.4 Design automation in FPGA-based testing

One main feature (besides good test quality metrics) that makes a test technique
successful is the support of an automatic development and test execution process. This is
very important for a test engineer because it reduces costs, accelerates the test process,
and minimizes errors caused by human intervention. Additionally, it makes it unnecessary
to have test engineers with high expertise and knowledge of the implementation details of
the test technique.

The BScan pre-test phase is considered to have low complexity, and therefore it is
relatively easy to automate. For example, software test tools such as CASCON from
Göpel Electronic offer the option to automatically generate and execute BScan
infrastructure and interconnection tests [90]. On the contrary, the diversity of processor
architectures and debug interfaces makes the automation of PBT a very difficult task [46].

The automation of the FBT pre-test phase is even more challenging in comparison to the
other two test techniques. The reason for this is that it is necessary to design and
implement the complete FBTS infrastructure, which requires the definition of hardware
modules as well as the access to the FPGA pins and test interface. In Section 3.2 the FBT
approaches found in the literature are analyzed. They differentiate themselves in the
architecture properties of the FBTS and in the way the pre-test phase automation
challenges are solved.

3.2 FPGA-based testing in the literature

The term FPGA test instrument is commonly found in the literature for FPGA-based
systems that perform test and measurement (T&M) tasks. In [30] different ways to
classify FPGA test instruments are proposed: traditional/virtual/synthetic, post-
manufacturing/in-field, for test/measurement/debug/configuration, and with a focus on
application speed/session time.

In this dissertation, the field of FPGA test instrumentation is restricted to instruments
used during the PCB manufacturing and with focus in the application speed and session
time (test time). Figure 3.5 shows the classification proposed for this restricted case.

The classification groups FPGA test instruments into two classes: external FPGA test
instruments and embedded FPGA test instruments. External FPGA test instruments are
located on the ATE, and they are used for the generation of signal stimuli and acquisition
of test responses. They are further divided into single purpose and synthetic instruments.

3 Processor in FPGA-based testing 47

Single purpose instruments are low cost solutions in which the FPGA is configured once
for the implementation of a specific function, such as a pattern generator, logic analyzer,
bus monitor, or as a device tester [91–93]. On the other hand, synthetic instruments
represent instruments that are more flexible. In this case, the FPGA test instrument has a
standardized interface to the PCB, making it possible to reconfigure the FPGA with
different T&M functions defined by the test engineer [94, 95].

FPGA test
instruments

External Embedded (FBT)

Single purpose Synthetic Ad-hoc Generic ROBSY

Figure 3.5: FPGA test instruments classification

On the other hand, embedded FPGA test instruments are located on the PCB. They are
divided into three subcategories based on the design methodology. Ad-hoc and generic
FPGA test instruments (Sections 3.2.1 and 3.2.2) group test instruments found in the
literature, while ROBSY represents the FBT approach proposed in this dissertation
(Section 3.3).

3.2.1 Ad-hoc FPGA test instruments

Ad-hoc FPGA test instruments are specialized FBTS manually developed for a specific
test scenario. In industrial applications, they are frequently used where classical test
techniques are not able to fulfill test requirements. They target the test of interconnections
and main functions of peripheral devices such as memories and communication
interfaces. They are developed based on a typical FPGA design process, in which the test
engineer is in charge of the manual design of the instrument. This means that the
synthesis step is mandatory and that the complete pre-test phase is responsibility of the
test engineer. The test engineer should have deep knowledge of FPGA design and board-
level testing.

In [96] two different ad-hoc test instruments are presented. The first one is known as in-
system programmable built-in assisted test (ISP BIAT), which includes basic functions in
the FPGA to alleviate the access to regions of the PCB. The FPGA is used as a signal
pass-through device, making it possible to access PCB interconnections that otherwise
could not be accessed, or, the FPGA is used to implement simple access functions to
write to or read from memory devices in order to test their interconnections.

48 3 Processor in FPGA-based testing

The second test instrument is known as ISP built-in self-test (ISP BIST). In this case,
more complex functionality is embedded in the FPGA in order to perform test execution
and diagnostic functions required during the test and post-test phases. An example of this
approach is the development of a complete embedded memory tester that can apply
patterns and acquire and evaluate test responses. As a consequence, the communication
overhead between ATE and FPGA is very low.

The most important feature of ad-hoc FPGA test instruments is the flexibility for defining
the FBTS architecture and for mapping test functions either on the ATE or FPGA. As a
consequence, they provide the option to develop and customize a high performance FBTS
that is able to fulfill strict test requirements.

However, the use of ad-hoc FPGA test instruments has several drawbacks:

• Manual design or adaptation for each new test scenario is required.
• EDA tools and qualified FPGA designers are a must.
• Debugging actions for detecting and correcting design errors are a must.
• Long design time and high test costs have to be considered.

3.2.2 Generic FPGA test instruments

The concept of generic FPGA test instruments was conceived in order to address the high
design time and costs required for ad-hoc instrumentation. The idea is to use pre-
developed instruments that support configuration options for their adaptation to the
specific test scenario. The configuration options are set either before synthesis or after the
instrument is configured in the FPGA.

In [30, 54, 55, 57, 58] this approach is known as FPGA embedded virtual
instrumentation. It uses pre-developed instruments with a fixed mapping of test functions
in the FBTS and ATE. The FPGA is used as an access mechanism to the DUT, while the
ATE performs all the test and diagnostic operations required during test and post-test
phases. This means that DUT and test algorithm related operations are not implemented
in the FPGA, but as software routines in the ATE.

FPGA embedded virtual instruments are adapted to the properties of the DUTs and PCB
by setting configuration options after the FPGA is configured. This means that design and
synthesis steps are not required for every new test scenario, minimizing design time,
design errors, and costs. The FPGA embedded virtual instruments found in the literature
are employed for clock frequency measurement, memory interconnection test, and in-

3 Processor in FPGA-based testing 49

system programming. They are implemented based on variable length shift registers
(VLSR), accumulating buffers, counters, and primitive pattern comparison functions.

The implementation of low-level access functions (DUT native protocols) and test
algorithms in the FPGA is necessary in order to fulfill strict test and timing requirements.
The implementation of these functions as part of the FPGA embedded virtual instruments
increases their complexity because it is necessary to support mechanisms that adapt the
instrument functional and timing behavior on the fly (after the instrument is configured in
the FPGA). This aspect represents a huge challenge for FPGA embedded virtual test
instrumentation and is not discussed in any of the examples found in the literature.

Another type of generic test instrument is the FPGA-based universal embedded digital
test instrument presented in [97]. In this case, the FPGA is used not only as an access
mechanism, but also as a platform for the implementation of low-level DUT native
protocols, pattern generation, and result analysis functions. The DUT access, pattern
application and low-level analysis functions are implemented in a generic way
independently of the test scenario. However, blocks of code representing the DUT native
protocols and pattern generators have to be manually rewritten, and the parameters that
define number of pins and size of internal memories have to be properly set depending on
the DUT. This means that the adaptation to a specific test scenario is carried out during
the pre-test phase and before the synthesis process takes place.

The main advantage of generic FPGA test instruments is the simplification of the tasks
carried out during the pre-test phase. The design and compilation steps are completely
avoided for FPGA embedded virtual instruments and the design effort for FPGA-based
universal embedded digital test instruments is reduced. In this way, the design time and
costs are significantly reduced in comparison to ad-hoc test instruments.

However, the advantages obtained with generic FPGA test instruments come at a price:

• They are not a solution optimized for a particular test scenario, which makes it
impossible to guarantee the execution of tests at-speed.

• The execution of test and diagnosis operations on the ATE makes it necessary to
exchange a considerable amount of data through the typically low-speed test
interface, which leads to long test times.

50 3 Processor in FPGA-based testing

3.2.3 Summary of embedded FPGA test instruments

Table 3.1 summarizes the principal properties of the two embedded FPGA test
instruments found in the literature. For comparison purposes, the BScan test technique is
included in the table.

 Classical
Boundary Scan

Ad-hoc FPGA test
instruments

Generic FPGA test
instruments

ATE/FPGA function mapping Fixed Flexible Fixed

ATE/FPGA data exchange Very high Low High

Function reuse Yes No Yes

Synthesis step No Yes Yes/No

FPGA designers No Yes Yes/No

Configuration step No Yes Yes

Optimized for test scenario No Yes No

Fault coverage Static Dynamic Dynamic in some cases

Design time Short Long Short

Test time Very long Short Long

Test costs Low High Intermediate/low

Table 3.1: Properties of boundary scan, ad-hoc and generic FPGA test instruments

ATE/FPGA function mapping gives an idea of the flexibility to implement test functions
on the ATE or FPGA. ATE/FPGA data exchange refers to the amount of data that is
transmitted between the ATE and FPGA. Function reuse shows the possibility to use the
same embedded test functions for different test scenarios.

The rows synthesis step and FPGA designers indicate if it is necessary to synthesize the
test instruments and employ FPGA designers during the pre-test phase. The configuration
step indicates if it is necessary to configure the FPGA. The remaining properties indicate
if the test instrument is optimized for the specific test scenario, and they give an idea of
the test quality metrics achievable and relative test costs.

3.3 ROBSY approach

The main idea of the Reconfigurable On-Board test SYstem (ROBSY) is to group the
main advantages of ad-hoc and generic FPGA test instruments into a single solution. For
this purpose, it is necessary to develop a tailored and specialized FBTS keeping the
design effort as low as possible. In order to implement such a test system, the ROBSY
approach focuses on three main aspects:

• Flexible mapping of test functionality either at the FPGA or ATE side.
• Customization of FBTS.

3 Processor in FPGA-based testing 51

• Automatic design, evaluation, and implementation mechanism.

The flexibility improves the adaptability of the test system to different test scenarios and
allows the execution of tests at-speed and reduction of the amount of data exchanged
between the ATE and FBTS. The latter is very important for the reduction of the test time
because test interfaces such as JTAG are typically the bottleneck of the test process [56].

The customization provides the option to tailor the FBTS for the specific test scenario,
fine-tuning the resource usage and execution speed. In this way, it is possible to fulfill
strict test requirements, and improve the test coverage in comparison to generic FPGA
test instruments and BScan.

The support for automation hides the design and implementation details from the test
engineer, reducing the design complexity, design time, design errors, and test costs. This
makes it unnecessary to have test engineers with FPGA design skills during the FBTS
development process, but EDA tools and the corresponding software licenses are still
required. This means that the development costs remain higher compared to pre-
developed generic FPGA test instruments.

Table 3.2 shows a comparison of the ROBSY approach to ad-hoc and generic FPGA test
instruments.

 ROBSY Ad-hoc FPGA test
instruments

Generic FPGA test
instruments

ATE/FPGA function mapping Flexible Flexible Fixed

ATE/FPGA data exchange Low Low High

Function reuse Yes No Yes

Synthesis step Yes Yes Yes/No

FPGA designers No Yes Yes/No

Configuration step Yes Yes Yes

Optimized for test scenario Yes Yes No

Fault coverage Dynamic Dynamic Dynamic in some cases

Design time Short Long Short

Test time Short Short Long

Test costs Intermediate High Intermediate/Low

Table 3.2: Properties of the ROBSY approach

3.3.1 Modeling the test functionality

In order to automate the design step, enable mapping of test functions in a flexible way,
and support design reuse, it is necessary to rely on a high-level model that abstracts away
low-level details of the test system, enabling test engineers without FPGA expertise to

52 3 Processor in FPGA-based testing

take advantage of this approach. This model-based design mechanism is the main reason
to classify ROBSY as a separate class of embedded FPGA test instruments.

3.3.1.1 Layer concept

The core of the model is a layer concept that splits up the complexity of test algorithms
and DUT native bus protocols in small and independent functions and interfaces [2–4,
56]. Figure 3.6 illustrates the organization of the layers and interfaces.

 Main Control

Coordination

Test Sequence

Test Primitives

L1

L2

L3

L4

L5

Algorithm control flow

Coordination of algorithms
and results analysis

Test initialization and result
post-processing

Generate and check test
patterns and results

Apply DUT control
sequences

ATE Interface

DUT InterfaceI1

I2

DUT Access-
Primitives

Figure 3.6: Organization of the layers and interfaces

Interface 2 (I2) represents the interface between the PCB and the ATE, and interface 1
(I1) represents the interface between the test system and DUT. I1 is a fixed interface,
while I2 can be placed between any two layers. For example, the interface configuration
presented in Figure 3.6 corresponds to all layers implemented in the FPGA, with the ATE
merely used for the configuration of the FPGA. On the other hand, I2 right above I1
represents the case in which all layers are implemented in the ATE and the FBTS is only
used as an access mechanism. This configuration can also represent BScan and some
configurations of BIAT and embedded FPGA virtual instrumentation.

The test algorithms and access functions for a specific DUT are described within the five
layers. Each layer uses the functions supplied by the lower layers and provides its
functionality to the upper layers. The complexity of the layers ranges from low-level
functions for accessing the DUT (DUT native bus protocols) to high-level functions for
control and coordination of test algorithms.

The DUT access-primitives layer (L1) describes low-level functions responsible for
access to the DUT within specification. For this purpose, it is necessary to consider the
DUT native protocols, electrical properties of the DUT I/Os, and the timing properties of

3 Processor in FPGA-based testing 53

the DUT buses. This layer describes the control sequences required to write data to, or
read data from, a DUT.

Layers L2 and L3 describe functions related to the test algorithms. The test primitives
layer (L2) is in charge of the pattern generation and the low-level analysis of test results.
The latter comprises the comparison of test patterns with test responses and the
generation of signatures. The exact operations depend exclusively on the test algorithms,
and they are represented by primitives such as shift, count, rotate, and compare.

The test sequence layer (L3) is in charge of the test algorithm control flow. It invokes L2
primitives, and it makes decisions on the next step to execute depending on the results
delivered by layer L2. Additionally, it provides information to the upper layers about the
test status and results of the test algorithms.

Layers L4 and L5 are used for high-level tasks such as managing test algorithms and
visualizing test results. The coordination layer (L4) is in charge of coordinating the
execution of all test algorithms used for a given DUT and analyzing results delivered by
L3. For example, this layer allows the analysis of diagnosis information for the location
of the faulty interconnection or group of interconnections. Finally, the main control layer
(L5) is in charge of the initialization of the test process and post-processing of results.
The latter is required for the proper visualization of test results.

3.3.1.2 DUT-model

The test engineer describes the test algorithms and DUT properties in a high-level model,
which encapsulates the test functions based on the layer concept. The model is known as
DUT-model (DUT-M). It is used to hide implementation details of the FPGA-based
design, enable reuse of test functions for different test scenarios, and serve as input to the
automatic generation process of the test system.

The DUT-M facilitates the use of the ROBSY approach by test engineers with no deep
knowledge of FPGA design, therefore reducing design time and costs in comparison to
ad-hoc test instruments. It is specified using the ROBSY test description language
(RTDL), which is a programming language developed as part of the ROBSY approach
and with syntax and semantics very similar to ADA. It is tailored for the ROBSY
approach, making it possible to generate hardware and software descriptions from the
DUT-M. Additionally, it can be used as an executable model for verification.

The DUT-M is divided into three main sections:

• DUT interface.

54 3 Processor in FPGA-based testing

• Pins properties.
• Layer procedures.

The DUT interface describes main properties of the DUT data, address, and control buses
(I1 of the layer concept). It provides information about the name and direction (in, out,
bidirectional) of pins belonging to each bus, as well as the default and active values. The
pins properties describe the electrical properties of the pins (pullup, pulldown, etc.) and
their location in the netlist of the PCB.

The layer procedures describe the functionality of layers L1 to L5. L1 describes the
timing relations of the DUT data, address, and control buses that are required to
implement the DUT access functions. For this purpose, Difference-Bound-Matrixes and
action sequences are used to specify the timing behavior of the DUT. More information
about this subject is found in [98, 99].

The L2-L5 procedures are described by means of standard high-level constructs. The
DUT-M supports local and global variables, whose width is defined explicitly during
their declaration. Additionally, the declaration of vectors (two dimensional arrays) is
supported by global variables.

3.3.2 FBTS architecture

The FBTS architecture is the central part of the ROBSY approach. It allows the
implementation of tests functions in the FPGA and the execution of tests at-speed. It is
based on a processor co-processor structure and is equipped with interfaces to the ATE
and DUTs [3, 4]. In the following subsections, the structure of the FBTS and the
relationship between the layer concept and the FBTS architecture is presented.

3.3.2.1 FBTS domains

In order to define a proper structure for the FBTS, it is necessary to answer the following
question:

• What can be tested at the same time using the ROBSY approach?

With the goal of providing an answer to this question, Figure 3.7 shows a PCB with an
FPGA as the central computing element. This PCB configuration corresponds to an ideal
test scenario for FBT because the FPGA has access to all devices on the PCB based on
four separate buses.

3 Processor in FPGA-based testing 55

Given that PCB buses are completely independent from each other, it is possible to test
the interconnections of each bus at the same time. However, the interconnections of
DUTs belonging to the same bus cannot be tested at the same time. The reason for this is
the existence of shared interconnections that only allow accessing a single DUT at a time.
Therefore, the test of separate PCB buses can be carried out in parallel, but the test of the
interconnections to DUTs belonging to the same bus has to be carried out sequentially.

Test interface

D
U

T 1

FPGA

FPGA

D
U

T
6

D
U

T 2

DUT 3 DUT 4 DUT 5
PCB

ATE

Communication
infrastructure

FB
TS

dom

ain 1
FB

TS

dom
ain 2

FBTS
domain 3

FB
TS

do

m
ai

n
4

Figure 3.7: FBTS domains

In order to support this parallelism, the FBTS is divided into independent sub-systems,
each of them responsible for a single PCB bus. These sub-systems are known as FBTS
domains, and they work independent from each other. In Figure 3.7, four FBTS domains
are shown.

In addition to the FBTS domains, it is necessary to include a communication
infrastructure for exchanging information between the ATE and FBTS. The information
exchange is carried out for each domain and through the physical test interface available
on the PCB. This does not affect the independent operation of the FBTS domains, but
requires a communication infrastructure for handling the coordination of all domains.

3.3.2.2 Main components and processor co-processor interface

In the ROBSY approach, the two main components of each FBTS domain are the
processor and co-processor. The processor is a pre-defined programmable component

56 3 Processor in FPGA-based testing

with an instruction set that can execute embedded software routines. The co-processor is a
hardwired component without an instruction set, which is used to accelerate test
execution and guarantee the execution of tests at-speed. In this way, each layer
implemented in the FBTS can be mapped either to the processor or to the co-processor.

Taking these two components into consideration, a third interface is included in the layer
concept. This interface represents the hardware/software partition of layer functions
implemented in the FBTS. In Figure 3.8 this interface is labeled as the processor/co-
processor interface (I3), and in the same way as I2, it can be placed between any two
layers. The only restriction necessary to maintain the logical organization of the layer
concept is that I3 must be always located above I1 and below I2. For example, the
configuration presented in Figure 3.8 shows that layers L1 and L2 are mapped to the co-
processor and implemented in hardware (HW), layers L3 to L5 mapped to the processor
and implemented in embedded software (ESW). In this configuration, there are no layers
mapped to the ATE and implemented in software (SW). The ATE is used to configure the
FPGA only.

 Main Control

Coordination

Test Sequence

Test Primitives

L1

L2

L3

L4

L5

Algorithm control flow

Coordination of algorithms
and results analysis

Test initialization and result
post-processing

Generate and check test
patterns and results

Apply DUT control
sequences

ATE Interface

DUT InterfaceI1

I2

DUT Access-
Primitives

Processor/Co-processor
Interface

I3

Figure 3.8: Layer concept with processor co-processor interface

There is no need for a processor in the FBTS if interfaces I2 and I3 are located between
the two same layers. In the same way, there is no need for a co-processor in the FBTS if
I3 is located in the same position as I1. Section 3.4 presents a discussion of the reasons
why interfaces I2 and I3 or interfaces I1 and I3 should not be located in the same place.

3 Processor in FPGA-based testing 57

3.3.2.3 Architecture example

The structure in Figure 3.9 is proposed in order to support independent FBTS domains
and a processor/co-processor pair for implementing layers belonging to a DUT.

This structure consists of a single processor per domain and a co-processor per DUT. The
use of a single processor per FBTS domain is sufficient for performing tests of all
interconnections because only one processor/co-processor pair will be active at the same
time (Section 3.3.2.1). The example in Figure 3.9 corresponds to domain 3 in Figure 3.7.
In this case, a single processor and three co-processors are used for testing the
interconnections to DUT 3, DUT 4, and DUT 5 sequentially.

FPGA

 FPGA

Processor

Communication
infrastructure

co-proc. 4
co-

processor
3

co-
processor

5

DUT 3 DUT 4 DUT 5

....
...

FBTS
domain 3

Figure 3.9: Architecture of an FBTS domain

Figure 3.10 shows the complete PCB and test system. In this case, the FBTS comprises
three FBTS domains with three processors, each of them connected to one or more co-
processors. Embedded software routines (for the processor) and hardware descriptions
(for co-processors) are generated based on the corresponding DUT-M. Here, the size of
the co-processor indicates a different location of I3. DUT 1 and DUT 2 are part of a
single FBTS domain, even though they are connected to two separate PCB buses. If
resources are limited, it is possible to combine more than one domain to minimize the
number of processors that are part of the FBTS. The trade-off is the increase in the test
time because two separate domains would be tested sequentially.

58 3 Processor in FPGA-based testing

Test interface

D
U

T 1

FPGA

FPGA

D
U

T
6

D
U

T 2

DUT 3 DUT 4 DUT 5
PCB

ATE

co-proc. 1
co-proc. 2 co-

proc. 3
co-

proc. 4

co
-

pr
oc

. 6

co-
proc. 5

Communication
infrastructure

P
rocessor Processor

P
ro

ce
ss

or

Figure 3.10: Complete FBTS architecture

3.4 Processor in the FPGA-based test system

Relying on a processor and ESW to carry out part of the test functions has a direct impact
on the automation process, test quality, resource utilization, and costs. Whether this
impact is beneficial for the ROBSY approach or not, and how beneficial it can be, are the
main research questions that this dissertation answers. In order to start providing an
answer to these questions, it is necessary to analyze the effects of including a processor as
part of the FBTS.

3.4.1 Processor impact

The use of a processor in any digital system is justified by the flexibility that it provides
for the implementation or update of functions without making any changes to the
hardware of the system. This improves the level of reusability of the system for different
applications and reduces the design and implementation costs [100].

In FPGA-based design, including a processor offers the possibility to change system
functionality without the need to change the hardware descriptions of the system and
reconfiguring the FPGA. However, these arguments are not strong enough to justify the
inclusion of a processor in the ROBSY FBTS given that the flexibility provided by

3 Processor in FPGA-based testing 59

FPGAs and the automatic generation capabilities required in ROBSY can substitute the
flexibility provided by a processor.

There are five additional arguments that speak in favor of having a processor as part of
the ROBSY FBTS:

• A processor represents an efficient mechanism to implement test functions that do
not need to be executed at high speeds.

• A processor reduces the amount of data exchanged between ATE and FPGA.
• A processor provides a standard communication mechanism for controllability

and observability of test execution.
• A processor is a pre-verified component that does not need any further verification

after the FBTS is automatically generated.
• Debugging of ESW requires less effort than debugging of HW.

The processor represents an efficient mechanism to implement test functions because it
uses the same resources to perform arithmetic, logic, and control flow operations. In this
case, the same arithmetic logic unit (ALU) and registers are used to carry out the
operations that describe different functions and variables described in the DUT-M. This
contrasts with the number of resources required to implement the same operations in HW,
which depends on the binding and allocation strategies used by the hardware compiler. As
a consequence, the processor guarantees that the test functions implemented in ESW use a
relatively constant and predictable number of resources independently of the amount and
complexity of the test functions.

By having the possibility to implement test functions in the FBTS efficiently, it is
possible to move more test functions from the ATE side to the FPGA side. This reduces
the amount of data that has to be transferred through the test interface because it is not
necessary anymore to transfer complete patterns and test responses, but just short
commands to control the test execution and receive information about the test status. As a
consequence, the test time is reduced given that the test interface is typically the
bottleneck of embedded test approaches.

Independent of the test functionality implemented in the FBTS, the processor provides the
same standard communication mechanism from the point of view of the ATE. This
mechanism is also independent of the FPGA and relies on the processor debug-interface.
The debug-interface offers all the advantages of PBT to the ROBSY approach, making it
possible to stop the processor, write to or read from memory and I/Os, set breakpoints,
execute single steps, and trace code.

60 3 Processor in FPGA-based testing

The processor is a component developed before the automatic generation process of the
FBTS takes place. This means that the verification of its functionality is carried out by the
processor designers during the development of the ROBSY approach and not in the field
by test engineers.

Finally, debugging of ESW requires less effort than debugging of HW. The execution of
ESW can be performed in a stepwise manner, which allows the observation of the
processor status after the execution of each instruction. This is performed based on the
processor debug-interface, which is used to control the execution flow. In the case of
hardware debugging, multiple modules running in parallel have to be observed and
control at the same time. This requires complex debugging mechanisms such as logic
analyzers and the definition of hardware events. In addition, it requires a deep knowledge
of the structure of the FBTS, which goes against one of the goals of ROBSY: hiding
implementation details from the test engineer.

But there are arguments that also speak against the use of a processor:

• Successful built-in self-test (BIST) [17] approaches do not use processors for the
implementation of embedded test functions.

• The execution of test functions by a processor takes a longer time than the
execution of test functions by a hardwired unit.

• A processor does not guarantee the execution of tests at-speed.
• Processor instructions that are not used during test execution represent a non-

optimal use of resources.

The arguments against the inclusion of a processor make it questionable if a processor is
really necessary for the execution of embedded test functions in the ROBSY approach.
They leave as the only alternative the implementation of the embedded test functionality
by means of special hardwired units as is the case of BIST. However, the implementation
of embedded test functions by means of special hardwired units is not necessary in all
cases, and there are mechanisms that can be used to reduce the negative effect that the
processor could have on test time and non-optimal use of resources.

The implementation of the higher layers does not have a significant influence on the
fulfillment of critical test requirements such as dynamic fault coverage and test time.
Therefore, the implementation of these layers in HW does not provide any advantage in
terms of test execution time, resource utilization, and test coverage.

An alternative would be to implement the layers that have a minor impact in the
fulfillment of test requirements on the ATE side. However, this would cause an increase

3 Processor in FPGA-based testing 61

in the communication overhead between the FBTS and the ATE, which translates to
longer test times. Therefore, the processor presents a very good alternative to implement
non critical layers in the FBTS and reduce the communication overhead between the
FBTS and ATE.

Additionally, BIST techniques are used for testing the ICs in which the BIST circuitry is
implemented. This means that there is no guarantee that the BIST circuitry is free of
faults, and therefore it is necessary to use basic and small circuitry that can be self-tested.
In the case of ROBSY, the FPGA is considered to be already tested and fault free, which
makes it possible to include complex components as processors that do not have to be
self-tested.

There is no doubt that the execution of test functions in ESW takes longer than the
execution of test functions in specialized hardware units such as co-processors. In the
processor, test functions are translated to instructions executed in sequential order, in
which each instruction requires multiple clock cycles for fetching, decoding, and
executing. However, the specialization of the processor for testing purposes is a
mechanism that can be used to reduce the time spent in the execution of ESW.

Concerning the execution of tests at-speed, it is necessary to include co-processors for
this purpose because it is the only possible way to guarantee the fulfillment of strict
timing requirements of the DUTs. The non-optimal use of resources due to processor
functions not used during test execution can be avoided by implementing mechanisms in
the processor that allow its adaptation to the specific test scenario.

Certainly, it is necessary to execute experiments in order to evaluate the arguments
presented in this section. For this purpose, Chapter 7 presents different experiments
carried out with the ROBSY test system. Sections 3.4.2 to 3.4.6 present an analysis of the
layers that are more suitable for the FBTS and the implementation in ESW, as well as the
possible location of the interfaces I1, I2, and I3.

3.4.2 Analysis of L1

In the ROBSY approach test resources are located at one side of the interconnections
(FPGA side), which means, that it is necessary to make use of the functionality and
access mechanisms provided by the DUT to carry out the test. This is the same case of
cluster testing in BScan [16], in which non-BScan compliant DUTs are addressed during
the test execution at one side of the interconnections.

62 3 Processor in FPGA-based testing

In the ROBSY approach, it is necessary to include a DUT controller as part of the FBTS,
which might be implemented either as ESW running on the processor or as a hardwired
unit that is part of the co-processor. In order to analyze both implementation options, this
section is divided into two parts. The first part presents DUTs typically connected to an
FPGA, and the second part analyzes the implementation of L1 in ESW or HW.

3.4.2.1 Devices under test

Table 3.3 presents DUTs typically connected to an FPGA. The DUTs presented in the
table range in complexity from basic devices such as push buttons (Button PTS645) and
single digit displays (HDSM-281x) to complex devices such as Ethernet transceivers
(PHY 88E1111) or video decoders (ADV7180). They are classified into three main
classes based on the theoretical capability of BScan to test their interconnections:

• At-speed (BScan tests at the maximum DUT operation frequency).
• Yes (BScan tests below the maximum DUT operation frequency).
• No (BScan tests outside the DUT specification).

The DUT classification is based on a TCK frequency of 20 MHz and a BScan chain with
394 cells. For these values, the test application speed of BScan using Equations (2.2) and
(2.3) is 49 kHz1 and the maximum clock frequency achieved with BScan, which is the
half of the test application speed, is 24.5 kHz. Both values are used in order to map DUTs
into one of the groups. For synchronous DUTs, maximum clock frequency achieved with
BScan is used.

The first column in Table 3.3 is the name of the DUT. The second column shows the
number and type of interfaces of each DUT. A device interface represents a group of pins
used to exchange data with the FPGA. DI1 and DI2 indicate the presence of different
interfaces (different groups of pins) in the same DUT, while the postfix is used to
differentiate between working modes or protocols supported by the same interface. For
instance, the audio codec WM8731 has two interfaces, DI1 and DI2. DI1 is used for
initialization and configuration purposes and it supports either the SPI or I2C protocol.
On the other hand, DI2 is used to exchange audio information between the FPGA and
DUT, and it supports I2S as the single communication protocol.

The third column represents the device class, which groups the DUT in one of the classes.
Simple DUTs working at low frequencies such as pushbuttons and LEDs can be tested
with BScan at their maximum operation frequency, while devices with higher operation
frequencies cannot be tested at their maximum operation frequency or even within their

1 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 = 394+7+6

20∙106𝐻𝐻𝐻𝐻
= 20.35𝜇𝜇𝜇𝜇 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 = 1

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
≈ 49𝑘𝑘𝑘𝑘𝑘𝑘 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎

2
≈ 24.5𝑘𝑘𝑘𝑘𝑘𝑘

3 Processor in FPGA-based testing 63

specification. The fourth column shows the direction of the data flow from the point of
view of the FPGA. The keywords In and Out represent unidirectional ports and the I/O
keyword represents unidirectional ports with data flowing in both directions.
Bidirectional ports are represented by the keyword Bidir.

The interface type and protocol column shows if the corresponding interface is a parallel
or serial interface and the protocol supported. The common bus column shows if there are
common interconnections for transmission of control, address, and data values. In this
case, a typical common bus is a serial interface.

The clock source column shows if the corresponding DUT works in a synchronous or
asynchronous way. A hyphen in this column represents an asynchronous DUT without an
explicit clock source (e.g. SRAM IS61WV102416) or that the synchronization
information is implicit in the data stream (e.g. Image sensor Viimagic 9221 in
asynchronous working mode). For synchronous DUTs, the In and Out keywords provide
information about the clock direction from the point of view of the FPGA. In indicates
that the clock source comes from the DUT, while Out indicates that it comes from FPGA.

3.4.2.2 Analysis

L1 is a critical layer for the execution of tests at-speed because it defines the access rate
to the DUTs, and consequently the coverage in terms of dynamic faults. The analysis of
Table 3.3 leads to the following conclusions:

• The implementation of the DUT controller in ESW might be sufficient to perform
tests at-speed for DUTs that are part of the at-speed BScan test class. In this case,
the access operations are very simple, maximum operation frequencies are located
in the kHz range, and there is no need for special hardware to meet critical timing
requirements. A soft-core processor working in the MHz range (typical for
FPGAs) has enough processing power to emulate the DUT bus protocol, react to
incoming signals (e.g. PS/2 interface clock), and execute functions of the upper
layers. However, these DUTs does not represent the main application field of
FBT, given that they can be fully tested using BScan.

• The implementation of the DUT controller in ESW does not guarantee the
execution of tests at-speed for DUTs that are part of the other two classes. It might
not be even possible to implement access functions in ESW for some of these
DUTs because their operation frequencies are located in the MHz range (image
sensor and DRAMs) or are restricted to specific values (video decoder and
Ethernet PHY).

64 3 Processor in FPGA-based testing

Device under test Device
interface BScan test Operation

frequency(MHz)
Ports

direction
Interface

type
Interface
protocol

Common
bus

Clock
source

Button PTS645 [101] DI1 At-speed - In Parallel - No -
1-digit display HDSM-281x [102] DI1 At-speed - Out Parallel - No -
Mouse/keyboard interface [103] DI1 At-speed 0.010-0.016 In Serial PS/2 Yes In
I/O expander TCA9535 [104] DI1 Yes 0-0.4 Bidir Serial I2C/SMB +Int. Yes Out
Temperature sensor Max6682 [105] DI1 Yes 0-5 In Serial SPI No Out
Gyroscope ADIS16266 [106] DI1 Yes 0.01-2.50 I/O Serial SPI +Int. Yes Out
LCD module CFAH1602B [107] DI1 Yes 0-2 Bidir Parallel Register based Yes -

SDcard interface v2 [108] DI1.sd Yes 0-50 Bidir Serial/Parallel SD mode Yes Out
DI1.spi Yes 0-50 I/O Serial SPI Yes Out

SRAM IS61WV102416 [109] DI1 Yes 0-100 Bidir Parallel SRAM No -
SSRAM IS61NVP102418 [110] DI1 Yes 0-250 Bidir Parallel SSRAM No Out
EEPROM 24LC32 [111] DI1 Yes 0-0.4 Bidir Serial I2C Yes Out
FLASH S29GL032N [112] DI1 Yes 0-11 Bidir Parallel NOR FLASH Yes -
FLASH NAND01G [113] DI1 Yes 0-66 Bidir Parallel NAND FLASH Yes -

Audio codec WM8731 [114]
DI1.spi Yes 0-12.5 Out Serial SPI Yes Out
DI1.i2c Yes 0-0.52 Bidir Serial I2C Yes Out

DI2.audio No 12-20 I/O Serial Audio (I2S) No In/Out

Video decoder ADV7180 [115] DI1.i2c Yes 0-0.4 Bidir Serial I2C+Int. Yes Out
DI2.pixel No 27 In Parallel Pixel stream No In

Image sensor Viimagic 9221 [116] DI1.spi Yes 0-25 I/O Serial SPI Yes Out
DI2.pixel No 450 I/O Serial LVDS No In/-

Ethernet PHY 88E1111 [117]
DI1.mdio Yes 0-8.3 Bidir Serial MDIO +Int. Yes Out
DI2.GMII No 2.5,25,125 I/O Parallel GMII No In/Out

DI2.SGMII No 625 I/O Serial SGMII(LVDS) Optional In/Out
Triple video DAC ADV7123 [118] DI1 No 0.5-240 Out Parallel Data stream No Out
SDR-SDRAM 42S16320B [119] DI1 No 5-166 Bidir Parallel SDR-SDRAM Yes Out
DDR-SDRAM P3R1GE3JGF [120] DI1 No 125-400 Bidir Parallel DDR-SDRAM Yes Out

Table 3.3: DUTs directly connected to FPGA

Abbreviations: DI: Device interface. PS/2: Personal system/2. I2C: Inter-integrated circuit. SMB: System management bus. Int.: Interrupt. SPI: Serial peripheral interface. Bidir:
bidirectional. SD: Secure digital. I/O: in/out. I2S: Integrated interchip sound. LVDS: Low-voltage differential signaling. MDIO: Management data I/O. GMII:
Gigabit media-independent interface. SGMII: Serial GMII. SDR: single data rate. DDR: double data rate.

3 Processor in FPGA-based testing 65

• It is necessary to include special hardwired blocks in order to support high-speed
data streams (triple video DAC, SD card, image sensor) and proper hardwired
interfaces for LVDS channels and DDR data transfers. These features cannot be
supported using SW or ESW routines.

As can be seen, the implementation of L1 functions in ESW does not guarantee the
execution of tests at-speed, and in some cases, it does not guarantee the execution of any
test at all. The only proper way to ensure the execution of tests at-speed is by
implementing the L1 functions in HW based on the co-processors of the FBTS.

3.4.3 Analysis of L2

The implementation of L2 in the FBTS corresponds to the inclusion of pattern generation
and analysis functions in the FPGA. Patterns are generated by performing a set of
arithmetic and logic operations during the test execution or are defined before the test is
executed. Based on the classification proposed in [17], patterns used in the ROBSY
approach are defined as follows:

• Algorithmic test patterns: They are developed to detect specific fault models and
are generated using a sequence of arithmetic and logic operations. They have a
short length that grows at a linear or algorithmic rate depending on the number of
interconnections. Examples of algorithmic test sequences are walking one and zero,
modified counting, true/complement, interleaved true/complement counting, and
maximum aggressor fault model sequences [16, 22, 41].

• Pseudo-random test patterns: They are characterized by having properties similar
to those of random patterns but are composed of repeatable sequences. They are
generated using shifting and XOR operations and implemented using linear
feedback shift registers (LFSRs).

• Exhaustive/pseudo-exhaustive test patterns: They produce every possible
combination of values (exhaustive) or a sub-set of combinations (pseudo-
exhaustive). These patterns can be generated by counters.

• Deterministic test patterns: They are defined before the test execution given that
they cannot be easily obtained in an algorithmic way. They are developed to target
a specific set of faults or considering the operating properties of the DUT. They
have to be loaded into the FPGA and stored in some kind of memory.

Algorithmic test patterns are strongly used for interconnection testing, with walking
one/zero and true/complement counting sequences being the most popular ones due to the
fault coverage values that can be obtained with a small set of patterns [9, 25]. For the
detection and diagnosis of dynamic faults, walking sequences, interleaved

66 3 Processor in FPGA-based testing

true/complement sequences, and maximum aggressor fault model sequences are usually
used [22, 23, 41, 121]. On the other hand, pseudo-random, exhaustive, and pseudo-
exhaustive patterns are a good alternative when algorithmic test patterns are not sufficient
to fulfill the test requirements. If a large amount of patterns is required to exercise the
DUT, then the use of pseudo-random and pseudo-exhaustive patterns is a good alternative.

In the ROBSY approach, the use of these patterns depends on the properties of the specific
DUT and the required fault coverage and diagnosis resolution. In the first case, they can be
used only if the correct operation of the DUT or PCB is not compromised. A good example
is the utilization of patterns that unintentionally misconfigure the DUT pins or change the
behavior of the DUT. As seen in Table 3.3, DUTs that can be tested based on this type of
patterns are mainly parallel memories (SRAM, SSRAM, SDRAM, EEPROM, FLASH),
communication devices (data interface of PHY device), and basic devices (I/O expander,
SDcard interface, and digital to analog converters). If the fault coverage and diagnosis
resolution obtained is still not good enough, then deterministic patterns can be added to the
pattern set.

On the other hand, if the DUT is very sensitive to pattern values, then deterministic
patterns are the only alternative. This is necessary, for example, for testing
interconnections of DUT interfaces used for configuration purposes, such as the interface
DI1 of the gyroscope, audio codec, video decoder, image sensor, and PHY devices. In the
same way, deterministic patterns are required for in-system programming of FLASH
memories, and for testing the DI2 interconnections of the audio codec and image sensor.

In cases that the acquisition of test responses from the DUT is possible, pattern analysis
functions are required. In the ROBSY approach, these functions are known as:

• Equality comparison: Test responses are compared to the expected values.
• Signature analysis: Test responses are compacted in a final signature, which is

compared to the expected signature. This solution is commonly implemented using
LFSRs and minimizes storage and computation requirements.

Equality comparison is the pattern analysis method most commonly used during the test
execution. In this case, a test response is compared with an expected value, which is either
generated based on pattern generation methods or stored in memory. If the obtained value
is not the expected one, an error flag is set in order to stop the test execution or for further
diagnostics purposes. On the other hand, the signature analysis is used to compact test
responses into a single signature, which is compared with the expected one at the end of
the test execution.

3 Processor in FPGA-based testing 67

Mapping L2 and upper layers in the processor or co-processor of the FBTS does not affect
the test coverage for dynamic faults if L1 is able to apply test patterns and acquire test
responses at-speed. For this purpose, it is necessary to generate the test patterns and
analyze test responses at the rate needed, or it is necessary to include mechanisms for the
accumulation of test patterns and test responses between L1 and L2. It is very difficult to
guarantee a specific rate for pattern generation and analysis if L2 functions are
implemented in ESW. On the other hand, accumulation mechanisms between L1 and L2
represent a good alternative for the execution of tests at-speed regardless of the
implementation mechanism of layers L2 to L5.

To summarize, implementing L2 functions in the FBTS involves typical pattern generation
sequences, the storage of deterministic patterns, and comparison and compaction
operations for the analysis of the test responses. If proper measures are taken, mapping
these functions in the processor or co-processor does not affect fault coverage metrics.
However, it will affect test time and resource utilization.

3.4.4 Analysis of L3

The implementation of L3 in the FBTS requires control flow operations such as branches
and loops, which are used to describe the sequence of control steps presented in each test
algorithm. Control flow operations can be implemented in HW by means of finite state
machines and extra logic used to trigger state transitions. Alternatively, these operations
can be realized in ESW, using control flow instructions such as unconditional and
conditional branches.

If proper mechanisms between L1 and L2 are used to guarantee the execution of tests at
speed, mapping L3 functions in ESW does not affect fault coverage metrics. In the same
way as L2, it will affect test time and resource utilization.

3.4.5 Analysis of L4 and L5

Layers L4 and L5 are used for high level tasks related to a DUT. The functions involved
are mainly the coordination of multiple test algorithms, diagnostics operations, test
initialization, and post-processing of test results for visualization purposes.

L4 can be implemented in the FBTS using the same mechanism as L3 (finite state
machines and control flow instructions). However, it is necessary to make use of arithmetic
and logic operations to perform the look-up process in fault dictionaries, if the diagnosis
involves the utilization of fault dictionaries.

68 3 Processor in FPGA-based testing

The processor data memory can be used to store fault dictionaries, load and store
operations to access the signatures in the fault dictionaries, and comparison instructions to
analyze the signatures. In the case of co-processors, it is necessary to include memory
blocks as part of the co-processor in order to support the utilization of fault dictionaries.

On the other hand, L5 has to be implemented on the ATE side. This is the only way to
provide test engineers with basic control over the test execution and an appropriate
visualization of test results (e.g. location of faults in PCB layout).

Layers L4 and L5 do not require any special test-related operations for their
implementation. Control flow structures, load and store operations, and conventional
arithmetic and logic operations are sufficient for their implementation. They have influence
on test time and resource utilization, but they do not have any influence on the achievable
test coverage.

3.4.6 Analysis of interfaces I1, I2 and I3

I1 represents the physical interface of the FPGA to the DUT. This interface is strongly
coupled with L1, and cannot change its position. It comprises the pins and resources
required to link the FBTS to the PCB interconnections, and it has to be implemented using
FPGA I/O blocks.

Interfaces I2 and I3 can change their position. This has a significant impact on the test
system because it defines how test functions are mapped in the FBTS and ATE. As a
consequence, the position might affect the type and amount of information exchanged
between the processor and co-processor and FBTS and ATE. I2 includes the ATE interface
controller, the test interface of the PCB (e.g. JTAG), the communication infrastructure of
the FBTS, and the debug-interface. This interface has to provide an efficient mechanism
for the controllability and observability of the test execution. I3 represents the
communication link between processor and co-processor, which can be implemented as a
loosely- or a tightly-coupled system. In a loosely-coupled system the co-processor is
completely independent of the processor, and in a tightly-coupled system, the co-processor
is encapsulated as part of the processor.

The implementation of I3 as a loosely-coupled system is based on a system bus, in which
every co-processor is mapped in the processor I/O address space. On the other hand, the
implementation of I3 as a tightly-coupled system is based on specialized instructions to
access the co-processor, which means that the co-processor is part of the processor data-
path. Both approaches have already been investigated [122], and it was shown that loosely-
coupled systems are more suitable for FPGAs. Therefore, the implementation of I3 as a
loosely-coupled system is the preferred option for the ROBSY approach.

3 Processor in FPGA-based testing 69

There are 21 possible layer partitions depending on the location of interfaces I2 and I3.
They are obtained by placing I2 in the same location or above I3:

• 6 partitions when I3 is located below L1.
• 5 partitions when I3 is located between L1 and L2.
• 4 partitions when I3 is located between L2 and L3.
• 3 partitions when I3 is located between L3 and L4.
• 2 partitions when I3 is located between L4 and L5.
• 1 partition when I3 is located above L5.

However, the partitions are reduced to 10 if the constraints presented in sections 3.4.2 to
3.4.6 are considered (L5 implemented on the ATE and L1 in the co-processor). In this
case, the 10 partitions are:

• 4 partitions when I3 is located between L1 and L2.
• 3 partitions when I3 is located between L2 and L3.
• 2 partitions when I3 is located between L3 and L4.
• 1 partition when I3 is located between L4 and L5.

Moreover, if the processor should at least carry out the functions of one of the layers, the
number of partitions is reduced to 6 because I3 cannot be placed in the same location of I2.
Figure 3.11 shows the 6 possible partitions.

I1

L5

L4

L3
L2
L1

L5

L4
L3

L2
L1

L5

L4
L3
L2

L5
L4

L3

L2
L1

L5
L4

L3
L2

L1

L5
L4
L3

L2

L1

ATE
Processor
Co-processor

I3

I2

I1

I3

I2

L1
I1

I3

I2

I1 I1 I1

I3 I3

I2

I2

I3

I2

Figure 3.11 ROBSY layer partitions

In this dissertation, the processor is always part of the FBTS and L5 and L1 are always
implemented on the ATE and co-processor, respectively.

70 3 Processor in FPGA-based testing

3.5 Summary

In this section a new FPGA test instrumentation class known as ROBSY was presented. It
differs from ad-hoc and generic FPGA test instrument classes in three main features:

• Automatic generation of the FBTS based on DUT-Ms.
• Implementation of test functions in FBTS or ATE based on a layer concept.
• FBTS architecture composed of loosely-coupled processor co-processor pairs

organized in domains.

Co-processors are dedicated computation engines tailored to accelerate parts of the test
execution. They are hardwired modules composed of data and control-paths whose
hardware description is automatically generated during the development of the FBTS.
They should be used at least for the implement of L1 in order to guarantee the execution of
tests at-speed.

It was demonstrated that the inclusion of a processor as part of the FBTS is an alternative
worth considering. The processor is a pre-designed component that is part of the FBTS that
can be used for the execution of layers L2-L4 functions and the communication to the
ATE. The implementation of layers in ESW does not affect the execution of tests at-speed,
and therefore it does not compromise the coverage of dynamic faults. Implementing these
layers in ESW influences the resource utilization of the FPGA and the test execution time.

From the design and automatic generation point of view, it is a ready-to-use component
that uses a relatively constant and predictable amount of resources and does not require
verification of its correct operation after the FBTS is automatically generated. However,
executing test functions in ESW requires reserving FPGA resources for the processor and
can degrade the test time due to the overhead of instruction cycles, making the fulfillment
of strict requirements related to the utilization of resources and test execution time a
concern. Therefore, it is necessary to:

• Add adaptation mechanisms to the processor that are transparent to the test
engineer.

• Include proper support for the communication to the ATE and co-processor.
• Evaluate the implementation of the layers in ESW for different test scenarios.

71

4 Concept of the ROBSY processor

4.1 Introduction

Chapter 3 presented a discussion about the impact of including a processor as part of the
FBTS. Part of this discussion was centered on the layer concept, defining the layers that
can be implemented in ESW, and the support that a processor offers to interfaces I2 and
I3. It was shown that the processor represents a promising alternative for the
implementation of the following functions:

• I2 and I3 interfaces.
o Information exchange with co-processors.
o Information exchange with the ATE.

• L2-L4 layers.
o Pattern generation and analysis.
o Control flow of test algorithms and diagnosis.
o Coordination of test algorithms.

Furthermore, it was shown that adaptation plays an important role in the ROBSY
approach. Finely tuning the processor to the specific test scenario leads to an efficient
usage of FPGA resources and improves test time. This chapter presents the concept of the
ROBSY processor, which is based on three main pillars:

• Analysis of general design aspects.
• Processor specialization for testing.
• Processor adaptation mechanism.

Section 4.2 presents general design aspects of the processor, including the definition of
processor requirements, analysis of processors available in the literature, and main design
decisions. Section 4.3 presents the specialization options considering the test application
field, test operations, and interfaces I2 and I3. Finally, Section 4.4 presents a discussion
of the adaptation mechanism supported by the ROBSY processor.

4.2 General design aspects

The definition of the ROBSY processor requirements is presented at the beginning of this
section. Based on these requirements, processors found in the literature (Section 2.4) are

72 4 Concept of the ROBSY processor

analyzed as potential candidates for the FBTS. At the end of this section, a discussion
about fundamental design decisions is presented.

4.2.1 ROBSY processor requirements

Before starting with the design of the ROBSY processor, it is necessary to define its main
functional and non-functional requirements. The former describe the functionality that the
processor should provide to the ROBSY test system, while the latter describe attributes of
the processor more related to performance and implementation costs.

The main functional requirements are:

i. The processor should have an instruction set that allows the execution of test
functions related to layers L2, L3, and L4.

ii. The processor should be equipped with an interface to the ATE. This interface
should provide the option to control and observe program execution and exchange
data.

iii. The processor should be equipped with an interface to the co-processors. This
interface should scale well and allow the attachment and management of co-
processors in a simple way.

Requirement (i) defines the processor as an instruction programmable machine capable of
fetching, decoding, and executing instructions. Requirements (ii) and (iii) are necessary
for communication to the ATE and co-processors. In the first case, a standard test
interface that provides the option to connect multiple processors should be considered. In
the second case, an on-chip bus used as communication channel to exchange information
between processor and co-processors should be considered.

The main non-functional requirements of the processor are:

i. The processor should be able to adapt to the specific test scenario. This means,
adapting the functionality, resources, and performance depending on the FPGA,
DUTs, and test quality metrics.

ii. It should be designed for the implementation in FPGAs.
iii. The hardware description should be portable to FPGAs from different families

and vendors in order to support a wider range of test scenarios.
iv. The processor should be designed considering test time as the main test quality

metric and with the aim of achieving efficient resource utilization.
v. There are no requirements concerning energy consumption or security issues.

4 Concept of the ROBSY processor 73

Non-functional requirement (i) basically highlights the importance of adapting the
processor to the specific test scenario. This includes adaptation mechanisms that allow
tuning the processor to the layers implemented in ESW, DUT properties, available FPGA,
and test requirements. The adaptation also includes the processor specialization for
testing. This means equipping the processor with special test instructions and avoiding the
implementation of functions that are not required during test execution.

Requirement (ii) implies that design decisions have to consider the FPGA as the target
platform. This means that the processor is implemented by means of look-up tables, flip
flops, memory blocks, multipliers, etc. Furthermore, the processor has to be completely
encapsulated in the FPGA. This means that it is not possible to use external components
(e.g. memories) placed on the PCB because there is no guarantee that the interconnections
to external components are defect free.

Requirement (iii) guarantees the use of the ROBSY approach in a wide range of PCBs.
FPGAs from different families and vendors are equipped with diverse hardware blocks
that do not necessarily share the same properties. Additionally, synthesis is carried out
based on different synthesis tools.

Requirement (iv) shows that test time and resource utilization are the main metrics that
can be influenced with the processor. The program execution time of a processor is
known as CPU time, and is approximated to [123]:

 𝐶𝐶𝐶𝐶𝐶𝐶_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (4.1)

Equation (4.1) shows that the number of instructions (instruction count), clock period
(clock cycle time), and clock cycles per instruction (CPI) have a direct influence on CPU
time. The three values are not independent, and in most cases improving one of them
leads to the deterioration of the other two [123]. Therefore, it is always necessary to find a
balance between them.

On the other hand, the resource utilization defines the number of processors and FBTS
domains that can be implemented in a given FPGA. An efficient resource utilization of
the processor provides the option to implement more functions in the FPGA.

Finally, there are no requirements (v) concerning energy consumption and security. It is
assumed that these requirements are not critical during the PCB manufacturing test.

74 4 Concept of the ROBSY processor

4.2.2 Analysis of pre-designed processors

One of the first decisions to make when including a processor as part of any digital
system is whether to use a pre-designed processor or develop a new one. This issue is also
considered in the ROBSY approach, and requires the analysis of processors available in
the literature based on the requirements presented in section 4.2.1.

Section 2.4 introduced popular soft-core processors and specialized test processors that
are found in the literature. Sections 4.2.2.1 and 4.2.2.2 present an analysis of the use of
these processors as part of the ROBSY approach.

4.2.2.1 Analysis of soft-core processors

The utilization of proprietary soft core processors in the ROBSY approach was discarded
from the very beginning. These processors would limit the scope of ROBSY to FPGAs of
a specific family or vendor and would increase nonrecurring costs due to license fees.

Open-source soft-core processors require a more detailed analysis. They do not increase
nonrecurring costs due to license fees and provide the option to edit the source code either
for portability to different FPGAs or for customization of the processor. For the analysis,
they are divided into two groups of processors:

• High-end processors.
• Low-end processors.

The Plasma, Leon 3, aeMB, Amber, OpenRisc 1200, and Mico32 processors are part of
the high-end class. They are used in a wide range of applications characterized by high
performance and functional requirements. These processors are equipped with 32-bit data
and instruction buses, a large amount of registers, configurability based on the activation
or deactivation of modules, and features for supporting operating systems. However,
high-end processors do not represent a good alternative for the ROBSY approach. They
are over-featured for testing purposes and their ISA does not provide the required
adaptability.

Floating point units, memory management and protection units, and different execution
modes are not necessary for testing, and therefore have a negative impact on the resource
utilization of the FBTS. If a test scenario requires the implementation of FBTS with
several domains, the instantiation of multiple high-end processors would be only possible
in high-capacity FPGAs. Therefore, the field of applicability of the ROBSY approach
would decrease.

4 Concept of the ROBSY processor 75

In the same way, the adaptability provided by these processors is limited. Adaptation
mechanisms with a high impact on the resource utilization are not supported. These high-
impact mechanisms allow the configuration of the number of bits used for the data bus,
instructions, memories, and I/O addressing. As a consequence, it would be not possible to
make an efficient use of resources in test scenarios of low complexity.

The T48, Copyblaze, Mico8, and Proteus processors are part of the low-end class. They
have a simpler ISA with instructions coded using a low number of bits (8x, 16, 18), short
data bus widths (8, 16), low number of registers, and no operating system support. They
are exclusively conceived to execute simple tasks that do not require much memory and
data processing capabilities.

The low flexibility of the T48, Copylaze, and Mico8 ISAs does not provide the
adaptability required for the ROBSY approach. The ISA of the Proteus provides greater
flexibility, making it possible to work with two data width configurations (8 or 16-bit).
However, the limited number of bits available to code an instruction restricts the number
of available registers, the range of immediate values, and the depth of the program
memory. This limits the memory capacity of the processor to store code and data, and
therefore would limit the implementation of layer functions in ESW.

To conclude, high-end and low-end general soft-core processors are characterized by
standard ISAs equipped with features that are not necessary for ROBSY or that do not
provide enough adaptability. Additionally, the specialization for testing purposes is not
provided in any of the two cases. This would impact test time and resource utilization,
making their use in the ROBSY approach unsuitable.

4.2.2.2 Analysis of test processors

From the test processors presented in Section 2.4, the programmable test processors are
the only ones relevant for this dissertation. Hardwired test processors are more related to
the co-processors and are not further analyzed.

The relevant features for the ROBSY approach of the processor concept used for SoC test
[19, 81–86] are:

• 16-bit RISC with fixed ISA.
• Four processor versions for adaptation purposes.
• Scan-path test and fast pattern comparison.
• I/O ports used as communication mechanism to ATE.
• Self-test and on-line test support.
• Pattern generation and analysis based on LFSRs and MISRs.

76 4 Concept of the ROBSY processor

The first five features are not of any interest to the ROBSY approach. A processor with a
fixed ISA and an adaptation mechanism that relies on four processor versions is not
appropriate for ROBSY because the obtained flexibility is very limited. A special I/O
scan-path controller with fast pattern comparison does not have any use in ROBSY. Scan-
path tests are not carried out at the board level and the utilization of a fast pattern
comparison approach requires special test components (reflectors) at the other end of the
PCB interconnections. Including special components in the PCB for testing purposes is
opposite to the ROBSY approach.

The use of I/O ports for communication to the ATE does not fulfill the requirements of
the ROBSY processor. The observability and controllability of the processor from the
ATE side is critical in the ROBSY approach, and it cannot be obtained based on I/O
ports. Self-test capabilities are not a requirement in ROBSY because the FPGA is
assumed to be defect free. In the same way, on-line test capabilities are not necessary. It
is assumed that the tests are performed in a controlled environment and that they take a
very short time. Therefore, the probability of transient or intermittent defects is very low.

On the contrary, the use of pattern generation and analysis mechanisms is an attractive
feature for ROBSY. This feature can make the implementation of L2 functions in the
processor more attractive because it reduces complexity and the time required for the
processor to generate pseudo-random patterns. However, the generation of other type of
patterns, such as algorithmic and deterministic sequences, should be also considered.

The test processor for asynchronous circuit testing [87–89] requires an independent
analysis of the two proposed concepts. The first concept is based on a RISC processor,
while the second concept is based on a minimalistic processing unit, known as the
sequencer. The RISC processor has the following features:

• 16/32-bit RISC processor with 4 pipeline stages.
• Configurable asynchronous handshake protocols.
• I/O ports used as communication mechanism to ATE.
• Standard instruction set for arithmetic, logic, and control operations.
• Instructions based on complex sequences to generate and apply test patters, and to

compact and acquire test responses.

The 32-bit processor version provides more capacity for demanding test scenarios in
comparison to the processor for SoC test, but this still might lead to non-optima resource
utilization for test scenarios that do not require large data widths. Besides, the processors
do not support other adaptation mechanisms. The use of configurable asynchronous
handshake protocols is not necessary because L1 functions should be implemented by the

4 Concept of the ROBSY processor 77

co-processors. As already mentioned, the use of I/O ports for the communication
mechanism to the ATE is not appropriate for the ROBSY approach.

On the other hand, pipelining and a large instruction set for arithmetic, logic, and control
operations are attractive features for the ROBSY processor. The former improves the CPI,
while the latter facilitates the implementation of layers L2 to L4 functions in ESW. In the
same way, specialized instructions to generate and analyze patterns are an attractive
feature. On the other hand, the use of instructions composed of complex sequences to
apply and acquire patterns should be further analyzed (Section 4.2.3.2).

The second test processor developed for asynchronous chip tests is optimized for the
application of patterns and acquisition of test responses. In this case, the unit with a closer
relation to the ROBSY processor is the sequencer, which has the following features:

• Minimalistic architecture with 2 pipeline stages.
• Limited instruction set with most of the instructions specialized for the

configuration and control of other units.
• No pattern generation or analysis instructions.
• Non-standard communication interface to the ATE.

The sequencer is not in charge of generating patterns or processing data obtained during
test execution. Its tasks are mainly the configuration of other units and coordination of
test execution. The ATE is responsible for off-line pattern generation and the analysis of
test responses. As a consequence, the functionality provided by the sequencer is very
limited, and does not fit with the functional requirements of the ROBSY processor. The
use of a non-standard communication interface to the ATE goes against the ROBSY
processor requirements. Such an interface cannot be implemented in every PCB because
it would require the modification of the PCB just for testing purposes.

To conclude, test-processors found in the literature do not represent good alternatives for
the ROBSY approach. They are used for testing at the device-level, and therefore are not
optimized for board-level testing. As a consequence, the design of a test processor that
fulfills the requirements presented in section 4.2.1 is inevitable. Nevertheless, there are
some features included in programmable test processors that are considered. These
features are the use of configuration mechanisms for adaptation purposes, a standard
instruction set for control flow, arithmetic, and logic operations, specialized instructions
for pattern generation and analysis, and pipelining.

78 4 Concept of the ROBSY processor

4.2.3 Fundamental design choices

For the design of the ROBSY processor, it is necessary to discuss fundamental design
choices. They comprise the design abstraction level, the design philosophy of the
processor architecture, and technology constraints related to the use of FPGAs as
implementation platforms.

4.2.3.1 RTL as design abstraction level

Today, register transfer level (RTL) is the abstraction level commonly used for the design
of FPGA-based systems. However, there is another processor design methodology that
allows working at a higher abstraction level. Its goal is to reduce the design time and
complexity in comparison to RTL, providing the option to explore different design
alternatives faster [124, 125]. It uses processor description languages also known as
architecture description languages (ADLs), which allows the specification of the
processor behavior and its structure. In this case, depending on the ADL language, it is
possible to automatically generate the RTL description, as well as the required
development tools (compiler, assembler, instruction set simulator, and debugger).

However, working at a higher level of abstraction reduces the control over design
parameters such as timing, resource utilization, and power consumption. Therefore, a
decrease in the quality of these values is expected. This is shown in [126, 127], where the
authors claimed that the RTL descriptions automatically generated from an ADL
description are often of poor quality. In [128], the authors compare an ADL
implementation to a handwritten RTL implementation of the same processor, and they
show that a 20%-30% overhead in area, clock frequency and power consumption is
obtained with the ADL implementation. Another example corresponds to the test
processor used for asynchronous chip test (Section 2.4.2). The first two test processor
versions [87, 88] were developed using the LISA ADL, while the third version [89] was
developed at the RTL level using the Very High Speed Integrated Circuit Hardware
Description Language (VHDL). The reason given in [89] for going back to the design at
the RTL level was the optimization of processor performance.

The design of an efficient processor in terms of resource utilization and operation speed is
crucial for the ROBSY processor. Additionally, the automatic generation of a compiler
based on ADL is not suitable for the ROBSY approach because available ADL tools
cannot generate a compiler for the RTDL language. For these reasons, the ROBSY
processor is designed at the RTL level using VHDL.

At this point it is important to mention that the support for different FPGA families and
vendors is achieved by using generic synthesizable VHDL constructs that are understood

4 Concept of the ROBSY processor 79

by different synthesis tools. These constructs allow the synthesis tools to infer the proper
device-specific hardware blocks such as memory blocks [129]. However, there are
hardware blocks that cannot be inferred, such as JTAG interfaces. In this case, it is
necessary to include the proper VHDL description depending on the FPGA.

4.2.3.2 RISC design philosophy

The reduced instruction set computer (RISC) design philosophy [130, 131] is selected for
the design of the ROBSY processor. This is the design philosophy followed by most
processor designers, and it has been adopted even by Intel for the implementation of
modern x86 processors [132].

The RISC design philosophy achieves good performance metrics by means of simple
instructions executed in few clock cycles at high clock frequencies. This approach is very
efficient because compilers tend to use simple instructions to synthesize high-level
constructs. Taking this into consideration, the RISC design principles used for the design
of the ROBSY processor are:

• Simple instructions: Simple instructions require few clock cycles for their
execution. It simplifies the processor design and achieves high clock frequencies
because the use of microcode or complex instruction decoders is not necessary.

• Load-store architecture: Dedicated load and store instructions with simple
addressing modes enable arithmetic and logic instructions to be independent of
memory or I/O accesses. This simplifies the instruction set and the design of the
processor control unit, facilitating a fast computation of operand addresses and the
achievement of high clock frequencies.

• Large register set: A large register set is necessary to support register-register
operations. This minimizes the overhead associated with procedure calls and
provides plenty opportunities for the compiler to optimize the register usage.

• Fixed length instruction format: Fixed length instructions allow an efficient
fetching and decoding of instructions, and minimizes the design complexity of the
processor.

The main limitation of the RISC design philosophy is the need for more instructions to
execute the same operations in comparison to processors based on the complex
instruction set computer (CISC) philosophy. This is translated into the use of more
memory for the storage of instructions. Fortunately, algorithms used for interconnection
test are relatively short and do not require large amounts of instruction memory.
Additionally, this effect is reduced by the use of an efficient compiler.

80 4 Concept of the ROBSY processor

4.2.3.3 FPGA technology constraints

The design of the ROBSY processor based on the RISC philosophy offers the option to
exploit design techniques such as pipelining and instruction level parallelism (ILP).
Pipelining takes advantage of the parallelism that exists among the actions needed to
execute an instruction, overlapping the execution of instructions. On the other hand, ILP
represents a group of techniques that exploits the parallelism among instructions.
Widespread ILP techniques are superscalar and very large instruction word (VLIW)
techniques [123, 132].

The improvement level achieved by using pipelining and ILP techniques is measured in
terms of the processor CPI or the inverse of CPI, which is a metric known as instructions
per cycle (IPC) [123]. Pipelining approximates IPC of a scalar processor to one, while
ILP increases this value above one.

However, the use of an FPGA as the technology basis for the implementation of the
FBTS imposes some limitations on the design techniques that can be used efficiently in
terms of clock frequency and resource utilization. In [131] the authors claimed that
superscalar or VLIW techniques are not practical for FPGAs. This is due to the FPGA
limitations for the implementation of multi-port register files, and the low performance
achieved when the control logic required for out-of-order execution is implemented in an
FPGA. In more recent investigations [133–135] this radical belief has been changing
because of the higher capacities of modern FPGAs and the development of new methods
for an efficient implementation of multiport register files. However, resource utilization is
still very high in comparison to scalar processors.

The high resource utilization necessary for ILP techniques goes against the ROBSY
approach. It limits the amount of processors or FBTS domains that can be implemented in
an FPGA, and restricts the use of the ROBSY approach to high-capacity FPGAs.
Therefore, the ROBSY processor is a scalar RISC processor with a single-issue in-order
microarchitecture and pipelining support. As shown in Section 2.4, this is the
methodology followed by most soft-core and test processors found in the literature.

4.3 Processor specialization for testing

Processor specialization for testing is essential for the ROBSY approach. The goal is to
improve test time and make an optimal usage of FPGA resources. The former reduces the
time the PCB spends on the tester, while the latter facilitates fitting the processor in
FPGAs of low capacity and implementing a multi-domain FBTS.

4 Concept of the ROBSY processor 81

Processor specialization includes three main aspects: tailoring the processor functionality
for testing, defining standard and special test instructions for the implementation of layers
L2 to L4, and defining the support for interfaces I2 and I3.

4.3.1 Tailoring the processor for testing

There are features of standard processors that are not strictly necessary for the ROBSY
processor. These features consume resources and increase the complexity of the design.
Therefore, it is necessary to identify them to avoid their inclusion in the processor.

4.3.1.1 Machine data types and widths

Machine data types correspond to the native data types supported by a processor. In the
case of ROBSY, the support for fixed-point arithmetic is sufficient. Fixed-point values
and corresponding arithmetic and logic operations are ideal for describing test patterns,
test responses, signatures, and test operations. Layers L2 to L4 typically work with
unsigned values. However, signed addition and subtraction operations do not require
additional modules in the processor. This is realized by means of two's complement
values and sign and overflow conditions.

The support for floating point data types is not necessary for the ROBSY processor.
Layers L2 to L4 do not require floating point arithmetic or logic operations because they
cannot be used to represent patterns, signatures, or interconnections in an efficient way. In
the same way, the support for character or Boolean data types is not necessary. Character-
based or string-based operations are not essential for layers L2 to L4, and Boolean values
can be easily represented using fixed-point values.

The only composite data type required for the ROBSY approach corresponds to vectors
of fixed-point values that are used to describe and store deterministic patterns and fault
dictionaries efficiently. Deterministic patterns and fault dictionary signatures are
generated during the pre-test phase, and therefore do not suffer any transformation during
test execution. As a consequence, equipping the processor with arithmetic and logic
operations for vector processing is not necessary. Standard load and store instructions are
sufficient to handle vectors.

The data width defines the number of bits that constitute a fixed-point value in the
processor. As will be presented in Section 4.4.2, the ROBSY processor should support
different data widths for adaptation purposes. Therefore, a possible alternative is to have a
processor with support for standard widths (8-bit bytes, 16-bit words, 32-bit double
words, etc.). However, this requires a large instruction set because single instructions for

82 4 Concept of the ROBSY processor

the same arithmetic, logic, load, and store operations have to be defined for each data
width. This increases the instruction coding requirements and the complexity of the
processor’s decoding logic. For this reason, the ROBSY processor is limited to a single
data width value, avoiding the need for multiple instructions for the same operations.

To summarize, the ROBSY processor is designed to execute unsigned fixed-point
arithmetic and logic operations. Vector processing is not required, but standard load and
store operations are necessary to access a set of deterministic patterns or the content of a
fault dictionary. In terms of data width, the ROBSY processor is limited to a single
configurable data width value.

4.3.1.2 Operating system support

An operating system represents a group of programs that forms an abstract interface
between the hardware resources of the processor and the application program. Its main
job is to provide for an orderly and controlled allocation of hardware resources among the
application programs that are competing for them [136]. Therefore, it deals with dynamic
scheduling of processes, abstraction of memory and I/O, hardware protection, etc. In
order to support an operating system, a processor should be equipped with memory
management and protection units, different operation modes, privilege instructions, and
fast context switching features.

However, scheduling and allocation of resources based on an operating system is not
necessary for the ROBSY approach. The ROBSY processor runs a single application
program defined by the DUT-M that can be properly scheduled during the pre-test phase
in a static way. In addition, other aspects of the ROBSY approach that go against the use
of an operating system are:

• The coordination of test algorithms is completely defined in the DUT-M.
• The test execution of DUTs belonging to the same domain is performed one DUT

at a time in order to guarantee the fulfillment of timing requirements of the DUT.
• Each domain of the FBTS works independently, which means that there is no need

for inter-processor synchronization or communication.
• Abstraction mechanisms to access the DUTs do not have to be considered. L1

provides the mechanism to define the timing and functional behavior of the access
functions. This makes it possible to provide reliable statements about the test
coverage of dynamic faults.

To conclude, there is no need to use an operating system as part of the ROBSY approach.

4 Concept of the ROBSY processor 83

4.3.1.3 Memory hierarchy

Modern processors are equipped with data and program memories organized in a
hierarchical way to minimize the latency of fetching instructions and data. These levels
are built based on processor registers, internal cache memories, and slower external
memories such as SRAM, DRAM, and disk storage devices.

In the ROBSY approach, external memories are not used because the interconnections to
these devices might contain defects. Therefore, the ROBSY processor makes use of
internal memory resources for the storage of instructions and data. These resources
correspond to registers and tightly coupled memories. They simplify the memory
hierarchy of the processor because it is not necessary to consider cache memories.

4.3.2 Test operations

A general purpose processor executes test operations by means of standard instruction
sequences. If these sequences are composed of many instructions, they will consume
numerous memory resources and will require a considerable amount of time to execute.
In order to improve processor execution time, it is necessary to identify frequently used
functions performed by layers L2 to L4, which, if necessary, can be included in the
instruction set of the ROBSY processor.

4.3.2.1 Pattern generation (L2)

One way to reduce processor execution time is by equipping the instruction set with
single instructions capable of generating patterns and analyzing test responses.

Section 3.4.3 classified test patterns used in the FBTS into algorithmic, pseudo-random,
exhaustive/pseudo-exhaustive, and deterministic patterns. Algorithmic, pseudo-random,
exhaustive, and pseudo-exhaustive patterns are generated by means of arithmetic and
logic operations, in which every new pattern is computed based on previous patterns.
Deterministic patterns are defined during the pre-test phase, and therefore do not suffer
any modifications during test execution. They are typically stored in memory.

For static and dynamic fault testing, the ROBSY processor should generate algorithmic
patterns based on walking-1/0, modified counting, interleaved true/complement, and
maximum aggressor fault model sequences. The first four sequences provide high fault
coverage values with a reduced number of patterns [41]. The last sequence represents an
alternative to detect signal integrity faults at the interconnections [22, 23, 121].

Table 4.1 presents walking-1/0, modified counting, and interleaved true/complement
sequences for 4-bit patterns. The pattern column shows the pattern value, and the

84 4 Concept of the ROBSY processor

operation column shows the operation used to generate the pattern of the same row. The
value in parentheses identifies the number of the previous pattern used to generate the
new one. Initial patterns have an empty operation field.

Walking-1 Walking-0 Modified counting Interleaved

true/complement

Pattern Operation Pattern Operation Pattern Operation Pattern Operation

1 0001 1110 110010 110010

2 0010 Shift left(1) 1101 Rotate left(1) 100101 Rotate left(1) 001101 Negate(1)

3 0100 Shift left(2) 1011 Rotate left(2) 001011 Rotate left(2) 100101 Rotate left(1)

4 1000 Shift left(3) 0111 Rotate left(3) 011010 Negate(3)

5 001011 Rotate left(3)

6 110100 Negate(5)

Table 4.1: Walking one/zero, modified counting, and interleaved true/complement sequences

Table 4.1 shows that a walking-1/0 sequence is obtained based on an initial pattern with
just one bit set to 1/0 and shift or rotate operations. A modified counting or interleaved
true/complement sequence is obtained based on a special initial pattern and rotate or
negation operation. The initial pattern is computed before the test execution by means of
a maximal length LFSR sequence that starts with the all ones value. The low significant
bit of each pattern of the sequence (without considering the all ones value) corresponds to
the initial pattern [41]. Although not mentioned in [41], it is necessary to work with all
bits of the sequence independently of the number of interconnections under test. In the
example presented in Table 4.1, six bits are used to generate the sequence for four
interconnections. The pattern corresponds to the underlined bits.

The maximum aggressor fault model also uses algorithmic sequences. Table 4.2 shows
the sequences for the detection of negative/positive glitches and falling/rising delays. The
table shows that three initial patterns and shift, rotation, and negation operations are used.
The initial patterns have a single bit set to 1/0 or all bits set to 1/0.

Negative glitch Positive glitch Falling delay Rising delay

Pattern Operation Pattern Operation Pattern Operation Pattern Operation

1 1111 0000 0001 1110

2 0001 1110 1110 Negate(1) 0001 Negate(1)

3 1111 0000 0010 Shift left(1) 1101 Rotate left(1)

4 0010 Shift left(2) 1101 Rotate left(2) 1101 Negate(3) 0010 Negate(3)

5 1111 0000 0100 Shift left(3) 1011 Rotate left(3)

6 0100 Shift left(4) 1011 Rotate left(4) 1011 Negate(5) 0100 Negate(5)

7 1111 0000 1000 Shift left(5) 0111 Rotate left(5)

8 1000 Shift left(6) 0111 Rotate left(6) 0111 Negate(7) 1000 Negate(7)

Table 4.2: Maximum aggressor fault sequences for glitches and delays

4 Concept of the ROBSY processor 85

Table 4.1 and Table 4.2 show that the algorithmic test sequences do not require any
special instructions for their generation. Each pattern is obtained based on one or more
initial patterns and standard shift, rotate, and negation instructions.

In the same way, the generation of exhaustive or pseudo-exhaustive pattern sequences
does not require the use of special operations. The sequences are generated by standard
increment or decrement operations that emulate the function of an accumulator or
counter. These operations are performed by addition and subtraction instructions.

Pseudo-random pattern sequences are typically generated by LFSRs, which use at least
one rotation and XOR operation per pattern. Therefore, they require multiple standard
instructions per pattern. The use of special instructions for the generation of pseudo-
random patterns is a good alternative for the ROBSY processor because it reduces the
number of instructions required per pattern.

Deterministic patterns do not suffer any transformations during test execution. Therefore,
the ROBSY processor does not include special instructions for this kind of pattern
sequences. However, it is necessary to include proper support for loading patterns from
memory and transferring them to the co-processor. Loading deterministic patterns can be
realized in two different ways. If the patterns are stored in the program memory (coded in
the instructions), then loading patterns becomes fetching an instruction from program
memory. But if the patterns are located in data memory, loading deterministic patterns
requires the use of load instructions. On the other hand, transferring deterministic patterns
(as well as all generated patterns) to the co-processor can be performed by means of store
instructions. Standard load and store instructions for accessing patterns from memory and
transferring them to the co-processor should be able to access large memory arrays and
execute in few clock cycles to reduce their impact on processor execution time.

To summarize, the generation of algorithmic, exhaustive, and pseudo exhaustive patterns
is performed based on single instructions. For this purpose, it is necessary to include
standard addition, subtraction, shift, rotate, and negation instructions as part of the
ROBSY processor. On the other hand, the generation of pseudo-random patterns requires
the use of special instructions based on LFSRs. The use of deterministic patterns is
realized by coding patterns in the instructions and supporting standard load and store
instructions that execute in few clock cycles and are able to access large memory arrays.

4.3.2.2 Test response analysis (L2)

Section 3.4.3 showed that there are two different options for the analysis of test
responses. The first option compares each test response with an expected one. The second
option compares signatures instead of test responses, which are obtained by compacting

86 4 Concept of the ROBSY processor

expected test responses during the pre-test phase and the acquired test responses during
test execution.

The comparison of test responses can be performed based on standard instructions that
compare values. This is usually performed by instructions that subtract the two values to
compare and set a processor general purpose register or group of condition flags (zero,
carry, and overflow) to a corresponding value. In this case, it is necessary to store the
expected responses in memory or generate them during the test. The comparison of
signatures reduces the amount of comparisons that have to be performed and the memory
required to store expected responses. However, it is necessary to spend time in the
compaction of the acquired test responses, and consider the occurrence of aliasing. The
compaction of test responses is typically performed by a MISR, whose operation can be
emulated by the processor based on at least two XOR and one rotate instruction per test
response. In order to reduce the number of standard instructions, a single special
instruction that emulates a MISR can be implemented. An alternative is to reutilize the
special instruction used for the generation of pseudo-random patterns. This is performed
by an LFSR instruction and an XOR instruction, and avoids the implementation of the
MISR instruction.

The analysis of test responses in the ROBSY processor is realized based on standard
comparison instructions and the two instruction approach that emulates a MISR for the
compaction of test responses.

4.3.2.3 Control flow operations (L2, L3, L4)

Control flow operations are required for all layers. L2 relies on loops in order to describe
instruction sequences for pattern generation and analysis. L3 is mainly composed of
control flow operations that describe the structure of test algorithms, in which branches
and loops are executed based on conditions typically derived from the L2 results. L4 uses
control flow operations for the coordination of test algorithms, and diagnosis purposes.
Additionally, the layer concept requires a mechanism to encapsulate functions related to a
given layer. This is accomplished by supporting procedures and procedure calls.

Control flow operations are described by constructs supported by the RTDL language
such as for, while, if, else, switch, call, and return statements. These high level statements
are transformed to unconditional and conditional branches by the compiler (at least in the
RISC design philosophy). Unconditional branches are executed without evaluating any
conditions, while conditional branches require the evaluation of conditions typically set
by arithmetic and logic instructions.

4 Concept of the ROBSY processor 87

The ROBSY processor requires both kinds of branching mechanisms. In this case, the
instructions considered are:

• Unconditional branch instructions with absolute addressing mode.
• Conditional branch instructions with absolute addressing mode.
• Conditional branch instructions based on the set then jump methodology.
• Conditional branch instructions based on a condition code register.
• Call and return instructions that save/restore the return address to/from memory.

Branching instructions use an absolute addressing mode instead of a relative addressing
mode. The use of absolute addresses is enough for the ROBSY processor, because the
location of instructions in memory is defined during compilation. Therefore, it is not
necessary to support code reallocation, simplifying the processor instruction set. The set
then jump methodology [130] was selected over the set and jump methodology. The
former uses separate instructions to set conditions and perform the branch, while the latter
uses a single instruction for both operations. The set then jump methodology was selected
in order to maintain the complexity of each instruction as low as possible.

A condition code register represents a collection of status flags such as zero, carry, sign,
and overflow. The flags are set by means of arithmetic and logic instructions and allow
the implementation of equality or relation operators. This approach was chosen over
general purpose registers because flags also provide an efficient way to concatenate
arithmetic and logic operations for operands larger than the processor data width (Section
5.2.3).

Call and return instructions are necessary in order to support layer procedures and
interrupts. The call instruction uses an absolute addressing mode and stores the return
address in the stack. The return instruction is in charge of restoring the return address
from the stack and branching to this address. For the ROBSY processor, the use of
conditional call instructions is not considered.

4.3.2.4 Diagnosis (L2, L3 and L4)

Diagnosis can be performed in order to locate the device with faulty interconnections, or
to locate the device and faulty interconnections.

Diagnosis of the device with faulty interconnections does not require the use of specific
diagnosis algorithms because the identification of the processor/co-processor pair that
detects the fault is sufficient to recognize the DUT with the faulty interconnection. On the
other hand, diagnosis of the faulty interconnections requires the utilization of test

88 4 Concept of the ROBSY processor

algorithms developed for this purpose. These algorithms rely on sequential and
combinational diagnosis methods as presented in Section 2.1.5.

Sequential diagnosis methods require the implementation of diagnosis operations as part
of layers L2 and L3. L2 generates patterns and analyzes the obtained test responses. L3
decides the next step to perform based on the information delivered by L2. For this
purpose, it is sufficient to use the instructions already discussed in Sections 4.3.2.1,
4.3.2.2, and 4.3.2.3. Combinational diagnosis methods require the implementation of
diagnosis operations as part of layers L2, L3, and L4. L2 compacts the test responses in a
signature, which requires the use of diverse standard arithmetic and logic operations
depending on the type of fault dictionary. L3 describes the algorithm steps carried out for
diagnosis based on the control flow instructions already discussed in Section 4.3.2.3. L4
performs the look-up process that matches the computed signature against the signatures
stored in the fault dictionary. For this purpose, standard load, store, and comparison
instructions are sufficient.

The ROBSY processor does not have to be equipped with special instructions for
diagnosis purposes. Instructions used for the description of control flow, pattern
generation, and test response analysis are sufficient.

4.3.3 Interfaces I2 and I3

Layer functions implemented in ESW are bound by interfaces I2 and I3. As presented in
Section 4.2.1, the ROBSY processor should be equipped with the proper features for the
implementation of both interfaces.

4.3.3.1 Interface I2

Interface I2 represents the interface between the ATE and FBTS, or more exactly,
between the ATE and processor forming part of each FBTS domain. It comprises the
ATE test controller, PCB communication infrastructure, FBTS communication
infrastructure, and the processor debug-interface.

The PCB communication infrastructure usually corresponds to a test interface. The reason
for this is that test interfaces use a low number of interconnections and can be easily
tested. The de facto test interface considered for ROBSY is the JTAG interface used for
BScan testing (Section 2.2.3.2), which is tested by means of basic infrastructure tests. The
JTAG interface is compatible with ATEs used for BScan testing, which makes it not
necessary to develop a special ATE and test controller for the ROBSY approach.

4 Concept of the ROBSY processor 89

Additionally, FPGAs provide JTAG support for configuration and communication
purposes [43].

The FBTS communication infrastructure relies on special DRs, which are connected to
the TAP controller through a JTAG primitive. The use of DRs provides the scalability
necessary to couple an arbitrary number of FBTS domains, forming a network of DRs.
The network can be described based on the IEEE 1149.1-2013 BScan standard [1] or the
IEEE 1687 IJTAG standard [137–139]. Figure 4.1 presents the data chain of a flat
network of DRs, in which each DR belongs to one of the four FBTS domains. Other
network configurations are possible, such as hierarchical structures.

JTAG
interface

D
U

T 1
FPGA

FPGA

FB
TS

dom

ain 2

D
R

FBTS
domain 3

FB
TS

do

m
ai

n
4

D
U

T
6

D
U

T 2

DUT 3 DUT 4 DUT 5
PCB

ATE

JTAG primitive
FB

TS

dom
ain 1

D
R

DR

D
R

Figure 4.1 FBTS domains with DRs used for communication with ATE

As already discussed in Section 3.3.2, each FBTS domain has a single processor, which is
the component involved in the ATE/FBTS communication. The ROBSY processor is
equipped with a debug-interface implemented using the DRs located in each FBTS
domain. The use of debug-interfaces is the same approach of PBT, which has been proven
to be very successful [45, 46]. A debug-interface provides a mechanism to control and
observe the state of the processor during the test execution. Moreover, the debug-interface
is a standard communication interface that does not change its properties independently of
the FPGA. This means that problems related to the support for different debug-interfaces
(one of the main disadvantages of PBT) are not considered in ROBSY.

90 4 Concept of the ROBSY processor

4.3.3.2 Interface I3

Interface I3 is the communication link between the main components of each FBTS
domain, namely the processor and co-processors. As discussed in Section 3.4.6, the
structure of each FBTS domain represents a loosely-coupled system that comprises a
single processor and at least one co-processor. The processor acts as a master with total
control over the bus transfers, whereas the co-processor acts as a slave responding to
petitions made by the processor.

From the point of view of the ROBSY approach, the amount and type of data transferred
through interface I3 varies depending on the location of the interface in the layer concept.
Therefore, an on-chip bus should provide the necessary flexibility and scalability. The on-
chip bus is based on the Wishbone interconnection architecture supplied by the Open
Cores organization [140]. This architecture fits very well in the ROBSY approach
because it is open source, scalable, and provides a simple, flexible, and portable way to
connect different components. Additionally, it is very popular and many Wishbone
compatible IPs are freely available. For a comparison of Wishbone with other on-chip
interconnection architectures, refer to [141].

4.4 Adaptation to the test scenario

As presented in Section 3.1.2, a test scenario differentiates itself from others based on
three main aspects: DUTs, FPGA, and test requirements. These aspects vary strongly
from case to case, making it necessary to include adaptation mechanisms as part of the
ROBSY approach.

The adaptation of the ROBSY processor makes it possible to ensure an efficient usage of
FPGA resources or to improve the processor execution time. The efficient usage of
resources facilitates the inclusion of additional layers and domains in the FBTS that
otherwise could not be included in the FPGA. An improvement of the processor
execution time facilitates the fulfillment of critical test requirements related to test time.
Equipping the ROBSY processor with an adaptation mechanism allows:

• Fine tuning the processor ISA and microarchitecture to the constraints of the
specific test scenario.

• Including the adaptation mechanism in the FBTS automatic generation flow.

Sections 4.4.1 and 4.4.2 present available adaptation mechanisms and the one selected for
the ROBSY processor.

4 Concept of the ROBSY processor 91

4.4.1 General adaptation mechanisms

There are two general mechanisms that can be used for the adaptation of a processor to a
specific scenario, whether the scenario refers to a test scenario or not. The two
mechanisms are:

• Development of a family of processors.
• Development of a configurable processor.

The first mechanism adapts the processor by selecting the proper one from a family of
processors depending on the scenario. Every processor is developed independently, but it
might share some properties with other family members. In this case, the achievable level
of adaptation depends on the number of available processors and on the way each
processor fits in the given scenario. Typically, this approach is used for complex
processors without configuration options.

In the second mechanism, the adaptation of the processor is performed by selecting the
constellation of configuration parameter values that is more appropriate for a given
scenario. In this case, it is necessary to develop a single configurable processor in order to
generate different processor variants. This is the mechanism typically used in soft-core
processors.

It is possible to develop a family of processors or a configurable processor that is grouped
in one of the following classes:

• Same ISA and different microarchitectures.
• Different ISAs and microarchitectures.

In the first class, every member of the family or every processor variant derived from the
configurable processor has the same ISA. This means that each processor is capable of
executing the same programs. The differences are located at the microarchitecture level,
providing different trade-offs in terms of resource utilization, energy consumption, CPU
time, etc.

A processor family belonging to this class uses the 32-bit ISA of Intel (IA-32), whose
members are the Pentium, Celeron (lower cost), and Xeon (higher performance)
processors [130]. A configurable processor belonging to this class is the Nios II soft-core
processor, which is equipped with configuration parameters that mainly affect its
microarchitecture [61].

92 4 Concept of the ROBSY processor

In the second class, there is at least one processor developed based on a different ISA. In
this case, each processor is not able to run the same programs given that instructions,
instruction formats, or other properties related to the ISA are not compatible. The
advantage of this class of processors is the potential to achieve a higher adaptation.

A processor family belonging to this class of processors is formed by extending the
processor family based on the IA-32 with the processor family based on the IA-64. It was
not possible to find a configurable processor with well-defined configuration parameters
at the ISA level. At a first glance, it might seem that the Proteus configurable soft core
processor [75] is equipped with configuration parameters at the ISA level. These options
permit changing the data width, number of supported registers, and activating or
deactivating some instructions. However, by looking at its configuration mechanism, it
was found that these configuration parameters do not influence the instruction set. The
instruction width and coding formats remain the same although it is possible to code
registers using fewer bits.

4.4.2 Adaptation mechanism of the ROBSY processor

The ROBSY processor should have the highest possible level of adaptation. For this
purpose, a first alternative is to develop a family of processors. However, the
development and maintenance effort required to support a family of processors is very
high, making this alternative inappropriate.

The development of a configurable processor represents a more suitable alternative.
Configuration parameters represent a natural adaptation mechanism of soft-core
processors. In comparison to an adaptation mechanism based on a family of processors,
the development and maintenance of a single configurable processor is a more
manageable task, given that it is only necessary to consider a unique source code base.

The challenge is to design a configurable processor with the level of configurability
required for the ROBSY approach. For this purpose, the ROBSY processor should be
equipped with configuration parameters at the ISA and microarchitecture level. This is a
very interesting approach because it provides a very flexible processor with a high
adaptability potential. Nevertheless, it should be considered that configuration parameters
at the ISA level require configurable processor development tools (compiler, assembler,
linker, instruction set simulator, etc.).

4 Concept of the ROBSY processor 93

4.5 Summary

Chapter 4 presented the concept of the ROBSY processor, which is based on three main
pillars:

• Analysis of general design aspects.
• Processor specialization based on the properties of L4-L2 and I2 and I3.
• Processor adaptation mechanism.

During the analysis of general design aspects, the functional and non-functional
requirements that the ROBSY processor has to fulfill were presented. The functional
requirements define the support for operations used in layers L2 to L4 and interfaces I2
and I3. The non-functional requirements highlight the adaptation, FPGA-based
implementation, code portability, and the focus on the reduction of test time and an
efficient utilization of resources.

At that point, it was established that none of the general soft-core or test processors
available in the literature is suitable for ROBSY. After that, main design decisions were
performed as part of the analysis of general design aspects. The decisions include the use
of VHDL as the design language and inference for the adaptation to FPGAs from
different families and vendors. Furthermore, the processor was defined as a scalar single-
issue in-order RISC processor with pipelining.

The discussion about the processor specialization was carried out based on three main
aspects:

• Tailoring the processor functionality for testing purposes.
• Defining standard and special test operations for layers L2 to L4.
• Specifying the support required for interfaces I2 and I3.

It was shown that unsigned fixed-point arithmetic and logic operations as well as standard
load and store operations are sufficient for testing purposes. The processor data width was
limited to a single configurable value, and operating system related functions do not have
to be considered. Additionally, it was shown that there is no need for a hierarchical
memory organization because embedded FPGA memory blocks are the only memory
resources available for instructions and data storage.

The implementation of layers L2 to L4 in ESW requires equipping the ROBSY processor
with standard arithmetic and logic instructions, such as addition, subtraction, comparison,
shift, rotate, negation, and XOR. In the same way, the processor should support standard
load and store instructions, which are necessary to transfer information between the

94 4 Concept of the ROBSY processor

processor memory, I/O, and general purpose registers. For control flow operations, the
processor should be equipped with conditional and unconditional branching, call, and
return instructions. These instructions should be implemented using an absolute
addressing mode and a conditional code register with the flags.

The ROBSY processor should provide the option to code a complete pattern in an
instruction in order to efficiently store deterministic patterns in program memory. In the
same way, it should be equipped with special LFSR instructions for the emulation of
LFSRs and MISRs. Multiplication or division operations are not required.

For interfaces I2 and I3, the ROBSY processor should be equipped with a debug-interface
and an on-chip bus system, respectively. The debug-interface communicates to the ATE
based on DRs, and the on-chip bus system is implemented as a shared bus based on the
Wishbone interconnection architecture.

Finally, it was shown that the proper adaptation mechanism of the ROBSY processor
consists of the development of a highly flexible configurable processor. The configuration
parameters located at the ISA and microarchitecture level provide high flexibility for the
adaptation of the processor to the test scenario.

95

5 ROBSY processor

5.1 Introduction

Chapter 4 defined the ROBSY processor as a scalar single-issue in-order RISC processor
with support for standard arithmetic, logic, control flow, and data transfers instructions, as
well as test instructions for the emulation of LFSRs. RTL was chosen as the design
abstraction level, VHDL as the design language, and configuration parameters at the ISA
and microarchitecture level as the adaptation mechanism to different test scenarios. This
chapter presents the processor implementation in more detail, with main focus on:

• Processor ISA.
• Processor microarchitecture.
• Debug-interface properties.
• Configuration parameters.

Sections 5.2 and 5.3 present the ISA and microarchitecture of the ROBSY processor,
respectively. Section 5.4 presents the debug-interface, including the support for JTAG.
Section 5.5 provides information about the configuration parameters. This chapter
concludes with a summary in Section 5.6.

5.2 Instruction set architecture

The instruction set architecture (ISA) —also known as the processor architecture—
represents the processor attributes that are visible to the programmer [142]. It defines the
processor’s behavior and properties that are visible from the programmer’s point of view
without revealing any implementation details. Therefore, it provides information about
the supported data types, visible state (registers and memory), I/O, operations (instruction
set and format), interrupts, and exceptions.

5.2.1 Native data types

As already discussed in Section 4.3.1.1, the support for unsigned fixed-point arithmetic is
sufficient for testing purposes. The processor uses a fixed-point value with a unique width
(data_width), which represents the width of a general purpose register (GPR). The
data_width is also a configurable parameter of the processor, which influences the
properties of its ISA and microarchitecture.

96 5 ROBSY processor

The data_width changes the instruction width because it defines the number of bits
required to code an immediate value. An additional configuration parameter known as
short_imm_set provides the option to code an immediate value using a smaller number of
bits. The width of an immediate data value (imm_data_width) is described as follows:

 𝑖𝑖𝑖𝑖𝑖𝑖_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = �
 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖𝑖𝑖𝑖𝑖_𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

�
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

2
� , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖𝑖𝑖𝑖𝑖_𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 (5.1)

If the size of variables found in the DUT-M differs from the processor data_width, it is
the responsibility of the compiler to handle these variables using the appropriate
instruction sequences.

5.2.2 Programmer visible state and I/O

5.2.2.1 Registers

The ISA is composed of a diverse set of registers: general purpose registers (GPRs),
special function registers (SFRs), instruction register (IR), program counter (PC), and
stack pointer (SP).

GPRs are used as the storage mechanism for operands and results of arithmetic, logic,
test, and data transfer instructions. The number (GPRs_num) and width (data_width) of
GPRs are configuration parameters. GPRs_num has the following restrictions:

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑛𝑛𝑛𝑛𝑛𝑛 = |𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺|, 𝑤𝑤𝑤𝑤𝑤𝑤ℎ �
|𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺| > 2

|𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺| > �
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
� (5.2)

Equation (5.2) shows that there are two restrictions for GPRs_num. The first restriction
states that there should be at least three GPRs as part of the processor. This is necessary
given that GPR R0 is hardwired to zero, and at least two additional GPRs are required for
the execution of an arithmetic, logic, test, or data transfer instruction. The second
restriction states that there should be enough GPRs for addressing the data address space
of the processor (Section 5.2.2.2).

SFRs are used for specific functions. The latest processor version is equipped with seven
SFRs (two of them are optional). The configuration parameter SFRs_num defines the
number of SFRs, and it enables the inclusion of optional SFRs and addition of new SFRs
for future use. In the current processor version, SFRs_num is at least five.

5 ROBSY processor 97

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑛𝑛𝑛𝑛𝑛𝑛 = |𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|, 𝑤𝑤𝑤𝑤𝑤𝑤ℎ |𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆| > 4 (5.3)

The first SFR is the condition code register, which is composed of the zero, sign, carry,
and overflow condition flags. The zero flag is set every time the result of an arithmetic,
logic, or test instruction is zero. The sign flag is set every time the most significant bit
(MSB) of an arithmetic, logic, or test instruction is one. The carry and overflow flags are
properly set during the execution of arithmetic and test instructions. The second SFR is a
shadow register of the condition code register. This shadow register is used for restoring
the original state of the flags after the execution of an interrupt service routine. The
restoration procedure is described in ESW and requires access to this SFR.

The third SFR is the exception code register. This register automatically stores a value
that identifies the cause of an exception activated during normal program execution. The
current processor version uses five exception bits (Section 5.2.4). The fourth and fifth
SFRs are the interrupt mask and interrupt register. The interrupt mask is used to enable a
specific interrupt. The interrupt register is automatically set every time an interrupt is
triggered in order to identify the interrupt source (Section 5.2.4). Two optional SFRs are
used to define an address range of the data memory reserved for communication with the
ATE. Both registers are used in conjunction with the VarioTap test approach of Göpel
electronics [45]. This test approach is not used in this dissertation, and therefore the two
optional SFRs are not required.

The maximum width of an SFR is data_width, which enables the transfer of information
between SFRs and GPRs in a single instruction. The minimum width of an SFR is five,
which corresponds to the number of bits required to code the exception cause. Therefore,
the SFRs impose the following restriction to the processor data_width:

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ > 4 (5.4)

The IR is used to store the instruction fetched from program memory. Its width depends
on the number of bits required to code an instruction, and is known as instruction_width
(Section 5.2.3). The PC is used to store the address of the next instruction to fetch from
program memory. Its width depends on the program memory depth, known as
prog_mem_depth (Section 5.2.2.2). The SP is used to point to the last value stored in the
stack. The width of the SP depends on the stack memory depth, which is known as
stack_mem_depth (Section 5.2.2.2). The SP is managed by the processor, incrementing or
decrementing it based on push, pop, and procedure call instructions.

Figure 2.15 shows a graphical representation of the GPRs, SFRs, IR, PC, and SP.

98 5 ROBSY processor

R0=0

0

GPRs

data_width-1

R1

.

.

.

.

.

.
R(GPRs_num – 1)

SFRs

0data_width-1
Condition code (4)

Shadow condition code (4)

Exception code (5)

Interrupt mask

Interrupt

Optional_1

Optional_2

0instruction_width-1
IR

0prog_mem_depth-1
PC

0stack_mem_depth-1
SP

SFRS_num-1

0

GPRs_num-1

0

0

0

0

Figure 5.1: ROBSY processor registers

5.2.2.2 Address spaces

The processor has three independent address spaces, which are known as the program,
data, and stack address spaces.

The program address space represents the program memory, and is defined by the
configuration parameter prog_mem_depth. prog_mem_depth should provide enough
capacity to store all instructions constituting the program. Therefore, it is computed as
presented in Equation (5.5). The program memory width (instruction_width) is equal to
the number of bits required to code an instruction (Section 5.2.3).

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = ⌈log2(|𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|)⌉ (5.5)

The data address space arranges data memory, SFRs, and I/O in a single address space. In
this way, the same load and store instructions are used to access variables stored in data
memory, SFR values, and I/O. The width of the data space is data_width and its depth is
data_space_depth. The latter is calculated based on the depth of the data memory
(data_mem_depth), SFRs_num, and the number of I/O addresses (IO_addr_num)
(Equation (5.8)). data_mem_depth and IO_addr_num are configurable, making it possible
to change the data storage capacity and the number of I/O addresses of the processor.

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = ⌈log2(|𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|)⌉ (5.6)

 𝐼𝐼𝐼𝐼_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑛𝑛𝑛𝑛𝑛𝑛 = |𝑐𝑐𝑐𝑐 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎| (5.7)

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = ⌈log2(2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐼𝐼𝐼𝐼_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑛𝑛𝑛𝑛𝑛𝑛)⌉ (5.8)

5 ROBSY processor 99

The stack address space represents the stack memory. The depth of the stack memory
(stack_mem_depth) is a configurable parameter, providing the option to change the
storage capacity of the stack. The stack memory width (stack_width) depends on
data_width and prog_mem_depth, given that it should be possible to store a program
address or a data value. The computation of stack_mem_depth and stack_width is
performed as follows:

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = ⌈log2(|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙|)⌉ (5.9)

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = max � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ� (5.10)

Figure 5.2 shows a graphical representation of the three address spaces with their
corresponding depth and width.

Program memory

0
0instruction_width-1

Program addres space
prog_mem_depth

-1

Stack memory

0
0stack_width-1

Stack address space

I/Os

SFRs

Data memory

0
0

Data address space

data_width-1

2
stack_mem_depth

-12

data_space_depth
-12

data_mem_depth
+SFRs_num-12

data_mem_depth
-12

Figure 5.2: ROBSY processor address spaces

The main reason to support three independent address spaces is the high configurability
of the ROBSY processor, which makes it possible to obtain processor variants with
different values for instruction_width, stack_width, and data_width.

100 5 ROBSY processor

The program address space is addressed by the PC. The value of the PC is incremented
automatically or changes due to call, return, and conditional or unconditional branching
instructions. The stack address space is addressed by the SP. The value of the SP changes
based on push, pop, and procedure call instructions.

The data address space is addressed by GPRs. It requires special attention because it is
not possible to address the complete data address space based on a single GPR or
immediate value if data_space_depth is greater than data_width. In order to deal with this
problem, the ROBSY processor concatenates GPRs to form the most significant bits
(MSBs) of the address. These GPRs are known as page pointers, and the number of page
pointers (page_pointers_num) is defined as follows:

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛𝑛𝑛 = |𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝| = �
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
− 1� (5.11)

Page pointers are concatenated in such a way that GPR R1 corresponds to the MSBs of
the address, followed by R2, R3, and so on.

5.2.3 Instruction set

Table 4.1 shows the instructions of the ROBSY processor. These instructions are divided
into two main classes: class-0 and class-1. Class-0 instructions are conditional and
unconditional branches, procedure calls, data transfers, and push/pop instructions. Class-1
instructions are arithmetic, logic, and test instructions. The type and number of operands
change depending on the specific instruction.

Class Instructions Operands

0

JMP, JC, JNC, JZ, JNZ, JS, JNS, JO, JNO Immediate address value

CALL, CALL_C, RET, RET_C Immediate address value, -

STOP, NOP -

LOAD, STORE GPRs + immediate data value

PUSH, POP GPR

1

ADD, SUB GPRs + immediate data value

AND, OR, XOR, NOR GPRs + immediate data value

SHR, SHL, ROTR, ROTL GPRs + immediate data value

LFSR GPRs + immediate data value

Table 5.1: ROBSY processor instructions

The processor has variations of the same instruction. This is necessary in order to support
different operands (GPR-GPR or GPR-immediate), the short_imm_set configuration
parameter, and the execution of arithmetic, logic, and test instructions for variables larger

5 ROBSY processor 101

than data_width. The processor has 50 instructions in total, 18 of which are class-0 and
32 are class-1 instructions.

5.2.3.1 Class-0 instructions

Table 5.2 shows the class-0 branching instructions (Section 4.3.2.3). The argument of
these instructions is an immediate value (imm_address_value), which represents the
target address of the branch. The size of imm_address_value is prog_mem_depth in order
to support absolute addressing mode. Table 5.2 shows the branching instructions, in
which the first column shows the instruction name, the second column shows the
operation performed, and the last four columns shows the condition code register flags
that are affected. C stands for carry, Z for zero, S for sign, and O for overflow.

Instruction Description C Z S O

JMP PC  imm_address_value

JC PC  imm_address_value if C is set

JNC PC  imm_address_value if C is unset

JZ PC  imm_address_value if Z is set

JNZ PC  imm_address_value if Z is unset

JS PC  imm_address_value if S is set

JNS PC  imm_address_value if S is unset

JO PC  imm_address_value if O is set

JNO PC  imm_address_value if O is unset

Table 5.2: Branching instructions

Table 5.3 shows class-0 instructions used for procedures. CALL and CALL_C branch to
the start address of the procedure and store the return address (return_address) in the
stack. The imm_address_value coded in the instruction defines the start address of the
procedure. If CALL_C is executed, the processor does not respond to interrupt requests
during the execution of the procedure. CALL_C allows the execution of critical portions
of code, such as interrupt and exception service routines. RET and RET_C are used to
exit the procedure and resume normal program execution. For this purpose, the processor
pops the return address from the stack and performs a branch. RET_C is used to
reactivate interrupts. It allows using CALL instructions inside a CALL_C subroutine
without reactivating the interrupts.

Instruction Description C Z S O

CALL PC  imm_address_value; stack[SP+1]  return_address

CALL_C PC  imm_address_value; stack[SP+1]  return_address; disable interrupts

RET PC  stack[SP]

RET_C PC  stack[SP]; enable interrupts

Table 5.3: Procedure call instructions

102 5 ROBSY processor

Table 5.4 shows the STOP and NOP instructions. STOP halts program execution by
deactivating the PC. The only way to continue program execution is by means of the
debug-interface (Section 5.4). NOP does not execute any operation. It increments the PC
value without changing the state of any other register or memory location.

Instruction Description C Z S O

STOP PC  PC

NOP PC  PC + 1

Table 5.4: STOP and NOP instructions

Table 5.5 shows the LOAD and STORE instructions, which perform data transfers
between GPRs and the processor data space. Both instructions use a page pointer and two
operands to describe the address of the data address space. The two operands are the GPR
RS1 (register source 1) and the immediate data value (imm_data_value). RDS (register
destination source) is the GPR used as destination for load instructions or source for store
instructions. The addressing mode is base plus displacement. It uses the concatenation of
page pointers and RS1 (page_pointers.RS1) as the base address and the imm_data_value as
a constant displacement. This addressing mode makes it possible to implement the
register indirect addressing mode (imm_data_value is zero) and the immediate indirect
addressing mode (RS1 is R0), and allows efficient handling of composite data types.

Instruction Description C Z S O

LOAD RDS data_address_space[page_pointers.RS1 + imm_data_value]

STORE data_address_space[page_pointers.RS1 + imm_data_value]  RDS

Table 5.5: LOAD and STORE instructions

The following example clarifies the use of page pointers. A ROBSY processor variant
with data_space_depth equal to 20 and data_width equal to 8 requires a page pointer with
two GPRs R1 and R2 (Equation (5.11)). R1 corresponds to address bits 19-16, R2 to
address bits 15-8, and RS1 to address bits 7-0. The imm_data_value is added to the address
formed by the page pointer and RS1 in order to obtain the effective address value.

Table 5.6 shows the class-0 PUSH and POP instructions. They push or pop the content of
a GPR into the stack, using RDS as source or destination. The SP is incremented due to a
PUSH instruction, and decremented due to a POP instruction.

Instruction Description C Z S O

PUSH Stack_address_space[SP+1]  RDS, SP SP+1

POP RDS stack_address_space[SP] , SP SP-1

Table 5.6: PUSH and POP instructions

5 ROBSY processor 103

5.2.3.2 Class-1 instructions

Class-1 instructions are arithmetic, logic, and test instructions. For the execution of class-
1 instructions, the ROBSY processor operates as a three address machine. This means
that each class-1 instruction has one result and two operands. The result is always a GPR
represented by RDS, while the two operands are defined as a pair of GPRs (RS1 and RS2) or
as a GPR and an immediate value (RS1 and imm_data_value).

Table 5.7 presents the class-1 addition and subtraction instructions. The processor
supports six instruction variants for addition and subtraction. ADD and SUB use RS1 and
RS2, whereas ADDI and SUBI use RS1 and imm_data_value. If the processor configuration
parameter short_imm_set is true, the imm_data_value of ADDI and SUBI is sign
extended. ADDIU and SUBIU are used if no sign extension is required. The instructions
with an ending C use the carry flag as a third operand. These instructions are necessary to
perform additions or subtractions for variables larger than data_width.

Instruction Description C Z S O

ADD RDS RS1 + RS2 X X X X

ADDI RDS RS1 + imm_data_value (sign extended) X X X X

ADDIU RDS RS1 + imm_data_value (zero extended) X X X X

ADDC RDS RS1 + RS2 + C X X X X

ADDIC RDS RS1 + imm_data_value + C (sign extended) X X X X

ADDIUC RDS RS1 + imm_data_value + C (zero extended) X X X X

SUB RDS RS1 ˗ RS2 X X X X

SUBI RDS RS1 ˗ imm_data_value (sign extended) X X X X

SUBIU RDS RS1 ˗ imm_data_value (zero extended) X X X X

SUBC RDS RS1 ˗ RS2 ˗ C X X X X

SUBIC RDS RS1 ˗ imm_data_value ˗ C (sign extended) X X X X

SUBIUC RDS RS1 ˗ imm_data_value ˗ C (zero extended) X X X X

Table 5.7: ADD and SUB instructions

Table 5.8 shows the class-1 logic instructions. The processor supports two instruction
variants for logic operations. An instruction variant uses two GPRs for the source
operands, whereas the other instruction variant uses a GPR and an imm_data_value. The
last four columns of Table 5.8 show that the carry and overflow flag are always set to
zero, while the zero and sign flags are set depending on the result.

The transfer of data between GPRs or between a GPR and an immediate data value is
performed using OR and ORI instructions and R0 as RS1. Negation operations are
performed using NOR instructions and R0 as RS1. If the processor configuration
parameter short_imm_set is true, the imm_data_value is zero extended, and ORH with R0
as RS1 is used to move an imm_data_value to the MSBs of RDS.

104 5 ROBSY processor

Instruction Description C Z S O

AND RDS RS1 & RS2 0 X X 0

ANDI RDS RS1 & imm_data_value (zero extended) 0 X X 0

OR RDS RS1 | RS2 0 X X 0

ORI RDS RS1 | imm_data_value (zero extended) 0 X X 0

ORH RDS RS1 | imm_data_value (MSBs) 0 X X 0

XOR RDS RS1 ⊕ RS2 0 X X 0

XORI RDS RS1 ⊕ imm_data_value (zero extended) 0 X X 0

NOR RDS ~(RS1 | RS2) 0 X X 0

NORI RDS ~(RS1 | imm_data_value) (zero extended) 0 X X 0

Table 5.8: Logic instructions

Table 5.9 shows the class-1 shift and rotation instructions. Every instruction uses RS1 as
operand and imm_data_value to define the number of bits to shift or rotate the content of
the GPR represented by RS1. SHL and SHR perform logical shift operations with zeros
replacing the discarded bits. SHLC and SHRC use the carry flag to replace discarded bits.
SHRA performs an arithmetic shift, using the sign of RS1 to replace discarded bits. ROL
and ROR perform circular shifts or bit rotations. ROLC and RORC consider the carry
flag as part of the rotation operand.

Instruction Description C Z S O

SHL RDS RS1 << imm_data_value (0-fill) X X X X

SHLC RDS RS1 << imm_data_value (C-fill) X X X X

SHR RDS RS1 >> imm_data_value (0-fill) X X X X

SHRC RDS  RS1 >> imm_data_value (C-fill) X X X X

SHRA RDS  RS1 >> imm_data_value (sign-fill) X X X X

ROL RDS  rol(RS1, imm_data_value) X X X X

ROLC RDS rol(RS1.C, imm_data_value) X X X X

ROR RDS  ror(RS1, imm_data_value) X X X X

RORC RDS  ror(RS1.C, imm_data_value) X X X X

Table 5.9: Shift and rotate instructions

Table 5.10 shows the class-1 instructions used to emulate an LFSR. Every instruction
uses RS1 for the implementation of the LFSR state, and RS2 to define the feedback
polynomial. The LFSR is emulated using internal XORs between each state flip-flop.

Instruction Description C Z S O

LFSR RDS lfsr(RS1, RS2) X X X X

LFSRL RDS  lfsr(RS1, RS2) (C-concatenation) 0 X X X

LFSRH RDS  lfsr(RS1, RS2) (C-concatenation, O-feedback) X X X

Table 5.10: Test instructions

The LFSR instruction emulates a LFSR of data_width bits. For example, the LFSR in
Figure 5.3 with feedback polynomial of Equation (5.12) is emulated by a processor with

5 ROBSY processor 105

data_width equal to 8, RS1 equal to one (seed), and RS2 equal to 0xB8 (polynomial). Table
5.11 shows the sequence of values obtained by executing the instruction five times.

 𝑥𝑥8 + 𝑥𝑥6 + 𝑥𝑥5 + 𝑥𝑥4 + 1 (5.12)

0 0 0 0 0 0 0 1

Figure 5.3: 8-bit LFSR with 0xB8 feedback polynomial

Pattern number Pattern value

1 00000001

2 10111000

3 01011100

4 00101110

5 00010111

6 10110011

Table 5.11: Sequence of patterns 8-bit LFSR with 0xB8 feedback polynomial

LFSRL and LFSRH emulate an LFSR wider than data_width. For this purpose, LFSRL
computes the data_width LSBs of the LFSR, and LFSRH computes the MSBs of the
LFSR. The feedback and concatenation between registers is carried out through the carry
and overflow flags. LFSRL uses the carry flag as input for concatenation, and it sets the
overflow flag to the LSB of RS1 (feedback bit) and the carry flag to 0. LFSRH uses the
overflow flag as feedback input value and the carry flag as concatenation input value. It
sets the carry with the LSB of RS1 (concatenation bit) and leaves the overflow flag
unchanged.

 𝑥𝑥24 + 𝑥𝑥12 + 𝑥𝑥10 + 𝑥𝑥9 + 𝑥𝑥6 + 𝑥𝑥5 + 𝑥𝑥3 + 𝑥𝑥1 + 1 (5.13)

1: ; initialize GPRs
2: OR R1, R0, 0x01; LFSR state bits 7-0
3: OR R2, R0, 0x00; LFSR state bits 15-8
4: OR R3, R0, 0x00; LFSR state bits 23-16
5: OR R4, R0, 0x35; LFSR feedback polynomial bits 7-0
6: OR R5, R0, 0x0B; LFSR feedback polynomial bits 15-8
7: OR R6, R0, 0x80; LFSR feedback polynomial bits 23-16
8: ; compute first value
9: SHR R0, R2, 0x01; initialize carry with LFSR state bit 8
10: LFSRL R1, R1, R4; compute LFSR state bits 7-0. Set carry an overflow
11: LFSRH R3, R3, R6; compute LFSR state bits 23-16. Set carry
12: LFSRH R2, R2, R5; compute LFSR state bits 15-8. Set carry

Figure 5.4: Code for LFSR with 0x800B35 feedback polynomial and 8-bit data_width

106 5 ROBSY processor

A 24-bit LFSR with the feedback polynomial presented in Equation (5.13) is emulated by
a processor with data_width equal to eight using one LFSRL instruction and two LFSRH
instructions. In this case, it is necessary to use three GPRs to represent the feedback
polynomial (RS2), and other three GPRs to represent the LFSR state (RS1). Figure 5.4
shows the corresponding assembly code with R4-R6 representing the feedback
polynomial, R1-R3 the LFSR state, and a seed equal to 0x000001.

5.2.3.3 Instruction formats

All instructions of the ROBSY processor are coded using the same length and a uniform
format. The reason for this is that fetching and decoding fixed-length instructions is a
more efficient task in comparison to fetching and decoding variable-length instructions.

The MSB of each instruction is used to code the instruction class and is followed by a
fixed number of bits that represent the instruction command. The command width
(command_width) varies depending on the processor configuration given that each
instruction can be enabled or disabled. Equation (5.14) presents the formal definition of
the command_width. The number of enabled instructions belonging to class-0 and class-1
are represented by instrs_enable_c0 and instrs_enable_c1.

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = �log2�𝑚𝑚𝑚𝑚𝑚𝑚(|𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐0|, |𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐1|)�� (5.14)

The remaining instruction bits are used to code the operands of each instruction. Figure
5.5 shows the four resulting instruction formats. The bits marked with P represent
optional padding bits, which might be necessary depending on the processor
configuration. The instruction class CL requires one bit. The command_width is
calculated based on Equation (5.14), prog_mem_depth based on Equation (5.5), and
imm_data_width based on Equation (5.1).

The instruction format f1 is used for branch and call instructions (Table 5.2 and Table
5.3). The operand is the program memory address imm_address_value. The instruction
format f2 is used to code procedure return as well as STOP and NOP instructions (Table
5.3 and Table 5.4). These instructions do not use operands.

The instruction formats f3 and f4 are used for arithmetic, logic, test, PUSH/POP, and
LOAD/STORE instructions (Table 5.5, Table 5.6, Table 5.7, Table 5.8, Table 5.9, and
Table 5.10). f3 uses three operands in order to code the address of the three GPRs: RDS,
RS1, and RS2. The PUSH and POP instructions use just one of the three arguments. RS1 is
used for PUSH and RDS for POP. In both cases, the GPR R0 is used for the remaining
operands. The instruction format f4 also uses three operands. Two of them are used to

5 ROBSY processor 107

code GPRs and the other one is used to code an immediate value. The operands are RDS,
RS1, and imm_data_value. For LOAD/STORE instructions, imm_data_value represents
the address displacement.

RDSRS1RS2commandCL P P………

imm_address_valuecommadCL P P.…

commandCL P …………………………………………… P

RDSRS1imm_data_valuecommandCL P P….

f1

f2

f3

f4

1 command_width prog_mem_depth

1 command_width

1 command_width GPR_code_width

1 command_width imm_data_width

0instruction_width-1

GPR_code_width GPR_code_width

GPR_code_width GPR_code_width

Figure 5.5: Instruction formats

GPR_code_width is the number of bits required to code a GPR address. It is calculated as
follows:

 𝐺𝐺𝐺𝐺𝐺𝐺_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = ⌈log2(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑛𝑛𝑛𝑛𝑛𝑛)⌉ (5.15)

The instruction_width is calculated depending on the maximum width of the operands.
This value is known as max_op_width and is calculated based on the arguments of f1, f3,
and f4. Equations (5.16) and (5.17) show the formulas.

𝑚𝑚𝑚𝑚𝑚𝑚_𝑜𝑜𝑜𝑜_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,

3 ∙ 𝐺𝐺𝐺𝐺𝐺𝐺_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ,
2 ∙ 𝐺𝐺𝐺𝐺𝐺𝐺_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ + 𝑖𝑖𝑖𝑖𝑖𝑖_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

� (5.16)

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = 1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ + 𝑚𝑚𝑚𝑚𝑚𝑚_𝑜𝑜𝑜𝑜_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ (5.17)

5.2.4 Interrupts and exceptions

Interrupts and exceptions are unexpected events that required the disruption of the normal
flow of program execution. In the ROBSY processor, an interrupt is defined as an
unexpected event from outside the processor, while an exception is defined as an

108 5 ROBSY processor

unexpected event from within the processor. An exception is triggered due to an
anomalous condition that appears during program execution.

Although interrupts are not considered for the ROBSY approach, they are included for
future use. When an interrupt is triggered, the ROBSY processor suspends normal
program execution and starts the interrupt service routine (ISR). Nested interrupts are not
supported. If an exception is activated the processor automatically stores a code
representing the exception cause in the exception code SFR. Depending on the type of
exception, it stops program execution or starts the exception service routine (ESR). There
are two program memory addresses reserved for the ISR and ESR, which are defined as
follows:

 𝐼𝐼𝐼𝐼𝐼𝐼_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ − 2 (5.18)

 𝐸𝐸𝐸𝐸𝐸𝐸_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ − 1 (5.19)

The number of interrupts (interrupts_num) is configurable but limited by the processor
data_width. This limitation is necessary in order to use a single SFR for the
implementation of the interrupt register and mask. It is the job of the ESW to identify the
triggered interrupt. The value of interrupts_num is:

 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑛𝑛𝑛𝑛𝑛𝑛 = |𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|, 𝑤𝑤𝑤𝑤𝑤𝑤ℎ |𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖| ≤ 𝑑𝑑𝑎𝑎𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ (5.20)

The ROBSY processor is able to identify five different exception causes. The exception
code SFR is five bits wide. Three bits are used to code the exception, while two additional
bits are used to signal if the exception is currently active and if the ESR is being executed.
Table 5.12 presents the exception cause and the corresponding exception code. The first
four exceptions are treated as fatal errors, causing the processor to stop execution. The
I/O transaction error causes the execution of the ESR.

Cause Exception code

Normal operation 000

Stack overflow 001

Stack underflow 010

Undefined class 0 instruction 011

Undefined class 1 instruction 100

I/O transaction error 101

Table 5.12: Exception codes

5 ROBSY processor 109

5.3 Microarchitecture

The microarchitecture —also known as the processor organization— represents the way a
given ISA is implemented. Microarchitecture attributes include those hardware details
that are transparent to the programmer, such as operational units and interconnections
[142]. This section presents the main features of the microarchitecture of the ROBSY
processor considering the configuration parameters.

5.3.1 Top level view

The ROBSY processor is classified as a single instruction single data (SISD) processor
with separate address spaces (Harvard machine). Figure 5.6 shows the top level view
together with the debug-interface, I/O bus, and co-processors.

Program
memory

Stack
memory

Data
memoryData

controller

Stack
controller

WISHBONE

Debug Interface

System Interface

Debug interface

Clock, reset, interrupts

W
is

hb
on

e
bu

s

ROBSY processor

Co-processor
0

Co-processor
1

Co-processor
2

Co-processor
n

…
…

.

ALU/Shifter

CPU

SFR unit

Test unit

Interrupt unit

Exception unit

GPR unit

Data interface

Stack interface

Control unit

PC unit

IR unit

Figure 5.6: ROBSY processor top level view

The processor is composed of six main modules, three physically separate memories
(program, stack, and data memories), a stack controller, a data controller, and a central
processing unit (CPU). It has a single clock and reset port, and an interrupt input port.
The I/O bus is the physical link between the processor and co-processors, and is
implemented based on the Wishbone standard (Section 4.3.3.2). The debug-interface has
access to the processor memories and the CPU through dedicated ports. Section 5.4
presents detailed information about the debug-interface.

110 5 ROBSY processor

5.3.2 Program, data, and stack memories

The ROBSY processor has a program memory to store instructions, a data memory to
store data such as variables, and a stack memory to store data and return addresses. These
memories have different sizes, and therefore are physically separate in order to store a
value in a single address location using a single clock cycle. Otherwise, multiple memory
accesses would be necessary to access them, resulting in longer processing time and a
higher utilization of resources. The size of the stack memory is defined based on
stack_mem_depth and stack_width (Equations (5.9) and (5.10)), the size of the program
memory based on prog_mem_depth and instruction_width (Equations (5.5) and (5.17)),
and the size of the data memory based on data_width and data_mem_depth (Equations
(5.4) and (5.6)).

They are implemented using the synchronous dual port memory blocks found in the
FPGA. One port is connected to the processor, and the other one is connected to the
debug-interface. In this way, it is possible to access the memory content through the
debug-interface without stopping the processor execution. The memory blocks are
inferred based on a generic VHDL description [129], which allows using the same code
for FPGAs of different families and vendors.

5.3.3 Data controller

The data controller is in charge of multiplexing the access to the Wishbone bus and data
memory, depending on the effective address sent by the CPU through the data interface
unit. In the case that the address corresponds to a data memory location, the CPU signals
are forwarded to data memory. Otherwise, the Wishbone bus starts an I/O transaction.
The width of the Wishbone data and address buses is data_width and data_space_depth,
respectively.

The data controller implements the Wishbone protocol by means of the finite state
machine (FSM) presented in Figure 5.7. During an I/O transaction, the state machine
leaves the idle state, performing the state transitions represented by the green arrows. If
an I/O transaction error occurs, the state machine reaches the error state (red arrows). In
the error state, the data controller signalizes the CPU of an I/O transaction error, causing
the triggering of an exception. The implementation of the I/O bus protocol supports a
configurable number of wait cycles (wait state), a single master as part of the on-chip bus,
and single write and read transactions.

5 ROBSY processor 111

idle

end_wb

reading_
wbwaiting

error

writing_wb

Figure 5.7: Data controller finite state machine

5.3.4 Stack controller

The stack controller manages the access to the stack memory. It is in charge of accessing
the stack, setting the empty and full status flags based on the status of the stack memory,
and incrementing or decrementing the stack pointer (SP). The SP points out to the
memory address in which the last value was stored. In this way, it is possible to read the
stack during a POP or return instruction in a single clock cycle.

The stack controller is a state machine that handles the status flags and errors caused by
pushing to a full stack (stack overflow) or popping from an empty stack (stack
underflow). In the case of an error, the stack controller signalizes the error to the CPU.
Figure 5.8 shows the FSM.

empty_
stack

nonempty_
stack full_stack

Figure 5.8: Stack controller finite state machine

5.3.5 Central processing unit

The CPU represents the core of the processor. It is composed of 11 units: control, IR, PC,
GPR, SFR, test, interrupt, exception, ALU/Shifter, stack interface, and data interface
units. Additionally, it can be configured as a multicycle or three stage pipeline unit.

112 5 ROBSY processor

5.3.5.1 Pipelining

If the configuration parameter pipeline_set is set to true, the ROBSY processor is
implemented as a pipelined processor. Otherwise, it is implemented as a multicycle
processor. The multicycle processor executes each instruction one at a time using
multiple clock cycles. On the other hand, the pipelined processor is equipped with a three
stage pipeline that allows processing three instructions at the same time. The three stages
correspond to instruction fetch (IF), instruction decode (ID), and execute (EX).
Additionally, the processor supports operand forwarding multiplexers that avoid stalling
the pipeline due to data dependencies. Figure 5.9 presents a simplified illustration of the
three pipeline stages.

Program
memoryPC

Decoding
logic

GPRs

Data
address
space

IF/ID ID/EXIF stage ID stage EX stage

ALU

Figure 5.9: Three-stage pipelined processor

A memory access stage was not implemented in the ROBSY processor. The reasons for
this are the absence of a data cache and the use of a small dedicated arithmetic module
that computes effective addresses during the EX stage. This module is located in the data
interface unit. In the same way, a write back stage was not included in the processor.
Experiments were carried out with a three stage (no write back) and four stage (with write
back) ROBSY processor implementations [143]. It was shown that the four stage
processor requires approximately 10% more resources in comparison to the three stage
processor. The additional resources and the design complexity of a four stage pipeline
were the determinant factors for the implementation of a three-stage pipelined processor.

5.3.5.2 Control unit

The CPU control unit is in charge of controlling all other units. It is implemented using a
FSM, which operates based on the instruction being processed, interrupt and exception
triggers, and control signals coming from the debug-interface.

The implementation of the FSM depends on pipeline_set because the multicycle and
pipeline processors require different FSMs. Figure 5.10 presents the state diagrams of
both FSMs, in which the black arrows are state transitions performed during normal

5 ROBSY processor 113

instruction execution flow. Blue arrows correspond to state transitions performed in case
of an interrupt or exception trigger, and red arrows correspond to state transitions
performed in case of a fatal error (Section 5.2.4).

inst_fetch

inst_
decode

execute

irq

stop

op_fetch mem_write

ready

stop

irq

cond_jmp_
check_

pred

uncond_
jmp_

bubble

stack_
push_pop

mem_read

mem_write

uncond_
jmp_ret

cond_jmp_
bubble

mem_read
_bubble

Figure 5.10: FSM of multicycle (left) and pipeline (right) processor

The FSM of the multicycle processor (Figure 5.10 left) has seven states. The five states
that describe the normal instruction execution flow are instruction fetch (inst_fetch),
instruction decode (inst_decode), operand fetch (op_fetch), memory write (mem_write),
and execute (execute). inst_fetch and inst_decode represent the instruction fetch and
decode actions. Transitions to op_fetch or mem_write are performed during the execution
of a LOAD or STORE instruction, respectively. The execute state is reached during the
execution of any other instruction (e.g. arithmetic, logic, and test instructions), or after an
operand fetch (LOAD instruction). The interrupt request state (irq) is used to start the
execution of an ISR or ESR. In the case of an interrupt, the transition to the irq state takes
place after the execution of the actual instruction. A transition to the stop state takes place
in case of a fatal error, a STOP instruction, or a stop signal from the debug-interface.

The FSM of the pipelined processor (Figure 5.10 right) has eleven states. The processor
remains in the ready state during the execution of arithmetic, logic, and test instructions.
The state machine leaves the ready state in order to attend interrupt or exception requests,
stop the processor, or insert bubbles (delays) in the pipeline. The latter might be necessary
during the execution of branching instructions, procedure calls, LOAD, STORE, PUSH,

114 5 ROBSY processor

and POP instructions. The transition to irq and stop states works in a similar way as in the
FSM of the multicycle processor.

5.3.5.3 Program counter and instruction register units

The program counter unit (PC unit) fetches an instruction from program memory. It
computes the address of the next instruction to fetch either by incrementing the PC or by
updating the PC with an absolute address value. The absolute address value is obtained
from a branch or procedure call instruction.

The instruction register unit (IR unit) stores the instruction or instructions (pipeline
implementation) that are being executed. In the case of the pipeline processor, there is an
IR for every pipeline stage. When an interrupt or exception is triggered, the IR unit is
responsible of loading a CALL_C in the IR with the program address of the service
routine. This is performed when the state machine of the control unit reaches the irq state.

5.3.5.4 Stack and data interfaces

The stack and data interfaces implement the link between the CPU and the stack and data
controllers. They are used to start a data transfer to/from the stack memory, SFRs, data
memory, or I/O.

The stack interface is in charge of managing data transfers to/from stack memory. For this
purpose, a mechanism based on push and pop control signals is implemented between the
stack interface and the stack controller. The data interface computes the effective data
space address based on the page pointers, the base register, and the displacement.
Depending on the region pointed out by the address, the data interface starts an external
data transfer through the data controller unit or an internal data transfer with the SFR unit.

5.3.5.5 GPR and SFR units

GPRs and SFRs are found in the GPR and SFR units, respectively. GPRs are
implemented based on FPGA registers or memory blocks, while SFRs are implemented
based on FPGA registers.

The configuration parameter GPR_mem defines the implementation mechanism of the
GPRs. When this parameter is true, GPRs are implemented using the FPGA memory
blocks. Otherwise, they are implemented using FPGA registers. In the case that memory
blocks are used for the pipeline processor implementation, it is necessary to use two true
dual port memory instances in order to provide enough read and write ports for the
pipelined processor.

5 ROBSY processor 115

5.3.5.6 ALU/Shifter and test unit

ALU, shifter, and test units perform the arithmetic, logic, shifting, and test instructions
supported by the processor. Additionally, these units are responsible of properly setting
the carry, zero, sign, and overflow flags.

The ALU performs addition, subtraction, and bitwise logic functions. It is implemented
by means of FPGA look-up tables (LUTs). The shifter carries out shifting and rotation
instructions. It is implemented as a barrel shifter or multiplier based on the value of the
configuration parameter shifter_mult. If shifter_mult is false, the barrel shifter is
implemented in a multiplexer topology using FPGA LUTs. If shifter_mult is true, the
shifter is implemented using the multipliers available in the FPGA. The test unit is
implemented as a combinational function that performs a LFSR operation and sets the
flags properly. For this purpose, the FPGA LUTs are used.

5.3.5.7 Interrupt and exception units

Interrupt and exception units manage interrupt requests and occurrence of exceptions.
They generate the signals required by the control, SFR, PC, and IR units in order to start
the execution of an ISR or ESR.

The interrupt unit uses a global interrupt mask that prevents nested interrupts, and that is
also controlled by the CALL_C and RET_C instructions. The interrupt unit reacts to
external interrupt requests and signalizes the CPU that the ISR has to be executed.

The exception unit is equipped with an FSM with three states (Figure 5.11). Each state
represents a different execution mode: normal execution (normal_ex), exception
execution (exception_ex), and fatal error (fatal_error). The state machine remains in
normal_ex until an exception is triggered. If the exception trigger is produced by an I/O
transaction error, the FSM goes to the exception_ex state, and signalizes the CPU that the
ESR has to be executed. The FSM remains in this state until the exception service routine
ends (blue arrows). The FSM performs a transition to fatal_error if the exception cause is
not an I/O transaction error, or if a new exception is triggered during the ESR (red
arrows). The arrival to the fatal_error state informs the CPU state machine that it has to
stop program execution.

normal_ex exception_
ex fatal_error

Figure 5.11: FSM of exception module

116 5 ROBSY processor

5.4 Debug-Interface

As discussed in Section 4.3.3, the debug-interface is the communication link between the
processor and the ATE. Therefore, it is used for communication and debugging purposes.
In the same way as the ROBSY processor, it is equipped with configuration parameters
that allow its adaptation to the processor and test scenario. It is described in VHDL using
standard language constructs. However, an FPGA-dependent JTAG primitive is necessary
to access JTAG signals and TAP state information. This primitive cannot be inferred
using a generic VHDL description.

5.4.1 Debug-commands

The debug-interface supports 23 debug-commands used with the multicycle or pipelined
processor. Table 5.13 presents a description of each command. The first column is the
command name, the second column shows commands executed only in the stop state
(Figure 5.10), and the last column provides a brief description of each command.

Debug-command Stop Description

SINGLE_STEP X Processor executes a single instruction. CPU control unit returns to stop state.

HALT Processor stops program execution. CPU control unit goes to stop state.

CONTINUE X Processor resumes program execution. CPU control unit leaves stop state.

RESET Processor is reset. Program execution is restarted from program address 0.

PROG_MEM_READ Content of a single program memory cell is read.

PROG_MEM_WRITE Content of a single program memory cell is written.

DATA_MEM_READ Content of a single data memory cell is read.

DATA_MEM_WRITE Content of a single data memory cell is written.

STACK_MEM_READ Content of a single stack memory cell is read.

STACK_MEM_WRITE Content of a single stack memory cell is written.

CPU_STATE_READ State of the CPU control unit is read.

GPR_READ Content of a single GPR is read.

GPR_WRITE X Content of a single GPR is written.

SFR_READ Content of a single SFR is read.

SFR_WRITE X Content of a single SFR is written.

PC_READ X Content of the PC is read. Value read is address of last executed instruction.

PC_WRITE X Content of the PC is written.

SP_READ Content of the SP is read.

IR_READ Content of the IR is read.

BREAK_POINT_READ Address and activation value of a single break point is read.

BREAK_POINT_WRITE Address and activation value of a single break point is written.

INTERRUPT_READ Information about the execution of an interrupt service routine is read.

DEBUG_ID_READ Identification value of the debug-interface is read.

Table 5.13: Debug commands

5 ROBSY processor 117

The debug-commands HALT, CONTINUE, RESET, DATA_MEM_READ,
DATA_MEM_WRITE, CPU_STATE_READ, and DEBUG_ID_READ are necessary for
the ATE/FBTS communication. DEBUG_ID_READ represents an alternative to test the
communication link. HALT, CONTINUE, and RESET are used for synchronization
purposes, and DATA_MEM_READ and DATA_MEM_WRITE are used to exchange
information between ATE and processor.

Loading a new program to the processor program memory is performed by means of the
PROG_MEM_READ and PROG_MEM_WRITE debug-commands. The other
commands are used for debugging, and are not necessary during test execution.

5.4.2 Access to the JTAG port

The debug-interface has access to the JTAG port based on the JTAG primitive. In order to
understand how this primitive works, it is necessary to take a look at the architecture of
an IEEE 1149.1 compliant FPGA. For this purpose, Figure 5.12 illustrates the JTAG
components and interconnections included in an FPGA. The components are TAP
controller, JTAG IR and DRs, and at least one private (or user) DR. The latter is accessed
through the JTAG primitive.

TDI

TAP controller

JTAG IR

Bypass DR

IDcode DR

BScan DR

Instruction decoder

Private DR

User Logic implementing FBTS

TMS

TCK

TDI

TDO

TCK …. TDO

FPGA

Figure 5.12: JTAG components and interconnections in an FPGA device

The JTAG primitive provides access to the JTAG ports TDI, TDO, TCK, and additional
signals that inform the actual state of the TAP controller. The interface to the user logic is
FPGA dependent and is considered by the debug-interface VHDL description.

118 5 ROBSY processor

5.4.3 Structure of the debug-interface

The debug-interface uses two debug DRs, which are accessed through the FPGA private
DR. One of the debug DRs is the debug command register, while the other one is the
debug data register. The former is used to shift in the debug-command, and the latter is
used to shift in and out data values associated to the command.

Figure 5.13 presents the block diagram of the debug-interface. The structure is very
similar to the IEEE 1149.1 architecture given that the debug command and data register
are connected between the TDI and TDO signals in the same way as any other JTAG DR.
Additionally, the debug-interface has a sub-module that implements the functions
required for every command.

Debug command
register

Control
TCK
TDI

TDO

Processor debug ports

Finite
state

machine

…….

Program memory
access

Debug interface

Debug data
register

Single step, halt,
continue

Reset

Data memory
access

Stack memory
access

CPU state access

GPRs access

SFRs access

PC, SP, IR access

Break points

Interrupt access

Debug ID access

Figure 5.13: Block diagram of the debug-interface

The debug-interface has two groups of ports. The first group comprises ports accessed
through the FPGA private DR. These ports are TCK, TDI, TDO, and control signals
representing the actual state of the TAP controller. The second group are processor debug
ports that connect the debug-interface to the processor.

5.4.3.1 Debug command register and debug data register

The width of the debug command and data registers depends on the configuration options
of the debug-interface and processor. The number of bits required to code a debug

5 ROBSY processor 119

command (deb_command_reg_width) depends on the commands that are enabled. In this
case, the maximal width is five bits, which is obtained when the 23 commands are
enabled. The debug command register width is described as follows:

 𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = ⌈log2(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)⌉ (5.21)

The width of the debug data register (deb_data_reg_width) depends on the processor
configuration and debug commands enabled. It is computed as follows:

𝑑𝑑𝑑𝑑𝑑𝑑_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑟𝑟𝑟𝑟𝑟𝑟_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = max

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ,
 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ,
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,
𝐺𝐺𝐺𝐺𝐺𝐺_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ,
⌈log2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑛𝑛𝑛𝑛𝑛𝑛)⌉,

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ + 1⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 (5.22)

It seems that some factors in Equation (5.22) are redundant. However, depending on the
debug-commands that are disabled, some of the factors are not considered. For example,
the last factor of the equation is not necessary if the break point commands are disabled.

Figure 5.14 shows the switching FSM included in the debug-interface. It is used to
synchronize shifting operations to both debug registers based on a single FPGA private
DR. In this way, additional private DRs are available for other purposes.

command_
shift

data_shift

Figure 5.14: Switching state machine

The FSM toggles between command_shift and data_shift states at the end of every data
shift cycle of the TAP controller. There is an exchange of information between the ATE
and debug command register when the state machine is in the command_shift state,
whereas the exchange of information between the ATE and debug data register takes
place when the state machine is in the data_shift state.

120 5 ROBSY processor

5.4.3.2 Finite state machine

The FSM of the debug-interface is used to coordinate all steps necessary to process each
debug-command. There is one FSM for the multicycle processor and another FSM for the
pipelined processor. Figure 5.15 shows the state diagrams of both FSMs.

cd_shift_
00

store_00

cd_shift_
01

execute_
00

execute_
10

cd_shift_
10

execute_
11

cd_shift_
11

cd_shift_
00

store_00

cd_shift_
01

execute_
00

Figure 5.15: FSM of debug-interface for multicycle (left) and pipeline(right) processor

Inputs to the FSMs are the debug-command shifted in the debug command register and
the switching signal from the switching FSM. The cd_shift_# states are states, in which
the command and data values are shifted in the debug registers. A transition to a store_#
or execute_# state is performed after the end of command and data shifts. The store_00
state is used to store the information shifted in the debug data register for a later used. The
execute_# states are used to interact with the processor.

Both FSMs have two basic transition paths: cd_shift_00, store_00, cd_shift_01,
execute_00 (red arrows), and cd_shift_00, execute_00 (blue arrows). The blue transition
path represents the execution of debug commands that shift in/out a single data value
to/from the debug data register. This is the case of SINGLE_STEP, HALT, CONTINUE,
RESET, CPU_STATE_READ, PC_WRITE, SP_READ, BREAK_POINT_READ,
BREAK_POINT_WRITE, INTERRUPT_READ, and DEBUG_ID_READ commands.
The red transition path represents the execution of debug commands that shift in/out two
values to/from the debug data register. This is the case of the remaining commands. For
example, PROG_MEM_READ requires shifting in an address and shifting out the value
read from program memory.

The FSM of the pipelined processor includes a third transition path represented by the
green arrows (cd_shift_00, execute_10, cd_shift_10, execute_11, cd_shift_11,
execute_00). This path is used for the PC_READ and IR_READ commands in order to
read the PC and IR values of fetch, decode, and execute pipeline stages.

5 ROBSY processor 121

5.5 Configuration parameters

Configuration parameters are used to adapt ROBSY processor and debug-interface to the
test scenario. The assignment of values to these parameters is performed before synthesis.
In this way, it is possible to save resources because processor functions not required for a
given test scenario are not implemented.

Table 5.14 presents the configuration parameters, which are grouped in three classes:
ISA, microarchitecture, and debug-interface. The first column defines the class, the
second columns the parameter name, and the third column the data type of the parameter.
The last column presents a short description of the configuration parameter.

Class Parameter Type Description

ISA

instruction_enable Boolean Enables/disables each of the 50 instructions.

instruction_code Natural Sets instruction command code value.

data_width Natural Sets processor data width. Equation (5.4).

short_imm_set Boolean Sets value of imm_data_width. Equation (5.1).

GPRs_num Natural Sets number of GPRs. Equation (5.2).

SFRs_num Natural Sets number of SFRs. Equation (5.3).

prog_mem_depth Natural Sets depth of program memory. Equation (5.5).

stack_mem_depth Natural Sets depth of stack memory. Equation (5.9).

data_mem_depth Natural Sets depth of data memory. Equation (5.6).

IO_addr_num Natural Sets number of I/O addresses. Equation (5.7).

interrupts_num Natural Sets number of interrupts. Equation (5.20).

Micro-
architecture

GPR_mem Boolean GPRs with FPGA memory blocks or registers.

shifter_mult Boolean Shifter with FPGA multipliers or LUTs.

pipeline_set Boolean Enables/disables the processor pipeline.

wb_retries_num Natural Sets number of retry cycles of Wishbone bus.

wb_waits_num Natural Sets number of wait cycles of Wishbone bus.

Debug-
interface

deb_command_enable Boolean Enables/disables each of the 23 debug-commands.

deb_comand_code Natural Sets debug command code value.

Table 5.14: Configuration parameters

The ISA configuration parameters influence the instruction set, native data type, registers,
memory, I/O, and interrupts. The first two parameters of Table 5.14 disable/enable each
of the 50 instructions supported by the processor and define the value of the instruction
command code. The other ISA configuration parameters define the processor native data
type width, depth of memories, and number of GPRs, SFRs, I/O, and interrupts.

Based on the ISA parameters, other properties of the processor are automatically
computed. They are the instruction width (Equation (5.17)), the width of the program,
data, and stack memories (Equations (5.17), (5.4), and (5.10)), and the number of page

122 5 ROBSY processor

pointer registers (Equation (5.11)). The width of the debug data register is also computed
as presented in Equation (5.22).

The microarchitecture configuration parameters affect properties of the processor that are
not visible to the programmer. Configurability at this level allows adding, removing, or
substituting functions and components of the processor without affecting the ISA. In the
ROBSY processor, the microarchitecture configuration parameters are used to define the
implementation mechanism of the barrel shifter and GPRs, implementation of the pipeline
stages, and properties of the Wishbone bus. The latter are required to delimit the maximal
number of wait and retry cycles allowed during an I/O transaction.

The last configuration parameter class corresponds to the debug-interface parameters. It is
possible to enable/disable debug-commands and define the command code. Based on
these parameters, the width of the debug command register is computed as presented in
Equation (5.21).

The ISA configuration parameters impact the resource utilization and test time. They also
make necessary to adjust the processor development tools (complier, assembler,
instruction set simulator, etc.). Additionally, the ATE has to know the value of some of
the ISA configuration parameters for communication purposes. For example, in order to
write to or read from data memory, the ATE has to know the data_width and
data_mem_depth values. The microarchitecture configuration parameters impact the
resource utilization and test time. On the other hand, the debug-interface configuration
parameters only affect the resource utilization.

5.6 Summary

This chapter presented the design and implementation details of the ROBSY processor
and debug-interface. The instruction set comprises 50 instructions used for branches,
procedure calls, load and store transactions, and arithmetic, logic, and test operations. The
test instructions are based on the emulation of an LFSR.

The processor supports fixed-point values with a configurable width, and is equipped
with GPRs, SFRs, and three separate address spaces known as program, data, and stack
spaces. Program and stack address spaces represent the program and stack memories,
while the data address space represents the data memory, SFRs, and I/O. PC and SP
address the program and stack spaces. A page pointer implemented based on GPRs
addresses the complete data space. The processor supports a configurable number of

5 ROBSY processor 123

interrupts and six exceptions to manage error conditions triggered during program
execution.

The processor microarchitecture has six main modules, three physically separate
memories (program, stack, and data), a stack controller, a data controller, and a central
processing unit (CPU). The processor works with a single clock and reset signals, and it
has an interrupt input port. It supports a multicycle operation mode as well as a three
stage pipeline mode. The I/O bus is implemented based on the Wishbone standard.

The debug-interface supports 23 debug-commands. These commands make it possible to
control the test program execution and exchange test information with the ATE. The
debug-interface is described in VHDL using standard language constructs, but it is
necessary to include an FPGA dependent JTAG primitive in order to access JTAG signals
and TAP state information.

The adaptation mechanism of the ROBSY processor and debug-interface is based on
configuration parameters, whose values are defined before synthesis. The configuration
parameters are grouped in three classes: ISA, microarchitecture, and debug-interface.
They influence the way the processor and debug-interface are implemented, altering the
processor resource utilization and execution time. Chapter 6 presents the mechanism used
to define the value of the configuration parameters automatically, and Chapter 7 presents
the effect that these parameters have on the resource utilization and test time.

125

6 Automatic generation process

6.1 Introduction

The automatic generation of the test system is essential for the viability of any FBT
approach. It reduces costs, accelerates test development, and minimizes errors caused by
the human factor.

In the ROBSY approach, the automatic generation process is in charge of the generation
of software (SW) for the ATE, embedded software (ESW) for the ROBSY processor, and
hardware (HW) descriptions for co-processors and the complete FBTS. Additionally, the
automatic generation process is in charge of determining proper values for the processor
and debug-interface configuration parameters.

This chapter presents the automatic generation process of the test system for an FBTS
with a single processor/co-processor pair, in which the main emphasis lies on the ESW
generation and the adaptation of the processor. Section 6.2 presents an overview of the
automatic generation process. Section 6.3 deals with the automatic generation of SW for
the ATE. Section 6.4 deals with automatic generation of ESW and HW and the
assignment of values for the processor and debug-interface configuration parameters.
Finally, section 6.5 presents a summary of the chapter.

6.2 Overview of the automatic generation process

Figure 6.1 shows an overview of the automatic generation process for a single DUT-M.
The DUT-M is the main source of information for the generation process because it
contains the description of the DUT I/Os, timing, and electrical properties, as well as the
layer procedures specifying the test algorithms. Based on the DUT-M description, the
automatic generation process produces SW for the ATE, ESW for a processor, and HW
for a co-processor.

The first step of the generation process is the layer partitioning, which defines the
location of interfaces I2 and I3, and therefore the layers that should be implemented in
SW, ESW, and HW. As already presented in Section 3.4.6, there are 6 possible layer
partitions considering that L1 and L5 are always implemented in HW and SW,
respectively.

126 6 Automatic generation process

After the layer partitioning is performed, layers that should be implemented in SW, ESW,
and HW are the input to the ATE program generator and FBTS generator. In this case,
DUT I/Os, timing, and electrical properties described in the DUT-M are grouped together
with the HW layer procedures because they are required for the implementation of L1 and
the generation of additional files used by the synthesis tool (e.g. pin assignment file).

Layer partitioning

Additional
information

DUT-M

ATE
program

generator

SW layer
procedures

ESW layer
procedures

HW layer
procedures

FBTS
generator

Additional
information

Processor/
debug-interface
information

ATE test
program

FPGA
configuration fileObject codeAuxiliary files

Figure 6.1: Overview of automatic generation process for a single DUT-Model

The ATE program generator is in charge of producing the test program and auxiliary files
required by the ATE. For this purpose, additional information is passed to the generator,
which corresponds to the ATE software tool and the structure of the BScan chain. Apart
of the SW layer procedures, processor/debug-interface information generated by the
FBTS generator depending on the value of the processor and debug-interface
configuration parameters is also passed to the ATE program generator. Section 6.3
presents the ATE program generator in more detail.

The FBTS generator produces the FPGA configuration file and the object code executed
by the ROBSY processor. Additionally, the FBTS generator is responsible of assigning
values to the processor and debug-interface configuration parameters, compiling and
assembling the ESW layer procedures, and generating the co-processor and FBTS
hardware descriptions. Furthermore, it is responsible of synthesizing the hardware

6 Automatic generation process 127

descriptions based on the corresponding FPGA synthesis tool. Section 6.4 presents the
FBTS generator in more detail.

6.3 ATE program generator

Figure 6.2 shows the ATE program generator. It consists of a SW compiler and an
auxiliary SW generator. The SW compiler generates the ATE test program, while the
auxiliary SW generator generates auxiliary files required by the ATE.

SW layer
procedures

Processor/
debug-interface
information BSDL

template

SW
compiler

Auxiliary SW
generator

ATE test
program

Auxiliary
files

ATE tool BScan chain
description

Figure 6.2: ATE program generator

6.3.1 ATE/FBTS communication

Before presenting details of the SW compiler and auxiliary SW generator, it is necessary
to explain the ATE/FBTS communication mechanism. The data exchange between ATE
and FBTS takes place through the JTAG interface and the debug command and data
registers of the debug-interface. In this case, the ATE takes the role of the active
communication participant, while the processor takes the role of the passive participant.

The ATE sends an identification tag in order to inform the processor which procedure of
the highest layer implemented in ESW to execute. After that, it sends the value of the
procedure arguments of type IN and INOUT. After the arguments are sent, the ATE sends
a start command that indicates the processor to start execution. At this point, the ATE
waits until the FBTS finishes the execution of the ESW and HW layer procedures by
polling the corresponding status flag. When the FBTS finishes execution, the ATE
acquires the value of the procedure arguments of type OUT and INOUT. An example of
DUT-M procedures is presented in Table 7.2.

128 6 Automatic generation process

In the case that the FBTS is equipped with two performance counters (active time and test
time counter) to measure execution time, the ATE has to send the proper information to
initialize them and receive their content. Section 7.2.4 provides more information about
the performance counters.

The steps carried out during the ATE/FBTS communication considering the amount of
data transfers (DTs) are as follows:

1. Initialization of test time counter (3 DTs).
2. Initialization of ESW procedure.

a. Send of procedure identification tag (1 DT).
b. Send value of arguments of type IN and INOUT (x DTs).
c. Acquisition of processor status (1 DT).
d. Send start command (1 DT).

3. Poll processor status (p DTs).
4. End ESW procedure.

a. Acquisition of argument values of type OUT and INOUT (y DTs).
b. Acquisition of the active time counter content (1+c DTs).

5. Acquisition of the test time counter content (3+c DTs).

Steps 1 and 5 are performed at the beginning and end of test execution, respectively.
Steps 2 to 4 are performed each time that a procedure belonging to the highest layer
implemented in ESW is called by a SW layer procedure. A DT is a single access to the
debug-interface, which typically comprises four independent JTAG shifting operations.
The amount of DTs required for sending or acquiring argument values (x and y) depends
on the processor data_width and the number and width of arguments. The amount of DTs
required to acquire the counter values (c) depends on the processor data_width and the
counters width. The amount of data-transfers performed during polling (p) depends on the
time that the ATE has to wait until the processor executes the ESW procedure. Due to the
layer concept, the execution of the ESW procedure also involves the execution of
procedures belonging to lower layers.

A region of the processor data memory is reserved for the ATE/FBTS communication.
This region is used to share procedure tags, argument values, performance counter values,
and start and finish conditions. During the test execution, there is no need to use all the
features of the debug-interface. Therefore, only the following debug-interface commands
are required:

• HALT, CONTINUE, RESET, DATA_MEM_READ, DATA_MEM_WRITE,
CPU_STATE_READ, SFR_READ, SFR_WRITE, DEBUG_ID_READ.

6 Automatic generation process 129

6.3.2 Software compiler

The SW compiler is in charge of parsing SW layer procedures for the generation of the
ATE test program. For this purpose, it needs to know the tool used by the ATE to execute
the test program. In Section 6.3.3 more information about the supported tools is provided.

The ATE/FBTS communication is realized based on wrapper procedures. These wrappers
are added automatically to the test program, and they describe the steps explained in
Section 6.3.1. The SW compiler makes use of the processor/debug-interface information
delivered by the FBTS generator for this purpose. This information corresponds to the
processor and debug-interface configuration parameters data_width, data_mem_depth,
deb_comand_code, and deb_comand_enable. In the same way, the start address of the
region in the processor data memory used for communication purposes is part of the
processor/debug-interface information.

The SW compiler is composed of a lexical analyzer and a parser that translates SW layer
procedures to the language supported by the ATE tool. The GNU tools FLEX (lexical
analyzer generator) and Byson (parser generator) were used for the development of the
SW compiler. For this purpose, the Cygwin Unix-like environment was used.

6.3.3 Auxiliary software generator and supported ATE tools

The auxiliary SW generator generates additional auxiliary files required by the ATE tool.
For this purpose, the auxiliary SW generator makes use of most of the processor/debug-
interface information delivered by the FBTS generator. This information corresponds to
the deb_comand_code, and deb_comand_enable configuration parameter values, as well
as the processor configuration parameter values necessary to compute the size of the
debug-interface command and data registers (Equations (5.21) and (5.22)).

The current version of the SW generator supports two ATE tools. The first one is Nebula
from Intellitech [144], which interprets test programs written on a procedural description
language (PDL) that is not 100% in compliance with the PDL specified in the IEEE
1149.1-2013 standard [1]. The main differences between the PDL supported by Nebula
and the standard are as follows:

• Standardized level-0 instructions iProc and iProcGroup are not supported by
Nebula.

• Level-0 instruction iScope is supported by Nebula but it is not included in the
standard.

130 6 Automatic generation process

The second tool is quartus_stp from Altera [145], which interprets scripts written in the
Tool Command Language (TCL). This tool is compatible with Altera FPGAs only.

If Nebula is used, the SW compiler transforms the SW layer procedures to PDL level-1.
In this case, the auxiliary SW generator produces a BScan chain file, a BScan description
language (BSDL) file, and an auxiliary PDL file. These files are generated based on a set
of templates or descriptions that are either developed by the test engineer or are part of a
library. The BScan chain file describes the structure of the BScan chain on the PCB, and
it is generated based on a BScan chain description file. The BSDL file corresponds to the
FPGA BSDL description. This file is generated based on a BSDL template of the FPGA
and updated with the debug command and data registers of the debug-interface, the JTAG
instructions required to access them, and mnemonics of the debug-interface command
codes. The auxiliary PDL file describes all shifting operations required to execute each of
the debug-interface commands.

If instead of Nebula, the quartus_stp tool is used, the SW compiler transforms the SW
layer procedures to a TCL script. In this case, the auxiliary SW generator produces a
single auxiliary file, which includes the description of the debug-interface command and
data registers, the debug-interface command codes, and the TCL procedures that describe
all shifting operations required to execute each of the debug-interface commands. In this
case, there is no need for a BScan chain or BSDL description file because the quartus_stp
tool is able to identify the Altera FPGA found on the PCB automatically.

The auxiliary SW generator is implemented in TCL. This script reads the required
information and generates the corresponding auxiliary files.

6.4 FPGA based test system generator

Figure 6.3 presents the FBTS generator, which is composed of the ESW generator, HW
generator, and synthesis tool. The ESW generator produces object code and
processor/debug-interface information required by the SW and HW generators. The
inputs are the ESW layer procedures and a subset of configuration parameters known as
the independent configuration parameters (Section 6.4.2). The HW generator produces
the FBTS description and additional files required by the synthesis tool such as FPGA
constraints and pin assignment files. This is carried out based on the HW layer
procedures, PCB netlist and constraints, and the outcome of the ESW generator. The
synthesis tool is in charge of producing the FPGA configuration file.

6 Automatic generation process 131

The dashed arrow in Figure 6.3 indicates that it is not mandatory to use the object code as
input to the HW generator. In the case that the object code is used as input, the content of
the processor’s program and data memories is initialized with the object code and
becomes part of the FPGA configuration file. Otherwise, the ATE has to load the object
code to the processor memories after the FPGA is configured. Using the ATE to write to
program memory provides a way to change the functionality of the FBTS without
reconfiguring the FPGA.

HW layer
procedures

Processor/
debug-interface

information

ESW
genarator

ESW layer
procedures PCB netlist &

constraints

Object code
I/O address

table

HW
genarator

FBTS
description

Synthesis tool

FPGA
constraints

FPGA
configuration file

Independent
configuration
parameters

Figure 6.3: FBTS generator

132 6 Automatic generation process

6.4.1 Processor/co-processor communication

Before presenting the details of the FBTS generator, it is necessary to explain the
processor/co-processor communication mechanism. The communication mechanism is
very similar to the ATE/FBTS communication mechanism presented in Section 6.3.1.
However, instead of the JTAG interface and debug command and data registers, the data
exchanged is performed based on the on-chip Wishbone bus and Wishbone registers
included in each co-processor. In this case, the processor takes the role of the active
communication participant, while the co-processor takes the role of the passive
participant.

The steps performed during the communication are the same steps performed for the
ATE/FBTS communication with the exception that it is not necessary to exchange
procedure identification tags. In this case, each co-processor is equipped with unique
control and status Wishbone registers per procedure that are addressed depending on the
procedure that should be executed. Procedure arguments are represented by Wishbone
registers, and their number depends on the number and width of arguments and processor
data_width.

The Wishbone registers are mapped to the I/O address space of the processor. As shown
in Figure 6.3, the ESW generator produces an I/O address table that contains the
addresses assigned to all co-processor Wishbone registers. This information is used by the
HW generator for the generation of the co-processor hardware description.

6.4.2 Reorganization of the configuration parameters

One of the main tasks of the FBTS generator is to determine the value of a subset of the
processor and debug-interface configuration parameters. In this way, the ROBSY
processor is adapted to a given test scenario and there is still some room for the test
engineer to evaluate different test time and resource utilization trade-offs.

For this purpose, the processor and debug-interface configuration parameters are
reorganized in four groups. Table 6.1 presents the four groups, which are known as
constant (independent), variable (independent), DUT-M (dependent), and ASM
(dependent). The first column shows the name of the group, whereas the second, third and
fourth columns show the name, type, and class of a given configuration parameter.

The adaptation of the processor is performed by determining the proper value of the
dependent configuration parameters. The value of the DUT-M (dependent) configuration
parameters is computed by analyzing the ESW layer procedures of the DUT-M, whereas

6 Automatic generation process 133

the value of the ASM (dependent) configuration parameters is computed by analyzing the
assembly program generated during the ESW compilation (Section 6.4.3.1). This is
performed as follows:

i. data_mem_depth is computed by looking at the total number of global and local
variables found in ESW layer procedures. For this purpose, it is necessary to
consider the width of each variable and the relations between callers and callees.

ii. stack_mem_depth is computed by looking at the relations between callers and
callees found in ESW layer procedures. The stack is used to store memory
pointers and return addresses of the procedures.

iii. IO_addr_num is computed by looking at the arguments of procedures belonging
to the highest layer implemented in HW. For this purpose, it is necessary to
compute the total number of Wishbone registers required by the co-processor.

iv. instruction_enable and instruction_code are computed by listing the type of
instructions used in the assembly program.

v. GPRs_num is computed by listing the GPRs used in the assembly program.
vi. prog_mem_depth is computed by counting the total number of instructions in the

assembly program.

Group Parameter Type Class

Constant (independent)

SFRs_num Natural ISA

interrupts_num Natural ISA

wb_retries_num Natural Microarchitecture

wb_waits_num Natural Microarchitecture

deb_command_enable Boolean Debug-interface

deb_command_code Natural Debug-interface

Variable (independent)

data_width Natural ISA

short_imm_set Boolean ISA

GPR_mem Boolean Microarchitecture

pipeline_set Boolean Microarchitecture

shifter_mult Boolean Microarchitecture

DUT-M (dependent)

data_mem_depth Natural ISA

stack_mem_depth Natural ISA

IO_addr_num Natural ISA

ASM (dependent)

instruction_enable Boolean ISA

instruction_code Natural ISA

GPRs_num Natural ISA

prog_mem_depth Natural ISA

Table 6.1: Reorganization of processor and debug-interface configuration parameters

The number of GPRs, the depth of the stack, program, and data memories, and the I/O
address space are tailored by determining the proper value of the dependent configuration

134 6 Automatic generation process

parameters. Additionally, processor instructions and functional units that are not
necessary for the execution of the ESW layer procedures are not implemented as part of
the processor. In this way, it is possible to obtain significant reduction of the amount of
resources necessary to implement the processor. Similar approaches for removing
instructions and processor features that are not used in a given scenario have proven to be
very effective in the reduction of resources and power consumption [126, 146, 147].

At this point, it is necessary to define the value of the constant and variable (independent)
configuration parameters. As the name implies, the same value is assigned to the constant
(independent) configuration parameters independently of the test scenario. This is
possible due to the following reasons:

• SFRs_num is adjusted if new SFRs are included in the ROBSY processor or if the
two optional SFRs are used. Given that both circumstances do not apply for the
ROBSY approach, SFRs_num remains constant for all test scenarios.

• wb_retries_num and wb_waits_num are used to define configuration options of
the Wishbone bus. Given that the value of both parameters does not depend on the
test scenario, it remains constant for all test scenarios.

• deb_command_enable and deb_command_code are known in advance as already
discussed in Section 6.3.1. Therefore, they remain constant for all test scenarios.

• interrupts_num is 0 for all test scenarios because they are not used in the ROBSY
approach. As already mentioned in Section 6.4.1, polling is used for the
processor/co-processor communication.

The number of processor variants that are available for the test engineer to evaluate
different test time and resource utilization trade-offs is defined by the five variable
(independent) configuration parameters. This facilitates the evaluation of trade-offs
because the number of processor variants that have to be considered is much lower in
comparison to the case in which all configuration parameters have to be defined by the
test engineer.

Besides, it is not possible to compute the value of the variable (independent)
configuration parameters in an exact way just by analyzing the DUT-M and assembly
program. GPR_mem, pipeline_set, and shifter_mult belong to the microarchitecture class,
which means that they affect properties related to the processor microarchitecture only.
Therefore, they do not have any influence on the generation of the object code and are not
influenced by the DUT-M or assembly program.

On the other hand, data_width and short_imm_set belong to the ISA class. However, their
value cannot be computed in an exact way based on the properties of the ESW layer

6 Automatic generation process 135

procedures. The reason for this is that any value assigned to these parameters produces a
processor variant that can execute the ESW layer procedures. Besides, they are ideal
candidates to let the test engineer evaluate different test time and resource utilization
trade-offs because they have a significant impact on the properties of the processor ISA,
affecting not only the resource utilization but also test time.

If new configuration parameters are included in the processor, it is necessary to order
them in one of the four groups. Typically, microarchitecture configuration parameters can
be ordered in the variable (independent) group and debug-interface configuration
parameters are ordered in the constant (independent) group. In the case of ISA
configuration parameters, it is necessary to evaluate if they can be ordered in the variable
(independent) or dependent configuration parameters groups.

6.4.3 Embedded software generator

The ESW generator computes the value of the dependent configuration parameters and
generates the object code and additional information required by ATE and HW
generators. The object code is the numerical machine code stored in the processor
program and data memories that is obtained by compiling the ESW layer procedures of
the DUT-M. The processor/debug-interface information includes the value of all
configuration parameters, the data memory start address for the ATE/FBTS
communication, and the I/O address table for the processor/co-processor communication.

Figure 6.4 shows the ESW generator in more detail. It is divided into three main phases
that are executed sequentially starting with phase 1.

6.4.3.1 Phase 1

Phase 1 comprises the DUT-M analyzer and ESW compiler. The DUT-M analyzer
examines the ESW layer procedures and the procedures of the highest layer implemented
in HW in order to compute the I/O address table, the start address for the ATE/FBTS
communication, and the DUT-M (dependent) configuration parameters. After this step is
carried out, the ESW compiler generates the assembly program based on the ESW layer
procedures, independent configuration parameters, and the information produced by the
DUT-M analyzer.

The computation of data_mem_depth is realized based on the amount of memory required
to store global and local variables of ESW layers. For local variables, it is necessary to
analyze the interactions between callers and callees by means of a procedure tree that
models these interactions. The computation of stack_mem_depth also makes use of the

136 6 Automatic generation process

procedure tree in order to define the maximum amount of stack memory locations
necessary to store return addresses and data pushed in and popped from the stack.

The computation of data_mem_depth and stack_mem_depth is performed based on the
following assumptions:

• There are no dynamic memory allocations.
• A caller in layer n is allowed to call procedures located in layers n and n-1.
• Recursion is not allowed.
• The callee is not allowed to call the caller.

Phase 1

ESW layer
procedures

DUT-M analyzer

DUT-M
configuration
parameters

Start address
ATE

I/O address
table

ESW compiler

Assembly
program

Independent
configuration
parameters

HW layer
procedures

Assembly
program

Assembly
program analyzer

ASM
configuration
parameters

Assembler

Independent
configuration
parameters

DUT-M
configuration
parameters

Processor
object code

Phase 2

Processor/
debug-interface

information

Start address
ATE

Information
generator

Independent
configuration
parameters

ASM
configuration
parameters

Phase 3

DUT-M
configuration
parameters

Figure 6.4: Embedded software generator. Phase 1 (top left), 2 (top right), 3 (bottom)

6 Automatic generation process 137

These assumptions do not represent any limitations for the ROBSY approach. The first
assumption is compatible with RTDL because the language does not support dynamic
memory allocation. This would become a big issue for the generation of hardware. The
other three assumptions are compatible with the layer concept.

The computation of the I/O address table, the start address for the ATE/FBTS
communication, and IO_addr_num is realized by analyzing the arguments of the highest
layer implemented in HW and taking into consideration the value of data_width,
data_mem_depth, and SFRs_num. The DUT-M analyzer also takes into consideration the
control and status Wishbone registers.

After the analysis step, the ESW compiler parses ESW layer procedures and generates the
assembly program with the corresponding wrappers for the ATE/FBTS and processor/co-
processor communication. For this purpose, the ESW compiler considers the value of
independent configuration parameters, the address of co-processor Wishbone registers
(I/O address table), and the data memory start address.

The DUT-M analyzer and ESW compiler are implemented based on a lexical analyzer
and a parser. The GNU tools FLEX (lexical analyzer generator) and Byson (parser
generator) of the Cygwin environment were used for the development of the lexical
analyzer and parser. The DUT-M analyzer computes DUT-M configuration parameters,
start address for ATE/FBTS communication, and I/O address table. The parser of the
ESW compiler translates ESW layer procedures to an intermediate low-level
representation. TCL scripts transform the intermediate representation into the processor
specific assembly program.

6.4.3.2 Phase 2

Phase 2 comprises the analysis of the assembly program and generation of object code.
The assembly program analyzer examines the assembly program in order to compute the
ASM configuration parameters. After that, the assembler generates the object code and
value of the independent and dependent configuration parameters.

prog_mem_depth is computed by counting the number of instructions in the assembly
program. GPRs_num is computed by looking for the registers used in the assembly
program. This is possible because the ESW compiler was built in such a way that it maps
all local and global variables into memory locations using as many registers as necessary.
instruction_enable and instruction_code are computed by collecting information about
instructions used in the assembly program. In this way, unused instructions are not
implemented as part of the processor ISA. This is known as ISA subsetting [126].

138 6 Automatic generation process

The assembly program analyzer was developed in TCL. The assembler was developed in
C as a two-pass assembler. For the assembly process, the assembler has to know the value
of all the ISA configuration parameters.

6.4.3.3 Phase 3

Phase 3 comprises the generation of the processor/debug-interface information. For this
purpose, the information generator encapsulates the outcome of phases 1 and 2 into a
single file. This file is built in such a way that it can be parsed by the ATE program
generator. The information generator was developed in TCL.

6.4.4 Hardware generator

The HW generator produces hardware descriptions for the co-processor and FBTS, and
additional information required by the synthesis tool, such as a project description and
FPGA constraints (timing and pin assignments). For this purpose, it makes use of the HW
layer procedures, processor/debug-interface information, I/O address table, PCB netlist,
and hardware constraints.

The PCB netlist helps determining the FPGA pins connected to the DUT as well as the
clock and reset signals. The hardware constraints provide information about the timing
properties of clock and reset signals, as well as additional information necessary for the
generation of FPGA constraints. The development of the HW generator is not part of this
dissertation. For more information about this subject refer to [98, 99].

6.4.5 Synthesis tool

The synthesis tool outputs the FPGA configuration file based on the FBTS description,
processor description, FPGA constraints, and project files delivered by the HW generator.
This tool is FPGA dependent, and the actual generation process supports Xilinx as well as
Altera FPGAs. In the case of Altera, Quartus II tools [145] quartus_sh, quartus_map,
quartus_fit, quartus_asm, quartus_sta, and quartus_pgm are used. In the case of Xilinx,
ISE tools [148] xst, ngdbuild, map, par, trce, and bitgen are used.

6.5 Summary

This chapter presented the automatic generation process of the ROBSY approach with
emphasis in the ESW generation. The automatic generation process supports a single
processor co-processor pair and comprises three generators: the SW generator, FBTS

6 Automatic generation process 139

generator, and HW generator. The generators are responsible of producing the software
procedures for the ATE, the object code for the processor, and the FBTS hardware
description based on a specific layer partition. The analyzers, compilers, and additional
tools found in the generators were developed by means of TCL scripts, C programs, and
GNU tools FLEX and Byson.

The ESW generation process is also in charge of determining the value of a subset of the
processor and debug-interface configuration parameters. The main goal is to adapt the
processor to the test scenario and reduce the number of processor variants that are
available for the test engineer to evaluate different test time and resource utilization trade-
offs. For this purpose, the configuration parameters are reorganized in four groups:

• Constant (independent).
• Variable (independent).
• DUT-M (dependent).
• ASM (dependent).

The same values are assigned to the constant (independent) configuration parameters
independently of the test scenario. The DUT-M (dependent) configuration parameters are
computed based on the ESW layers of the DUT-M, and the ASM (dependent)
configuration parameters are computed based on the assembly program generated by the
ESW compiler. The computations are performed in a deterministic way based on the
equations described in Chapter 6. The independent configuration parameters basically
tailor the resource utilization of the ROBSY processor depending on the properties of the
ESW layer procedures.

The number of processor variants that can be generated in order to evaluate different test
time and resource utilization trade-offs is defined by the five variable (independent)
configuration parameters. In contrast to the dependent configuration parameters, the value
of the variable (independent) configuration parameters cannot be computed in a
deterministic way due to their properties.

141

7 Experimental phase

7.1 Introduction

This chapter presents the experimental results obtained with the ROBSY test system. For
this purpose, the automatic generation flow discussed in Chapter 6 generates the SW,
ESW, and computes the processor dependent configuration parameters based on the
DUT-M and layer partition. The results provide an answer to the following questions:

• ROBSY processor:
o What is the effect of the adaptation mechanism and independent

configuration parameters on resource utilization and test time?
o Is there a way to find an efficient processor variant in terms of resource

utilization and test time for a given test scenario?
o Which layers are implemented more efficiently in ESW?

• ROBSY test system:
o How does the layer partition influence the resulting processor and FBTS in

terms of resource utilization and performance?
o What is the speed-up achieved in comparison to other test techniques?

Sections 7.2 and 7.3 describe the experimental setup and DUTs. Section 7.4 presents an
analysis of resource utilization results, while Sections 7.5 and 7.6 present an analysis of
obtained performance. Section 7.7 provides a comparison of ROBSY against Nios II and
a virtual length shift register. The chapter concludes with a summary in Section 7.8.

7.2 Experimental setup

7.2.1 Hardware setup

The experiments were performed using the DE2-115 development board from Terasic
[149] and the VarioTap Coach Board from Göpel Electronic [150]. The ATE is a personal
computer with an Intel core i7-960 (3.2 GHz) processor and 6 GB RAM. Figure 7.1
shows the hardware setup without including the ATE.

The DE2-115 is equipped with a Cyclone IV-E FPGA (EP4CE115F29C7) (1). This
FPGA has the highest capacity of the Cyclone IV-E family [151] and it provides
following features:

142 7 Experimental phase

• 114.480 logic elements (LEs). A LE comprises a flip flop and a 4-input look-up
table (LUT).

• 432 9-Kbits memory blocks (M9K blocks) that can be configured as 8192x1,
4096x2, 2048x4, 1024x8/9, 512x16/18, or 256x32/36 memory arrays.

• 266 18x18 multipliers that can be configured as two 9x9 multipliers.

Figure 7.1: Hardware setup (no ATE). VarioTap coach (top) and DE2-115 (bottom)

The DE2-115 includes an IS61WV102416 SRAM (2), which is one of the DUTs (Section
7.3.1). Additionally, it includes a 50 MHz oscillator used as FPGA clock source, four
push buttons and eighteen switches (3), and a 40-pin expansion header (4). The board is
equipped with an embedded USB Blaster (5) used in JTAG mode for the configuration of
the FPGA and communication between ATE and FBTS. The TCK frequency is 6 MHz.

The VarioTap Coach is equipped with a DIP128-6 LCD (Electronic Assembly) [152] and
corresponding LCD controller (6). This is the second DUT (Section 7.3.2), which is
accessed through the 50-pin XH2 and XH3 I/O connectors (7). A bridge between DE2-
115 and VarioTap Coach connects the Cyclone IV-E FPGA with the LCD controller via
14 female/female jumper wires. This setup was necessary because the Spartan 3 FPGA
(XC3S50A) located on the VarioTap Coach does not have enough capacity for
implementing all FBTS variants.

7 Experimental phase 143

7.2.2 Software setup

7.2.2.1 Software tools

The ATE is equipped with Windows 7, Quartus II 15.1, TCL/TK 8.6, and Codeblocks
13.12. Quartus II performs the synthesis of the FBTS, configures the FPGA, and is used
for the ATE/FBTS communication. TCL/TK and Codeblocks are used during the
automatic generation process to run scripts and generate the assembler, respectively.

The Quartus II tools quartus_sh, quartus_map, quartus_fit, quartus_asm, and quartus_sta
[145] run in batch mode for the FBTS synthesis. quartus_pgm is in charge of configuring
the FPGA and quartus_stp of executing SW layer procedures. In this way, it is possible to
automate the generation of the ROBSY test system, the synthesis and configuration of the
FBTS, and the test execution. Nebula was not utilized because it does not support a batch
execution mode. In any case, similar test time results are expected with Nebula.

It was not possible to make use of the HW generator. The reason for this is that the actual
HW generator only supports layer L1. Therefore, it was necessary to work with hand-
written co-processors and an automatic generated processor/co-processor interface. The
interface adapts the co-processor to different data_width and IO_addr_num values. A
TCL script generates the interface with the proper amount of Wishbone registers.

7.2.2.2 Quartus II settings

For the synthesis of the FBTS, the following compiler settings were selected:

• ALLOW_ANY_RAM_SIZE_FOR_RECOGNITION: ON.
• OPTIMIZATION_MODE: AGGRESSIVE PERFORMANCE.

The first setting allows the synthesis tool to implement GPRs using M9K blocks, even if
the number of GPRs is low. The second setting tells the synthesis tool to make an
aggressive effort to optimize the FBTS for speed. The side effect of this option is an
increase in the synthesis time and the use of more resources in comparison to a balanced
optimization mode. The other compiler settings have their default values.

The FPGA Synopsys design constraints file has a 1 ns clock period constraint. The use of
an over-constrained clock period forces the synthesis tool to achieve high operation
frequency values. Working with a constraint of 20 ns (required value for the FBTS in the
DE2-115) would deliver solutions that fulfill this constraint, but that are not necessarily
close to the maximum achievable operation frequency of the FBTS.

144 7 Experimental phase

7.2.3 Processor and FBTS variants

The automatic generation process computes the value of the DUT-M and ASM
(dependent) configuration parameters (Table 6.1). On the other hand, the same values are
assigned to the constant (independent) configuration parameters. These values are:

• SFRs_num: 5. interrupts_num: 0. wb_retries_num: 3. wb_waits_num: 3.
• deb_command_enable/deb_command_code: HALT/1, CONTINUE/2, RESET/3,

DATA_MEM_READ/4, DATA_MEM_WRITE/5, CPU_STATE_READ/6,
SFR_READ/7, SFR_WRITE/8, DEBUG_ID_READ/9.

The variable (independent) configuration parameters generate multiple processor variants
with different resource utilization and performance trade-offs. Boolean values true or
false are assigned to short_imm_set, GPR_mem, pipeline_set, and shifter_mult. Natural
values 8, 12, 16, 20, 24, 28, and 32 are assigned to data_width. Table 7.1 presents the
way to identify a processor variant. The ‘X’ in index I specifies a data_width value, while
.0-.15 values represent a 4-bit-vector formed by ordering short_imm_set, pipeline_set,
GPR_mem, and shifter_mult from the most to the lowest significant bit, respectively. For
example, I20.7 is a 20-bit processor variant with the 4-bit vector [0111] (short_imm_set
false, and pipeline_set, GPR_mem, and shifter_mult true).

I short_imm_set pipeline_set GPR_mem shifter_mult

IX.0 false false false false

IX.1 false false false true

IX.2 false false true false

IX.3 false false true true

IX.4 false true false false

IX.5 false true false true

IX.6 false true true false

IX.7 false true true true

IX.8 true false false false

IX.9 true false false true

IX.10 true false true false

IX.11 true false true true

IX.12 true true false false

IX.13 true true false true

IX.14 true true true false

IX.15 true true true true

Table 7.1: 112 possible processor variants

The reason to limit data_width to a subset of values is to maintain the number of
processor variants low. The use of untypical values (12, 20, 24, and 28) provides the
option to work with processor variants highly adapted to the DUT-M. For example, a 20-

7 Experimental phase 145

bit processor provides a more efficient utilization of resources in comparison to a 32-bit
processor if the maximum size of variables declared in ESW procedures is 20 bits.

7.2.4 Resource utilization and performance metrics

The resource utilization is measured based on LEs, M9K blocks, and 9x9 multipliers used
for implementing the FBTS and processor. The results are delivered by Quartus II after
place & route.

The performance of the FBTS is measured based on the FBTS active time and test time,
whose values are obtained by performance counters included in the FBTS.

FBTS active time is the accumulated time that the FBTS is active during the complete test
execution without considering the execution of SW layers or time required for the
ATE/FBTS communication. This is an ideal metric to analyze the effect that processor
variants and layer partitions have on the test execution because it only considers the time
required for the layers implemented in HW and ESW. The FBTS active time is measured
using a 32-bit performance counter known as active time counter.

Two values are calculated based on the content of the active time counter. The first value
is the real FBTS active time. It is obtained by dividing the content of the counter by the
operation frequency of the FBTS (50 MHz). The second value is the minimum FBTS
active time. It is obtained by dividing the content of the counter by the maximal operation
frequency (Fmax) achieved with the FBTS. Fmax is the value dumped by the TimeQuest
timing analyzer (quartus_sta).

Test time is the execution time of the complete test. It includes the FBTS active time and
time required for the execution of SW layers and for the ATE/FBTS communication. It is
measured using a second 32-bit performance counter known as the test time counter. It
counts the total number of clock cycles during the test. The test time is calculated by
dividing the content of the counter by the operation frequency of the FBTS (50 MHz).

Counters are used instead of theoretical models because they are easy to implement and
provide real measurements difficult to obtain with theoretical models. Models would have
to consider the execution time of the ATE, processor, and co-processor, as well as the
timing behavior of the DUT and ATE/FBTS communication.

146 7 Experimental phase

7.3 Devices under test

The two DUTs used for the experiments are an SRAM and LCD. As mentioned in
Section 3.1.2, the application field of FBT is the detection and diagnosis of defects
located at the PCB interconnections and solder joints. For this purpose, a DUT-Ms was
developed for each DUT.

The FPGA is also used to inject stuck-at faults, bridging-and faults, and dominant faults
(dominant address) in the data and address interconnections. This was necessary in order
to validate the correct functionality of the ROBSY test system and DUT-Ms. The
activation and selection of a fault is performed through the switches of the DE2-115.

7.3.1 SRAM

The IS61WV102416 SRAM (Integrated Silicon Solution) [109] populating the DE2-115
has the following features:

• 1024Kx16 (16Mbit) high-speed asynchronous static RAM.
• 20 address lines, 16 bidirectional data lines, and active low chip select, output

enable, write enable, and upper/lower byte control lines.
• 10 ns write and read cycle times.

The DUT-M describes the interface of the IS61WV102416, write and read access
functions (L1), and the procedures for the detection and diagnosis of stuck-at, bridging,
and address-dominant faults (L5-L2). The DUT-M includes four global variables that
represent two-dimensional pass/fail fault dictionaries (Section 2.1.5). These variables are
declared as vectors, in which the first index represents the width of each element and the
second index the number of elements. The vectors fd_dataBus_bridge[32][120] and
fd_addrBus_bridge[42][190] store pass/fail signatures for diagnosis of bridging-and faults
at the data and address buses, respectively. fd_addrBus_dominant_stuckat[42][20] and
fd_addrBus_dominant[32][16] store pass/fail signatures for diagnosis of stuck-at faults at
the address bus and dominant faults between the address and data buses.

Table 7.2 shows a summary of the procedures found in the DUT-M. The first column
represents the layer to which the procedure belongs. The second and third columns show
name of the procedure and arguments with their type (IN, OUT, INOUT), respectively.
The fourth column indicates the local variables of each procedure.

7 Experimental phase 147

Layer Procedure Arguments Local variables

L1
write_pattern() IN data[16], IN addr[20] -

read_pattern() OUT data[16], IN addr[20] -

L2

single_pattern() IN wr_rd[2], IN data[16], IN addr[20],
OUT data_read[16], OUT error[1] vData_exp[16]

seq_pattern()
IN wr_rd[2], IN data_op[3], IN
data[16], IN addr_op[2], IN addr[20],
OUT error[1]

vError[1], vError_tmp[1],
vData_val[16], vAddr_val[20],
vIndex[5], vData_dummy[16]

seq_pattern_d42()
IN wr_rd[2], IN data_op[2], IN
data[16], IN addr_op[2], IN addr[20],
OUT signa[42]

vError[1], vData_val[16],
vAddr_val[20], vIndex[5],
vData_dummy[16]

seq_pattern_d32()
IN wr_rd[2], IN data_op[3], IN
data[16], IN addr_op[2], IN addr[20],
OUT signa[32]

vError[1], vData_val[16],
vAddr_val[20], vIndex[5],
vData_dummy[16]

single_pattern_d42() IN wr_rd[2], IN data[16], IN addr[20],
OUT signa_data[42] vError[1], vData_dummy[16]

L3

test_detection() OUT error[1] vError[1], vError_tmp[1],
vData[16], vAddr[20]

test_diagnosis() OUT fault_code[3], OUT data[16],
OUT signa32[32], OUT signa42[42]

vError[1], vSigna32[32],
vSigna42[42], vSigna_data[16]

dataBus_sutckat() OUT error[1], OUT signa[16] vError[1], vData[16], vAddr[20],
vData_read[16]

addrBus_dominant() OUT signa[42] vError[1], vData[16], vAddr[20],
vSigna[42]

dataBus_bridge() OUT signa[32] vError[1], vData[16], vAddr[20],
vSigna[32]

addrBus_bridge_
stuckat() OUT signa[42] vError[1], vData[16], vAddr[20],

vSigna[42]

L4

coordination()
OUT error_code[3], OUT
signa_data[16], OUT index_fdict1[8],
OUT index_fdict2[8]

vError[2], vError_code[3],
vSigna32[32], vSigna42[42],
vSigna_data[16], vIndex_fdict1[8],
vIndex_fdict2[8]

addrBus_stuckat_
bridge_analysis()

IN signa[42], OUT error_code[3],
OUT index_fdict[8]

vError:code[3], vIndex_fdict[8],
vIndex_result[8], vData[16],
vAddr[20], vSigna[42]

dataBus_bridge_
analysis() IN signa[32], OUT index_fdict[8] vIndex_fdict[8], vIndex_result[8],

vSigna[32]

addrBus_dominant_
analysis()

IN signa42[42], IN signa32[32], OUT
index_fdict1[8], OUT index_fdict2[8]

vIndex_fdict[8], vIndex_result1[8],
vIndex_result2[8], vSigna42[42],
vSigna32[32]

L5 sram_test -
vError_code[3], vSigna_data[16],
vSigna32[32], vSigna42[42],
vIndex_fdict1[8], vIndex_fdict2[8]

Table 7.2: SRAM DUT-M (fault diagnosis) properties

L1 procedures write_pattern() and read_pattern() describe write and read access functions
taking into account the timing properties of the DUT. The two single_pattern procedures
of L2 forward deterministic patterns between L3 and L1, and the three seq_pattern
procedures generate walking-1/walking-0/increment/decrement test patterns. Procedures
without a _d# suffix are used for fault detection, whereas procedures with a _d# suffix are
used for fault diagnosis.

148 7 Experimental phase

L3 procedure test_detection() describes the structure of the fault detection algorithm. On
the other hand, test_diagnosis() and remaining L3 procedures describe the structure of the
fault diagnosis algorithm. L4 procedure coordination() manages the detection and
diagnosis algorithms. In the case that the detection algorithm does not find any fault, there
is no need to execute the diagnosis algorithm. The remaining L4 procedures are called by
coordination() to match the obtained pass/fail signatures with signatures stored in the fault
dictionaries. L5 procedure sram_test() starts the test execution and reports test results.
The report informs if the test was successful or if a fault was detected and the location of
the fault.

7.3.2 LCD

The DIP128-6 LCD (Electronic Assembly) [152] and LCD controller (6) populate the
VarioTap Coach. The LCD controller is implemented in a complex programmable logic
device that receives commands and data from the FPGA and sends control and image
information to the LCD. In comparison to the SRAM, the LCD is a slower device and has
fewer pins. The features of the LCD and LCD controller are:

• 128x64 dots.
• 3 address lines, 8 data lines, and active low chip select, output enable, and write

enable control lines.
• 2 µs write cycle time.

The DUT-M describes the interface to the LCD controller, write access functions (L1),
and procedures required to initialize the LCD and generate a square pattern that moves
through the screen (L5-L2). This DUT-M does not use any global variables.

Table 7.3 shows the summary of procedures found in the DUT-M. In comparison to the
SRAM DUT-M, it has a lower number of procedures variables and arguments.
Additionally, the size of procedures and variables is smaller.

Layer Procedure Arguments Local variables
L1 write_pattern() IN data[8], IN addr[3] -

L2

single_pattern() IN data[8], IN addr[3] -

scan_pattern() IN screen_side[1], IN
pattern_val[8], IN empty_val[8]

vScreen_side_command[1],
vScreen_side_addr[3], vIndex_1[8],
vIndex_2[8], vIndex_3[8], vPage_value[8]

L3 test_pattern() - vData[8], vAddress[3]

L4 coordination() - -

L5 lcd_test - -

Table 7.3: LCD DUT-M (LCD test) properties

7 Experimental phase 149

L1 procedure write_pattern() describes the write access to the LCD controller taking into
account timing properties of the DUT. There are no read procedures because it is not
possible to acquire data from the LCD controller. As a consequence, the only alternative
to evaluate the test is by inspecting the screen during test execution. L2 procedures
single_pattern() and scan_pattern() forward deterministic patterns between L3 and L1 and
generate all patterns necessary for displaying a square shape that moves through half of
the screen. scan_pattern() is the most complex procedure of the DUT-M with three index
variables used for loops and arithmetic operations that compute the actual location of the
active dot. L3 procedure test_pattern() describes the structure of the test algorithm. It
initializes the LCD, configures the LCD controller, and calls scan_pattern() twice in order
to test the left and right sides of the screen. L4 procedure coordination() does not provide
any additional functionality. L5 procedure lcd_test() starts the test and reports start and
end of test execution.

7.4 Resource utilization

7.4.1 Effect of the dependent configuration parameters

The automatic generation process computes the DUT-M and ASM (dependent)
configuration parameters (Table 6.1). In this way, the instruction set, number of GPRs,
size of memories, and size of the I/O address space are tailored to the layers implemented
in ESW and procedure arguments belonging to the highest layer implemented in HW. The
effect of automatically assigning values to these parameters is:

• The processor’s instruction set, GPRs, memories, and Wishbone interface are
implemented using a minimum amount of resources.

• The dependent configuration parameters are computed without affecting the CPI
values of the processor.

• The number of configuration parameters that have to be considered by the test
engineer is reduced to the variable (independent) configuration parameters.

Table 7.4 and Table 7.5 show the dependent configuration parameter values computed for
both DUT-Ms if layers L4-L2 are implemented in ESW. The first column is the index I
representing the processor variant (Table 7.1), and the remaining columns show the value
of the dependent configuration parameters. For the sake of clarity, values of the first row
are considered reference values. Differences between this row and other rows are
highlighted in bold font. The instruction_enable column shows only the differences. A ‘-’

150 7 Experimental phase

prefix represents an instruction found in the first row but not included in the processor
variants of the given row. A ‘+’ prefix represents the opposite case.

I
data_
mem_
depth

stack_
mem_
depth

prog_
mem_
depth

IO_
addr_
num

GPRs
_num instruction_enable

I8.0-I8.7 11 5 12 2040 10

JMP, JC, JZ, JNZ, CALL, CALL_C, RET,
RET_C, STOP, NOP, LOAD, STORE,

PUSH, POP, ADD, ADDI, ADDC,
ADDIC, SUB, SUBI, SUBIC, AND,

ANDI, OR, ORI, NOR, SHL, SHR, SHLC
I12.0-I12.7 11 4 12 2040 7 -ADDC

I16.0-I16.7, I20.0-I20.7 10 4 12 1016 6 -ADDC, -ADDIC, -SUBIC, +ROL
I24.0-I24.7, I28.0-I28.7,

I32.0-I32.7
10 4 12 1016 5 -ADDC, -ADDIC, -SUBIC

I8.8-I8.15 11 5 14 2040 10 +ADDIU, +SUBIU, +SUBC, +ORH
I12.8-I12.15 11 4 12 2040 7 -ADDC, +ADDIU, +ORH

I16.8-I16.15, I20.8-I20.15 10 4 12 1016 6 -ADDC, -ADDIC, -SUBIC, +ADDIU,
+ORH, +ROL

I24.8-I24.15, I28.8-I28.15,
I32.8-I32.15

10 4 12 1016 5 -ADDC, -ADDIC, -SUBIC, +ADDIU,
+ORH

Table 7.4: SRAM DUT. Dependent configuration parameters (L4-L2)

I
data_
mem_
depth

stack_
mem_
depth

prog_
mem_
depth

IO_
addr_
num

GPRs
_num instruction_enable

I8.0-I8.7, I12.0-I12.7,
I16.0-I16.7, I20.0-I20.7,
I24.0-I24.7, I28.0-I28.7,

I32.0-I32.7

5 4 9 24 4

JMP, JC, JZ, JNZ, CALL, CALL_C, RET,
RET_C, STOP, NOP, LOAD, STORE,
PUSH, POP, ADD, ADDI, SUB, SUBI,

SUBIC, ANDI, ORI
I8.8-I8.15, I16.8-I16.15,

I20.8-I20.15, I24.8-
I24.15, I28.8-I28.15,

I32.8-I32.15

5 4 9 24 4 +ADDIU, -SUBIC, +OR, +ORH

I12.8-I12.15 5 4 9 24 4 +ADDIU, -SUBIC, +AND, +OR, +ORH

Table 7.5: LCD DUT. Dependent configuration parameters (L4-L2)

The comparison of Table 7.4 and Table 7.5 show that processor variants generated based
on the SRAM DUT-M have larger memories, a more variable instruction set, and higher
number of GPRS and I/O addresses. For example, the SRAM processor variants use 26-
33 from the 50 instructions available, whereas the LCD processor variants use 21-24
instructions. This is due to the higher diversity of operations found in the SRAM DUT-M
in comparison to the LCD DUT-M.

Both tables also show that variable (independent) configuration parameters data_width
and short_imm_set are responsible of changes of the dependent configuration parameter
values. The reason for this is that these two parameters affect the properties of the ISA,
while the other variable (independent) configuration parameters only affect the
microarchitecture. This dependency is more visible in Table 7.4 due to the higher
complexity of the SRAM DUT-M.

7 Experimental phase 151

In Table 7.4, there is a decrease of dependent configuration parameter values
data_mem_depth, stack_mem_depth, prog_mem_depth, IO_addr_num, and GPRs_num as
data_width increases. The reason of this is that a higher data_width makes it possible to
manage variables and procedure arguments in a more efficient way. For example, a 32-bit
addition with an 8-bit processor requires at least four instructions and four memory
locations per operand, whereas the same addition with a 32-bit processor requires a single
instruction and a single memory location per operand. This effect is not observed in Table
7.5 because the size of the largest variables and arguments of the LCD DUT-M is 8-bit.

The instruction set also suffers changes based on data_width. Table 7.4 shows that
addition and subtraction instructions with carry are used only for I8.x-I12.x. These
instructions are necessary to concatenate 16-bit counting sequences in processor variants
with a native data type smaller than 16. The appearance of the ROL instruction for I16.x-
I20.x is due to the way the compiler implements 16-bit and 20-bit walking-0 sequences for
the data and address buses. Instead of using a combination of shift and negation
instructions, the compiler uses a single ROL instruction for this purpose.

The independent configuration parameter short_imm_set produces changes in the
instruction set and program memory depth (prog_mem_depth). Instructions such as ORH,
ADDIU, and SUBIU are used to handle immediate data and address values when
short_imm_set is true (Equation (5.1)). Table 7.4 shows that the value of
prog_mem_depth is different for the 8-bit processor variants I8.0-I8.7 and I8.8-I8.15. The
reason of this is explained in Section 7.4.2.2.

To conclude, Table 7.4 and Table 7.5 show a proof of the adaptation of the ROBSY
processor to a given layer partition, and that the variable (independent) configuration
parameters data_width and short_imm_set play an important role.

7.4.2 Processor variants

The combination of values for variable (independent) configuration parameters
GPR_mem, pipeline_set, shifter_mult, short_imm_set, and data_width produces 112
processor variants that require a different amount of resources. Their effect is explained in
the following sections. The exact quantification of the effect of these parameters is not
realized, because it depends on the DUT-M, FPGA, and synthesis tool.

7.4.2.1 Effect of GPR_mem, pipeline_set, and shifter_mult

GPR_mem, pipeline_set, and shifter_mult produce changes in the processor
microarchitecture only. Therefore, processor variants that differentiate themselves in the

152 7 Experimental phase

value of these parameters share the same DUT-M and ASM (dependent) configuration
parameters. This is observed in Table 7.4 and Table 7.5, in which each row represents
groups of processor variants (e.g. I8.0-I8.7, I8.7-I8.15, I12.0-I12.7, etc.).

Figure 7.2 and Figure 7.3 show the resource utilization5 of all 16-bit processor variants
with debug-interfaces (I16.0-I16.15) if layers L4-L2 are implemented in ESW. The vertical
axes represent LEs, M9K blocks, and 9x9 multipliers. The horizontal axis represents the
4-bit vector ‘Y’ of each processor variant (I16.Y). Vertical lines divide the results in four
main sectors. Each sector includes four processor variants with same short_imm_set and
pipeline_set values but different GPR_mem and shifter_mult values.

Figure 7.2: Processor logic elements I16.0-I16.15. SRAM and LCD DUTs (L4-L2)

Figure 7.3: Processor M9K blocks and 9x9 multipliers I16.0-I16.15. SRAM and LCD DUTs (L4-L2)

Figure 7.2 and Figure 7.3 show that processor variants generated based on the SRAM
DUT-M require more resources (~400 LEs, ~11 M9K blocks, and ~2 9x9 multipliers).
This is due to higher dependent configuration parameter values (Section 7.4.1).

Each sector shows that the activation of GPR_mem and shifter_mult produces a reduction
of LEs and an increase of M9K blocks and 9x9 multipliers. This is the expected behavior

5 The results are discrete quantities. Connection lines between points are used only for the sake of better
clarity. This applies to all results presented in this chapter.

7 Experimental phase 153

because GPR_mem replaces LEs with M9K blocks for the implementation of GPRs,
whereas shifter_mult replaces LEs with 9x9 multipliers for the implementation of the
barrel shifter. The activation of GPR_mem produces processor variants with two
additional M9K blocks, which are necessary for the implementation of three independent
memory ports that can be accessed at the same time. The activation of shifter_mult
produces processor variants with two 9x9 multipliers that perform 16-bit shifting and
rotation operations. An interesting observation is that shifter_mult does not produce any
changes on the processor variants generated for the LCD DUT. The reason is that the
LCD DUT-M does not use any shift or rotation instructions.

The analysis of pipeline_set is performed by comparing results of sectors 1 and 2 (I16.0-
I16.3 and I16.4-I16.7) or sectors 3 and 4 (I16.8-I16.11 and I16.12-I16.15). The activation of
pipeline_set produces a significant increase of LEs and does not affect the M9K blocks or
9x9 multipliers. The growth of LEs is due to the implementation of the pipeline stages,
result forwarding and hazard avoidance logic.

Parameters GPR_mem and pipeline_set produce the higher variation of LEs. The number
of M9K blocks varies depending on GPR_mem, and 9x9 multipliers are only necessary if
shifter_mult is true and shift or rotation operations are used in the DUT-M. This behavior
persists for all data_width values and layer partitions.

7.4.2.2 Effect of short_imm_set

The main goal of short_imm_set is to reduce the number of M9K blocks. Its activation
produces processor variants that code an imm_data_value using half of the data_width
bits (Equation (5.1)). This decreases the number of bits required to code an instruction,
and therefore the size of the program memory. This effect is observed in Figure 7.3 by
comparing sectors 1 and 3 (I16.0-I16.3 and I16.8-I16.11) or sectors 2 and 4 (I16.4-I16.7 and I16.12-
I16.15). The number of M9Ks blocks is reduced from 17 and 19 to 13 and 15 for the
SRAM DUT and from 4 and 6 to 3 and 5 for the LCD DUT.

Table 7.6 shows the memory utilization of the I16.0-I16.1 (short_imm_set false) and I16.8-
I16.9 (short_imm_set true) processor variants. Differences are highlighted in bold font.

DUT-M short_imm
_set

Stack memory Data memory Program memory

size M9K blocks size M9K blocks size M9K blocks

SRAM
false 16x16 1 (256x32) 1024x16 2 (512x16) 4096x27 14 (4096x2)

true 16x16 1 (256x32) 1024x16 2 (512x16) 4096x19 10 (4096x2)

LCD
false 16x16 1 (256x32) 32x16 1 (512x16) 512x25 2 (512x16)

true 16x16 1 (256x32) 32x16 1 (512x16) 512x17 1 (512x18)

Table 7.6: M9K blocks for stack, data, and program memories I16.0-I16.1/I16.8-I16.9 (L4-L2)

154 7 Experimental phase

The size of the stack and data memories remains constant independently of
short_imm_set. The width of the data memory is data_width, and Equation (5.10) delivers
the same value for the stack memory. The depth of both memories remains constant
(Table 7.4 and Table 7.5). In this case, the synthesis tool uses M9K blocks configured as
a 256x32 and 512x16 for the implementation of both memories.

The last column of Table 7.6 shows the dependency of the program memory size based
on short_imm_set. The depth remains constant because the value computed by the SW
generator (Equation (5.5)) is the same for the processor variants I16.0-I16.1 and I16.8-I16.9
(Table 7.4 and Table 7.5). On the other hand, there is an eight bit reduction of the
memory width if short_imm_set changes from false to true (Equation (5.17)). In this case,
this reduction is translated to a decrease of four (SRAM) and one (LCD) M9K blocks.

However, a reduction of M9K blocks cannot be guaranteed every time that short_imm_set
is true. Figure 7.4 presents the M9K blocks utilization of all 8-bit processor variants for
the SRAM and LCD DUTs. In this case, the number of M9K blocks increases from 14
and 16 to 43 and 45 for the SRAM DUT-M and remains constant for the LCD DUT-M.

Figure 7.4: Processor M9K blocks I8.0-I8.15. SRAM and LCD DUTs (L4-L2)

Table 7.7 shows the memory utilization of the I8.0-I8.1 (short_imm_set false) and I8.8-I8.9
(short_imm_set true) processor variants. Differences are highlighted in bold font.

DUT-M short_imm
_set

Stack memory Data memory Program memory

size M9K blocks size M9K blocks size M9K blocks

SRAM
false 32x12 1 (256x32) 2048x8 2 (2048x4) 4096x21 11 (4096x2)

true 32x14 1 (256x32) 2048x8 2 (2048x4) 16384x20 40 (8192x1)

LCD
false 16x9 1 (256x32) 32x8 1 (512x16) 512x17 1 (512x18)

true 16x9 1 (256x32) 32x8 1 (512x16) 512x14 1 (512x18)

Table 7.7: M9K blocks for stack, data, and program memories I8.0-I8.1/I8.8-I8.9 (L4-L2)

In this case, the last column of Table 7.7 shows that the program memory width of
processor variants generated for the SRAM-DUT-M decreases from 21 to 20 bits, while

7 Experimental phase 155

the number of memory locations increases from 4096 to 16384. The one-bit instead of the
expected four-bit reduction is due to an increase of the program memory depth, which
makes it necessary to use more bits to code a program address (Equation (5.17)). The
increase of the program memory depth is caused by a high amount of additional
instructions produced by the ESW compiler when short_imm_set is true. These
instructions are necessary to compute and handle addresses of local and global variables
given that the 4 bits available to code an imm_data_value are not sufficient.

On the other hand, it is not possible to further reduce the number of M9K blocks for
processor variants generated based on the LCD-DUT-M.

7.4.2.3 Effect of data_width

The parameter data_width has the main influence on the resource utilization. Higher
data_width values produce a steady growth in the number of LEs, M9K blocks, and 9x9
multipliers. This is observed in Figure 7.5 and Figure 7.6, which show the resource
utilization of the 112 processor variants including debug-interfaces for the SRAM and
LCD DUTs. Vertical lines separate processor variants based on the value of data_width.

Figure 7.5: Processor logic elements I8.0-I32.15. SRAM and LCD DUTs (L4-L2)

Figure 7.6: Processor M9K blocks and 9x9 multipliers I8.0-I32.15. LCD DUT (L4-L2)

Figure 7.5 and Figure 7.6 show that an increase in data_width produces a steady growth
of LEs, M9K blocks, and multipliers. The increase of LEs and M9K blocks takes place
although the depth of memories and number of GPRs decreases with higher data_width
values (Table 7.4). This is caused by the need for wider memories and GPRs. The width
of GPRs and data memory is data_width, while the width of the stack and program

156 7 Experimental phase

memories is computed using Equations (5.10) and (5.17). The only exception is a
reduction of M9K blocks and LEs of processor variants generated for the SRAM DUT-M
if data_width changes from 8 to 12. This is caused by short_imm_set as already explained
in Section 7.4.2.2.

7.4.3 Layer partition

The layer partition defines layers that are implemented in SW, ESW, and HW. It
influences the resource utilization of the processor and FBTS because it affects the value
of dependent configuration parameters and functionality implemented in a co-processor.

7.4.3.1 Effect of the layer partition on the processor

Layers implemented in ESW affect the computation of DUT-M and ASM (dependent)
configuration parameters, producing processor variants that use a different amount of
resources. The layer partition with L4-L2 in ESW produces processor variants with the
highest resource utilization because other partitions have fewer layers implemented in
ESW.

Table 7.8 presents the dependent configuration parameter values computed for the SRAM
DUT-M if L3 is implemented in ESW. The comparison of Table 7.8 and Table 7.4 (L4-
L2 in ESW) shows a significant reduction in the number of instructions, I/O addresses,
number of GPRs, and depth of the data, stack, and program memories. Additionally, the
processor variants of Table 7.8 do not include shift or rotation instructions, and therefore
they do not use 9x9 multipliers independently of the shifter_mult value.

I
data_
mem_
depth

stack_
mem_
depth

IO_
addr_
num

GPRs
_num

prog_
mem_
depth

instruction_enable

I8.0-I8.7
I12.0-I12.7

6 3 184 5 12
JMP, JZ, JNZ, CALL, CALL_C, RET,

RET_C, STOP, NOP, LOAD, STORE, PUSH,
POP, ADDI, SUBI, ANDI, OR, ORI, NOR

I16.0-I16.7, I20.0-I20.7 6 3 56 4 12
I24.0-I24.7, I28.0-
I28.7, I32.0-I32.7

5 3 88 4 11

I8.7-I8.15 6 3 184 5 13 -ADDI, +ADDIU, +SUBIU, +ORH
I12.7-I12.15 6 3 184 5 12 -ADDI, +ADDIU, +ORH
I16.7-I16.15 6 3 56 4 12 -ADDI, +ADDIU, +ORH
I20.7-I20.15 6 3 56 4 12 -ADDI, +ADDIU, +ORH

I24.7-I24.15, I28.7-
I28.15

5 3 88 4 12 -ADDI, +ADDIU, +ORH

I32.7-I32.15 5 3 88 4 12 -ADDI, +ADDIU, +ORH

Table 7.8: Dependent configuration parameters for all processor variants (L3)

7 Experimental phase 157

Differences in the dependent configuration parameters are directly translated to a lower
utilization of LEs, M9K blocks, and 9x9 multipliers as observed in Figure 7.7, Figure 7.8,
and Figure 7.9. These results show the power of the adaptation mechanism.

Figure 7.7: Processors logic elements I8.0-I32.15. SRAM DUT (L4-L2 and L3)

Figure 7.8: Processors M9K blocks I8.0-I32.15. SRAM DUT (L4-L2 and L3)

Figure 7.9: Processors 9x9 Multipliers I8.0-I32.15. SRAM DUT (L4-L2 and L3)

7.4.3.2 Effect of the layer partition on FBTS

The FBTS comprises the processor, co-processor, and performance counters. In this
dissertation, co-processors and performance counters do not affect the utilization of M9K
blocks or 9x9 multipliers. They are implemented using LEs and represent a positive offset
added to the LEs of each processor variant. This offset remains relatively constant unless
the processor data_width or the layer partition is modified. Changes in data_width makes
it necessary to adapt the processor/co-processor interface (size and number of Wishbone
registers), and changes in the layer partition might alter layers implemented in HW.

158 7 Experimental phase

Figure 7.10 shows the average LE utilization of the FBTS for the SRAM and LCD DUTs.
The average is calculated based on the LE utilization of the 112 FBTS variants. The
horizontal axis represents layers implemented in ESW.

Figure 7.10: FBTS logic elements (average). SRAM and LCD DUTs (all layer partitions)

The main observations for the SRAM DUT based on Figure 7.10 are:

i. The implementation of additional layers in HW produces a significant increase of
LEs, which are required for the implementation of the co-processor.

ii. The implementation of additional layers in ESW produces a lower increase of LEs
in comparison to the implementation of additional layers in HW.

iii. The total LEs used for layer partitions that implement the same layers in the FBTS
(same location of I2) is smaller when more layers are implemented in ESW.

Observation (i) is based on the comparison of columns L2, L3-L2, L4-L2 (L1 in HW) to
columns L3, L4-L3 (L2-L1 in HW) or to column L4 (L3-L1 in HW) for the SRAM. The
complexity of layers L1, L2, and L3 of the SRAM DUT-M in terms of number and size
of procedures, variables, and operations makes it necessary to use a high amount of LEs
when these layers are implemented in HW.

Observation (ii) shows that the LE utilization of the processor increases at a lower rate in
comparison to the LE utilization of the co-processor as additional layers are implemented
in ESW or HW. This is evident by looking at the LE utilization of the processor for layer
partitions L2, L3-L2, and L4-L2, or for layer partitions L3 and L4-L3. Therefore, in terms
of LEs the processor is an efficient mechanism to implement additional layers of the
SRAM DUT-M in the FBTS.

Observation (iii) is a consequence of observation (ii). This is evident when comparing the
LE utilization of the FBTS for layer partitions L4, L4-L3, and L4-L2, or of L3 and L3-L2.
These layer partitions implement the same layers in the FBTS, and show that
implementing more layers in ESW requires less LEs.

7 Experimental phase 159

In contrast to the SRAM DUT-M, the LE utilization of the FBTS generated for the LCD
DUT-M presents a different behavior. There is a lower overall utilization of LEs with
small changes between layer partitions. This is caused by the lower complexity of the
LCD DUT-M, in which only L1 and L2 describe most of the test functions. In this case, it
can even make sense to implement all layers in HW. The reason of this is that the
processor consumes more than 60% of the LEs even if L4 is the only layer implemented
in ESW.

7.4.4 FPGA capacity

All FBTS variants used for the experiments fit in any FPGA from the Altera Cyclone IV-
E family. This is observed in Figure 7.11, which presents the utilization percentage of
LEs, M9K blocks, and multipliers of the FBTS and processor variants for different
FPGAs. The percentages are obtained based on the resource utilization average of all
FBTS variants generated for the SRAM DUT-M if layers L4-L2 are implemented in
ESW. This layer partition produces processor variants with the highest utilization of
resources.

Figure 7.11: FPGA capacity. SRAM DUT (L4-L2)

The EP4CE6 and EP4CE115 are the FPGAs with the lowest and highest capacity,
respectively. The capacity of Cyclone IV-E FPGAs is [151]:

FPGA LEs M9K blocks 9x9 Multipliers
EP4CE6 6272 270 30
EP4CE10 10320 414 46
EP4CE15 15408 504 112
EP4CE30 28848 594 132
EP4CE55 55856 2340 308
EP4CE115 114480 3888 532

Figure 7.11 shows that it is possible to include at least three similar FBTS variants in the
EP4CE6 and at least 20 similar FBTS variants in the EP4CE115. This makes it possible
to implement a multi-co-processor or multi-domain FBTS even in Cyclone-IV E FPGAs

160 7 Experimental phase

of low capacity. Of course, the exact number of processors and co-processors included in
the FPGA depends on the properties of the PCB, DUT-Ms, and selected layer partitions.
Figure 7.11 also shows that LEs are the FPGA resources with the highest. Therefore,
configuration parameters such as GPR_mem and shifter_mult are very useful to reduce
their use.

7.5 FBTS active time

FBTS active time represents the total test time if delays caused by the execution of SW
layers and ATE/FBTS communication are not considered. Therefore, it is an ideal mean
to show the effect of the processor configuration and ESW/HW partition. It is measured
considering the longest execution path of test algorithms. For this purpose, it was
necessary to inject a stuck-at fault at address line 0 of the SRAM. For the LCD, it was not
necessary to inject any faults because execution time does not change in the presence of
faults.

7.5.1 Processor variants

The effect of the variable (independent) configuration parameters (GPR_mem,
pipeline_set, shifter_mult, short_imm_set, and data_width) on the FBTS active time is
presented in the following sections.

7.5.1.1 Effect of GPR_mem, pipeline_set, shifter_mult, and short_imm_set

Figure 7.12 and Figure 7.13 show real and minimum FBTS active time values for both
DUT-Ms if L4-L2 are implemented in ESW and data_width is equal to 16. In the same
way as the resource utilization, the results present a repetitive shape in each sector.

Figure 7.12: FBTS active time I16.0-I16.15. SRAM DUT (L4-L2)

7 Experimental phase 161

Figure 7.13: FBTS active time I16.0-I16.15. LCD DUT (L4-L2)

Figure 7.12 and Figure 7.13 show that FBTS active time for the LCD DUT-M is longer
than FBTS active time for the SRAM DUT-M. This is due to the longer access time of the
LCD controller (µs range) in comparison to the SRAM (ns range).

Both figures also show that real FBTS active time remains constant in each sector. The
reason of this is that independent configuration parameters GPR_mem and shifter_mult
only alter the implementation of GPRs and shifter without changing their clock cycle
behavior. Therefore, real FBTS active time values exclusively depend on short_imm_set
and pipeline_set.

The activation of pipeline_set produces a reduction of real FBTS active time typically in
the range of 25%-35%. The activation of short_imm_set produces a slight increase, which
is typically in the range of 0%-5%. This increase is caused by additional instructions used
to handle immediate data and address values (imm_data_value). However, short_imm_set
also can produce a significant increment of FBTS active time in certain cases. If there is a
significant increase of instructions produced by the compiler when short_imm_set is true
(Section 7.4.2.2), the processor has to execute more instructions, and therefore FBTS
active time values increase.

Minimum FBTS active time is influenced by all four independent configuration
parameters. In this case, the activation of GPR_mem or shifter_mult produces an increase
of this metric. This means that the processor critical path gets affected when embedded
blocks are used for the implementation of the GPRs and shifter. For the LCD DUT,
shifter_mult does not produce any changes given that shift or rotate instructions are not
used. There is a reduction of the minimum FBTS active time when pipeline_set is true,
whereas short_imm_set does not produce any significant changes.

The behavior of the minimum FBTS active time metric is not further discussed in the
following sections because it behaves in a similar way for all data_width values and layer
partitions.

162 7 Experimental phase

7.5.1.2 Effect of data_width

Figure 7.14 and Figure 7.15 show real FBTS active time values for both DUTs and the
112 processor variants.

Figure 7.14: FBTS active time I8.0-I32.15. SRAM DUT (L4-L2)

Figure 7.15: FBTS active time I8.0-I32.15. LCD DUT (L4-L2)

They show that 8-bit, 12-bit, 20-bit, 24-bit, 28-bit, and 32-bit processor variants behave in
the same way as the 16-bit processor variants. Parameters pipeline_set and short_imm_set
affect real FBTS active time values, while GPR_mem and shifter_mult do not.

The SRAM results show that an increase of data_width produces a gradual reduction of
FBTS active time until a certain data_width value, which is known as the break value.
After the break value is reached, FBTS active time remains relatively constant in
comparison to changes obtained before the break value. For the SRAM DUT, the break
value is 20-bits. The reductions before the break value are in the range of 9%-45%. These
reductions are caused by a more efficient mapping of the DUT-M variables and procedure
arguments in the processor ISA. Variables larger than data_width require multiple
instructions for the storage and execution of arithmetic or logic instructions. Therefore,
increasing data_width reduces the number of instructions necessary to handle these
variables. For example, 8-bit processor variants require three GPRs and three memory
locations for the storage of vAddr_shift[20] (Table 7.2). This means that at least three
instructions are necessary for the execution of load, store and shift operations. On the
other hand, 20-bit processor variants require a single instruction for this variable.

Reductions obtained after data_width surpasses the break value are smaller (1%-2%).
This is due to a low use of variables larger than 20 bits. In the SRAM DUT-M, these

7 Experimental phase 163

variables are rarely found inside loops and are not found in L2 procedures, which are the
more frequently executed procedures.

The LCD results show no gradual reduction of real FBTS active time if data_width
increases. This means that the break value is equal to 8. This is as expected because
variables and procedure arguments of the LCD DUT-M have a maximum width of 8 bits
(Table 7.3). The 1% increase of the FBTS active time is due to additional masking
instructions necessary to handle variables if data_width is larger than the variable width.

7.5.2 Layer partition

The layer partition influences FBTS active time because it defines the layers that are
implemented in ESW, and HW. Sections 7.5.2.1 and 7.5.2.2 present the real FBTS active
time results for all layer partitions. Both sections discuss differences between layer
partitions and the behavior of the break value.

7.5.2.1 FBTS active time for SRAM DUT-M

Figure 7.16 shows real FBTS active time values for the SRAM DUT-M and all layer
partitions. Results show strong differences between layer partitions basically due to the
layers implemented in ESW.

Figure 7.16: FBTS active time I8.0-I32.15. SRAM DUT (all layer partitions)

The longest real FBTS active time values are obtained for layer partitions that implement
L2 in ESW (L2, L3-L2, and L4-L2). This is due to the fact that L1 is the only layer
implemented in HW. The overlapping of L2 and L3-L2 results means that the
implementation of L3 in ESW does not affect FBTS active time considerably. On the
other hand, the implementation of L4 in ESW increases the FBTS active time. The reason
is that the signature matching in L4 is a time consuming task.

The results present a significant reduction if L2 is implemented in HW (L3, L4-L3, or L4
in ESW). However, the implementation of L3 in HW does not produce the shortest FBTS
active time. In this case, the implementation of L3 in ESW produces the shortest FBTS

164 7 Experimental phase

active time. The reason is that L4 is implemented in SW, and therefore its execution time
is not considered.

The break value of layer partitions that implement L2, L3-L2, L4-L2, and L3 in ESW is
data_width equal to 20. Reductions are in the range of 5% to 45% before reaching the
break value. After that, FBTS active time values remain relatively constant with small
reductions in the range of -1% to 2%. The -1% value represents an increase caused by
additional instructions required to mask variables.

On the other hand, the break value of layer partitions that implement L4-L3 and L4 in
ESW is 24. In this case, reductions are in the range of 3% to 34% before reaching the
break value. After that, FBTS active time values remain relatively constant with changes
in the range of 0% to 0.5%. The translation of the break value from 20 to 24 is due to the
fact that the execution time required to handle L4 variables becomes more relevant given
that L2 is not implemented in ESW. L4 variables are handled more efficiently by 24-bit
processor variants because they use two instead of the three instructions required by a 20-
bit processor for variables such as vSigna42[42] and vSigna32[32].

7.5.2.2 FBTS active time for LCD DUT-M

Figure 7.17 shows real FBTS active time values for the LCD DUT-M and all layer
partitions. The results present a complete different behavior in comparison to the SRAM.
There is an overlapping of layer partitions that divides the results into two main groups,
and the break value is always eight independently of layers implemented in ESW.

Figure 7.17: FBTS active time I8.0-I32.15. LCD DUT (all layer partitions)

Layer partitions that implement L2 in ESW (L2, L3-L2, and L4-L2) have the longest
FBTS active time values and are overlapped. This is due to a major complexity in terms
of number of procedures, operations, and variables of L2 in comparison to L3 and L4.
This complexity makes it necessary to spend more time in the execution of L2.

The group with the lowest FBTS active time comprises layer partitions that implement L2
in HW. The results seem to require the same time independently of the independent
configuration parameters of the processor. This is not true and is due to the scale of the

7 Experimental phase 165

figure and the fact that the fraction of time required for the execution of ESW is very
short in comparison to the time required for the execution of L1 and L2. These layers are
not affected by the independent configuration parameters because they are implemented
in HW.

7.6 Test time

Test time includes the real FBTS active time, execution time of SW layers, and time
required for the ATE/FBTS communication. This section shows that the results are
extremely dependent on the ATE/FBTS communication delays.

7.6.1 ATE/FBTS communication delays

ATE/FBTS communication time depends on the amount of data transfers (DTs) and time
required for the execution of each DT. As mentioned in Section 6.3.1, the ATE FBTS
communication is performed in six steps that transfer procedure arguments of type IN,
OUT and INOUT, perform polling, and read the content of performance counters.
Equation (7.1) describes the total number of DTs performed during test execution. xi and
yi represent DTs required for procedure arguments. pi represents DTs performed during
polling, and c DTs necessary to read the content of a performance counter. The constant
value 6 is obtained by adding the constant number of DTs of steps 1 and 5, and the
constant value 4 is obtained by adding the constant number of DTs of steps 2 to 4. The
summation describes the total DTs performed during test execution, in which m
represents the number of procedures of the highest layer implemented in ESW and ni the
number of times that the i-th ESW procedure is called by the ATE.

 𝐷𝐷𝐷𝐷𝐷𝐷 = 6 + 𝑐𝑐 + �𝑛𝑛𝑖𝑖 ∙ (4 + 𝑥𝑥𝑖𝑖 + 𝑦𝑦𝑖𝑖 + 𝑝𝑝𝑖𝑖 + 𝑐𝑐)
𝑚𝑚

𝑖𝑖=1

 (7.1)

A DT typically requires four independent JTAG DR-shift operations. Two DR-shifts
exchange data with the debug data register, one DR-shift exchanges data with the debug
command register, and one 1-bit DR-shift is used to skip the command shift cycle
(Section 5.4.3). For the experiments, the debug data and command registers have the
same size (deb_reg_width), which is computed as the maximum value of Equations (5.21)
and (5.22). Equation (7.2) describes the time necessary to perform a single DT (TDT)
based on the test access time (TACC) of a JTAG transaction (Equation (2.2)) and assuming
that there is a single device on the JTAG chain.

166 7 Experimental phase

 𝑇𝑇𝐷𝐷𝐷𝐷 = 3 ∙ �
𝑑𝑑𝑑𝑑𝑑𝑑_𝑟𝑟𝑟𝑟𝑟𝑟_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ + 6

𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇
+ 𝛿𝛿𝑠𝑠 + 𝛿𝛿ℎ� + 1 ∙ �

1 + 6
𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇

+ 𝛿𝛿𝑠𝑠 + 𝛿𝛿ℎ� (7.2)

The first factor of Equation (7.2) represents the TACC of the three DR-shifts used to
exchange information with the debug command and data registers. The second factor
represents the 1-bit DR-shift used to skip the command cycle. FTCK is the operation
frequency of TCK, and δs and δh are software and hardware delays that appear during the
data transmission. Based on Equations (7.1) and (7.2), the test time (Ttest_time) is:

 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝐷𝐷 ∙ 𝑇𝑇𝐷𝐷𝐷𝐷 + 𝑇𝑇𝑆𝑆𝑆𝑆 (7.3)

TSW is the time required for the execution of the SW layers. In this case, FBTS active time
is part of the DTs·TDT factor (polling time).

7.6.1.1 Experimental 𝛅𝛅𝐬𝐬 and 𝛅𝛅𝐡𝐡 delays

δs and δh are the software and hardware delays produced during the transmission of data
through the USB-Blaster, respectively. In [30] they are approximated to 1/𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇.
However, this approximation is not realistic for the USB-Blaster and the quartus_stp tool.
Equation (7.4) presents a way to calculate δs + δh. It is obtained by substituting Equation
(7.2) into Equation (7.3) and isolating δs + δh.

 𝛿𝛿𝑠𝑠 + 𝛿𝛿ℎ =
1
4
∙ �
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑇𝑇𝑆𝑆𝑆𝑆

𝐷𝐷𝐷𝐷𝐷𝐷
−

3 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑟𝑟𝑒𝑒𝑒𝑒_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ + 25
𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇

� (7.4)

TSW is the time needed by quartus_stp to execute SW layer procedures, and is measured
using the TCL instruction time without considering the ATE/FBTS communication.
Ttest_time is computed based on the test time performance counter and the operation
frequency of the FBTS (50MHz). FTCK is the operation frequency of the USB-Blaster (6
MHz). Additional BScan devices are not considered because the JTAG chain of the DE2-
115 comprises the Cyclone IV-E FPGA only.

Delays computed for the SRAM and LCD tests vary between 1 and 3 milliseconds. These
values are approximately 10.000 times higher than 1/𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇 and confirm that the
approximation presented in [30] is not realistic for the USB-Blaster and quartus_stp. The
consequence is that the ATE/FBTS communication has a great influence on test time
given that δs + δh delays can be longer than the total FBTS active time.

7 Experimental phase 167

7.6.2 Experimental results

Table 7.9 shows experimental results for the SRAM DUT-M. The processor
configuration selected for each layer partition corresponds to a processor variant in the
break value (I20.7 or I24.7). TFBTS and TSW are the real FBTS active time and execution time
of SW layers, respectively. The number of DR-shifts is computed by multiplying by four
the DTs obtained with Equation (7.1). Test time (Ttest) is calculated based on the content
of the test time performance counter and FBTS working frequency (50 MHz).

Layers in
ESW

Processor
variant TFBTS (ms) TSW (ms) DR-shifts Ttest (ms)

L4-L2 I20.7 1.599 0.6 76 234.01
L4-L3 I24.7 0.469 0.7 76 228.00

L4 I24.7 0.362 0.7 76 225.99
L3-L2 I20.7 1.274 1.3 120 318.06

L3 I20.7 0.183 1.3 120 332.16
L2 I20.7 1.270 35.5 1976 4032.34

Table 7.9: Test time of ROBSY test system. SRAM DUT

Table 7.9 shows that TFBTS varies between 0.1 and 1.6 milliseconds depending on the
layer partition. However, Ttest varies between 225 and 4032 milliseconds. This difference
is not caused by TSW, it is caused by δs + δh and the amount of DR-shifts. In this case,
this means that test time is defined by the number of DR-shifts, and moreover by the
location of interface I2 (ATE interface). On the other hand, the location of interface I3
(processor/co-processor interface) or the processor configuration parameters do not have
a strong influence on test time.

The longest test time in Table 7.9 corresponds to L2 in ESW given that this partition
requires the highest number of DR-shifts. The reason of this is that L2 procedures have a
high number of arguments and are called multiple times by L3.

Table 7.10 shows experimental results for the LCD DUT-M. The processor configuration
selected for each layer partition corresponds to a processor variant in the break value
(I8.4). In this case, TFBTS varies between 699 and 880 milliseconds, while Ttest varies
between 784 and 1792 milliseconds.

Layers in
ESW

Processor
variant TFBTS (ms) TSW (ms) DR-shifts Ttest (ms)

L4-L2 I8.4 880.4 0.4 512 968.0
L4-L3 I8.4 699.0 0.4 424 784.0

L4 I8.4 699.0 0.4 424 784.0
L3-L2 I8.4 880.4 0.4 512 967.9

L3 I8.4 699.0 0.4 424 784.0
L2 I8.4 880.4 4.7 920 1792.1

Table 7.10: Test time of ROBSY test system. LCD DUT

168 7 Experimental phase

In comparison to the SRAM DUT-M, the differences between TFBTS and Ttest are smaller.
In this case, δs + δh and the number of DR-shifts do not influence the results in the same
way as for the SRAM. This is due to the long access time of the LCD controller, which
produces TFBTS values in the range of hundreds of milliseconds. Additionally, most of the
DR-shifts are executed for polling purposes. This explains why the number of DR-shifts
is different for layer partitions with the same SW layers (e.g. L3-L2 and L3). In this case,
the dependency of test time on the layer partition and the processor configuration
parameters is more evident.

7.6.3 FPGA configuration time

The configuration time of the Cyclone IV-E FPGA (EP4CE115F29C7) in JTAG mode is
9 seconds. It remains constant independently of the DUT-M, processor variant, or layer
partition. The reason for this is that the size of the configuration file is always the same
for a given FPGA if the FPGA configuration is performed in JTAG mode.

The configuration time was not considered as part of the test time analysis because it
depends on the specific PCB, ATE, and available configuration methods. Options to
reduce the configuration time are increasing the TCK frequency or using data
compression methods and other configuration modes [151]. The latter can be used to
obtain configuration times below 100 milliseconds. If short test time is the main test
requirement, it is necessary to consider high speed configuration methods during the
design of the PCB.

7.7 Comparison to other approaches

7.7.1 ROBSY vs Nios II

The Nios II was used to implement three FBTS variants. As already mentioned in Section
2.4.1, the Nios II is a 32-bit proprietary and configurable soft-core processor with 32
GPRs developed and optimized for Altera FPGAs [61]. Three Nios II cores (/e, /s, and /f)
are available and they support a common ISA. Table 7.11 shows main properties of the
cores used for the experiments.

 Pipeline
stages

Shared
memory

Instruction
cache

Data
cache

Branch
prediction

JTAG debug
interface

Nios II /e multicycle 16384 bytes - - - level 1
Nios II /s 5 16384 bytes 512 bytes - static level 1
Nios II /f 6 16384 bytes 512 bytes 512 bytes dynamic level 1

Table 7.11: Properties of the Nios II cores

7 Experimental phase 169

In the experimental setup, the three cores are connected to a shared memory used for the
storage of instructions and data. This memory is configured with the minimum size
required for the experiments (Table 7.11). The three FBTS (each one including a Nios II
core) are developed based on the SRAM DUT-M. The layers L4-L2 are implemented in
ESW, whereas L1 and L5 are implemented in HW and SW, respectively. The SRAM
DUT-M and respective layer partition were selected because they produce ROBSY
processor variants with the highest resource utilization and longest FBTS active time.

Layers L4-L2 are manually described in C using the same structure of the SRAM DUT-M
and compiled with the Nios II software build tools. In order to reduce memory footprint,
compilation options enable_reduced_device_drivers, enable_small_c_library, and
enable_lightweight_device_driver_api are activated, whereas enable_c_plus_plus is
deactivated. L1 is implemented with the same co-processor used for the 32-bit ROBSY
processor variants (including performance counters). For this purpose, the Wishbone bus
is replaced with the Avalon bus of Nios II. L5 is coded manually using the script
capabilities of the GNU debugger supported by Nios II.

The ROBSY processor variants selected for the comparison to the Nios II cores are I8.0,
I32.7, and I20.7. I8.0 is an 8-bit processor without pipeline or embedded blocks
(short_imm_set false, pipeline_set false, GPR_mem false, and shifter_mult false). I32.7 and
I20.7 are 32-bit and 20-bit processors with pipeline and embedded blocks (short_imm_set
false, pipeline_set true, GPR_mem true, and shifter_mult true). I8.0 and I32.7 have the
minimum and maximum data_width values, and I20.7 is located at the break value.

7.7.1.1 Resource utilization

Figure 7.18 and Figure 7.19 show the resource utilization of ROBSY processor and Nios
II processor. I8.0 consumes less LEs and M9K blocks than the Nios II cores, and it does
not make use of any multipliers (same as Nios II/e). However, the LE utilization of I8.0 is
closed to the LE utilization of Nios II /e, although I8.0 is an 8-bit processor and Nios II/e is
a 32-bit processor. This is due to the fact that the ISA and microarchitecture of the Nios II
cores are optimized for 32 bits and Altera FPGAs. On the other hand, the ROBSY
processor is a generic processor designed for different FPGAs (families and vendors) and
with data width used as a configuration parameter (data_width). This means that it does
not have an ISA or microarchitecture optimized for a given data width or FPGA.

Nevertheless, the configurability provided by ROBSY makes it possible to have 32-bit
processor variants such as I32.7 that consume less LEs than the Nios II/s or /f cores. Still,
I32.7 consumes four extra M9K blocks and two extra multipliers in comparison to the Nios
II/f core. This is also a consequence of the universality of the ROBSY processor. I20.7

170 7 Experimental phase

shows that ROBSY processor can produce results that required even less resources than
the Nios II/s and /f and still provide good FBTS active time results (Section 7.7.1.2).

Figure 7.18: Nios II vs ROBSY logic elements. SRAM DUT (L4-L2)

Figure 7.19: Nios II vs ROBSY M9Ks and 9x9 multipliers. SRAM DUT (L4-L2)

To summarize, the resource utilization of the ROBSY processor is in the same range of
Nios II. The configuration options provided by ROBSY make it possible to obtain
processor variants that are adapted to the given test scenario, and therefore provide a low
utilization of resources. This is possible even if the ROBSY processor is not optimized
for Altera FPGAs.

7.7.1.2 Performance

Figure 7.20 shows FBTS active time results for ROBSY and Nios II cores. The
comparison between these values has to be done considering that different source files
(DUT-M for ROBSY and C program for Nios II) and compilers are used to generate the
object code. The comparison shows that results obtained with ROBSY are in the same
range as results obtained with the Nios II. This takes place even if Nios II cores have
more pipeline stages or additional performance mechanisms such as dynamic branch
prediction.

7 Experimental phase 171

Figure 7.20: Nios II vs ROBSY FBTS active time. SRAM DUT (L4-L2)

Table 7.12 shows test time results of ROBSY and Nios II. In this case, the ROBSY test
system requires half of the time to execute the test. It is important to mention that in both
cases the results are highly dependent on the number of DTs (Section 7.6). In the case of
ROBSY, the number of DTs is mainly determined by the arguments of the DUT-M
procedures belonging to the highest layer implemented in ESW. In the case of the Nios II,
the number of DTs depends on procedure arguments but also on the operation of the
GNU debugger.

Test approach Ttest (ms)

ROBSY I8.0 261.97
ROBSY I32.7 240.00
ROBSY I20.7 234.01

Nios II/e 550.02
Nios II/s 560.13
Nios II/f 430.00

Table 7.12: ROBSY vs Nios II test time. SRAM DUT (L4-L2)

7.7.2 ROBSY vs VLSR

In order to compare the ROBSY test system against other FBT techniques, the same test
algorithms of SRAM and LCD DUT-Ms were implemented using a virtual length shift
register (VLSR) (Section 3.2.2). A VLSR is a virtual BScan register implemented using
the FPGA that is dynamically configured to reduce its length based on the number of
DUT interconnections. The VLSR used for the comparison to the ROBSY test system
relies on the D architecture [30], which uses separate data and mask shift registers. The
data register comprises control and I/O cell pairs to drive test patterns and get responses.
The mask register dynamically configures the length of the data register. This architecture
was chosen because it provides the shortest test time in comparison to other architectures.

The VLSR implemented for the experiments supports 373 I/Os, and therefore consists of
a mask register with 373 cells and a data register with 746 cells. A comparison of
ROBSY and BScan was not carried out because it would produce results similar to the

172 7 Experimental phase

VLSR. The resource utilization would be zero and longer test time values would be
expected due to a longer BScan chain.

7.7.2.1 Resource utilization

Figure 7.21 shows the LE utilization of the ROBSY FBTS and VLSR. The utilization of
M9K blocks and multipliers is not shown because the VLSR does not make use of them.

Figure 7.21: VLSR vs ROBSY logic elements. SRAM DUT (L4-L2)

The VLSR requires three times more LEs than the ROBSY FBTS. The reason of this is
that the size of the VLSR only depends on the number of I/Os. For each I/O, it is
necessary to use approximately 6 LEs to implement a mask and data register cell. The
advantage is that the same VLSR can be used to test different DUTs connected to the
FPGA.

7.7.2.2 Performance

Table 7.13 presents test time results of the ROBSY test system and VLSR for the SRAM
DUT-M. ROBSY DR-shifts and Ttest results are obtained from Table 7.9. The data
register of the VLSR is dynamically configured with 82 cells in order to access all SRAM
pins. The quartus_stp and USB-Blaster tools are used in order to obtain a fair comparison.

Test approach DR-shifts Ttest (ms) Speed-up

ROBSY

L4-L2 76 234.01 5.8
L4-L3 76 228.00 5.9

L4 76 225.99 6.0
L3-L2 120 318.06 4.2

L3 120 332.16 4.1
L2 1976 4032.34 0.3

VLSR 564 1352.09 1

Table 7.13: ROBSY vs VLSR test time. SRAM DUT-M (all layer partitions)

Table 7.13 shows that Ttest values of ROBSY are four to six times shorter than VLSR
values for all layer partitions (excluding L2 in ESW). The Ttest value for L2 in ESW is
approximately three times longer than the VLSR. The differences are mainly due to

7 Experimental phase 173

dissimilar number of DR-shifts. In this case, the high number of DR-shifts required for
ROBSY if L2 is implemented in ESW is a consequence of the great amount of DTs that
have to be performed. This shows that the FBTS for the SRAM DUT-M that only
includes L1 and L2 in the FPGA is not appropriate in terms of test time.

Table 7.14 shows test time results for the LCD DUT-M. ROBSY DR-shifts and Ttest
results are obtained from Table 7.10. The data register of the VLSR is dynamically
configured with 30 cells in order to access all pins of the LCD controller.

Test approach DR-shifts Ttest (ms) Speed-up VLSR

ROBSY

L4-L2 512 968.0 275
L4-L3 424 784.0 340

L4 424 784.0 340
L3-L2 512 967.9 275

L3 424 784.0 340
L2 920 1792.1 149

VLSR 131088 266320 1

Table 7.14: ROBSY vs. VLSR test time. LCD DUT-M (all layer partitions)

In comparison to the SRAM DUT-M, results for the LCD DUT-M show higher speed-ups
(149-340). This is due to the higher differences in the number of DR-shifts necessary for
ROBSY and the VLSR.

The comparison of ROBSY to the VLSR shows that ROBSY is able to improve test time
results obtained with a VLSR. This is possible because the implementation of test
functions in the FBTS reduces the amount of information that has to be transferred
between the ATE and FPGA. However, the implementation of L2-L1 in the FBTS tends
to produce high ATE/FBTS traffic. Therefore, it is convenient to at least implement
layers L3-L1 in the FBTS.

Although it is not shown in Table 7.13 and Table 7.14, it is important to remember that
the ROBSY test system applies test patterns at-speed, while the application speed of the
VLSR depends on TCK and the length of the data register.

7.8 Summary

Chapter 7 presented experimental results of the ROBSY test system for two different
DUTs. The first DUT is an SRAM, in which the DUT-M describes two algorithms for the
detection and diagnosis of faults. The second DUT is a LCD, in which the DUT-M
describes a square pattern that moves through the screen.

174 7 Experimental phase

The experiments are used to analyze the processor and FBTS resource utilization (LEs,
M9K blocks, and 9x9 multipliers), FBTS active time, and test time based on the
configuration parameters of the processor and layer partitions. For comparison purposes,
same tests were performed with Nios II cores and a VLSR.

7.8.1 Resource utilization

7.8.1.1 ROBSY processor

It was demonstrated that the automatic generation process is able to adapt the ROBSY
processor to the DUT-M. It computes values of the dependent configuration parameters,
defining proper instructions, number of GPRs, and size of memories. The dependent
configuration parameters allow producing efficient ROBSY processor variants in terms of
resources without affecting the performance of the processor (execution time). In this
way, it is possible to implement the ROBSY processor in FPGAs of low capacity or a
multi-domain FBTS. Additionally, the number of configuration parameters that have to
be defined manually is reduced to five variable (independent) configuration parameters.
These parameters cannot be exactly calculated by analyzing the DUT-M or assembly
program properties.

The variable (independent) configuration parameters provide a way to manually influence
the resource utilization of the processor. This is done based on trade-offs between type of
FPGA resources and trade-offs between FPGA resources and performance. GPR_mem
and shifter_mult produce trade-offs between LEs and M9K blocks and between LEs and
9x9 multipliers, respectively. pipeline_set produces trade-offs between LEs and
performance, and short_imm_set between M9K blocks and performance. The activation
of short_imm_set typically reduces the number of M9K blocks at the expense of
additional instructions necessary for handling immediate data and address values.
However, it was shown that short_imm_set can produce the opposite effect. For low
data_width values, the compiler might produce a very high number of additional
instructions (e.g. SRAM DUT-M and 8-bit processors). Finally, data_width produces
trade-offs between all FPGA resources and performance. The increase of data_width goes
with an increase of LEs, M9K blocks, and 9x9 multipliers, but it provides the option to
perform operations using fewer instructions.

The constellation short_imm_set true, pipeline_set false, GPR_mem true, and shifter_mult
true produces the lowest utilization of LEs at the expense of additional embedded blocks,
while the opposite constellation produces the contrary effect. However, resource
utilization differences between processor variants vary depending on the value of the

7 Experimental phase 175

dependent configuration parameters as well as on the synthesis tool and selected synthesis
options.

7.8.1.2 FPGA-based test system

The resource utilization of the complete FBTS is affected by the processor variant but
most importantly by the layer partition, which defines layers implemented in SW, ESW,
and HW. The experiments showed that the layer partition offers flexibility in terms of
resource utilization, but results are highly dependent on the properties of the specific
DUT-M (number and size of procedures, variables, and operations).

Experiments carried out with the SRAM and LCD DUT-Ms showed that the layer
partition has a greater influence on resources than the processor independent
configuration parameters. However, the layer partition can produce significant or no
variations of the results. This depends on the properties of each layer of the DUT-M. For
example, the implementation of an additional layer in HW for the SRAM DUT-M
produced a significant increase of LEs. On the other hand, the implementation of an
additional layer in HW for the LCD DUT-M produced low variations of LEs.

The results also showed that including a processor as part of the FBTS might not always
contribute to an efficient utilization of resources. If the DUT-M presents a low
complexity, with a small number and size of procedures, variables, and operations (e.g.
LCD DUT-M), the resource utilization of the processor might be very high in comparison
to the resource utilization of a co-processor for the same layers. In such a case, it is
necessary to evaluate if other advantages of the processor (reusability, standard
communication mechanism, pre-verified component, debugging) or if the ROBSY
approach itself is appropriate for testing the interconnections to the specific DUT.

Finally, the use of layer partitions and configuration parameters provide a way to make an
efficient use of resources, facilitating the implementation of a multi-co-processor or
multi-domain FBTS in FPGAs with different capacities. It was shown that the FBTS
generated for the experiments fit in any FPGA of the Cyclone IV-E family, and there are
even additional resources available to extend the FBTS.

7.8.2 FBTS active time

FBTS active time represents the total test time if delays caused by the execution of SW
layers and the ATE/FBTS communication are not considered. It is an ideal mean to show
the effect of the processor configuration and ESW/HW partition because the execution of
SW and the ATE/FBTS communication delays are not considered.

176 7 Experimental phase

The analysis of FBTS active time was performed by means of the real and minimum
FBTS active time metrics. The former is calculated based on the real operation frequency
of the FBTS (50 MHz), and the latter is calculated based on the maximum operation
frequency of the FBTS (TimeQuest timing analyzer results).

7.8.2.1 ROBSY processor

The real FBTS active time is not affected by the dependent configuration parameters or
by all variable (independent) configuration parameters. It is only affected by the variable
(independent) configuration parameters short_imm_set, pipeline_set, and data_width. The
activation of short_imm_set typically results in longer values due to the execution of
additional instructions required to handle short immediate data and address values. The
activation of pipeline_set results in shorter values due to the pipeline. This means that for
a given data_width, the shortest real FBTS active time is obtained if pipeline_set is true
and short_imm_set is false (at the expense of more LEs and M9K blocks).

An increase of data_width produces a reduction of the real FBTS active time until a
certain data_width, which is known as the break value. As soon as this value is exceeded,
the FBTS active time remains relatively constant. The break value depends on properties
of the layer procedures implemented in ESW, specifically on the size and utilization rate
of variables and arguments. It signalizes processor variants with the most efficient
utilization of resources because processor variants with higher data_width values
consume more resources without significantly improving the real FBTS active time. The
break values obtained for the SRAM and LCD DUT-Ms and all layer partitions are 20-24
and 8, respectively. They show that the selection of untypical data_width values can lead
to a better adaptation of the processor.

The minimum FBTS active time is influenced by all the configuration parameters. It was
shown that the configuration parameters that increase the number of embedded blocks
(e.g. GPR_mem and shifter_mult) reduce the maximum operation frequency achieved
with the FBTS, increasing the minimum FBTS active time values.

7.8.2.2 Layer partition

The layer partition plays an essential role in the FBTS active time, and produces more
noticeable changes in comparison to the processor configuration parameters. Depending
on the properties of the DUT-M (layers implemented in ESW and HW), it can either
reduce the FBTS active time in a significant way or produce unnoticeable changes. The
implementation of additional layers in HW typically results in shorter real FBTS active
time values. However, there are cases in which the implementation of additional layers in
HW does not produce any significant changes (e.g. L3-L1 in comparison to L2-L1 in HW

7 Experimental phase 177

for the LCD DUT-M). The same is true for the implementation of additional layers in
ESW. The reason of this is that the FBTS active time (in the same way as the resource
utilization) also depends on the properties of the DUT-M.

7.8.3 Test time

Test time includes the real FBTS active time, execution time of SW layers, and time
required for the ATE/FBTS communication. It was shown that the ATE/FBTS
communication can significantly influence the results depending on the value of δs + δh
delays and number of DR-shifts.

In the experimental setup presented in this chapter, δs + δh delays produced by the USB-
Blaster and quatus_stp are in the range of 1-3 milliseconds. For the SRAM test, it was
shown that test time depends on the number of DR-shifts because the real FBTS active
time is shorter than the δs + δh delays. For the LCD test, it was shown that test time does
not show such a strong dependency on the ATE/FBTS communication as in the case of
the SRAM test. This is due to the low number of DR-shifts that has to be executed
(without considering polling) and the fact that the real FBTS active time is in the same
range or longer than δs + δh delays.

The consequence is that processor configuration parameters as well as the location of
interface I3 (processor/co-processor interface) do not affect test time results for FBTS
active time values shorter than δs + δh. In such a case, test time depends on the location
of interface I2 (ATE interface) given that it defines the number of DR-shifts. The
influence of the ATE/FBTS communication can be reduced by selecting a test controller
with shorter δs + δh delays, or by reducing the number of DR-shifts. Section 8.6 presents
alternatives for reducing the number of DR-shifts.

The FPGA configuration time also plays an important role in the test time. However, the
configuration time can be reduced to values below 100 milliseconds. This is achieved by
using high speed configuration methods that have to be considered during the design of
the PCB. However, the FPGA configuration time will become less relevant as the
implementation of multiple FBTS domains takes place.

7.8.4 Comparison to Nios II and VLSR

In terms of resource utilization, it was shown that the resource utilization of the ROBSY
processor is in the same range as the resource utilization of Nios II cores. It is even
possible to obtain a more efficient utilization of resources with the ROBSY processor by

178 7 Experimental phase

selecting proper values for the configuration parameters. The reason of this is that the
configuration options provided by ROBSY make it possible to obtain processor variants
that are better adapted to the given test scenario even if the ROBSY processor is not
optimized for a specific FPGA. The comparison to the VLSR shows a much higher
utilization of LEs in the case of the VLSR. This is due to the high number of FPGA I/Os
and that for each I/O it is necessary to used approximately 6 LEs.

In terms of FBTS active time, the comparison to Nios II cores for a single layer partition
shows that ROBSY is able to deliver results in the same range of the Nios II. This is
achieved even if the Nios II cores are optimized for Altera FPGAs, have more pipeline
stages, and support dynamic branch prediction.

In terms of test time, the comparison of ROBSY to the Nios II test systems showed that
results obtained with ROBSY are half as long in average. The reason of this is that the
GNU debugger tool supported by Nios II requires more DR-shifts than the approach
developed for the ROBSY test system. The comparison to the VLSR showed that
ROBSY is also able to achieve shorter test time values. In the case of the SRAM, the
speed-ups achieved are in the range of 4-6 depending on the layer partition. However, the
implementation of L2-L1 in the FBTS can produce longer test times if the amount of DR-
shifts is higher with ROBSY than with the VLSR. In the case of the LCD, the speed-ups
are even higher (149-339).

To conclude, the comparison to the Nios II shows that ROBSY can provide better
resource utilization results and similar performance even if the processor is not optimized
for a specific FPGA or for a given data width. This is due to the processor’s adaptation
mechanism and specialization for testing. The comparison to VLSR shows that the
implementation of test functionality in the FPGA reduces the number of DR-shifts.
Additionally, it is important to remember that ROBSY applies test patterns at-speed,
while the application speed of the VLSR depends on TCK and the VLSR length.

7.8.5 Synthesis tool

The FPGA synthesis tool use heuristics to map the functionality described at the RTL to
the FPGA blocks. In this way, it is able to provide optimal results in a short amount of
time. Drawbacks are that it is quite difficult to predict the time required for synthesis and
that the heuristics might influence the results without an apparent reason. For example,
the tool might perform differently during the implementation of similar processor
variants, duplicating registers that were not duplicated in other cases, using a different

7 Experimental phase 179

amount of resources for routing, including more M9K blocks or 9x9 multipliers than
necessary or producing solutions with unrelated maximum operation frequencies.

These uncertainties produced by the synthesis tool make it very difficult to predict what
will be the final effect of a given layer partition or processor variant. Therefore, it is
necessary to keep in mind that the results presented in this chapter represent typical
behaviors. However, it is possible to obtain different results in certain cases or if other
synthesis tools, tool versions, or FPGAs are used.

7.8.6 Selection of a processor variant

Sections 7.4 and 7.5 show that the resource utilization and FBTS active time can be
modified based on the independent processor configuration parameters. In order to select
a proper processor variant, there are some guiding principles that can be used by the test
engineer after the definition of the layer partition.

The first step is the selection of a proper data_width value considering the size of
variables and arguments of procedures implemented in ESW and the size of procedure
arguments belonging to the highest layer implemented in HW. The goal is to select a
data_width value that matches the break value. After that, the test engineer can start
experimenting with the remaining independent configuration parameters. For this
purpose, the following guiding principles should be considered:

• short_imm_set reduces the number of M9K blocks at the expense of extra
instructions that can increase FBTS active time. However, the test engineer has to
consider the possible counter effect of this parameter for low data_width values
(Section 7.4.2.2).

• pipeline_set reduces FBTS time at the expense of additional LEs for the
implementation of pipeline related logic.

• GPR_mem reduces the number of LEs at the expense of two additional M9K
blocks. It does not affect the real FBTS active time, but it increases the minimum
FBTS active time (reduction of the maximum operation frequency).

• shifter_mult reduces the number of LEs at the expense of additional multipliers.
The effect of shifter_mult takes place only if shift or rotation instructions are
required. It does not affect the real FBTS active time, but it increases the
minimum FBTS active time.

If the obtained processor and FBTS variant do not achieve the required FBTS active time
based on the independent configuration parameters short_imm_set, pipeline_set,
GPR_mem, and shifter_mult, the test engineer can increase data_width or select a

180 7 Experimental phase

different layer partition at the expense of higher utilization of resources. On the other
hand, if the resource utilization is above a maximum constraint, the test engineer can
reduce data_width or select a different layer partition at the expense of longer real FBTS
active time values.

These guiding principles cannot be considered general rules that stay valid for all test
scenarios. The properties of the DUT-M, FPGA, and heuristics of the synthesis tool can
lead to different results. They provide a fast mechanism to select a proper processor
variant, and can be used for the development of heuristics that automatically compute the
value of the independent configuration parameters.

181

8 Conclusions

8.1 Introduction

This chapter summarizes this dissertation. Section 8.2 presents a summary of the work,
and Section 8.3 lists the major achievements. Sections 8.4 and 8.5 present a discussion of
the impact and limitations of the provided solution, respectively. Finally, Section 8.6
provides an outlook of possible extensions and improvements as part of the future work.

8.2 Summary of the dissertation

This dissertation deals with the development of a novel FPGA-based test (FBT) approach
used during the manufacturing of printed circuit boards. In this context, the general issue
is related to the development of a test system with the following features:

• Architecture adapted to the specific test scenario.
• Low design effort for test engineer.
• Fault coverage of static and dynamic faults.
• At-speed test.

The dissertation proposes the development of a test system, whose main components are
the external automatic test equipment (ATE) and the FPGA located on the printed circuit
board. The test system is automatically generated based on a high-level description of the
device under test (DUT) and test algorithms, which is known as device under test model
(DUT-M). The DUT-M relies on a layer concept that divides the test functionality into
five layers (L1-L5) and three interfaces (I1-I3). The implementation of test functions in
the ATE is performed by transforming layers of the DUT-M to software (SW) routines,
and the implementation of test functions in the FPGA is performed by transforming layers
of the DUT-M to an FPGA-based test system (FBTS). The FBTS is composed of two
fundamental components: a programmable test processor and a hardwired co-processor.
This means that the implementation of test functions in the FBTS is performed by
transforming layers of the DUT-M to embedded software (ESW) routines executed by the
test processor or to hardware (HW) descriptions representing the hardwired co-
processors. The selection of layers that are implemented in SW, ESW, and HW is known
as the layer partition, and it is performed by defining the location of interfaces I2 and I3.

182 8 Conclusions

The adaptation of the test system to different test scenarios relies on the flexibility of the
layer concept and the option to implement layers in the ATE or FBTS. The low design
effort required to build the test system is due to the DUT-M, which is the only description
that has to be developed (or selected from a library) by the test engineer. Based on this
description, the SW, ESW, and HW are automatically generated.

The test system executes tests at-speed in order to guarantee the detection of dynamic
faults. This is possible because the access to DUTs is implemented by co-processors,
which are clocked at the operation frequency of the printed circuit board. The use of
FPGAs already located on the printed circuit board, the automatic generation of the test
system, the layer concept, and the processor/co-processor architecture of the FBTS
provide the test engineer with a powerful test approach.

The main contribution of this dissertation is the analysis, development, and evaluation of
the test processor included in the FBTS. The key features of the processor are:

• Tailored and specialized for testing purposes.
• Adaptation mechanism based on configuration parameters defined at the ISA and

microarchitecture level.
• Debug-interface for ATE/FBTS communication and Wishbone bus for

processor/co-processor communication.

The test processor is known as ROBSY processor. It is a scalar soft-core processor
described at the register transfer level in VHDL. The VHDL description is portable to
FPGAs from different families and vendors, and it was used in Altera as well as Xilinx
FPGAs. The ROBSY processor is developed based on the RISC design philosophy with
pipelining support and configuration options that change properties of its ISA and
microarchitecture. It supports a single data width, test operations such as instructions for
the generation of pseudo-random sequences and walking 1/0 sequences, and includes a
debug-interface with JTAG support.

Apart from the ROBSY processor, this dissertation proposes a concept for the automatic
generation flow of the complete test system. One essential part of the concept describes
the way that the ROBSY processor is automatically adapted to the layers implemented in
ESW and the transformation steps necessary to generate the object code. The generation
flow analyses the DUT-M and generated assembly program in order to compute the value
of the configuration parameters known as dependent configuration parameters. These
parameters are used to adapt the processor to the DUT-M, and only affect the resource
utilization of the processor. There is a second group of configuration parameters known
as independent configuration parameters, whose values are not computed by the

8 Conclusions 183

automatic generation flow. The value of these parameters is defined by the test engineer
and they provide trade-offs between resource utilization and performance.

In order to show the feasibility of the approach, a practical implementation of the
automatic generation flow for a single processor/co-processor pair was developed. The
flow includes the adaptation of the ROBSY processor, the generation of the object code,
and the generation of SW for the ATE based on TCL and the IEEE standards 1149.1-
2013 and IJTAG. The VHDL description of the co-processors was manually developed.

The practical implementation of the automatic generation flow is used to generate the
ROBSY test system for two DUT-Ms. The first DUT-M is used to test the
interconnections between an FPGA and an IS61WV102416 SRAM device. It describes
fault detection and fault diagnosis algorithms based on deterministic patterns, algorithmic
patterns, and fault dictionaries. The second DUT-M is used to test the interconnections
between the same FPGA and an LCD DIP128-6 controller. The LCD DUT-M presents a
lower complexity in terms of number and size of procedures, variables, and operations. It
describes a square pattern that moves through the screen, which has to be visually
inspected in order to detect any fault. The experiments were performed using the DE2-
115 board from Terasic and the VarioTap Coach Board from Göpel Electronics. The
Cyclone IV-E FPGA (EP4CE115F29C7) on the DE2-115 was used for the
implementation of the FBTS.

The experimental results provide a way to evaluate the resource utilization and
performance for different processor variants and layer partitions. The performance
measurements were done based on the accumulated time that the FPGA-based test system
is active (FBTS active time) and total test execution time (test time). Results show that
the concept works and that the processor adapts itself to the DUT-M based on the
automatic generation flow. Additionally, it was possible to analyze the behavior of the
dependent and independent configuration parameters and propose guiding principles for
assigning proper values to the independent configuration parameters. An important
conclusion is that results significantly depend on the properties and complexity of the
DUT-M and that the processor represents a good alternative to implement functions of
layers L4-L2 if these layers present a complexity similar to the SRAM DUT-M.

For comparison purposes with state of the art soft-core processors, the test functionality
of the SRAM DUT-M was implemented in three FBTS based on the Nios II/e, /s, and /f
cores. The comparison showed that the resource utilization of the ROBSY processors is in
the same range or below the Nios II depending on which ROBSY processor variant is
used for the comparison. Additionally, FBTS active time and test time values obtained
with ROBSY are 20% and 50% shorter in average, respectively. This shows that ROBSY

184 8 Conclusions

can provide an efficient utilization of resources and better performance even if the
processor is not optimized for a given FPGA or data width as is the case of the Nios II.

For comparison purposes with state of the art FPGA-based test approaches, the test
functionality of both DUT-Ms was also implemented using a generic FPGA test
instrument (virtual length shift register, VLSR). Results for SRAM and LCD show that
the ROBSY test system is 4 to 6 and 149 to 340 times faster than the VLSR depending on
the layer partition. Additionally, the proposed test system is able to execute tests at-speed,
which is not possible with the VLSR. This shows the advantages of ROBSY and that it is
a suitable alternative for testing printed circuit boards.

8.3 Achievements

The theoretical part of the work includes the following achievements:

• A concept of a novel test system for printed circuit board testing.
• An FPGA-based test system composed of configurable test processors and

hardwired co-processors organized in domains.
• A test processor tailored and specialized for board-level testing with configuration

options defined at the ISA and microarchitecture level.
• An automatic generation flow for the generation of the test system and adaptation

of the processor.

Furthermore, the applicability of the approach has been shown by implementing the
theoretical concept. In this context the achievements of the work are:

• The implementation of the ROBSY processor in VHDL.
o ISA and microarchitecture tailored and specialized for FPGA-based tests.
o JTAG-based debug-interface and a Wishbone bus for communication and

debugging purposes.
o ISA and microarchitecture configuration options defined in VHDL

packages.
• The implementation of an automatic generation flow:

o Automatic generation of VHDL packages based on the analysis of DUT-M
and assembly program.

o A compilation tool for translating the DUT-model high level description to
the ROBSY processor object code and to the TCL or PDL/BSDL
descriptions executed by the external ATE.

8 Conclusions 185

8.4 Impact

This dissertation introduced a novel and powerful FPGA-based test concept for
performing tests of printed circuit boards. This concept overcomes the most limiting
aspects of other FPGA-based test approaches, which correspond to the inability to
execute tests at-speed, long test times, and a high development effort. The test processor
is the first processor developed for printed circuit board testing, and it provides a standard
interface to the ATE and the option to efficiently embed more test functions in the FPGA.
It was shown that it is an ideal mechanism to control and observe the test execution and
that it can provide resource utilization and performance results in the same range or better
than Nios II cores, which are optimized for Altera FPGAs.

Furthermore, with the automatic generation of the test system, it is possible to implement
the FPGA-based test system without the need for test engineers with a high FPGA design
expertise. This makes the concept attractive and applicable to industry.

8.5 Limitations

The limitations of the FPGA-based test approach deal with the need for an FPGA on the
printed circuit board, synthesis of the FPGA-based test system on the field, FPGA
configuration time, and use of a test processor in low complexity test scenarios.

The main limitation of the approach presented in this dissertation is that it can be only
used to test printed circuit boards that are already equipped with an FPGA for their
normal operation. The addition of an FPGA to the board just for testing purposes makes
no sense at all because the tested interconnections (between FPGA and DUTs) will not be
used during the normal operation of the board.

The need to synthesize the FPGA-based test system on the field makes it necessary to
consider the synthesis tool, synthesis time, resource utilization, and timing results. As a
consequence, the automatic generation flow should support mechanisms to deal with
FPGA-based test systems that do not fit in the FPGA or that do not reach the required
operation frequency. This is a great challenge for the development of the automatic
generation flow because it should be aware of the synthesis options offered by the tools,
and it should include mechanism to give some feedback or guide test engineers in the
case of problems.

This dissertation did not consider FPGA configuration time as part of test time. This is
due to the fact that the configuration time depends on the capacity of the FPGA and the

186 8 Conclusions

selected configuration mechanism. The experiments presented show that the FPGA
configuration time can take much longer than test time. Therefore, it is necessary to
counteract its effect by using high performance configuration mechanisms (when
possible) and by implementing FPGA-based test systems with multiple domains. The
latter makes it possible to test interconnections to multiple DUTs at the same time and to
configure the FPGA only once.

The use of the test processor might result in an inefficient utilization of resources for low
complexity DUT-Ms. As presented in the LCD test, the processor might consume more
than 60% of the resources even if layers L1-L3 are implemented in hardware and only a
very basic L4 functionality is implemented in embedded software. In such a case, the use
of a processor does not offer any advantages and better results would be likely obtained
with a completely hardware implementation. However, this effect tends to disappear
when multiple co-processors are connected to the processor in the same domain.

8.6 Future work

There are multiple research directions concerning the test system as well as the ROBSY
processor. They are necessary in order to explore other alternatives, enhance the FPGA-
based test approach, or develop parts of the concept that are not already developed.

• Partitioning and automatic generation process
o Development of a high level DUT-M analyzer in order to evaluate the

results of different layer partitions. In this way, it is possible to accelerate
the selection of a proper partition based on the properties of the DUT-M.

o Extension of the automatic generation process in order to enable the
generation of a multi-domain multi-co-processor FBTS. For this purpose,
it is necessary to analyze and compile multiple DUT-Ms at the same time.

o Research and development of mechanisms used as part of the automatic
generation process to deal with FBTS variants that do not fit in the FPGA
or do not reach the required operation frequency.

o Research and evaluation of heuristics that automatically compute the
independent configuration parameters values of the ROBSY processor
(e.g. design of experiments [153]).

• ATE/FBTS and processor/co-processor communication
o Optimization of the debug-interface in order to reduce the number of DR-

shifts required for exchanging information between the ATE and FBTS.

8 Conclusions 187

o Research of compression and decompression schemes that can be applied
to the ATE/FBTS communication. This is necessary in order to reduce test
time and support high volume data transfers (FLASH programming).

o Support for burst transfers as part of the Wishbone bus and evaluation of
an interrupt-based processor/co-processor communication.

• FBTS architecture
o Utilization of accumulation buffers between layers L1 and L2. This is

necessary to guarantee the application of pattern sequences at-speed
independently of the layer partition.

o Support for hard-core controllers already available in the FPGA for the
implementation of L1 functions.

o Development and evaluation of different structures for the ATE/FBTS
communication in a multi-domain FBTS. This can be realized considering
flat and hierarchical structures proposed in the IEEE 1149.1-2013 and
IJTAG standards.

o Research of layer partitions that implement L5 in the FPGA. This includes
the analysis and definition of embedded visualization mechanisms for test
results.

• Processor and compiler development
o Optimization of the compiler used to generate the object code. For this

purpose, it is necessary to efficiently map variables to registers and
perform code optimizations. The goal is to further reduce the processor
execution time and the size of the processor memories.

o Research of instruction set extension mechanisms based on the DUT-M.
• Experiments with additional DUT-Ms

o Perform additional experiments with other DUTs such as FLASH
memories in order to evaluate the test approach when high amount of data
is exchanged between FPGA and DUT.

o Evaluation of the FPGA-based test system for the execution of bit error
rate tests (BERT).

189

Bibliography

[1] 1149.1 IEEE standard for test access port and boundary-scan architecture, 2013.
[2] J. Sachsse, J. H. Meza Escobar, S. Ostendorff, and H.-D. Wuttke, “A Holistic

Approach of an Architecture for Tests of FPGA Based Systems with Boundary
Scan,” in Zuverlässigkeit und Entwurf (ZuE 2010): 4. GMM/GI/ITG-Fachtagung,
Berlin: VDE publisher, 2010, pp. 51–52.

[3] J. Sachße, H.-D. Wuttke, S. Ostendorff, and J.-H. Meza Escobar, “Architecture of
an Adaptive Test System Built on FPGAs,” in 24th Architecture of Computing
systems (ARCS 2011), Berlin, New York: Springer, 2011, pp. 86–97.

[4] J. H. Meza Escobar, J. Sachsse, S. Ostendorff, and H.-D. Wuttke, “Automatic
generation of an FPGA based embedded test system for printed circuit board
testing,” in 13th Latin American Test Workshop (LATW 2012): IEEE Proceedings,
2012, pp. 75–80.

[5] J. H. Meza Escobar, J. Sachsse, S. Ostendorff, and H.-D. Wuttke, “ISA
configurability of an FPGA test-processor used for board-level interconnection
testing,” in 14th Latin American Test Workshop (LATW 2013): IEEE Proceedings,
2013.

[6] M. Jenihhin et al., “Automated Design Error Localization in RTL Designs,”
(English), IEEE Design & Test, vol. 31, no. 1, pp. 83–92, 2014.

[7] J. H. Meza Escobar, S. Ostendorff, and H.-D. Wuttke, “A configurable test
processor for board-level testing,” in 19th Euromicro Conference on Digital System
Design (DSD 2016): Proceedings, 2016.

[8] A. Mitschele-Thiel, Systems engineering with SDL: Developing performance-
critical communications systems. Chichester, New York: J. Wiley, 2001.

[9] C. Haubelt and J. Teich, Digitale Hardware/Software-Systeme: Spezifikation und
Verifikation. Berlin, Heidelberg: Springer, 2010.

[10] J. Teich, Digitale Hardware/Software-Systeme: Synthese und Optimierung, 2nd ed.
Berlin: Springer, 2007.

[11] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital systems testing and
testable design. Piscataway, NJ: IEEE Press, 1990.

[12] M. L. Bushnell and V. D. Agrawal, Essentials of electronic testing for digital,
memory and mixed-signal VLSI circuits. New York: Kluwer Academic, 2002.

[13] O. Novák, E. Gramatová, and R. Ubar, Handbook of testing electronic systems, 1st
ed. Praha: Czech Technical University Publishing House, 2005.

[14] J. Bergeron, Writing testbenches: Functional verification of HDL models, 2nd ed.
Boston: Kluwer Acad. Publ., 2003.

190 Bibliography

[15] N. K. Jha and S. Gupta, Testing of digital systems. Cambridge: Cambridge
University Press, 2003.

[16] J. T. de-Sousa and P. Cheung, Boundary-scan interconnect diagnosis. Boston:
Kluwer Academic Publishers, 2001.

[17] C. E. Stroud, A designer's guide to built-in self-test. Boston: Kluwer Academic
Publishers, 2002.

[18] Y. C. Kim, V. D. Agrawal, and K. K. Saluja, “Multiple faults: modeling simulation
and test,” in 7th Asia and South Pacific Design Automation Conference (ASP-DAC
2002), 2002, pp. 592–597.

[19] R. Ubar, J. Raik, and H. T. Vierhaus, Design and test technology for dependable
systems-on-chip. Hershey, PA: Information Science Reference, 2010.

[20] K. Heragu, J. H. Patel, and V. D. Agrawal, “Segment delay faults: a new fault
model,” in 14th VLSI Test Symposium (VTS 1996), 1996, pp. 32–39.

[21] V. P. Kodali, Engineering electromagnetic compatibility: Principles,
measurements, technologies, and computer models, 2nd ed. New York: IEEE, 2001.

[22] V. Meyer, A. Palit, W. Anheier, A. Sticht, and J. Schoeffel, “Can Signal Integrity
Faults be Detected by Delay Tests?,” in 12th IEEE North Atlantic Test Workshop
(NATW 2003), 2003, pp. 131–136.

[23] M. Tehranipour, N. Ahmed, and M. Nourani, “Testing SoC interconnects for signal
integrity using boundary scan,” in 21st VLSI Test Symposium (VTS 2003): IEEE
Comput. Soc, 2003, pp. 158–163.

[24] M. Nourani and A. Attarha, “Signal integrity: Fault Modeling and Testing in
HighSpeed SoCs,” (English), Journal of Electronic Testing, vol. 18, no. 4/5, pp.
539–554, 2002.

[25] M. Cuviello, S. Dey, Xiaoliang Bai, and Yi Zhao, “Fault modeling and simulation
for crosstalk in system-on-chip interconnects,” in IEEE/ACM International
Conference on Computer-Aided Design. (ICCAD 1999): Digest of Technical
Papers, 1999, pp. 297–303.

[26] I. Pomeranz and S. M. Reddy, “On dictionary-based fault location in digital logic
circuits,” (English), IEEE Transactions on Computers, vol. 46, pp. 48–59, 1997.

[27] T. Wenzel and H. Ehrenberg, “Embedded system access (ESA),” White paper,
Göpel Electronic, 2012.

[28] W. J. Dally and J. W. Poulton, Digital systems engineering. Cambridge, U.K., New
York, NY, USA: Cambridge University Press, 1998.

[29] R. S. Khandpur, Printed circuit boards: Design, fabrication, assembly and testing.
New York: McGraw-Hill, 2006.

[30] I. Aleksejev, “FPGA-based Embedded Virtual Instrumentation,” Ph. D, Department
of Computer Engineering, Tallinn Univ. of Technology, Tallinn, Estonia, 2013.

Bibliography 191

[31] D. Maliniak, Test is a matter of life or death in the automotive industry. [Online]
Available: http://electronicdesign.com/test-amp-measurement/test-matter-life-or-
death-automotive-industry. Accessed on: Mar. 16 2015.

[32] M. Berger, Test- und Prüfverfahren in der Elektronikfertigung: Vom Arbeitsprinzip
bis Design-for-Test-Regeln. Heidelberg: Hüthig, 2012.

[33] S. F. Scheiber, Building a successful board-test strategy, 2nd ed. Boston:
Butterworth-Heinemann, 2001.

[34] D. Edwards, PCB design and its impact on device reliability. [Online] Available:
http://electronicdesign.com/boards/pcb-design-and-its-impact-device-reliability.
Accessed on: Mar. 16 2015.

[35] S. Oresjo, “A New Test Strategy for Complex Printed Circuit Board Assemblies,”
in National Electronic Packaging and Production Conference (Nepcon West 1999):
Proceedings, 1999.

[36] J. Kirschling, Improved Fault Coverage in a Combined X-Ray and In-Circuit Test
Environment. [Online] Available:
http://www.home.agilent.com/upload/cmc_upload/All/kirschling_etronix_5988229
1en.pdf?&cc=DE&lc=ger. Accessed on: Jul. 03 2013.

[37] K. Parker, The boundary-scan handbook: Analog and digital, 2nd ed. Boston, MA:
Kluwer, 1998.

[38] H. Goepel, “Reducing the Cost of Test with Boundary Scan,” (English), EE-
Evaluation Engineering,
http://www.evaluationengineering.com/articles/200401/reducing-the-cost-of-test-
with-boundary-scan.php, 2004.

[39] H. Ehrenberg, Why should you care about JTAG/Boundary Scan /IEEE 1149.x.
Presentation. [Online] Available:
http://www.ieee.li/pdf/viewgraphs/jtag_boundary_scan.pdf. Accessed on: Jan. 22
2016.

[40] B. Nadeau-Dostie, J. Cote, H. Hulvershorn, and S. Pateras, “An embedded
technique for at-speed interconnect testing,” in IEEE International Test Conference
(ITC 1999): Proceedings, 1999, pp. 431–438.

[41] A. Jutman, “At-speed on-chip diagnosis of board-level interconnect faults,” in 9th
IEEE European Test Symposium (ETS 2004): IEEE Proceedings, 2004, pp. 2–7.

[42] R. Folea, “Programming Flash Memory from FPGAs and CPLDs Using the JTAG
Port,” (English), XCell Journal, no. 49, pp. 77–79, 2004.

[43] D. Wallace, Using the JTAG Interface as a General-Purpose Communication Port.
XCell Online. [Online] Available: http://matthieu.benoit.free.fr/pdf/xc_jtag53.pdf.
Accessed on: Jan. 22 2016.

192 Bibliography

[44] B. Nadeau-Dostie, Design for at-speed test, diagnosis, and measurement. Boston:
Kluwer Academic, 2000.

[45] T. Wenzel and H. Ehrenberg, “Combining Boundary Scan and JTAG Emulation for
Advanced Structural Test and Diagnostics,” (English), Göpel Electronic, 2009.

[46] A. Tšertov, “System modeling for processor-centric test automation,” Ph. D,
Department of Computer Engineering, Tallinn Univ. of Technology, Tallinn,
Estonia, 2012.

[47] S. Park and T. Kim, “A new IEEE 1149.1 boundary scan design for the detection of
delay defects,” in Design, Automation and Test in Europe Conference & Exhibition
(DATE 2000), Los Alamitos, California: IEEE Comput. Soc, 2000, pp. 458–462.

[48] J. Nejedlo and R. Khanna, “Intel® IBIST, the full vision realized,” in IEEE
International Test Conference (ITC 2009), Washington, D.C: IEEE Proceedings,
2009, pp. 1–11.

[49] D. Bonnett, “Combine Boundary Scan with CPU Emulation to Extend Test
Coverage,” (English), Asset Intertech, 2004.

[50] J. Webster, B. Fenton, D. Stringer, and B. Bennetts, “On the synergy of boundary
scan and emulation board test: a case study,” in Board Test Workshop (BTW 2003):
Proceedings, 2003.

[51] S. Devadze, A. Jutman, A. Tsertov, M. Instenberg, and R. Ubar, “Microprocessor-
based System Test using Debug Interface,” in IEEE Norchip Conference (Norchip
2008): IEEE Proceedings, 2008, pp. 98–101.

[52] A. Tsertov, A. Jutman, and S. Devadze, “Testing beyond the SoCs in a lego style,”
in East-West Design and Test Symposium (EWDTS 2010): IEEE Proceedings, 2010,
pp. 334–338.

[53] A. Tsertov, R. Ubar, A. Jutman, and S. Devadze, “SoC and Board Modeling for
Processor-Centric Board Testing,” in 14th Euromicro Conference on Digital System
Design (DSD 2011): IEEE Proceedings, 2011, pp. 575–582.

[54] S. Devadze, A. Jutman, and R. Ubar, “Turning JTAG Inside Out for Fast Extended
Test Access,” in 10th Latin American Test Workshop (LATW 2009), Piscataway,
N.J.: IEEE Proceedings, 2009.

[55] S. Devadze, A. Jutman, I. Aleksejev, and R. Ubar, “Fast Extended Test Access via
JTAG and FPGAs,” in IEEE International Test Conference (ITC 2009),
Washington, D.C: IEEE Proceedings, 2009.

[56] S. Ostendorff, H.-D. Wuttke, J. Sachsse, and S. Kohler, “A new approach for
adaptive failure diagnostics based on emulation test,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE 2010): IEEE Proceedings, 2010, pp.
327–330.

Bibliography 193

[57] I. Aleksejev, A. Jutman, S. Devadze, S. Odintsov, and T. Wenzel, “FPGA-based
synthetic instrumentation for board test,” in IEEE International Test Conference
(ITC 2012): IEEE Proceedings, 2012, pp. 1–10.

[58] A. Jutman, S. Devadze, I. Aleksejev, and T. Wenzel, “Embedded synthetic
instruments for Board-Level testing,” in 17th IEEE EUROPEAN TEST
SYMPOSIUM (ETS 2012): IEEE Proceedings, 2012.

[59] Göpel Electronic, ChipVorx basics and applications. [Online] Available:
http://www.goepel.com. Accessed on: Jul. 12 2015.

[60] A. Crouch, FPGA-Controlled Test (FCT): What it is and why is it needed? [Online]
Available: http://www.asset-intertech.com/eresources/fpga-controlled-test-fct-what-
it-and-why-it-needed. Accessed on: Jan. 22 2016.

[61] Altera, Nios II classic Processor Reference Guide. [Online] Available:
https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf. Accessed on: Dec.
14 2015.

[62] Xilinx, MicroBlaze Processor Reference Guide: UG081. [Online] Available:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/mb_ref_gui
de.pdf. Accessed on: Jul. 11 2014.

[63] Xilinx, PicoBlaze 8bit Embedded Microcontroller User Guide. [Online] Available:
http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf.
Accessed on: Dec. 14 2015.

[64] Ensilica, esi-RISC cores: Configurable Embedded Processor IP. Accessed on: Jul.
11 2014.

[65] Cadence, Xtensa LX6 Customizable DPU. [Online] Available:
http://ip.cadence.com/uploads/533/Cadence_Tensillica_Xtensa_LX6_ds-pdf.
Accessed on: Dec. 14 2015.

[66] A. Läuger, T48 μController Integration Manual. [Online] Available:
http://opencores.org/project,t48,overview. Accessed on: Jul. 11 2015.

[67] S. Rhoads, Plasma Processor. [Online] Available:
http://opencores.org/project,plasma,overview. Accessed on: Jul. 11 2014.

[68] A. Meziti ElIbrahimi, copyBlaze. [Online] Available:
http://opencores.org/project,copyblaze,overview. Accessed on: Jul. 11 2014.

[69] Aeroflex Microelectronic Solutions, Leon 3 Processor. [Online] Available:
http://www.gaisler.com/index.php/products/processors/leon3. Accessed on: Dec. 14
2015.

[70] S. Tan, AEMB 32-bit Microprocessor Core Datasheet. [Online] Available:
http://opencores.org/project,aemb,overview. Accessed on: Jul. 11 2015.

194 Bibliography

[71] C. Santifort, Amber Project User Guide. [Online] Available:
http://opencores.org/project,amber. Accessed on: Jul. 11 2015.

[72] OpenCores, OpenRISC 1200 IP Core Specification: (Preliminary Draft). [Online]
Available: http://opencores.org/or1k/OR1K:Community_Portal#Get_source_code.
Accessed on: Dec. 14 2015.

[73] Lattice semiconductor, LatticeMico8 Processor Reference Manual. [Online]
Available:
http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProperty
/IPCore/IPCores02/Mico8.aspx. Accessed on: Jul. 11 2015.

[74] Lattice semiconductor, LatticeMico32 Processor Reference Manual. [Online]
Available:
http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProperty
/IPCore/IPCores02/LatticeMico32.aspx. Accessed on: Dec. 14 2015.

[75] O. Bründler, Proteus Prozessor Architektur. [Online] Available:
http://www.logicsolutions.ch/Download.htm. Accessed on: Jul. 11 2014.

[76] A. Strole, H.-J. Wunderlich, and O. Haberl, “TESTCHIP: A Chip for Weighted
Random Pattern Generation, Evaluation, and Test Control,” in 16th European
Solid-State Circuits Conference (ESSCIRC 1990): Proceedings, 1990, pp. 101–104.

[77] L. Ali, Z. Darus, M. Ali, and I. Ahmed, “Test processor ASIC design,” in IEEE
International Conference on Semiconductor Electronics (ICSE 1996): IEEE
Proceedings, 1996, pp. 261–265.

[78] Z. Darus, I. Ahmed, and L. Ali, “A test processor chip implementing multiple seed,
multiple polynomial linear feedback shift register,” in 6th Asian Test Symposium
(ATS 1997): IEEE Proceedings, 1997, pp. 155–160.

[79] M. Ali, S. Islam, and M. Ali, “Test processor chip design with complete simulation
result including reseeding technique,” in IEEE International Conference on
Semiconductor Electronics (ICSE 2002): IEEE Proceedings, 2002, pp. 218–221.

[80] M. Kabir and L. Ali, “Design of GLFSR based test processor chip,” in IEEE
Student Conference on Research and Development (SCOReD 2009): IEEE
Proceedings, 2009, pp. 234–237.

[81] C. Galke, M. Pflanz, and H. Vierhaus, “A test processor concept for systems-on-a-
chip,” in IEEE International Conference on Computer Design: VLSI in Computers
and Processors (ICCD 2002): IEEE Proceedings, 2002, pp. 210–212.

[82] C. Kretzschmar, C. Galke, and H. Vierhaus, “A hierarchical self test scheme for
SoCs,” in 10th IEEE International On-Line Testing Symposium (IOLTS 2004):
IEEE Proceedings, 2004, pp. 37–42.

Bibliography 195

[83] R. Kothe, C. Galke, and H. Vierhaus, “A multi-purpose concept for SoC self test
including diagnostic features,” in 11th IEEE International On-Line Testing
Symposium (IOLTS 2005): IEEE Proceedings, 2005, pp. 241–246.

[84] C. Galke, T. Koal, and H. Vierhaus, “Möglichkeiten und Grenzen der
automatischen SBST Generierung für einfache Prozessoren: Fallstudie des
Testprozessors T5016tp,” in Dresdner Arbeitstagung Schaltungs- und
Systementwurf (DASS 2007), Dresden: TUDpress, 2007.

[85] R. Frost, D. Rudolph, C. Galke, R. Kothe, and H. Vierhaus, “A Configurable
Modular Test Processor and Scan Controller Architecture,” in 13th IEEE
International On-Line Testing Symposium (IOLTS 07): IEEE Proceedings, 2007,
pp. 277–284.

[86] T. Koal, R. Kothe, and H. Vierhaus, “Der erste Mikroprozessor der BTU Cottbus:
die Entwicklung des Testprozessors,” in Forum der Forschung, BTU Cottbus:
Eigenverlag, 2009, pp. 127–132.

[87] S. Zeidler, C. Wolf, M. Krstic, F. Vater, and R. Kraemer, “Design of a Test
Processor for Asynchronous Chip Test,” in 20th Asian Test Symposium (ATS 2011):
IEEE Proceedings, 2011, pp. 244–250.

[88] S. Zeidler, C. Wolf, M. Krstic, and R. Kraemer, “Entwurf einer neuen
Testprozessorlösung für den Funktionaltest asynchroner Schaltungen,” in 24.
GI/GMM/ITG - Workshop Testmethoden und Zuverlässigkeit von Schaltungen und
Systemen (TuZ 2012): Proceedings, 2012.

[89] S. Zeidler, “Enabling Functional Tests of Asynchronous Circuits Using a Test
Processor Solution,” Ph.D., Brandenburgische Technische Universität Cottbus-
Senftenberg, Cottbus, 2013.

[90] Göpel Electronic, Systemsoftware JTAG/Boundary Scan. [Online] Available:
http://www.goepel.com/jtag-boundary-scan/boundary-scan-
instrumente/software.html. Accessed on: Nov. 20 2015.

[91] C. Giaconia, A. Di Stefano, and G. Capponi, “Reconfigurable digital
instrumentation based on FPGA,” in 3rd IEEE International Workshop on System-
on-Chip for Real-Time Applications (2003): IEEE Comput. Soc, 2003, pp. 120–
122.

[92] S. Di Carlo et al., “A Low-Cost FPGA-Based Test and Diagnosis Architecture for
SRAMs,” in IEEE 1st International Conference on Advances in System Testing and
Validation Lifecycle (VALID 2009): IEEE Proceedings, 2009, pp. 141–146.

[93] L. Mostardini et al., “FPGA-based low-cost automatic test equipment for digital
integrated circuits,” in IEEE International Workshop on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications
(IDAACS 2015): IEEE Proceedings, 2009, pp. 32–37.

196 Bibliography

[94] C. T. Nadovich, Synthetic instruments: Concepts and applications. Amsterdam:
Elsevier/Newnes, 2004.

[95] National Instruments, Creating a Synthetic Instrument with Virtual Instrumentation
Technology. [Online] Available: http://www.ni.com/white-paper/3183/en/.
Accessed on: Oct. 25 2013.

[96] J. Ferry, J. Scesnak, and S. Shaikh, “A strategy for board level in-system
programmable built-in assisted test and built-in self test,” in IEEE International
Test Conference (ITC 2005): IEEE Proceedings, 2005, pp. 798–807.

[97] J. Ferry, “FPGA-based universal embedded digital instrument,” in IEEE
International Test Conference (ITC 2013): IEEE Proceedings, 2013, pp. 1–9.

[98] S. Ostendorff, J. H. Meza Escobar, H.-D. Wuttke, T. Sasse, and S. Richter,
“Modeling timing constraints for automatic generation of embedded test
instruments,” in 17th International Symposium on Design and Diagnostics of
Electronic Circuits & Systems (DDECS 2014): IEEE Proceedings, 2014, pp. 201–
206.

[99] S. Ostendorff, “Methode zur Modellierung und automatischen Generierung von
FPGA-basierten Testinstrumenten,” Ph. D, Department of Computer Science and
Automation, TU Ilmenau, Ilmenau, Germany, 2016.

[100] R. Saleh et al., “System-on-Chip: Reuse and Integration,” (English), Proceedings of
the IEEE, vol. 94, pp. 1050–1069, 2006.

[101] CK Components, “6 mm Tact Switches,” PTS645 Series Datasheet, 2013.
[102] Avago Technologies, “Single digit surface mount LED Display,” HDSM-

281x/283x Datasheet, 2011.
[103] P. P. Chu, FGPA Prototyping by VHDL examples: Xilinx SpatanTM-3 version.

Hoboken N.J: J. Wiley, 2008.
[104] Texas Instruments, “Low-power I/O Expander with Interrupt output and

configuration Registers,” TCA9535 Datasheet, 2009.
[105] Maxim, “Thermistor-to-Digital Converter,” MAX6682 Datasheet, 2002.
[106] Analog Devices, “Digital Gyroscope Sensor,” ADIS16266 Datasheet, 2014.
[107] Cristalfontz America, “Parallel Character LCD,” CFAH1602B Datasheet, 2010.
[108] SanDisk, “SanDisk SD Card Version 2.2,” Product Manual, 2004.
[109] Integrated Silicon Solution Inc ISSI, “1M x 16 High-speed asynchronous CMOS

static RAM,” IS61WV102416ALL Datasheet, 2009.
[110] ISSI, “18Mb Pipeline no wait state bus SRAM,” IS61NLP25672/IS61NVP25672

Datasheet, 2011.
[111] Microchip, “32k I2C Serial EEPROM,” 24AA32A Datasheet, 2005.
[112] Spansion, “MirrorBit Flash Family,” S29GL-N Datasheet, 2007.
[113] STMicroelectronics, “NAND Flash Memory,” NAND01G-B2B Datasheet, 2006.

Bibliography 197

[114] Wolfson microelectronics, “Audio CODEC with Headphone Driver and
programmable Sample Rates,” WM8731 Datasheet, 2012.

[115] Analog Devices, “10-Bit, 4× Oversampling SDTV Video Decoder,” ADV7180
Datasheet, 2009.

[116] S. Vogel, “Analyse und Konzeption von FPGA-basierten Leiterplattenstrukturtests
für high-speed Schnittstellen am Beispiel moderner HD-Bildsensoren,” Master
Thesis, TU Ilmenau, Ilmenau, 2013.

[117] Marvell, “Integrated 10/100/1000 Ultra Gigabit Ethernet Transceiver,” 88E1111
Product Brief, 2009.

[118] Analog Devices, “Triple 10-Bit high Speed Video DAC,” ADV7123 Datasheet,
2009.

[119] Integrated Silicon Solution Inc ISSI, “512Mb SYNCHRONOUS DRAM,”
IS42S86400B Datasheet, 2009.

[120] MIRA Deutron electronics, “1G bits DDR2 SDRAM,” P3R1GE3JGF Datasheet,
2009.

[121] C. Leong et al., “Using FPGA Technology for static and dynamic Fault Detection
in multi-bus, multi-FPGA, multi-Board Electronic Systems,” in V Jornadas sobre
Sistemas Reconfiguráveis (REC 2009): Proceedings, 2009.

[122] G. Hempel, C. Hochberger, and A. Koch, “A Comparison of Hardware
Acceleration Interfaces in a Customizable Soft Core Processor,” in International
Conference on Field Programmable Logic and Applications (FPL 2010): IEEE
Proceedings, 2010, pp. 469–474.

[123] J. L. Hennessy, D. A. Patterson, and K. Asanović, Computer architecture: A
quantitative approach, 5th ed. Waltham, MA: Morgan Kaufmann, 2012.

[124] P. Mishra and N. Dutt, “Architecture description languages for programmable
embedded systems,” (English), IEEE Proceedings - Computers and Digital
Techniques, vol. 152, no. 3, 2005.

[125] P. Mishra and N. Dutt, Processor description languages: Applications and
methodologies. Amsterdam, Boston: Morgan Kaufmann Publishers/Elsevier, 2008.

[126] P. Yiannacouras, J. G. Steffan, and J. Rose, “Exploration and Customization of
FPGA-Based Soft Processors,” (English), IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 266–277, 2007.

[127] J. P. Langlois, G. Bois, and S. Vakili, “Customised soft processor design: a
compromise between architecture description languages and parameterisable
processors,” (English), IET Computers & Digital Techniques, vol. 7, no. 3, pp. 122–
131, 2013.

198 Bibliography

[128] P. Mishra, A. Kejariwal, and N. Dutt, “Synthesis-driven exploration of pipelined
embedded processors,” in 17th International Conference on VLSI Design (VLSID
2004): IEEE Proceedings, 2004, pp. 921–926.

[129] A. Krahn and E. Wolf, “Portierung eines vorgegebenen Soft-Core Prozessors auf
unterschiedliche FPGA Umgebungen und Vergleich unterschiedlicher Soft-Core
Prozessorrealisierungen,” Projektseminar, TU Ilmenau, Ilmenau, 2011.

[130] S. P. Dandamudi, Guide to RISC processors: For programmers and engineers.
New York: Springer, 2005.

[131] J. Nurmi, Processor design: System-on-chip computing for ASICs and FPGAs.
Dordrecht, London: Springer, 2007.

[132] J. A. Fisher, P. Faraboschi, and C. Young, Embedded computing: A VLIW approach
to architecture, compilers and tools. San Francisco, Calif: Morgan Kaufmann,
2005.

[133] C. E. LaForest and J. G. Steffan, “Efficient Multi-Ported Memories for FPGAs,” in
18th ACM/SIGDA international symposium on Field programmable gate arrays
(FPGA 2010), New York, USA: Proceedings, 2010.

[134] H. Wong, V. Betz, and J. Rose, “Comparing FPGA vs. custom CMOS and the
impact on processor microarchitecture,” in 19th ACM/SIGDA International
Symposium on Field programmable gate arrays (FPGA 2011): Proceedings, 2011.

[135] H. Wong, V. Betz, and J. Rose, “Quantifying the gap between FPGA and custom
CMOS to aid microarchitectural design,” (English), IEEE Transactions on VLSI
Systems, 2013.

[136] A. S. Tanenbaum, Modern operating systems, 3rd ed. Upper Saddle River, NJ:
Pearson/Prentice Hall, 2008.

[137] IEEE standard for access and control of instrumentation embedded within a
semiconductor device, 2014.

[138] F. G. Zadegan, E. Larsson, A. Jutman, S. Devadze, and R. Krenz-Baath, “Design,
Verification, and Application of IEEE 1687,” in 23rd Asian Test Symposium (ATS
2014): IEEE Proceedings, 2014, pp. 93–100.

[139] A. Ibrahim and H. G. Kerkhoff, “iJTAG integration of complex digital embedded
instruments,” in 9th International Design & Test Symposium (IDT 2014):
Proceedings, 2014, pp. 18–23.

[140] OpenCores, “Wishbone B4: Wishbone SoC interconnection architecture for
portable IP cores,” opencores.org, 2010. [Online] Available:
http://cdn.opencores.org/downloads/wbspec_b4.pdf. Accessed on: Jun. 30 2015.

[141] M. Sharma and D. Kumar, “Wishbone bus architecture: A survey and comparison,”
(English), International Journal of VLSI design & Communication Systems, 2012.

Bibliography 199

[142] W. Stallings, Computer organization and architecture: Designing for performance,
6th ed. Upper Saddle River, NJ: Prentice Hall Pearson Education International,
2003.

[143] P. Harig, “Untersuchung und Implementierung einer Pipeline-Struktur für den
ROBSY Prozessor zur Ausführung von Transfer und Arithmetisch-logischen
Befehlen,” Bachelor Arbeit, TU Ilmenau, 2013.

[144] Intellitech, Intellitech supports Silicon Instruments through the new IEEE 1149.1-
2013 JTAG standard: Presentation. [Online] Available:
http://www.intellitech.com/ijtag-sib/ijtag-instruments.pdf. Accessed on: Jul. 31
2015.

[145] Altera, Quartus II Scripting Reference Manual. [Online] Available:
https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/manual/tclscriptrefmnl.pdf. Accessed on: Jul. 31
2015.

[146] B. Le Gal and C. Jego, “Softcore Processor optimization according to real-
application requirements,” (English), IEEE Embedded Systems Letters, vol. 5, no. 1,
pp. 4–7, 2013.

[147] S. Rajotte, D. Carolina Gil, and J. P. Langlois, “Combining ISA extensions and
subsetting for improved ASIP performance and cost,” in IEEE International
Symposium on Circuits and Systems (ISCAS 2011): IEEE Proceedings, 2011, pp.
653–656.

[148] Xilinx, Command line tools user guide. [Online] Available:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/devref.pdf.
Accessed on: Jan. 26 2016.

[149] Terasic, DE2-115 User Manual. [Online] Available: http://de2-115.terasic.com.
Accessed on: Oct. 05 2015.

[150] Göpel Electronic, VarioTap Coach Technical Description. [Online] Available:
http://genesis.goepel.com/. Accessed on: Oct. 05 2015.

[151] Altera, Cyclone IV Device Handbook. [Online] Available:
https://www.altera.com/products/fpga/cyclone-series/cyclone-iv/support.html.
Accessed on: Oct. 05 2015.

[152] Electronic Assembly, “EA DIP128-6 LCD Graphic Module 128x64 Dots,”
Datasheet, Electronic Assembly, 2013. [Online] Available: http://www.lcd-
module.de/datenblaetter.html. Accessed on: Oct. 05 2015.

[153] D. Sheldon, F. Vahid, and S. Lonardi, “Soft-core processor customization using the
Design of Experiments paradigm,” in Design, Automation & Test in Europe
Conference (DATE 2007), 2007, pp. 1–6.

201

Erklärung

Ich versichere, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen
Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der
Quelle gekennzeichnet.

Bei der Auswahl und Auswertung folgenden Materials haben mir die nachstehend auf-
geführten Personen in der jeweils beschriebenen Weise unentgeltlich geholfen:

1. Struktur des DUT-Modells. Dr.-Ing. Heinz-Dietrich Wuttke, Jörg Sachsse, und
Steffen Ostendorff (TU Ilmenau).

2. Entwicklung der RTDL Sprache für die DUT-Modelle. Jörg Sachße und Steffen
Ostendorff (TU Ilmenau).

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Arbeit
nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von
Vermittlungs- bzw. Beratungsdiensten (Promotionsberater oder anderer Personen) in
Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar geldwerte
Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten
Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form
einer Prüfungsbehörde vorgelegt.

Ich bin darauf hingewiesen worden, dass die Unrichtigkeit der vorstehenden Erklärung als
Täuschungsversuch bewertet wird und gemäß § 7 Abs. 10 der Promotionsordnung den
Abbruch des Promotionsverfahrens zur Folge hat.

Ilmenau, 01.06.2016 Jorge Hernan Meza Escobar

	Acknowledgments
	Abstract
	Zusammenfassung
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Problem statement and research questions
	1.3 Publications related to this work
	1.4 Structure of the dissertation and contributions

	2 Background
	2.1 Testing, what is it?
	2.1.1 Introduction
	2.1.2 Errors and defects
	2.1.3 Validation, verification, and testing
	2.1.4 Fault and fault models
	2.1.4.1 Stuck-at faults
	2.1.4.2 Bridging faults
	2.1.4.3 Dynamic faults
	Delay faults
	Signal integrity faults

	2.1.5 Diagnosis
	2.1.6 Test quality metrics and test costs

	2.2 Printed circuit board testing
	2.2.1 Manufacturing process
	2.2.1.1 Application of the solder paste
	2.2.1.2 Placement
	2.2.1.3 Soldering

	2.2.2 Board-level testing
	2.2.2.1 Defects at the board level
	2.2.2.2 Test strategies

	2.2.3 Board-level test techniques
	2.2.3.1 Inspection
	2.2.3.2 Structural test
	Invasive test techniques
	Noninvasive test techniques

	2.2.3.3 Functional test

	2.3 Embedded board-level test techniques
	2.3.1 Processor-based testing
	2.3.2 FPGA-based testing

	2.4 Soft-core and test processors
	2.4.1 Soft-core processors
	2.4.2 Test processors
	2.4.2.1 Hardwired test processors
	2.4.2.2 Programmable test processors

	3 Processor in FPGA-based testing
	3.1 FPGA-based testing
	3.1.1 Building blocks
	3.1.2 Test scenario, application field, DUT, and faults
	3.1.3 Test phases
	3.1.3.1 Pre-test phase
	3.1.3.2 Test phase
	3.1.3.3 Post-test phase
	3.1.3.4 Comparison to boundary scan and processor-based testing

	3.1.4 Design automation in FPGA-based testing

	3.2 FPGA-based testing in the literature
	3.2.1 Ad-hoc FPGA test instruments
	3.2.2 Generic FPGA test instruments
	3.2.3 Summary of embedded FPGA test instruments

	3.3 ROBSY approach
	3.3.1 Modeling the test functionality
	3.3.1.1 Layer concept
	3.3.1.2 DUT-model

	3.3.2 FBTS architecture
	3.3.2.1 FBTS domains
	3.3.2.2 Main components and processor co-processor interface
	3.3.2.3 Architecture example

	3.4 Processor in the FPGA-based test system
	3.4.1 Processor impact
	3.4.2 Analysis of L1
	3.4.2.1 Devices under test
	3.4.2.2 Analysis

	3.4.3 Analysis of L2
	3.4.4 Analysis of L3
	3.4.5 Analysis of L4 and L5
	3.4.6 Analysis of interfaces I1, I2 and I3

	3.5 Summary

	4 Concept of the ROBSY processor
	4.1 Introduction
	4.2 General design aspects
	4.2.1 ROBSY processor requirements
	4.2.2 Analysis of pre-designed processors
	4.2.2.1 Analysis of soft-core processors
	4.2.2.2 Analysis of test processors

	4.2.3 Fundamental design choices
	4.2.3.1 RTL as design abstraction level
	4.2.3.2 RISC design philosophy
	4.2.3.3 FPGA technology constraints

	4.3 Processor specialization for testing
	4.3.1 Tailoring the processor for testing
	4.3.1.1 Machine data types and widths
	4.3.1.2 Operating system support
	4.3.1.3 Memory hierarchy

	4.3.2 Test operations
	4.3.2.1 Pattern generation (L2)
	4.3.2.2 Test response analysis (L2)
	4.3.2.3 Control flow operations (L2, L3, L4)
	4.3.2.4 Diagnosis (L2, L3 and L4)

	4.3.3 Interfaces I2 and I3
	4.3.3.1 Interface I2
	4.3.3.2 Interface I3

	4.4 Adaptation to the test scenario
	4.4.1 General adaptation mechanisms
	4.4.2 Adaptation mechanism of the ROBSY processor

	4.5 Summary

	5 ROBSY processor
	5.1 Introduction
	5.2 Instruction set architecture
	5.2.1 Native data types
	5.2.2 Programmer visible state and I/O
	5.2.2.1 Registers
	5.2.2.2 Address spaces

	5.2.3 Instruction set
	5.2.3.1 Class-0 instructions
	5.2.3.2 Class-1 instructions
	5.2.3.3 Instruction formats

	5.2.4 Interrupts and exceptions

	5.3 Microarchitecture
	5.3.1 Top level view
	5.3.2 Program, data, and stack memories
	5.3.3 Data controller
	5.3.4 Stack controller
	5.3.5 Central processing unit
	5.3.5.1 Pipelining
	5.3.5.2 Control unit
	5.3.5.3 Program counter and instruction register units
	5.3.5.4 Stack and data interfaces
	5.3.5.5 GPR and SFR units
	5.3.5.6 ALU/Shifter and test unit
	5.3.5.7 Interrupt and exception units

	5.4 Debug-Interface
	5.4.1 Debug-commands
	5.4.2 Access to the JTAG port
	5.4.3 Structure of the debug-interface
	5.4.3.1 Debug command register and debug data register
	5.4.3.2 Finite state machine

	5.5 Configuration parameters
	5.6 Summary

	6 Automatic generation process
	6.1 Introduction
	6.2 Overview of the automatic generation process
	6.3 ATE program generator
	6.3.1 ATE/FBTS communication
	6.3.2 Software compiler
	6.3.3 Auxiliary software generator and supported ATE tools

	6.4 FPGA based test system generator
	6.4.1 Processor/co-processor communication
	6.4.2 Reorganization of the configuration parameters
	6.4.3 Embedded software generator
	6.4.3.1 Phase 1
	6.4.3.2 Phase 2
	6.4.3.3 Phase 3

	6.4.4 Hardware generator
	6.4.5 Synthesis tool

	6.5 Summary

	7 Experimental phase
	7.1 Introduction
	7.2 Experimental setup
	7.2.1 Hardware setup
	7.2.2 Software setup
	7.2.2.1 Software tools
	7.2.2.2 Quartus II settings

	7.2.3 Processor and FBTS variants
	7.2.4 Resource utilization and performance metrics

	7.3 Devices under test
	7.3.1 SRAM
	7.3.2 LCD

	7.4 Resource utilization
	7.4.1 Effect of the dependent configuration parameters
	7.4.2 Processor variants
	7.4.2.1 Effect of GPR_mem, pipeline_set, and shifter_mult
	7.4.2.2 Effect of short_imm_set
	7.4.2.3 Effect of data_width

	7.4.3 Layer partition
	7.4.3.1 Effect of the layer partition on the processor
	7.4.3.2 Effect of the layer partition on FBTS

	7.4.4 FPGA capacity

	7.5 FBTS active time
	7.5.1 Processor variants
	7.5.1.1 Effect of GPR_mem, pipeline_set, shifter_mult, and short_imm_set
	7.5.1.2 Effect of data_width

	7.5.2 Layer partition
	7.5.2.1 FBTS active time for SRAM DUT-M
	7.5.2.2 FBTS active time for LCD DUT-M

	7.6 Test time
	7.6.1 ATE/FBTS communication delays
	7.6.1.1 Experimental ,𝛅-𝐬. and ,𝛅-𝐡. delays

	7.6.2 Experimental results
	7.6.3 FPGA configuration time

	7.7 Comparison to other approaches
	7.7.1 ROBSY vs Nios II
	7.7.1.1 Resource utilization
	7.7.1.2 Performance

	7.7.2 ROBSY vs VLSR
	7.7.2.1 Resource utilization
	7.7.2.2 Performance

	7.8 Summary
	7.8.1 Resource utilization
	7.8.1.1 ROBSY processor
	7.8.1.2 FPGA-based test system

	7.8.2 FBTS active time
	7.8.2.1 ROBSY processor
	7.8.2.2 Layer partition

	7.8.3 Test time
	7.8.4 Comparison to Nios II and VLSR
	7.8.5 Synthesis tool
	7.8.6 Selection of a processor variant

	8 Conclusions
	8.1 Introduction
	8.2 Summary of the dissertation
	8.3 Achievements
	8.4 Impact
	8.5 Limitations
	8.6 Future work

	Bibliography
	Erklärung

