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Abstract 

The demand for electronic systems with more features, higher performance, and less power 
consumption increases continuously. This is a real challenge for design and test engineers 
because they have to deal with electronic systems with ever-increasing complexity 
maintaining production and test costs low and meeting critical time to market deadlines. 

For a test engineer working at the board-level, this means that manufacturing defects must 
be detected as soon as possible and at a low cost. However, the use of classical test 
techniques for testing modern printed circuit boards is not sufficient, and in the worst case 
these techniques cannot be used at all. This is mainly due to modern packaging 
technologies, a high device density, and high operation frequencies of modern printed 
circuit boards. This leads to very long test times, low fault coverage, and high test costs. 

This dissertation addresses these issues and proposes an FPGA-based test approach for 
printed circuit boards. The concept is based on a configurable test processor that is 
temporarily implemented in the on-board FPGA and provides the corresponding 
mechanisms to communicate to external test equipment and co-processors implemented in 
the FPGA. This embedded test approach provides the flexibility to implement test 
functions either in the external test equipment or in the FPGA. In this manner, tests are 
executed at-speed increasing the fault coverage, test times are reduced, and the test system 
can be adapted automatically to the properties of the FPGA and devices located on the 
board. 

An essential part of the FPGA-based test approach deals with the development of a test 
processor. In this dissertation the required properties of the processor are discussed, and it 
is shown that the adaptation to the specific test scenario plays a very important role for the 
optimization. For this purpose, the test processor is equipped with configuration 
parameters at the instruction set architecture and microarchitecture level. Additionally, an 
automatic generation process for the test system and for the computation of some of the 
processor’s configuration parameters is proposed. The automatic generation process uses 
as input a model known as the device under test model (DUT-M). 

In order to evaluate the entire FPGA-based test approach and the viability of a processor 
for testing printed circuit boards, the developed test system is used to test interconnections 
to two different devices: a static random memory (SRAM) and a liquid crystal display 
(LCD). Experiments were conducted in order to determine the resource utilization of the 
processor and FPGA-based test system and to measure test time when different test 
functions are implemented in the external test equipment or the FPGA. It has been shown 
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that the introduced approach is suitable to test printed circuit boards and that the test 
processor represents a realistic alternative for testing at board-level. 
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Zusammenfassung 

Der Bedarf an elektronischen Systemen mit zusätzlichen Merkmalen, höherer Leistung und 
geringerem Energieverbrauch nimmt ständig zu. Dies stellt eine erhebliche 
Herausforderung für Entwicklungs- und Testingenieure dar, weil sie sich mit 
elektronischen Systemen mit einer steigenden Komplexität zu befassen haben. Außerdem 
müssen die Herstellungs- und Testkosten gering bleiben und die Produkteinführungsfristen 
so kurz wie möglich gehalten werden. 

Daraus folgt, dass ein Testingenieur, der auf Leiterplatten-Ebene arbeitet, die 
Herstellungsfehler so früh wie möglich entdecken und dabei möglichst niedrige Kosten 
verursachen soll. Allerdings sind die klassischen Testmethoden nicht in der Lage, die 
Anforderungen von modernen Leiterplatten zu erfüllen und im schlimmsten Fall können 
diese Testmethoden überhaupt nicht verwendet werden. Dies liegt vor allem an modernen 
Gehäuse-Technologien, der hohen Bauteildichte und den hohen Arbeitsfrequenzen von 
modernen Leiterplatten. Das führt zu sehr langen Testzeiten, geringer Testabdeckung und 
hohen Testkosten. 

Die Dissertation greift diese Problematik auf und liefert einen FPGA-basierten Testansatz 
für Leiterplatten. Das Konzept beruht auf einem konfigurierbaren Testprozessor, welcher 
im On-Board-FPGA temporär implementiert wird und die entsprechenden Mechanismen 
für die Kommunikation mit der externen Testeinrichtung und Co-Prozessoren im FPGA 
bereitstellt. Dadurch ist es möglich Testfunktionen flexibel entweder auf der externen 
Testeinrichtung oder auf dem FPGA zu implementieren. Auf diese Weise werden Tests at-
speed ausgeführt, um die Testabdeckung zu erhöhen. Außerdem wird die Testzeit verkürzt 
und das Testsystem automatisch an die Eigenschaften des FPGAs und anderer Bauteile auf 
der Leiterplatte angepasst. 

Ein wesentlicher Teil des FPGA-basierten Testansatzes umfasst die Entwicklung eines 
Testprozessors. In dieser Dissertation wird über die benötigten Eigenschaften des 
Prozessors diskutiert und es wird gezeigt, dass die Anpassung des Prozessors an den 
spezifischen Testfall von großer Bedeutung für die Optimierung ist. Zu diesem Zweck 
wird der Prozessor mit Konfigurationsparametern auf der Befehlssatzarchitektur-Ebene 
und Mikroarchitektur-Ebene ausgerüstet. Außerdem wird ein automatischer 
Generierungsprozess für die Realisierung des Testsystems und für die Berechnung einer 
Untergruppe von Konfigurationsparametern des Prozessors vorgestellt. Der automatische 
Generierungsprozess benutzt als Eingangsinformation ein Modell des Prüflings (device 
under test model, DUT-M). 



VIII Zusammenfassung 

Das entwickelte Testsystem wurde zum Testen von Leiterplatten für Verbindungen 
zwischen dem FPGA und zwei Bauteilen verwendet, um den FPGA-basierten Testansatz 
und die Durchführbarkeit des Testprozessors für das Testen auf Leiterplatte-Ebene zu 
evaluieren. Die zwei Bauteile sind ein Speicher mit direktem Zugriff (static random-access 
memory, SRAM) und eine Flüssigkristallanzeige (liquid crystal display, LCD). Die 
Experimente wurden durchgeführt, um den Ressourcenverbrauch des Prozessors und 
Testsystems festzustellen und um die Testzeit zu messen. Dies geschah durch die 
Implementierung von unterschiedlichen Testfunktionen auf der externen Testeinrichtung 
und dem FPGA. Dadurch konnte gezeigt werden, dass der FPGA-basierte Ansatz für das 
Testen von Leiterplatten geeignet ist und dass der Testprozessor eine realistische 
Alternative für das Testen auf Leiterplatten-Ebene ist. 
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1 

1 Introduction 

1.1 Motivation 

The world is more and more dependent on electronic systems. Today, they are a 
fundamental tool in medicine, healthcare, communication, automotive, navigation, space 
exploration, agriculture, etc. In all these fields, the demand for electronic systems with 
more features, higher performance, and less power consumption increases continuously. 
This is a real challenge for design and test engineers because they have to deal with 
electronic systems with ever-increasing complexity maintaining production and test costs 
low and meeting critical time to market deadlines. 

For a test engineer, this means that manufacturing defects must be detected as soon as 
possible. Therefore, the manufacturing stage of every electronic system is escorted by 
several test phases hierarchically organized for early defect detection and diagnose. To 
fulfill this purpose, several test techniques have been developed and successfully used. 
But these techniques are not able to cope with test requirements of modern electronic 
systems, and in the worst case, they cannot be used at all. 

At the board-level, this is mainly due to modern packaging technologies, a high device 
density, and the high operation frequencies of modern printed circuit boards. One 
example of this phenomenon is boundary scan (BScan) [1], which is a popular test 
technique developed thirty years ago and since then successfully used. Unfortunately, it is 
reaching its limits due to the properties of modern printed circuit boards. Basically, it is 
inadequate to handle defects with dynamic behavior because it cannot execute tests at the 
normal operation frequencies (at-speed test) of devices located at the board. Additionally, 
the high number of devices and pins per device results in very long test times and high 
test costs. Therefore, there is a growing interest in the research community and industry to 
investigate and develop new board-level test techniques that improve test quality metrics 
and reduce costs. 

New developed test techniques and test standards tend to embed more of the test 
functions in the electronic system, whether the electronic system represents a printed 
circuit board (PCB) or a system entirely implemented in silicon such as a system on chip 
(SoC). In this way, access to internal structures and functions of the electronic system is 
enhanced, improving the observability, controllability, and test quality in a cost effective 
way. 
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Two emerging embedded test techniques at the board-level have gained considerable 
importance. The first one corresponds to processor-based testing (PBT), where processors 
or microcontrollers located on the board are used to execute part of the test functions. The 
second technique is known as FPGA-based testing (FBT). Instead of processors or 
microcontrollers, this technique uses field programmable gate arrays (FPGAs) to 
implement part of the test functions. Both techniques are very attractive because they do 
not require the modification or addition of new components to the board, and allow the 
detection of defects with a dynamic behavior. 

In the case of PBT, the difficulty lies in the development of mechanisms for the automatic 
generation of descriptions necessary to access different processors or microcontrollers 
from the external automatic test equipment (ATE). The access should be guaranteed 
independently if the processor or microcontroller is implemented as a stand-alone 
integrated circuit or as part of a SoC. In the case of FBT, the complexity lies in the 
development of the test system implemented in the FPGA, which is known as the FBT 
system (FBTS). For the development of such a system, it is necessary to provide an 
answer to the following questions: 

• What is the structure of the FBTS?  
• Which components are used for its implementation? 
• How should the FBTS communicate with the ATE? 
• Which mechanisms can be used to facilitate the work of test engineers? 

In this dissertation the research is linked to the development and implementation of a 
configurable test processor as part of an FBT approach. 

1.2 Problem statement and research questions 

This dissertation targets the study and development of a configurable test processor as 
part of a new FBT approach. The FBT approach should be able to execute tests at-speed 
and in short time, adapt to the PCB and test requirements, and hide implementation 
details from test engineers in order to facilitate its utilization. The goal is to provide a 
better understanding of whether the use of a test processor as part of an FPGA-based 
testing approach is a good alternative to tackle test challenges imposed by modern PCBs, 
so that classical test techniques such as boundary scan can be complemented. 

Although there are some FBT approaches found in the literature (Section 3.2), none of 
them makes use of a test processor or is able to provide all the advantages that the FBT 
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approach proposed in this dissertation provides. Based on these considerations, the central 
research questions are defined as follows: 

• Is it possible to design a resource and computational efficient FBT approach and 
obtain the advantages already mentioned based on a test processor? 

• What are the architecture characteristics of an FBTS that use a test processor as 
central component? 

• Which adaptation and abstraction mechanisms should be included in order to 
customize the FBTS to the test scenario and hide implementation details? 

• Which instruction set architecture and microarchitecture features should be 
included in the test processor? 

• What are the test functions that the test processor can efficiently execute in terms 
of resource utilization and execution time? 

• Is it possible to use this approach in real manufacturing scenarios? 
• Are the results concerning test quality metrics better in comparison to other FBT 

approaches? 
• What are the limitations? 

Literature research shows that these questions have not been answered in the related work 
so far, which ultimately motivates the development of this dissertation. 

1.3 Publications related to this work 

In the context of this work several papers have been published on national and 
international conferences. In [2, 3] the general concept of the FBT approach and targeted 
test processor is presented. The provided solution describes the layer concept and a first 
proposal for the FBTS architecture and automatic generation process. In [4] the concept is 
further developed and emphasis is given to the automatic generation of the complete test 
system. In [5] the main subject is the test processor and the use of configuration options at 
the instruction set architecture and microarchitecture level as a mechanism for the 
processor adaptation to the PCB and test requirements. In [6] the processor is used as part 
of a novel verification approach of register transfer level (RTL) designs. Finally, [7] 
presents results of the approach with focus on the test processor. 

The publications cover basic aspects of the FBT approach proposed as part of this 
dissertation. This dissertation provides an extension of the work and a more detailed 
analysis of the FBTS, test processor, and automatic generation process. These aspects are 
extended with further improvements of the concept. 
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1.4 Structure of the dissertation and contributions 

The structure of the dissertation is divided into eight chapters, as indicated in Figure 1.1. 

Chapter 1: Introduction

Chapter 8: Conclusions

Chapter 2: Background

Chapter 3: Processor in FPGA-based testing

Chapter 4: Concept of the ROBSY processor

Chapter 5: ROBSY processor

Chapter 6: Automatic generation process

Chapter 7: Experimental phase

 
Figure 1.1: Structure of the dissertation 

Chapter 2 provides the theoretical basis of the dissertation. It presents an overview on 
testing, testing of printed circuit boards, and test techniques. Additionally, it provides 
information about the state of the art of soft-core processors and test processors. 

Chapter 3 begins with a discussion about FPGA-based testing and the state of the art of 
FPGA-based testing approaches. The approaches are reviewed and classified under the 
aspects of external/embedded test instrumentation, application speed, test time, and 
design methodology. Based on the literature review, the FPGA-based testing approach 
proposed in this dissertation is presented. At the end of Chapter 3, an analysis of the use 
of a processor in FPGA-based testing is performed. 

Chapter 4 presents the concept of the ROBSY (Reconfigurable On-Board test System) 
processor based on the analysis performed in Chapter 3. This chapter discusses the 
processor general design aspects, specialization for testing, and adaptation mechanisms to 
the PCB and test requirements. 
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Chapter 5 presents the implementation details of the ROBSY processor. It shows its 
instruction set architecture, microarchitecture, and debug-interface. Additionally, Chapter 5 
presents the configuration parameters supported by the processor. 

Chapter 6 provides an overview of the automatic generation process for an FBTS 
composed of a processor/co-processor pair. The automatic generation process includes 
the generation of software for the ATE, embedded software for the ROBSY processor, 
and hardware descriptions that represent the co-processor. Furthermore, the automatic 
generation process is in charge of adapting the processor by defining the value of the 
configuration parameters known as dependent configuration parameters. 

Chapter 7 presents the experimental results obtained with the proposed FBT approach. 
The chapter analyzes the implementation of test functions on the ATE and FPGA, as well 
as the effect of the processor configuration parameters known as the dependent and 
independent configuration parameters. It analyzes the resource utilization of the FPGA, 
the time that the FBTS is active during the whole test execution, and the total test time. At 
the end of the chapter the results obtained with the ROBSY test system are compared 
against the results obtained with a generic test instrument and with FBTS variants 
implemented based on the Nios II cores. The results show the advantages of the ROBSY 
approach and the ROBSY processor. 

Finally, Chapter 8 summarizes the dissertation and provides an outlook on further 
research opportunities. 
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2 Background 

2.1 Testing, what is it? 

2.1.1 Introduction 

In order to provide a proper definition for the word testing, it is necessary to take a look at 
the general development flow of an electronic system presented in Figure 2.1. In the 
figure, the specification of the electronic system represents the starting point of the 
development flow, in which the requirements of the electronic system, as seen from its 
environment, are defined. This comprises the definition of the product’s overall 
functionality, interfaces to the environment, performance requirements, etc. [8, 9]. 

Specification

Netlist

Electronic system

Design

Manufacturing Testing

Verification

 
Figure 2.1: Development flow of an electronic system 

Based on the specification, the internal structure of the system is defined during the 
design stage. In this stage several solutions can be explored, based on different 
technologies, architectures, hardware/software partitions, and so on [10]. The outcome of 
the design stage is documented in a structural description or netlist of the physical objects 
and their interconnections. Depending on the level of abstraction, these objects are 
transistors, gates, integrated circuits (ICs), or even multiple printed circuit boards (PCBs). 

The second stage is the fabrication of the electronic system, which is known as the 
manufacturing stage. Depending on the level of abstraction, the manufacturing stage 
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might deal with the fabrication of ICs based on silicon wafers or the fabrication of PCBs, 
which involves the assembly of ICs in an insulated base with firmly attached conductors. 

It is possible that the resulting electronic system behaves in an undesired way due to 
errors introduced during its development, or errors appearing during electronic system 
operation. In the first case, these errors were introduced during the elaboration of the 
specification, design or manufacturing stage. In the second case, these errors appear in the 
field. 

In order to avoid or minimize the probability of incorrect behavior and detect possible 
causes as soon as possible, additional stages are included in the development flow, which 
are known as validation, verification, and testing [9]. 

2.1.2 Errors and defects 

An error is essentially the observed effect of an incorrect behavior, which may be caused 
by diverse factors such as specification-errors, design-errors, fabrication-errors, 
fabrication-defects, or physical-failures [9, 11]. 

• Specification-errors occur due to an ambiguous or incomplete specification. In 
many cases, they are caused by an operation scenario not properly described in the 
specification, or even worse, an operation scenario not described at all [9]. 

• Design-errors are produced during the design of the electronic system. They are 
originated by an incorrect interpretation of the specification, violations of design 
rules, usage of defective design tools, etc. [9]. 

• Fabrication-errors and fabrication-defects appear during the manufacturing 
process. The former are directly attributable to a human act, such as the use of 
wrong devices, incorrect wiring, improper soldering, etc., while the latter are not 
directly attributable to a human act because they result from an imperfect 
manufacturing process [11]. 

• Physical-failures occur during the operation of the electronic system, and are 
caused due to wear out, aging, and environmental factors affecting the electronic 
system [11]. 

Fabrication-errors, fabrication-defects and physical-failures are collectively referred to in 
the literature as physical faults [11], manufacturing faults [9], or defects [12, 13]. They 
can be found anywhere: in a die, in one or multiple layers, in packages, in PCBs, etc. 
Additionally, they can be presented in arbitrary areas and can have different electrical 
properties, which means that they manifest themselves in different ways such as changing 



2 Background 9 

 
 

a logical value on a node, increasing the steady state supply current, changing timing 
properties, or causing discrepancy in other parameters. 

In this dissertation, the term defect is adopted to refer to fabrication-errors, fabrication-
defects, and physical-failures, and the term error is the observed incorrect behavior 
produced by a defect. 

2.1.3 Validation, verification, and testing 

There are different ways to look for errors and defects, depending on the electronic 
system development stage. 

Validation is carried out to detect and minimize specification-errors. During the 
validation process, the specification is analyzed to determine if it describes the desired 
behavior and whether it is complete, unambiguous, and consistent [9]. 

As seen in Figure 2.1, verification is performed during the design stage. The goal is to 
continually prove if the structural model resulting from the design stage fulfills all the 
functional and nonfunctional requirements provided in the specification [9, 14]. There are 
different ways to perform verification, either using formal verification methods (model 
and equivalence checking) or functional verification. 

In contrast, testing is the process responsible for detecting all defects (fabrication-errors, 
fabrication-defects, and physical-failures) introduced during the manufacturing process or 
operation of an electronic system [11, 12]. In this context, testing is an experiment in 
which the system is exercised and the resulting response is analyzed to ascertain whether 
it behaved correctly. If incorrect behavior is detected, a second goal of testing may be to 
diagnose the defect causing the misbehavior. Testing requires the generation, application, 
acquisition, and analysis of test patterns, which are defined depending on required test 
quality metrics and allowed costs (Section 2.1.6). 

2.1.4 Fault and fault models 

Ideally, a test should detect all defects produced in the manufacturing stage and let only 
functionally good devices pass. Unfortunately, the number of potential defects that appear 
during the manufacturing stage can be very large, and their effect on properties and 
behavior of the electronic system can be very complex and difficult to understand. 

Faults and fault models are used to address this problem. 
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A fault is defined as a representation of the defect at an abstract function level [13], which 
means that it is a representation of the effect of a defect on the operation of the system. 
Consequently, a fault model is a mathematical or formal description of a fault. Fault 
models bridge the gap between the physical reality and mathematical abstracts, and they 
reduce test complexity, given that [11]: 

• Many defects can be represented by the same fault model. 
• Some fault models can be used for different technologies because they are 

technology independent. 
• Tests derived from fault models may be used for defects whose effect in the 

circuit behavior is not completely understood or is too complex to be analyzed. 

Unsurprisingly, there is a trade-off when working with fault models. The more simple and 
abstract the fault model is, the more difficult it is to associate the fault with a real defect, 
which makes defect location and diagnosis more difficult. Therefore, one alternative is to 
work at different abstraction levels, starting with the development of tests for fault models 
at high abstraction levels, and then develop tests targeted at low-level faults that were not 
covered by the high-level fault models [15]. Which fault model is best and which type of 
testing is necessary depends on technology and defect manifestation. 

In the next sections, fault models relevant for this thesis are presented: stuck-at, bridging, 
and dynamic fault models. 

2.1.4.1 Stuck-at faults 

The stuck-at fault is considered a static fault model because the defects that it represents 
are manifested at all frequencies. It is the logic-level fault model most commonly used in 
research as well as industry, being an industrial standard since 1959. Its death has been 
predicted but several reasons and properties have made the stuck-at fault model to 
continue to be used for testing [13]: 

• Simplicity: It is easy to apply to a device under test (DUT). 
• Logical behavior: Fault behavior is determined logically, so simulation is 

straightforward and deterministic. 
• Measurability: The defect represented by a stuck-at fault is easy to detect. 
• Adaptability: It can be used on transistors, gates, registers, systems, etc. 

Stuck-at faults are mapped to interconnections between devices. Under faulty conditions, 
the affected line is assumed to be stuck-at a logic level (0 or 1) and the value cannot be 
altered by input stimuli. According to the value of the affected line, the fault is called 
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either stuck-at-0 or stuck-at-1. Usually, open lines or lines shorted to ground or power 
behave like stuck-at faults [16]. 

Figure 2.2 shows an example of a stuck-at-0 fault located at the input of an AND gate. 

x1 x0 y0 y'0

0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 0

x0

x1

stuck-at-0

y0

 
Figure 2.2: Stuck-at-0 AND gate with truth table [17] 

In general, several stuck-at faults can be simultaneously present. A DUT with n lines can 
have 3n − 1 possible stuck-at line combinations. This is because each line can be in one 
of the three states: stuck-at-1, stuck-at-0, or fault-free. Clearly, even a moderate value of n 
will generate an enormously large number of multiple stuck-at faults. However, it is a 
common practice to work with single stuck-at faults [11, 12, 17, 18]. In this case, an n-
line DUT can have at most 2𝑛𝑛 single stuck-at faults. 

2.1.4.2 Bridging faults 

Same as the stuck-at fault model, a bridging fault is considered a static fault model 
because the defects that it represents are manifested at all frequencies. It is also a very 
common fault model and it is still one of the fault models most widely accepted in 
industry [16]. A bridging fault considers that two or more lines are unintentionally 
connected. 

There are two bridging fault models that are frequently used in practice: the wired-
AND/wired-OR bridging fault model and the dominant bridging fault model [17]. The 
wired-AND bridging fault is also known as 0-dominant bridging fault because a 0 on one 
of the faulty lines determines the logic value on both lines in the same way as a logic 0 at 
any input of an AND gate. Similarly, the wired-OR bridging fault is also known as 1-
dominant bridging fault. 

The dominant bridging fault model was developed to more accurately reflect the behavior 
of some shorts, in which the logic value at the destination end of the shorted lines is 
determined by the line with the strongest drive capability. As a consequence, the driver 
for one line “dominates” the driver for the other line. Figure 2.3 shows the four bridging 
fault models. 
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Figure 2.3: Wired AND/OR and dominant bridging fault models with truth table [17] 

In general, several bridging faults can be simultaneously present in the DUT. In this case, 
a DUT with n lines can have 5𝑛𝑛 − 1 possible bridging fault combinations. However, in 
the same way as stuck-at faults, it is a common practice to work with single bridging 
faults [11, 12, 17, 18]. An n-line DUT can have at most 4𝑛𝑛 single bridging faults. 

2.1.4.3 Dynamic faults 

In contrast to stuck-at and bridging faults, dynamic faults represent defects that show up 
only at high frequencies. In order to detect this kind of fault, it is necessary to execute test 
at-speed, which means applying patterns at the operation frequency of the DUT [12]. 
Additionally, while stuck-at and bridging faults require the application of a single pattern 
for their detection, dynamic faults typically require the application of two patterns: the 
first one for value initialization and the second one for the activation of the fault. They 
can be separated into two main classes, known as delay faults and signal integrity faults. 

Delay faults 

Delay fault models are associated to interconnection or component defects that cause the 
non-fulfillment of timing specifications. This means, defects that cause that a DUT whose 
operation is logically correct, to not perform at the required working frequency [13, 17]. 
In this case, an expected signal value is delayed and the actual measured output signal is 
therefore not correct within a pre-specified timing constraint. An example of this behavior 
is illustrated in Figure 2.4 using a NOR gate with a delay fault, whose output value 
changes from 0 to 1 after a larger time interval in comparison to the time interval defined 
in the timing specification. 
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Figure 2.4: Example of a delay fault [13] 

At the transistor level, defects modeled as delay faults can result from under- or over-
etching during the fabrication process, which produces transistors with channel widths 
that are much narrower or channel lengths that are much longer than intended, such that, 
some paths through the circuit may not meet performance specifications. Other causes are 
a drop in the power supply, shifts in the transistor threshold voltage, increment of 
parasitic capacitance, high resistance shorts, etc. [13]. 

At the gate level, delay faults are further categorized into specific delay fault models, 
such as gate-delay faults, transition-delay faults, path-delay faults, line-delay faults, and 
segment-delay faults [12, 13, 19, 20]. 

The gate-delay fault model is a quantitative model in which delays are represented by 
time intervals. Each gate has a pre-specified nominal delay, but a faulty gate is 
characterized by a considerably larger delay. Therefore, the gate delay fault is an added 
delay of certain magnitude in the propagation of a rising or falling transition from the gate 
inputs to the gate output. The number of gate-delay faults is twice the number of gates. 

The transition-delay fault model is one of the basic delay fault models. Faults according 
to this model make slow signal changes on a line. There are two possible fault types, 
slow-to-rise and slow-to-fall. In this case, it is assumed that a defect on a line is large 
enough to affect any path that includes it. The total number of faults is twice the number 
of lines. 

The path-delay fault model considers the cumulative delay of paths from primary inputs 
to primary outputs, and therefore it is a more realistic fault model in comparison to the 
gate-delay and transition-delay fault models. Same as for transition-delay faults, two 
faults (rising and falling transitions) have to be considered for each path. Because many 
paths exist at the gate level, the use of this model is limited to a selected subset of paths 
specified as the critical paths. 

Segment-delay faults consider slow-to-rise and slow-to-fall defects on segments, whose 
length L represents a chain of combinational gates. If L is equal to 1 then the segment-
delay fault is identical to the transition-delay fault, and if L is the maximum logic depth, it 
is identical to the path-delay fault. The goal of the segment-delay fault is to reduce the 
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number of faults that have to be considered in comparison to the path-delay fault. On the 
other hand, the line-delay fault model considers rising or falling delays on a given line. In 
contrast to the transition-delay fault model, where the defect affects any path that includes 
the line, the line-delay fault is propagated only to the longest path of the circuit. 

A detailed discussion about delay faults is presented in [19] and recommended for further 
reading. The discussion includes delay fault properties, advantages and disadvantages, 
and a classification. 

Signal integrity faults 

In comparison to delay faults, signal integrity faults are related to signal integrity issues 
of the DUT interconnections [21–24]. These issues are due to coupling effects between 
interconnections, ground bounce, power supply noise, electromagnetic interference, 
reflections, electro migration problems, and even high resistance in the interconnections 
produced by cracks or narrow width of lines caused by fabrication errors. Their effect on 
the DUT is the appearance of signal delays and signal distortions (noise) in the form of 
glitches, overshoots, and undershoots. 

A glitch is produced when a signal that should maintain a constant value changes its value 
to the opposite value temporarily. Signal overshoots and undershoots elevate or drop the 
signal value respectively, stressing the DUT and increasing the probability of early 
failures. Figure 2.5 illustrates glitch, overshoot, and undershoot distortions. 
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Figure 2.5: Glitch, overshoot, and undershoot distortions [22] 

Testing of signal delays and crosstalk effects produced by coupling requires the use of 
signal integrity fault models. The most frequently used fault model is the maximal 
aggressor fault model [25]. Figure 2.6 shows one victim and two aggressor lines, where 
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the coupling between aggressor and victim lines is represented by a generic component Z. 
Here, the worst case results in multiple aggressor lines having the same transition at the 
same time. In this case, the voltage level on all aggressor lines is assumed to be the same, 
which results in no influence between the aggressor lines, whereas all aggressors couple 
energy to the victim, as shown by the arrows in Figure 2.6. 

Z

Z

aggressor line

victim line

aggressor line  
Figure 2.6: Maximum aggressor fault model 

The impact of coupling effects depends on the properties of the transition on the 
aggressor line as well as the properties of the victim line. While a signal change on the 
aggressor line originates the fault effect, the signal on the victim line can be stable as well 
as changing in the same or opposite direction of the aggressor lines. Because of coupling, 
different effects can occur, ranging from a speedup or slow-down of the affected signal to 
hazards on stable signals. Table 2.1 shows the possible combinations. 

Victim signal Aggressor signal(s): rising Aggressor signal(s): falling 

Stable 0 Positive glitch Negative overshoot (negative glitch) 

Rising Speed-up Slow-down 

Stable 1 Overshoot (positive glitch) Negative glitch 

Falling Slow-down Speed-up 

Table 2.1: Effects of aggressor signals [22] 

The speed-up phenomenon will normally not cause problems for proper functioning of 
the DUT, while the effect of a slow-down of the victim line signal causes at least a delay. 
The negative (positive) glitch on the stable 0 (1) victim signal will not alter the DUT 
logical behavior but may stress it, resulting in a shorter life time. And the positive 
(negative) glitches on stable 0 (1) victim signal may cause an incorrect logical behavior of 
the DUT. 

2.1.5 Diagnosis 

Diagnosis consists of locating the faults in a structural model of the DUT. In other words, 
diagnosis maps the observed misbehavior of the DUT into faults affecting its devices or 
interconnections [11]. 
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When faults are detected, diagnostic procedures are used for two main purposes, the 
identification and replacement of faulty devices, or the improvement of the quality of the 
manufacturing process [17]. In the first case, a diagnostic procedure is carried out in order 
to replace the faulty component. This can take place during the manufacturing process or 
after the DUT fails in the field. In the second case, diagnosis provides information about 
faults that are likely to occur during the manufacturing process. This information is used 
to tune the manufacturing process in order to improve its quality. 

There are two main methods used for diagnosis, sequential and combinational fault 
diagnosis [13]. Sequential fault diagnosis, also known as adaptive testing, is a process, in 
which the fault location is carried out step by step. In this case, the next step depends on 
the result of the previous step, a behavior that is represented in the form of a diagnostic 
tree. An example is shown in Figure 2.7, where the diagnostic tree is composed of a set of 
potential faults {F1, F2, F3, F4, F5, F6, F7} and a set of test patterns {T1, T2, T3, T4}. 
Every test pattern is a node in the diagnostic tree that defines the next step to carry out 
(next pattern to apply) depending on the test result for the actual pattern (pass P or fail F). 
In this case, the set of faults that remains after each step represents faults that are 
equivalent (undistinguishable) under the currently applied test set. 

On the other hand, combinational fault diagnosis is based on explicit fault dictionaries 
that associate each fault to a set of test patterns [13]. To locate a fault, it is necessary to 
match the test results with one of the precomputed expected results stored in the fault 
dictionary. This method is called combinational fault diagnosis, because a look-up 
process in the fault dictionary is carried out to identify the corresponding fault. 

There are two main types of fault dictionaries and two methods used to store them [26]. 
In a “full response dictionary” the DUT response is stored for every fault and every test 
pattern. On the other hand, in a “pass/fail dictionary” the pass/fail result is stored for 
every fault and every test pattern. The two storage methods are the “list storage method” 
and the “two-dimensional storage method”. The former is a list that stores for every test 
pattern the number of faults detected and additional information depending on the fault 
dictionary type. The latter is a two dimensional matrix, in which each row corresponds to 
a fault and each column to one of the applied patterns. In this case, the information stored 
in each matrix element depends on the type of fault dictionary. 
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Figure 2.7: Diagnostic tree [13] 

Table 2.2 presents the test set (four test patterns) for a DUT with 4 inputs and two outputs 
with the corresponding fault free response. 

Test pattern Index Test pattern Fault-free response 

0 10010 00 

1 01111 00 

2 11010 11 

3 10101 11 

Table 2.2: Test set for DUT 

In Table 2.3, the “full response fault dictionary” for ten single stuck-at faults in the DUT 
is presented. For every test pattern, the list of faults detected by each test pattern together 
with indices of the faulty DUT outputs is stored. 

Test pattern index Number of faults Faults 

0 4 1(0,1) 3(0) 4(0) 7(1) 

1 2 0(0) 2(0,1)   

2 3 3(0) 5(0,1) 9(0,1)  

3 4 2(1) 6(0) 8(1) 9(0) 

Table 2.3: Full response list fault dictionary 

In Table 2.4, the “pass/fail two dimensional fault dictionary” is presented. In this case, for 
every fault and test pattern a single bit is stored. The bit ‘1’ value indicates that the fault 
is detected by the given pattern. 
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Fault 
Test pattern index 

0 1 2 3 

0 0 1 0 0 

1 1 0 0 0 

2 0 1 0 1 

3 1 0 1 0 

4 1 0 0 0 

5 0 0 1 0 

6 0 0 0 1 

7 1 0 0 0 

8 0 0 0 1 

9 0 0 1 1 

Table 2.4: Pass/fail two dimensional fault dictionary 

2.1.6 Test quality metrics and test costs 

Test quality metrics and test costs are used for two main purposes: as a mean to specify 
test requirements and as a way to determine the advantages and disadvantages of different 
test techniques. 

Test quality metrics are employed to quantify the quality of a given test or test technique. 
In this case, the main test quality metrics used are fault coverage, vertical testability and 
diagnostic resolution. 

Fault coverage provides information about the effectiveness of a given test. In its simplest 
form, this metric is defined as the ratio of the number of detected faults to the total 
number of faults considered. Here, it is important to know the targeted fault types (e.g. 
dynamic or static faults) and the existence of additional factors that influence the fault 
coverage, such as faults that are undetectable or potentially detectable [17]. 

Vertical testability is related to the application range of a specific test technique. It 
defines the application level in which the given test technique can be used. For example, 
built-in self-test (BIST) is a test technique with high vertical testability because it can be 
used at the wafer, IC, printed circuit board, and even at the system level [17]. 

Diagnostic resolution indicates the level of fault location achieved by a specific test or 
test technique [17]. For example, a printed circuit board test that is able to map a fault to 
an interconnection of an IC has a higher diagnostic resolution than a printed circuit board 
test that is just able to identify the IC with the faulty interconnection. 

Cost is a measurable quantity that plays a very important role in testing. In [27], the 
authors consider that an ideal test solution should not add any costs to an electronic 
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system during its design or manufacturing. However, they claim that this is not a real 
situation because test costs are a significant part of the overall development of modern 
electronic systems due to their complexity, high-speed, and the lack of test access. Test 
costs are mainly a function of the test time and resources spent on test development and 
execution. 

Higher test quality translates to higher test costs. Therefore, it is necessary to achieve a 
balance between the required test quality and costs [12, 15]. 

2.2 Printed circuit board testing 

The main focus of this dissertation is manufacturing test of printed circuit boards (PCBs) 
in the digital domain. Therefore, this section presents details about the PCB 
manufacturing process and aspects related to PCB testing. 

2.2.1 Manufacturing process 

The manufacturing process of PCBs is examined from the point of view of the PCB 
assembly process, which consists of populating bare boards with the corresponding 
devices. A bare board is composed of layers of conductors separated by insulating layers 
that together provide the electrical connections and physical structure for mounting and 
holding devices. The conductors are typically made of copper, and the insulators are 
usually some form of fiberglass composite with epoxy resin [28, 29]. 

Devices assembled on the bare board are classified as passive or active devices [29]. The 
former are resistors, capacitors, and inductors, while the latter are devices capable of 
controlling voltages and generating signals with switching behavior (e.g. diodes, 
transistors, and integrated circuits (ICs)). Active and passive devices use two different 
technologies for their attachment to the bare board: through-hole technology (THT) and 
surface mount technology (SMT), respectively. THT attaches devices by inserting their 
leads to the board through mounting holes. In SMT, the devices do not have leads. They 
are designed in such a way that they can be directly attached to the surface of the board. 

Figure 2.8 shows an example of a board assembly line for mounting THT and SMT 
devices. Here, some of the stages are dedicated to the assembly of the bare board, while 
other stages are used for testing purposes. The inclusion of test stages at different points 
of the assembly line is realized in order to identify different types of faults as soon as 
possible. This is based on the “rule of ten”, which states that finding a fault at any 
production stage costs 10 times more than finding the same fault at a previous stage. This 
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rule can be applied to the manufacturing of a complete electronic system, as well as to the 
PCB manufacturing process [30]. 

 
Figure 2.8: Example of an assembly line [31] 

In comparison to THT devices, SMT devices are mounted to the board at earlier stages of 
the assembly process [29]. In Figure 2.8, the first six stages from left to right are used to 
mount SMT devices, and the two following stages are used to mount THT devices. These 
stages are presented in Sections 2.2.1.1 to 2.2.1.3 in more detail. 

2.2.1.1 Application of the solder paste 

In this stage, the solder paste is applied to the metal contacts of the bare board in which 
SMT devices will be mounted. This can be done by pneumatic dispensing using special 
syringes, or by paste printing methods based on special printers and a stencil to define the 
locations of the solder paste. The application of the solder paste can be skipped if the 
wave soldering method is used to solder SMT devices to the bare board. 

This stage is normally followed by a test stage (first defect prevention stage in Figure 
2.8), which checks the amount and location of the solder paste.  

2.2.1.2 Placement 

In this stage, the SMT devices are mounted on the bare board by matching their metal 
terminations with the board regions covered with the solder paste. In case that the wave 
soldering method is used to solder the SMT devices, the attachment is done using an 
adhesive to hold the devices in the correct position. 
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On the other hand, the placement of THT devices does not involve the application of a 
solder paste to the board. In this case, leads are inserted through the board holes, and then 
they are bent, formed, and cut in order to provide the required attachment. For THT ICs, 
the bending, forming, and cutting actions are not necessary. 

In the same way as for solder paste application, a test stage follows the placement. This 
stage checks that devices are not missing and that they are properly oriented and aligned. 

2.2.1.3 Soldering 

After device placement, the soldering stage is carried out. During this stage, the board and 
metallic terminations of the devices are joined together in an intermolecular bond to the 
board interconnections in order to guarantee the electrical continuity of the joint. Two of 
the automatic methods used for this purpose are reflow and wave soldering. Both methods 
are classified as mass soldering methods because they are able to make several solder 
joints simultaneously. 

• Wave soldering is the standard method used for leaded THT devices. It is done by 
passing the populated board held in a horizontal position over the crest of an 
artificially created wave of molten solder. Once the board is exposed to the molten 
solder, the joints are created. 

• Reflow soldering creates a joint by re-melting the previously applied solder paste. 
This is carried out by the application of heat, which is produced through 
convection of a hot gas, infrared radiation, or heat panels. 

After soldering and final assembly process, several test stages are carried out to test the 
PCB. Their purpose is to avoid shipping faulty PCBs and increase the quality of the 
manufacturing process [32]. In this thesis, all the test actions carried out during the 
assembly process are referred to as board-level testing. 

2.2.2 Board-level testing 

Over the last decade, board-level testing has changed its focus from finding component 
failures towards finding defects produced during the PCB manufacturing process [29, 33]. 
This has led to the development of test strategies that assume that devices populating the 
PCB work properly, and therefore the dominant manufacturing defects are located at the 
soldering joints [16, 32]. 
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2.2.2.1 Defects at the board level 

The occurrence of defects is caused by process variations during the PCB assembly. They 
are caused by inaccurate placement of devices, solder melting problems, low 
temperatures, excessive exposure to heat, oxidation, organic residues, and the usage of 
excessive flux [29]. 

Examples of defects appearing in the PCB are shorts between joints and cracks (Figure 
2.9), lifted leads or leads with insufficient solder (Figure 2.10), and misaligned or 
tombstone devices (Figure 2.11). Other types of defects are missing or misplaced devices 
and damage of the bare board during the assembly process. 

These defects manifest themselves in dissimilar ways, causing the PCB to operate outside 
its specification. At the logic level, their effect on the PCB operation can be modeled by 
stuck-at, bridging, or dynamic faults. 

 
Figure 2.9: Short defect [29] and crack in ball grid array solder joint [34] 

 
Figure 2.10: Lifted lead and insufficient solder defects [29] 

 
Figure 2.11: Misaligned and tombstone component defects [29] 
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2.2.2.2 Test strategies 

Modern PCBs are considered to have high design and manufacturing complexity. They 
are characterized by several wiring layers, small dimensions, and a dense population of 
devices with different packaging technologies. In order to obtain competitive test quality 
metrics, it is necessary to employ test strategies that rely on multiple and complementary 
test techniques [35, 36]. 

A general test strategy is presented in Figure 2.12. It comprises three main steps, which 
are known as inspection, structural test, and functional test. In Figure 2.8, manual 
inspection, X-ray inspection and optical inspection are part of the inspection step, 
whereas in-circuit test (ICT) forms part of the structural test step. After these two steps 
are carried out, functional tests are typically applied to the PCB. Section 2.2.3 presents 
board-level test techniques in more detail. 

Inspection Structural 
Test

Functional 
Test

 
Figure 2.12: General test strategy during PCB assembly 

2.2.3 Board-level test techniques 

In this section an overview of widely used test techniques is provided. For this purpose, a 
description of the main properties of these techniques is presented, with the aim of 
showing their purpose, advantages and disadvantages. 

2.2.3.1 Inspection 

Inspection relies on visual or image information about the PCB that is used to evaluate if 
it is faulty or not. Therefore, it is not necessary to power up the PCB or to physically 
access it with some test instrumentation. However, inspection by itself cannot determine 
if a PCB works, because the PCB is not stimulated with any input signals and no output 
signals are measured. It can only determine that a PCB looks correct [33]. 

Visual inspection is usually used after application of the solder paste, placement, and 
soldering stages. In the first case, it inspects the quality of the solder paste, while in the 
second case it looks for missing devices, alignment, and orientation problems. Here, the 
repair costs are low because the soldering stage has not been carried out. Visual 
inspection is done manually by visual inspectors that make use of inspection equipment 
such as magnifiers or microscopes. 
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The inspection actions carried out after the soldering stage target the solder joints 
between the board and the devices. For this purpose, automatic inspection techniques are 
utilized because they provide better reliability in comparison to a manual process. One of 
the automatic inspection techniques is known as automated optical inspection (AOI). This 
technique takes an image of an entire or a part of the PCB, and matches it against a 
proven correct variant. The limitation of AOI is that it is not effective in examining 
hidden solder joints such as solder joints of ICs with ball grid array (BGA) or land grid 
array (LGA) packages. To overcome this problem, automated X-ray inspection (AXI) is 
used. AXI is able to look through the ICs and the PCB, allowing the inspection of hidden 
solder joints, double-sided boards and even inner interconnection layers [29, 33]. 

2.2.3.2 Structural test 

Smaller devices and denser populated boards complicate and increase the costs of the 
inspection process due to the need for a high image resolution, which increases the 
camera positioning and image-processing time. This slows down the inspection process 
and increases the likelihood of falsely flagging defect-free PCBs as defective [33]. 
Therefore, structural test techniques are incorporated into the test strategy in order to 
electrically stimulate the PCBs and find defects not detected with inspection techniques. 

Structural test techniques check the structure of the PCB instead of the function that the 
PCB should perform. The idea is to apply suitable test patterns targeted at sensitizing 
specific faults in a way that a faulty circuit will produce an erroneous response. Their 
advantage over functional tests is that these techniques can be used to obtain high fault 
coverage based on a small set of patterns, reducing test time dramatically [12]. 

Structural tests make use of classical test techniques, which are generally divided into two 
main classes, invasive and noninvasive. 

Invasive test techniques 

Invasive test techniques are characterized by external test instrumentation that makes 
physical contact with different parts of the PCB (test points). Two popular invasive test 
techniques are known as in-circuit testing (ICT) and flying probe testing (FPT). 

ICT was one of the first structural test techniques on the market [32]. Figure 2.13 shows 
the typical architecture of an in-circuit tester. The tester consists of a test fixture with a 
bed of nails, a vacuum port used to firmly attach the PCB to the test equipment, and a 
receiver connected to an external computer in control of the testing process. The bed of 
nails comprises multiple fixed test probes that are used to access the PCB test points. 
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ICT can provide very high fault coverage in cases where good external test access is 
provided. Practically all structural faults, such as opens, shorts, wrong or defective 
devices, can be covered. Additionally, ICT is easily automated and provides good 
diagnostic resolution. Unfortunately, the cost of ICT is very high due to the expensive 
equipment and the PCB-specific test fixture required for every new PCB. Additionally, 
the increasing density and continuous miniaturization of PCBs, as well as the use of SMT 
ICs with BGA or LGA packages significantly limit test access [32]. 

 
Figure 2.13: ICT equipment [29] 

The effort and costs related to the adaptation of the test fixture to the PCB led to the 
development of the FPT technique [32]. In this case, instead of having a fixed test fixture, 
high-speed test probes that move across the PCB are used. The probes can reach test 
points and devices located across the board, and therefore they can perform all kind of 
electrical tests. In this case, it is necessary to program the movement of the probes. 

The FPT equipment is more flexible and independent of the target PCB, reducing test 
development costs. Nevertheless, its main advantage is also its main disadvantage, 
because the movement of the probes clearly slows down the test execution in comparison 
to ICT [32]. 

The main disadvantage of both test techniques is the physical contact required to access 
the PCB, making their use very problematic in modern PCBs. This led to the development 
of noninvasive test techniques. 

Noninvasive test techniques 

Noninvasive test techniques do not use external test instrumentation to contact test points 
on the PCB in order to have access to it. They use embedded test resources located in the 
ICs, which are accessed through external automatic test equipment (ATE). 

The most popular noninvasive test technique is known as Boundary Scan (BScan). In 
1985, the Joint Test Access Group (JTAG), made up of companies primarily from Europe 
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and North America, was set up with the goal of developing a new technology that could 
provide test access to the PCB without the utilization of physical test probes. The 
technology received positive feedback from industry, and therefore it was adopted by the 
Institute of Electrical and Electronics Engineers (IEEE) and standardized as “IEEE 
1149.1 Test Access Port and Boundary Scan Architecture” in 1990. Several revisions 
have been made to the standard, with IEEE 1149.1-2013 being the latest one of them [1]. 
The standard is often referred to as JTAG, due to its history of development [37]. In 
comparison to ICT and FPT, BScan allows easier and faster test development, making it 
possible to obtain better test quality metrics and reduce test costs [38, 39]. 

Figure 2.14 shows the BScan architecture included in BScan compliant ICs. The access to 
the IC is done by means of a serial test bus, which provides access to the IC and 
input/output (I/O) pins. 

Bypass
ID Register

Instruction Register

TAP Controller
(Control signals)

Core 
Logic

IC

TDOTDI

TMS
TCK

TRST

I/OsI/Os

Bscan 
Cell

 
Figure 2.14: Simplified architecture of an 11.49.1 compliant IC [37] 

The Test Access Port (TAP) comprises five pins, which are used to transfer information 
to the embedded test resources. Test Clock (TCK), Test Mode Select (TMS), and the 
optional pin Test Reset (TRST) are input pins used to synchronize and control the transfer 
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of information. Test Data In (TDI) and Test Data Out (TDO) are used to shift data in and 
out of the IC serially. 

In the IC die, there is a finite state machine known as the TAP Controller. It responds to 
the TCK, TMS, and TRST values, generating control signals used to control the 
instruction register (IR) and data registers (DR) forming part of the BScan architecture. 

The instruction Register (IR) is accessed through the TDI and TDO pins, and it is used to 
load instructions that set the mode of operation of one or more Data Registers (DRs). 
Figure 2.14 shows three DRs, which are known as the BScan, Bypass, and ID registers. 
The BScan DR is composed of serially connected BScan cells located between the IC 
pins and core logic. Its main purpose is to separate the pins from the core logic in order to 
control and observe the pins’ activity during the test execution. The Bypass DR consists 
of a single cell used to reduce the shifting path (TDI to TDO) of an IC. On the other hand, 
the Device Identification (ID) DR is optional, and it is used to identify the IC. 

The BScan compliant ICs are connected together forming a serial scan chain or scan path, 
which is used to shift in test patterns and shift out test responses. The main limitations of 
this technique are the serial structure of the chain and low TCK frequencies. They cause 
low coverage values for dynamic faults and prohibitively long test times, affecting the test 
quality and cost [40, 41]. 

The time it takes to shift in and out a single test vector is known as the test access time, 
which is calculated as presented in [30]. For this purpose, Equation (2.1) describes the 
total length of the BScan chain CTotal based on n BScan compliant devices, each of them 
with a BScan register of length l𝑖𝑖 . 

 𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �𝑙𝑙𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (2.1) 

If FTCK is the clock frequency of TCK, then the test access time TACC is equal to: 

 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 =
𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇

+ 𝛿𝛿𝑠𝑠 + 𝛿𝛿ℎ + 6 ∙
1

𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇
 (2.2) 

In this case, δs represents the software delay and δh the hardware delay of the ATE. The 
additional 6 TCK cycles include the transition of the TAP state machine from the Shift-
DR TAP state to the Update-DR state and then back to the Shift-DR state. The application 
speed achieved with BScan FAPP is the opposite to TACC and is calculated as follows: 
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 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 =
1

𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴
 (2.3) 

Equations (2.2) and (2.3) are an important way to calculate the test time and application 
speed achieved with BScan for a given PCB. For this purpose, δs and δh are typically 
approximated to 7 ∙ 1

FTCK
. 

Nowadays, the standard is not only used for testing purposes but also as a multipurpose 
access port for communication, debugging, or even programming of ICs [42, 43]. A 
detailed description of the BScan operation and architecture is presented in [1, 37] and 
recommended for further reading. 

2.2.3.3 Functional test 

After all devices and connections of the PCB are structurally tested, it is necessary to 
check the functional behavior of the board. This is performed by functional tests at the 
end of the manufacturing process. A functional tester exercises the PCB through its edge 
or test connector [33]. The tester applies a signal pattern that resembles the normal 
operation of the board, and then examines output pins to ensure a valid response. In some 
cases, in order to complement edge and test connectors, a modified bed of nails is used 
for observation purposes only. 

In contrast to structural tests, a functional test is performed in a normal operation mode, 
providing the capability to check the board in close to real life situations. This means that 
it can be used to verify the board performance, mimicking its behavior in the end product. 
A functional test is carried out at full speed, thereby uncovering racing and other dynamic 
problems that escape static or low-speed tests.  

This technique is very expensive because it cannot be standardized. Typically, there are 
no fully automatic generation tools, making it necessary to develop all tests manually for 
each type of PCB, which is a very complex and time consuming task. Additionally, a 
functional test only can determine whether the board functionality corresponds to its 
specification or not. This does not include any diagnostic information, and therefore it is 
not possible to locate the defects that produce the incorrect behavior [33, 44]. 

2.3 Embedded board-level test techniques 

Test strategies for modern PCBs cannot rely on classical structural and functional test 
techniques due to the high test costs and the impossibility to guarantee good test quality 
metrics in a modern PCB manufacturing process. Columns two to four of Table 2.5 
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summarize main properties and limitations of these techniques. The information was 
obtained from [30, 35, 45, 46]. 

It can be observed that ICT and FPT have high static fault coverage and test automation 
values, but they have access and cost limitations. BScan provides better test access to the 
PCB given that it is a noninvasive test technique. But it is not able to detect dynamic 
faults and requires long test times. Functional test provides high functional fault coverage 
values, making it possible to detect defects that appear at the DUT operation speed. 
However, it is difficult to automate, provides low diagnosis resolution, and has high costs. 

 FPT ICT BScan Functional Embedded 

DUT access mechanism Flying probes Fixed nails Scan cells Edge connector Embedded 

Test access Low Low High Low High 

Static fault coverage High High High Uncountable High 

Dynamic fault coverage No High No Uncountable High 

Functional fault coverage Uncountable Uncountable Uncountable High High 

Diagnosis High High High Low High 

Test time Very high Low High High Low 

Test automation High High High Low High 

Test cost High Very high Low High Low 

Table 2.5: Comparison of different test techniques 

Based on the comparison of test techniques, there is no ideal technique that meets all test 
requirements. Therefore, in order to overcome the limitations of classical test techniques, 
modern test strategies complement them by means of embedded test techniques. 
Embedded test techniques have a high level of access to the PCB and ICs, and they are 
able to execute tests at-speed, in short time, with high diagnosis resolution, and at low 
cost. The last column of Table 2.5 represents the ideal properties of an embedded test.  

During the last years a large amount of research has been done in this area, whether 
altering the BScan technique [40, 47], using embedded custom test circuits [41, 48] or 
smart devices already available in the PCB. The use of smart devices already available on 
the PCB has gained considerable importance in the last decade because it does not require 
the modification or addition of new devices to the PCB. In this case, these devices 
correspond to processors or field programmable gate arrays (FPGAs) that are also used 
during normal operation of the PCB. 

2.3.1 Processor-based testing 

Processor emulation was a popular approach in the 80’s and early 90’s [45, 49, 50]. It 
relied on the insertion of processor specific pods into the processor socket that allowed 
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replacing the processor with an external processor emulator. In this way it was possible to 
take control over the PCB bus for testing and debugging purposes. However, the 
decreasing physical access and increasing clock rates of modern PCBs made emulators 
difficult or impossible to design. 

It was not until the advent of on-chip debug interfaces that the idea of processor 
emulation was reconsidered, giving birth to Processor-based testing (PBT). The debug 
interface, embedded in the microprocessor die, provides the required control and 
observation features necessary to carry out traditional emulation actions. For example, it 
can be used to stop the processor, read/write memory and I/Os, set breakpoints, execute 
single steps, and trace code. This technique is commonly implemented using the JTAG 
interface as the main communication link between the debug interface and the ATE, and 
it is available in commercial tools such as VarioTap [45] and Processor-controlled Test 
[49, 50]. 

In PBT, the processor on the PCB becomes an embedded tester. It is in charge of 
accessing the ICs and executing test functions. During the test execution, the ATE takes 
control over the processor via its debug interface and performs tests based on two 
possible operation modes, which are known as online and offline modes [46, 51–53].  

In offline mode, the complete test program is translated into a set of microinstructions 
that is loaded into the processor memory. The translation and loading process is carried 
out by the ATE, which is also in charge of starting the program execution. During the test 
execution, the processor works independently and does not interact continuously with the 
ATE. The test program stores pass or fail results in one or more general purpose registers 
accessible through the debug interface. These results are read by the ATE for further 
evaluation and diagnosis. 

Due to the autonomous operation of the processor, the offline operation mode requires a 
large memory space to store the complete test algorithms, test patterns, and analysis 
functions. However, in some cases, it is possible to make use of special algorithms as part 
of the test program (e.g. walking one, counting sequence, pseudo random pattern 
sequence, etc.) that generate driving and expected values on the fly, reducing the memory 
requirements. 

In online mode, test steps are executed separately under strict control of the ATE. For this 
purpose, the test program is split into a sequence of steps and a special interpreter is 
loaded into the processor internal memory. Test steps are basically a sequence of 
microinstructions that describe the actions necessary to apply a test pattern to a given 
DUT. They are transferred to the processor and received by the interpreter, which is in 
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charge of executing them. After each step, results are stored in the processor registers and 
retrieved by the ATE. 

The main drawback of online mode in comparison to offline mode is the speed at which 
test patterns are applied. The online mode is considerably slower due to the continuous 
communication overhead between the ATE and the processor, and the application of a 
sequence of test patterns at-speed is not guaranteed. The latter can be an issue for the 
detection of dynamic faults [46]. 

PBT is a very interesting test technique due to low test costs and the potential to execute 
tests at-speed. In order to reach the ideal properties of an embedded test (Table 2.5), it is 
necessary to automate the development flow and provide support for a large spectrum of 
debug interfaces and processors [46, 51–53]. The fulfillment of these tasks has been 
proven to be very difficult, and therefore additional research is still needed [46]. 

2.3.2 FPGA-based testing 

Instead of using processors, FPGA-based testing (FBT) employs field programmable gate 
arrays (FPGAs) located on the PCB for testing purposes. On this subject, different 
approaches have been investigated [30, 54–58], and commercial tools such as ChipVorx 
[59] and FPGA-controlled test [60] are already on the market. 

In the same way as PBT, FBT has the potential to execute tests at-speed, and therefore it 
can be used for detection of static and dynamic faults. It is a low cost approach because it 
does not require the addition of test points, special devices, or expensive ATE. In this 
case, the main challenge is the development of a test system embedded in the FPGA that 
is able to fulfill the properties of an embedded test technique as presented in Table 2.5. 

Given that FBT is the main research topic of this dissertation, Chapter 3 presents a 
detailed analysis of FBT features, available approaches, and the approach followed in this 
work. 

2.4 Soft-core and test processors 

This section presents soft-core processors and test processors found in the literature. Soft-
core processors are configurable cores that are synthesized and instantiated on the FPGA 
just like any other FPGA-based design. Compared to hard-core processors, soft-core are 
more flexible because the hardware description of the soft-core processor can be changed. 
However, they have lower performance because they are implemented using the 
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configurable blocks and routing resources of the FPGA. Test processors are application-
specific processors developed for testing purposes. In comparison to general purpose 
processors, they are tailored and specialized for the execution of test functions in order to 
obtain higher performance values and reduce test cost. 

2.4.1 Soft-core processors 

Soft-core processors are classified into two basic categories: 

• Proprietary soft-core processors 
• Open source soft-core processors 

Proprietary soft-core processors are developed by intellectual property (IP) design 
companies or FPGA vendors. They are fully verified and have good software 
development tool support, libraries, and documentation. Their main disadvantages are the 
cost of license fees, restricted access to the source code, limited support for vendor-
specific or family-specific FPGAs, and that developers are forced to use vendor-specific 
development tools for object code generation, debugging, verification, and design 
instantiation purposes. 

On the other hand, open source soft-core processors are mainly developed for educational 
and research purposes. They follow the GNU philosophy, making the source code 
available and editable without any license fees. Their implementation is not restricted to a 
specific FPGA family or vendor, and development tools are in most cases open source. 
Depending on processor popularity and acceptance, they might not be fully operational or 
fully verified. 

Open source soft-core processors are further divided into processors with an original 
instruction set architecture (ISA) or with a cloned ISA. The former have their own ISA, 
while the latter are developed based on popular ISAs or a subset of them. Cloned soft-
core processors are compatible with libraries and development tools of the original 
processor. On the other hand, the development of all libraries and software tools is 
necessary for processors with their own ISA. 

Table 2.6 shows the most relevant proprietary and open-source soft-core processors found 
in the literature. The selection was made based on their popularity in the research 
community, development stage (stable or beta release), and existing support. The columns 
Type and Clone map the processor in one of the categories. The ISA column provides 
information about the ISA, and the Release stage column shows the status of the current 
release. The number of bits necessary for coding the content of a register or an instruction 
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is shown in the Data width and Instruction width columns, respectively. Multiple data 
width values indicate either the existence of various processor versions (Ensilica 1600 
and 32X0) or a configurable data width (Proteus). The value 8x in the instruction width of 
the T48 µcontroller indicates instructions of variable length (byte multiples), which are 
typical in CISC processors. 

The Pipeline stages column presents the number of pipeline stages supported by the 
processor. A hyphen indicates a multi-cycle implementation (no pipeline). Multiple 
values indicate various processor versions (Nios II, Amber) or a configurable pipeline 
(Microblaze, Xtensa LX6, Plasma, and Proteus). The Configurable/extensible column 
indicates support for configuration parameters and extension of the instruction set. 
Configuration parameters are used to activate/deactivate complete processor modules and 
define the value of properties such as number of registers, memory sizes, number of 
pipeline stages, etc. Extension of the instruction set indicates support for implementation 
of new instructions. 

Finally, the FPGAs column indicates the supported FPGAs. As shown in the table, the 
Nios II, Microblaze, and Picoblaze processors are restricted to a specific vendor, while 
the Ensilica and Xtensa LX6 can be implemented in FPGAs supported by the vendor. 
Open-source processors do not have any FPGA restrictions, but they may require editing 
the source code in order to use vendor-specific components such as multipliers, RAM 
blocks, JTAG interfaces, etc. 

2.4.2 Test processors 

Application-specific processors developed exclusively for testing purposes are of great 
interest to the research community. They are equipped with specialized test functions in 
order to improve test execution time and adjust their properties to the test scenario. 

They are classified into two basic categories: 

• Hardwired test processors. 
• Programmable test processors. 

2.4.2.1 Hardwired test processors 

The first category comprises processors that are not instruction programmable. They are 
equipped with hardwired linear feedback shift registers (LFSRs) for generation of 
patterns, signature registers for the analysis of test responses, and special interfaces. 
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Soft-core processor Type Clone ISA Release 
stage 

Data 
width 

Instruction 
width 

Pipeline 
stages 

Configurable/ 
extensible FPGAs Begin-end 

development 

Nios II [61] proprietary no Nios II stable 32 32 -, 5, 6 yes/yes Altera FPGAs only 2004-2015 

Microblaze [62] proprietary no Microblaze stable 32 32 3, 5 yes/yes Xilinx FPGAs only 2002-2015 

Picoblaze [63] proprietary no Picoblaze stable 8 18 - no/no Xilinx FPGAs only 2003-2014 

Ensilica cores [64] proprietary no eSI_RISC stable 16, 32 16, 32 5 yes/yes vendor1 2009-2011 

Xtensa LX6 [65] proprietary no Xtensa stable 32 16, 24 5, 7 yes/yes vendor1 1999-2015 

T48 µcontroller [66] open source yes MCS-48 (CISC) stable 8 8x - no/no all 2004-2009 

Plasma [67] open source yes MIPS I (TM) stable 32 32 2, 3 yes/no all 2001-2013 

Copyblaze [68] open source yes Picoblaze stable 8 18 - no/no all 2011-2013 

Leon 3 [69] open source2 yes SPARC-v8 stable 32 32 7 yes/no all 2003-2015 

aeMB [70] open source yes Microblaze beta 32 32 3 yes/no all 2004-2009 

Amber [71] open source yes ARM-7 stable 32 32 3, 5 no/no all 2010-2013 

OpenRisc 1200 [72] open source no OpenRisc 1000 stable 32 32 5 yes/yes all 2001-2015 

Mico8 [73] open source no Lattice Mico8 stable 8 18 - yes/no all 2005-2013 

Mico32 [74] open source no Lattice Mico32 stable 32 32 6 yes/no all 2006-2015 

Proteus [75] open source no Proteus beta 8, 16 16 3, 43 yes/yes all 2009-2009 

Table 2.6: General purpose soft-core processors 

 

                                                 
1Supported FPGAs are defined by the soft-core processor vendor. 
2 Open source license if the processor is used for education or research purposes. 
3 The soft-core processor uses two clock cycles per pipeline stage. 
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The first member is the Testchip [76], which was developed for research and educational 
purposes to test VLSI circuits in 1990. The goal was to reduce test costs by replacing a 
high-cost ATE with a low-cost ATE and a Testchip. The Testchip is included in the PCB 
as an additional IC to carry out test functions typically performed by the high-cost ATE. 
The Testchip is used for pattern generation, pattern application, test result acquisition, and 
signature analysis. The adaptation to a DUT is carried out based on configuration 
registers and random access memory (RAM) accessed through a bus interface in order to 
configure the test lengths and weights of the pattern generators. The pattern generators 
produce weighted random patterns, which are applied in parallel to the primary inputs of 
the DUT and serially (via scan-path) to the internal registers of the DUT. A signature 
analyzer is able to compact the acquired parallel and serial test responses into a signature, 
which is sent to the ATE for further analysis. 

Figure 2.15 shows the architecture of the Testchip. The control unit is in charge of the 
coordination of the test execution and communication with the ATE. The pattern 
generators are implemented as LFSRs, and they use RAM to store the configuration 
information of the pattern sequences. The shift register is in charge of serial-to-parallel 
and parallel-to-serial conversions for the execution of scan-path tests. The signature 
register generates the signatures based on the test responses. 
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register
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register
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Control Unit

Scan out Scan inParallel out Parallel in Control

Pattern generator 
(LFSR)RAM

Pattern generator 
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Figure 2.15: Testchip architecture [76] 

A similar test processor, called the Test processor chip, is presented in [77–80]. The 
concept, field of application, and adaptation mechanism share the same concepts of the 
Testchip. In this chip, the pattern generation is based on multiple polynomial LFSR 
reseeding [77–79] and generalized LFSRs [80]. 

2.4.2.2 Programmable test processors 

The second group of test processors is instruction programmable, which makes it possible 
to implement test algorithms in a more flexible way. They are used to test ICs, and they 
˗or at least some of their modules˗ are embedded in the DUT. Additionally, they have 
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special circuits for the generation and application of patterns, configuration options for 
adaptation to the test scenario, and serial interfaces for the execution of scan-path tests. 

The test processor presented in [19, 81–86] is a standard 16-bit reduced instruction set 
computer (RISC) used for testing the components and interconnections of a system on 
chip (SoC). It is embedded in the SoC in order to improve the test observability and 
controllability, and reduce test costs. It is equipped with special test functions, and 
different versions of the processor are available for adaptation purposes. 

In [81] the test processor is introduced to the scientific community for the first time. It is 
presented as a minimum-size processor designed using the hardware description language 
VHDL. This version supports 32 basic instructions and two special test instructions for 
pattern generation and compaction. The special instructions use two registers of the 
register file to implement an LFSR or a multiple input signature register (MISR) based on 
the built-in logic block observer (BILBO) scheme. The test processor supports 
deterministic instruction execution given that it is not equipped with pipeline stages or 
cache memories. A specialized I/O controller applies patterns and acquires test responses. 
The I/O controller has four parallel ports, one serial scan-path port, and dedicated 
circuitry to perform a fast comparison of test responses. For this purpose, special 
structures known as bus reflectors [82] are placed at the other end of the interconnections. 

Figure 2.16 shows the architecture of the test processor, which comprises four basic 
modules: memory, control-path, data-path, and I/O controller. Registers g and h of the 
register file are used to implement a LFSR or MISR. The I/O controller has five ports to 
access the DUT and ATE, a configuration register to configure the ports, and test, 
rollback, and switch (TRS) controllers that perform the fast comparison of patterns. 

In [82–84] emphasis is given to a hierarchical test scheme. The processor is equipped 
with self-testing and on-line test features that improve its reliability. For this purpose, two 
different processor versions are presented. The first version has specialized structures for 
the processor self-test. The second version includes online-testing capabilities for the 
control- and data-path. In [19, 85, 86] more importance is given to the adaptability to the 
test and area requirements of the SoC. For this purpose, four main processor versions are 
presented. The basic version is equipped with eight registers and no interrupts. The 
second version is equipped with 16 registers, interrupts, and self-test structures. The third 
version supports online test features, and the fourth version supports special hardware for 
multiplication and division. A fifth processor version with pipelining is also mentioned, 
but there is no further information about it. 
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Figure 2.16: Simplified architecture of the test processor presented in [81] 

Another instruction programmable processor was developed for the functional test of 
asynchronous circuits [87–89]. It supports the timing and arbitration indeterminism of 
asynchronous circuits. The first versions [87, 88] are based on the test processor 
introduced in [81], while the version presented in [89] follows a different approach. 

The test processor in [87] is a 16-bit RISC processor designed with the processor 
description language known as language for instruction set architecture (LISA). It can be 
implemented in the SoC, ATE, or as a combination of both options. It supports 53 
instructions with two operands per instruction. Some of these instructions are used for the 
implementation of asynchronous handshake protocols, generation of patterns, and 
compaction of test responses. The processor has separate data and program memories, 
four pipeline stages with result forwarding, and sixteen registers, in which four of the 
registers are used to implement two LFSRs or MISRs. It is equipped with an I/O interface 
with eight I/O ports and four asynchronous handshake ports that are used to generate the 
asynchronous signaling. The asynchronous handshake ports can be configured, allowing 
adjustable and programmable communication. 

The work presented in [88] tries to solve the problems of the previous version, namely the 
pattern storage capacity and pattern application speed. In order to improve the storage 
capacity, the ISA of the processor is extended to 32 bits. Additionally, it uses three 
operands per instruction, and supports a variety of logic, arithmetic, and control flow 
operations. It uses any of the registers of the register file as a LFSR/MISR, and is 
equipped with 16 I/O ports and asynchronous handshake ports. In order to improve the 
pattern application speed, the processor is equipped with special instructions that perform 
complex operation sequences. For pattern application purposes, a single instruction can 
read a pattern from memory, or generate the pattern using an LFSR, and subsequently 
transfers the pattern to one of the processor I/O ports. For result acquisition purposes, a 
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single instruction acquires a test response from one of the I/O ports, and subsequently it 
can compare the test response to a value stored in memory, or compact it using a MISR. 

In [89] the concept presented in [87, 88] is reorganized to focus exclusively on the 
application and acquisition of patterns, and the processor is exclusively implemented in 
the ATE. The idea is to avoid the limitations of the previous test processor versions, in 
which the data transfers between DUT and test processor are still the bottleneck of the 
approach. In order to avoid these limitations, the test processor proposed in [89] relies on 
three independent units: a port switch, a memory access controller, and a sequencer. 

The port switch couples asynchronous handshake ports with I/O ports, allowing a quick 
configuration of the ports and the possibility to carry out parallel data transfers between 
the DUT and test processor. The memory access controller coordinates and performs 
independent data transfers between the data memory and I/O ports. The sequencer is a 
small instruction programmable unit, which is used to coordinate the flow of data and 
configure the port switch and memory access controller. It is described in VHDL, has a 
32-bit data bus and a 24-bit instruction bus, two pipeline stages, and eight registers. It 
supports a limited instruction set with 22 instructions, most of them implementing 
complex sequences necessary to configure and control the two other units. 

Figure 2.17 shows a simplified illustration of the test processor architecture. The data and 
program memories are independent from each other, and there are communication links 
between the sequencer, handshake (HS) ports, memory access controller, and port switch. 
Although not shown in the figure, access to the test processor is carried out by means of 
an external interface included in the sequencer. 
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Figure 2.17 Simplified architecture of the test processor presented in [89] 

Table 2.7 shows a summary of the test processors. The first column of the table is the 
processor name, the second column maps the processor to one of the categories, the third 
column is the application field, and the last column presents some of their main features. 



2 Background 39 

 

Test processor Category Target Features 

Testchip [76] Hardwired On board 
device test 

− Pattern generation and analysis based on weighted LFSRs 
− Communication with ATE via bus interface 
− Access to DUT’s primary I/Os and registers (via scan-path) 
− Adaptation based on register and RAM 

Test processor 
chip [77–80] Hardwired On board 

device test 

− Same concept of Testchip 
− Different LFSR implementations 
o LFSR reseeding and generalized LFSRs 

Test processor 
for SoC test 

[81] 
Program-

mable SoC test 

− 16-bit RISC processor described in VHDL 
o Deterministic execution (no pipeline and  no cache) 
o 32 basic instructions + 2 special test instructions 

− 8 general purpose registers 
o 2 registers for LFSR/MISR using BILBO scheme 

− Configurable I/O controller for ATE/DUT communication 

Test processor 
for SoC test 

[82–84] 

Program-
mable SoC test 

− 2 processor versions with fixed ISA based on [81] 
o 1st version with self-test features 
o 2nd version with on-line test features 

− 2 pairs of registers for LFSR/MISR 

Test processor 
for SoC test 
[19, 85, 86] 

Program-
mable SoC test 

− 4 processor versions with fixed ISA 
o Basic [81], self-test [82–84], on-line test [82–84] 
o 4th version with multiplication and division 

− No serial port for scan-path test (separate scan-path module) 

Test processor 
for 

asynchronous 
chip test [87] 

Program-
mable 

Asynchro-
nous chip 

test 

− 16-bit RISC processor based on [81] and described in LISA 
o 4 pipeline stages with result forwarding (no cache) 
o 53 instructions 
o 8 registers (2 pairs of registers for LFSR/MISR) 

− 12 I/O ports 
− Configurable asynchronous handshake ports 

Test processor 
for 

asynchronous 
chip test [88] 

Program-
mable 

Asynchro-
nous chip 

test 

− 32-bit RISC processor based on [87] and described in LISA 
o 4 pipeline stages with result forwarding (no cache) 
o Instructions based on complex sequences 
o LFSR/MISR operations with all registers 
o Load/store for transfers between memory and I/Os 

− 32 I/O ports 
− Asynchronous handshake ports (not configurable) 

Test processor 
for 

asynchronous 
chip test [89] 

Program-
mable 

Asynchro-
nous chip 

test 

− Three main modules designed in VHDL 
o Port switch couples asynchronous and synchronous ports 
o Memory access controller coordinates memory I/O transfers 
o Sequencer manages data flow during test 

− Sequencer architecture 
o 32-bit data and 24-bit instruction coding 
o 2 pipeline stages (no cache) 
o 22 complex instructions to configure/couple ports 
o 8 registers reserved for special purposes  
o No LFSR/MISR support 

Table 2.7: Test processors 
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3 Processor in FPGA-based testing 

3.1 FPGA-based testing 

In this section an introduction to FPGA-based testing is provided. For this purpose, 
building blocks, test phases, and approaches found in the literature are presented. 

3.1.1 Building blocks 

A test system comprises all hardware and software components used during the test 
process. In the case of FBT, the test system is composed of two main components: The 
external automatic test equipment (ATE) and the system embedded in the FPGA, which is 
known in this dissertation as FPGA-based test system (FBTS). Figure 3.1 shows a top 
view of the PCB and test system. In this case, each IC populating the PCB and directly 
connected to the FPGA is known as a device under test (DUT). 

The ATE operates as the interface between the test engineer and the PCB. It is the 
platform used to develop the FBTS, configure the FPGA, visualize test results, and 
monitor, control and execute test functions. It is equipped with a test controller for the 
configuration of the FPGA and communication via the available test interface, and 
appropriate software tools for visualization, test development, processing, and 
communication purposes. These tools are commonly integrated in a framework that 
facilitates the design and development. 
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DUT

DUT

DUT
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Figure 3.1: FBT building blocks 
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The FBTS corresponds to the part of the test system that is embedded in the PCB. It is 
responsible for accessing the ICs connected to the FPGA and executing test functions. 
After the test process is completed, the FPGA is reconfigured for its original operation or 
for the execution of functional tests. 

3.1.2 Test scenario, application field, DUT, and faults 

An important term used in this dissertation is test scenario. It represents the PCB 
properties and set of test requirements that are defined for a specific case. In FBT, the 
PCB properties correspond to the FPGA, ATE-FPGA communication infrastructure, 
access mechanisms to DUTs, working frequencies, timing and electrical characteristics of 
pins, number of interconnections, etc. The set of test requirements is defined by the test 
engineer and represents the selection of interconnections under test as well as the 
definition of test quality metrics such as fault coverage, test time, and diagnosis 
resolution. 

In order to define the application field of FBT, it is important to remember that test 
strategies used at the board-level assume that devices populating the PCB work properly. 
The predominant manufacturing defects are caused by missing or misplaced devices, and 
problems at the soldering joints (Section 2.2.2). Defects caused by missing, misplaced or 
incorrectly assembled devices are targeted by inspection and classical structural test 
techniques. Therefore, the application field of FBT is the detection and diagnosis of 
defects located at the PCB interconnections and soldering joints. 

In order to perform tests, FBT requires accessing and using the functionality provided by 
devices connected at the other side of the interconnections given that test resources are 
only located at the FPGA side. Although these devices are labeled as DUTs, it is 
important to clarify that they provide the required accessibility and functionality to 
perform the interconnection test, but tests do not target defects in their internal structure. 

As already mentioned, FBT is used to improve the quality of a given test strategy, in 
cases where other test techniques are not able to fulfill the test requirements. For this 
purpose, FBT takes advantage of the direct access to DUTs and interconnections, the 
potential to perform tests at the FPGA clock frequency, and the low costs associated with 
FPGA reuse. As a consequence, FBT offers a great potential for the reduction of test time 
and the execution of tests at-speed. 
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3.1.3 Test phases 

Figure 3.2 shows the three test phases required for FBT, which are known as pre-test, test, 
and post-test phases. The pre-test phase is carried out on the ATE before test execution 
and consists of two essential steps. The first step is the analysis of the PCB properties and 
test requirements and the design and evaluation of potential solutions. The second step is 
compilation of the software and hardware descriptions and FPGA configuration. 
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Figure 3.2: FBT test phases 

The test phase comprises the execution of the test and communication between ATE and 
FBTS. The post-test phase comprises the acquisition and presentation of final test results. 
At the end of this phase the FPGA can be reconfigured for normal operation or for the 
execution of functional tests. In the following subsections, each of the test phases is 
discussed in greater detail. 

3.1.3.1 Pre-test phase 

The analysis of the test scenario is the first step in the development of the FBTS. An 
example of two test scenarios for a PCB equipped with an FPGA and memory devices is 
as follows. 

• Test scenario 1: Detection of static faults at the interconnections between the 
FPGA and memories. Diagnosis resolution at device-level is sufficient, and test 
execution time does not represent a critical issue. 

• Test scenario 2: Detection of static and dynamic faults at the interconnections 
between the FPGA and memories. It is necessary to diagnose faults at the 
interconnection-level and minimize the test execution time. 

After the analysis of the test scenario, potential solutions are designed and evaluated. A 
potential solution for the first test scenario is the implementation of a short scan chain in 
the FPGA, leaving all test and DUT-related access functions on the ATE. On the other 
hand, the implementation of test and access functions in the FBTS is more appropriate for 
the second test scenario because it has more demanding test requirements. 
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The compilation and programming step is in charge of synthesizing the FBTS, compiling 
test functions for the ATE, and configuring the FPGA. The compilation and synthesis is 
done by means of electronic design automation (EDA) tools and it is carried out once for 
a specific test scenario. On the other hand, the FPGA configuration has to be carried out 
for each PCB under test. 

3.1.3.2 Test phase 

During the test phase two main operations are carried out: ATE/FBTS communication 
and test execution. 

ATE/FBTS communication refers to the exchange of control commands, status 
information, test patterns, and test results through the test interface. Depending on the 
functions implemented in the FBTS, a different type and amount of data is transmitted. 

During the test execution the PCB is exercised with test patterns and the acquired test 
responses are analyzed for the detection and localization of faults. For this purpose, 
pattern generation, pattern application, and pattern analysis tasks are carried out. 

Pattern generation produces pattern sequences that target a specific fault coverage 
(number of faults and fault types) and diagnosis resolution. These patterns are generated 
before the test execution and stored in memory, or during test execution. 

Pattern application applies test patterns to the DUT and acquires the corresponding test 
responses. In comparison to structural test techniques such as BScan, FBT requires the 
use of the DUT access functions for the application of test patterns and acquisition of test 
responses. This has large repercussion on the test process because it makes it necessary to 
consider the DUT functional and timing properties. If the access functions are not 
implemented properly, this can lead to low fault coverage or even the incapability to 
perform any test. 

Pattern analysis evaluates obtained test responses. This evaluation is performed during the 
execution of the test algorithm for fault detection and diagnosis. It can be performed only 
if the DUT is able to deliver test responses. 

Section 3.4.3 provides more information about the type of test patterns and test responses 
that are used with FPGA-based testing approaches. 

3.1.3.3 Post-test phase 

The last phase is the post-test phase. During this phase the ATE acquires the final results 
from the FBTS and processes this information in order to present final test results to the 
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test engineer. In this way, the test engineer obtains information about detected faults and 
their location. 

After the processing and presentation of test results, a final (optional) step is the 
reconfiguration of the FPGA for normal operation or execution of functional tests. 

3.1.3.4 Comparison to boundary scan and processor-based testing 

The test phases of FBT and other test techniques such as BScan and PBT have essential 
differences. Most of them are found in the pre-test phase given that BScan and PBT do 
not require the design of any hardware. 

Figure 3.3 shows the typical test phases in BScan. In this case, there is no embedded test 
system to design because the TAP controller and corresponding instruction and data 
registers already are part of the BScan-compliant devices. The pre-test phase is just used 
to define the BSDL models and describe the BScan shifting operations. On the other 
hand, the test and post-test phases are very similar to the FBT phases, with the difference 
that it is not necessary to configure an FPGA or program an embedded tester. 
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Figure 3.3: BScan test phases 
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Figure 3.4: PBT test phases 

Figure 3.4 shows the test phases of PBT. As can be seen in the figure, PBT has more 
aspects in common with FBT. The design step includes the development of software 
routines that correspond to the test or interpreter functions used in offline and online 
operation modes. The software routines are subsequently compiled and the corresponding 
machine code downloaded in the processor memory. The main difference with FBT is the 
design of hardware modules. This is not necessary in PBT because the central processing 
unit (CPU), debug-interface, and DUT controllers are already available in the die. 
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3.1.4 Design automation in FPGA-based testing 

One main feature (besides good test quality metrics) that makes a test technique 
successful is the support of an automatic development and test execution process. This is 
very important for a test engineer because it reduces costs, accelerates the test process, 
and minimizes errors caused by human intervention. Additionally, it makes it unnecessary 
to have test engineers with high expertise and knowledge of the implementation details of 
the test technique. 

The BScan pre-test phase is considered to have low complexity, and therefore it is 
relatively easy to automate. For example, software test tools such as CASCON from 
Göpel Electronic offer the option to automatically generate and execute BScan 
infrastructure and interconnection tests [90]. On the contrary, the diversity of processor 
architectures and debug interfaces makes the automation of PBT a very difficult task [46]. 

The automation of the FBT pre-test phase is even more challenging in comparison to the 
other two test techniques. The reason for this is that it is necessary to design and 
implement the complete FBTS infrastructure, which requires the definition of hardware 
modules as well as the access to the FPGA pins and test interface. In Section 3.2 the FBT 
approaches found in the literature are analyzed. They differentiate themselves in the 
architecture properties of the FBTS and in the way the pre-test phase automation 
challenges are solved. 

3.2 FPGA-based testing in the literature 

The term FPGA test instrument is commonly found in the literature for FPGA-based 
systems that perform test and measurement (T&M) tasks. In [30] different ways to 
classify FPGA test instruments are proposed: traditional/virtual/synthetic, post-
manufacturing/in-field, for test/measurement/debug/configuration, and with a focus on 
application speed/session time. 

In this dissertation, the field of FPGA test instrumentation is restricted to instruments 
used during the PCB manufacturing and with focus in the application speed and session 
time (test time). Figure 3.5 shows the classification proposed for this restricted case. 

The classification groups FPGA test instruments into two classes: external FPGA test 
instruments and embedded FPGA test instruments. External FPGA test instruments are 
located on the ATE, and they are used for the generation of signal stimuli and acquisition 
of test responses. They are further divided into single purpose and synthetic instruments. 
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Single purpose instruments are low cost solutions in which the FPGA is configured once 
for the implementation of a specific function, such as a pattern generator, logic analyzer, 
bus monitor, or as a device tester [91–93]. On the other hand, synthetic instruments 
represent instruments that are more flexible. In this case, the FPGA test instrument has a 
standardized interface to the PCB, making it possible to reconfigure the FPGA with 
different T&M functions defined by the test engineer [94, 95]. 

FPGA test 
instruments

External Embedded (FBT)

Single purpose Synthetic Ad-hoc Generic ROBSY
 

Figure 3.5: FPGA test instruments classification 

On the other hand, embedded FPGA test instruments are located on the PCB. They are 
divided into three subcategories based on the design methodology. Ad-hoc and generic 
FPGA test instruments (Sections 3.2.1 and 3.2.2) group test instruments found in the 
literature, while ROBSY represents the FBT approach proposed in this dissertation 
(Section 3.3). 

3.2.1 Ad-hoc FPGA test instruments 

Ad-hoc FPGA test instruments are specialized FBTS manually developed for a specific 
test scenario. In industrial applications, they are frequently used where classical test 
techniques are not able to fulfill test requirements. They target the test of interconnections 
and main functions of peripheral devices such as memories and communication 
interfaces. They are developed based on a typical FPGA design process, in which the test 
engineer is in charge of the manual design of the instrument. This means that the 
synthesis step is mandatory and that the complete pre-test phase is responsibility of the 
test engineer. The test engineer should have deep knowledge of FPGA design and board-
level testing. 

In [96] two different ad-hoc test instruments are presented. The first one is known as in-
system programmable built-in assisted test (ISP BIAT), which includes basic functions in 
the FPGA to alleviate the access to regions of the PCB. The FPGA is used as a signal 
pass-through device, making it possible to access PCB interconnections that otherwise 
could not be accessed, or, the FPGA is used to implement simple access functions to 
write to or read from memory devices in order to test their interconnections. 
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The second test instrument is known as ISP built-in self-test (ISP BIST). In this case, 
more complex functionality is embedded in the FPGA in order to perform test execution 
and diagnostic functions required during the test and post-test phases. An example of this 
approach is the development of a complete embedded memory tester that can apply 
patterns and acquire and evaluate test responses. As a consequence, the communication 
overhead between ATE and FPGA is very low. 

The most important feature of ad-hoc FPGA test instruments is the flexibility for defining 
the FBTS architecture and for mapping test functions either on the ATE or FPGA. As a 
consequence, they provide the option to develop and customize a high performance FBTS 
that is able to fulfill strict test requirements. 

However, the use of ad-hoc FPGA test instruments has several drawbacks: 

• Manual design or adaptation for each new test scenario is required. 
• EDA tools and qualified FPGA designers are a must. 
• Debugging actions for detecting and correcting design errors are a must. 
• Long design time and high test costs have to be considered. 

3.2.2 Generic FPGA test instruments 

The concept of generic FPGA test instruments was conceived in order to address the high 
design time and costs required for ad-hoc instrumentation. The idea is to use pre-
developed instruments that support configuration options for their adaptation to the 
specific test scenario. The configuration options are set either before synthesis or after the 
instrument is configured in the FPGA. 

In [30, 54, 55, 57, 58] this approach is known as FPGA embedded virtual 
instrumentation. It uses pre-developed instruments with a fixed mapping of test functions 
in the FBTS and ATE. The FPGA is used as an access mechanism to the DUT, while the 
ATE performs all the test and diagnostic operations required during test and post-test 
phases. This means that DUT and test algorithm related operations are not implemented 
in the FPGA, but as software routines in the ATE. 

FPGA embedded virtual instruments are adapted to the properties of the DUTs and PCB 
by setting configuration options after the FPGA is configured. This means that design and 
synthesis steps are not required for every new test scenario, minimizing design time, 
design errors, and costs. The FPGA embedded virtual instruments found in the literature 
are employed for clock frequency measurement, memory interconnection test, and in-
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system programming. They are implemented based on variable length shift registers 
(VLSR), accumulating buffers, counters, and primitive pattern comparison functions. 

The implementation of low-level access functions (DUT native protocols) and test 
algorithms in the FPGA is necessary in order to fulfill strict test and timing requirements. 
The implementation of these functions as part of the FPGA embedded virtual instruments 
increases their complexity because it is necessary to support mechanisms that adapt the 
instrument functional and timing behavior on the fly (after the instrument is configured in 
the FPGA). This aspect represents a huge challenge for FPGA embedded virtual test 
instrumentation and is not discussed in any of the examples found in the literature. 

Another type of generic test instrument is the FPGA-based universal embedded digital 
test instrument presented in [97]. In this case, the FPGA is used not only as an access 
mechanism, but also as a platform for the implementation of low-level DUT native 
protocols, pattern generation, and result analysis functions. The DUT access, pattern 
application and low-level analysis functions are implemented in a generic way 
independently of the test scenario. However, blocks of code representing the DUT native 
protocols and pattern generators have to be manually rewritten, and the parameters that 
define number of pins and size of internal memories have to be properly set depending on 
the DUT. This means that the adaptation to a specific test scenario is carried out during 
the pre-test phase and before the synthesis process takes place. 

The main advantage of generic FPGA test instruments is the simplification of the tasks 
carried out during the pre-test phase. The design and compilation steps are completely 
avoided for FPGA embedded virtual instruments and the design effort for FPGA-based 
universal embedded digital test instruments is reduced. In this way, the design time and 
costs are significantly reduced in comparison to ad-hoc test instruments. 

However, the advantages obtained with generic FPGA test instruments come at a price: 

• They are not a solution optimized for a particular test scenario, which makes it 
impossible to guarantee the execution of tests at-speed. 

• The execution of test and diagnosis operations on the ATE makes it necessary to 
exchange a considerable amount of data through the typically low-speed test 
interface, which leads to long test times. 
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3.2.3 Summary of embedded FPGA test instruments 

Table 3.1 summarizes the principal properties of the two embedded FPGA test 
instruments found in the literature. For comparison purposes, the BScan test technique is 
included in the table. 

 Classical 
Boundary Scan 

Ad-hoc FPGA test 
instruments 

Generic FPGA test 
instruments 

ATE/FPGA function mapping Fixed Flexible Fixed 

ATE/FPGA data exchange Very high Low High 

Function reuse Yes No Yes 

Synthesis step No Yes Yes/No 

FPGA designers No Yes Yes/No 

Configuration step No Yes Yes 

Optimized for test scenario No Yes No 

Fault coverage Static Dynamic Dynamic in some cases 

Design time Short Long Short 

Test time Very long Short Long 

Test costs Low High Intermediate/low 

Table 3.1: Properties of boundary scan, ad-hoc and generic FPGA test instruments 

ATE/FPGA function mapping gives an idea of the flexibility to implement test functions 
on the ATE or FPGA. ATE/FPGA data exchange refers to the amount of data that is 
transmitted between the ATE and FPGA. Function reuse shows the possibility to use the 
same embedded test functions for different test scenarios. 

The rows synthesis step and FPGA designers indicate if it is necessary to synthesize the 
test instruments and employ FPGA designers during the pre-test phase. The configuration 
step indicates if it is necessary to configure the FPGA. The remaining properties indicate 
if the test instrument is optimized for the specific test scenario, and they give an idea of 
the test quality metrics achievable and relative test costs. 

3.3 ROBSY approach 

The main idea of the Reconfigurable On-Board test SYstem (ROBSY) is to group the 
main advantages of ad-hoc and generic FPGA test instruments into a single solution. For 
this purpose, it is necessary to develop a tailored and specialized FBTS keeping the 
design effort as low as possible. In order to implement such a test system, the ROBSY 
approach focuses on three main aspects: 

• Flexible mapping of test functionality either at the FPGA or ATE side. 
• Customization of FBTS. 
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• Automatic design, evaluation, and implementation mechanism. 

The flexibility improves the adaptability of the test system to different test scenarios and 
allows the execution of tests at-speed and reduction of the amount of data exchanged 
between the ATE and FBTS. The latter is very important for the reduction of the test time 
because test interfaces such as JTAG are typically the bottleneck of the test process [56]. 

The customization provides the option to tailor the FBTS for the specific test scenario, 
fine-tuning the resource usage and execution speed. In this way, it is possible to fulfill 
strict test requirements, and improve the test coverage in comparison to generic FPGA 
test instruments and BScan. 

The support for automation hides the design and implementation details from the test 
engineer, reducing the design complexity, design time, design errors, and test costs. This 
makes it unnecessary to have test engineers with FPGA design skills during the FBTS 
development process, but EDA tools and the corresponding software licenses are still 
required. This means that the development costs remain higher compared to pre-
developed generic FPGA test instruments. 

Table 3.2 shows a comparison of the ROBSY approach to ad-hoc and generic FPGA test 
instruments. 

 ROBSY Ad-hoc FPGA test 
instruments 

Generic FPGA test 
instruments 

ATE/FPGA function mapping Flexible Flexible Fixed 

ATE/FPGA data exchange Low Low High 

Function reuse Yes No Yes 

Synthesis step Yes Yes Yes/No 

FPGA designers No Yes Yes/No 

Configuration step Yes Yes Yes 

Optimized for test scenario Yes Yes No 

Fault coverage Dynamic Dynamic Dynamic in some cases 

Design time Short Long Short 

Test time Short Short Long 

Test costs Intermediate High Intermediate/Low 

Table 3.2: Properties of the ROBSY approach 

3.3.1 Modeling the test functionality 

In order to automate the design step, enable mapping of test functions in a flexible way, 
and support design reuse, it is necessary to rely on a high-level model that abstracts away 
low-level details of the test system, enabling test engineers without FPGA expertise to 
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take advantage of this approach. This model-based design mechanism is the main reason 
to classify ROBSY as a separate class of embedded FPGA test instruments. 

3.3.1.1 Layer concept 

The core of the model is a layer concept that splits up the complexity of test algorithms 
and DUT native bus protocols in small and independent functions and interfaces [2–4, 
56]. Figure 3.6 illustrates the organization of the layers and interfaces. 
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Figure 3.6: Organization of the layers and interfaces 

Interface 2 (I2) represents the interface between the PCB and the ATE, and interface 1 
(I1) represents the interface between the test system and DUT. I1 is a fixed interface, 
while I2 can be placed between any two layers. For example, the interface configuration 
presented in Figure 3.6 corresponds to all layers implemented in the FPGA, with the ATE 
merely used for the configuration of the FPGA. On the other hand, I2 right above I1 
represents the case in which all layers are implemented in the ATE and the FBTS is only 
used as an access mechanism. This configuration can also represent BScan and some 
configurations of BIAT and embedded FPGA virtual instrumentation. 

The test algorithms and access functions for a specific DUT are described within the five 
layers. Each layer uses the functions supplied by the lower layers and provides its 
functionality to the upper layers. The complexity of the layers ranges from low-level 
functions for accessing the DUT (DUT native bus protocols) to high-level functions for 
control and coordination of test algorithms. 

The DUT access-primitives layer (L1) describes low-level functions responsible for 
access to the DUT within specification. For this purpose, it is necessary to consider the 
DUT native protocols, electrical properties of the DUT I/Os, and the timing properties of 
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the DUT buses. This layer describes the control sequences required to write data to, or 
read data from, a DUT.  

Layers L2 and L3 describe functions related to the test algorithms. The test primitives 
layer (L2) is in charge of the pattern generation and the low-level analysis of test results. 
The latter comprises the comparison of test patterns with test responses and the 
generation of signatures. The exact operations depend exclusively on the test algorithms, 
and they are represented by primitives such as shift, count, rotate, and compare. 

The test sequence layer (L3) is in charge of the test algorithm control flow. It invokes L2 
primitives, and it makes decisions on the next step to execute depending on the results 
delivered by layer L2. Additionally, it provides information to the upper layers about the 
test status and results of the test algorithms. 

Layers L4 and L5 are used for high-level tasks such as managing test algorithms and 
visualizing test results. The coordination layer (L4) is in charge of coordinating the 
execution of all test algorithms used for a given DUT and analyzing results delivered by 
L3. For example, this layer allows the analysis of diagnosis information for the location 
of the faulty interconnection or group of interconnections. Finally, the main control layer 
(L5) is in charge of the initialization of the test process and post-processing of results. 
The latter is required for the proper visualization of test results. 

3.3.1.2 DUT-model 

The test engineer describes the test algorithms and DUT properties in a high-level model, 
which encapsulates the test functions based on the layer concept. The model is known as 
DUT-model (DUT-M). It is used to hide implementation details of the FPGA-based 
design, enable reuse of test functions for different test scenarios, and serve as input to the 
automatic generation process of the test system. 

The DUT-M facilitates the use of the ROBSY approach by test engineers with no deep 
knowledge of FPGA design, therefore reducing design time and costs in comparison to 
ad-hoc test instruments. It is specified using the ROBSY test description language 
(RTDL), which is a programming language developed as part of the ROBSY approach 
and with syntax and semantics very similar to ADA. It is tailored for the ROBSY 
approach, making it possible to generate hardware and software descriptions from the 
DUT-M. Additionally, it can be used as an executable model for verification. 

The DUT-M is divided into three main sections: 

• DUT interface. 
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• Pins properties. 
• Layer procedures. 

The DUT interface describes main properties of the DUT data, address, and control buses 
(I1 of the layer concept). It provides information about the name and direction (in, out, 
bidirectional) of pins belonging to each bus, as well as the default and active values. The 
pins properties describe the electrical properties of the pins (pullup, pulldown, etc.) and 
their location in the netlist of the PCB. 

The layer procedures describe the functionality of layers L1 to L5. L1 describes the 
timing relations of the DUT data, address, and control buses that are required to 
implement the DUT access functions. For this purpose, Difference-Bound-Matrixes and 
action sequences are used to specify the timing behavior of the DUT. More information 
about this subject is found in [98, 99]. 

The L2-L5 procedures are described by means of standard high-level constructs. The 
DUT-M supports local and global variables, whose width is defined explicitly during 
their declaration. Additionally, the declaration of vectors (two dimensional arrays) is 
supported by global variables. 

3.3.2 FBTS architecture 

The FBTS architecture is the central part of the ROBSY approach. It allows the 
implementation of tests functions in the FPGA and the execution of tests at-speed. It is 
based on a processor co-processor structure and is equipped with interfaces to the ATE 
and DUTs [3, 4]. In the following subsections, the structure of the FBTS and the 
relationship between the layer concept and the FBTS architecture is presented. 

3.3.2.1 FBTS domains 

In order to define a proper structure for the FBTS, it is necessary to answer the following 
question: 

• What can be tested at the same time using the ROBSY approach? 

With the goal of providing an answer to this question, Figure 3.7 shows a PCB with an 
FPGA as the central computing element. This PCB configuration corresponds to an ideal 
test scenario for FBT because the FPGA has access to all devices on the PCB based on 
four separate buses. 
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Given that PCB buses are completely independent from each other, it is possible to test 
the interconnections of each bus at the same time. However, the interconnections of 
DUTs belonging to the same bus cannot be tested at the same time. The reason for this is 
the existence of shared interconnections that only allow accessing a single DUT at a time. 
Therefore, the test of separate PCB buses can be carried out in parallel, but the test of the 
interconnections to DUTs belonging to the same bus has to be carried out sequentially. 
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Figure 3.7: FBTS domains 

In order to support this parallelism, the FBTS is divided into independent sub-systems, 
each of them responsible for a single PCB bus. These sub-systems are known as FBTS 
domains, and they work independent from each other. In Figure 3.7, four FBTS domains 
are shown. 

In addition to the FBTS domains, it is necessary to include a communication 
infrastructure for exchanging information between the ATE and FBTS. The information 
exchange is carried out for each domain and through the physical test interface available 
on the PCB. This does not affect the independent operation of the FBTS domains, but 
requires a communication infrastructure for handling the coordination of all domains. 

3.3.2.2 Main components and processor co-processor interface 

In the ROBSY approach, the two main components of each FBTS domain are the 
processor and co-processor. The processor is a pre-defined programmable component 
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with an instruction set that can execute embedded software routines. The co-processor is a 
hardwired component without an instruction set, which is used to accelerate test 
execution and guarantee the execution of tests at-speed. In this way, each layer 
implemented in the FBTS can be mapped either to the processor or to the co-processor. 

Taking these two components into consideration, a third interface is included in the layer 
concept. This interface represents the hardware/software partition of layer functions 
implemented in the FBTS. In Figure 3.8 this interface is labeled as the processor/co-
processor interface (I3), and in the same way as I2, it can be placed between any two 
layers. The only restriction necessary to maintain the logical organization of the layer 
concept is that I3 must be always located above I1 and below I2. For example, the 
configuration presented in Figure 3.8 shows that layers L1 and L2 are mapped to the co-
processor and implemented in hardware (HW), layers L3 to L5 mapped to the processor 
and implemented in embedded software (ESW). In this configuration, there are no layers 
mapped to the ATE and implemented in software (SW). The ATE is used to configure the 
FPGA only. 
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Figure 3.8: Layer concept with processor co-processor interface 

There is no need for a processor in the FBTS if interfaces I2 and I3 are located between 
the two same layers. In the same way, there is no need for a co-processor in the FBTS if 
I3 is located in the same position as I1. Section 3.4 presents a discussion of the reasons 
why interfaces I2 and I3 or interfaces I1 and I3 should not be located in the same place. 
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3.3.2.3 Architecture example 

The structure in Figure 3.9 is proposed in order to support independent FBTS domains 
and a processor/co-processor pair for implementing layers belonging to a DUT. 

This structure consists of a single processor per domain and a co-processor per DUT. The 
use of a single processor per FBTS domain is sufficient for performing tests of all 
interconnections because only one processor/co-processor pair will be active at the same 
time (Section 3.3.2.1). The example in Figure 3.9 corresponds to domain 3 in Figure 3.7. 
In this case, a single processor and three co-processors are used for testing the 
interconnections to DUT 3, DUT 4, and DUT 5 sequentially. 
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Figure 3.9: Architecture of an FBTS domain 

Figure 3.10 shows the complete PCB and test system. In this case, the FBTS comprises 
three FBTS domains with three processors, each of them connected to one or more co-
processors. Embedded software routines (for the processor) and hardware descriptions 
(for co-processors) are generated based on the corresponding DUT-M. Here, the size of 
the co-processor indicates a different location of I3. DUT 1 and DUT 2 are part of a 
single FBTS domain, even though they are connected to two separate PCB buses. If 
resources are limited, it is possible to combine more than one domain to minimize the 
number of processors that are part of the FBTS. The trade-off is the increase in the test 
time because two separate domains would be tested sequentially. 
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Figure 3.10: Complete FBTS architecture 

3.4 Processor in the FPGA-based test system 

Relying on a processor and ESW to carry out part of the test functions has a direct impact 
on the automation process, test quality, resource utilization, and costs. Whether this 
impact is beneficial for the ROBSY approach or not, and how beneficial it can be, are the 
main research questions that this dissertation answers. In order to start providing an 
answer to these questions, it is necessary to analyze the effects of including a processor as 
part of the FBTS. 

3.4.1 Processor impact 

The use of a processor in any digital system is justified by the flexibility that it provides 
for the implementation or update of functions without making any changes to the 
hardware of the system. This improves the level of reusability of the system for different 
applications and reduces the design and implementation costs [100]. 

In FPGA-based design, including a processor offers the possibility to change system 
functionality without the need to change the hardware descriptions of the system and 
reconfiguring the FPGA. However, these arguments are not strong enough to justify the 
inclusion of a processor in the ROBSY FBTS given that the flexibility provided by 
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FPGAs and the automatic generation capabilities required in ROBSY can substitute the 
flexibility provided by a processor. 

There are five additional arguments that speak in favor of having a processor as part of 
the ROBSY FBTS: 

• A processor represents an efficient mechanism to implement test functions that do 
not need to be executed at high speeds. 

• A processor reduces the amount of data exchanged between ATE and FPGA. 
• A processor provides a standard communication mechanism for controllability 

and observability of test execution. 
• A processor is a pre-verified component that does not need any further verification 

after the FBTS is automatically generated. 
• Debugging of ESW requires less effort than debugging of HW. 

The processor represents an efficient mechanism to implement test functions because it 
uses the same resources to perform arithmetic, logic, and control flow operations. In this 
case, the same arithmetic logic unit (ALU) and registers are used to carry out the 
operations that describe different functions and variables described in the DUT-M. This 
contrasts with the number of resources required to implement the same operations in HW, 
which depends on the binding and allocation strategies used by the hardware compiler. As 
a consequence, the processor guarantees that the test functions implemented in ESW use a 
relatively constant and predictable number of resources independently of the amount and 
complexity of the test functions. 

By having the possibility to implement test functions in the FBTS efficiently, it is 
possible to move more test functions from the ATE side to the FPGA side. This reduces 
the amount of data that has to be transferred through the test interface because it is not 
necessary anymore to transfer complete patterns and test responses, but just short 
commands to control the test execution and receive information about the test status. As a 
consequence, the test time is reduced given that the test interface is typically the 
bottleneck of embedded test approaches. 

Independent of the test functionality implemented in the FBTS, the processor provides the 
same standard communication mechanism from the point of view of the ATE. This 
mechanism is also independent of the FPGA and relies on the processor debug-interface. 
The debug-interface offers all the advantages of PBT to the ROBSY approach, making it 
possible to stop the processor, write to or read from memory and I/Os, set breakpoints, 
execute single steps, and trace code. 
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The processor is a component developed before the automatic generation process of the 
FBTS takes place. This means that the verification of its functionality is carried out by the 
processor designers during the development of the ROBSY approach and not in the field 
by test engineers. 

Finally, debugging of ESW requires less effort than debugging of HW. The execution of 
ESW can be performed in a stepwise manner, which allows the observation of the 
processor status after the execution of each instruction. This is performed based on the 
processor debug-interface, which is used to control the execution flow. In the case of 
hardware debugging, multiple modules running in parallel have to be observed and 
control at the same time. This requires complex debugging mechanisms such as logic 
analyzers and the definition of hardware events. In addition, it requires a deep knowledge 
of the structure of the FBTS, which goes against one of the goals of ROBSY: hiding 
implementation details from the test engineer. 

But there are arguments that also speak against the use of a processor: 

• Successful built-in self-test (BIST) [17] approaches do not use processors for the 
implementation of embedded test functions. 

• The execution of test functions by a processor takes a longer time than the 
execution of test functions by a hardwired unit. 

• A processor does not guarantee the execution of tests at-speed. 
• Processor instructions that are not used during test execution represent a non-

optimal use of resources. 

The arguments against the inclusion of a processor make it questionable if a processor is 
really necessary for the execution of embedded test functions in the ROBSY approach. 
They leave as the only alternative the implementation of the embedded test functionality 
by means of special hardwired units as is the case of BIST. However, the implementation 
of embedded test functions by means of special hardwired units is not necessary in all 
cases, and there are mechanisms that can be used to reduce the negative effect that the 
processor could have on test time and non-optimal use of resources. 

The implementation of the higher layers does not have a significant influence on the 
fulfillment of critical test requirements such as dynamic fault coverage and test time. 
Therefore, the implementation of these layers in HW does not provide any advantage in 
terms of test execution time, resource utilization, and test coverage. 

An alternative would be to implement the layers that have a minor impact in the 
fulfillment of test requirements on the ATE side. However, this would cause an increase 
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in the communication overhead between the FBTS and the ATE, which translates to 
longer test times. Therefore, the processor presents a very good alternative to implement 
non critical layers in the FBTS and reduce the communication overhead between the 
FBTS and ATE. 

Additionally, BIST techniques are used for testing the ICs in which the BIST circuitry is 
implemented. This means that there is no guarantee that the BIST circuitry is free of 
faults, and therefore it is necessary to use basic and small circuitry that can be self-tested. 
In the case of ROBSY, the FPGA is considered to be already tested and fault free, which 
makes it possible to include complex components as processors that do not have to be 
self-tested. 

There is no doubt that the execution of test functions in ESW takes longer than the 
execution of test functions in specialized hardware units such as co-processors. In the 
processor, test functions are translated to instructions executed in sequential order, in 
which each instruction requires multiple clock cycles for fetching, decoding, and 
executing. However, the specialization of the processor for testing purposes is a 
mechanism that can be used to reduce the time spent in the execution of ESW. 

Concerning the execution of tests at-speed, it is necessary to include co-processors for 
this purpose because it is the only possible way to guarantee the fulfillment of strict 
timing requirements of the DUTs. The non-optimal use of resources due to processor 
functions not used during test execution can be avoided by implementing mechanisms in 
the processor that allow its adaptation to the specific test scenario. 

Certainly, it is necessary to execute experiments in order to evaluate the arguments 
presented in this section. For this purpose, Chapter 7 presents different experiments 
carried out with the ROBSY test system. Sections 3.4.2 to 3.4.6 present an analysis of the 
layers that are more suitable for the FBTS and the implementation in ESW, as well as the 
possible location of the interfaces I1, I2, and I3. 

3.4.2 Analysis of L1 

In the ROBSY approach test resources are located at one side of the interconnections 
(FPGA side), which means, that it is necessary to make use of the functionality and 
access mechanisms provided by the DUT to carry out the test. This is the same case of 
cluster testing in BScan [16], in which non-BScan compliant DUTs are addressed during 
the test execution at one side of the interconnections. 
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In the ROBSY approach, it is necessary to include a DUT controller as part of the FBTS, 
which might be implemented either as ESW running on the processor or as a hardwired 
unit that is part of the co-processor. In order to analyze both implementation options, this 
section is divided into two parts. The first part presents DUTs typically connected to an 
FPGA, and the second part analyzes the implementation of L1 in ESW or HW. 

3.4.2.1 Devices under test 

Table 3.3 presents DUTs typically connected to an FPGA. The DUTs presented in the 
table range in complexity from basic devices such as push buttons (Button PTS645) and 
single digit displays (HDSM-281x) to complex devices such as Ethernet transceivers 
(PHY 88E1111) or video decoders (ADV7180). They are classified into three main 
classes based on the theoretical capability of BScan to test their interconnections: 

• At-speed (BScan tests at the maximum DUT operation frequency). 
• Yes (BScan tests below the maximum DUT operation frequency). 
• No (BScan tests outside the DUT specification). 

The DUT classification is based on a TCK frequency of 20 MHz and a BScan chain with 
394 cells. For these values, the test application speed of BScan using Equations (2.2) and 
(2.3) is 49 kHz1 and the maximum clock frequency achieved with BScan, which is the 
half of the test application speed, is 24.5 kHz. Both values are used in order to map DUTs 
into one of the groups. For synchronous DUTs, maximum clock frequency achieved with 
BScan is used. 

The first column in Table 3.3 is the name of the DUT. The second column shows the 
number and type of interfaces of each DUT. A device interface represents a group of pins 
used to exchange data with the FPGA. DI1 and DI2 indicate the presence of different 
interfaces (different groups of pins) in the same DUT, while the postfix is used to 
differentiate between working modes or protocols supported by the same interface. For 
instance, the audio codec WM8731 has two interfaces, DI1 and DI2. DI1 is used for 
initialization and configuration purposes and it supports either the SPI or I2C protocol. 
On the other hand, DI2 is used to exchange audio information between the FPGA and 
DUT, and it supports I2S as the single communication protocol. 

The third column represents the device class, which groups the DUT in one of the classes. 
Simple DUTs working at low frequencies such as pushbuttons and LEDs can be tested 
with BScan at their maximum operation frequency, while devices with higher operation 
frequencies cannot be tested at their maximum operation frequency or even within their 
                                                 
1 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 = 394+7+6

20∙106𝐻𝐻𝐻𝐻
= 20.35𝜇𝜇𝜇𝜇  𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 = 1

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
≈ 49𝑘𝑘𝑘𝑘𝑘𝑘  𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐𝑐 =   𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎

2
≈ 24.5𝑘𝑘𝑘𝑘𝑘𝑘 
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specification. The fourth column shows the direction of the data flow from the point of 
view of the FPGA. The keywords In and Out represent unidirectional ports and the I/O 
keyword represents unidirectional ports with data flowing in both directions. 
Bidirectional ports are represented by the keyword Bidir. 

The interface type and protocol column shows if the corresponding interface is a parallel 
or serial interface and the protocol supported. The common bus column shows if there are 
common interconnections for transmission of control, address, and data values. In this 
case, a typical common bus is a serial interface. 

The clock source column shows if the corresponding DUT works in a synchronous or 
asynchronous way. A hyphen in this column represents an asynchronous DUT without an 
explicit clock source (e.g. SRAM IS61WV102416) or that the synchronization 
information is implicit in the data stream (e.g. Image sensor Viimagic 9221 in 
asynchronous working mode). For synchronous DUTs, the In and Out keywords provide 
information about the clock direction from the point of view of the FPGA. In indicates 
that the clock source comes from the DUT, while Out indicates that it comes from FPGA. 

3.4.2.2 Analysis 

L1 is a critical layer for the execution of tests at-speed because it defines the access rate 
to the DUTs, and consequently the coverage in terms of dynamic faults. The analysis of 
Table 3.3 leads to the following conclusions: 

• The implementation of the DUT controller in ESW might be sufficient to perform 
tests at-speed for DUTs that are part of the at-speed BScan test class. In this case, 
the access operations are very simple, maximum operation frequencies are located 
in the kHz range, and there is no need for special hardware to meet critical timing 
requirements. A soft-core processor working in the MHz range (typical for 
FPGAs) has enough processing power to emulate the DUT bus protocol, react to 
incoming signals (e.g. PS/2 interface clock), and execute functions of the upper 
layers. However, these DUTs does not represent the main application field of 
FBT, given that they can be fully tested using BScan. 

• The implementation of the DUT controller in ESW does not guarantee the 
execution of tests at-speed for DUTs that are part of the other two classes. It might 
not be even possible to implement access functions in ESW for some of these 
DUTs because their operation frequencies are located in the MHz range (image 
sensor and DRAMs) or are restricted to specific values (video decoder and 
Ethernet PHY). 
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Device under test Device 
interface BScan test Operation 

frequency(MHz) 
Ports 

direction 
Interface 

type 
Interface 
protocol 

Common 
bus 

Clock 
source 

Button PTS645 [101] DI1 At-speed - In Parallel - No - 
1-digit display HDSM-281x [102] DI1 At-speed - Out Parallel - No - 
Mouse/keyboard interface [103] DI1 At-speed 0.010-0.016 In Serial PS/2 Yes In 
I/O expander TCA9535 [104] DI1 Yes 0-0.4 Bidir Serial I2C/SMB +Int. Yes Out 
Temperature sensor Max6682 [105] DI1 Yes 0-5 In Serial SPI No Out 
Gyroscope ADIS16266 [106] DI1 Yes 0.01-2.50 I/O Serial SPI +Int. Yes Out 
LCD module CFAH1602B [107] DI1 Yes 0-2 Bidir Parallel Register based Yes - 

SDcard interface v2 [108] DI1.sd Yes 0-50 Bidir Serial/Parallel SD mode Yes Out 
DI1.spi Yes 0-50 I/O Serial SPI Yes Out 

SRAM IS61WV102416 [109] DI1 Yes 0-100 Bidir Parallel SRAM No - 
SSRAM IS61NVP102418 [110] DI1 Yes 0-250 Bidir Parallel SSRAM No Out 
EEPROM 24LC32 [111] DI1 Yes 0-0.4 Bidir Serial I2C Yes Out 
FLASH S29GL032N [112] DI1 Yes 0-11 Bidir Parallel NOR FLASH Yes - 
FLASH NAND01G [113] DI1 Yes 0-66 Bidir Parallel NAND FLASH Yes - 

Audio codec WM8731 [114] 
DI1.spi Yes 0-12.5 Out Serial SPI Yes Out 
DI1.i2c Yes 0-0.52 Bidir Serial I2C Yes Out 

DI2.audio No 12-20 I/O Serial Audio (I2S) No In/Out 

Video decoder ADV7180 [115] DI1.i2c Yes 0-0.4 Bidir Serial I2C+Int. Yes Out 
DI2.pixel No 27 In Parallel Pixel stream No In 

Image sensor Viimagic 9221 [116] DI1.spi Yes 0-25 I/O Serial SPI Yes Out 
DI2.pixel No 450 I/O Serial LVDS No In/- 

Ethernet PHY 88E1111 [117] 
DI1.mdio Yes 0-8.3 Bidir Serial MDIO +Int. Yes Out 
DI2.GMII No 2.5,25,125 I/O Parallel GMII No In/Out 

DI2.SGMII No 625 I/O Serial SGMII(LVDS) Optional In/Out 
Triple video DAC ADV7123 [118] DI1 No 0.5-240 Out Parallel Data stream No Out 
SDR-SDRAM 42S16320B [119] DI1 No 5-166 Bidir Parallel SDR-SDRAM Yes Out 
DDR-SDRAM P3R1GE3JGF [120] DI1 No 125-400 Bidir Parallel DDR-SDRAM Yes Out 

Table 3.3: DUTs directly connected to FPGA 

Abbreviations: DI: Device interface. PS/2: Personal system/2. I2C: Inter-integrated circuit. SMB: System management bus. Int.: Interrupt. SPI: Serial peripheral interface. Bidir: 
bidirectional. SD: Secure digital. I/O: in/out. I2S: Integrated interchip sound. LVDS: Low-voltage differential signaling. MDIO: Management data I/O. GMII: 
Gigabit media-independent interface. SGMII: Serial GMII. SDR: single data rate. DDR: double data rate. 
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• It is necessary to include special hardwired blocks in order to support high-speed 
data streams (triple video DAC, SD card, image sensor) and proper hardwired 
interfaces for LVDS channels and DDR data transfers. These features cannot be 
supported using SW or ESW routines. 

As can be seen, the implementation of L1 functions in ESW does not guarantee the 
execution of tests at-speed, and in some cases, it does not guarantee the execution of any 
test at all. The only proper way to ensure the execution of tests at-speed is by 
implementing the L1 functions in HW based on the co-processors of the FBTS. 

3.4.3 Analysis of L2 

The implementation of L2 in the FBTS corresponds to the inclusion of pattern generation 
and analysis functions in the FPGA. Patterns are generated by performing a set of 
arithmetic and logic operations during the test execution or are defined before the test is 
executed. Based on the classification proposed in [17], patterns used in the ROBSY 
approach are defined as follows: 

• Algorithmic test patterns: They are developed to detect specific fault models and 
are generated using a sequence of arithmetic and logic operations. They have a 
short length that grows at a linear or algorithmic rate depending on the number of 
interconnections. Examples of algorithmic test sequences are walking one and zero, 
modified counting, true/complement, interleaved true/complement counting, and 
maximum aggressor fault model sequences [16, 22, 41]. 

• Pseudo-random test patterns: They are characterized by having properties similar 
to those of random patterns but are composed of repeatable sequences. They are 
generated using shifting and XOR operations and implemented using linear 
feedback shift registers (LFSRs). 

• Exhaustive/pseudo-exhaustive test patterns: They produce every possible 
combination of values (exhaustive) or a sub-set of combinations (pseudo-
exhaustive). These patterns can be generated by counters. 

• Deterministic test patterns: They are defined before the test execution given that 
they cannot be easily obtained in an algorithmic way. They are developed to target 
a specific set of faults or considering the operating properties of the DUT. They 
have to be loaded into the FPGA and stored in some kind of memory. 

Algorithmic test patterns are strongly used for interconnection testing, with walking 
one/zero and true/complement counting sequences being the most popular ones due to the 
fault coverage values that can be obtained with a small set of patterns [9, 25]. For the 
detection and diagnosis of dynamic faults, walking sequences, interleaved 
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true/complement sequences, and maximum aggressor fault model sequences are usually 
used [22, 23, 41, 121]. On the other hand, pseudo-random, exhaustive, and pseudo-
exhaustive patterns are a good alternative when algorithmic test patterns are not sufficient 
to fulfill the test requirements. If a large amount of patterns is required to exercise the 
DUT, then the use of pseudo-random and pseudo-exhaustive patterns is a good alternative. 

In the ROBSY approach, the use of these patterns depends on the properties of the specific 
DUT and the required fault coverage and diagnosis resolution. In the first case, they can be 
used only if the correct operation of the DUT or PCB is not compromised. A good example 
is the utilization of patterns that unintentionally misconfigure the DUT pins or change the 
behavior of the DUT. As seen in Table 3.3, DUTs that can be tested based on this type of 
patterns are mainly parallel memories (SRAM, SSRAM, SDRAM, EEPROM, FLASH), 
communication devices (data interface of PHY device), and basic devices (I/O expander, 
SDcard interface, and digital to analog converters). If the fault coverage and diagnosis 
resolution obtained is still not good enough, then deterministic patterns can be added to the 
pattern set. 

On the other hand, if the DUT is very sensitive to pattern values, then deterministic 
patterns are the only alternative. This is necessary, for example, for testing 
interconnections of DUT interfaces used for configuration purposes, such as the interface 
DI1 of the gyroscope, audio codec, video decoder, image sensor, and PHY devices. In the 
same way, deterministic patterns are required for in-system programming of FLASH 
memories, and for testing the DI2 interconnections of the audio codec and image sensor. 

In cases that the acquisition of test responses from the DUT is possible, pattern analysis 
functions are required. In the ROBSY approach, these functions are known as: 

• Equality comparison: Test responses are compared to the expected values. 
• Signature analysis: Test responses are compacted in a final signature, which is 

compared to the expected signature. This solution is commonly implemented using 
LFSRs and minimizes storage and computation requirements. 

Equality comparison is the pattern analysis method most commonly used during the test 
execution. In this case, a test response is compared with an expected value, which is either 
generated based on pattern generation methods or stored in memory. If the obtained value 
is not the expected one, an error flag is set in order to stop the test execution or for further 
diagnostics purposes. On the other hand, the signature analysis is used to compact test 
responses into a single signature, which is compared with the expected one at the end of 
the test execution. 
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Mapping L2 and upper layers in the processor or co-processor of the FBTS does not affect 
the test coverage for dynamic faults if L1 is able to apply test patterns and acquire test 
responses at-speed. For this purpose, it is necessary to generate the test patterns and 
analyze test responses at the rate needed, or it is necessary to include mechanisms for the 
accumulation of test patterns and test responses between L1 and L2. It is very difficult to 
guarantee a specific rate for pattern generation and analysis if L2 functions are 
implemented in ESW. On the other hand, accumulation mechanisms between L1 and L2 
represent a good alternative for the execution of tests at-speed regardless of the 
implementation mechanism of layers L2 to L5. 

To summarize, implementing L2 functions in the FBTS involves typical pattern generation 
sequences, the storage of deterministic patterns, and comparison and compaction 
operations for the analysis of the test responses. If proper measures are taken, mapping 
these functions in the processor or co-processor does not affect fault coverage metrics. 
However, it will affect test time and resource utilization. 

3.4.4 Analysis of L3 

The implementation of L3 in the FBTS requires control flow operations such as branches 
and loops, which are used to describe the sequence of control steps presented in each test 
algorithm. Control flow operations can be implemented in HW by means of finite state 
machines and extra logic used to trigger state transitions. Alternatively, these operations 
can be realized in ESW, using control flow instructions such as unconditional and 
conditional branches. 

If proper mechanisms between L1 and L2 are used to guarantee the execution of tests at 
speed, mapping L3 functions in ESW does not affect fault coverage metrics. In the same 
way as L2, it will affect test time and resource utilization. 

3.4.5 Analysis of L4 and L5 

Layers L4 and L5 are used for high level tasks related to a DUT. The functions involved 
are mainly the coordination of multiple test algorithms, diagnostics operations, test 
initialization, and post-processing of test results for visualization purposes. 

L4 can be implemented in the FBTS using the same mechanism as L3 (finite state 
machines and control flow instructions). However, it is necessary to make use of arithmetic 
and logic operations to perform the look-up process in fault dictionaries, if the diagnosis 
involves the utilization of fault dictionaries. 
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The processor data memory can be used to store fault dictionaries, load and store 
operations to access the signatures in the fault dictionaries, and comparison instructions to 
analyze the signatures. In the case of co-processors, it is necessary to include memory 
blocks as part of the co-processor in order to support the utilization of fault dictionaries. 

On the other hand, L5 has to be implemented on the ATE side. This is the only way to 
provide test engineers with basic control over the test execution and an appropriate 
visualization of test results (e.g. location of faults in PCB layout). 

Layers L4 and L5 do not require any special test-related operations for their 
implementation. Control flow structures, load and store operations, and conventional 
arithmetic and logic operations are sufficient for their implementation. They have influence 
on test time and resource utilization, but they do not have any influence on the achievable 
test coverage. 

3.4.6 Analysis of interfaces I1, I2 and I3 

I1 represents the physical interface of the FPGA to the DUT. This interface is strongly 
coupled with L1, and cannot change its position. It comprises the pins and resources 
required to link the FBTS to the PCB interconnections, and it has to be implemented using 
FPGA I/O blocks. 

Interfaces I2 and I3 can change their position. This has a significant impact on the test 
system because it defines how test functions are mapped in the FBTS and ATE. As a 
consequence, the position might affect the type and amount of information exchanged 
between the processor and co-processor and FBTS and ATE. I2 includes the ATE interface 
controller, the test interface of the PCB (e.g. JTAG), the communication infrastructure of 
the FBTS, and the debug-interface. This interface has to provide an efficient mechanism 
for the controllability and observability of the test execution. I3 represents the 
communication link between processor and co-processor, which can be implemented as a 
loosely- or a tightly-coupled system. In a loosely-coupled system the co-processor is 
completely independent of the processor, and in a tightly-coupled system, the co-processor 
is encapsulated as part of the processor. 

The implementation of I3 as a loosely-coupled system is based on a system bus, in which 
every co-processor is mapped in the processor I/O address space. On the other hand, the 
implementation of I3 as a tightly-coupled system is based on specialized instructions to 
access the co-processor, which means that the co-processor is part of the processor data-
path. Both approaches have already been investigated [122], and it was shown that loosely-
coupled systems are more suitable for FPGAs. Therefore, the implementation of I3 as a 
loosely-coupled system is the preferred option for the ROBSY approach. 
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There are 21 possible layer partitions depending on the location of interfaces I2 and I3. 
They are obtained by placing I2 in the same location or above I3: 

• 6 partitions when I3 is located below L1. 
• 5 partitions when I3 is located between L1 and L2. 
• 4 partitions when I3 is located between L2 and L3. 
• 3 partitions when I3 is located between L3 and L4. 
• 2 partitions when I3 is located between L4 and L5. 
• 1 partition when I3 is located above L5. 

However, the partitions are reduced to 10 if the constraints presented in sections 3.4.2 to 
3.4.6 are considered (L5 implemented on the ATE and L1 in the co-processor). In this 
case, the 10 partitions are: 

• 4 partitions when I3 is located between L1 and L2. 
• 3 partitions when I3 is located between L2 and L3. 
• 2 partitions when I3 is located between L3 and L4. 
• 1 partition when I3 is located between L4 and L5. 

Moreover, if the processor should at least carry out the functions of one of the layers, the 
number of partitions is reduced to 6 because I3 cannot be placed in the same location of I2. 
Figure 3.11 shows the 6 possible partitions. 
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Figure 3.11 ROBSY layer partitions 

In this dissertation, the processor is always part of the FBTS and L5 and L1 are always 
implemented on the ATE and co-processor, respectively. 
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3.5 Summary 

In this section a new FPGA test instrumentation class known as ROBSY was presented. It 
differs from ad-hoc and generic FPGA test instrument classes in three main features: 

• Automatic generation of the FBTS based on DUT-Ms. 
• Implementation of test functions in FBTS or ATE based on a layer concept. 
• FBTS architecture composed of loosely-coupled processor co-processor pairs 

organized in domains. 

Co-processors are dedicated computation engines tailored to accelerate parts of the test 
execution. They are hardwired modules composed of data and control-paths whose 
hardware description is automatically generated during the development of the FBTS. 
They should be used at least for the implement of L1 in order to guarantee the execution of 
tests at-speed. 

It was demonstrated that the inclusion of a processor as part of the FBTS is an alternative 
worth considering. The processor is a pre-designed component that is part of the FBTS that 
can be used for the execution of layers L2-L4 functions and the communication to the 
ATE. The implementation of layers in ESW does not affect the execution of tests at-speed, 
and therefore it does not compromise the coverage of dynamic faults. Implementing these 
layers in ESW influences the resource utilization of the FPGA and the test execution time. 

From the design and automatic generation point of view, it is a ready-to-use component 
that uses a relatively constant and predictable amount of resources and does not require 
verification of its correct operation after the FBTS is automatically generated. However, 
executing test functions in ESW requires reserving FPGA resources for the processor and 
can degrade the test time due to the overhead of instruction cycles, making the fulfillment 
of strict requirements related to the utilization of resources and test execution time a 
concern. Therefore, it is necessary to: 

• Add adaptation mechanisms to the processor that are transparent to the test 
engineer. 

• Include proper support for the communication to the ATE and co-processor. 
• Evaluate the implementation of the layers in ESW for different test scenarios. 
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4 Concept of the ROBSY processor 

4.1 Introduction 

Chapter 3 presented a discussion about the impact of including a processor as part of the 
FBTS. Part of this discussion was centered on the layer concept, defining the layers that 
can be implemented in ESW, and the support that a processor offers to interfaces I2 and 
I3. It was shown that the processor represents a promising alternative for the 
implementation of the following functions: 

• I2 and I3 interfaces. 
o Information exchange with co-processors. 
o Information exchange with the ATE. 

• L2-L4 layers. 
o Pattern generation and analysis. 
o Control flow of test algorithms and diagnosis. 
o Coordination of test algorithms. 

Furthermore, it was shown that adaptation plays an important role in the ROBSY 
approach. Finely tuning the processor to the specific test scenario leads to an efficient 
usage of FPGA resources and improves test time. This chapter presents the concept of the 
ROBSY processor, which is based on three main pillars: 

• Analysis of general design aspects. 
• Processor specialization for testing. 
• Processor adaptation mechanism. 

Section 4.2 presents general design aspects of the processor, including the definition of 
processor requirements, analysis of processors available in the literature, and main design 
decisions. Section 4.3 presents the specialization options considering the test application 
field, test operations, and interfaces I2 and I3. Finally, Section 4.4 presents a discussion 
of the adaptation mechanism supported by the ROBSY processor. 

4.2 General design aspects 

The definition of the ROBSY processor requirements is presented at the beginning of this 
section. Based on these requirements, processors found in the literature (Section 2.4) are 
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analyzed as potential candidates for the FBTS. At the end of this section, a discussion 
about fundamental design decisions is presented. 

4.2.1 ROBSY processor requirements 

Before starting with the design of the ROBSY processor, it is necessary to define its main 
functional and non-functional requirements. The former describe the functionality that the 
processor should provide to the ROBSY test system, while the latter describe attributes of 
the processor more related to performance and implementation costs. 

The main functional requirements are: 

i. The processor should have an instruction set that allows the execution of test 
functions related to layers L2, L3, and L4. 

ii. The processor should be equipped with an interface to the ATE. This interface 
should provide the option to control and observe program execution and exchange 
data. 

iii. The processor should be equipped with an interface to the co-processors. This 
interface should scale well and allow the attachment and management of co-
processors in a simple way. 

Requirement (i) defines the processor as an instruction programmable machine capable of 
fetching, decoding, and executing instructions. Requirements (ii) and (iii) are necessary 
for communication to the ATE and co-processors. In the first case, a standard test 
interface that provides the option to connect multiple processors should be considered. In 
the second case, an on-chip bus used as communication channel to exchange information 
between processor and co-processors should be considered. 

The main non-functional requirements of the processor are: 

i. The processor should be able to adapt to the specific test scenario. This means, 
adapting the functionality, resources, and performance depending on the FPGA, 
DUTs, and test quality metrics. 

ii. It should be designed for the implementation in FPGAs. 
iii. The hardware description should be portable to FPGAs from different families 

and vendors in order to support a wider range of test scenarios. 
iv. The processor should be designed considering test time as the main test quality 

metric and with the aim of achieving efficient resource utilization. 
v. There are no requirements concerning energy consumption or security issues. 
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Non-functional requirement (i) basically highlights the importance of adapting the 
processor to the specific test scenario. This includes adaptation mechanisms that allow 
tuning the processor to the layers implemented in ESW, DUT properties, available FPGA, 
and test requirements. The adaptation also includes the processor specialization for 
testing. This means equipping the processor with special test instructions and avoiding the 
implementation of functions that are not required during test execution. 

Requirement (ii) implies that design decisions have to consider the FPGA as the target 
platform. This means that the processor is implemented by means of look-up tables, flip 
flops, memory blocks, multipliers, etc. Furthermore, the processor has to be completely 
encapsulated in the FPGA. This means that it is not possible to use external components 
(e.g. memories) placed on the PCB because there is no guarantee that the interconnections 
to external components are defect free. 

Requirement (iii) guarantees the use of the ROBSY approach in a wide range of PCBs. 
FPGAs from different families and vendors are equipped with diverse hardware blocks 
that do not necessarily share the same properties. Additionally, synthesis is carried out 
based on different synthesis tools. 

Requirement (iv) shows that test time and resource utilization are the main metrics that 
can be influenced with the processor. The program execution time of a processor is 
known as CPU time, and is approximated to [123]: 

 𝐶𝐶𝐶𝐶𝐶𝐶_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (4.1) 

Equation (4.1) shows that the number of instructions (instruction count), clock period 
(clock cycle time), and clock cycles per instruction (CPI) have a direct influence on CPU 
time. The three values are not independent, and in most cases improving one of them 
leads to the deterioration of the other two [123]. Therefore, it is always necessary to find a 
balance between them. 

On the other hand, the resource utilization defines the number of processors and FBTS 
domains that can be implemented in a given FPGA. An efficient resource utilization of 
the processor provides the option to implement more functions in the FPGA. 

Finally, there are no requirements (v) concerning energy consumption and security. It is 
assumed that these requirements are not critical during the PCB manufacturing test. 
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4.2.2 Analysis of pre-designed processors 

One of the first decisions to make when including a processor as part of any digital 
system is whether to use a pre-designed processor or develop a new one. This issue is also 
considered in the ROBSY approach, and requires the analysis of processors available in 
the literature based on the requirements presented in section 4.2.1. 

Section 2.4 introduced popular soft-core processors and specialized test processors that 
are found in the literature. Sections 4.2.2.1 and 4.2.2.2 present an analysis of the use of 
these processors as part of the ROBSY approach. 

4.2.2.1 Analysis of soft-core processors 

The utilization of proprietary soft core processors in the ROBSY approach was discarded 
from the very beginning. These processors would limit the scope of ROBSY to FPGAs of 
a specific family or vendor and would increase nonrecurring costs due to license fees. 

Open-source soft-core processors require a more detailed analysis. They do not increase 
nonrecurring costs due to license fees and provide the option to edit the source code either 
for portability to different FPGAs or for customization of the processor. For the analysis, 
they are divided into two groups of processors: 

• High-end processors. 
• Low-end processors. 

The Plasma, Leon 3, aeMB, Amber, OpenRisc 1200, and Mico32 processors are part of 
the high-end class. They are used in a wide range of applications characterized by high 
performance and functional requirements. These processors are equipped with 32-bit data 
and instruction buses, a large amount of registers, configurability based on the activation 
or deactivation of modules, and features for supporting operating systems. However, 
high-end processors do not represent a good alternative for the ROBSY approach. They 
are over-featured for testing purposes and their ISA does not provide the required 
adaptability. 

Floating point units, memory management and protection units, and different execution 
modes are not necessary for testing, and therefore have a negative impact on the resource 
utilization of the FBTS. If a test scenario requires the implementation of FBTS with 
several domains, the instantiation of multiple high-end processors would be only possible 
in high-capacity FPGAs. Therefore, the field of applicability of the ROBSY approach 
would decrease. 
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In the same way, the adaptability provided by these processors is limited. Adaptation 
mechanisms with a high impact on the resource utilization are not supported. These high-
impact mechanisms allow the configuration of the number of bits used for the data bus, 
instructions, memories, and I/O addressing. As a consequence, it would be not possible to 
make an efficient use of resources in test scenarios of low complexity. 

The T48, Copyblaze, Mico8, and Proteus processors are part of the low-end class. They 
have a simpler ISA with instructions coded using a low number of bits (8x, 16, 18), short 
data bus widths (8, 16), low number of registers, and no operating system support. They 
are exclusively conceived to execute simple tasks that do not require much memory and 
data processing capabilities. 

The low flexibility of the T48, Copylaze, and Mico8 ISAs does not provide the 
adaptability required for the ROBSY approach. The ISA of the Proteus provides greater 
flexibility, making it possible to work with two data width configurations (8 or 16-bit). 
However, the limited number of bits available to code an instruction restricts the number 
of available registers, the range of immediate values, and the depth of the program 
memory. This limits the memory capacity of the processor to store code and data, and 
therefore would limit the implementation of layer functions in ESW. 

To conclude, high-end and low-end general soft-core processors are characterized by 
standard ISAs equipped with features that are not necessary for ROBSY or that do not 
provide enough adaptability. Additionally, the specialization for testing purposes is not 
provided in any of the two cases. This would impact test time and resource utilization, 
making their use in the ROBSY approach unsuitable. 

4.2.2.2 Analysis of test processors 

From the test processors presented in Section 2.4, the programmable test processors are 
the only ones relevant for this dissertation. Hardwired test processors are more related to 
the co-processors and are not further analyzed. 

The relevant features for the ROBSY approach of the processor concept used for SoC test 
[19, 81–86] are: 

• 16-bit RISC with fixed ISA. 
• Four processor versions for adaptation purposes. 
• Scan-path test and fast pattern comparison. 
• I/O ports used as communication mechanism to ATE. 
• Self-test and on-line test support. 
• Pattern generation and analysis based on LFSRs and MISRs. 
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The first five features are not of any interest to the ROBSY approach. A processor with a 
fixed ISA and an adaptation mechanism that relies on four processor versions is not 
appropriate for ROBSY because the obtained flexibility is very limited. A special I/O 
scan-path controller with fast pattern comparison does not have any use in ROBSY. Scan-
path tests are not carried out at the board level and the utilization of a fast pattern 
comparison approach requires special test components (reflectors) at the other end of the 
PCB interconnections. Including special components in the PCB for testing purposes is 
opposite to the ROBSY approach. 

The use of I/O ports for communication to the ATE does not fulfill the requirements of 
the ROBSY processor. The observability and controllability of the processor from the 
ATE side is critical in the ROBSY approach, and it cannot be obtained based on I/O 
ports. Self-test capabilities are not a requirement in ROBSY because the FPGA is 
assumed to be defect free. In the same way, on-line test capabilities are not necessary. It 
is assumed that the tests are performed in a controlled environment and that they take a 
very short time. Therefore, the probability of transient or intermittent defects is very low. 

On the contrary, the use of pattern generation and analysis mechanisms is an attractive 
feature for ROBSY. This feature can make the implementation of L2 functions in the 
processor more attractive because it reduces complexity and the time required for the 
processor to generate pseudo-random patterns. However, the generation of other type of 
patterns, such as algorithmic and deterministic sequences, should be also considered. 

The test processor for asynchronous circuit testing [87–89] requires an independent 
analysis of the two proposed concepts. The first concept is based on a RISC processor, 
while the second concept is based on a minimalistic processing unit, known as the 
sequencer. The RISC processor has the following features: 

• 16/32-bit RISC processor with 4 pipeline stages. 
• Configurable asynchronous handshake protocols. 
• I/O ports used as communication mechanism to ATE. 
• Standard instruction set for arithmetic, logic, and control operations. 
• Instructions based on complex sequences to generate and apply test patters, and to 

compact and acquire test responses. 

The 32-bit processor version provides more capacity for demanding test scenarios in 
comparison to the processor for SoC test, but this still might lead to non-optima resource 
utilization for test scenarios that do not require large data widths. Besides, the processors 
do not support other adaptation mechanisms. The use of configurable asynchronous 
handshake protocols is not necessary because L1 functions should be implemented by the 
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co-processors. As already mentioned, the use of I/O ports for the communication 
mechanism to the ATE is not appropriate for the ROBSY approach. 

On the other hand, pipelining and a large instruction set for arithmetic, logic, and control 
operations are attractive features for the ROBSY processor. The former improves the CPI, 
while the latter facilitates the implementation of layers L2 to L4 functions in ESW. In the 
same way, specialized instructions to generate and analyze patterns are an attractive 
feature. On the other hand, the use of instructions composed of complex sequences to 
apply and acquire patterns should be further analyzed (Section 4.2.3.2). 

The second test processor developed for asynchronous chip tests is optimized for the 
application of patterns and acquisition of test responses. In this case, the unit with a closer 
relation to the ROBSY processor is the sequencer, which has the following features: 

• Minimalistic architecture with 2 pipeline stages. 
• Limited instruction set with most of the instructions specialized for the 

configuration and control of other units. 
• No pattern generation or analysis instructions. 
• Non-standard communication interface to the ATE. 

The sequencer is not in charge of generating patterns or processing data obtained during 
test execution. Its tasks are mainly the configuration of other units and coordination of 
test execution. The ATE is responsible for off-line pattern generation and the analysis of 
test responses. As a consequence, the functionality provided by the sequencer is very 
limited, and does not fit with the functional requirements of the ROBSY processor. The 
use of a non-standard communication interface to the ATE goes against the ROBSY 
processor requirements. Such an interface cannot be implemented in every PCB because 
it would require the modification of the PCB just for testing purposes. 

To conclude, test-processors found in the literature do not represent good alternatives for 
the ROBSY approach. They are used for testing at the device-level, and therefore are not 
optimized for board-level testing. As a consequence, the design of a test processor that 
fulfills the requirements presented in section 4.2.1 is inevitable. Nevertheless, there are 
some features included in programmable test processors that are considered. These 
features are the use of configuration mechanisms for adaptation purposes, a standard 
instruction set for control flow, arithmetic, and logic operations, specialized instructions 
for pattern generation and analysis, and pipelining. 
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4.2.3 Fundamental design choices 

For the design of the ROBSY processor, it is necessary to discuss fundamental design 
choices. They comprise the design abstraction level, the design philosophy of the 
processor architecture, and technology constraints related to the use of FPGAs as 
implementation platforms. 

4.2.3.1 RTL as design abstraction level 

Today, register transfer level (RTL) is the abstraction level commonly used for the design 
of FPGA-based systems. However, there is another processor design methodology that 
allows working at a higher abstraction level. Its goal is to reduce the design time and 
complexity in comparison to RTL, providing the option to explore different design 
alternatives faster [124, 125]. It uses processor description languages also known as 
architecture description languages (ADLs), which allows the specification of the 
processor behavior and its structure. In this case, depending on the ADL language, it is 
possible to automatically generate the RTL description, as well as the required 
development tools (compiler, assembler, instruction set simulator, and debugger). 

However, working at a higher level of abstraction reduces the control over design 
parameters such as timing, resource utilization, and power consumption. Therefore, a 
decrease in the quality of these values is expected. This is shown in [126, 127], where the 
authors claimed that the RTL descriptions automatically generated from an ADL 
description are often of poor quality. In [128], the authors compare an ADL 
implementation to a handwritten RTL implementation of the same processor, and they 
show that a 20%-30% overhead in area, clock frequency and power consumption is 
obtained with the ADL implementation. Another example corresponds to the test 
processor used for asynchronous chip test (Section 2.4.2). The first two test processor 
versions [87, 88] were developed using the LISA ADL, while the third version [89] was 
developed at the RTL level using the Very High Speed Integrated Circuit Hardware 
Description Language (VHDL). The reason given in [89] for going back to the design at 
the RTL level was the optimization of processor performance. 

The design of an efficient processor in terms of resource utilization and operation speed is 
crucial for the ROBSY processor. Additionally, the automatic generation of a compiler 
based on ADL is not suitable for the ROBSY approach because available ADL tools 
cannot generate a compiler for the RTDL language. For these reasons, the ROBSY 
processor is designed at the RTL level using VHDL. 

At this point it is important to mention that the support for different FPGA families and 
vendors is achieved by using generic synthesizable VHDL constructs that are understood 
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by different synthesis tools. These constructs allow the synthesis tools to infer the proper 
device-specific hardware blocks such as memory blocks [129]. However, there are 
hardware blocks that cannot be inferred, such as JTAG interfaces. In this case, it is 
necessary to include the proper VHDL description depending on the FPGA. 

4.2.3.2 RISC design philosophy 

The reduced instruction set computer (RISC) design philosophy [130, 131] is selected for 
the design of the ROBSY processor. This is the design philosophy followed by most 
processor designers, and it has been adopted even by Intel for the implementation of 
modern x86 processors [132]. 

The RISC design philosophy achieves good performance metrics by means of simple 
instructions executed in few clock cycles at high clock frequencies. This approach is very 
efficient because compilers tend to use simple instructions to synthesize high-level 
constructs. Taking this into consideration, the RISC design principles used for the design 
of the ROBSY processor are: 

• Simple instructions: Simple instructions require few clock cycles for their 
execution. It simplifies the processor design and achieves high clock frequencies 
because the use of microcode or complex instruction decoders is not necessary. 

• Load-store architecture: Dedicated load and store instructions with simple 
addressing modes enable arithmetic and logic instructions to be independent of 
memory or I/O accesses. This simplifies the instruction set and the design of the 
processor control unit, facilitating a fast computation of operand addresses and the 
achievement of high clock frequencies. 

• Large register set: A large register set is necessary to support register-register 
operations. This minimizes the overhead associated with procedure calls and 
provides plenty opportunities for the compiler to optimize the register usage. 

• Fixed length instruction format: Fixed length instructions allow an efficient 
fetching and decoding of instructions, and minimizes the design complexity of the 
processor. 

The main limitation of the RISC design philosophy is the need for more instructions to 
execute the same operations in comparison to processors based on the complex 
instruction set computer (CISC) philosophy. This is translated into the use of more 
memory for the storage of instructions. Fortunately, algorithms used for interconnection 
test are relatively short and do not require large amounts of instruction memory. 
Additionally, this effect is reduced by the use of an efficient compiler. 
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4.2.3.3 FPGA technology constraints 

The design of the ROBSY processor based on the RISC philosophy offers the option to 
exploit design techniques such as pipelining and instruction level parallelism (ILP). 
Pipelining takes advantage of the parallelism that exists among the actions needed to 
execute an instruction, overlapping the execution of instructions. On the other hand, ILP 
represents a group of techniques that exploits the parallelism among instructions. 
Widespread ILP techniques are superscalar and very large instruction word (VLIW) 
techniques [123, 132]. 

The improvement level achieved by using pipelining and ILP techniques is measured in 
terms of the processor CPI or the inverse of CPI, which is a metric known as instructions 
per cycle (IPC) [123]. Pipelining approximates IPC of a scalar processor to one, while 
ILP increases this value above one. 

However, the use of an FPGA as the technology basis for the implementation of the 
FBTS imposes some limitations on the design techniques that can be used efficiently in 
terms of clock frequency and resource utilization. In [131] the authors claimed that 
superscalar or VLIW techniques are not practical for FPGAs. This is due to the FPGA 
limitations for the implementation of multi-port register files, and the low performance 
achieved when the control logic required for out-of-order execution is implemented in an 
FPGA. In more recent investigations [133–135] this radical belief has been changing 
because of the higher capacities of modern FPGAs and the development of new methods 
for an efficient implementation of multiport register files. However, resource utilization is 
still very high in comparison to scalar processors. 

The high resource utilization necessary for ILP techniques goes against the ROBSY 
approach. It limits the amount of processors or FBTS domains that can be implemented in 
an FPGA, and restricts the use of the ROBSY approach to high-capacity FPGAs. 
Therefore, the ROBSY processor is a scalar RISC processor with a single-issue in-order 
microarchitecture and pipelining support. As shown in Section 2.4, this is the 
methodology followed by most soft-core and test processors found in the literature. 

4.3 Processor specialization for testing 

Processor specialization for testing is essential for the ROBSY approach. The goal is to 
improve test time and make an optimal usage of FPGA resources. The former reduces the 
time the PCB spends on the tester, while the latter facilitates fitting the processor in 
FPGAs of low capacity and implementing a multi-domain FBTS. 
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Processor specialization includes three main aspects: tailoring the processor functionality 
for testing, defining standard and special test instructions for the implementation of layers 
L2 to L4, and defining the support for interfaces I2 and I3. 

4.3.1 Tailoring the processor for testing 

There are features of standard processors that are not strictly necessary for the ROBSY 
processor. These features consume resources and increase the complexity of the design. 
Therefore, it is necessary to identify them to avoid their inclusion in the processor. 

4.3.1.1 Machine data types and widths 

Machine data types correspond to the native data types supported by a processor. In the 
case of ROBSY, the support for fixed-point arithmetic is sufficient. Fixed-point values 
and corresponding arithmetic and logic operations are ideal for describing test patterns, 
test responses, signatures, and test operations. Layers L2 to L4 typically work with 
unsigned values. However, signed addition and subtraction operations do not require 
additional modules in the processor. This is realized by means of two's complement 
values and sign and overflow conditions. 

The support for floating point data types is not necessary for the ROBSY processor. 
Layers L2 to L4 do not require floating point arithmetic or logic operations because they 
cannot be used to represent patterns, signatures, or interconnections in an efficient way. In 
the same way, the support for character or Boolean data types is not necessary. Character-
based or string-based operations are not essential for layers L2 to L4, and Boolean values 
can be easily represented using fixed-point values. 

The only composite data type required for the ROBSY approach corresponds to vectors 
of fixed-point values that are used to describe and store deterministic patterns and fault 
dictionaries efficiently. Deterministic patterns and fault dictionary signatures are 
generated during the pre-test phase, and therefore do not suffer any transformation during 
test execution. As a consequence, equipping the processor with arithmetic and logic 
operations for vector processing is not necessary. Standard load and store instructions are 
sufficient to handle vectors. 

The data width defines the number of bits that constitute a fixed-point value in the 
processor. As will be presented in Section 4.4.2, the ROBSY processor should support 
different data widths for adaptation purposes. Therefore, a possible alternative is to have a 
processor with support for standard widths (8-bit bytes, 16-bit words, 32-bit double 
words, etc.). However, this requires a large instruction set because single instructions for 
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the same arithmetic, logic, load, and store operations have to be defined for each data 
width. This increases the instruction coding requirements and the complexity of the 
processor’s decoding logic. For this reason, the ROBSY processor is limited to a single 
data width value, avoiding the need for multiple instructions for the same operations. 

To summarize, the ROBSY processor is designed to execute unsigned fixed-point 
arithmetic and logic operations. Vector processing is not required, but standard load and 
store operations are necessary to access a set of deterministic patterns or the content of a 
fault dictionary. In terms of data width, the ROBSY processor is limited to a single 
configurable data width value. 

4.3.1.2 Operating system support 

An operating system represents a group of programs that forms an abstract interface 
between the hardware resources of the processor and the application program. Its main 
job is to provide for an orderly and controlled allocation of hardware resources among the 
application programs that are competing for them [136]. Therefore, it deals with dynamic 
scheduling of processes, abstraction of memory and I/O, hardware protection, etc. In 
order to support an operating system, a processor should be equipped with memory 
management and protection units, different operation modes, privilege instructions, and 
fast context switching features. 

However, scheduling and allocation of resources based on an operating system is not 
necessary for the ROBSY approach. The ROBSY processor runs a single application 
program defined by the DUT-M that can be properly scheduled during the pre-test phase 
in a static way. In addition, other aspects of the ROBSY approach that go against the use 
of an operating system are: 

• The coordination of test algorithms is completely defined in the DUT-M. 
• The test execution of DUTs belonging to the same domain is performed one DUT 

at a time in order to guarantee the fulfillment of timing requirements of the DUT. 
• Each domain of the FBTS works independently, which means that there is no need 

for inter-processor synchronization or communication. 
• Abstraction mechanisms to access the DUTs do not have to be considered. L1 

provides the mechanism to define the timing and functional behavior of the access 
functions. This makes it possible to provide reliable statements about the test 
coverage of dynamic faults. 

To conclude, there is no need to use an operating system as part of the ROBSY approach. 
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4.3.1.3 Memory hierarchy 

Modern processors are equipped with data and program memories organized in a 
hierarchical way to minimize the latency of fetching instructions and data. These levels 
are built based on processor registers, internal cache memories, and slower external 
memories such as SRAM, DRAM, and disk storage devices. 

In the ROBSY approach, external memories are not used because the interconnections to 
these devices might contain defects. Therefore, the ROBSY processor makes use of 
internal memory resources for the storage of instructions and data. These resources 
correspond to registers and tightly coupled memories. They simplify the memory 
hierarchy of the processor because it is not necessary to consider cache memories. 

4.3.2 Test operations 

A general purpose processor executes test operations by means of standard instruction 
sequences. If these sequences are composed of many instructions, they will consume 
numerous memory resources and will require a considerable amount of time to execute. 
In order to improve processor execution time, it is necessary to identify frequently used 
functions performed by layers L2 to L4, which, if necessary, can be included in the 
instruction set of the ROBSY processor. 

4.3.2.1 Pattern generation (L2) 

One way to reduce processor execution time is by equipping the instruction set with 
single instructions capable of generating patterns and analyzing test responses. 

Section 3.4.3 classified test patterns used in the FBTS into algorithmic, pseudo-random, 
exhaustive/pseudo-exhaustive, and deterministic patterns. Algorithmic, pseudo-random, 
exhaustive, and pseudo-exhaustive patterns are generated by means of arithmetic and 
logic operations, in which every new pattern is computed based on previous patterns. 
Deterministic patterns are defined during the pre-test phase, and therefore do not suffer 
any modifications during test execution. They are typically stored in memory. 

For static and dynamic fault testing, the ROBSY processor should generate algorithmic 
patterns based on walking-1/0, modified counting, interleaved true/complement, and 
maximum aggressor fault model sequences. The first four sequences provide high fault 
coverage values with a reduced number of patterns [41]. The last sequence represents an 
alternative to detect signal integrity faults at the interconnections [22, 23, 121]. 

Table 4.1 presents walking-1/0, modified counting, and interleaved true/complement 
sequences for 4-bit patterns. The pattern column shows the pattern value, and the 
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operation column shows the operation used to generate the pattern of the same row. The 
value in parentheses identifies the number of the previous pattern used to generate the 
new one. Initial patterns have an empty operation field. 

# 
Walking-1 Walking-0 Modified counting Interleaved 

true/complement 

Pattern Operation Pattern Operation Pattern Operation Pattern Operation 

1 0001  1110  110010  110010  

2 0010 Shift left(1) 1101 Rotate left(1) 100101 Rotate left(1) 001101 Negate(1) 

3 0100 Shift left(2) 1011 Rotate left(2) 001011 Rotate left(2) 100101 Rotate left(1) 

4 1000 Shift left(3) 0111 Rotate left(3)   011010 Negate(3) 

5       001011 Rotate left(3) 

6       110100 Negate(5) 

Table 4.1: Walking one/zero, modified counting, and interleaved true/complement sequences 

Table 4.1 shows that a walking-1/0 sequence is obtained based on an initial pattern with 
just one bit set to 1/0 and shift or rotate operations. A modified counting or interleaved 
true/complement sequence is obtained based on a special initial pattern and rotate or 
negation operation. The initial pattern is computed before the test execution by means of 
a maximal length LFSR sequence that starts with the all ones value. The low significant 
bit of each pattern of the sequence (without considering the all ones value) corresponds to 
the initial pattern [41]. Although not mentioned in [41], it is necessary to work with all 
bits of the sequence independently of the number of interconnections under test. In the 
example presented in Table 4.1, six bits are used to generate the sequence for four 
interconnections. The pattern corresponds to the underlined bits. 

The maximum aggressor fault model also uses algorithmic sequences. Table 4.2 shows 
the sequences for the detection of negative/positive glitches and falling/rising delays. The 
table shows that three initial patterns and shift, rotation, and negation operations are used. 
The initial patterns have a single bit set to 1/0 or all bits set to 1/0. 

# 
Negative glitch Positive glitch Falling delay Rising delay 

Pattern Operation Pattern Operation Pattern Operation Pattern Operation 

1 1111  0000  0001  1110  

2 0001  1110  1110 Negate(1) 0001 Negate(1) 

3 1111  0000  0010 Shift left(1) 1101 Rotate left(1) 

4 0010 Shift left(2) 1101 Rotate left(2) 1101 Negate(3) 0010 Negate(3) 

5 1111  0000  0100 Shift left(3) 1011 Rotate left(3) 

6 0100 Shift left(4) 1011 Rotate left(4) 1011 Negate(5) 0100 Negate(5) 

7 1111  0000  1000 Shift left(5) 0111 Rotate left(5) 

8 1000 Shift left(6) 0111 Rotate left(6) 0111 Negate(7) 1000 Negate(7) 

Table 4.2: Maximum aggressor fault sequences for glitches and delays 
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Table 4.1 and Table 4.2 show that the algorithmic test sequences do not require any 
special instructions for their generation. Each pattern is obtained based on one or more 
initial patterns and standard shift, rotate, and negation instructions. 

In the same way, the generation of exhaustive or pseudo-exhaustive pattern sequences 
does not require the use of special operations. The sequences are generated by standard 
increment or decrement operations that emulate the function of an accumulator or 
counter. These operations are performed by addition and subtraction instructions. 

Pseudo-random pattern sequences are typically generated by LFSRs, which use at least 
one rotation and XOR operation per pattern. Therefore, they require multiple standard 
instructions per pattern. The use of special instructions for the generation of pseudo-
random patterns is a good alternative for the ROBSY processor because it reduces the 
number of instructions required per pattern. 

Deterministic patterns do not suffer any transformations during test execution. Therefore, 
the ROBSY processor does not include special instructions for this kind of pattern 
sequences. However, it is necessary to include proper support for loading patterns from 
memory and transferring them to the co-processor. Loading deterministic patterns can be 
realized in two different ways. If the patterns are stored in the program memory (coded in 
the instructions), then loading patterns becomes fetching an instruction from program 
memory. But if the patterns are located in data memory, loading deterministic patterns 
requires the use of load instructions. On the other hand, transferring deterministic patterns 
(as well as all generated patterns) to the co-processor can be performed by means of store 
instructions. Standard load and store instructions for accessing patterns from memory and 
transferring them to the co-processor should be able to access large memory arrays and 
execute in few clock cycles to reduce their impact on processor execution time. 

To summarize, the generation of algorithmic, exhaustive, and pseudo exhaustive patterns 
is performed based on single instructions. For this purpose, it is necessary to include 
standard addition, subtraction, shift, rotate, and negation instructions as part of the 
ROBSY processor. On the other hand, the generation of pseudo-random patterns requires 
the use of special instructions based on LFSRs. The use of deterministic patterns is 
realized by coding patterns in the instructions and supporting standard load and store 
instructions that execute in few clock cycles and are able to access large memory arrays. 

4.3.2.2 Test response analysis (L2) 

Section 3.4.3 showed that there are two different options for the analysis of test 
responses. The first option compares each test response with an expected one. The second 
option compares signatures instead of test responses, which are obtained by compacting 
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expected test responses during the pre-test phase and the acquired test responses during 
test execution. 

The comparison of test responses can be performed based on standard instructions that 
compare values. This is usually performed by instructions that subtract the two values to 
compare and set a processor general purpose register or group of condition flags (zero, 
carry, and overflow) to a corresponding value. In this case, it is necessary to store the 
expected responses in memory or generate them during the test. The comparison of 
signatures reduces the amount of comparisons that have to be performed and the memory 
required to store expected responses. However, it is necessary to spend time in the 
compaction of the acquired test responses, and consider the occurrence of aliasing. The 
compaction of test responses is typically performed by a MISR, whose operation can be 
emulated by the processor based on at least two XOR and one rotate instruction per test 
response. In order to reduce the number of standard instructions, a single special 
instruction that emulates a MISR can be implemented. An alternative is to reutilize the 
special instruction used for the generation of pseudo-random patterns. This is performed 
by an LFSR instruction and an XOR instruction, and avoids the implementation of the 
MISR instruction. 

The analysis of test responses in the ROBSY processor is realized based on standard 
comparison instructions and the two instruction approach that emulates a MISR for the 
compaction of test responses. 

4.3.2.3 Control flow operations (L2, L3, L4) 

Control flow operations are required for all layers. L2 relies on loops in order to describe 
instruction sequences for pattern generation and analysis. L3 is mainly composed of 
control flow operations that describe the structure of test algorithms, in which branches 
and loops are executed based on conditions typically derived from the L2 results. L4 uses 
control flow operations for the coordination of test algorithms, and diagnosis purposes. 
Additionally, the layer concept requires a mechanism to encapsulate functions related to a 
given layer. This is accomplished by supporting procedures and procedure calls. 

Control flow operations are described by constructs supported by the RTDL language 
such as for, while, if, else, switch, call, and return statements. These high level statements 
are transformed to unconditional and conditional branches by the compiler (at least in the 
RISC design philosophy). Unconditional branches are executed without evaluating any 
conditions, while conditional branches require the evaluation of conditions typically set 
by arithmetic and logic instructions. 
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The ROBSY processor requires both kinds of branching mechanisms. In this case, the 
instructions considered are: 

• Unconditional branch instructions with absolute addressing mode. 
• Conditional branch instructions with absolute addressing mode. 
• Conditional branch instructions based on the set then jump methodology. 
• Conditional branch instructions based on a condition code register. 
• Call and return instructions that save/restore the return address to/from memory. 

Branching instructions use an absolute addressing mode instead of a relative addressing 
mode. The use of absolute addresses is enough for the ROBSY processor, because the 
location of instructions in memory is defined during compilation. Therefore, it is not 
necessary to support code reallocation, simplifying the processor instruction set. The set 
then jump methodology [130] was selected over the set and jump methodology. The 
former uses separate instructions to set conditions and perform the branch, while the latter 
uses a single instruction for both operations. The set then jump methodology was selected 
in order to maintain the complexity of each instruction as low as possible. 

A condition code register represents a collection of status flags such as zero, carry, sign, 
and overflow. The flags are set by means of arithmetic and logic instructions and allow 
the implementation of equality or relation operators. This approach was chosen over 
general purpose registers because flags also provide an efficient way to concatenate 
arithmetic and logic operations for operands larger than the processor data width (Section 
5.2.3). 

Call and return instructions are necessary in order to support layer procedures and 
interrupts. The call instruction uses an absolute addressing mode and stores the return 
address in the stack. The return instruction is in charge of restoring the return address 
from the stack and branching to this address. For the ROBSY processor, the use of 
conditional call instructions is not considered. 

4.3.2.4 Diagnosis (L2, L3 and L4) 

Diagnosis can be performed in order to locate the device with faulty interconnections, or 
to locate the device and faulty interconnections. 

Diagnosis of the device with faulty interconnections does not require the use of specific 
diagnosis algorithms because the identification of the processor/co-processor pair that 
detects the fault is sufficient to recognize the DUT with the faulty interconnection. On the 
other hand, diagnosis of the faulty interconnections requires the utilization of test 
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algorithms developed for this purpose. These algorithms rely on sequential and 
combinational diagnosis methods as presented in Section 2.1.5. 

Sequential diagnosis methods require the implementation of diagnosis operations as part 
of layers L2 and L3. L2 generates patterns and analyzes the obtained test responses. L3 
decides the next step to perform based on the information delivered by L2. For this 
purpose, it is sufficient to use the instructions already discussed in Sections 4.3.2.1, 
4.3.2.2, and 4.3.2.3. Combinational diagnosis methods require the implementation of 
diagnosis operations as part of layers L2, L3, and L4. L2 compacts the test responses in a 
signature, which requires the use of diverse standard arithmetic and logic operations 
depending on the type of fault dictionary. L3 describes the algorithm steps carried out for 
diagnosis based on the control flow instructions already discussed in Section 4.3.2.3. L4 
performs the look-up process that matches the computed signature against the signatures 
stored in the fault dictionary. For this purpose, standard load, store, and comparison 
instructions are sufficient. 

The ROBSY processor does not have to be equipped with special instructions for 
diagnosis purposes. Instructions used for the description of control flow, pattern 
generation, and test response analysis are sufficient. 

4.3.3 Interfaces I2 and I3 

Layer functions implemented in ESW are bound by interfaces I2 and I3. As presented in 
Section 4.2.1, the ROBSY processor should be equipped with the proper features for the 
implementation of both interfaces.  

4.3.3.1 Interface I2 

Interface I2 represents the interface between the ATE and FBTS, or more exactly, 
between the ATE and processor forming part of each FBTS domain. It comprises the 
ATE test controller, PCB communication infrastructure, FBTS communication 
infrastructure, and the processor debug-interface. 

The PCB communication infrastructure usually corresponds to a test interface. The reason 
for this is that test interfaces use a low number of interconnections and can be easily 
tested. The de facto test interface considered for ROBSY is the JTAG interface used for 
BScan testing (Section 2.2.3.2), which is tested by means of basic infrastructure tests. The 
JTAG interface is compatible with ATEs used for BScan testing, which makes it not 
necessary to develop a special ATE and test controller for the ROBSY approach. 
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Additionally, FPGAs provide JTAG support for configuration and communication 
purposes [43]. 

The FBTS communication infrastructure relies on special DRs, which are connected to 
the TAP controller through a JTAG primitive. The use of DRs provides the scalability 
necessary to couple an arbitrary number of FBTS domains, forming a network of DRs. 
The network can be described based on the IEEE 1149.1-2013 BScan standard [1] or the 
IEEE 1687 IJTAG standard [137–139]. Figure 4.1 presents the data chain of a flat 
network of DRs, in which each DR belongs to one of the four FBTS domains. Other 
network configurations are possible, such as hierarchical structures. 
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Figure 4.1 FBTS domains with DRs used for communication with ATE 

As already discussed in Section 3.3.2, each FBTS domain has a single processor, which is 
the component involved in the ATE/FBTS communication. The ROBSY processor is 
equipped with a debug-interface implemented using the DRs located in each FBTS 
domain. The use of debug-interfaces is the same approach of PBT, which has been proven 
to be very successful [45, 46]. A debug-interface provides a mechanism to control and 
observe the state of the processor during the test execution. Moreover, the debug-interface 
is a standard communication interface that does not change its properties independently of 
the FPGA. This means that problems related to the support for different debug-interfaces 
(one of the main disadvantages of PBT) are not considered in ROBSY. 
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4.3.3.2 Interface I3 

Interface I3 is the communication link between the main components of each FBTS 
domain, namely the processor and co-processors. As discussed in Section 3.4.6, the 
structure of each FBTS domain represents a loosely-coupled system that comprises a 
single processor and at least one co-processor. The processor acts as a master with total 
control over the bus transfers, whereas the co-processor acts as a slave responding to 
petitions made by the processor. 

From the point of view of the ROBSY approach, the amount and type of data transferred 
through interface I3 varies depending on the location of the interface in the layer concept. 
Therefore, an on-chip bus should provide the necessary flexibility and scalability. The on-
chip bus is based on the Wishbone interconnection architecture supplied by the Open 
Cores organization [140]. This architecture fits very well in the ROBSY approach 
because it is open source, scalable, and provides a simple, flexible, and portable way to 
connect different components. Additionally, it is very popular and many Wishbone 
compatible IPs are freely available. For a comparison of Wishbone with other on-chip 
interconnection architectures, refer to [141]. 

4.4 Adaptation to the test scenario 

As presented in Section 3.1.2, a test scenario differentiates itself from others based on 
three main aspects: DUTs, FPGA, and test requirements. These aspects vary strongly 
from case to case, making it necessary to include adaptation mechanisms as part of the 
ROBSY approach. 

The adaptation of the ROBSY processor makes it possible to ensure an efficient usage of 
FPGA resources or to improve the processor execution time. The efficient usage of 
resources facilitates the inclusion of additional layers and domains in the FBTS that 
otherwise could not be included in the FPGA. An improvement of the processor 
execution time facilitates the fulfillment of critical test requirements related to test time. 
Equipping the ROBSY processor with an adaptation mechanism allows: 

• Fine tuning the processor ISA and microarchitecture to the constraints of the 
specific test scenario. 

• Including the adaptation mechanism in the FBTS automatic generation flow. 

Sections 4.4.1 and 4.4.2 present available adaptation mechanisms and the one selected for 
the ROBSY processor. 
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4.4.1 General adaptation mechanisms 

There are two general mechanisms that can be used for the adaptation of a processor to a 
specific scenario, whether the scenario refers to a test scenario or not. The two 
mechanisms are: 

• Development of a family of processors. 
• Development of a configurable processor. 

The first mechanism adapts the processor by selecting the proper one from a family of 
processors depending on the scenario. Every processor is developed independently, but it 
might share some properties with other family members. In this case, the achievable level 
of adaptation depends on the number of available processors and on the way each 
processor fits in the given scenario. Typically, this approach is used for complex 
processors without configuration options. 

In the second mechanism, the adaptation of the processor is performed by selecting the 
constellation of configuration parameter values that is more appropriate for a given 
scenario. In this case, it is necessary to develop a single configurable processor in order to 
generate different processor variants. This is the mechanism typically used in soft-core 
processors. 

It is possible to develop a family of processors or a configurable processor that is grouped 
in one of the following classes: 

• Same ISA and different microarchitectures. 
• Different ISAs and microarchitectures. 

In the first class, every member of the family or every processor variant derived from the 
configurable processor has the same ISA. This means that each processor is capable of 
executing the same programs. The differences are located at the microarchitecture level, 
providing different trade-offs in terms of resource utilization, energy consumption, CPU 
time, etc. 

A processor family belonging to this class uses the 32-bit ISA of Intel (IA-32), whose 
members are the Pentium, Celeron (lower cost), and Xeon (higher performance) 
processors [130]. A configurable processor belonging to this class is the Nios II soft-core 
processor, which is equipped with configuration parameters that mainly affect its 
microarchitecture [61]. 
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In the second class, there is at least one processor developed based on a different ISA. In 
this case, each processor is not able to run the same programs given that instructions, 
instruction formats, or other properties related to the ISA are not compatible. The 
advantage of this class of processors is the potential to achieve a higher adaptation. 

A processor family belonging to this class of processors is formed by extending the 
processor family based on the IA-32 with the processor family based on the IA-64. It was 
not possible to find a configurable processor with well-defined configuration parameters 
at the ISA level. At a first glance, it might seem that the Proteus configurable soft core 
processor [75] is equipped with configuration parameters at the ISA level. These options 
permit changing the data width, number of supported registers, and activating or 
deactivating some instructions. However, by looking at its configuration mechanism, it 
was found that these configuration parameters do not influence the instruction set. The 
instruction width and coding formats remain the same although it is possible to code 
registers using fewer bits. 

4.4.2 Adaptation mechanism of the ROBSY processor 

The ROBSY processor should have the highest possible level of adaptation. For this 
purpose, a first alternative is to develop a family of processors. However, the 
development and maintenance effort required to support a family of processors is very 
high, making this alternative inappropriate. 

The development of a configurable processor represents a more suitable alternative. 
Configuration parameters represent a natural adaptation mechanism of soft-core 
processors. In comparison to an adaptation mechanism based on a family of processors, 
the development and maintenance of a single configurable processor is a more 
manageable task, given that it is only necessary to consider a unique source code base. 

The challenge is to design a configurable processor with the level of configurability 
required for the ROBSY approach. For this purpose, the ROBSY processor should be 
equipped with configuration parameters at the ISA and microarchitecture level. This is a 
very interesting approach because it provides a very flexible processor with a high 
adaptability potential. Nevertheless, it should be considered that configuration parameters 
at the ISA level require configurable processor development tools (compiler, assembler, 
linker, instruction set simulator, etc.). 
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4.5 Summary 

Chapter 4 presented the concept of the ROBSY processor, which is based on three main 
pillars: 

• Analysis of general design aspects. 
• Processor specialization based on the properties of L4-L2 and I2 and I3. 
• Processor adaptation mechanism. 

During the analysis of general design aspects, the functional and non-functional 
requirements that the ROBSY processor has to fulfill were presented. The functional 
requirements define the support for operations used in layers L2 to L4 and interfaces I2 
and I3. The non-functional requirements highlight the adaptation, FPGA-based 
implementation, code portability, and the focus on the reduction of test time and an 
efficient utilization of resources. 

At that point, it was established that none of the general soft-core or test processors 
available in the literature is suitable for ROBSY. After that, main design decisions were 
performed as part of the analysis of general design aspects. The decisions include the use 
of VHDL as the design language and inference for the adaptation to FPGAs from 
different families and vendors. Furthermore, the processor was defined as a scalar single-
issue in-order RISC processor with pipelining. 

The discussion about the processor specialization was carried out based on three main 
aspects: 

• Tailoring the processor functionality for testing purposes. 
• Defining standard and special test operations for layers L2 to L4. 
• Specifying the support required for interfaces I2 and I3. 

It was shown that unsigned fixed-point arithmetic and logic operations as well as standard 
load and store operations are sufficient for testing purposes. The processor data width was 
limited to a single configurable value, and operating system related functions do not have 
to be considered. Additionally, it was shown that there is no need for a hierarchical 
memory organization because embedded FPGA memory blocks are the only memory 
resources available for instructions and data storage. 

The implementation of layers L2 to L4 in ESW requires equipping the ROBSY processor 
with standard arithmetic and logic instructions, such as addition, subtraction, comparison, 
shift, rotate, negation, and XOR. In the same way, the processor should support standard 
load and store instructions, which are necessary to transfer information between the 
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processor memory, I/O, and general purpose registers. For control flow operations, the 
processor should be equipped with conditional and unconditional branching, call, and 
return instructions. These instructions should be implemented using an absolute 
addressing mode and a conditional code register with the flags. 

The ROBSY processor should provide the option to code a complete pattern in an 
instruction in order to efficiently store deterministic patterns in program memory. In the 
same way, it should be equipped with special LFSR instructions for the emulation of 
LFSRs and MISRs. Multiplication or division operations are not required. 

For interfaces I2 and I3, the ROBSY processor should be equipped with a debug-interface 
and an on-chip bus system, respectively. The debug-interface communicates to the ATE 
based on DRs, and the on-chip bus system is implemented as a shared bus based on the 
Wishbone interconnection architecture. 

Finally, it was shown that the proper adaptation mechanism of the ROBSY processor 
consists of the development of a highly flexible configurable processor. The configuration 
parameters located at the ISA and microarchitecture level provide high flexibility for the 
adaptation of the processor to the test scenario. 
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5 ROBSY processor 

5.1 Introduction 

Chapter 4 defined the ROBSY processor as a scalar single-issue in-order RISC processor 
with support for standard arithmetic, logic, control flow, and data transfers instructions, as 
well as test instructions for the emulation of LFSRs. RTL was chosen as the design 
abstraction level, VHDL as the design language, and configuration parameters at the ISA 
and microarchitecture level as the adaptation mechanism to different test scenarios. This 
chapter presents the processor implementation in more detail, with main focus on: 

• Processor ISA. 
• Processor microarchitecture. 
• Debug-interface properties. 
• Configuration parameters. 

Sections 5.2 and 5.3 present the ISA and microarchitecture of the ROBSY processor, 
respectively. Section 5.4 presents the debug-interface, including the support for JTAG. 
Section 5.5 provides information about the configuration parameters. This chapter 
concludes with a summary in Section 5.6. 

5.2 Instruction set architecture 

The instruction set architecture (ISA) —also known as the processor architecture— 
represents the processor attributes that are visible to the programmer [142]. It defines the 
processor’s behavior and properties that are visible from the programmer’s point of view 
without revealing any implementation details. Therefore, it provides information about 
the supported data types, visible state (registers and memory), I/O, operations (instruction 
set and format), interrupts, and exceptions. 

5.2.1 Native data types 

As already discussed in Section 4.3.1.1, the support for unsigned fixed-point arithmetic is 
sufficient for testing purposes. The processor uses a fixed-point value with a unique width 
(data_width), which represents the width of a general purpose register (GPR). The 
data_width is also a configurable parameter of the processor, which influences the 
properties of its ISA and microarchitecture. 
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The data_width changes the instruction width because it defines the number of bits 
required to code an immediate value. An additional configuration parameter known as 
short_imm_set provides the option to code an immediate value using a smaller number of 
bits. The width of an immediate data value (imm_data_width) is described as follows: 

 𝑖𝑖𝑖𝑖𝑖𝑖_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = �
  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ,            𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖𝑖𝑖𝑖𝑖_𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

�
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

2
� , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑖𝑖𝑖𝑖𝑖𝑖_𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 (5.1) 

If the size of variables found in the DUT-M differs from the processor data_width, it is 
the responsibility of the compiler to handle these variables using the appropriate 
instruction sequences. 

5.2.2 Programmer visible state and I/O 

5.2.2.1 Registers 

The ISA is composed of a diverse set of registers: general purpose registers (GPRs), 
special function registers (SFRs), instruction register (IR), program counter (PC), and 
stack pointer (SP). 

GPRs are used as the storage mechanism for operands and results of arithmetic, logic, 
test, and data transfer instructions. The number (GPRs_num) and width (data_width) of 
GPRs are configuration parameters. GPRs_num has the following restrictions: 

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑛𝑛𝑛𝑛𝑛𝑛 = |𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺|, 𝑤𝑤𝑤𝑤𝑤𝑤ℎ �
|𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺| > 2

|𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺| > �
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
� (5.2) 

Equation (5.2) shows that there are two restrictions for GPRs_num. The first restriction 
states that there should be at least three GPRs as part of the processor. This is necessary 
given that GPR R0 is hardwired to zero, and at least two additional GPRs are required for 
the execution of an arithmetic, logic, test, or data transfer instruction. The second 
restriction states that there should be enough GPRs for addressing the data address space 
of the processor (Section 5.2.2.2). 

SFRs are used for specific functions. The latest processor version is equipped with seven 
SFRs (two of them are optional). The configuration parameter SFRs_num defines the 
number of SFRs, and it enables the inclusion of optional SFRs and addition of new SFRs 
for future use. In the current processor version, SFRs_num is at least five. 
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 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑛𝑛𝑛𝑛𝑛𝑛 = |𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|, 𝑤𝑤𝑤𝑤𝑤𝑤ℎ |𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆| > 4 (5.3) 

The first SFR is the condition code register, which is composed of the zero, sign, carry, 
and overflow condition flags. The zero flag is set every time the result of an arithmetic, 
logic, or test instruction is zero. The sign flag is set every time the most significant bit 
(MSB) of an arithmetic, logic, or test instruction is one. The carry and overflow flags are 
properly set during the execution of arithmetic and test instructions. The second SFR is a 
shadow register of the condition code register. This shadow register is used for restoring 
the original state of the flags after the execution of an interrupt service routine. The 
restoration procedure is described in ESW and requires access to this SFR. 

The third SFR is the exception code register. This register automatically stores a value 
that identifies the cause of an exception activated during normal program execution. The 
current processor version uses five exception bits (Section 5.2.4). The fourth and fifth 
SFRs are the interrupt mask and interrupt register. The interrupt mask is used to enable a 
specific interrupt. The interrupt register is automatically set every time an interrupt is 
triggered in order to identify the interrupt source (Section 5.2.4). Two optional SFRs are 
used to define an address range of the data memory reserved for communication with the 
ATE. Both registers are used in conjunction with the VarioTap test approach of Göpel 
electronics [45]. This test approach is not used in this dissertation, and therefore the two 
optional SFRs are not required. 

The maximum width of an SFR is data_width, which enables the transfer of information 
between SFRs and GPRs in a single instruction. The minimum width of an SFR is five, 
which corresponds to the number of bits required to code the exception cause. Therefore, 
the SFRs impose the following restriction to the processor data_width: 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ > 4 (5.4) 

The IR is used to store the instruction fetched from program memory. Its width depends 
on the number of bits required to code an instruction, and is known as instruction_width 
(Section 5.2.3). The PC is used to store the address of the next instruction to fetch from 
program memory. Its width depends on the program memory depth, known as 
prog_mem_depth (Section 5.2.2.2). The SP is used to point to the last value stored in the 
stack. The width of the SP depends on the stack memory depth, which is known as 
stack_mem_depth (Section 5.2.2.2). The SP is managed by the processor, incrementing or 
decrementing it based on push, pop, and procedure call instructions. 

Figure 2.15 shows a graphical representation of the GPRs, SFRs, IR, PC, and SP. 
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Figure 5.1: ROBSY processor registers 

5.2.2.2 Address spaces 

The processor has three independent address spaces, which are known as the program, 
data, and stack address spaces. 

The program address space represents the program memory, and is defined by the 
configuration parameter prog_mem_depth. prog_mem_depth should provide enough 
capacity to store all instructions constituting the program. Therefore, it is computed as 
presented in Equation (5.5). The program memory width (instruction_width) is equal to 
the number of bits required to code an instruction (Section 5.2.3). 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = ⌈log2(|𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|)⌉ (5.5) 

The data address space arranges data memory, SFRs, and I/O in a single address space. In 
this way, the same load and store instructions are used to access variables stored in data 
memory, SFR values, and I/O. The width of the data space is data_width and its depth is 
data_space_depth. The latter is calculated based on the depth of the data memory 
(data_mem_depth), SFRs_num, and the number of I/O addresses (IO_addr_num) 
(Equation (5.8)). data_mem_depth and IO_addr_num are configurable, making it possible 
to change the data storage capacity and the number of I/O addresses of the processor. 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = ⌈log2(|𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|)⌉ (5.6) 

 𝐼𝐼𝐼𝐼_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑛𝑛𝑛𝑛𝑛𝑛 = |𝑐𝑐𝑐𝑐 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎| (5.7) 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = ⌈log2(2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐼𝐼𝐼𝐼_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑛𝑛𝑛𝑛𝑛𝑛)⌉ (5.8) 
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The stack address space represents the stack memory. The depth of the stack memory 
(stack_mem_depth) is a configurable parameter, providing the option to change the 
storage capacity of the stack. The stack memory width (stack_width) depends on 
data_width and prog_mem_depth, given that it should be possible to store a program 
address or a data value. The computation of stack_mem_depth and stack_width is 
performed as follows: 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = ⌈log2(|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙|)⌉ (5.9) 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = max � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ� (5.10) 

Figure 5.2 shows a graphical representation of the three address spaces with their 
corresponding depth and width.  
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0instruction_width-1
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Figure 5.2: ROBSY processor address spaces 

The main reason to support three independent address spaces is the high configurability 
of the ROBSY processor, which makes it possible to obtain processor variants with 
different values for instruction_width, stack_width, and data_width. 
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The program address space is addressed by the PC. The value of the PC is incremented 
automatically or changes due to call, return, and conditional or unconditional branching 
instructions. The stack address space is addressed by the SP. The value of the SP changes 
based on push, pop, and procedure call instructions. 

The data address space is addressed by GPRs. It requires special attention because it is 
not possible to address the complete data address space based on a single GPR or 
immediate value if data_space_depth is greater than data_width. In order to deal with this 
problem, the ROBSY processor concatenates GPRs to form the most significant bits 
(MSBs) of the address. These GPRs are known as page pointers, and the number of page 
pointers (page_pointers_num) is defined as follows: 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛𝑛𝑛 = |𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝| = �
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ
− 1� (5.11) 

Page pointers are concatenated in such a way that GPR R1 corresponds to the MSBs of 
the address, followed by R2, R3, and so on. 

5.2.3 Instruction set 

Table 4.1 shows the instructions of the ROBSY processor. These instructions are divided 
into two main classes: class-0 and class-1. Class-0 instructions are conditional and 
unconditional branches, procedure calls, data transfers, and push/pop instructions. Class-1 
instructions are arithmetic, logic, and test instructions. The type and number of operands 
change depending on the specific instruction. 

Class Instructions Operands 

0 

JMP, JC, JNC, JZ, JNZ, JS, JNS, JO, JNO Immediate address value 

CALL, CALL_C, RET, RET_C Immediate address value, - 

STOP, NOP - 

LOAD, STORE GPRs + immediate data value 

PUSH, POP GPR 

1 

ADD, SUB GPRs + immediate data value 

AND, OR, XOR, NOR GPRs + immediate data value 

SHR, SHL, ROTR, ROTL GPRs + immediate data value 

LFSR GPRs + immediate data value 

Table 5.1: ROBSY processor instructions 

The processor has variations of the same instruction. This is necessary in order to support 
different operands (GPR-GPR or GPR-immediate), the short_imm_set configuration 
parameter, and the execution of arithmetic, logic, and test instructions for variables larger 
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than data_width. The processor has 50 instructions in total, 18 of which are class-0 and 
32 are class-1 instructions. 

5.2.3.1 Class-0 instructions 

Table 5.2 shows the class-0 branching instructions (Section 4.3.2.3). The argument of 
these instructions is an immediate value (imm_address_value), which represents the 
target address of the branch. The size of imm_address_value is prog_mem_depth in order 
to support absolute addressing mode. Table 5.2 shows the branching instructions, in 
which the first column shows the instruction name, the second column shows the 
operation performed, and the last four columns shows the condition code register flags 
that are affected. C stands for carry, Z for zero, S for sign, and O for overflow. 

Instruction Description C Z S O 

JMP PC  imm_address_value     

JC PC  imm_address_value if C is set     

JNC PC  imm_address_value if C is unset     

JZ PC  imm_address_value if Z is set     

JNZ PC  imm_address_value if Z is unset     

JS PC  imm_address_value if S is set     

JNS PC  imm_address_value if S is unset     

JO PC  imm_address_value if O is set     

JNO PC  imm_address_value if O is unset     

Table 5.2: Branching instructions 

Table 5.3 shows class-0 instructions used for procedures. CALL and CALL_C branch to 
the start address of the procedure and store the return address (return_address) in the 
stack. The imm_address_value coded in the instruction defines the start address of the 
procedure. If CALL_C is executed, the processor does not respond to interrupt requests 
during the execution of the procedure. CALL_C allows the execution of critical portions 
of code, such as interrupt and exception service routines. RET and RET_C are used to 
exit the procedure and resume normal program execution. For this purpose, the processor 
pops the return address from the stack and performs a branch. RET_C is used to 
reactivate interrupts. It allows using CALL instructions inside a CALL_C subroutine 
without reactivating the interrupts. 

Instruction Description C Z S O 

CALL PC  imm_address_value; stack[SP+1]  return_address     

CALL_C PC  imm_address_value; stack[SP+1]  return_address; disable interrupts     

RET PC  stack[SP]     

RET_C PC  stack[SP]; enable interrupts     

Table 5.3: Procedure call instructions 
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Table 5.4 shows the STOP and NOP instructions. STOP halts program execution by 
deactivating the PC. The only way to continue program execution is by means of the 
debug-interface (Section 5.4). NOP does not execute any operation. It increments the PC 
value without changing the state of any other register or memory location. 

Instruction Description C Z S O 

STOP PC  PC     

NOP PC  PC + 1     

Table 5.4: STOP and NOP instructions 

Table 5.5 shows the LOAD and STORE instructions, which perform data transfers 
between GPRs and the processor data space. Both instructions use a page pointer and two 
operands to describe the address of the data address space. The two operands are the GPR 
RS1 (register source 1) and the immediate data value (imm_data_value). RDS (register 
destination source) is the GPR used as destination for load instructions or source for store 
instructions. The addressing mode is base plus displacement. It uses the concatenation of 
page pointers and RS1 (page_pointers.RS1) as the base address and the imm_data_value as 
a constant displacement. This addressing mode makes it possible to implement the 
register indirect addressing mode (imm_data_value is zero) and the immediate indirect 
addressing mode (RS1 is R0), and allows efficient handling of composite data types. 

Instruction Description C Z S O 

LOAD RDS data_address_space[page_pointers.RS1 + imm_data_value]     

STORE data_address_space[page_pointers.RS1 + imm_data_value]  RDS     

Table 5.5: LOAD and STORE instructions 

The following example clarifies the use of page pointers. A ROBSY processor variant 
with data_space_depth equal to 20 and data_width equal to 8 requires a page pointer with 
two GPRs R1 and R2 (Equation (5.11)). R1 corresponds to address bits 19-16, R2 to 
address bits 15-8, and RS1 to address bits 7-0. The imm_data_value is added to the address 
formed by the page pointer and RS1 in order to obtain the effective address value. 

Table 5.6 shows the class-0 PUSH and POP instructions. They push or pop the content of 
a GPR into the stack, using RDS as source or destination. The SP is incremented due to a 
PUSH instruction, and decremented due to a POP instruction. 

Instruction Description C Z S O 

PUSH Stack_address_space[SP+1]  RDS, SP SP+1     

POP RDS stack_address_space[SP] , SP SP-1     

Table 5.6: PUSH and POP instructions 
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5.2.3.2 Class-1 instructions 

Class-1 instructions are arithmetic, logic, and test instructions. For the execution of class-
1 instructions, the ROBSY processor operates as a three address machine. This means 
that each class-1 instruction has one result and two operands. The result is always a GPR 
represented by RDS, while the two operands are defined as a pair of GPRs (RS1 and RS2) or 
as a GPR and an immediate value (RS1 and imm_data_value). 

Table 5.7 presents the class-1 addition and subtraction instructions. The processor 
supports six instruction variants for addition and subtraction. ADD and SUB use RS1 and 
RS2, whereas ADDI and SUBI use RS1 and imm_data_value. If the processor configuration 
parameter short_imm_set is true, the imm_data_value of ADDI and SUBI is sign 
extended. ADDIU and SUBIU are used if no sign extension is required. The instructions 
with an ending C use the carry flag as a third operand. These instructions are necessary to 
perform additions or subtractions for variables larger than data_width. 

Instruction Description C Z S O 

ADD RDS RS1 + RS2 X X X X 

ADDI RDS RS1 + imm_data_value (sign extended) X X X X 

ADDIU RDS RS1 + imm_data_value (zero extended) X X X X 

ADDC RDS RS1 + RS2 + C X X X X 

ADDIC RDS RS1 + imm_data_value + C (sign extended) X X X X 

ADDIUC RDS RS1 + imm_data_value + C (zero extended) X X X X 

SUB RDS RS1 ˗ RS2 X X X X 

SUBI RDS RS1 ˗ imm_data_value (sign extended) X X X X 

SUBIU RDS RS1 ˗ imm_data_value (zero extended) X X X X 

SUBC RDS RS1 ˗ RS2 ˗ C X X X X 

SUBIC RDS RS1 ˗ imm_data_value ˗ C (sign extended) X X X X 

SUBIUC RDS RS1 ˗ imm_data_value ˗ C (zero extended) X X X X 

Table 5.7: ADD and SUB instructions 

Table 5.8 shows the class-1 logic instructions. The processor supports two instruction 
variants for logic operations. An instruction variant uses two GPRs for the source 
operands, whereas the other instruction variant uses a GPR and an imm_data_value. The 
last four columns of Table 5.8 show that the carry and overflow flag are always set to 
zero, while the zero and sign flags are set depending on the result. 

The transfer of data between GPRs or between a GPR and an immediate data value is 
performed using OR and ORI instructions and R0 as RS1. Negation operations are 
performed using NOR instructions and R0 as RS1. If the processor configuration 
parameter short_imm_set is true, the imm_data_value is zero extended, and ORH with R0 
as RS1 is used to move an imm_data_value to the MSBs of RDS. 
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Instruction Description C Z S O 

AND RDS RS1 & RS2 0 X X 0 

ANDI RDS RS1 & imm_data_value (zero extended) 0 X X 0 

OR RDS RS1 | RS2 0 X X 0 

ORI RDS RS1 | imm_data_value (zero extended) 0 X X 0 

ORH RDS RS1 | imm_data_value (MSBs) 0 X X 0 

XOR RDS RS1 ⊕ RS2 0 X X 0 

XORI RDS RS1 ⊕ imm_data_value (zero extended) 0 X X 0 

NOR RDS ~(RS1 | RS2) 0 X X 0 

NORI RDS ~(RS1 | imm_data_value) (zero extended) 0 X X 0 

Table 5.8: Logic instructions 

Table 5.9 shows the class-1 shift and rotation instructions. Every instruction uses RS1 as 
operand and imm_data_value to define the number of bits to shift or rotate the content of 
the GPR represented by RS1. SHL and SHR perform logical shift operations with zeros 
replacing the discarded bits. SHLC and SHRC use the carry flag to replace discarded bits. 
SHRA performs an arithmetic shift, using the sign of RS1 to replace discarded bits. ROL 
and ROR perform circular shifts or bit rotations. ROLC and RORC consider the carry 
flag as part of the rotation operand. 

Instruction Description C Z S O 

SHL RDS RS1 << imm_data_value (0-fill) X X X X 

SHLC RDS RS1 << imm_data_value (C-fill) X X X X 

SHR RDS RS1 >> imm_data_value (0-fill) X X X X 

SHRC RDS  RS1 >> imm_data_value (C-fill) X X X X 

SHRA RDS  RS1 >> imm_data_value (sign-fill) X X X X 

ROL RDS  rol(RS1, imm_data_value) X X X X 

ROLC RDS rol(RS1.C, imm_data_value) X X X X 

ROR RDS  ror(RS1, imm_data_value) X X X X 

RORC RDS  ror(RS1.C, imm_data_value) X X X X 

Table 5.9: Shift and rotate instructions 

Table 5.10 shows the class-1 instructions used to emulate an LFSR. Every instruction 
uses RS1 for the implementation of the LFSR state, and RS2 to define the feedback 
polynomial. The LFSR is emulated using internal XORs between each state flip-flop. 

Instruction Description C Z S O 

LFSR RDS lfsr(RS1, RS2) X X X X 

LFSRL RDS  lfsr(RS1, RS2) (C-concatenation) 0 X X X 

LFSRH RDS  lfsr(RS1, RS2) (C-concatenation, O-feedback) X X X  

Table 5.10: Test instructions 

The LFSR instruction emulates a LFSR of data_width bits. For example, the LFSR in 
Figure 5.3 with feedback polynomial of Equation (5.12) is emulated by a processor with 
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data_width equal to 8, RS1 equal to one (seed), and RS2 equal to 0xB8 (polynomial). Table 
5.11 shows the sequence of values obtained by executing the instruction five times. 

 𝑥𝑥8 + 𝑥𝑥6 + 𝑥𝑥5 + 𝑥𝑥4 + 1 (5.12) 

0 0 0 0 0 0 0 1

 
Figure 5.3: 8-bit LFSR with 0xB8 feedback polynomial 

Pattern number Pattern value 

1 00000001 

2 10111000 

3 01011100 

4 00101110 

5 00010111 

6 10110011 

Table 5.11: Sequence of patterns 8-bit LFSR with 0xB8 feedback polynomial 

LFSRL and LFSRH emulate an LFSR wider than data_width. For this purpose, LFSRL 
computes the data_width LSBs of the LFSR, and LFSRH computes the MSBs of the 
LFSR. The feedback and concatenation between registers is carried out through the carry 
and overflow flags. LFSRL uses the carry flag as input for concatenation, and it sets the 
overflow flag to the LSB of RS1 (feedback bit) and the carry flag to 0. LFSRH uses the 
overflow flag as feedback input value and the carry flag as concatenation input value. It 
sets the carry with the LSB of RS1 (concatenation bit) and leaves the overflow flag 
unchanged. 

 𝑥𝑥24 + 𝑥𝑥12 + 𝑥𝑥10 + 𝑥𝑥9 + 𝑥𝑥6 + 𝑥𝑥5 + 𝑥𝑥3 + 𝑥𝑥1 + 1 (5.13) 

1: ; initialize GPRs 
2: OR R1, R0, 0x01; LFSR state bits 7-0 
3:  OR R2, R0, 0x00; LFSR state bits 15-8 
4:  OR R3, R0, 0x00; LFSR state bits 23-16 
5:  OR R4, R0, 0x35; LFSR feedback polynomial bits 7-0 
6:  OR R5, R0, 0x0B; LFSR feedback polynomial bits 15-8 
7:  OR R6, R0, 0x80; LFSR feedback polynomial bits 23-16 
8: ; compute first value  
9:  SHR R0, R2, 0x01; initialize carry with LFSR state bit 8 
10:  LFSRL R1, R1, R4; compute LFSR state bits 7-0. Set carry an overflow 
11:  LFSRH R3, R3, R6; compute LFSR state bits 23-16. Set carry 
12:  LFSRH R2, R2, R5; compute LFSR state bits 15-8. Set carry 

Figure 5.4: Code for LFSR with 0x800B35 feedback polynomial and 8-bit data_width 
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A 24-bit LFSR with the feedback polynomial presented in Equation (5.13) is emulated by 
a processor with data_width equal to eight using one LFSRL instruction and two LFSRH 
instructions. In this case, it is necessary to use three GPRs to represent the feedback 
polynomial (RS2), and other three GPRs to represent the LFSR state (RS1). Figure 5.4 
shows the corresponding assembly code with R4-R6 representing the feedback 
polynomial, R1-R3 the LFSR state, and a seed equal to 0x000001. 

5.2.3.3 Instruction formats 

All instructions of the ROBSY processor are coded using the same length and a uniform 
format. The reason for this is that fetching and decoding fixed-length instructions is a 
more efficient task in comparison to fetching and decoding variable-length instructions. 

The MSB of each instruction is used to code the instruction class and is followed by a 
fixed number of bits that represent the instruction command. The command width 
(command_width) varies depending on the processor configuration given that each 
instruction can be enabled or disabled. Equation (5.14) presents the formal definition of 
the command_width. The number of enabled instructions belonging to class-0 and class-1 
are represented by instrs_enable_c0 and instrs_enable_c1. 

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = �log2�𝑚𝑚𝑚𝑚𝑚𝑚(|𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐0|, |𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐1|)�� (5.14) 

The remaining instruction bits are used to code the operands of each instruction. Figure 
5.5 shows the four resulting instruction formats. The bits marked with P represent 
optional padding bits, which might be necessary depending on the processor 
configuration. The instruction class CL requires one bit. The command_width is 
calculated based on Equation (5.14), prog_mem_depth based on Equation (5.5), and 
imm_data_width based on Equation (5.1). 

The instruction format f1 is used for branch and call instructions (Table 5.2 and Table 
5.3). The operand is the program memory address imm_address_value. The instruction 
format f2 is used to code procedure return as well as STOP and NOP instructions (Table 
5.3 and Table 5.4). These instructions do not use operands.  

The instruction formats f3 and f4 are used for arithmetic, logic, test, PUSH/POP, and 
LOAD/STORE instructions (Table 5.5, Table 5.6, Table 5.7, Table 5.8, Table 5.9, and 
Table 5.10). f3 uses three operands in order to code the address of the three GPRs: RDS, 
RS1, and RS2. The PUSH and POP instructions use just one of the three arguments. RS1 is 
used for PUSH and RDS for POP. In both cases, the GPR R0 is used for the remaining 
operands. The instruction format f4 also uses three operands. Two of them are used to 
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code GPRs and the other one is used to code an immediate value. The operands are RDS, 
RS1, and imm_data_value. For LOAD/STORE instructions, imm_data_value represents 
the address displacement. 

RDSRS1RS2commandCL P P………

imm_address_valuecommadCL P P.…

commandCL P …………………………………………… P

RDSRS1imm_data_valuecommandCL P P….

f1

f2

f3

f4

1 command_width prog_mem_depth

1 command_width

1 command_width GPR_code_width

1 command_width imm_data_width

0instruction_width-1

GPR_code_width GPR_code_width

GPR_code_width GPR_code_width

 
Figure 5.5: Instruction formats 

GPR_code_width is the number of bits required to code a GPR address. It is calculated as 
follows: 

 𝐺𝐺𝐺𝐺𝐺𝐺_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = ⌈log2(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑛𝑛𝑛𝑛𝑛𝑛)⌉ (5.15) 

The instruction_width is calculated depending on the maximum width of the operands. 
This value is known as max_op_width and is calculated based on the arguments of f1, f3, 
and f4. Equations (5.16) and (5.17) show the formulas. 

𝑚𝑚𝑚𝑚𝑚𝑚_𝑜𝑜𝑜𝑜_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,

3 ∙ 𝐺𝐺𝐺𝐺𝐺𝐺_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ,
2 ∙ 𝐺𝐺𝐺𝐺𝐺𝐺_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ + 𝑖𝑖𝑖𝑖𝑖𝑖_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

� (5.16) 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = 1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ + 𝑚𝑚𝑚𝑚𝑚𝑚_𝑜𝑜𝑜𝑜_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ (5.17) 

5.2.4 Interrupts and exceptions 

Interrupts and exceptions are unexpected events that required the disruption of the normal 
flow of program execution. In the ROBSY processor, an interrupt is defined as an 
unexpected event from outside the processor, while an exception is defined as an 
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unexpected event from within the processor. An exception is triggered due to an 
anomalous condition that appears during program execution. 

Although interrupts are not considered for the ROBSY approach, they are included for 
future use. When an interrupt is triggered, the ROBSY processor suspends normal 
program execution and starts the interrupt service routine (ISR). Nested interrupts are not 
supported. If an exception is activated the processor automatically stores a code 
representing the exception cause in the exception code SFR. Depending on the type of 
exception, it stops program execution or starts the exception service routine (ESR). There 
are two program memory addresses reserved for the ISR and ESR, which are defined as 
follows: 

 𝐼𝐼𝐼𝐼𝐼𝐼_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ − 2 (5.18) 

 𝐸𝐸𝐸𝐸𝐸𝐸_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ − 1 (5.19) 

The number of interrupts (interrupts_num) is configurable but limited by the processor 
data_width. This limitation is necessary in order to use a single SFR for the 
implementation of the interrupt register and mask. It is the job of the ESW to identify the 
triggered interrupt. The value of interrupts_num is: 

 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑛𝑛𝑛𝑛𝑛𝑛 = |𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|, 𝑤𝑤𝑤𝑤𝑤𝑤ℎ |𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖| ≤ 𝑑𝑑𝑎𝑎𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ (5.20) 

The ROBSY processor is able to identify five different exception causes. The exception 
code SFR is five bits wide. Three bits are used to code the exception, while two additional 
bits are used to signal if the exception is currently active and if the ESR is being executed. 
Table 5.12 presents the exception cause and the corresponding exception code. The first 
four exceptions are treated as fatal errors, causing the processor to stop execution. The 
I/O transaction error causes the execution of the ESR. 

Cause Exception code 

Normal operation 000 

Stack overflow 001 

Stack underflow 010 

Undefined class 0 instruction 011 

Undefined class 1 instruction 100 

I/O transaction error 101 

Table 5.12: Exception codes 
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5.3 Microarchitecture 

The microarchitecture —also known as the processor organization— represents the way a 
given ISA is implemented. Microarchitecture attributes include those hardware details 
that are transparent to the programmer, such as operational units and interconnections 
[142]. This section presents the main features of the microarchitecture of the ROBSY 
processor considering the configuration parameters. 

5.3.1 Top level view 

The ROBSY processor is classified as a single instruction single data (SISD) processor 
with separate address spaces (Harvard machine). Figure 5.6 shows the top level view 
together with the debug-interface, I/O bus, and co-processors. 
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Figure 5.6: ROBSY processor top level view 

The processor is composed of six main modules, three physically separate memories 
(program, stack, and data memories), a stack controller, a data controller, and a central 
processing unit (CPU). It has a single clock and reset port, and an interrupt input port. 
The I/O bus is the physical link between the processor and co-processors, and is 
implemented based on the Wishbone standard (Section 4.3.3.2). The debug-interface has 
access to the processor memories and the CPU through dedicated ports. Section 5.4 
presents detailed information about the debug-interface. 
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5.3.2 Program, data, and stack memories 

The ROBSY processor has a program memory to store instructions, a data memory to 
store data such as variables, and a stack memory to store data and return addresses. These 
memories have different sizes, and therefore are physically separate in order to store a 
value in a single address location using a single clock cycle. Otherwise, multiple memory 
accesses would be necessary to access them, resulting in longer processing time and a 
higher utilization of resources. The size of the stack memory is defined based on 
stack_mem_depth and stack_width (Equations (5.9) and (5.10)), the size of the program 
memory based on prog_mem_depth and instruction_width (Equations (5.5) and (5.17)), 
and the size of the data memory based on data_width and data_mem_depth (Equations 
(5.4) and (5.6)). 

They are implemented using the synchronous dual port memory blocks found in the 
FPGA. One port is connected to the processor, and the other one is connected to the 
debug-interface. In this way, it is possible to access the memory content through the 
debug-interface without stopping the processor execution. The memory blocks are 
inferred based on a generic VHDL description [129], which allows using the same code 
for FPGAs of different families and vendors. 

5.3.3 Data controller 

The data controller is in charge of multiplexing the access to the Wishbone bus and data 
memory, depending on the effective address sent by the CPU through the data interface 
unit. In the case that the address corresponds to a data memory location, the CPU signals 
are forwarded to data memory. Otherwise, the Wishbone bus starts an I/O transaction. 
The width of the Wishbone data and address buses is data_width and data_space_depth, 
respectively. 

The data controller implements the Wishbone protocol by means of the finite state 
machine (FSM) presented in Figure 5.7. During an I/O transaction, the state machine 
leaves the idle state, performing the state transitions represented by the green arrows. If 
an I/O transaction error occurs, the state machine reaches the error state (red arrows). In 
the error state, the data controller signalizes the CPU of an I/O transaction error, causing 
the triggering of an exception. The implementation of the I/O bus protocol supports a 
configurable number of wait cycles (wait state), a single master as part of the on-chip bus, 
and single write and read transactions. 
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Figure 5.7: Data controller finite state machine 

5.3.4 Stack controller 

The stack controller manages the access to the stack memory. It is in charge of accessing 
the stack, setting the empty and full status flags based on the status of the stack memory, 
and incrementing or decrementing the stack pointer (SP). The SP points out to the 
memory address in which the last value was stored. In this way, it is possible to read the 
stack during a POP or return instruction in a single clock cycle. 

The stack controller is a state machine that handles the status flags and errors caused by 
pushing to a full stack (stack overflow) or popping from an empty stack (stack 
underflow). In the case of an error, the stack controller signalizes the error to the CPU. 
Figure 5.8 shows the FSM. 

empty_ 
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nonempty_ 
stack full_stack

 
Figure 5.8: Stack controller finite state machine 

5.3.5 Central processing unit 

The CPU represents the core of the processor. It is composed of 11 units: control, IR, PC, 
GPR, SFR, test, interrupt, exception, ALU/Shifter, stack interface, and data interface 
units. Additionally, it can be configured as a multicycle or three stage pipeline unit. 
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5.3.5.1 Pipelining 

If the configuration parameter pipeline_set is set to true, the ROBSY processor is 
implemented as a pipelined processor. Otherwise, it is implemented as a multicycle 
processor. The multicycle processor executes each instruction one at a time using 
multiple clock cycles. On the other hand, the pipelined processor is equipped with a three 
stage pipeline that allows processing three instructions at the same time. The three stages 
correspond to instruction fetch (IF), instruction decode (ID), and execute (EX). 
Additionally, the processor supports operand forwarding multiplexers that avoid stalling 
the pipeline due to data dependencies. Figure 5.9 presents a simplified illustration of the 
three pipeline stages. 
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Figure 5.9: Three-stage pipelined processor 

A memory access stage was not implemented in the ROBSY processor. The reasons for 
this are the absence of a data cache and the use of a small dedicated arithmetic module 
that computes effective addresses during the EX stage. This module is located in the data 
interface unit. In the same way, a write back stage was not included in the processor. 
Experiments were carried out with a three stage (no write back) and four stage (with write 
back) ROBSY processor implementations [143]. It was shown that the four stage 
processor requires approximately 10% more resources in comparison to the three stage 
processor. The additional resources and the design complexity of a four stage pipeline 
were the determinant factors for the implementation of a three-stage pipelined processor. 

5.3.5.2 Control unit 

The CPU control unit is in charge of controlling all other units. It is implemented using a 
FSM, which operates based on the instruction being processed, interrupt and exception 
triggers, and control signals coming from the debug-interface. 

The implementation of the FSM depends on pipeline_set because the multicycle and 
pipeline processors require different FSMs. Figure 5.10 presents the state diagrams of 
both FSMs, in which the black arrows are state transitions performed during normal 
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instruction execution flow. Blue arrows correspond to state transitions performed in case 
of an interrupt or exception trigger, and red arrows correspond to state transitions 
performed in case of a fatal error (Section 5.2.4). 
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Figure 5.10: FSM of multicycle (left) and pipeline (right) processor 

The FSM of the multicycle processor (Figure 5.10 left) has seven states. The five states 
that describe the normal instruction execution flow are instruction fetch (inst_fetch), 
instruction decode (inst_decode), operand fetch (op_fetch), memory write (mem_write), 
and execute (execute). inst_fetch and inst_decode represent the instruction fetch and 
decode actions. Transitions to op_fetch or mem_write are performed during the execution 
of a LOAD or STORE instruction, respectively. The execute state is reached during the 
execution of any other instruction (e.g. arithmetic, logic, and test instructions), or after an 
operand fetch (LOAD instruction). The interrupt request state (irq) is used to start the 
execution of an ISR or ESR. In the case of an interrupt, the transition to the irq state takes 
place after the execution of the actual instruction. A transition to the stop state takes place 
in case of a fatal error, a STOP instruction, or a stop signal from the debug-interface. 

The FSM of the pipelined processor (Figure 5.10 right) has eleven states. The processor 
remains in the ready state during the execution of arithmetic, logic, and test instructions. 
The state machine leaves the ready state in order to attend interrupt or exception requests, 
stop the processor, or insert bubbles (delays) in the pipeline. The latter might be necessary 
during the execution of branching instructions, procedure calls, LOAD, STORE, PUSH, 
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and POP instructions. The transition to irq and stop states works in a similar way as in the 
FSM of the multicycle processor. 

5.3.5.3 Program counter and instruction register units 

The program counter unit (PC unit) fetches an instruction from program memory. It 
computes the address of the next instruction to fetch either by incrementing the PC or by 
updating the PC with an absolute address value. The absolute address value is obtained 
from a branch or procedure call instruction. 

The instruction register unit (IR unit) stores the instruction or instructions (pipeline 
implementation) that are being executed. In the case of the pipeline processor, there is an 
IR for every pipeline stage. When an interrupt or exception is triggered, the IR unit is 
responsible of loading a CALL_C in the IR with the program address of the service 
routine. This is performed when the state machine of the control unit reaches the irq state. 

5.3.5.4 Stack and data interfaces 

The stack and data interfaces implement the link between the CPU and the stack and data 
controllers. They are used to start a data transfer to/from the stack memory, SFRs, data 
memory, or I/O. 

The stack interface is in charge of managing data transfers to/from stack memory. For this 
purpose, a mechanism based on push and pop control signals is implemented between the 
stack interface and the stack controller. The data interface computes the effective data 
space address based on the page pointers, the base register, and the displacement. 
Depending on the region pointed out by the address, the data interface starts an external 
data transfer through the data controller unit or an internal data transfer with the SFR unit. 

5.3.5.5 GPR and SFR units 

GPRs and SFRs are found in the GPR and SFR units, respectively. GPRs are 
implemented based on FPGA registers or memory blocks, while SFRs are implemented 
based on FPGA registers. 

The configuration parameter GPR_mem defines the implementation mechanism of the 
GPRs. When this parameter is true, GPRs are implemented using the FPGA memory 
blocks. Otherwise, they are implemented using FPGA registers. In the case that memory 
blocks are used for the pipeline processor implementation, it is necessary to use two true 
dual port memory instances in order to provide enough read and write ports for the 
pipelined processor. 
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5.3.5.6 ALU/Shifter and test unit 

ALU, shifter, and test units perform the arithmetic, logic, shifting, and test instructions 
supported by the processor. Additionally, these units are responsible of properly setting 
the carry, zero, sign, and overflow flags. 

The ALU performs addition, subtraction, and bitwise logic functions. It is implemented 
by means of FPGA look-up tables (LUTs). The shifter carries out shifting and rotation 
instructions. It is implemented as a barrel shifter or multiplier based on the value of the 
configuration parameter shifter_mult. If shifter_mult is false, the barrel shifter is 
implemented in a multiplexer topology using FPGA LUTs. If shifter_mult is true, the 
shifter is implemented using the multipliers available in the FPGA. The test unit is 
implemented as a combinational function that performs a LFSR operation and sets the 
flags properly. For this purpose, the FPGA LUTs are used. 

5.3.5.7 Interrupt and exception units 

Interrupt and exception units manage interrupt requests and occurrence of exceptions. 
They generate the signals required by the control, SFR, PC, and IR units in order to start 
the execution of an ISR or ESR. 

The interrupt unit uses a global interrupt mask that prevents nested interrupts, and that is 
also controlled by the CALL_C and RET_C instructions. The interrupt unit reacts to 
external interrupt requests and signalizes the CPU that the ISR has to be executed. 

The exception unit is equipped with an FSM with three states (Figure 5.11). Each state 
represents a different execution mode: normal execution (normal_ex), exception 
execution (exception_ex), and fatal error (fatal_error). The state machine remains in 
normal_ex until an exception is triggered. If the exception trigger is produced by an I/O 
transaction error, the FSM goes to the exception_ex state, and signalizes the CPU that the 
ESR has to be executed. The FSM remains in this state until the exception service routine 
ends (blue arrows). The FSM performs a transition to fatal_error if the exception cause is 
not an I/O transaction error, or if a new exception is triggered during the ESR (red 
arrows). The arrival to the fatal_error state informs the CPU state machine that it has to 
stop program execution. 

normal_ex exception_ 
ex fatal_error

 
Figure 5.11: FSM of exception module 
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5.4 Debug-Interface 

As discussed in Section 4.3.3, the debug-interface is the communication link between the 
processor and the ATE. Therefore, it is used for communication and debugging purposes. 
In the same way as the ROBSY processor, it is equipped with configuration parameters 
that allow its adaptation to the processor and test scenario. It is described in VHDL using 
standard language constructs. However, an FPGA-dependent JTAG primitive is necessary 
to access JTAG signals and TAP state information. This primitive cannot be inferred 
using a generic VHDL description. 

5.4.1 Debug-commands 

The debug-interface supports 23 debug-commands used with the multicycle or pipelined 
processor. Table 5.13 presents a description of each command. The first column is the 
command name, the second column shows commands executed only in the stop state 
(Figure 5.10), and the last column provides a brief description of each command. 

Debug-command Stop Description 

SINGLE_STEP X Processor executes a single instruction. CPU control unit returns to stop state. 

HALT  Processor stops program execution. CPU control unit goes to stop state. 

CONTINUE X Processor resumes program execution. CPU control unit leaves stop state. 

RESET  Processor is reset. Program execution is restarted from program address 0. 

PROG_MEM_READ  Content of a single program memory cell is read. 

PROG_MEM_WRITE  Content of a single program memory cell is written. 

DATA_MEM_READ  Content of a single data memory cell is read. 

DATA_MEM_WRITE  Content of a single data memory cell is written. 

STACK_MEM_READ  Content of a single stack memory cell is read. 

STACK_MEM_WRITE  Content of a single stack memory cell is written. 

CPU_STATE_READ  State of the CPU control unit is read. 

GPR_READ  Content of a single GPR is read. 

GPR_WRITE X Content of a single GPR is written. 

SFR_READ  Content of a single SFR is read. 

SFR_WRITE X Content of a single SFR is written. 

PC_READ X Content of the PC is read. Value read is address of last executed instruction. 

PC_WRITE X Content of the PC is written. 

SP_READ  Content of the SP is read. 

IR_READ  Content of the IR is read. 

BREAK_POINT_READ  Address and activation value of a single break point is read. 

BREAK_POINT_WRITE  Address and activation value of a single break point is written. 

INTERRUPT_READ  Information about the execution of an interrupt service routine is read. 

DEBUG_ID_READ  Identification value of the debug-interface is read. 

Table 5.13: Debug commands 
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The debug-commands HALT, CONTINUE, RESET, DATA_MEM_READ, 
DATA_MEM_WRITE, CPU_STATE_READ, and DEBUG_ID_READ are necessary for 
the ATE/FBTS communication. DEBUG_ID_READ represents an alternative to test the 
communication link. HALT, CONTINUE, and RESET are used for synchronization 
purposes, and DATA_MEM_READ and DATA_MEM_WRITE are used to exchange 
information between ATE and processor. 

Loading a new program to the processor program memory is performed by means of the 
PROG_MEM_READ and PROG_MEM_WRITE debug-commands. The other 
commands are used for debugging, and are not necessary during test execution. 

5.4.2 Access to the JTAG port 

The debug-interface has access to the JTAG port based on the JTAG primitive. In order to 
understand how this primitive works, it is necessary to take a look at the architecture of 
an IEEE 1149.1 compliant FPGA. For this purpose, Figure 5.12 illustrates the JTAG 
components and interconnections included in an FPGA. The components are TAP 
controller, JTAG IR and DRs, and at least one private (or user) DR. The latter is accessed 
through the JTAG primitive. 
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Figure 5.12: JTAG components and interconnections in an FPGA device 

The JTAG primitive provides access to the JTAG ports TDI, TDO, TCK, and additional 
signals that inform the actual state of the TAP controller. The interface to the user logic is 
FPGA dependent and is considered by the debug-interface VHDL description. 
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5.4.3 Structure of the debug-interface 

The debug-interface uses two debug DRs, which are accessed through the FPGA private 
DR. One of the debug DRs is the debug command register, while the other one is the 
debug data register. The former is used to shift in the debug-command, and the latter is 
used to shift in and out data values associated to the command. 

Figure 5.13 presents the block diagram of the debug-interface. The structure is very 
similar to the IEEE 1149.1 architecture given that the debug command and data register 
are connected between the TDI and TDO signals in the same way as any other JTAG DR. 
Additionally, the debug-interface has a sub-module that implements the functions 
required for every command. 
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Figure 5.13: Block diagram of the debug-interface 

The debug-interface has two groups of ports. The first group comprises ports accessed 
through the FPGA private DR. These ports are TCK, TDI, TDO, and control signals 
representing the actual state of the TAP controller. The second group are processor debug 
ports that connect the debug-interface to the processor. 

5.4.3.1 Debug command register and debug data register 

The width of the debug command and data registers depends on the configuration options 
of the debug-interface and processor. The number of bits required to code a debug 
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command (deb_command_reg_width) depends on the commands that are enabled. In this 
case, the maximal width is five bits, which is obtained when the 23 commands are 
enabled. The debug command register width is described as follows: 

 𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑟𝑟𝑟𝑟𝑟𝑟_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = ⌈log2(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)⌉ (5.21) 

The width of the debug data register (deb_data_reg_width) depends on the processor 
configuration and debug commands enabled. It is computed as follows: 

𝑑𝑑𝑑𝑑𝑑𝑑_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑟𝑟𝑟𝑟𝑟𝑟_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = max

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ,
  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ,
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ,
𝐺𝐺𝐺𝐺𝐺𝐺_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ,
⌈log2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑛𝑛𝑛𝑛𝑛𝑛)⌉,

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ + 1⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 (5.22) 

It seems that some factors in Equation (5.22) are redundant. However, depending on the 
debug-commands that are disabled, some of the factors are not considered. For example, 
the last factor of the equation is not necessary if the break point commands are disabled. 

Figure 5.14 shows the switching FSM included in the debug-interface. It is used to 
synchronize shifting operations to both debug registers based on a single FPGA private 
DR. In this way, additional private DRs are available for other purposes. 

command_
shift

data_shift

 
Figure 5.14: Switching state machine 

The FSM toggles between command_shift and data_shift states at the end of every data 
shift cycle of the TAP controller. There is an exchange of information between the ATE 
and debug command register when the state machine is in the command_shift state, 
whereas the exchange of information between the ATE and debug data register takes 
place when the state machine is in the data_shift state. 
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5.4.3.2 Finite state machine 

The FSM of the debug-interface is used to coordinate all steps necessary to process each 
debug-command. There is one FSM for the multicycle processor and another FSM for the 
pipelined processor. Figure 5.15 shows the state diagrams of both FSMs. 
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Figure 5.15: FSM of debug-interface for multicycle (left) and pipeline(right) processor 

Inputs to the FSMs are the debug-command shifted in the debug command register and 
the switching signal from the switching FSM. The cd_shift_# states are states, in which 
the command and data values are shifted in the debug registers. A transition to a store_# 
or execute_# state is performed after the end of command and data shifts. The store_00 
state is used to store the information shifted in the debug data register for a later used. The 
execute_# states are used to interact with the processor. 

Both FSMs have two basic transition paths: cd_shift_00, store_00, cd_shift_01, 
execute_00 (red arrows), and cd_shift_00, execute_00 (blue arrows). The blue transition 
path represents the execution of debug commands that shift in/out a single data value 
to/from the debug data register. This is the case of SINGLE_STEP, HALT, CONTINUE, 
RESET, CPU_STATE_READ, PC_WRITE, SP_READ, BREAK_POINT_READ, 
BREAK_POINT_WRITE, INTERRUPT_READ, and DEBUG_ID_READ commands. 
The red transition path represents the execution of debug commands that shift in/out two 
values to/from the debug data register. This is the case of the remaining commands. For 
example, PROG_MEM_READ requires shifting in an address and shifting out the value 
read from program memory. 

The FSM of the pipelined processor includes a third transition path represented by the 
green arrows (cd_shift_00, execute_10, cd_shift_10, execute_11, cd_shift_11, 
execute_00). This path is used for the PC_READ and IR_READ commands in order to 
read the PC and IR values of fetch, decode, and execute pipeline stages. 
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5.5 Configuration parameters 

Configuration parameters are used to adapt ROBSY processor and debug-interface to the 
test scenario. The assignment of values to these parameters is performed before synthesis. 
In this way, it is possible to save resources because processor functions not required for a 
given test scenario are not implemented. 

Table 5.14 presents the configuration parameters, which are grouped in three classes: 
ISA, microarchitecture, and debug-interface. The first column defines the class, the 
second columns the parameter name, and the third column the data type of the parameter. 
The last column presents a short description of the configuration parameter. 

Class Parameter Type Description 

ISA 

instruction_enable Boolean Enables/disables each of the 50 instructions. 

instruction_code Natural Sets instruction command code value. 

data_width Natural Sets processor data width. Equation (5.4). 

short_imm_set Boolean Sets value of imm_data_width. Equation (5.1). 

GPRs_num Natural Sets number of GPRs. Equation (5.2). 

SFRs_num Natural Sets number of SFRs. Equation (5.3). 

prog_mem_depth Natural Sets depth of program memory. Equation (5.5). 

stack_mem_depth Natural Sets depth of stack memory. Equation (5.9). 

data_mem_depth Natural Sets depth of data memory. Equation (5.6). 

IO_addr_num Natural Sets number of I/O addresses. Equation (5.7). 

interrupts_num Natural Sets number of interrupts. Equation (5.20). 

Micro-
architecture 

GPR_mem Boolean GPRs with FPGA memory blocks or registers. 

shifter_mult Boolean Shifter with FPGA multipliers or LUTs. 

pipeline_set Boolean Enables/disables the processor pipeline. 

wb_retries_num Natural Sets number of retry cycles of Wishbone bus. 

wb_waits_num Natural Sets number of wait cycles of Wishbone bus. 

Debug-
interface 

deb_command_enable Boolean Enables/disables each of the 23 debug-commands. 

deb_comand_code Natural Sets debug command code value. 

Table 5.14: Configuration parameters 

The ISA configuration parameters influence the instruction set, native data type, registers, 
memory, I/O, and interrupts. The first two parameters of Table 5.14 disable/enable each 
of the 50 instructions supported by the processor and define the value of the instruction 
command code. The other ISA configuration parameters define the processor native data 
type width, depth of memories, and number of GPRs, SFRs, I/O, and interrupts. 

Based on the ISA parameters, other properties of the processor are automatically 
computed. They are the instruction width (Equation (5.17)), the width of the program, 
data, and stack memories (Equations (5.17), (5.4), and (5.10)), and the number of page 
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pointer registers (Equation (5.11)). The width of the debug data register is also computed 
as presented in Equation (5.22). 

The microarchitecture configuration parameters affect properties of the processor that are 
not visible to the programmer. Configurability at this level allows adding, removing, or 
substituting functions and components of the processor without affecting the ISA. In the 
ROBSY processor, the microarchitecture configuration parameters are used to define the 
implementation mechanism of the barrel shifter and GPRs, implementation of the pipeline 
stages, and properties of the Wishbone bus. The latter are required to delimit the maximal 
number of wait and retry cycles allowed during an I/O transaction. 

The last configuration parameter class corresponds to the debug-interface parameters. It is 
possible to enable/disable debug-commands and define the command code. Based on 
these parameters, the width of the debug command register is computed as presented in 
Equation (5.21). 

The ISA configuration parameters impact the resource utilization and test time. They also 
make necessary to adjust the processor development tools (complier, assembler, 
instruction set simulator, etc.). Additionally, the ATE has to know the value of some of 
the ISA configuration parameters for communication purposes. For example, in order to 
write to or read from data memory, the ATE has to know the data_width and 
data_mem_depth values. The microarchitecture configuration parameters impact the 
resource utilization and test time. On the other hand, the debug-interface configuration 
parameters only affect the resource utilization. 

5.6 Summary 

This chapter presented the design and implementation details of the ROBSY processor 
and debug-interface. The instruction set comprises 50 instructions used for branches, 
procedure calls, load and store transactions, and arithmetic, logic, and test operations. The 
test instructions are based on the emulation of an LFSR. 

The processor supports fixed-point values with a configurable width, and is equipped 
with GPRs, SFRs, and three separate address spaces known as program, data, and stack 
spaces. Program and stack address spaces represent the program and stack memories, 
while the data address space represents the data memory, SFRs, and I/O. PC and SP 
address the program and stack spaces. A page pointer implemented based on GPRs 
addresses the complete data space. The processor supports a configurable number of 
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interrupts and six exceptions to manage error conditions triggered during program 
execution. 

The processor microarchitecture has six main modules, three physically separate 
memories (program, stack, and data), a stack controller, a data controller, and a central 
processing unit (CPU). The processor works with a single clock and reset signals, and it 
has an interrupt input port. It supports a multicycle operation mode as well as a three 
stage pipeline mode. The I/O bus is implemented based on the Wishbone standard. 

The debug-interface supports 23 debug-commands. These commands make it possible to 
control the test program execution and exchange test information with the ATE. The 
debug-interface is described in VHDL using standard language constructs, but it is 
necessary to include an FPGA dependent JTAG primitive in order to access JTAG signals 
and TAP state information. 

The adaptation mechanism of the ROBSY processor and debug-interface is based on 
configuration parameters, whose values are defined before synthesis. The configuration 
parameters are grouped in three classes: ISA, microarchitecture, and debug-interface. 
They influence the way the processor and debug-interface are implemented, altering the 
processor resource utilization and execution time. Chapter 6 presents the mechanism used 
to define the value of the configuration parameters automatically, and Chapter 7 presents 
the effect that these parameters have on the resource utilization and test time. 
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6 Automatic generation process 

6.1 Introduction 

The automatic generation of the test system is essential for the viability of any FBT 
approach. It reduces costs, accelerates test development, and minimizes errors caused by 
the human factor. 

In the ROBSY approach, the automatic generation process is in charge of the generation 
of software (SW) for the ATE, embedded software (ESW) for the ROBSY processor, and 
hardware (HW) descriptions for co-processors and the complete FBTS. Additionally, the 
automatic generation process is in charge of determining proper values for the processor 
and debug-interface configuration parameters. 

This chapter presents the automatic generation process of the test system for an FBTS 
with a single processor/co-processor pair, in which the main emphasis lies on the ESW 
generation and the adaptation of the processor. Section 6.2 presents an overview of the 
automatic generation process. Section 6.3 deals with the automatic generation of SW for 
the ATE. Section 6.4 deals with automatic generation of ESW and HW and the 
assignment of values for the processor and debug-interface configuration parameters. 
Finally, section 6.5 presents a summary of the chapter. 

6.2 Overview of the automatic generation process 

Figure 6.1 shows an overview of the automatic generation process for a single DUT-M. 
The DUT-M is the main source of information for the generation process because it 
contains the description of the DUT I/Os, timing, and electrical properties, as well as the 
layer procedures specifying the test algorithms. Based on the DUT-M description, the 
automatic generation process produces SW for the ATE, ESW for a processor, and HW 
for a co-processor. 

The first step of the generation process is the layer partitioning, which defines the 
location of interfaces I2 and I3, and therefore the layers that should be implemented in 
SW, ESW, and HW. As already presented in Section 3.4.6, there are 6 possible layer 
partitions considering that L1 and L5 are always implemented in HW and SW, 
respectively. 
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After the layer partitioning is performed, layers that should be implemented in SW, ESW, 
and HW are the input to the ATE program generator and FBTS generator. In this case, 
DUT I/Os, timing, and electrical properties described in the DUT-M are grouped together 
with the HW layer procedures because they are required for the implementation of L1 and 
the generation of additional files used by the synthesis tool (e.g. pin assignment file). 

Layer partitioning
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program 

generator

SW layer 
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ESW layer 
procedures

HW layer 
procedures
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generator

Additional 
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FPGA 
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Figure 6.1: Overview of automatic generation process for a single DUT-Model 

The ATE program generator is in charge of producing the test program and auxiliary files 
required by the ATE. For this purpose, additional information is passed to the generator, 
which corresponds to the ATE software tool and the structure of the BScan chain. Apart 
of the SW layer procedures, processor/debug-interface information generated by the 
FBTS generator depending on the value of the processor and debug-interface 
configuration parameters is also passed to the ATE program generator. Section 6.3 
presents the ATE program generator in more detail. 

The FBTS generator produces the FPGA configuration file and the object code executed 
by the ROBSY processor. Additionally, the FBTS generator is responsible of assigning 
values to the processor and debug-interface configuration parameters, compiling and 
assembling the ESW layer procedures, and generating the co-processor and FBTS 
hardware descriptions. Furthermore, it is responsible of synthesizing the hardware 
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descriptions based on the corresponding FPGA synthesis tool. Section 6.4 presents the 
FBTS generator in more detail. 

6.3 ATE program generator 

Figure 6.2 shows the ATE program generator. It consists of a SW compiler and an 
auxiliary SW generator. The SW compiler generates the ATE test program, while the 
auxiliary SW generator generates auxiliary files required by the ATE. 
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description

 
Figure 6.2: ATE program generator 

6.3.1 ATE/FBTS communication 

Before presenting details of the SW compiler and auxiliary SW generator, it is necessary 
to explain the ATE/FBTS communication mechanism. The data exchange between ATE 
and FBTS takes place through the JTAG interface and the debug command and data 
registers of the debug-interface. In this case, the ATE takes the role of the active 
communication participant, while the processor takes the role of the passive participant. 

The ATE sends an identification tag in order to inform the processor which procedure of 
the highest layer implemented in ESW to execute. After that, it sends the value of the 
procedure arguments of type IN and INOUT. After the arguments are sent, the ATE sends 
a start command that indicates the processor to start execution. At this point, the ATE 
waits until the FBTS finishes the execution of the ESW and HW layer procedures by 
polling the corresponding status flag. When the FBTS finishes execution, the ATE 
acquires the value of the procedure arguments of type OUT and INOUT. An example of 
DUT-M procedures is presented in Table 7.2. 
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In the case that the FBTS is equipped with two performance counters (active time and test 
time counter) to measure execution time, the ATE has to send the proper information to 
initialize them and receive their content. Section 7.2.4 provides more information about 
the performance counters. 

The steps carried out during the ATE/FBTS communication considering the amount of 
data transfers (DTs) are as follows: 

1. Initialization of test time counter (3 DTs). 
2. Initialization of ESW procedure. 

a. Send of procedure identification tag (1 DT). 
b. Send value of arguments of type IN and INOUT (x DTs). 
c. Acquisition of processor status (1 DT). 
d. Send start command (1 DT). 

3. Poll processor status (p DTs). 
4. End ESW procedure. 

a. Acquisition of argument values of type OUT and INOUT (y DTs). 
b. Acquisition of the active time counter content (1+c DTs). 

5. Acquisition of the test time counter content (3+c DTs). 

Steps 1 and 5 are performed at the beginning and end of test execution, respectively. 
Steps 2 to 4 are performed each time that a procedure belonging to the highest layer 
implemented in ESW is called by a SW layer procedure. A DT is a single access to the 
debug-interface, which typically comprises four independent JTAG shifting operations. 
The amount of DTs required for sending or acquiring argument values (x and y) depends 
on the processor data_width and the number and width of arguments. The amount of DTs 
required to acquire the counter values (c) depends on the processor data_width and the 
counters width. The amount of data-transfers performed during polling (p) depends on the 
time that the ATE has to wait until the processor executes the ESW procedure. Due to the 
layer concept, the execution of the ESW procedure also involves the execution of 
procedures belonging to lower layers. 

A region of the processor data memory is reserved for the ATE/FBTS communication. 
This region is used to share procedure tags, argument values, performance counter values, 
and start and finish conditions. During the test execution, there is no need to use all the 
features of the debug-interface. Therefore, only the following debug-interface commands 
are required: 

• HALT, CONTINUE, RESET, DATA_MEM_READ, DATA_MEM_WRITE, 
CPU_STATE_READ, SFR_READ, SFR_WRITE, DEBUG_ID_READ. 
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6.3.2 Software compiler 

The SW compiler is in charge of parsing SW layer procedures for the generation of the 
ATE test program. For this purpose, it needs to know the tool used by the ATE to execute 
the test program. In Section 6.3.3 more information about the supported tools is provided. 

The ATE/FBTS communication is realized based on wrapper procedures. These wrappers 
are added automatically to the test program, and they describe the steps explained in 
Section 6.3.1. The SW compiler makes use of the processor/debug-interface information 
delivered by the FBTS generator for this purpose. This information corresponds to the 
processor and debug-interface configuration parameters data_width, data_mem_depth, 
deb_comand_code, and deb_comand_enable. In the same way, the start address of the 
region in the processor data memory used for communication purposes is part of the 
processor/debug-interface information. 

The SW compiler is composed of a lexical analyzer and a parser that translates SW layer 
procedures to the language supported by the ATE tool. The GNU tools FLEX (lexical 
analyzer generator) and Byson (parser generator) were used for the development of the 
SW compiler. For this purpose, the Cygwin Unix-like environment was used. 

6.3.3 Auxiliary software generator and supported ATE tools 

The auxiliary SW generator generates additional auxiliary files required by the ATE tool. 
For this purpose, the auxiliary SW generator makes use of most of the processor/debug-
interface information delivered by the FBTS generator. This information corresponds to 
the deb_comand_code, and deb_comand_enable configuration parameter values, as well 
as the processor configuration parameter values necessary to compute the size of the 
debug-interface command and data registers (Equations (5.21) and (5.22)). 

The current version of the SW generator supports two ATE tools. The first one is Nebula 
from Intellitech [144], which interprets test programs written on a procedural description 
language (PDL) that is not 100% in compliance with the PDL specified in the IEEE 
1149.1-2013 standard [1]. The main differences between the PDL supported by Nebula 
and the standard are as follows: 

• Standardized level-0 instructions iProc and iProcGroup are not supported by 
Nebula. 

• Level-0 instruction iScope is supported by Nebula but it is not included in the 
standard. 
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The second tool is quartus_stp from Altera [145], which interprets scripts written in the 
Tool Command Language (TCL). This tool is compatible with Altera FPGAs only. 

If Nebula is used, the SW compiler transforms the SW layer procedures to PDL level-1. 
In this case, the auxiliary SW generator produces a BScan chain file, a BScan description 
language (BSDL) file, and an auxiliary PDL file. These files are generated based on a set 
of templates or descriptions that are either developed by the test engineer or are part of a 
library. The BScan chain file describes the structure of the BScan chain on the PCB, and 
it is generated based on a BScan chain description file. The BSDL file corresponds to the 
FPGA BSDL description. This file is generated based on a BSDL template of the FPGA 
and updated with the debug command and data registers of the debug-interface, the JTAG 
instructions required to access them, and mnemonics of the debug-interface command 
codes. The auxiliary PDL file describes all shifting operations required to execute each of 
the debug-interface commands. 

If instead of Nebula, the quartus_stp tool is used, the SW compiler transforms the SW 
layer procedures to a TCL script. In this case, the auxiliary SW generator produces a 
single auxiliary file, which includes the description of the debug-interface command and 
data registers, the debug-interface command codes, and the TCL procedures that describe 
all shifting operations required to execute each of the debug-interface commands. In this 
case, there is no need for a BScan chain or BSDL description file because the quartus_stp 
tool is able to identify the Altera FPGA found on the PCB automatically. 

The auxiliary SW generator is implemented in TCL. This script reads the required 
information and generates the corresponding auxiliary files. 

6.4 FPGA based test system generator 

Figure 6.3 presents the FBTS generator, which is composed of the ESW generator, HW 
generator, and synthesis tool. The ESW generator produces object code and 
processor/debug-interface information required by the SW and HW generators. The 
inputs are the ESW layer procedures and a subset of configuration parameters known as 
the independent configuration parameters (Section 6.4.2). The HW generator produces 
the FBTS description and additional files required by the synthesis tool such as FPGA 
constraints and pin assignment files. This is carried out based on the HW layer 
procedures, PCB netlist and constraints, and the outcome of the ESW generator. The 
synthesis tool is in charge of producing the FPGA configuration file. 
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The dashed arrow in Figure 6.3 indicates that it is not mandatory to use the object code as 
input to the HW generator. In the case that the object code is used as input, the content of 
the processor’s program and data memories is initialized with the object code and 
becomes part of the FPGA configuration file. Otherwise, the ATE has to load the object 
code to the processor memories after the FPGA is configured. Using the ATE to write to 
program memory provides a way to change the functionality of the FBTS without 
reconfiguring the FPGA. 
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Figure 6.3: FBTS generator 
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6.4.1 Processor/co-processor communication 

Before presenting the details of the FBTS generator, it is necessary to explain the 
processor/co-processor communication mechanism. The communication mechanism is 
very similar to the ATE/FBTS communication mechanism presented in Section 6.3.1. 
However, instead of the JTAG interface and debug command and data registers, the data 
exchanged is performed based on the on-chip Wishbone bus and Wishbone registers 
included in each co-processor. In this case, the processor takes the role of the active 
communication participant, while the co-processor takes the role of the passive 
participant. 

The steps performed during the communication are the same steps performed for the 
ATE/FBTS communication with the exception that it is not necessary to exchange 
procedure identification tags. In this case, each co-processor is equipped with unique 
control and status Wishbone registers per procedure that are addressed depending on the 
procedure that should be executed. Procedure arguments are represented by Wishbone 
registers, and their number depends on the number and width of arguments and processor 
data_width. 

The Wishbone registers are mapped to the I/O address space of the processor. As shown 
in Figure 6.3, the ESW generator produces an I/O address table that contains the 
addresses assigned to all co-processor Wishbone registers. This information is used by the 
HW generator for the generation of the co-processor hardware description. 

6.4.2 Reorganization of the configuration parameters 

One of the main tasks of the FBTS generator is to determine the value of a subset of the 
processor and debug-interface configuration parameters. In this way, the ROBSY 
processor is adapted to a given test scenario and there is still some room for the test 
engineer to evaluate different test time and resource utilization trade-offs. 

For this purpose, the processor and debug-interface configuration parameters are 
reorganized in four groups. Table 6.1 presents the four groups, which are known as 
constant (independent), variable (independent), DUT-M (dependent), and ASM 
(dependent). The first column shows the name of the group, whereas the second, third and 
fourth columns show the name, type, and class of a given configuration parameter. 

The adaptation of the processor is performed by determining the proper value of the 
dependent configuration parameters. The value of the DUT-M (dependent) configuration 
parameters is computed by analyzing the ESW layer procedures of the DUT-M, whereas 
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the value of the ASM (dependent) configuration parameters is computed by analyzing the 
assembly program generated during the ESW compilation (Section 6.4.3.1). This is 
performed as follows: 

i. data_mem_depth is computed by looking at the total number of global and local 
variables found in ESW layer procedures. For this purpose, it is necessary to 
consider the width of each variable and the relations between callers and callees. 

ii. stack_mem_depth is computed by looking at the relations between callers and 
callees found in ESW layer procedures. The stack is used to store memory 
pointers and return addresses of the procedures. 

iii. IO_addr_num is computed by looking at the arguments of procedures belonging 
to the highest layer implemented in HW. For this purpose, it is necessary to 
compute the total number of Wishbone registers required by the co-processor. 

iv. instruction_enable and instruction_code are computed by listing the type of 
instructions used in the assembly program. 

v. GPRs_num is computed by listing the GPRs used in the assembly program. 
vi. prog_mem_depth is computed by counting the total number of instructions in the 

assembly program. 

Group Parameter Type Class 

Constant (independent) 

SFRs_num Natural ISA 

interrupts_num Natural ISA 

wb_retries_num Natural Microarchitecture 

wb_waits_num Natural Microarchitecture 

deb_command_enable Boolean Debug-interface 

deb_command_code Natural Debug-interface 

Variable (independent) 

data_width Natural ISA 

short_imm_set Boolean ISA 

GPR_mem Boolean Microarchitecture 

pipeline_set Boolean Microarchitecture 

shifter_mult Boolean Microarchitecture 

DUT-M (dependent) 

data_mem_depth Natural ISA 

stack_mem_depth Natural ISA 

IO_addr_num Natural ISA 

ASM (dependent) 

instruction_enable Boolean ISA 

instruction_code Natural ISA 

GPRs_num Natural ISA 

prog_mem_depth Natural ISA 

Table 6.1: Reorganization of processor and debug-interface configuration parameters 

The number of GPRs, the depth of the stack, program, and data memories, and the I/O 
address space are tailored by determining the proper value of the dependent configuration 
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parameters. Additionally, processor instructions and functional units that are not 
necessary for the execution of the ESW layer procedures are not implemented as part of 
the processor. In this way, it is possible to obtain significant reduction of the amount of 
resources necessary to implement the processor. Similar approaches for removing 
instructions and processor features that are not used in a given scenario have proven to be 
very effective in the reduction of resources and power consumption [126, 146, 147]. 

At this point, it is necessary to define the value of the constant and variable (independent) 
configuration parameters. As the name implies, the same value is assigned to the constant 
(independent) configuration parameters independently of the test scenario. This is 
possible due to the following reasons: 

• SFRs_num is adjusted if new SFRs are included in the ROBSY processor or if the 
two optional SFRs are used. Given that both circumstances do not apply for the 
ROBSY approach, SFRs_num remains constant for all test scenarios. 

• wb_retries_num and wb_waits_num are used to define configuration options of 
the Wishbone bus. Given that the value of both parameters does not depend on the 
test scenario, it remains constant for all test scenarios. 

• deb_command_enable and deb_command_code are known in advance as already 
discussed in Section 6.3.1. Therefore, they remain constant for all test scenarios. 

• interrupts_num is 0 for all test scenarios because they are not used in the ROBSY 
approach. As already mentioned in Section 6.4.1, polling is used for the 
processor/co-processor communication. 

The number of processor variants that are available for the test engineer to evaluate 
different test time and resource utilization trade-offs is defined by the five variable 
(independent) configuration parameters. This facilitates the evaluation of trade-offs 
because the number of processor variants that have to be considered is much lower in 
comparison to the case in which all configuration parameters have to be defined by the 
test engineer. 

Besides, it is not possible to compute the value of the variable (independent) 
configuration parameters in an exact way just by analyzing the DUT-M and assembly 
program. GPR_mem, pipeline_set, and shifter_mult belong to the microarchitecture class, 
which means that they affect properties related to the processor microarchitecture only. 
Therefore, they do not have any influence on the generation of the object code and are not 
influenced by the DUT-M or assembly program. 

On the other hand, data_width and short_imm_set belong to the ISA class. However, their 
value cannot be computed in an exact way based on the properties of the ESW layer 
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procedures. The reason for this is that any value assigned to these parameters produces a 
processor variant that can execute the ESW layer procedures. Besides, they are ideal 
candidates to let the test engineer evaluate different test time and resource utilization 
trade-offs because they have a significant impact on the properties of the processor ISA, 
affecting not only the resource utilization but also test time. 

If new configuration parameters are included in the processor, it is necessary to order 
them in one of the four groups. Typically, microarchitecture configuration parameters can 
be ordered in the variable (independent) group and debug-interface configuration 
parameters are ordered in the constant (independent) group. In the case of ISA 
configuration parameters, it is necessary to evaluate if they can be ordered in the variable 
(independent) or dependent configuration parameters groups. 

6.4.3 Embedded software generator 

The ESW generator computes the value of the dependent configuration parameters and 
generates the object code and additional information required by ATE and HW 
generators. The object code is the numerical machine code stored in the processor 
program and data memories that is obtained by compiling the ESW layer procedures of 
the DUT-M. The processor/debug-interface information includes the value of all 
configuration parameters, the data memory start address for the ATE/FBTS 
communication, and the I/O address table for the processor/co-processor communication. 

Figure 6.4 shows the ESW generator in more detail. It is divided into three main phases 
that are executed sequentially starting with phase 1. 

6.4.3.1 Phase 1 

Phase 1 comprises the DUT-M analyzer and ESW compiler. The DUT-M analyzer 
examines the ESW layer procedures and the procedures of the highest layer implemented 
in HW in order to compute the I/O address table, the start address for the ATE/FBTS 
communication, and the DUT-M (dependent) configuration parameters. After this step is 
carried out, the ESW compiler generates the assembly program based on the ESW layer 
procedures, independent configuration parameters, and the information produced by the 
DUT-M analyzer. 

The computation of data_mem_depth is realized based on the amount of memory required 
to store global and local variables of ESW layers. For local variables, it is necessary to 
analyze the interactions between callers and callees by means of a procedure tree that 
models these interactions. The computation of stack_mem_depth also makes use of the 
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procedure tree in order to define the maximum amount of stack memory locations 
necessary to store return addresses and data pushed in and popped from the stack. 

The computation of data_mem_depth and stack_mem_depth is performed based on the 
following assumptions: 

• There are no dynamic memory allocations. 
• A caller in layer n is allowed to call procedures located in layers n and n-1. 
• Recursion is not allowed. 
• The callee is not allowed to call the caller. 

Phase 1

ESW layer 
procedures

DUT-M analyzer

DUT-M 
configuration 
parameters 

Start address 
ATE

I/O address 
table

ESW compiler

Assembly 
program

Independent 
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Assembly 
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Assembly 
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ASM 
configuration 
parameters 

Assembler

Independent 
configuration 
parameters

DUT-M 
configuration 
parameters 

Processor 
object code

Phase 2

Processor/
debug-interface 

information

Start address 
ATE

Information 
generator

Independent 
configuration 
parameters

ASM 
configuration 
parameters 

Phase 3

DUT-M 
configuration 
parameters 

 
Figure 6.4: Embedded software generator. Phase 1 (top left), 2 (top right), 3 (bottom) 



6 Automatic generation process 137 

 

These assumptions do not represent any limitations for the ROBSY approach. The first 
assumption is compatible with RTDL because the language does not support dynamic 
memory allocation. This would become a big issue for the generation of hardware. The 
other three assumptions are compatible with the layer concept. 

The computation of the I/O address table, the start address for the ATE/FBTS 
communication, and IO_addr_num is realized by analyzing the arguments of the highest 
layer implemented in HW and taking into consideration the value of data_width, 
data_mem_depth, and SFRs_num. The DUT-M analyzer also takes into consideration the 
control and status Wishbone registers.  

After the analysis step, the ESW compiler parses ESW layer procedures and generates the 
assembly program with the corresponding wrappers for the ATE/FBTS and processor/co-
processor communication. For this purpose, the ESW compiler considers the value of 
independent configuration parameters, the address of co-processor Wishbone registers 
(I/O address table), and the data memory start address. 

The DUT-M analyzer and ESW compiler are implemented based on a lexical analyzer 
and a parser. The GNU tools FLEX (lexical analyzer generator) and Byson (parser 
generator) of the Cygwin environment were used for the development of the lexical 
analyzer and parser. The DUT-M analyzer computes DUT-M configuration parameters, 
start address for ATE/FBTS communication, and I/O address table. The parser of the 
ESW compiler translates ESW layer procedures to an intermediate low-level 
representation. TCL scripts transform the intermediate representation into the processor 
specific assembly program. 

6.4.3.2 Phase 2 

Phase 2 comprises the analysis of the assembly program and generation of object code. 
The assembly program analyzer examines the assembly program in order to compute the 
ASM configuration parameters. After that, the assembler generates the object code and 
value of the independent and dependent configuration parameters. 

prog_mem_depth is computed by counting the number of instructions in the assembly 
program. GPRs_num is computed by looking for the registers used in the assembly 
program. This is possible because the ESW compiler was built in such a way that it maps 
all local and global variables into memory locations using as many registers as necessary. 
instruction_enable and instruction_code are computed by collecting information about 
instructions used in the assembly program. In this way, unused instructions are not 
implemented as part of the processor ISA. This is known as ISA subsetting [126]. 
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The assembly program analyzer was developed in TCL. The assembler was developed in 
C as a two-pass assembler. For the assembly process, the assembler has to know the value 
of all the ISA configuration parameters. 

6.4.3.3 Phase 3 

Phase 3 comprises the generation of the processor/debug-interface information. For this 
purpose, the information generator encapsulates the outcome of phases 1 and 2 into a 
single file. This file is built in such a way that it can be parsed by the ATE program 
generator. The information generator was developed in TCL. 

6.4.4 Hardware generator 

The HW generator produces hardware descriptions for the co-processor and FBTS, and 
additional information required by the synthesis tool, such as a project description and 
FPGA constraints (timing and pin assignments). For this purpose, it makes use of the HW 
layer procedures, processor/debug-interface information, I/O address table, PCB netlist, 
and hardware constraints. 

The PCB netlist helps determining the FPGA pins connected to the DUT as well as the 
clock and reset signals. The hardware constraints provide information about the timing 
properties of clock and reset signals, as well as additional information necessary for the 
generation of FPGA constraints. The development of the HW generator is not part of this 
dissertation. For more information about this subject refer to [98, 99]. 

6.4.5 Synthesis tool 

The synthesis tool outputs the FPGA configuration file based on the FBTS description, 
processor description, FPGA constraints, and project files delivered by the HW generator. 
This tool is FPGA dependent, and the actual generation process supports Xilinx as well as 
Altera FPGAs. In the case of Altera, Quartus II tools [145] quartus_sh, quartus_map, 
quartus_fit, quartus_asm, quartus_sta, and quartus_pgm are used. In the case of Xilinx, 
ISE tools [148] xst, ngdbuild, map, par, trce, and bitgen are used. 

6.5 Summary 

This chapter presented the automatic generation process of the ROBSY approach with 
emphasis in the ESW generation. The automatic generation process supports a single 
processor co-processor pair and comprises three generators: the SW generator, FBTS 
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generator, and HW generator. The generators are responsible of producing the software 
procedures for the ATE, the object code for the processor, and the FBTS hardware 
description based on a specific layer partition. The analyzers, compilers, and additional 
tools found in the generators were developed by means of TCL scripts, C programs, and 
GNU tools FLEX and Byson. 

The ESW generation process is also in charge of determining the value of a subset of the 
processor and debug-interface configuration parameters. The main goal is to adapt the 
processor to the test scenario and reduce the number of processor variants that are 
available for the test engineer to evaluate different test time and resource utilization trade-
offs. For this purpose, the configuration parameters are reorganized in four groups: 

• Constant (independent). 
• Variable (independent). 
• DUT-M (dependent). 
• ASM (dependent). 

The same values are assigned to the constant (independent) configuration parameters 
independently of the test scenario. The DUT-M (dependent) configuration parameters are 
computed based on the ESW layers of the DUT-M, and the ASM (dependent) 
configuration parameters are computed based on the assembly program generated by the 
ESW compiler. The computations are performed in a deterministic way based on the 
equations described in Chapter 6. The independent configuration parameters basically 
tailor the resource utilization of the ROBSY processor depending on the properties of the 
ESW layer procedures. 

The number of processor variants that can be generated in order to evaluate different test 
time and resource utilization trade-offs is defined by the five variable (independent) 
configuration parameters. In contrast to the dependent configuration parameters, the value 
of the variable (independent) configuration parameters cannot be computed in a 
deterministic way due to their properties. 
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7 Experimental phase 

7.1 Introduction 

This chapter presents the experimental results obtained with the ROBSY test system. For 
this purpose, the automatic generation flow discussed in Chapter 6 generates the SW, 
ESW, and computes the processor dependent configuration parameters based on the 
DUT-M and layer partition. The results provide an answer to the following questions: 

• ROBSY processor: 
o What is the effect of the adaptation mechanism and independent 

configuration parameters on resource utilization and test time? 
o Is there a way to find an efficient processor variant in terms of resource 

utilization and test time for a given test scenario? 
o Which layers are implemented more efficiently in ESW? 

• ROBSY test system: 
o How does the layer partition influence the resulting processor and FBTS in 

terms of resource utilization and performance? 
o What is the speed-up achieved in comparison to other test techniques? 

Sections 7.2 and 7.3 describe the experimental setup and DUTs. Section 7.4 presents an 
analysis of resource utilization results, while Sections 7.5 and 7.6 present an analysis of 
obtained performance. Section 7.7 provides a comparison of ROBSY against Nios II and 
a virtual length shift register. The chapter concludes with a summary in Section 7.8. 

7.2 Experimental setup 

7.2.1 Hardware setup 

The experiments were performed using the DE2-115 development board from Terasic 
[149] and the VarioTap Coach Board from Göpel Electronic [150]. The ATE is a personal 
computer with an Intel core i7-960 (3.2 GHz) processor and 6 GB RAM. Figure 7.1 
shows the hardware setup without including the ATE. 

The DE2-115 is equipped with a Cyclone IV-E FPGA (EP4CE115F29C7) (1). This 
FPGA has the highest capacity of the Cyclone IV-E family [151] and it provides 
following features: 
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• 114.480 logic elements (LEs). A LE comprises a flip flop and a 4-input look-up 
table (LUT). 

• 432 9-Kbits memory blocks (M9K blocks) that can be configured as 8192x1, 
4096x2, 2048x4, 1024x8/9, 512x16/18, or 256x32/36 memory arrays. 

• 266 18x18 multipliers that can be configured as two 9x9 multipliers. 

 
Figure 7.1: Hardware setup (no ATE). VarioTap coach (top) and DE2-115 (bottom) 

The DE2-115 includes an IS61WV102416 SRAM (2), which is one of the DUTs (Section 
7.3.1). Additionally, it includes a 50 MHz oscillator used as FPGA clock source, four 
push buttons and eighteen switches (3), and a 40-pin expansion header (4). The board is 
equipped with an embedded USB Blaster (5) used in JTAG mode for the configuration of 
the FPGA and communication between ATE and FBTS. The TCK frequency is 6 MHz. 

The VarioTap Coach is equipped with a DIP128-6 LCD (Electronic Assembly) [152] and 
corresponding LCD controller (6). This is the second DUT (Section 7.3.2), which is 
accessed through the 50-pin XH2 and XH3 I/O connectors (7). A bridge between DE2-
115 and VarioTap Coach connects the Cyclone IV-E FPGA with the LCD controller via 
14 female/female jumper wires. This setup was necessary because the Spartan 3 FPGA 
(XC3S50A) located on the VarioTap Coach does not have enough capacity for 
implementing all FBTS variants. 
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7.2.2 Software setup 

7.2.2.1 Software tools 

The ATE is equipped with Windows 7, Quartus II 15.1, TCL/TK 8.6, and Codeblocks 
13.12. Quartus II performs the synthesis of the FBTS, configures the FPGA, and is used 
for the ATE/FBTS communication. TCL/TK and Codeblocks are used during the 
automatic generation process to run scripts and generate the assembler, respectively. 

The Quartus II tools quartus_sh, quartus_map, quartus_fit, quartus_asm, and quartus_sta 
[145] run in batch mode for the FBTS synthesis. quartus_pgm is in charge of configuring 
the FPGA and quartus_stp of executing SW layer procedures. In this way, it is possible to 
automate the generation of the ROBSY test system, the synthesis and configuration of the 
FBTS, and the test execution. Nebula was not utilized because it does not support a batch 
execution mode. In any case, similar test time results are expected with Nebula. 

It was not possible to make use of the HW generator. The reason for this is that the actual 
HW generator only supports layer L1. Therefore, it was necessary to work with hand-
written co-processors and an automatic generated processor/co-processor interface. The 
interface adapts the co-processor to different data_width and IO_addr_num values. A 
TCL script generates the interface with the proper amount of Wishbone registers.  

7.2.2.2 Quartus II settings 

For the synthesis of the FBTS, the following compiler settings were selected: 

• ALLOW_ANY_RAM_SIZE_FOR_RECOGNITION: ON. 
• OPTIMIZATION_MODE: AGGRESSIVE PERFORMANCE. 

The first setting allows the synthesis tool to implement GPRs using M9K blocks, even if 
the number of GPRs is low. The second setting tells the synthesis tool to make an 
aggressive effort to optimize the FBTS for speed. The side effect of this option is an 
increase in the synthesis time and the use of more resources in comparison to a balanced 
optimization mode. The other compiler settings have their default values. 

The FPGA Synopsys design constraints file has a 1 ns clock period constraint. The use of 
an over-constrained clock period forces the synthesis tool to achieve high operation 
frequency values. Working with a constraint of 20 ns (required value for the FBTS in the 
DE2-115) would deliver solutions that fulfill this constraint, but that are not necessarily 
close to the maximum achievable operation frequency of the FBTS. 
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7.2.3 Processor and FBTS variants 

The automatic generation process computes the value of the DUT-M and ASM 
(dependent) configuration parameters (Table 6.1). On the other hand, the same values are 
assigned to the constant (independent) configuration parameters. These values are: 

• SFRs_num: 5. interrupts_num: 0. wb_retries_num: 3. wb_waits_num: 3. 
• deb_command_enable/deb_command_code: HALT/1, CONTINUE/2, RESET/3, 

DATA_MEM_READ/4, DATA_MEM_WRITE/5, CPU_STATE_READ/6, 
SFR_READ/7, SFR_WRITE/8, DEBUG_ID_READ/9. 

The variable (independent) configuration parameters generate multiple processor variants 
with different resource utilization and performance trade-offs. Boolean values true or 
false are assigned to short_imm_set, GPR_mem, pipeline_set, and shifter_mult. Natural 
values 8, 12, 16, 20, 24, 28, and 32 are assigned to data_width. Table 7.1 presents the 
way to identify a processor variant. The ‘X’ in index I specifies a data_width value, while 
.0-.15 values represent a 4-bit-vector formed by ordering short_imm_set, pipeline_set, 
GPR_mem, and shifter_mult from the most to the lowest significant bit, respectively. For 
example, I20.7 is a 20-bit processor variant with the 4-bit vector [0111] (short_imm_set 
false, and pipeline_set, GPR_mem, and shifter_mult true). 

I short_imm_set pipeline_set GPR_mem shifter_mult 

IX.0 false false false false 

IX.1 false false false true 

IX.2 false false true false 

IX.3 false false true true 

IX.4 false true false false 

IX.5 false true false true 

IX.6 false true true false 

IX.7 false true true true 

IX.8 true false false false 

IX.9 true false false true 

IX.10 true false true false 

IX.11 true false true true 

IX.12 true true false false 

IX.13 true true false true 

IX.14 true true true false 

IX.15 true true true true 

Table 7.1: 112 possible processor variants 

The reason to limit data_width to a subset of values is to maintain the number of 
processor variants low. The use of untypical values (12, 20, 24, and 28) provides the 
option to work with processor variants highly adapted to the DUT-M. For example, a 20-
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bit processor provides a more efficient utilization of resources in comparison to a 32-bit 
processor if the maximum size of variables declared in ESW procedures is 20 bits. 

7.2.4 Resource utilization and performance metrics 

The resource utilization is measured based on LEs, M9K blocks, and 9x9 multipliers used 
for implementing the FBTS and processor. The results are delivered by Quartus II after 
place & route. 

The performance of the FBTS is measured based on the FBTS active time and test time, 
whose values are obtained by performance counters included in the FBTS. 

FBTS active time is the accumulated time that the FBTS is active during the complete test 
execution without considering the execution of SW layers or time required for the 
ATE/FBTS communication. This is an ideal metric to analyze the effect that processor 
variants and layer partitions have on the test execution because it only considers the time 
required for the layers implemented in HW and ESW. The FBTS active time is measured 
using a 32-bit performance counter known as active time counter. 

Two values are calculated based on the content of the active time counter. The first value 
is the real FBTS active time. It is obtained by dividing the content of the counter by the 
operation frequency of the FBTS (50 MHz). The second value is the minimum FBTS 
active time. It is obtained by dividing the content of the counter by the maximal operation 
frequency (Fmax) achieved with the FBTS. Fmax is the value dumped by the TimeQuest 
timing analyzer (quartus_sta). 

Test time is the execution time of the complete test. It includes the FBTS active time and 
time required for the execution of SW layers and for the ATE/FBTS communication. It is 
measured using a second 32-bit performance counter known as the test time counter. It 
counts the total number of clock cycles during the test. The test time is calculated by 
dividing the content of the counter by the operation frequency of the FBTS (50 MHz). 

Counters are used instead of theoretical models because they are easy to implement and 
provide real measurements difficult to obtain with theoretical models. Models would have 
to consider the execution time of the ATE, processor, and co-processor, as well as the 
timing behavior of the DUT and ATE/FBTS communication. 
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7.3 Devices under test 

The two DUTs used for the experiments are an SRAM and LCD. As mentioned in 
Section 3.1.2, the application field of FBT is the detection and diagnosis of defects 
located at the PCB interconnections and solder joints. For this purpose, a DUT-Ms was 
developed for each DUT. 

The FPGA is also used to inject stuck-at faults, bridging-and faults, and dominant faults 
(dominant address) in the data and address interconnections. This was necessary in order 
to validate the correct functionality of the ROBSY test system and DUT-Ms. The 
activation and selection of a fault is performed through the switches of the DE2-115. 

7.3.1 SRAM 

The IS61WV102416 SRAM (Integrated Silicon Solution) [109] populating the DE2-115 
has the following features: 

• 1024Kx16 (16Mbit) high-speed asynchronous static RAM. 
• 20 address lines, 16 bidirectional data lines, and active low chip select, output 

enable, write enable, and upper/lower byte control lines. 
• 10 ns write and read cycle times. 

The DUT-M describes the interface of the IS61WV102416, write and read access 
functions (L1), and the procedures for the detection and diagnosis of stuck-at, bridging, 
and address-dominant faults (L5-L2). The DUT-M includes four global variables that 
represent two-dimensional pass/fail fault dictionaries (Section 2.1.5). These variables are 
declared as vectors, in which the first index represents the width of each element and the 
second index the number of elements. The vectors fd_dataBus_bridge[32][120] and 
fd_addrBus_bridge[42][190] store pass/fail signatures for diagnosis of bridging-and faults 
at the data and address buses, respectively. fd_addrBus_dominant_stuckat[42][20] and 
fd_addrBus_dominant[32][16] store pass/fail signatures for diagnosis of stuck-at faults at 
the address bus and dominant faults between the address and data buses. 

Table 7.2 shows a summary of the procedures found in the DUT-M. The first column 
represents the layer to which the procedure belongs. The second and third columns show 
name of the procedure and arguments with their type (IN, OUT, INOUT), respectively. 
The fourth column indicates the local variables of each procedure. 
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Layer Procedure Arguments Local variables 

L1 
write_pattern() IN data[16], IN addr[20] - 

read_pattern() OUT data[16], IN addr[20] - 

L2 

single_pattern() IN wr_rd[2], IN data[16], IN addr[20], 
OUT data_read[16], OUT error[1] vData_exp[16] 

seq_pattern() 
IN wr_rd[2], IN data_op[3], IN 
data[16], IN addr_op[2], IN addr[20], 
OUT error[1] 

vError[1], vError_tmp[1], 
vData_val[16], vAddr_val[20], 
vIndex[5], vData_dummy[16] 

seq_pattern_d42() 
IN wr_rd[2], IN data_op[2], IN 
data[16], IN addr_op[2], IN addr[20], 
OUT signa[42] 

vError[1], vData_val[16], 
vAddr_val[20], vIndex[5], 
vData_dummy[16] 

seq_pattern_d32() 
IN wr_rd[2], IN data_op[3], IN 
data[16], IN addr_op[2], IN addr[20], 
OUT signa[32] 

vError[1], vData_val[16], 
vAddr_val[20], vIndex[5], 
vData_dummy[16] 

single_pattern_d42() IN wr_rd[2], IN data[16], IN addr[20], 
OUT signa_data[42] vError[1], vData_dummy[16] 

L3 

test_detection() OUT error[1] vError[1], vError_tmp[1], 
vData[16], vAddr[20] 

test_diagnosis() OUT fault_code[3], OUT data[16], 
OUT signa32[32], OUT signa42[42] 

vError[1], vSigna32[32], 
vSigna42[42], vSigna_data[16] 

dataBus_sutckat() OUT error[1], OUT signa[16] vError[1], vData[16], vAddr[20], 
vData_read[16] 

addrBus_dominant() OUT signa[42] vError[1], vData[16], vAddr[20], 
vSigna[42] 

dataBus_bridge() OUT signa[32] vError[1], vData[16], vAddr[20], 
vSigna[32] 

addrBus_bridge_ 
stuckat() OUT signa[42] vError[1], vData[16], vAddr[20], 

vSigna[42] 

L4 

coordination() 
OUT error_code[3], OUT 
signa_data[16], OUT index_fdict1[8], 
OUT index_fdict2[8] 

vError[2], vError_code[3], 
vSigna32[32], vSigna42[42], 
vSigna_data[16], vIndex_fdict1[8], 
vIndex_fdict2[8] 

addrBus_stuckat_ 
bridge_analysis() 

IN signa[42], OUT error_code[3], 
OUT index_fdict[8] 

vError:code[3], vIndex_fdict[8], 
vIndex_result[8], vData[16], 
vAddr[20], vSigna[42] 

dataBus_bridge_ 
analysis() IN signa[32], OUT index_fdict[8] vIndex_fdict[8], vIndex_result[8], 

vSigna[32] 

addrBus_dominant_ 
analysis() 

IN signa42[42], IN signa32[32], OUT 
index_fdict1[8], OUT index_fdict2[8] 

vIndex_fdict[8], vIndex_result1[8], 
vIndex_result2[8], vSigna42[42], 
vSigna32[32] 

L5 sram_test - 
vError_code[3], vSigna_data[16], 
vSigna32[32], vSigna42[42], 
vIndex_fdict1[8], vIndex_fdict2[8] 

Table 7.2: SRAM DUT-M (fault diagnosis) properties 

L1 procedures write_pattern() and read_pattern() describe write and read access functions 
taking into account the timing properties of the DUT. The two single_pattern procedures 
of L2 forward deterministic patterns between L3 and L1, and the three seq_pattern 
procedures generate walking-1/walking-0/increment/decrement test patterns. Procedures 
without a _d# suffix are used for fault detection, whereas procedures with a _d# suffix are 
used for fault diagnosis. 
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L3 procedure test_detection() describes the structure of the fault detection algorithm. On 
the other hand, test_diagnosis() and remaining L3 procedures describe the structure of the 
fault diagnosis algorithm. L4 procedure coordination() manages the detection and 
diagnosis algorithms. In the case that the detection algorithm does not find any fault, there 
is no need to execute the diagnosis algorithm. The remaining L4 procedures are called by 
coordination() to match the obtained pass/fail signatures with signatures stored in the fault 
dictionaries. L5 procedure sram_test() starts the test execution and reports test results. 
The report informs if the test was successful or if a fault was detected and the location of 
the fault. 

7.3.2 LCD 

The DIP128-6 LCD (Electronic Assembly) [152] and LCD controller (6) populate the 
VarioTap Coach. The LCD controller is implemented in a complex programmable logic 
device that receives commands and data from the FPGA and sends control and image 
information to the LCD. In comparison to the SRAM, the LCD is a slower device and has 
fewer pins. The features of the LCD and LCD controller are: 

• 128x64 dots. 
• 3 address lines, 8 data lines, and active low chip select, output enable, and write 

enable control lines. 
• 2 µs write cycle time. 

The DUT-M describes the interface to the LCD controller, write access functions (L1), 
and procedures required to initialize the LCD and generate a square pattern that moves 
through the screen (L5-L2). This DUT-M does not use any global variables. 

Table 7.3 shows the summary of procedures found in the DUT-M. In comparison to the 
SRAM DUT-M, it has a lower number of procedures variables and arguments. 
Additionally, the size of procedures and variables is smaller. 

Layer Procedure Arguments Local variables 
L1 write_pattern() IN data[8], IN addr[3] - 

L2 

single_pattern() IN data[8], IN addr[3] - 

scan_pattern() IN screen_side[1], IN 
pattern_val[8], IN empty_val[8] 

vScreen_side_command[1], 
vScreen_side_addr[3], vIndex_1[8], 
vIndex_2[8], vIndex_3[8], vPage_value[8] 

L3 test_pattern() - vData[8], vAddress[3] 

L4 coordination() - - 

L5 lcd_test - - 

Table 7.3: LCD DUT-M (LCD test) properties 
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L1 procedure write_pattern() describes the write access to the LCD controller taking into 
account timing properties of the DUT. There are no read procedures because it is not 
possible to acquire data from the LCD controller. As a consequence, the only alternative 
to evaluate the test is by inspecting the screen during test execution. L2 procedures 
single_pattern() and scan_pattern() forward deterministic patterns between L3 and L1 and 
generate all patterns necessary for displaying a square shape that moves through half of 
the screen. scan_pattern() is the most complex procedure of the DUT-M with three index 
variables used for loops and arithmetic operations that compute the actual location of the 
active dot. L3 procedure test_pattern() describes the structure of the test algorithm. It 
initializes the LCD, configures the LCD controller, and calls scan_pattern() twice in order 
to test the left and right sides of the screen. L4 procedure coordination() does not provide 
any additional functionality. L5 procedure lcd_test() starts the test and reports start and 
end of test execution. 

7.4 Resource utilization 

7.4.1 Effect of the dependent configuration parameters 

The automatic generation process computes the DUT-M and ASM (dependent) 
configuration parameters (Table 6.1). In this way, the instruction set, number of GPRs, 
size of memories, and size of the I/O address space are tailored to the layers implemented 
in ESW and procedure arguments belonging to the highest layer implemented in HW. The 
effect of automatically assigning values to these parameters is: 

• The processor’s instruction set, GPRs, memories, and Wishbone interface are 
implemented using a minimum amount of resources. 

• The dependent configuration parameters are computed without affecting the CPI 
values of the processor. 

• The number of configuration parameters that have to be considered by the test 
engineer is reduced to the variable (independent) configuration parameters. 

Table 7.4 and Table 7.5 show the dependent configuration parameter values computed for 
both DUT-Ms if layers L4-L2 are implemented in ESW. The first column is the index I 
representing the processor variant (Table 7.1), and the remaining columns show the value 
of the dependent configuration parameters. For the sake of clarity, values of the first row 
are considered reference values. Differences between this row and other rows are 
highlighted in bold font. The instruction_enable column shows only the differences. A ‘-’ 
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prefix represents an instruction found in the first row but not included in the processor 
variants of the given row. A ‘+’ prefix represents the opposite case. 

I 
data_
mem_
depth 

stack_
mem_
depth 

prog_
mem_
depth 

IO_ 
addr_
num 

GPRs
_num instruction_enable 

I8.0-I8.7 11 5 12 2040 10 

JMP, JC, JZ, JNZ, CALL, CALL_C, RET, 
RET_C, STOP, NOP, LOAD, STORE, 

PUSH, POP, ADD, ADDI, ADDC, 
ADDIC, SUB, SUBI, SUBIC, AND, 

ANDI, OR, ORI, NOR, SHL, SHR, SHLC 
I12.0-I12.7 11 4 12 2040 7 -ADDC 

I16.0-I16.7, I20.0-I20.7 10 4 12 1016 6 -ADDC, -ADDIC, -SUBIC, +ROL 
I24.0-I24.7, I28.0-I28.7, 

I32.0-I32.7 
10 4 12 1016 5 -ADDC, -ADDIC, -SUBIC 

I8.8-I8.15 11 5 14 2040 10 +ADDIU, +SUBIU, +SUBC, +ORH 
I12.8-I12.15 11 4 12 2040 7 -ADDC, +ADDIU, +ORH 

I16.8-I16.15, I20.8-I20.15 10 4 12 1016 6 -ADDC, -ADDIC, -SUBIC, +ADDIU, 
+ORH, +ROL 

I24.8-I24.15, I28.8-I28.15, 
I32.8-I32.15 

10 4 12 1016 5 -ADDC, -ADDIC, -SUBIC, +ADDIU, 
+ORH 

Table 7.4: SRAM DUT. Dependent configuration parameters (L4-L2) 

I 
data_
mem_
depth 

stack_
mem_
depth 

prog_
mem_
depth 

IO_ 
addr_
num 

GPRs
_num instruction_enable 

I8.0-I8.7, I12.0-I12.7, 
I16.0-I16.7, I20.0-I20.7, 
I24.0-I24.7, I28.0-I28.7, 

I32.0-I32.7 

5 4 9 24 4 

JMP, JC, JZ, JNZ, CALL, CALL_C, RET, 
RET_C, STOP, NOP, LOAD, STORE, 
PUSH, POP, ADD, ADDI, SUB, SUBI, 

SUBIC, ANDI, ORI 
I8.8-I8.15, I16.8-I16.15, 

I20.8-I20.15, I24.8-
I24.15, I28.8-I28.15, 

I32.8-I32.15 

5 4 9 24 4 +ADDIU, -SUBIC, +OR, +ORH 

I12.8-I12.15 5 4 9 24 4 +ADDIU, -SUBIC, +AND, +OR, +ORH 

Table 7.5: LCD DUT. Dependent configuration parameters (L4-L2) 

The comparison of Table 7.4 and Table 7.5 show that processor variants generated based 
on the SRAM DUT-M have larger memories, a more variable instruction set, and higher 
number of GPRS and I/O addresses. For example, the SRAM processor variants use 26-
33 from the 50 instructions available, whereas the LCD processor variants use 21-24 
instructions. This is due to the higher diversity of operations found in the SRAM DUT-M 
in comparison to the LCD DUT-M. 

Both tables also show that variable (independent) configuration parameters data_width 
and short_imm_set are responsible of changes of the dependent configuration parameter 
values. The reason for this is that these two parameters affect the properties of the ISA, 
while the other variable (independent) configuration parameters only affect the 
microarchitecture. This dependency is more visible in Table 7.4 due to the higher 
complexity of the SRAM DUT-M. 
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In Table 7.4, there is a decrease of dependent configuration parameter values 
data_mem_depth, stack_mem_depth, prog_mem_depth, IO_addr_num, and GPRs_num as 
data_width increases. The reason of this is that a higher data_width makes it possible to 
manage variables and procedure arguments in a more efficient way. For example, a 32-bit 
addition with an 8-bit processor requires at least four instructions and four memory 
locations per operand, whereas the same addition with a 32-bit processor requires a single 
instruction and a single memory location per operand. This effect is not observed in Table 
7.5 because the size of the largest variables and arguments of the LCD DUT-M is 8-bit. 

The instruction set also suffers changes based on data_width. Table 7.4 shows that 
addition and subtraction instructions with carry are used only for I8.x-I12.x. These 
instructions are necessary to concatenate 16-bit counting sequences in processor variants 
with a native data type smaller than 16. The appearance of the ROL instruction for I16.x-
I20.x is due to the way the compiler implements 16-bit and 20-bit walking-0 sequences for 
the data and address buses. Instead of using a combination of shift and negation 
instructions, the compiler uses a single ROL instruction for this purpose.  

The independent configuration parameter short_imm_set produces changes in the 
instruction set and program memory depth (prog_mem_depth). Instructions such as ORH, 
ADDIU, and SUBIU are used to handle immediate data and address values when 
short_imm_set is true (Equation (5.1)). Table 7.4 shows that the value of 
prog_mem_depth is different for the 8-bit processor variants I8.0-I8.7 and I8.8-I8.15. The 
reason of this is explained in Section 7.4.2.2. 

To conclude, Table 7.4 and Table 7.5 show a proof of the adaptation of the ROBSY 
processor to a given layer partition, and that the variable (independent) configuration 
parameters data_width and short_imm_set play an important role. 

7.4.2 Processor variants 

The combination of values for variable (independent) configuration parameters 
GPR_mem, pipeline_set, shifter_mult, short_imm_set, and data_width produces 112 
processor variants that require a different amount of resources. Their effect is explained in 
the following sections. The exact quantification of the effect of these parameters is not 
realized, because it depends on the DUT-M, FPGA, and synthesis tool. 

7.4.2.1 Effect of GPR_mem, pipeline_set, and shifter_mult 

GPR_mem, pipeline_set, and shifter_mult produce changes in the processor 
microarchitecture only. Therefore, processor variants that differentiate themselves in the 
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value of these parameters share the same DUT-M and ASM (dependent) configuration 
parameters. This is observed in Table 7.4 and Table 7.5, in which each row represents 
groups of processor variants (e.g. I8.0-I8.7, I8.7-I8.15, I12.0-I12.7, etc.). 

Figure 7.2 and Figure 7.3 show the resource utilization5 of all 16-bit processor variants 
with debug-interfaces (I16.0-I16.15) if layers L4-L2 are implemented in ESW. The vertical 
axes represent LEs, M9K blocks, and 9x9 multipliers. The horizontal axis represents the 
4-bit vector ‘Y’ of each processor variant (I16.Y). Vertical lines divide the results in four 
main sectors. Each sector includes four processor variants with same short_imm_set and 
pipeline_set values but different GPR_mem and shifter_mult values. 

 
Figure 7.2: Processor logic elements I16.0-I16.15. SRAM and LCD DUTs (L4-L2) 

 
Figure 7.3: Processor M9K blocks and 9x9 multipliers I16.0-I16.15. SRAM and LCD DUTs (L4-L2) 

Figure 7.2 and Figure 7.3 show that processor variants generated based on the SRAM 
DUT-M require more resources (~400 LEs, ~11 M9K blocks, and ~2 9x9 multipliers). 
This is due to higher dependent configuration parameter values (Section 7.4.1). 

Each sector shows that the activation of GPR_mem and shifter_mult produces a reduction 
of LEs and an increase of M9K blocks and 9x9 multipliers. This is the expected behavior 

                                                 
5 The results are discrete quantities. Connection lines between points are used only for the sake of better 
clarity. This applies to all results presented in this chapter. 
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because GPR_mem replaces LEs with M9K blocks for the implementation of GPRs, 
whereas shifter_mult replaces LEs with 9x9 multipliers for the implementation of the 
barrel shifter. The activation of GPR_mem produces processor variants with two 
additional M9K blocks, which are necessary for the implementation of three independent 
memory ports that can be accessed at the same time. The activation of shifter_mult 
produces processor variants with two 9x9 multipliers that perform 16-bit shifting and 
rotation operations. An interesting observation is that shifter_mult does not produce any 
changes on the processor variants generated for the LCD DUT. The reason is that the 
LCD DUT-M does not use any shift or rotation instructions. 

The analysis of pipeline_set is performed by comparing results of sectors 1 and 2 (I16.0-
I16.3 and I16.4-I16.7) or sectors 3 and 4 (I16.8-I16.11 and I16.12-I16.15). The activation of 
pipeline_set produces a significant increase of LEs and does not affect the M9K blocks or 
9x9 multipliers. The growth of LEs is due to the implementation of the pipeline stages, 
result forwarding and hazard avoidance logic. 

Parameters GPR_mem and pipeline_set produce the higher variation of LEs. The number 
of M9K blocks varies depending on GPR_mem, and 9x9 multipliers are only necessary if 
shifter_mult is true and shift or rotation operations are used in the DUT-M. This behavior 
persists for all data_width values and layer partitions. 

7.4.2.2 Effect of short_imm_set 

The main goal of short_imm_set is to reduce the number of M9K blocks. Its activation 
produces processor variants that code an imm_data_value using half of the data_width 
bits (Equation (5.1)). This decreases the number of bits required to code an instruction, 
and therefore the size of the program memory. This effect is observed in Figure 7.3 by 
comparing sectors 1 and 3 (I16.0-I16.3 and I16.8-I16.11) or sectors 2 and 4 (I16.4-I16.7 and I16.12-
I16.15). The number of M9Ks blocks is reduced from 17 and 19 to 13 and 15 for the 
SRAM DUT and from 4 and 6 to 3 and 5 for the LCD DUT. 

Table 7.6 shows the memory utilization of the I16.0-I16.1 (short_imm_set false) and I16.8-
I16.9 (short_imm_set true) processor variants. Differences are highlighted in bold font. 

DUT-M short_imm
_set 

Stack memory Data memory Program memory 

size M9K blocks size M9K blocks size M9K blocks 

SRAM 
false 16x16 1 (256x32) 1024x16 2 (512x16) 4096x27 14 (4096x2) 

true 16x16 1 (256x32) 1024x16 2 (512x16) 4096x19 10 (4096x2) 

LCD 
false 16x16 1 (256x32) 32x16 1 (512x16) 512x25 2 (512x16) 

true 16x16 1 (256x32) 32x16 1 (512x16) 512x17 1 (512x18) 

Table 7.6: M9K blocks for stack, data, and program memories I16.0-I16.1/I16.8-I16.9 (L4-L2) 
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The size of the stack and data memories remains constant independently of 
short_imm_set. The width of the data memory is data_width, and Equation (5.10) delivers 
the same value for the stack memory. The depth of both memories remains constant 
(Table 7.4 and Table 7.5). In this case, the synthesis tool uses M9K blocks configured as 
a 256x32 and 512x16 for the implementation of both memories. 

The last column of Table 7.6 shows the dependency of the program memory size based 
on short_imm_set. The depth remains constant because the value computed by the SW 
generator (Equation (5.5)) is the same for the processor variants I16.0-I16.1 and I16.8-I16.9 
(Table 7.4 and Table 7.5). On the other hand, there is an eight bit reduction of the 
memory width if short_imm_set changes from false to true (Equation (5.17)). In this case, 
this reduction is translated to a decrease of four (SRAM) and one (LCD) M9K blocks. 

However, a reduction of M9K blocks cannot be guaranteed every time that short_imm_set 
is true. Figure 7.4 presents the M9K blocks utilization of all 8-bit processor variants for 
the SRAM and LCD DUTs. In this case, the number of M9K blocks increases from 14 
and 16 to 43 and 45 for the SRAM DUT-M and remains constant for the LCD DUT-M. 

 
Figure 7.4: Processor M9K blocks I8.0-I8.15. SRAM and LCD DUTs (L4-L2) 

Table 7.7 shows the memory utilization of the I8.0-I8.1 (short_imm_set false) and I8.8-I8.9 
(short_imm_set true) processor variants. Differences are highlighted in bold font. 

DUT-M short_imm
_set 

Stack memory Data memory Program memory 

size M9K blocks size M9K blocks size M9K blocks 

SRAM 
false 32x12 1 (256x32) 2048x8 2 (2048x4) 4096x21 11 (4096x2) 

true 32x14 1 (256x32) 2048x8 2 (2048x4) 16384x20 40 (8192x1) 

LCD 
false 16x9 1 (256x32) 32x8 1 (512x16) 512x17 1 (512x18) 

true 16x9 1 (256x32) 32x8 1 (512x16) 512x14 1 (512x18) 

Table 7.7: M9K blocks for stack, data, and program memories I8.0-I8.1/I8.8-I8.9 (L4-L2) 

In this case, the last column of Table 7.7 shows that the program memory width of 
processor variants generated for the SRAM-DUT-M decreases from 21 to 20 bits, while 
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the number of memory locations increases from 4096 to 16384. The one-bit instead of the 
expected four-bit reduction is due to an increase of the program memory depth, which 
makes it necessary to use more bits to code a program address (Equation (5.17)). The 
increase of the program memory depth is caused by a high amount of additional 
instructions produced by the ESW compiler when short_imm_set is true. These 
instructions are necessary to compute and handle addresses of local and global variables 
given that the 4 bits available to code an imm_data_value are not sufficient. 

On the other hand, it is not possible to further reduce the number of M9K blocks for 
processor variants generated based on the LCD-DUT-M. 

7.4.2.3 Effect of data_width 

The parameter data_width has the main influence on the resource utilization. Higher 
data_width values produce a steady growth in the number of LEs, M9K blocks, and 9x9 
multipliers. This is observed in Figure 7.5 and Figure 7.6, which show the resource 
utilization of the 112 processor variants including debug-interfaces for the SRAM and 
LCD DUTs. Vertical lines separate processor variants based on the value of data_width. 

 
Figure 7.5: Processor logic elements I8.0-I32.15. SRAM and LCD DUTs (L4-L2) 

 
Figure 7.6: Processor M9K blocks and 9x9 multipliers I8.0-I32.15. LCD DUT (L4-L2) 

Figure 7.5 and Figure 7.6 show that an increase in data_width produces a steady growth 
of LEs, M9K blocks, and multipliers. The increase of LEs and M9K blocks takes place 
although the depth of memories and number of GPRs decreases with higher data_width 
values (Table 7.4). This is caused by the need for wider memories and GPRs. The width 
of GPRs and data memory is data_width, while the width of the stack and program 
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memories is computed using Equations (5.10) and (5.17). The only exception is a 
reduction of M9K blocks and LEs of processor variants generated for the SRAM DUT-M 
if data_width changes from 8 to 12. This is caused by short_imm_set as already explained 
in Section 7.4.2.2. 

7.4.3 Layer partition 

The layer partition defines layers that are implemented in SW, ESW, and HW. It 
influences the resource utilization of the processor and FBTS because it affects the value 
of dependent configuration parameters and functionality implemented in a co-processor. 

7.4.3.1 Effect of the layer partition on the processor 

Layers implemented in ESW affect the computation of DUT-M and ASM (dependent) 
configuration parameters, producing processor variants that use a different amount of 
resources. The layer partition with L4-L2 in ESW produces processor variants with the 
highest resource utilization because other partitions have fewer layers implemented in 
ESW. 

Table 7.8 presents the dependent configuration parameter values computed for the SRAM 
DUT-M if L3 is implemented in ESW. The comparison of Table 7.8 and Table 7.4 (L4-
L2 in ESW) shows a significant reduction in the number of instructions, I/O addresses, 
number of GPRs, and depth of the data, stack, and program memories. Additionally, the 
processor variants of Table 7.8 do not include shift or rotation instructions, and therefore 
they do not use 9x9 multipliers independently of the shifter_mult value. 

I 
data_
mem_
depth 

stack_
mem_
depth 

IO_ 
addr_
num 

GPRs
_num 

prog_
mem_
depth 

instruction_enable 

I8.0-I8.7 
I12.0-I12.7 

6 3 184 5 12 
JMP, JZ, JNZ, CALL, CALL_C, RET, 

RET_C, STOP, NOP, LOAD, STORE, PUSH, 
POP, ADDI, SUBI, ANDI, OR, ORI, NOR 

I16.0-I16.7, I20.0-I20.7 6 3 56 4 12  
I24.0-I24.7, I28.0-
I28.7, I32.0-I32.7 

5 3 88 4 11  

I8.7-I8.15 6 3 184 5 13 -ADDI, +ADDIU, +SUBIU, +ORH 
I12.7-I12.15 6 3 184 5 12 -ADDI, +ADDIU, +ORH 
I16.7-I16.15 6 3 56 4 12 -ADDI, +ADDIU, +ORH 
I20.7-I20.15 6 3 56 4 12 -ADDI, +ADDIU, +ORH 

I24.7-I24.15, I28.7-
I28.15 

5 3 88 4 12 -ADDI, +ADDIU, +ORH 

I32.7-I32.15 5 3 88 4 12 -ADDI, +ADDIU, +ORH 

Table 7.8: Dependent configuration parameters for all processor variants (L3) 
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Differences in the dependent configuration parameters are directly translated to a lower 
utilization of LEs, M9K blocks, and 9x9 multipliers as observed in Figure 7.7, Figure 7.8, 
and Figure 7.9. These results show the power of the adaptation mechanism. 

 
Figure 7.7: Processors logic elements I8.0-I32.15. SRAM DUT (L4-L2 and L3) 

 
Figure 7.8: Processors M9K blocks I8.0-I32.15. SRAM DUT (L4-L2 and L3) 

 
Figure 7.9: Processors 9x9 Multipliers I8.0-I32.15. SRAM DUT (L4-L2 and L3) 

7.4.3.2 Effect of the layer partition on FBTS 

The FBTS comprises the processor, co-processor, and performance counters. In this 
dissertation, co-processors and performance counters do not affect the utilization of M9K 
blocks or 9x9 multipliers. They are implemented using LEs and represent a positive offset 
added to the LEs of each processor variant. This offset remains relatively constant unless 
the processor data_width or the layer partition is modified. Changes in data_width makes 
it necessary to adapt the processor/co-processor interface (size and number of Wishbone 
registers), and changes in the layer partition might alter layers implemented in HW. 



158 7 Experimental phase 

 

Figure 7.10 shows the average LE utilization of the FBTS for the SRAM and LCD DUTs. 
The average is calculated based on the LE utilization of the 112 FBTS variants. The 
horizontal axis represents layers implemented in ESW. 

 
Figure 7.10: FBTS logic elements (average). SRAM and LCD DUTs (all layer partitions) 

The main observations for the SRAM DUT based on Figure 7.10 are: 

i. The implementation of additional layers in HW produces a significant increase of 
LEs, which are required for the implementation of the co-processor. 

ii. The implementation of additional layers in ESW produces a lower increase of LEs 
in comparison to the implementation of additional layers in HW. 

iii. The total LEs used for layer partitions that implement the same layers in the FBTS 
(same location of I2) is smaller when more layers are implemented in ESW. 

Observation (i) is based on the comparison of columns L2, L3-L2, L4-L2 (L1 in HW) to 
columns L3, L4-L3 (L2-L1 in HW) or to column L4 (L3-L1 in HW) for the SRAM. The 
complexity of layers L1, L2, and L3 of the SRAM DUT-M in terms of number and size 
of procedures, variables, and operations makes it necessary to use a high amount of LEs 
when these layers are implemented in HW. 

Observation (ii) shows that the LE utilization of the processor increases at a lower rate in 
comparison to the LE utilization of the co-processor as additional layers are implemented 
in ESW or HW. This is evident by looking at the LE utilization of the processor for layer 
partitions L2, L3-L2, and L4-L2, or for layer partitions L3 and L4-L3. Therefore, in terms 
of LEs the processor is an efficient mechanism to implement additional layers of the 
SRAM DUT-M in the FBTS. 

Observation (iii) is a consequence of observation (ii). This is evident when comparing the 
LE utilization of the FBTS for layer partitions L4, L4-L3, and L4-L2, or of L3 and L3-L2. 
These layer partitions implement the same layers in the FBTS, and show that 
implementing more layers in ESW requires less LEs. 
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In contrast to the SRAM DUT-M, the LE utilization of the FBTS generated for the LCD 
DUT-M presents a different behavior. There is a lower overall utilization of LEs with 
small changes between layer partitions. This is caused by the lower complexity of the 
LCD DUT-M, in which only L1 and L2 describe most of the test functions. In this case, it 
can even make sense to implement all layers in HW. The reason of this is that the 
processor consumes more than 60% of the LEs even if L4 is the only layer implemented 
in ESW. 

7.4.4 FPGA capacity 

All FBTS variants used for the experiments fit in any FPGA from the Altera Cyclone IV-
E family. This is observed in Figure 7.11, which presents the utilization percentage of 
LEs, M9K blocks, and multipliers of the FBTS and processor variants for different 
FPGAs. The percentages are obtained based on the resource utilization average of all 
FBTS variants generated for the SRAM DUT-M if layers L4-L2 are implemented in 
ESW. This layer partition produces processor variants with the highest utilization of 
resources. 

 
Figure 7.11: FPGA capacity. SRAM DUT (L4-L2) 

The EP4CE6 and EP4CE115 are the FPGAs with the lowest and highest capacity, 
respectively. The capacity of Cyclone IV-E FPGAs is [151]: 

FPGA LEs M9K blocks 9x9 Multipliers 
EP4CE6 6272 270 30 
EP4CE10 10320 414 46 
EP4CE15 15408 504 112 
EP4CE30 28848 594 132 
EP4CE55 55856 2340 308 
EP4CE115 114480 3888 532 

Figure 7.11 shows that it is possible to include at least three similar FBTS variants in the 
EP4CE6 and at least 20 similar FBTS variants in the EP4CE115. This makes it possible 
to implement a multi-co-processor or multi-domain FBTS even in Cyclone-IV E FPGAs 
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of low capacity. Of course, the exact number of processors and co-processors included in 
the FPGA depends on the properties of the PCB, DUT-Ms, and selected layer partitions. 
Figure 7.11 also shows that LEs are the FPGA resources with the highest. Therefore, 
configuration parameters such as GPR_mem and shifter_mult are very useful to reduce 
their use. 

7.5 FBTS active time 

FBTS active time represents the total test time if delays caused by the execution of SW 
layers and ATE/FBTS communication are not considered. Therefore, it is an ideal mean 
to show the effect of the processor configuration and ESW/HW partition. It is measured 
considering the longest execution path of test algorithms. For this purpose, it was 
necessary to inject a stuck-at fault at address line 0 of the SRAM. For the LCD, it was not 
necessary to inject any faults because execution time does not change in the presence of 
faults. 

7.5.1 Processor variants 

The effect of the variable (independent) configuration parameters (GPR_mem, 
pipeline_set, shifter_mult, short_imm_set, and data_width) on the FBTS active time is 
presented in the following sections. 

7.5.1.1 Effect of GPR_mem, pipeline_set, shifter_mult, and short_imm_set 

Figure 7.12 and Figure 7.13 show real and minimum FBTS active time values for both 
DUT-Ms if L4-L2 are implemented in ESW and data_width is equal to 16. In the same 
way as the resource utilization, the results present a repetitive shape in each sector.  

 
Figure 7.12: FBTS active time I16.0-I16.15. SRAM DUT (L4-L2) 
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Figure 7.13: FBTS active time I16.0-I16.15. LCD DUT (L4-L2) 

Figure 7.12 and Figure 7.13 show that FBTS active time for the LCD DUT-M is longer 
than FBTS active time for the SRAM DUT-M. This is due to the longer access time of the 
LCD controller (µs range) in comparison to the SRAM (ns range). 

Both figures also show that real FBTS active time remains constant in each sector. The 
reason of this is that independent configuration parameters GPR_mem and shifter_mult 
only alter the implementation of GPRs and shifter without changing their clock cycle 
behavior. Therefore, real FBTS active time values exclusively depend on short_imm_set 
and pipeline_set. 

The activation of pipeline_set produces a reduction of real FBTS active time typically in 
the range of 25%-35%. The activation of short_imm_set produces a slight increase, which 
is typically in the range of 0%-5%. This increase is caused by additional instructions used 
to handle immediate data and address values (imm_data_value). However, short_imm_set 
also can produce a significant increment of FBTS active time in certain cases. If there is a 
significant increase of instructions produced by the compiler when short_imm_set is true 
(Section 7.4.2.2), the processor has to execute more instructions, and therefore FBTS 
active time values increase. 

Minimum FBTS active time is influenced by all four independent configuration 
parameters. In this case, the activation of GPR_mem or shifter_mult produces an increase 
of this metric. This means that the processor critical path gets affected when embedded 
blocks are used for the implementation of the GPRs and shifter. For the LCD DUT, 
shifter_mult does not produce any changes given that shift or rotate instructions are not 
used. There is a reduction of the minimum FBTS active time when pipeline_set is true, 
whereas short_imm_set does not produce any significant changes. 

The behavior of the minimum FBTS active time metric is not further discussed in the 
following sections because it behaves in a similar way for all data_width values and layer 
partitions. 
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7.5.1.2 Effect of data_width 

Figure 7.14 and Figure 7.15 show real FBTS active time values for both DUTs and the 
112 processor variants. 

 
Figure 7.14: FBTS active time I8.0-I32.15. SRAM DUT (L4-L2) 

 
Figure 7.15: FBTS active time I8.0-I32.15. LCD DUT (L4-L2) 

They show that 8-bit, 12-bit, 20-bit, 24-bit, 28-bit, and 32-bit processor variants behave in 
the same way as the 16-bit processor variants. Parameters pipeline_set and short_imm_set 
affect real FBTS active time values, while GPR_mem and shifter_mult do not. 

The SRAM results show that an increase of data_width produces a gradual reduction of 
FBTS active time until a certain data_width value, which is known as the break value. 
After the break value is reached, FBTS active time remains relatively constant in 
comparison to changes obtained before the break value. For the SRAM DUT, the break 
value is 20-bits. The reductions before the break value are in the range of 9%-45%. These 
reductions are caused by a more efficient mapping of the DUT-M variables and procedure 
arguments in the processor ISA. Variables larger than data_width require multiple 
instructions for the storage and execution of arithmetic or logic instructions. Therefore, 
increasing data_width reduces the number of instructions necessary to handle these 
variables. For example, 8-bit processor variants require three GPRs and three memory 
locations for the storage of vAddr_shift[20] (Table 7.2). This means that at least three 
instructions are necessary for the execution of load, store and shift operations. On the 
other hand, 20-bit processor variants require a single instruction for this variable. 

Reductions obtained after data_width surpasses the break value are smaller (1%-2%). 
This is due to a low use of variables larger than 20 bits. In the SRAM DUT-M, these 
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variables are rarely found inside loops and are not found in L2 procedures, which are the 
more frequently executed procedures. 

The LCD results show no gradual reduction of real FBTS active time if data_width 
increases. This means that the break value is equal to 8. This is as expected because 
variables and procedure arguments of the LCD DUT-M have a maximum width of 8 bits 
(Table 7.3). The 1% increase of the FBTS active time is due to additional masking 
instructions necessary to handle variables if data_width is larger than the variable width. 

7.5.2 Layer partition 

The layer partition influences FBTS active time because it defines the layers that are 
implemented in ESW, and HW. Sections 7.5.2.1 and 7.5.2.2 present the real FBTS active 
time results for all layer partitions. Both sections discuss differences between layer 
partitions and the behavior of the break value. 

7.5.2.1 FBTS active time for SRAM DUT-M 

Figure 7.16 shows real FBTS active time values for the SRAM DUT-M and all layer 
partitions. Results show strong differences between layer partitions basically due to the 
layers implemented in ESW. 

 
Figure 7.16: FBTS active time I8.0-I32.15. SRAM DUT (all layer partitions) 

The longest real FBTS active time values are obtained for layer partitions that implement 
L2 in ESW (L2, L3-L2, and L4-L2). This is due to the fact that L1 is the only layer 
implemented in HW. The overlapping of L2 and L3-L2 results means that the 
implementation of L3 in ESW does not affect FBTS active time considerably. On the 
other hand, the implementation of L4 in ESW increases the FBTS active time. The reason 
is that the signature matching in L4 is a time consuming task. 

The results present a significant reduction if L2 is implemented in HW (L3, L4-L3, or L4 
in ESW). However, the implementation of L3 in HW does not produce the shortest FBTS 
active time. In this case, the implementation of L3 in ESW produces the shortest FBTS 
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active time. The reason is that L4 is implemented in SW, and therefore its execution time 
is not considered. 

The break value of layer partitions that implement L2, L3-L2, L4-L2, and L3 in ESW is 
data_width equal to 20. Reductions are in the range of 5% to 45% before reaching the 
break value. After that, FBTS active time values remain relatively constant with small 
reductions in the range of -1% to 2%. The -1% value represents an increase caused by 
additional instructions required to mask variables. 

On the other hand, the break value of layer partitions that implement L4-L3 and L4 in 
ESW is 24. In this case, reductions are in the range of 3% to 34% before reaching the 
break value. After that, FBTS active time values remain relatively constant with changes 
in the range of 0% to 0.5%. The translation of the break value from 20 to 24 is due to the 
fact that the execution time required to handle L4 variables becomes more relevant given 
that L2 is not implemented in ESW. L4 variables are handled more efficiently by 24-bit 
processor variants because they use two instead of the three instructions required by a 20-
bit processor for variables such as vSigna42[42] and vSigna32[32]. 

7.5.2.2 FBTS active time for LCD DUT-M 

Figure 7.17 shows real FBTS active time values for the LCD DUT-M and all layer 
partitions. The results present a complete different behavior in comparison to the SRAM. 
There is an overlapping of layer partitions that divides the results into two main groups, 
and the break value is always eight independently of layers implemented in ESW. 

 
Figure 7.17: FBTS active time I8.0-I32.15. LCD DUT (all layer partitions) 

Layer partitions that implement L2 in ESW (L2, L3-L2, and L4-L2) have the longest 
FBTS active time values and are overlapped. This is due to a major complexity in terms 
of number of procedures, operations, and variables of L2 in comparison to L3 and L4. 
This complexity makes it necessary to spend more time in the execution of L2. 

The group with the lowest FBTS active time comprises layer partitions that implement L2 
in HW. The results seem to require the same time independently of the independent 
configuration parameters of the processor. This is not true and is due to the scale of the 
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figure and the fact that the fraction of time required for the execution of ESW is very 
short in comparison to the time required for the execution of L1 and L2. These layers are 
not affected by the independent configuration parameters because they are implemented 
in HW. 

7.6 Test time 

Test time includes the real FBTS active time, execution time of SW layers, and time 
required for the ATE/FBTS communication. This section shows that the results are 
extremely dependent on the ATE/FBTS communication delays. 

7.6.1 ATE/FBTS communication delays 

ATE/FBTS communication time depends on the amount of data transfers (DTs) and time 
required for the execution of each DT. As mentioned in Section 6.3.1, the ATE FBTS 
communication is performed in six steps that transfer procedure arguments of type IN, 
OUT and INOUT, perform polling, and read the content of performance counters. 
Equation (7.1) describes the total number of DTs performed during test execution. xi and 
yi represent DTs required for procedure arguments. pi represents DTs performed during 
polling, and c DTs necessary to read the content of a performance counter. The constant 
value 6 is obtained by adding the constant number of DTs of steps 1 and 5, and the 
constant value 4 is obtained by adding the constant number of DTs of steps 2 to 4. The 
summation describes the total DTs performed during test execution, in which m 
represents the number of procedures of the highest layer implemented in ESW and ni the 
number of times that the i-th ESW procedure is called by the ATE. 

 𝐷𝐷𝐷𝐷𝐷𝐷 = 6 + 𝑐𝑐 + �𝑛𝑛𝑖𝑖 ∙ (4 + 𝑥𝑥𝑖𝑖 + 𝑦𝑦𝑖𝑖 + 𝑝𝑝𝑖𝑖 + 𝑐𝑐)
𝑚𝑚

𝑖𝑖=1

 (7.1) 

A DT typically requires four independent JTAG DR-shift operations. Two DR-shifts 
exchange data with the debug data register, one DR-shift exchanges data with the debug 
command register, and one 1-bit DR-shift is used to skip the command shift cycle 
(Section 5.4.3). For the experiments, the debug data and command registers have the 
same size (deb_reg_width), which is computed as the maximum value of Equations (5.21) 
and (5.22). Equation (7.2) describes the time necessary to perform a single DT (TDT) 
based on the test access time (TACC) of a JTAG transaction (Equation (2.2)) and assuming 
that there is a single device on the JTAG chain. 
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 𝑇𝑇𝐷𝐷𝐷𝐷 = 3 ∙ �
𝑑𝑑𝑑𝑑𝑑𝑑_𝑟𝑟𝑟𝑟𝑟𝑟_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ + 6

𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇
+ 𝛿𝛿𝑠𝑠 + 𝛿𝛿ℎ� + 1 ∙ �

1 + 6
𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇

+ 𝛿𝛿𝑠𝑠 + 𝛿𝛿ℎ� (7.2) 

The first factor of Equation (7.2) represents the TACC of the three DR-shifts used to 
exchange information with the debug command and data registers. The second factor 
represents the 1-bit DR-shift used to skip the command cycle. FTCK is the operation 
frequency of TCK, and δs and δh are software and hardware delays that appear during the 
data transmission. Based on Equations (7.1) and (7.2), the test time (Ttest_time) is: 

 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝐷𝐷 ∙ 𝑇𝑇𝐷𝐷𝐷𝐷 + 𝑇𝑇𝑆𝑆𝑆𝑆 (7.3) 

TSW is the time required for the execution of the SW layers. In this case, FBTS active time 
is part of the DTs·TDT factor (polling time). 

7.6.1.1 Experimental 𝛅𝛅𝐬𝐬 and 𝛅𝛅𝐡𝐡 delays 

δs and δh are the software and hardware delays produced during the transmission of data 
through the USB-Blaster, respectively. In [30] they are approximated to 1/𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇. 
However, this approximation is not realistic for the USB-Blaster and the quartus_stp tool. 
Equation (7.4) presents a way to calculate δs + δh. It is obtained by substituting Equation 
(7.2) into Equation (7.3) and isolating δs + δh. 

 𝛿𝛿𝑠𝑠 + 𝛿𝛿ℎ =
1
4
∙ �
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑇𝑇𝑆𝑆𝑆𝑆

𝐷𝐷𝐷𝐷𝐷𝐷
−

3 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑟𝑟𝑒𝑒𝑒𝑒_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ + 25
𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇

� (7.4) 

TSW is the time needed by quartus_stp to execute SW layer procedures, and is measured 
using the TCL instruction time without considering the ATE/FBTS communication. 
Ttest_time is computed based on the test time performance counter and the operation 
frequency of the FBTS (50MHz). FTCK is the operation frequency of the USB-Blaster (6 
MHz). Additional BScan devices are not considered because the JTAG chain of the DE2-
115 comprises the Cyclone IV-E FPGA only.  

Delays computed for the SRAM and LCD tests vary between 1 and 3 milliseconds. These 
values are approximately 10.000 times higher than 1/𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇 and confirm that the 
approximation presented in [30] is not realistic for the USB-Blaster and quartus_stp. The 
consequence is that the ATE/FBTS communication has a great influence on test time 
given that δs + δh delays can be longer than the total FBTS active time. 
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7.6.2 Experimental results 

Table 7.9 shows experimental results for the SRAM DUT-M. The processor 
configuration selected for each layer partition corresponds to a processor variant in the 
break value (I20.7 or I24.7). TFBTS and TSW are the real FBTS active time and execution time 
of SW layers, respectively. The number of DR-shifts is computed by multiplying by four 
the DTs obtained with Equation (7.1). Test time (Ttest) is calculated based on the content 
of the test time performance counter and FBTS working frequency (50 MHz). 

Layers in 
ESW 

Processor 
variant TFBTS (ms) TSW (ms) DR-shifts Ttest (ms) 

L4-L2 I20.7 1.599 0.6 76 234.01 
L4-L3 I24.7 0.469 0.7 76 228.00 

L4 I24.7 0.362 0.7 76 225.99 
L3-L2 I20.7 1.274 1.3 120 318.06 

L3 I20.7 0.183 1.3 120 332.16 
L2 I20.7 1.270 35.5 1976 4032.34 

Table 7.9: Test time of ROBSY test system. SRAM DUT 

Table 7.9 shows that TFBTS varies between 0.1 and 1.6 milliseconds depending on the 
layer partition. However, Ttest varies between 225 and 4032 milliseconds. This difference 
is not caused by TSW, it is caused by δs + δh and the amount of DR-shifts. In this case, 
this means that test time is defined by the number of DR-shifts, and moreover by the 
location of interface I2 (ATE interface). On the other hand, the location of interface I3 
(processor/co-processor interface) or the processor configuration parameters do not have 
a strong influence on test time. 

The longest test time in Table 7.9 corresponds to L2 in ESW given that this partition 
requires the highest number of DR-shifts. The reason of this is that L2 procedures have a 
high number of arguments and are called multiple times by L3. 

Table 7.10 shows experimental results for the LCD DUT-M. The processor configuration 
selected for each layer partition corresponds to a processor variant in the break value 
(I8.4). In this case, TFBTS varies between 699 and 880 milliseconds, while Ttest varies 
between 784 and 1792 milliseconds. 

Layers in 
ESW 

Processor 
variant TFBTS (ms) TSW (ms) DR-shifts Ttest (ms) 

L4-L2 I8.4 880.4 0.4 512 968.0 
L4-L3 I8.4 699.0 0.4 424 784.0 

L4 I8.4 699.0 0.4 424 784.0 
L3-L2 I8.4 880.4 0.4 512 967.9 

L3 I8.4 699.0 0.4 424 784.0 
L2 I8.4 880.4 4.7 920 1792.1 

Table 7.10: Test time of ROBSY test system. LCD DUT 
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In comparison to the SRAM DUT-M, the differences between TFBTS and Ttest are smaller. 
In this case, δs + δh and the number of DR-shifts do not influence the results in the same 
way as for the SRAM. This is due to the long access time of the LCD controller, which 
produces TFBTS values in the range of hundreds of milliseconds. Additionally, most of the 
DR-shifts are executed for polling purposes. This explains why the number of DR-shifts 
is different for layer partitions with the same SW layers (e.g. L3-L2 and L3). In this case, 
the dependency of test time on the layer partition and the processor configuration 
parameters is more evident. 

7.6.3 FPGA configuration time 

The configuration time of the Cyclone IV-E FPGA (EP4CE115F29C7) in JTAG mode is 
9 seconds. It remains constant independently of the DUT-M, processor variant, or layer 
partition. The reason for this is that the size of the configuration file is always the same 
for a given FPGA if the FPGA configuration is performed in JTAG mode. 

The configuration time was not considered as part of the test time analysis because it 
depends on the specific PCB, ATE, and available configuration methods. Options to 
reduce the configuration time are increasing the TCK frequency or using data 
compression methods and other configuration modes [151]. The latter can be used to 
obtain configuration times below 100 milliseconds. If short test time is the main test 
requirement, it is necessary to consider high speed configuration methods during the 
design of the PCB. 

7.7 Comparison to other approaches 

7.7.1 ROBSY vs Nios II 

The Nios II was used to implement three FBTS variants. As already mentioned in Section 
2.4.1, the Nios II is a 32-bit proprietary and configurable soft-core processor with 32 
GPRs developed and optimized for Altera FPGAs [61]. Three Nios II cores (/e, /s, and /f) 
are available and they support a common ISA. Table 7.11 shows main properties of the 
cores used for the experiments. 

 Pipeline 
stages 

Shared 
memory 

Instruction 
cache 

Data 
cache 

Branch 
prediction 

JTAG debug 
interface 

Nios II /e multicycle 16384 bytes - - - level 1 
Nios II /s 5 16384 bytes 512 bytes - static level 1 
Nios II /f 6 16384 bytes 512 bytes 512 bytes dynamic level 1 

Table 7.11: Properties of the Nios II cores 
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In the experimental setup, the three cores are connected to a shared memory used for the 
storage of instructions and data. This memory is configured with the minimum size 
required for the experiments (Table 7.11). The three FBTS (each one including a Nios II 
core) are developed based on the SRAM DUT-M. The layers L4-L2 are implemented in 
ESW, whereas L1 and L5 are implemented in HW and SW, respectively. The SRAM 
DUT-M and respective layer partition were selected because they produce ROBSY 
processor variants with the highest resource utilization and longest FBTS active time. 

Layers L4-L2 are manually described in C using the same structure of the SRAM DUT-M 
and compiled with the Nios II software build tools. In order to reduce memory footprint, 
compilation options enable_reduced_device_drivers, enable_small_c_library, and 
enable_lightweight_device_driver_api are activated, whereas enable_c_plus_plus is 
deactivated. L1 is implemented with the same co-processor used for the 32-bit ROBSY 
processor variants (including performance counters). For this purpose, the Wishbone bus 
is replaced with the Avalon bus of Nios II. L5 is coded manually using the script 
capabilities of the GNU debugger supported by Nios II. 

The ROBSY processor variants selected for the comparison to the Nios II cores are I8.0, 
I32.7, and I20.7. I8.0 is an 8-bit processor without pipeline or embedded blocks 
(short_imm_set false, pipeline_set false, GPR_mem false, and shifter_mult false). I32.7 and 
I20.7 are 32-bit and 20-bit processors with pipeline and embedded blocks (short_imm_set 
false, pipeline_set true, GPR_mem true, and shifter_mult true). I8.0 and I32.7 have the 
minimum and maximum data_width values, and I20.7 is located at the break value. 

7.7.1.1 Resource utilization 

Figure 7.18 and Figure 7.19 show the resource utilization of ROBSY processor and Nios 
II processor. I8.0 consumes less LEs and M9K blocks than the Nios II cores, and it does 
not make use of any multipliers (same as Nios II/e). However, the LE utilization of I8.0 is 
closed to the LE utilization of Nios II /e, although I8.0 is an 8-bit processor and Nios II/e is 
a 32-bit processor. This is due to the fact that the ISA and microarchitecture of the Nios II 
cores are optimized for 32 bits and Altera FPGAs. On the other hand, the ROBSY 
processor is a generic processor designed for different FPGAs (families and vendors) and 
with data width used as a configuration parameter (data_width). This means that it does 
not have an ISA or microarchitecture optimized for a given data width or FPGA. 

Nevertheless, the configurability provided by ROBSY makes it possible to have 32-bit 
processor variants such as I32.7 that consume less LEs than the Nios II/s or /f cores. Still, 
I32.7 consumes four extra M9K blocks and two extra multipliers in comparison to the Nios 
II/f core. This is also a consequence of the universality of the ROBSY processor. I20.7 
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shows that ROBSY processor can produce results that required even less resources than 
the Nios II/s and /f and still provide good FBTS active time results (Section 7.7.1.2).  

 
Figure 7.18: Nios II vs ROBSY logic elements. SRAM DUT (L4-L2) 

 
Figure 7.19: Nios II vs ROBSY M9Ks and 9x9 multipliers. SRAM DUT (L4-L2) 

To summarize, the resource utilization of the ROBSY processor is in the same range of 
Nios II. The configuration options provided by ROBSY make it possible to obtain 
processor variants that are adapted to the given test scenario, and therefore provide a low 
utilization of resources. This is possible even if the ROBSY processor is not optimized 
for Altera FPGAs. 

7.7.1.2 Performance 

Figure 7.20 shows FBTS active time results for ROBSY and Nios II cores. The 
comparison between these values has to be done considering that different source files 
(DUT-M for ROBSY and C program for Nios II) and compilers are used to generate the 
object code. The comparison shows that results obtained with ROBSY are in the same 
range as results obtained with the Nios II. This takes place even if Nios II cores have 
more pipeline stages or additional performance mechanisms such as dynamic branch 
prediction. 
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Figure 7.20: Nios II vs ROBSY FBTS active time. SRAM DUT (L4-L2) 

Table 7.12 shows test time results of ROBSY and Nios II. In this case, the ROBSY test 
system requires half of the time to execute the test. It is important to mention that in both 
cases the results are highly dependent on the number of DTs (Section 7.6). In the case of 
ROBSY, the number of DTs is mainly determined by the arguments of the DUT-M 
procedures belonging to the highest layer implemented in ESW. In the case of the Nios II, 
the number of DTs depends on procedure arguments but also on the operation of the 
GNU debugger. 

Test approach Ttest (ms) 

ROBSY I8.0 261.97 
ROBSY I32.7 240.00 
ROBSY I20.7 234.01 

Nios II/e 550.02 
Nios II/s 560.13 
Nios II/f 430.00 

Table 7.12: ROBSY vs Nios II test time. SRAM DUT (L4-L2) 

7.7.2 ROBSY vs VLSR 

In order to compare the ROBSY test system against other FBT techniques, the same test 
algorithms of SRAM and LCD DUT-Ms were implemented using a virtual length shift 
register (VLSR) (Section 3.2.2). A VLSR is a virtual BScan register implemented using 
the FPGA that is dynamically configured to reduce its length based on the number of 
DUT interconnections. The VLSR used for the comparison to the ROBSY test system 
relies on the D architecture [30], which uses separate data and mask shift registers. The 
data register comprises control and I/O cell pairs to drive test patterns and get responses. 
The mask register dynamically configures the length of the data register. This architecture 
was chosen because it provides the shortest test time in comparison to other architectures. 

The VLSR implemented for the experiments supports 373 I/Os, and therefore consists of 
a mask register with 373 cells and a data register with 746 cells. A comparison of 
ROBSY and BScan was not carried out because it would produce results similar to the 
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VLSR. The resource utilization would be zero and longer test time values would be 
expected due to a longer BScan chain. 

7.7.2.1 Resource utilization 

Figure 7.21 shows the LE utilization of the ROBSY FBTS and VLSR. The utilization of 
M9K blocks and multipliers is not shown because the VLSR does not make use of them. 

 
Figure 7.21: VLSR vs ROBSY logic elements. SRAM DUT (L4-L2) 

The VLSR requires three times more LEs than the ROBSY FBTS. The reason of this is 
that the size of the VLSR only depends on the number of I/Os. For each I/O, it is 
necessary to use approximately 6 LEs to implement a mask and data register cell. The 
advantage is that the same VLSR can be used to test different DUTs connected to the 
FPGA. 

7.7.2.2 Performance 

Table 7.13 presents test time results of the ROBSY test system and VLSR for the SRAM 
DUT-M. ROBSY DR-shifts and Ttest results are obtained from Table 7.9. The data 
register of the VLSR is dynamically configured with 82 cells in order to access all SRAM 
pins. The quartus_stp and USB-Blaster tools are used in order to obtain a fair comparison. 

Test approach DR-shifts Ttest (ms) Speed-up 

ROBSY 

L4-L2 76 234.01 5.8 
L4-L3 76 228.00 5.9 

L4 76 225.99 6.0 
L3-L2 120 318.06 4.2 

L3 120 332.16 4.1 
L2 1976 4032.34 0.3 

VLSR 564 1352.09 1 

Table 7.13: ROBSY vs VLSR test time. SRAM DUT-M (all layer partitions) 

Table 7.13 shows that Ttest values of ROBSY are four to six times shorter than VLSR 
values for all layer partitions (excluding L2 in ESW). The Ttest value for L2 in ESW is 
approximately three times longer than the VLSR. The differences are mainly due to 
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dissimilar number of DR-shifts. In this case, the high number of DR-shifts required for 
ROBSY if L2 is implemented in ESW is a consequence of the great amount of DTs that 
have to be performed. This shows that the FBTS for the SRAM DUT-M that only 
includes L1 and L2 in the FPGA is not appropriate in terms of test time. 

Table 7.14 shows test time results for the LCD DUT-M. ROBSY DR-shifts and Ttest 
results are obtained from Table 7.10. The data register of the VLSR is dynamically 
configured with 30 cells in order to access all pins of the LCD controller.  

Test approach DR-shifts Ttest (ms) Speed-up VLSR 

ROBSY 

L4-L2 512 968.0 275 
L4-L3 424 784.0 340 

L4 424 784.0 340 
L3-L2 512 967.9 275 

L3 424 784.0 340 
L2 920 1792.1 149 

VLSR 131088 266320 1 

Table 7.14: ROBSY vs. VLSR test time. LCD DUT-M (all layer partitions) 

In comparison to the SRAM DUT-M, results for the LCD DUT-M show higher speed-ups 
(149-340). This is due to the higher differences in the number of DR-shifts necessary for 
ROBSY and the VLSR. 

The comparison of ROBSY to the VLSR shows that ROBSY is able to improve test time 
results obtained with a VLSR. This is possible because the implementation of test 
functions in the FBTS reduces the amount of information that has to be transferred 
between the ATE and FPGA. However, the implementation of L2-L1 in the FBTS tends 
to produce high ATE/FBTS traffic. Therefore, it is convenient to at least implement 
layers L3-L1 in the FBTS. 

Although it is not shown in Table 7.13 and Table 7.14, it is important to remember that 
the ROBSY test system applies test patterns at-speed, while the application speed of the 
VLSR depends on TCK and the length of the data register. 

7.8 Summary 

Chapter 7 presented experimental results of the ROBSY test system for two different 
DUTs. The first DUT is an SRAM, in which the DUT-M describes two algorithms for the 
detection and diagnosis of faults. The second DUT is a LCD, in which the DUT-M 
describes a square pattern that moves through the screen. 
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The experiments are used to analyze the processor and FBTS resource utilization (LEs, 
M9K blocks, and 9x9 multipliers), FBTS active time, and test time based on the 
configuration parameters of the processor and layer partitions. For comparison purposes, 
same tests were performed with Nios II cores and a VLSR. 

7.8.1 Resource utilization 

7.8.1.1 ROBSY processor 

It was demonstrated that the automatic generation process is able to adapt the ROBSY 
processor to the DUT-M. It computes values of the dependent configuration parameters, 
defining proper instructions, number of GPRs, and size of memories. The dependent 
configuration parameters allow producing efficient ROBSY processor variants in terms of 
resources without affecting the performance of the processor (execution time). In this 
way, it is possible to implement the ROBSY processor in FPGAs of low capacity or a 
multi-domain FBTS. Additionally, the number of configuration parameters that have to 
be defined manually is reduced to five variable (independent) configuration parameters. 
These parameters cannot be exactly calculated by analyzing the DUT-M or assembly 
program properties. 

The variable (independent) configuration parameters provide a way to manually influence 
the resource utilization of the processor. This is done based on trade-offs between type of 
FPGA resources and trade-offs between FPGA resources and performance. GPR_mem 
and shifter_mult produce trade-offs between LEs and M9K blocks and between LEs and 
9x9 multipliers, respectively. pipeline_set produces trade-offs between LEs and 
performance, and short_imm_set between M9K blocks and performance. The activation 
of short_imm_set typically reduces the number of M9K blocks at the expense of 
additional instructions necessary for handling immediate data and address values. 
However, it was shown that short_imm_set can produce the opposite effect. For low 
data_width values, the compiler might produce a very high number of additional 
instructions (e.g. SRAM DUT-M and 8-bit processors). Finally, data_width produces  
trade-offs between all FPGA resources and performance. The increase of data_width goes 
with an increase of LEs, M9K blocks, and 9x9 multipliers, but it provides the option to 
perform operations using fewer instructions. 

The constellation short_imm_set true, pipeline_set false, GPR_mem true, and shifter_mult 
true produces the lowest utilization of LEs at the expense of additional embedded blocks, 
while the opposite constellation produces the contrary effect. However, resource 
utilization differences between processor variants vary depending on the value of the 
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dependent configuration parameters as well as on the synthesis tool and selected synthesis 
options. 

7.8.1.2 FPGA-based test system 

The resource utilization of the complete FBTS is affected by the processor variant but 
most importantly by the layer partition, which defines layers implemented in SW, ESW, 
and HW. The experiments showed that the layer partition offers flexibility in terms of 
resource utilization, but results are highly dependent on the properties of the specific 
DUT-M (number and size of procedures, variables, and operations). 

Experiments carried out with the SRAM and LCD DUT-Ms showed that the layer 
partition has a greater influence on resources than the processor independent 
configuration parameters. However, the layer partition can produce significant or no 
variations of the results. This depends on the properties of each layer of the DUT-M. For 
example, the implementation of an additional layer in HW for the SRAM DUT-M 
produced a significant increase of LEs. On the other hand, the implementation of an 
additional layer in HW for the LCD DUT-M produced low variations of LEs. 

The results also showed that including a processor as part of the FBTS might not always 
contribute to an efficient utilization of resources. If the DUT-M presents a low 
complexity, with a small number and size of procedures, variables, and operations (e.g. 
LCD DUT-M), the resource utilization of the processor might be very high in comparison 
to the resource utilization of a co-processor for the same layers. In such a case, it is 
necessary to evaluate if other advantages of the processor (reusability, standard 
communication mechanism, pre-verified component, debugging) or if the ROBSY 
approach itself is appropriate for testing the interconnections to the specific DUT. 

Finally, the use of layer partitions and configuration parameters provide a way to make an 
efficient use of resources, facilitating the implementation of a multi-co-processor or 
multi-domain FBTS in FPGAs with different capacities. It was shown that the FBTS 
generated for the experiments fit in any FPGA of the Cyclone IV-E family, and there are 
even additional resources available to extend the FBTS. 

7.8.2 FBTS active time 

FBTS active time represents the total test time if delays caused by the execution of SW 
layers and the ATE/FBTS communication are not considered. It is an ideal mean to show 
the effect of the processor configuration and ESW/HW partition because the execution of 
SW and the ATE/FBTS communication delays are not considered. 
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The analysis of FBTS active time was performed by means of the real and minimum 
FBTS active time metrics. The former is calculated based on the real operation frequency 
of the FBTS (50 MHz), and the latter is calculated based on the maximum operation 
frequency of the FBTS (TimeQuest timing analyzer results). 

7.8.2.1 ROBSY processor 

The real FBTS active time is not affected by the dependent configuration parameters or 
by all variable (independent) configuration parameters. It is only affected by the variable 
(independent) configuration parameters short_imm_set, pipeline_set, and data_width. The 
activation of short_imm_set typically results in longer values due to the execution of 
additional instructions required to handle short immediate data and address values. The 
activation of pipeline_set results in shorter values due to the pipeline. This means that for 
a given data_width, the shortest real FBTS active time is obtained if pipeline_set is true 
and short_imm_set is false (at the expense of more LEs and M9K blocks). 

An increase of data_width produces a reduction of the real FBTS active time until a 
certain data_width, which is known as the break value. As soon as this value is exceeded, 
the FBTS active time remains relatively constant. The break value depends on properties 
of the layer procedures implemented in ESW, specifically on the size and utilization rate 
of variables and arguments. It signalizes processor variants with the most efficient 
utilization of resources because processor variants with higher data_width values 
consume more resources without significantly improving the real FBTS active time. The 
break values obtained for the SRAM and LCD DUT-Ms and all layer partitions are 20-24 
and 8, respectively. They show that the selection of untypical data_width values can lead 
to a better adaptation of the processor. 

The minimum FBTS active time is influenced by all the configuration parameters. It was 
shown that the configuration parameters that increase the number of embedded blocks 
(e.g. GPR_mem and shifter_mult) reduce the maximum operation frequency achieved 
with the FBTS, increasing the minimum FBTS active time values. 

7.8.2.2 Layer partition 

The layer partition plays an essential role in the FBTS active time, and produces more 
noticeable changes in comparison to the processor configuration parameters. Depending 
on the properties of the DUT-M (layers implemented in ESW and HW), it can either 
reduce the FBTS active time in a significant way or produce unnoticeable changes. The 
implementation of additional layers in HW typically results in shorter real FBTS active 
time values. However, there are cases in which the implementation of additional layers in 
HW does not produce any significant changes (e.g. L3-L1 in comparison to L2-L1 in HW 
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for the LCD DUT-M). The same is true for the implementation of additional layers in 
ESW. The reason of this is that the FBTS active time (in the same way as the resource 
utilization) also depends on the properties of the DUT-M. 

7.8.3 Test time 

Test time includes the real FBTS active time, execution time of SW layers, and time 
required for the ATE/FBTS communication. It was shown that the ATE/FBTS 
communication can significantly influence the results depending on the value of δs + δh 
delays and number of DR-shifts. 

In the experimental setup presented in this chapter, δs + δh delays produced by the USB-
Blaster and quatus_stp are in the range of 1-3 milliseconds. For the SRAM test, it was 
shown that test time depends on the number of DR-shifts because the real FBTS active 
time is shorter than the δs + δh delays. For the LCD test, it was shown that test time does 
not show such a strong dependency on the ATE/FBTS communication as in the case of 
the SRAM test. This is due to the low number of DR-shifts that has to be executed 
(without considering polling) and the fact that the real FBTS active time is in the same 
range or longer than δs + δh delays. 

The consequence is that processor configuration parameters as well as the location of 
interface I3 (processor/co-processor interface) do not affect test time results for FBTS 
active time values shorter than δs + δh. In such a case, test time depends on the location 
of interface I2 (ATE interface) given that it defines the number of DR-shifts. The 
influence of the ATE/FBTS communication can be reduced by selecting a test controller 
with shorter δs + δh delays, or by reducing the number of DR-shifts. Section 8.6 presents 
alternatives for reducing the number of DR-shifts. 

The FPGA configuration time also plays an important role in the test time. However, the 
configuration time can be reduced to values below 100 milliseconds. This is achieved by 
using high speed configuration methods that have to be considered during the design of 
the PCB. However, the FPGA configuration time will become less relevant as the 
implementation of multiple FBTS domains takes place. 

7.8.4 Comparison to Nios II and VLSR 

In terms of resource utilization, it was shown that the resource utilization of the ROBSY 
processor is in the same range as the resource utilization of Nios II cores. It is even 
possible to obtain a more efficient utilization of resources with the ROBSY processor by 
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selecting proper values for the configuration parameters. The reason of this is that the 
configuration options provided by ROBSY make it possible to obtain processor variants 
that are better adapted to the given test scenario even if the ROBSY processor is not 
optimized for a specific FPGA. The comparison to the VLSR shows a much higher 
utilization of LEs in the case of the VLSR. This is due to the high number of FPGA I/Os 
and that for each I/O it is necessary to used approximately 6 LEs. 

In terms of FBTS active time, the comparison to Nios II cores for a single layer partition 
shows that ROBSY is able to deliver results in the same range of the Nios II. This is 
achieved even if the Nios II cores are optimized for Altera FPGAs, have more pipeline 
stages, and support dynamic branch prediction. 

In terms of test time, the comparison of ROBSY to the Nios II test systems showed that 
results obtained with ROBSY are half as long in average. The reason of this is that the 
GNU debugger tool supported by Nios II requires more DR-shifts than the approach 
developed for the ROBSY test system. The comparison to the VLSR showed that 
ROBSY is also able to achieve shorter test time values. In the case of the SRAM, the 
speed-ups achieved are in the range of 4-6 depending on the layer partition. However, the 
implementation of L2-L1 in the FBTS can produce longer test times if the amount of DR-
shifts is higher with ROBSY than with the VLSR. In the case of the LCD, the speed-ups 
are even higher (149-339). 

To conclude, the comparison to the Nios II shows that ROBSY can provide better 
resource utilization results and similar performance even if the processor is not optimized 
for a specific FPGA or for a given data width. This is due to the processor’s adaptation 
mechanism and specialization for testing. The comparison to VLSR shows that the 
implementation of test functionality in the FPGA reduces the number of DR-shifts. 
Additionally, it is important to remember that ROBSY applies test patterns at-speed, 
while the application speed of the VLSR depends on TCK and the VLSR length. 

7.8.5 Synthesis tool 

The FPGA synthesis tool use heuristics to map the functionality described at the RTL to 
the FPGA blocks. In this way, it is able to provide optimal results in a short amount of 
time. Drawbacks are that it is quite difficult to predict the time required for synthesis and 
that the heuristics might influence the results without an apparent reason. For example, 
the tool might perform differently during the implementation of similar processor 
variants, duplicating registers that were not duplicated in other cases, using a different 
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amount of resources for routing, including more M9K blocks or 9x9 multipliers than 
necessary or producing solutions with unrelated maximum operation frequencies. 

These uncertainties produced by the synthesis tool make it very difficult to predict what 
will be the final effect of a given layer partition or processor variant. Therefore, it is 
necessary to keep in mind that the results presented in this chapter represent typical 
behaviors. However, it is possible to obtain different results in certain cases or if other 
synthesis tools, tool versions, or FPGAs are used. 

7.8.6 Selection of a processor variant 

Sections 7.4 and 7.5 show that the resource utilization and FBTS active time can be 
modified based on the independent processor configuration parameters. In order to select 
a proper processor variant, there are some guiding principles that can be used by the test 
engineer after the definition of the layer partition. 

The first step is the selection of a proper data_width value considering the size of 
variables and arguments of procedures implemented in ESW and the size of procedure 
arguments belonging to the highest layer implemented in HW. The goal is to select a 
data_width value that matches the break value. After that, the test engineer can start 
experimenting with the remaining independent configuration parameters. For this 
purpose, the following guiding principles should be considered: 

• short_imm_set reduces the number of M9K blocks at the expense of extra 
instructions that can increase FBTS active time. However, the test engineer has to 
consider the possible counter effect of this parameter for low data_width values 
(Section 7.4.2.2). 

• pipeline_set reduces FBTS time at the expense of additional LEs for the 
implementation of pipeline related logic. 

• GPR_mem reduces the number of LEs at the expense of two additional M9K 
blocks. It does not affect the real FBTS active time, but it increases the minimum 
FBTS active time (reduction of the maximum operation frequency). 

• shifter_mult reduces the number of LEs at the expense of additional multipliers. 
The effect of shifter_mult takes place only if shift or rotation instructions are 
required. It does not affect the real FBTS active time, but it increases the 
minimum FBTS active time. 

If the obtained processor and FBTS variant do not achieve the required FBTS active time 
based on the independent configuration parameters short_imm_set, pipeline_set, 
GPR_mem, and shifter_mult, the test engineer can increase data_width or select a 



180 7 Experimental phase 

 

different layer partition at the expense of higher utilization of resources. On the other 
hand, if the resource utilization is above a maximum constraint, the test engineer can 
reduce data_width or select a different layer partition at the expense of longer real FBTS 
active time values. 

These guiding principles cannot be considered general rules that stay valid for all test 
scenarios. The properties of the DUT-M, FPGA, and heuristics of the synthesis tool can 
lead to different results. They provide a fast mechanism to select a proper processor 
variant, and can be used for the development of heuristics that automatically compute the 
value of the independent configuration parameters. 
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8 Conclusions 

8.1 Introduction 

This chapter summarizes this dissertation. Section 8.2 presents a summary of the work, 
and Section 8.3 lists the major achievements. Sections 8.4 and 8.5 present a discussion of 
the impact and limitations of the provided solution, respectively. Finally, Section 8.6 
provides an outlook of possible extensions and improvements as part of the future work. 

8.2 Summary of the dissertation 

This dissertation deals with the development of a novel FPGA-based test (FBT) approach 
used during the manufacturing of printed circuit boards. In this context, the general issue 
is related to the development of a test system with the following features: 

• Architecture adapted to the specific test scenario. 
• Low design effort for test engineer. 
• Fault coverage of static and dynamic faults. 
• At-speed test. 

The dissertation proposes the development of a test system, whose main components are 
the external automatic test equipment (ATE) and the FPGA located on the printed circuit 
board. The test system is automatically generated based on a high-level description of the 
device under test (DUT) and test algorithms, which is known as device under test model 
(DUT-M). The DUT-M relies on a layer concept that divides the test functionality into 
five layers (L1-L5) and three interfaces (I1-I3). The implementation of test functions in 
the ATE is performed by transforming layers of the DUT-M to software (SW) routines, 
and the implementation of test functions in the FPGA is performed by transforming layers 
of the DUT-M to an FPGA-based test system (FBTS). The FBTS is composed of two 
fundamental components: a programmable test processor and a hardwired co-processor. 
This means that the implementation of test functions in the FBTS is performed by 
transforming layers of the DUT-M to embedded software (ESW) routines executed by the 
test processor or to hardware (HW) descriptions representing the hardwired co-
processors. The selection of layers that are implemented in SW, ESW, and HW is known 
as the layer partition, and it is performed by defining the location of interfaces I2 and I3. 
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The adaptation of the test system to different test scenarios relies on the flexibility of the 
layer concept and the option to implement layers in the ATE or FBTS. The low design 
effort required to build the test system is due to the DUT-M, which is the only description 
that has to be developed (or selected from a library) by the test engineer. Based on this 
description, the SW, ESW, and HW are automatically generated. 

The test system executes tests at-speed in order to guarantee the detection of dynamic 
faults. This is possible because the access to DUTs is implemented by co-processors, 
which are clocked at the operation frequency of the printed circuit board. The use of 
FPGAs already located on the printed circuit board, the automatic generation of the test 
system, the layer concept, and the processor/co-processor architecture of the FBTS 
provide the test engineer with a powerful test approach. 

The main contribution of this dissertation is the analysis, development, and evaluation of 
the test processor included in the FBTS. The key features of the processor are: 

• Tailored and specialized for testing purposes. 
• Adaptation mechanism based on configuration parameters defined at the ISA and 

microarchitecture level. 
• Debug-interface for ATE/FBTS communication and Wishbone bus for 

processor/co-processor communication. 

The test processor is known as ROBSY processor. It is a scalar soft-core processor 
described at the register transfer level in VHDL. The VHDL description is portable to 
FPGAs from different families and vendors, and it was used in Altera as well as Xilinx 
FPGAs. The ROBSY processor is developed based on the RISC design philosophy with 
pipelining support and configuration options that change properties of its ISA and 
microarchitecture. It supports a single data width, test operations such as instructions for 
the generation of pseudo-random sequences and walking 1/0 sequences, and includes a 
debug-interface with JTAG support. 

Apart from the ROBSY processor, this dissertation proposes a concept for the automatic 
generation flow of the complete test system. One essential part of the concept describes 
the way that the ROBSY processor is automatically adapted to the layers implemented in 
ESW and the transformation steps necessary to generate the object code. The generation 
flow analyses the DUT-M and generated assembly program in order to compute the value 
of the configuration parameters known as dependent configuration parameters. These 
parameters are used to adapt the processor to the DUT-M, and only affect the resource 
utilization of the processor. There is a second group of configuration parameters known 
as independent configuration parameters, whose values are not computed by the 
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automatic generation flow. The value of these parameters is defined by the test engineer 
and they provide trade-offs between resource utilization and performance. 

In order to show the feasibility of the approach, a practical implementation of the 
automatic generation flow for a single processor/co-processor pair was developed. The 
flow includes the adaptation of the ROBSY processor, the generation of the object code, 
and the generation of SW for the ATE based on TCL and the IEEE standards 1149.1-
2013 and IJTAG. The VHDL description of the co-processors was manually developed. 

The practical implementation of the automatic generation flow is used to generate the 
ROBSY test system for two DUT-Ms. The first DUT-M is used to test the 
interconnections between an FPGA and an IS61WV102416 SRAM device. It describes 
fault detection and fault diagnosis algorithms based on deterministic patterns, algorithmic 
patterns, and fault dictionaries. The second DUT-M is used to test the interconnections 
between the same FPGA and an LCD DIP128-6 controller. The LCD DUT-M presents a 
lower complexity in terms of number and size of procedures, variables, and operations. It 
describes a square pattern that moves through the screen, which has to be visually 
inspected in order to detect any fault. The experiments were performed using the DE2-
115 board from Terasic and the VarioTap Coach Board from Göpel Electronics. The 
Cyclone IV-E FPGA (EP4CE115F29C7) on the DE2-115 was used for the 
implementation of the FBTS. 

The experimental results provide a way to evaluate the resource utilization and 
performance for different processor variants and layer partitions. The performance 
measurements were done based on the accumulated time that the FPGA-based test system 
is active (FBTS active time) and total test execution time (test time). Results show that 
the concept works and that the processor adapts itself to the DUT-M based on the 
automatic generation flow. Additionally, it was possible to analyze the behavior of the 
dependent and independent configuration parameters and propose guiding principles for 
assigning proper values to the independent configuration parameters. An important 
conclusion is that results significantly depend on the properties and complexity of the 
DUT-M and that the processor represents a good alternative to implement functions of 
layers L4-L2 if these layers present a complexity similar to the SRAM DUT-M. 

For comparison purposes with state of the art soft-core processors, the test functionality 
of the SRAM DUT-M was implemented in three FBTS based on the Nios II/e, /s, and /f 
cores. The comparison showed that the resource utilization of the ROBSY processors is in 
the same range or below the Nios II depending on which ROBSY processor variant is 
used for the comparison. Additionally, FBTS active time and test time values obtained 
with ROBSY are 20% and 50% shorter in average, respectively. This shows that ROBSY 
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can provide an efficient utilization of resources and better performance even if the 
processor is not optimized for a given FPGA or data width as is the case of the Nios II. 

For comparison purposes with state of the art FPGA-based test approaches, the test 
functionality of both DUT-Ms was also implemented using a generic FPGA test 
instrument (virtual length shift register, VLSR). Results for SRAM and LCD show that 
the ROBSY test system is 4 to 6 and 149 to 340 times faster than the VLSR depending on 
the layer partition. Additionally, the proposed test system is able to execute tests at-speed, 
which is not possible with the VLSR. This shows the advantages of ROBSY and that it is 
a suitable alternative for testing printed circuit boards. 

8.3 Achievements 

The theoretical part of the work includes the following achievements: 

• A concept of a novel test system for printed circuit board testing. 
• An FPGA-based test system composed of configurable test processors and 

hardwired co-processors organized in domains. 
• A test processor tailored and specialized for board-level testing with configuration 

options defined at the ISA and microarchitecture level. 
• An automatic generation flow for the generation of the test system and adaptation 

of the processor. 

Furthermore, the applicability of the approach has been shown by implementing the 
theoretical concept. In this context the achievements of the work are: 

• The implementation of the ROBSY processor in VHDL. 
o ISA and microarchitecture tailored and specialized for FPGA-based tests. 
o JTAG-based debug-interface and a Wishbone bus for communication and 

debugging purposes. 
o ISA and microarchitecture configuration options defined in VHDL 

packages. 
• The implementation of an automatic generation flow: 

o Automatic generation of VHDL packages based on the analysis of DUT-M 
and assembly program. 

o A compilation tool for translating the DUT-model high level description to 
the ROBSY processor object code and to the TCL or PDL/BSDL 
descriptions executed by the external ATE. 
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8.4 Impact 

This dissertation introduced a novel and powerful FPGA-based test concept for 
performing tests of printed circuit boards. This concept overcomes the most limiting 
aspects of other FPGA-based test approaches, which correspond to the inability to 
execute tests at-speed, long test times, and a high development effort. The test processor 
is the first processor developed for printed circuit board testing, and it provides a standard 
interface to the ATE and the option to efficiently embed more test functions in the FPGA. 
It was shown that it is an ideal mechanism to control and observe the test execution and 
that it can provide resource utilization and performance results in the same range or better 
than Nios II cores, which are optimized for Altera FPGAs. 

Furthermore, with the automatic generation of the test system, it is possible to implement 
the FPGA-based test system without the need for test engineers with a high FPGA design 
expertise. This makes the concept attractive and applicable to industry. 

8.5 Limitations 

The limitations of the FPGA-based test approach deal with the need for an FPGA on the 
printed circuit board, synthesis of the FPGA-based test system on the field, FPGA 
configuration time, and use of a test processor in low complexity test scenarios. 

The main limitation of the approach presented in this dissertation is that it can be only 
used to test printed circuit boards that are already equipped with an FPGA for their 
normal operation. The addition of an FPGA to the board just for testing purposes makes 
no sense at all because the tested interconnections (between FPGA and DUTs) will not be 
used during the normal operation of the board. 

The need to synthesize the FPGA-based test system on the field makes it necessary to 
consider the synthesis tool, synthesis time, resource utilization, and timing results. As a 
consequence, the automatic generation flow should support mechanisms to deal with 
FPGA-based test systems that do not fit in the FPGA or that do not reach the required 
operation frequency. This is a great challenge for the development of the automatic 
generation flow because it should be aware of the synthesis options offered by the tools, 
and it should include mechanism to give some feedback or guide test engineers in the 
case of problems. 

This dissertation did not consider FPGA configuration time as part of test time. This is 
due to the fact that the configuration time depends on the capacity of the FPGA and the 
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selected configuration mechanism. The experiments presented show that the FPGA 
configuration time can take much longer than test time. Therefore, it is necessary to 
counteract its effect by using high performance configuration mechanisms (when 
possible) and by implementing FPGA-based test systems with multiple domains. The 
latter makes it possible to test interconnections to multiple DUTs at the same time and to 
configure the FPGA only once. 

The use of the test processor might result in an inefficient utilization of resources for low 
complexity DUT-Ms. As presented in the LCD test, the processor might consume more 
than 60% of the resources even if layers L1-L3 are implemented in hardware and only a 
very basic L4 functionality is implemented in embedded software. In such a case, the use 
of a processor does not offer any advantages and better results would be likely obtained 
with a completely hardware implementation. However, this effect tends to disappear 
when multiple co-processors are connected to the processor in the same domain. 

8.6 Future work 

There are multiple research directions concerning the test system as well as the ROBSY 
processor. They are necessary in order to explore other alternatives, enhance the FPGA-
based test approach, or develop parts of the concept that are not already developed. 

• Partitioning and automatic generation process 
o Development of a high level DUT-M analyzer in order to evaluate the 

results of different layer partitions. In this way, it is possible to accelerate 
the selection of a proper partition based on the properties of the DUT-M. 

o Extension of the automatic generation process in order to enable the 
generation of a multi-domain multi-co-processor FBTS. For this purpose, 
it is necessary to analyze and compile multiple DUT-Ms at the same time. 

o Research and development of mechanisms used as part of the automatic 
generation process to deal with FBTS variants that do not fit in the FPGA 
or do not reach the required operation frequency. 

o Research and evaluation of heuristics that automatically compute the 
independent configuration parameters values of the ROBSY processor 
(e.g. design of experiments [153]). 

• ATE/FBTS and processor/co-processor communication 
o Optimization of the debug-interface in order to reduce the number of DR-

shifts required for exchanging information between the ATE and FBTS. 
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o Research of compression and decompression schemes that can be applied 
to the ATE/FBTS communication. This is necessary in order to reduce test 
time and support high volume data transfers (FLASH programming). 

o Support for burst transfers as part of the Wishbone bus and evaluation of 
an interrupt-based processor/co-processor communication. 

• FBTS architecture 
o Utilization of accumulation buffers between layers L1 and L2. This is 

necessary to guarantee the application of pattern sequences at-speed 
independently of the layer partition. 

o Support for hard-core controllers already available in the FPGA for the 
implementation of L1 functions. 

o Development and evaluation of different structures for the ATE/FBTS 
communication in a multi-domain FBTS. This can be realized considering 
flat and hierarchical structures proposed in the IEEE 1149.1-2013 and 
IJTAG standards. 

o Research of layer partitions that implement L5 in the FPGA. This includes 
the analysis and definition of embedded visualization mechanisms for test 
results. 

• Processor and compiler development 
o Optimization of the compiler used to generate the object code. For this 

purpose, it is necessary to efficiently map variables to registers and 
perform code optimizations. The goal is to further reduce the processor 
execution time and the size of the processor memories. 

o Research of instruction set extension mechanisms based on the DUT-M. 
• Experiments with additional DUT-Ms 

o Perform additional experiments with other DUTs such as FLASH 
memories in order to evaluate the test approach when high amount of data 
is exchanged between FPGA and DUT. 

o Evaluation of the FPGA-based test system for the execution of bit error 
rate tests (BERT). 
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