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Abstract

Mobile communication devices now available on the market, such
as so-called smartphones, are far more advanced than the first
cellular phones that became very popular one decade ago. In ad-
dition to their historical purpose, namely enabling wireless vo-
cal communications to be established nearly everywhere, they
now provide most of the functionalities offered by computers.
As such, they hold an ever-increasing amount of personal in-
formation and confidential data. However, the authentication
method employed to prevent unauthorized access to the device
is still based on the same PIN code mechanism, which is often
set to an easy-to-guess combination of digits, or even altogether
disabled. Stronger security can be achieved by resorting to bio-
metrics, which verifies the identity of a person based on intrinsic
physical or behavioral characteristics.

Since most mobile phones are now equipped with an image sensor
to provide digital camera functionality, biometric authentication
based on the face modality is very interesting as it does not re-
quire a dedicated sensor, unlike e.g. fingerprint verification. Its
perceived intrusiveness is furthermore very low, and it is gener-
ally well accepted by users. The deployment of face verification
on mobile devices however requires overcoming two major chal-
lenges, which are the main issues addressed in this PhD thesis.



vi Abstract

Firstly, images acquired by a handheld device in an uncontrolled
environment exhibit strong variations in illumination conditions.
The extracted features on which biometric identification is based
must therefore be robust to such perturbations. Secondly, the
amount of energy available on battery-powered mobile devices
is tightly constrained, calling for algorithms with low computa-
tional complexity, and for highly optimized implementations.

So as to reduce the dependency on the illumination conditions,
a low-complexity normalization technique for features extraction
based on mathematical morphology is introduced in this thesis,
and evaluated in conjunction with the Elastic Graph Matching
(EGM) algorithm. Robustness to other perturbations, such as
occlusions or geometric transformations, is also assessed and sev-
eral improvements are proposed. In order to minimize the power
consumption, the hardware architecture of a coprocessor dedi-
cated to features extraction is proposed and described in VHDL.
This component is designed to be integrated into a System-on-
Chip (SoC) implementing the complete face verification process,
including image acquisition, thereby enabling biometric face au-
thentication to be performed entirely on the mobile device. Com-
parison of the proposed solution with state-of-the-art academic
results and recently disclosed commercial products shows that
the chosen approach is indeed much more efficient energy-wise.

Keywords

Image processing, biometrics, face recognition, elastic graph match-
ing, mathematical morphology, mobile devices, ASIC architectures,
low-power VLSI design, VHDL description, FPGA implementation.



Résumé

Les appareils de communication portables actuellement sur le
marché, comme par exemple les smartphones, sont bien plus
évolués que les premiers téléphones cellulaires devenus populaires
il y a une décennie. En plus de leur but premier, à savoir per-
mettre l’établissement de communications vocales pratiquement
partout, ils offrent maintenant la plupart des fonctionnalités d’un
ordinateur et renferment ainsi de plus en plus d’informations per-
sonnelles et de données confidentielles. La vérification d’identité
visant à empêcher l’accès aux personnes non autorisées est cepen-
dant toujours basée sur le code NIP qui est souvent facile à
deviner, ou même complètement désactivé. La sécurité peut être
accrue en utilisant la biométrie, qui identifie les personnes en se
basant sur leurs caractéristiques physiques ou comportementales.

La majorité des téléphones portables actuels intégrant un cap-
teur d’images pour permettre la prise de photographies, la re-
connaissance biométrique du visage est très intéressante car elle
ne requiert pas de capteur dédié, au contraire par exemple de la
reconnaissance des empreintes digitales. De plus, elle n’est pas
jugée invasive et est généralement bien acceptée des utilisateurs.
Avant de pouvoir déployer la reconnaissance de visages sur un
terminal portable, il faut cependant surmonter deux obstacles
majeurs, qui sont les principaux sujets étudiés dans cette thèse.



viii Résumé

Premièrement, les conditions d’illumination des images capturées
par un appareil tenu en main dans un environnement non con-
trôlé peuvent grandement varier. Les caractéristiques extraites
pour servir de base à la reconnaissance biométrique doivent donc
être robustes en présence de telles perturbations. Deuxièmement,
la quantité d’énergie disponible sur un appareil portable alimenté
par batteries est très limitée, et nécessite des algorithmes à faible
complexité et dont l’implantation est fortement optimisée.

Pour réduire l’influence de l’illumination, une technique de nor-
malisation à faible complexité pour l’extraction de caractéris-
tiques basée sur la morphologie mathématique est proposée dans
cette thèse. La méthode est évaluée en combinaison avec l’algo-
rithme de mise en correspondance de graphes élastiques, Elastic
Graph Matching (EGM) en anglais. La robustesse à d’autres
perturbations, telles que des occlusions ou des transformations
géométriques, est également jaugée et plusieurs améliorations
sont proposées. Afin de minimiser la puissance dissipée, une ar-
chitecture matérielle pour un coprocesseur dédié à l’extraction de
caractéristiques est présentée et décrite en VHDL. Ce composant
est conçu pour s’intégrer dans un système sur puce réalisant
la totalité du processus de vérification, y compris l’acquisition
d’image, ce qui permet d’effectuer la reconnaissance biométrique
du visage entièrement sur le terminal portable. La comparaison
de cette solution avec l’état de l’art au niveau académique et avec
des produits commerciaux récents indique que l’approche choisie
est bien plus efficace en termes de consommation d’énergie.

Mots-clés

Traitement d’images, biométrie, reconnaissance de visages, mise en
correspondance de graphes élastiques, morphologie mathématique,
terminaux portables, architectures ASIC, conception VLSI à basse
consommation, description VHDL, implantation FPGA.
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Chapter 1

Introduction

1.1 Motivations and objectives

In the last decade, mobile devices dedicated to communication,
such as cellular phones, and those dedicated to information man-
agement, such as Personal Digital Assistants (PDAs), have be-
come an integral part of our daily life. Technological innova-
tions furthermore led to the convergence of these two kinds of
devices, resulting for instance in the emergence of the so-called
smartphones. Beside the original purpose of a mobile telephone,
namely enabling wireless vocal communication between people,
such devices offer many additional functionalities, so much that
they can effectively be considered as miniaturized computers. As
such, they hold an ever-increasing amount of personal — and pos-
sibly confidential — information. Moreover, they enable remote
access to highly sensitive services, such as e-banking applications
and paid-for online services. These devices are naturally meant
to be carried along by their owner at all time, and are obviously
designed to be very small and lightweight. These characteristics
render them very prone to theft and loss, and therefore to various
kinds of abuse that can potentially result in very damaging con-



2 Introduction

sequences. Whereas wireless communication networks resort to
strong cryptographic techniques to guarantee the confidentiality
of the transmitted data, the access to the mobile terminal itself
is usually protected by a simple Personal Identification Number
(PIN) code. Studies have shown that many users employ easily
memorable digit combinations, such as their year of birth, or al-
together deactivate this protection. There thus exists a strong
need for alternate or complementary security measures, capa-
ble of providing enhanced access control to mobile devices with
minimal impact on the user experience.

Biometric authentication methods constitute an interesting so-
lution, as they verify the identity of a person based on some
intrinsic characteristics that can neither be forgotten, nor stolen,
nor lost. Since most mobile devices offer still and video camera
functionalities, they are already equipped with a digital image
sensor. Biometric authentication based on the face modality can
therefore be implemented without requiring a dedicated sensor,
as it would be the case e.g. for fingerprint recognition, which sen-
sibly limits the impact on the manufacturing cost of the device.

Several major challenges incurred by the mobile nature of the
foreseen applications nevertheless need to be overcome, which
constitutes the main concerns of this PhD thesis. Firstly, in
a scenario where the face images are acquired by a handheld
device in an uncontrolled environment, strong variations in il-
lumination conditions can be expected. Hence, the proposed
solution must be robust to such perturbations. Secondly, mobile
devices are powered by rechargeable or disposable batteries, and
the amount of energy available is therefore severely constrained,
so that methods with reasonable computational complexity are
needed. Furthermore, the selected algorithms must be imple-
mented very carefully, so as to minimize the energy they con-
sume. In this context, dedicated hardware processing units offer
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the most efficient solutions, especially if they are all integrated
into one single silicon circuit to form a System-on-Chip, thereby
reducing the amount of external connections, and consequently
also the power consumption and the manufacturing cost.

1.2 Context

A large part of the research activities presented here were carried
out in the framework of several research projects financially sup-
ported by the Swiss Center for Electronics and Microtechnology
(CSEM SA), which led to a first PhD thesis being published by
Jean-Luc Nagel [1] in 2006. Even though the present report aims
at providing all the information necessary to fully apprehend the
discussed work and proposed solutions, on some occasions, the
reader will be referred to the prior PhD thesis for additional de-
tails on specific points.

1.3 Structure of the report

Chapter 2 introduces the topic of biometric recognition, defines
the related terminology and presents the existing modalities,
which are then evaluated in light of the specific requirements
of low-power mobile applications.

In Chapter 3, existing face authentication algorithms are dis-
cussed and the Morphological Elastic Graph Matching (MEGM)
algorithm gets selected as the most interesting solution for mobile
applications. In view of enhancing the robustness to variations
in illumination conditions, a novel morphology features normal-
ization step is then introduced and evaluated.

Chapter 4 reports the results of several experiments carried out to
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assess the performance and robustness of the MEGM algorithm,
both under optimal and degraded image acquisition conditions.

In Chapter 5, a System-on-Chip structure enabling face verifi-
cation to be performed on mobile devices is described, and the
hardware architecture of a coprocessor dedicated to mathemati-
cal morphology features extraction is detailed.

In Chapter 6, an enhanced version of the coprocessor is intro-
duced, that furthermore implements features normalization.

Chapter 7 presents an FPGA-based demonstrator enabling real-
time validation of the architecture, and provides the power con-
sumption and silicon die area obtained after ASIC synthesis.

Finally, Chapter 8 briefly discusses the existing state-of-the-art
academic and commercial solutions for mobile face recognition,
and concludes by outlining possible future research directions.

1.4 Contributions

The major contributions of this PhD work are:

• Introduction of a low-complexity normalization technique
for mathematical morphology-based features, that reaches
the same level of performance as Gabor-based ones.

• Description of a low-power architecture to efficiently ex-
tract mathematical morphology features.

• Description of an improved architecture implementing a
features normalization step, and realization of the corre-
sponding VLSI implementation.
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Other contributions include:

• Evaluation of the robustness of the MEGM face verification
algorithm under different kinds of degraded conditions.

• Introduction and evaluation of several heuristic approaches
to enhance the robustness in presence of shadows.

• Realization of an FPGA-based demonstrator enabling real-
time validation of the proposed VLSI architecture.





Chapter 2

Biometrics

2.1 Introduction

This chapter proposes an introduction to the topic of biometric
recognition. In Section 2.2, the meaning of biometrics is de-
fined and discussed. A short historical background follows in
Section 2.3, which provides a chronological synopsis of selected
major advances in this field and describes what can be consid-
ered to be the first true biometric system. The general concepts
related to biometric recognition systems are then introduced in
Section 2.4, including identification and definition of the main
tasks needing to be performed. Some applications of biomet-
ric systems are then presented, and methods for evaluating and
comparing their performance are discussed. Several biometric
modalities are then listed and briefly described in Section 2.5.
The specific requirements and constraints pertaining to the ap-
plication of biometrics in the context of mobile environments
are then exposed in Section 2.6. Finally, the formerly enumer-
ated modalities are discussed again in light of the requirements
of mobile applications, so as to identify the most suitable for
implementation on mobile devices.
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2.2 Definition

The term biometrics appears in the early 20th century, and is at
first employed as a synonym of biometry, formed from the an-
cient Greek words bios (life) and metrikos (measure). Defined
as “the statistical analysis of biological observations and phenom-
ena” [2], biometry has many applications in diverse fields, such
as biology, epidemiology or agriculture [3]. However, in the last
decades of the 20th century, the term biometrics started to refer
specifically to technologies aiming at identifying human beings
based on unique traits such as fingerprint, voice pattern or hand
geometry. The Biometric Consortium [4] proposes the following
definition:

Biometrics are automated methods of recognizing a
person based on a physiological or behavioral charac-
teristic.

Such a characteristic is called a biometric or a biometric modal-
ity. It can be pointed out that the terms physical or anatomical
would actually be more appropriate than physiological. Indeed,
the latter specifically relates to the functions and activities of liv-
ing matter, and to the physical and chemical processes involved
therein. Fingerprint or hand geometry for instance, two com-
mon biometric traits, are strictly speaking neither of behavioral
nor of physiological nature; they are purely anatomical. Some
modalities like voice are both behavioral and physical. To refer
to purely behavioral characteristics, such as mouse gestures and
computer keystroke, the tentative term behaviometrics has been
recently proposed [5].

To qualify as a biometric modality, a characteristic must have
certain properties [6]. It must be universal, which means that
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each person should possess it, and it must also be permanent.
Furthermore, it also has to be collectible, implying that it can
be quantitatively measured by some means. Finally, it must be
distinctive, namely that the trait must be sufficiently different
between any two persons.

2.3 History

Even though the subject of biometrics gained tremendous inter-
est in the recent years, the desire or need to effectively assess the
identity of a given person exists since ancient history. There are
evidences for instance suggesting that the finger imprint discov-
ered on a Chinese clay seal dating from 400 B.C. was used as
an identification mean [7]. Fingerprints have also been found on
archaeological artifacts documenting commercial transactions by
Babylonians [8]. In the latter half of the 19th century, evolutions
in occidental societies and in their criminal justice systems in
particular, establish the need for a reliable method of identify-
ing individuals. Indeed, criminal courts seek to treat first time
offenders more clemently than repeat recidivists.

2.3.1 Bertillon’s system

In 1881, Alphonse Bertillon, a French law enforcement officer,
introduces a criminal identification system based on what he
named anthropometry, designed to help identifying repeat offend-
ers [9], as many of them were presenting themselves under a dif-
ferent identity each time they were arrested. Even though their
picture was taken and filed, there was no coherent way of orga-
nizing the tens of thousands of collected photographs. Finger-
prints, though already employed for forensic identification, were
not helpful either, since the first classification methods were only
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established at the end of the century [7]. Thus, the difficulty
was not in organizing the collection and archiving of informa-
tion, but rather in having an efficient retrieval method available.
Bertillon’s system — commonly referred to as bertillonage —
comprises both a measurement procedure and a sorting method-
ology designed to offer a “versatile means of classifying hundreds
of thousands of cards” [10]. As such, it bears many similarities
with modern automated identification systems, although it was
operated completely manually.

In Bertillon’s system, a paper card is established to add a record
for a new individual. It holds the purported identity as well
as two photographs of the person’s face, one side-view and one
frontal-view. The results of a series of body observations and
measurements, such as the height, the color of the eyes and the
length of the forearm are also listed on the card. Each card is
then classified, firstly by attributing it to one out of three cate-
gories for the criteria “height”, either short, medium, or tall. The
same operation is then carried out for “size of the head”, labeled
as being either small, medium, or large, and the remaining char-
acteristics are processed similarly. Thus, each card is eventually
stored within a small set of records describing individuals with
similar characteristics. As a result, a collection of 60’000 cards
could ultimately be reduced into packets of approximately ten
cards [11].

To determine whether a person has been previously arrested and
filed, the officer performs a series of measurements on the sub-
ject, and uses them to quickly select one group of cards. He then
goes through each record, looking for any matching unusual char-
acteristic, such as scars or tattoos that are also described on the
cards. Finally, the photographs on the few cards that remain
after sorting are used for direct visual identification. Bertillon’s
system was quickly adopted in France as well as in several foreign
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countries, but was nevertheless abandoned early in the 20th cen-
tury, once it was established that it could easily confound distinct
individuals. It was quickly supplanted by fingerprints, shown to
be far more discriminative [12]. Furthermore, whereas the latter
can serve to identify perpetrators based on latent traces left on
crime scenes, Bertillon’s system is of no use in such cases.

2.3.2 Modern biometrics

In the middle of the 1960s, the first research efforts were initiated
to use computer systems to automate the process of biometric
identification. In 1963, a paper titled “Automatic Comparison
of Finger-Ridge Patterns” [13] is published in Nature and prob-
ably constitutes the earliest reported attempt dedicated to such
a task [14]. The following year, Bledsoe, Chan and Bisson began
working on semi-automated face recognition [15], clearly inspired
by the approach followed by Bertillon (see Subsection 3.2.1).
In 1965, signature verification is the first behavioral characteris-
tic considered, as reported in [16]. The list continues to grow in
the 1970s with the apparition of systems based on hand geometry
and speaker verification, followed by iris recognition in the 1980s,
whereas vascular patterns and gait started to be considered in
the 1990s. In the meantime, many systems based on fingerprint
or hand geometry have been commercially deployed, sometimes
at very large scale.

2.4 Biometric system

The purpose of biometric systems consists either in verifying or
in determining the identity of people, based on their intrinsic
physical or behavioral characteristics. The other non-biometric
authentication methods can be grouped into two categories, each
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one being affected by drawbacks that do not exist with biomet-
rics. In the first one, the operation is carried out using an object
that the person is possessing, such as a key or a card. Obviously,
what is really authenticated here is the object itself: a lock se-
curing access to a building for instance verifies that the key being
employed, and assumed original, is effectively authorized to open
the door. The key can get lost, preventing access by a legitimate
individual, or stolen by a third-party that would thus gain unau-
thorized access to the facility. The second category relies on a
particular information, known only to legitimate users, such as
a password or code. Unless the information gets written down,
theft is of lesser concern, but a password can nevertheless be
forgotten or unduly communicated to others, or cracked.

Biometric characteristics, on the other hand, can neither be lost,
nor stolen, nor forgotten. Furthermore, they truly identify a
person instead of a knowledge or an object. Like keys, some
biometric traits can nevertheless be counterfeit. Procedures for
creating fake gummy fingerprints for instance can easily be found
on the Internet. Yet in most cases, counter measures can be
implemented if such attacks are to be feared. In other situations,
such protection can be deemed superfluous, for instance if the
goal of a face authentication system is to protect a mobile device
in case it gets stolen. It is indeed unlikely that the thief would
possess a photograph of the legitimate owner anyway.

2.4.1 Overview

The basic block diagram of a biometric system is shown in Fig-
ure 2.1. It comprises a sensor, whose purpose is to acquire some
kind of information from an individual (e.g. an image of the fin-
gerprint pattern). Two main processing elements can be identi-
fied, namely features extraction and matching. The first opera-
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tion consists in processing the acquired data to obtain a kind of
numerical signature identifying the subject, which is stored in a
database. The second operation compares a signature retrieved
from the database with a newly acquired one, to decide whether
the two belong to the same person.

Database

Sensor Features 
Extraction Matching Decision

Figure 2.1 : Basic bloc diagram of a biometric system.

2.4.2 Operations

When considering the operation of a biometric system, two dis-
tinct phases can be identified: an enrollment procedure where the
system learns about the identities of the users, and a recognition
phase, where it actually attempts to determine said identities.
For the second phase, two modes of operation can further be
distinguished: verification, also called authentication, and iden-
tification. Depending on its expected applications, a biometric
system can be either restricted to a single mode, or designed to
operate in both. These three identified tasks, covering enroll-
ment, verification and identification, are described below.
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2.4.2.1 Enrollment

The enrollment is the procedure by which the identity of an in-
dividual, e.g. its name, is entered in a database, along with one
or several templates, the latter consisting of biometric informa-
tion collected from the person being enrolled. Depending on the
application, this process can be performed partly manually, the
user having for instance to help the system locate the eyes or
the mouth in case the face modality is used, which assumes that
the user is cooperating. In other situations, when the enrollment
must be performed in a time interval of maximum one second
e.g. due to the number of persons to process, the enrollment
must be fully automated. This is the case for instance for the
fingerprint system deployed at several major U.S. theme parks,
that associates a ticket to its holder upon first entrance.

2.4.2.2 Verification

In verification mode, a biometric system matches an individ-
ual against a claimed identity. The corresponding template is
retrieved from the database, and matched against the features
extracted on-line. The latter are thus only compared against
one single template, a process known as 1:1 matching. Conse-
quently, the number of people enrolled in the database does not
affect the performance of the system, neither in terms of com-
putation time, nor in terms of accuracy. As already mentioned,
this mode is also called authentication. The result of this pro-
cess is usually a Boolean value, indicating whether the claimed
identity is correct or not, possibly accompanied by a measure of
confidence of the decision.

2.4.2.3 Identification

Conversely to the verification mode, no claimed identity is fur-
nished to the system in identification mode. Here, the identity of
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the subject must be determined based on his biometric character-
istics. To this effect, the extracted features are compared against
those of all enrolled clients, a process known as 1:N matching,
until a correspondence is found. The chances of misidentifying
the individual obviously increase with the number of people be-
ing enrolled in the database, as does also the computation time.
To accelerate the processing, an ordered database can be used,
were individuals are grouped in subsets according to some easily
measurable traits1. For instance, a system based on hand geom-
etry could start by measuring the length of a given finger, and
then in a first step, process only the templates associated to the
corresponding finger having approximately the same size.

In this mode, the system can return the identity of the best
match, implying that the comparison was performed against ev-
ery enrolled people, or the system returns the first match to be
sufficiently good. In the first situation, the operation executed ef-
fectively consists in classifying the test subject among N classes,
each one corresponding to one identity. The situation where the
tested person was not enrolled can be handled either by return-
ing the best matched identity, or if the best match is considered
as being not good enough, by returning a special code to indicate
that the person was not recognized by the system.

Although the term recognition is sometimes used as a synonym
of identification when referring to specific systems or algorithms,
it is often used to mean either verification or identification, or
both, especially when employed in a more general context. In
this report, the term recognition is globally referring to both
verification and identification methods, unless otherwise speci-
fied.

1 Similarly to Bertillon’s system, see Subsection 2.3.1.
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2.4.3 Applications

Applications of biometrics are numerous and diverse, the most
common one being of course access control. A biometric sys-
tem can secure the entrance of a building, effectively restricting
access to authorized persons only. It can also be employed to
verify the identity of people entering a country, as part of a bor-
der control program. Conversely, it can be used to ensure that
visitors exiting a facility such as a prison are really not inmates
trying to escape. Instead of referring to physical places, access
control can also concern confidential information, such as private
data stored on a computer. Finally, it can also prevent unautho-
rized people from using a device, such as a car, for instance by
requiring biometric authentication to trigger ignition.

Although many fields of application of biometrics, such as those
enumerated above, are connected to security, other uses never-
theless exist. Among them, one can mention so-called smart
environments or devices, which have the ability to automatically
configure themselves for the identified user. In such a scenario,
a car shared among several persons could for instance adapt the
position of the seat and of the rear-view mirrors to each driver
as he takes place behind the steering wheel. Additional settings
could include selecting the radio station he listened to the last
time he drove the car.

2.4.4 Performance evaluation

The biometric data extracted from a test subject and the refer-
ence template recorded at enrollment time are never exactly the
same. Indeed, several perturbations affect the measures carried
out by biometric sensors. Firstly, like all living creatures, human
beings exhibit constantly evolving physical characteristics, some
traits changing more deeply or more rapidly than others. Pat-
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terns formed by the ridges found on the fingertips, for instance,
are stable even over a relatively long period of time. Conversely,
the same face can appear sensibly different after only a few days,
due to fatigue or stress affecting facial musculature. Moreover,
biological phenomena like beard growing, or aging, also produce
local changes in aspect. Finally, medical conditions such as cold
or flu, as well as living habits (most notably smoking) strongly
modify the sound of the voice.

Even if the physical traits do not vary, external influences can
impair the quality of the measure. Some fingerprint sensors for
instance produce images that can differ greatly, depending on the
state of the finger, as shown in Figure 2.2. Environmental factors
also influence the acquisition of biometric characteristics. In the
case of face recognition, the intensity and spectral distribution
of the incident light affects the pixel responses, as demonstrated
in Section 4.2.1 in [1]. The direction of the illumination fur-
thermore determine how the face is affected by cast shadows,
potentially degrading the performance of the system, as it will
be exposed in Section 4.4 and Section 4.5. Imperfections in the
measure itself, caused by technological limitations, sensor noise
or imprecise manipulations on the user’s part, also result in dif-
ferent values being recorded with each new acquisition. Finally,
in some situations, certain characteristics of the sensor used for
recognition may differ from those of the sensor that was available
when the database was established. This is for instance the case
if the same reference templates, stored e.g. on an identity docu-
ment such as a biometric passport, need to be matched against
features acquired by different devices equipped with a variety of
sensors.

A biometric system requiring a perfect match between the test
and reference features would hardly work under practical condi-
tions. Therefore, variations must be tolerated to a certain extent,



18 Biometrics

a) b) c)

Figure 2.2 : Images of fingerprints in various conditions.
Images of the same finger, taken using the same optical sensor in a constant
environment: a) normal finger, b) wet finger and c) greasy finger.

motivating the establishment of a distance threshold to be used
to decide whether two distinct measures correspond to the same
individual or not. Still, in certain cases, the distance for an en-
rolled user will be above the threshold, so that he will be denied
access. Such an error is called false rejection or false non-match.
Conversely, due to both the variability of the acquired features
and the tolerance mentioned above, the distance of an impostor
will sometimes fall below the threshold, causing an error named
false acceptance or false match.

To evaluate the performance of a given biometric system, the fol-
lowing indicators have been introduced. The False Acceptance
Rate (FAR) is defined as the ratio of false acceptances to the to-
tal number of impostors attempts. It expresses the a posteriori
probability that an impostor be granted access. Similarly, the
False Rejection Rate (FRR) is defined as the ratio of false rejec-
tions to the total number of attempts by enrolled users claiming
their true identity. It represents the a posteriori probability that
the system will reject an enrolled user. Obviously, the value of
both the FAR and FRR are correlated, and depend on the cho-
sen threshold. A low threshold corresponds to a high security
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Figure 2.3 : Biometric system performance.
Two ways of reporting results. FAR and FRR curves as a function of the
threshold index (left) and ROC curve of FRR as a function of FAR (right).
The EER is given either by the crossing of the curves (left), or by the point
where the ROC curve intercepts the diagonal (right).

operation mode, where one wants to minimize the FAR. The dis-
tance between reference and test features is thus required to be
very small, otherwise the identity claim will be rejected. The
FRR will therefore be large. The opposite holds e.g. for a lower
security or convenience application, where the FRR must be low,
resulting in a larger FAR.

To report the performance of a biometric system or algorithm
independently of any predefined mode of operation, the number
of false acceptances and false rejections is plotted as a function of
the threshold. A typical result is presented in Figure 2.3 (left).
Alternately, one can plot the FRR as a function of the FAR,
as shown in Figure 2.3 (right), to obtain the Receiver Operating
Characteristic (ROC) curve. In that case, each point in the graph
corresponds to a different threshold value, and therefore to a
different operating mode. The Equal Error Rate (EER) is defined
as the point on the ROC where the FAR and the FRR are equal.

The chosen threshold determines the operating point of a de-
ployed biometric system, and characterizes the level of security



20 Biometrics

offered. It is usually chosen from statistical analysis of the results
obtained using a set of evaluation clients and impostors, based
on the hardly verifiable assumption that the same statistics will
hold for test clients and impostors. Whereas the population to
be enrolled can usually be characterized, it is much harder to
do the same for the impostors. Evaluation data can also be
used to normalize the computed distances, to enhance the dis-
criminative properties of the system, as it will be discussed in
Subsection 3.3.6.

2.4.5 Positive vs. negative recognition

It should be noted that expressing the performance of a biomet-
ric system using the FAR and the FRR is only unequivocal in
the context of positive recognition, where one wants either to de-
termine the identity of a person, or to establish whether a given
individual is indeed who he claims to be. However, in some ap-
plications said to operate in negative recognition mode, the goal
differs and consists instead in determining whether a person is
part of a given group or not, the purpose being to prevent a sin-
gle individual from assuming multiple identities. This could be
enforced for instance in the framework of a welfare benefits distri-
bution program where the same person could attempt to register
several times under different names. To avoid this kind of abuse,
the biometric system tries to match the person against a list of
people already benefiting from the program. If the individual is
erroneously found to match a record in the database, he will be
denied access to the program, so that a false match will actually
lead to a false rejection rather than to a false acceptance. Con-
versely, if the system is not successful in identifying an enrolled
person, it will cause the latter to be mistakenly accepted again.

Each of the terms FAR and FRR can therefore have opposite
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meanings depending on the application. To avoid any confusion,
performance figures can alternately be provided by specifying
the False Match Rate (FMR) and the False Non-Match Rate
(FNMR), whose meaning is not affected by the context. Never-
theless, the FAR and the FRR remain the most popular way of
characterizing commercial biometric systems [7]. Indeed, most of
them operate in positive recognition mode only, whereas negative
recognition is mainly employed by government agencies.

2.5 Biometric modalities

In this section, a list of several modalities commonly employed
for biometric identity verification or determination is established,
and each one is briefly discussed.

2.5.1 DNA analysis

Deoxyribonucleic acid (DNA) is the biochemical molecule found
in the nucleus of every living cell, that holds one’s genetic patri-
mony. It can seem to be the ultimate biometric modality, and is
increasingly used in connection with forensics, a field where it has
proved to be extremely accurate. However, many challenges pre-
vent its application to automated systems. Indeed, DNA match-
ing currently involves complex chemical analysis processes and
requires manipulations that can only be accomplished by skilled
experts. Moreover, DNA does not only permit establishing the
identity of a person, it also reveals a great deal of personal de-
tails such as one’s genetic predispositions to some diseases. As
such, it certainly strongly invades individual privacy. Conversely
to most other biometrics, the information that the DNA carries
does not change at all over time. It is determined at the instant of
fecundation, and is neither affected by embryonic development,
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nor by the environmental factors influencing the individual after
birth. As a consequence, it is incapable of differentiating identi-
cal twins, whereas most other biometric modalities can.

2.5.2 Fingerprints

Based on the structure of the ridges and valleys patterns found
on fingertips, fingerprint matching is one of the most widespread
biometric modality. Employed by forensic investigators for more
then a century, it is to this day the only biometric, with DNA
analysis, to be accepted by courts of law to convict or acquit a
suspect. Fingerprints were originally taken using the well-known
ink-and-roll technique, and stored on paper cards. This process
can now be accomplished using electronic scanners that produce
a digital image of the fingerprint pattern. Unlike many other
modalities, a great variety of sensors can be employed to acquire
fingerprints, such as optical, capacitive, ultrasonic or thermal
ones [7]. The matching process itself was traditionally performed
by comparing the type, location and orientation of special land-
marks of the ridge pattern, called minutiae. Such specific traits
include, among others: termination, bifurcation and crossover.
Some automated systems follow the manual minutiae-based pro-
cedure, allowing their results to be validated by human experts
if necessary. Other approaches rely on correlations, either of the
direct fingerprint image, or of the extracted ridge pattern. Fin-
gerprint matching has proved to be very accurate [17], yet its
historical association with forensics caused concerns regarding
the user acceptance in consumer applications. It seems however
that the desire to prevent identity fraud is now prevailing [7].



2.5 Biometric modalities 23

2.5.3 Hand geometry

First patents related to a biometric system based on the geom-
etry of the hand appeared in the early 1970s [18, 19]. Since
then, solutions have been commercially deployed and installed
in hundreds of different sites. Relatively inexpensive and easy
to use, they are also mostly insensitive to environmental factors
and individual skin conditions such as dryness. Although they
necessitate the cooperation of the subject, usually requiring that
the palm be flatly applied on a panel with outstretched fingers,
they are very easy to use. However, the large size of the sensor
needed to acquire the hand geometry restricts its deployment
to stationary access control systems. Moreover, this modality is
not very distinctive, and is therefore not very well adapted to
identification applications among a large number of users. Fi-
nally, some medical conditions like arthritis, that diminishes the
mobility of the hand, may prevent accurate measurements, po-
tentially causing a large number of false rejections with affected
individuals.

2.5.4 Face

This modality is an obvious one, since it is one of the most com-
monly used by people to recognize each other. Over the course
of its evolution, the human brain has developed highly special-
ized areas dedicated to the analysis of facial images [20]. Indeed,
in addition to the once vital necessity of being able to instantly
determine whether the unexpectedly encountered individual is a
friend or a foe, social interactions also strongly depend on the
capability to interpret many subtle facial expressions conveying
a great deal of information [21].

Automated face recognition is performed on facial images that
can be acquired with minimal obtrusiveness, requiring only that
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the subject looks at a camera. Extracted characteristics are
mainly internal, concentrating on the area between the forehead
and the chin. It is however questioned whether the face itself is
a sufficient basis for recognizing a person from a large popula-
tion with great accuracy. Indeed, the human brain also relies on
many contextual information. Under certain circumstances, the
internal features of a face (such as mouth, nose and eyes) can be
replaced by the ones from another person without affecting its
ability to be correctly identified by test subjects [22], suggesting
that the brain sometimes actually recognizes heads instead of
faces.

The most problematic perturbation affecting the performance of
face recognition systems are strong variations in pose and illumi-
nation. To alleviate these effects, 3D images can be used e.g. to
reconstruct faces under reference illumination and pose [23, 24].
Alternatively, it is also possible to use the direct 3D information
(e.g. reconstructed 3D meshes) to recognize faces [25], provided
the resolution of the acquisition system is sufficient. When com-
bining the 3D range data with 2D texture images, it is even
possible to distinguish identical twins [26].

The existing algorithms pertaining to the face modality will be
further discussed in Section 3.2.

2.5.5 Iris

The texture of the human iris is created by a chaotic process
that starts during fetal development, and stabilizes during the
first two years of life. As a result, it is assumed that each result-
ing pattern is unique. Given that they are very stable over time,
and very difficult to tamper surgically, irises are certainly one of
the most interesting biometric modalities. Image acquisition can
be performed without requiring direct contact, so that the per-
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ceived intrusiveness is relatively low. Recognition is performed
by firstly locating the iris using landmark features. A Gabor
wavelet transform is then applied to extract spatial frequencies
and orientations [27]. The resulting parameters are encoded into
a 2’048-bit vector known a the IrisCode. Iris recognition was
proved to be very accurate, and is capable of reaching virtu-
ally 0% FAR in real-world conditions [28]. This field was pio-
neered in the 1990s by John G. Daugman, who holds several key
patents [29]. A a result, almost all commercially deployed iris
recognition system are based on his method.

2.5.6 Retina

In addition to the iris, the human visual organ comprises an-
other textured area supporting a pattern that is different for
each eye. Constituted of a richly structured vascular network,
the retina is considered to be one of the most accurate and
safe biometric modality, particularly since it is located inside
the body. This makes it very difficult to forge or replicate in a
way that would confuse a biometric system. To be performed,
retinal scans require the active cooperation of the subject. Prac-
tically, the user is asked to look into an eyepiece and to focus
on a specific spot, the retina image being acquired using infra-
red illumination. This high level of intrusiveness as well as the
common fear that the process actually involves projecting a laser
beam into the eye, as seen in numerous movies, hinder public ac-
ceptance of this biometric modality. Moreover, it is believed that
examination of the retina can reveal some medical conditions.
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2.5.7 Voice

Together with face, voice is the most common modality used
by humans to recognize each other. It is determined by several
anatomical features, such as the shape and size of the laryngeal,
buccal and nasal cavities as well as the characteristics of the vocal
chords. The behavioral features of one’s voice can be strongly
affected by emotional state, smoking, aging, or diseases of the
respiratory system. Automated biometric systems based on this
modality are referred to as ASV (automatic speaker verification)
or ASI (automatic speaker identification) systems. They should
not be confused with speech recognition systems, which aim at
transcribing the information conveyed by the voice into text. If
the ASV or ASI system is text dependent, the user is required to
speak a selected sequence of words, whereas any of kind of words
or sentences can be uttered in the case of a text independent
system.

2.5.8 Signature

Signatures have been used as a mean of authentication for many
centuries. Moreover, it is one of the very few biometric modal-
ities to be legally binding in most, if not all countries around
the world, despite the fact that it is not difficult for skilled per-
sons to create forgeries that can only be detected by graphology
experts. However, it is much more difficult to imitate the move-
ments executed by the signatory. Thus, instead of considering
the resulting static pattern, automated signature-based authen-
tication systems analyze the dynamics of the signature, such as
the acceleration of the stylus, the angle it forms with the sup-
port on which the signature is drawn, and the pressure applied
by the writer. Even though some people appear to generate a
different graphic impression every time they sign, the dynamics
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of the movement is less variable. Being a behavioral biometric
trait consciously executed, signatures can drastically change over
time. Moreover, they are affected by emotional conditions such
as stress or anger.

2.5.9 Gait

Defined as the distinctive way one walks, gait is one of the newest
modality being investigated. It is not supposed to be very dis-
tinctive, nor invariant, due to fluctuations in body weight, in-
juries, weariness or inebriety. The analysis of the movement is
usually performed on video sequences, making it rather unob-
trusive. However, some approaches rely on wearable accelerom-
eters [30].

2.5.10 Others

The following non-exhaustive list enumerates some of the many
additional biometric modalities.

• Body odor, determined by analyzing the chemical com-
pounds exuded by the skin.

• Thermogram, the thermal map of the hand or of the face.

• Keystroke, the specific characteristics of one person’s way
of typing on a computer keyboard.

• Mouse gestures, analyzing the way a computer mouse is
displaced. Somewhat related to signature.

• Palmprint, similar to fingerprint but based on the pattern
formed by the ridges of the palm.
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• Ear geometry, based on the shape and the ear.

• Lips movement, analyzed during speech.

• Vascular patterns of the palm or of the back of the hand.

2.6 Biometrics for mobile applications

Mobile devices, such as Personal Digital Assistants (PDA) and
cellular phones, are playing an ever-increasing role in people’s
lives, both professional and private. Moreover, they are becom-
ing more sophisticated and hold data of raising sensitivity. Their
small size and the fact that they are designed to be used almost
anywhere make them more prone to theft and loss. Furthermore,
the emergence of the so-calledmobile commerce, amounting to an
estimated US $200 billion in transactions by the end of 2005 [31],
raises yet another concern for users with respect to security. In-
deed, additionally to its intrinsic resale value, a mobile device
that provides access to paid-for online services could potentially
incur much larger costs in case of abuse.

In such conditions, the traditional security measures such as Per-
sonal Identification Number (PIN) codes are quickly becoming
insufficient. Indeed, the multiple PIN codes and passwords one
has to remember and use in its daily activities, for gaining access
e.g. to mobile phone, banking ATM (Automated Teller Machine)
or computer terminals and networks, incite some people to write
them down since they cannot seem to remember all of them.
Alternately, people use very simple and obvious passwords that
can easily be guessed. Moreover, a PIN code can be observed
when it is entered. As a consequence, equipping such devices
with biometric access protection could greatly enhance the level
of security offered.
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Since mobile phones are obviously equipped with a microphone,
speaker verification is a natural first choice modality for such
devices. Even though automatic speech recognition is imple-
mented in many phones, e.g. to provide vocal commands allow-
ing quick access to frequently dialed phone numbers, speaker
authentication is nevertheless not commonly found on these de-
vices. Indeed, identity verification based on the voice is difficult
to perform accurately in uncontrolled environments, due to per-
turbations such as the voices of the surrounding people or the
multiple sources of background noise, such as vehicles or con-
struction works in a city street. Moreover, since the voice signal
is strongly compressed to limit the bandwidth used by each con-
versation in mobile telephony networks, there is little incentive
to include high-quality microphones.

Fingerprint patterns can easily be acquired without being af-
fected by the environment. Indeed, most fingerprint sensors,
regardless of their type, only operate in a very limited range,
usually a few millimeters. Consequently, their are immune to
most external perturbations. Fingerprints nevertheless are not
optimal in mainly two aspects. Firstly, they are associated to
forensics, though this concern seems to be losing importance, as
supported by the growing number of consumer devices that em-
ploy this modality, such as laptop computers and USB keys. The
second drawback is however still very relevant and consists in the
mandatory presence of a dedicated sensing device. Even when
ordered in large quantities, fingerprint sensors cost around US $5
a piece, which is a significant price for a component that does not
provide any additional functionality besides user authentication.

This economic concern is not present in the case of the face
modality, since image sensors are found on an increasing num-
ber of devices, providing digital camera functionality to mobile
phones or enabling Internet-based videoconferencing on PDAs
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and laptop computers. Moreover, the resolution and quality of
the images they generate are already more than adequate for
face verification. Coupled with the low invasiveness and high
acceptability it is being associated with, the face modality cer-
tainly constitutes a very interesting choice. Furthermore, face
is less subject to forgery attempts in the case of casual theft
than fingerprints. Indeed, latent fingerprints are likely to be
present on the surface of a mobile device, since the latter was
designed to be handheld when operated. Latent fingerprints can
be collected and used to create fake fingertips, that constitute a
three-dimensional reproduction of the pattern of ridges and val-
leys found on the finger of the legitimate user. This technique
has been demonstrated to be capable of fooling certain commer-
cial fingerprint sensors, so that an impostor could use it to gain
undue access to the device. In case the face modality is used,
the stolen device would not provide any information that could
help a potential intruder in constructing an object susceptible
of deceiving the system. He would therefore need to obtain this
information separately, e.g. by taking a picture of the legitimate
owner’s face, which is not an easy task in the considered context.

Due to the unconstrained nature of the acquisition conditions,
robust algorithmic solutions are nevertheless necessary to handle
environmental perturbations such as varying illumination if the
face modality is used. A mobile device being usually handheld
when operated, changes in scale, as well as rotations are also un-
avoidable. However, the flexibility offered by a handheld device
can also be regarded as an advantage, since the user can, to a
certain extend, alleviate some effects impacting the performance
by simply displacing the device.

None of the other modalities reviewed in Section 2.5 appears
suited to mobile applications. DNA analysis requires complex
chemical manipulations and cannot currently be carried out au-
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tomatically. Sensors capable of measuring hand geometry or
palm imprints would be larger than the device itself. Signature
authentication would be limited to PDAs equipped with hand-
writing recognition, ruling out mobile phones. Even though gait
analysis has been demonstrated using mobile devices [32], it re-
quires them to be equipped with accelerometers, a category of
sensors not yet commonly found on mobile phones or PDAs2.

2.7 Conclusion

In this chapter, the definition of biometrics has been provided,
and the properties and tasks associated to biometric recognition
systems have been introduced, firstly in a general context and
later specifically in the realm of mobile applications. Among the
many biometric modalities discussed, the face was determined to
be a suitable choice for implementation on such devices as mo-
bile phones or PDAs. The unconstrained acquisition conditions
nevertheless require an algorithm that is robust to variations in
pose and illumination. Additionally, tight constraints in compu-
tational resources and limited available energy source need to be
taken into account and addressed. In the following chapter, we
will therefore review various methods that have been proposed to
perform biometric authentication based on facial images, in view
of selecting the approach that can best fulfill these requirements.

2 Some recently introduced mobile devices are nonetheless equipped with an
accelerometer. The most famous examples are Apple’s iPhone and some
of the iPod models, where the accelerometer is used to detect when the
user rotates the device, e.g. to change the display mode from portrait to
landscape. Some games also exploit this capability and can be controlled
by changing the orientation of the device.





Chapter 3

Face Verification

3.1 Introduction

Following the selection, in Section 2.6, of the face as a suitable
modality for biometric authentication deployed on mobile de-
vices, we will now review the methods proposed in the literature
to perform such task, in view of determining the most adequate
solution for the foreseen applications. Some algorithms will be
detailed in Section 3.2, whereas for others, only references will be
provided. At the end of this section, the motivations for having
selected the Elastic Graph Matching algorithm as the best suit-
ing face verification solution for mobile devices, are exposed. The
implemented system and its behavior are then described in Sec-
tion 3.3. Two kinds of features extraction techniques employed in
conjunction with this algorithm will be discussed in Section 3.4,
based on Gabor filters and on mathematical morphology, respec-
tively. In view of increasing the robustness of the latter option
with respect to changes in illumination, two normalization tech-
niques are furthermore introduced, one of them being shown to
offer performance very close to that of Gabor filters, while re-
quiring only a fraction of the computational complexity.
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3.2 Face recognition algorithms

In this section, three face recognition algorithms among the most
commonly employed are discussed in Subsection 3.2.1 to Sub-
section 3.2.3. Additionally, references to some other approaches
proposed in the literature, as well as references to the most recent
surveys pertaining to this field, are provided in Subsection 3.2.4
and Subsection 3.2.5, respectively.

3.2.1 Feature-based methods

The early solutions developed to perform automatic face recogni-
tion seem to have been directly derived from the anthropometric
approach followed by Bertillon (see Subsection 2.3.1). Indeed,
they rely on comparing geometrical distances measured between
a series of facial features, or landmarks, such as the nose, the chin
or the eyes, as illustrated in Figure 3.1. The work by Bledsoe
et al., which is recalled in [15], is an example of such methods.
Here, the coordinates of several facial landmarks are manually
extracted from photographs by human operators using a digi-
tizing tablet, and they are then fed to a computer. From these
coordinates, a set of 20 distances are computed and stored in
a database alongside the corresponding identity. When asked
to identify a face captured on-line, the computer compares the
set of distances obtained from this face with those stored in the
database, and returns either the closest match, or a short list of
possible identities. To compensate for differences in pose, such
as rotation and tilt, as well as variation is scale, geometry trans-
formations need to be applied during the matching process.

Several feature-based face identification methods are discussed
in the survey by Samal et al. [34]. Although no performance fig-
ures are presented, it is nevertheless noted that many approaches
necessitate strong assumptions to be verified in order for the fea-
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Figure 3.1 : Feature-based face recognition.
Based on the geometrical features employed by Brunelli and Poggio [33].

tures to be correctly detected. For instance, the face must be
upright, devoid of tilt, and free of occlusions (e.g. by glasses).
Effectiveness of the face detection is crucial because errors oc-
curring at this stage will inevitably prevent successful identifi-
cation. Several approaches are reported to solve this problem,
such as using deformable templates to detect the eyes and the
lips [35], or using the Hough transform [36] to locate the eyes (or
more precisely, the irises). In their paper comparing face recogni-
tion methods based on features to those based on templates [37],
Brunelli and Poggio use template matching by cross-correlation.
Multiple templates are employed to account for variations e.g. in
scale, and a normalization consisting in dividing the pixel val-
ues by the average intensity over a local neighborhood is applied
beforehand. Once the eyes are located, their relative position is
used to derive the scale and the angle of rotation of the face.
Other features, such as the location and size of the mouth and
eyebrows, are extracted using integral projections, as introduced
by Kanade [38].
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Other approaches proposed include methods based on the Dis-
crete Cosine Transform (DCT) [39] or the Generalized Hough-
Transform (GTH) [40]. Saber et al. [41] rely on the chromatic
and geometrical properties of the face and exploit its symmetries.
Graf et al. uses morphological operators to identify facial parts
based on their expected shape [42].

3.2.2 Eigenfaces

The concept of eigenfaces is directly derived from the eigenpic-
tures introduced by Sirovich and Kirby [43] as a mean of op-
timizing the representation of a set of images of human faces
by expressing them in a low-dimensional space, using Princi-
pal Component Analysis (PCA), also known as Karhunen-Loève
Transform (KLT). Their basis assumption was that what differ-
entiates each picture ~ϕk in a set of M images is its departure, or
deviation, from the mean image, defined as the average face ~ψ :

~ψ =
1
M

M∑
k=1

~ϕk (3.1)

They thus search for a face space, spanned by a set of orthogonal
eigenvectors, that maximizes the variance between the faces of a
given set. They define the caricature, denoted ~φk and expressing
the difference between a face ~ϕk and the average face ~ψ :

~φk = ~ϕk − ~ψ (3.2)

Figure 3.2 shows the average face obtained using the images of
37 individuals in the Extended Yale Face Database B [44], one
of the original face and the corresponding caricature.

In the case of images of N × N pixels, ~φk can be considered
as a vector of dimension 1 × N2. The basis of the system is
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a) b) c)

Figure 3.2 : Average face and caricature.
Images from the Extended Yale Face Database B. a) Average face, obtained
from 37 images, b) Original face, c) Caricature.

constituted by the eigenvectors ~ui of the N2 × N2 covariance
matrix C, constructed as:

C =
1
M

M∑
k=1

~φk ~φ
T
k (3.3)

C ~ui = λi ~ui (3.4)

Obtaining the eigenvectors of an N2×N2 matrix is practically an
intractable problem. However, since the subspace is constructed
from M samples only, there can be at most M − 1 meaningful
eigenvectors and it has been shown [43, 45] that they can be
derived from the eigenvectors of an M ×M matrix. An image
can then be reconstructed from the average face, and from a
weighted sum of the eigenvectors ~ui obtained above, that Sirovich
and Kirby named eigenpictures:

~ϕk = ~ψ +
M−1∑
i=1

ωi ~ui (3.5)

The M − 1 weight coefficients ωi for a face ~ϕk are obtained by
projecting the corresponding caricature ~φk into the subspace,
which is accomplished by computing the dot product between
the caricature and each eigenpicture ~ui :

ωn = ~u T
i · ~φk = ~u T

i · (~ϕk − ~ψ) i ∈ [1, . . . ,M − 1] (3.6)
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Figure 3.3 : Sample Eigenfaces.
First 10 eigenfaces obtained using M = 37 images from the Extended Yale
Face Database B, from left to right and from top to bottom. To display
better, the images have been normalized to the full 8-bit dynamic.

In order to reduce the dimension of the subspace, only a subset of
M ′ eigenvectors having the largest eigenvalues, with M ′ < M , is
retained so as to minimize the reconstruction error. Sirovich and
Kirby showed that for a set of 115 face images of 128×128 pixels,
only 40 coefficients in the face subspace are actually required to
characterize a face with an error of 3%.

The results of Sirovich and Kirby inspired Turk and Pentland to
use the vector formed by the set of the weight coefficients required
to reconstruct a face as a mean of determining the identity of the
individual [45]. They followed the same procedure as Sirovich
and Kirby to obtain the eigenvectors, but refer to them as eigen-
faces instead of eigenpictures. The first ten eigenfaces obtained
using images from the Extended Yale Face Database B [44] are
shown in Figure 3.3, while Figure 3.4 presents the reconstructed
image using a varying number of eigenfaces. When all 36 eigen-
faces are used, the reconstructed face is identical to the original
image shown in Figure 3.2b.

Observing that the PCA not only maximizes between-class scat-
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ter, but within-class scatter as well, and that changes in illumi-
nation are retained in the eigenfaces [46], Belhumeur et al. con-
clude that while “PCA projections are optimal for reconstruction
from a low dimensional basis, they may not be optimal from a
discrimination standpoint” [47]. They thus propose to use the
Linear Discriminant Analysis (LDA), also known as Fisher Lin-
ear Discriminant (FLD), after the PCA step, so as to obtain
a new basis spanned by another set of eigenvectors that they
named fisherfaces. Their results show that fisherfaces indeed are
more robust in presence of variations in lighting and expression.
In [48], Bartlett et al. propose to use Independent Component
Analysis (ICA) instead of PCA, noting that PCA only sepa-
rates the second order moments (i.e. the variance) of the inputs,
whereas ICA additionally considers the higher order moments.
The reported results indeed show ICA outperforming PCA, in
particular when the images in the test set were acquired in the
course of a different session than those in the enrollment set.

M’ = 4 M’ = 8 M’ = 16 M’ = 24 M’ = 36

Figure 3.4 : Reconstruction using eigenfaces.
Reconstructed images usingM ′ eigenvectors. The rightmost image, recon-
structed with all eigenvectors, is identical to the original image.

3.2.3 Graph-based methods

The Dynamic Link Architecture (DLA) is a theory elaborated
by von der Malsburg [49], as a possible explanation of how the
brain processes and organizes information in order to represent
complex data structures. According to the DLA, the latter have
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the form of graphs, composed of nodes (called units) connected
by links. Units play the role of simple symbolic elements, whereas
the links denote their mental associations. Both the units and the
links are dynamic, and the resulting graphs constitute the “data
format” by which the brain represents mental objects. Von der
Malsburg reports applying the DLA to pattern recognition [50]
by associating it to a neural description.

3.2.3.1 Gabor-based features

In 1993, Lades et al. introduced an algorithmic formulation of
DLA, called Elastic Graph Matching (EGM), adapted to cur-
rent digital hardware [51]. An implementation on a MIMD1 ar-
chitecture, composed of 23 transputers, was realized [52]. The
demonstrated system recognizes office objects, as well as faces.
The proposed algorithm consists in extracting a series of feature
vectors at certain locations in the images. These specific points
~xi are determined by the vertices, or nodes, of a regular orthog-
onal grid, arbitrarily laid out over the face. The feature vectors,
also called jets and noted ~J(~xi) = Ji are thus said to label the
vertices. In the proposed implementation, the grid is composed
of 7 × 10 nodes, and the features extraction is performed using
a Gabor filter bank (see Subsection 3.4.1) comprising 5 frequen-
cies and 8 orientations, resulting in feature vectors composed of
40 values each. Only the magnitude of the complex response of
the Gabor filters is considered, so that the vectors Ji only contain
elements whose value is both real and positive. The selection of
Gabor filters was motivated by the fact that they appear to fur-
nish a good approximation of the sensitivity profile of neurons
in the visual cortex. The 70 reference jets — or model jets —
denoted JMi constitute the signature of the face, and are stored
in a database, alongside the identity of the individual.

1 Multiple Instructions, Multiple Data.
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In a first stage, the matching process is carried out by placing
the same orthogonal grid over the test image, at an arbitrary
location. Features extraction is then performed at each of the
vertices, producing 70 new test jets — or image jets — denoted
JIi and a new labeled graph. At each node ~xi, the jet similarity
measure S(i) is computed between the corresponding model and
image jets, using a normed dot product:

S(i) = S
(
JIi , J

M
i

)
=

JIi · JMi∥∥JIi ∥∥ ∥∥JMi ∥∥ ∀i | ~xi ∈ V (3.7)

where V denotes the ensemble of all vertices. The cost function
Cjets is defined as the opposite of the sum of the jet similarity
measures S(i) over the whole graph:

Cjets = −
∑
i

S(i) i | ~xi ∈ V (3.8)

The orthogonal grid is then iteratively translated over the im-
age, and at each new location, the process described above is
repeated. The 70 feature vectors are extracted, and the corre-
sponding cost function is computed, the goal being to find the
location of the grid that minimizes Cjets.

In a second stage, the graph as a whole is not shifted anymore,
but its vertices are sequentially displaced, in a random order and
by a random vector below a preset maximum length, correspond-
ing to half the original distance between vertices. A new total
cost function, Ctotal, is introduced:

Ctotal = Cjets + λ · Cedges (3.9)

The non-negative term Cedges penalizes the deformation of the
edges incurred during the second stage by the independent dis-
placements of the vertices. Unless it is situated on the external
border of the graph, each node ~xi is connected to four neighbors
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~xj , and each connection forms an edge. The deformation penalty
De(i, j) for one edge corresponds to the square of the Euclidean
norm of the displacement, or equivalently to the square of the
Euclidean distance between the displaced and reference edges:

De(i, j) =
∥∥∥~∆I

ij − ~∆M
ij

∥∥∥2
∀(i, j) | ~xi ∈ V, ~xj ∈ N (i) (3.10)

~∆ij = ~xi − ~xj (3.11)

The symbol N (i) denotes the ensemble of the vertices connected
to ~xi. For one node, the penalty D is obtained by considering all
the edges it forms with its neighbors:

D(i) =
∑
j

De(i, j) j | ~xj ∈ N (i) (3.12)

Finally, the deformation penalty Cedges for the whole graph is
computed as:

Cedges =
∑
i

D(i) i | ~xi ∈ V (3.13)

As seen in Equation 3.9, the contribution of Cedges is weighted
by an elasticity factor λ, whose value is empirically determined.

The elastic deformation stage is carried out iteratively until Ctotal
does not decrease anymore, or until a preset maximum number of
displacements is reached. At this time, if Ctotal is below a given
threshold, the matching is assumed successful and the face in
the test image is considered to belong to the same individual as
the reference. In their experiments, Lades et al. determined the
threshold value based on the statistics of the final Ctotal values
obtained on a set of training images.

In the algorithm described above, the vertices, and hence the ex-
tracted features, are not located on any specific facial landmarks.
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Figure 3.5 : Elastic Graph Matching.
Model graph placed over the reference face (left) and elastically displaced
matched graph on the test image (middle). The drawing on the right shows
the model and image graph, depicted in gray and black, respectively. The
node ~xi in the image graph has been displaced with respect to its position
in the model graph, and the arrow illustrates the resulting distortion that
affects the edge connecting the nodes ~xj and ~xi. Each node is labeled with
a feature vector, or jet, that is shown for the node ~xi in the model and
image graphs as JM

i and JI
i , respectively.

Consequently, the method can be categorized as a holistic one.
Wiskott [53] follows a similar approach that he calls Dynamic
Link Matching (DLM), using a 10 × 10 graph, but proposes to
also consider the phase information of the Gabor features when
computing the similarity. He also describes a variant of DLM,
that he calls Elastic Graph Matching. This is an unfortunate
choice since in his implementation, the nodes are placed on fidu-
cial points, which “are assumed to be important and easy to
find”. Hence, the holistic nature of EGM as proposed by Lades
et al. is lost, causing some authors [54, 55] to categorize it as a
feature-based method instead. Wiskott et al. further apply EGM
to gender determination [56] and introduce Elastic Bunch Graph
Matching (EBGM) to better handle variations in pose and ex-
pressions [57]. In this system, the single model jet obtained at
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each node is replaced by a bunch of jets, corresponding to lo-
cal variations of the extracted features. For instance, for a node
located over an eye, the bunch may include jets from closed or
opened eyes. During matching, for each node, the jet in the
model bunch that maximizes the similarity with the test image
jet is selected. Further improvements to EBGM are proposed by
Okada et al. [58], who perform histogram normalization after lo-
cating facial landmarks, to adjust for differences in lighting. This
requires a new set of features to be extracted from the corrected
images, which means that Gabor filtering is actually performed
twice.

Duc [59] follows the same approach as Lades et al. but uses an
8 × 8 grid and a Gabor filter bank consisting of 6 orientations
and 3 frequency resolutions. He constructs the jets from the
magnitude of the complex responses of the Gabor filters, and
furthermore replaces the cost function Cjets with a sum of Eu-
clidean distances:

Cjets =
∑
i

∥∥JIi − JMi ∥∥ i | ~xi ∈ V (3.14)

A sum of Euclidean distances is also employed to compute the
deformation penaltyD(i) associated to each node, used to obtain
Cedges in Equation 3.13.

D(i) =
∑
j

∥∥∥~∆I
ij − ~∆M

ij

∥∥∥ j | ~xj ∈ N (i) (3.15)

Moreover, to avoid situations where the graph matching gets
trapped in local minima, Duc devises a coarse-to-fine operating
strategy for the rigid matching step. To this effect, he uses lower
resolution images, obtained by Gaussian filtering and decimation.
Moreover, observing that the matching error is not sufficient to
discriminate impostors [60], he proposes to weight the contribu-
tion of each node when computing the cost functions, according
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to a factor statistically determined using Fisher Linear Discrim-
inant (FLD) on training samples.

3.2.3.2 Morphology-based features

In [61], Kotropoulos et al. introduce a novel DLA variant, named
Morphological Dynamic Link Architecture (MDLA), that substi-
tutes Gabor features with multiscale mathematical morphology.
Instead of information derived from the texture, the feature vec-
tors now describe the shapes found in the image at various scales
and are obtained by applying both erosions and dilations using
9 structuring elements (see Subsection 3.4.2). The value of the
pixel in the original image is also included, leading to a total of
19 extracted features per graph node. They note that multiscale
erosions and dilations capture important information for key fa-
cial features such as the eyebrows, eyes, nostrils and lips. The
cost function is computed with Euclidean distances, as in [59],
and the graph matching is carried out by following the same pro-
cedure as in [51]. However, the deformation penalty Cedges is dis-
carded when computing the final distance between the test and
reference images. Experimenting the proposed MDLA approach
using the M2VTS database [62], Kotropoulos et al. conclude that
MDLA outperforms the Gabor-based variant.

The graph matching procedure is later modified by Kotropou-
los and Pitas [63] by applying Principal Component Analysis
(PCA) on the extracted jets, replacing the 19 feature values
by the 6 Most Expressive Features (MEF). Linear Discriminant
Analysis is further performed [64] in view of obtaining the Most
Discriminating Features (MDF) instead of the MEF, since the
aim is not to minimize reconstruction errors but to maximize the
ratio of between-class scatter to within-class scatter. The results
achieved with PCA and LDA are however not improved. They
also replace the graph matching with simulated annealing, claim-
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ing that it performs better than the approach proposed by Lades
et al. [51]. Finally, they observe in [65] that the choice of the
function used to construct the multiscale structuring elements
employed for extracting the mathematical morphology features,
does not affect the performance of the MDLA algorithm. It is
therefore possible to select this function based on computational
efficiency criteria.

While still using Gabor filters, Lades pursues his experiments
by replacing the graph matching he introduced in [51] with a
Monte Carlo-based optimization procedure [66]. In addition to
translating the graph at each step, its scale and orientation are
also modified in a process he calls “Global Move”. Further im-
provements are proposed by Kotropoulos et al. [67], consisting in
associating a class-dependent discriminatory power to each graph
node, used during matching to weight the contribution of each
vertex to the total distance. Since one does not know a priori
which nodes are the most discriminative ones, the weights are
determined by statistical analysis performed on a training set of
faces. Duc et al. apply the same idea to Gabor features in [68].

Since the extracted morphology features consist in finding lo-
cal extrema among the pixel values, they are strongly affected
by changes in illumination intensity. As a result, the achieved
accuracy degrades significantly when the algorithm is evaluated
under non-optimal conditions [69]. A normalization step is thus
introduced [70, 71] before the features extraction, in view of re-
ducing the illumination dependency. The proposed solution re-
quires however a prior face detection, even though it is difficult
to perform it in presence of perturbations such as non-uniform
illumination or shadows.
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3.2.4 Other methods

Several other approaches to automated face recognition were also
proposed, based for instance on template matching [72, 35], Hid-
den Markov Models (HMM) [73, 74], neural networks [75], Line
Edge Map (LEM) [76], Local Features Analysis (LFA) [77], and
many more. All the solutions discussed so far rely on frontal im-
ages, however there exist methods that are based on profile views,
attempting to reconstruct pseudo 3D images [78], by combining
profile and frontal views. Other authors exploit only the profile
curvature [79, 80], yet in both cases, the setup needed to acquire
lateral face images restricts the deployment of such approaches to
stationary applications. Two efficient ways of achieving robust-
ness to changes in illumination consist either in using 3D models,
and many novel approaches to face recognition are now involv-
ing range images [81], or in using thermal infrared images [82].
However, the size of these kinds of sensors, as well as the amount
of energy they consume, make them currently incompatible with
the requirements of mobile applications.

3.2.5 Recent surveys

Many studies and surveys on face recognition have been pub-
lished, several of them being discussed in Section 3.5 in [1], where
a classification of several algorithms is also provided. In a recent
paper, Kong et al. [82] discuss the latest advances on this topic,
considering methods based both on visual and on infrared infor-
mation. They note that the latter is more robust in uncontrolled
environments, and less easily deceived by disguised faces, and
report that fusing both kinds of information results in improved
recognition accuracy. Tan et al. [55] consider the specific prob-
lem of face recognition in scenarios where only one image per
client can be collected at enrollment time. Since the variability
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of the samples inside the same class cannot be evaluated, this re-
striction negatively impacts the performance of the system, even
when the environment, the pose and the expression are mostly
constant. In the case of the Elastic Graph Matching algorithm,
when up to four reference templates can be used, the value of
the EER is half that of the single template variant, as it will be
shown in Figure 3.11 in Subsection 3.4.1. Several methods alle-
viating this problem are discussed in [55], such as enlarging the
training set by synthesizing virtual samples, e.g. by introducing
artificial perturbations into the enrollment image.

Finally, a recent book by Wechsler [83] comprehensively cov-
ers the multidisciplinary nature of face recognition, discussing
many theoretical elements such as face modeling and classifica-
tion, drawing considerations both from neurosciences and from
statistics and image processing. More practical aspects such as
system evaluation, as well as privacy and security concerns, are
also addressed.

3.2.6 Algorithm selection

Whereas many algorithms have been shown to perform satisfac-
torily in well-controlled environments, their face verification per-
formance degrades sensibly when the tests are carried out under
less constrained conditions. The application scenario considered
in this work, namely face authentication on mobile devices, falls
in the second category. The first kind of perturbations that can
be expected are varying illumination conditions. Indeed, the user
can find himself outdoor, in direct sunlight or under a cloudy
sky, or indoor under a variety of artificial light sources. More-
over, since the device is handheld, changes in viewpoint, scale,
and orientation of the face are likely to be experienced, even if
the holder is fully cooperative. Such perturbations render face
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detection more difficult, and as a result, the localization will be
less precise. As reported by Zhang et al. [84], this negatively im-
pacts the performance of PCA-based methods such as eigenfaces.
On the other hand, Elastic Graph Matching does not require
the prior execution of a face detection step to extract features,
since the matching procedure already embeds such functionality.
The distance metrics can be rendered independent of changes in
rotation and scale, as it will be discussed in Subsection 3.3.5.
Furthermore, compensation for changes in illumination can be
applied locally, thus handling non-uniform variations, indepen-
dently of any facial landmark.

According to Tan et al. [55], EGM is quite robust to changes in
expression, thanks to the elastic nature of the matching process,
whereas PCA-based methods cannot handle them unless they
are present in the training set. Since the foreseen application
scenarios imply that the enrollment will have to be carried out
on a very small number of samples per client, this condition is
unlikely to be verified.

A crucial criterion to consider when targeting mobile devices is
the amount of energy required to perform a given task. Contrary
to other algorithms that perform well on smaller images, EGM
requires higher resolution images [84] and, consequently, a larger
number of computations. However, since both the extraction of
mathematical morphology features and the iterative matching
process are highly regular tasks, they are well suited for imple-
mentation on dedicated architectures. Such solutions offer the
best trade-off between the computational power and the amount
of energy consumed. Finally, both task are very much indepen-
dent, so that they can be implemented as separate components.
This results in a very modular system, where the features extrac-
tion technique chosen can be substituted with another, without
impacting the rest of the system.
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3.3 Elastic Graph Matching algorithm

This section describes the Elastic Graph Matching algorithm em-
ployed for the performance evaluations reported in Chapter 4,
and for which the System-on-Chip architecture introduced in
Chapter 5 has been designed. The starting point for our imple-
mentation is the approach proposed by Kotropoulos et al. in [61]
— and further detailed in [85] — that was mentioned in Subsec-
tion 3.2.3.2.

3.3.1 Overview

The bloc diagram of the enrollment and verification procedures
as executed by the EGM algorithm are depicted in Figure 3.6.
During enrollment, an image of the face to enlist is acquired,
from which features are extracted, as it will be further detailed
in Section 3.4. If this process needs to be fully automated, a
face detection step is necessary to correctly position the graph,
e.g. using the method discussed in Section 5.1.2 in [1], that reuses
the EGM algorithm. Several other approaches to face detection
methods can be found in [86] and [87]. Otherwise, the system
relies on the cooperation of the user, e.g. by asking him to pre-
cisely place his face inside of a box displayed on the device screen.
Following this step, a feature vector is extracted at each node of
the graph so as to create the face template, which is stored in a
database, along with the provided identity. In situations where
several image samples are available at enrollment, multiple tem-
plates can be obtained (see Subsection 3.3.4), or some statistical
information can be extracted to enhance the robustness of the
matching algorithm.

When a verification is requested, an image is again taken, and
features extraction is performed. Face detection can be per-
formed, however since the EGM algorithm intrinsically embeds
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Figure 3.6 : Bloc diagram of the EGM algorithm.

this operation, it is optional. The face template corresponding
to the claimed identity is then retrieved from the database, along
with the statistical information if it is available. The face match-
ing is then iteratively performed, by executing four sequential
steps: 1) template extraction, consisting in getting the features
associated with the current position of the graph nodes, 2) an
optional features reduction step, 3) computation of the distance
between the reference and the extracted template, and 4) gen-
eration of a new graph in view of minimizing said distance, as
detailed in Subsection 3.3.5. The process stops once the distance
cannot be minimized any further, or when a predefined maxi-
mum number of iterations is met. Once the process has been
concluded, the achieved distance is compared to a threshold to
decide upon validation or invalidation of the identity claimed by
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the user.

3.3.2 Image normalization

The image normalization step that follows the image acquisition
is needed to perform photometric correction. Indeed, although
the extracted features can be made illumination independent up
to a certain point, they are only robust to changes in intensity.
However, in real world situations, the mobile device will also be
employed under various illuminants, i.e. light sources with differ-
ent spectral distributions, which can affect the acquired image,
as explained in Section 4.2 in [1]. In this work, we assume that
the device will be able to apply such corrections, since they are
required for regular operation of the digital camera, beyond the
face authentication functionality.

3.3.3 Features space reduction

The features statistics bloc appearing in the enrollment, as well
the corresponding features reduction bloc intervening in the ver-
ification process, are optional and are actually not used in the
experiments discussed in this report. Indeed, as explained in Sec-
tion 4.4 in [1], and in order to be effective, features space reduc-
tion techniques, such as Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), or node weighting, would
require a larger number of samples of the faces to enroll than
those available in the XM2VTS database.

3.3.4 Single and multiple templates

In the case where only a low number of images is available per
identity for enrollment, each of these images can serve as the basis
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for extracting a different template, which get all associated to the
same identity in the database. During verification, if the match-
ing against the first template fails, the process is repeated with
the remaining templates associated to the same identity. Note
that all considered comparisons are carried out against the same
test image, and that consequently, the features extraction step
does not need to be performed again. In fact, only the iterative
matching process indicated by the gray area in Figure 3.6 may
need to be executed several times. Using multiple templates is an
efficient way of improving the verification performance when the
large number of samples required for statistical methods cannot
be met. Indeed, as it will be shown in Subsection 3.4.3, the EER
diminishes by up to 50% when multiple templates are available.

3.3.5 Matching distance

The iterative graph matching step aims at finding the best cor-
respondence between the reference features retrieved from the
database, and the features extracted at each node of the graph.
Performing an exhaustive search, considering every possible com-
bination of graph position, size, orientation and elastic deforma-
tion, would obviously require a huge amount of operations and is
definitely intractable in the context of mobile applications. Con-
sequently, a method capable of rapidly converging to the best
graph configuration, by simultaneously optimizing the parame-
ters enumerated above, is required. The discussed EGM imple-
mentation uses the simplex downhill2 method [88] to optimize
four graph parameters: two for the position, one for the scale
factor, and one for the orientation, as explained in Section 4.5.1
in [1].

For mathematical morphology features, the distance is obtained

2 Sometimes also called Nelder-Mead or Flexible Polyhedron Method.
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by summing the Euclidean distances that are computed, at each
node, between the two feature vectors, associated to the refer-
ence and test graph, respectively, as proposed by Duc [59]. For
the coarse rigid and simplex downhill steps, the distance is thus
identical to the cost function Cjets given in Equation 3.14. In
the case of Gabor features, the dot product distance indicated
in Equation 3.8 is used. Even though it does not significantly
improve the results on the XM2VTS database, it performs much
better in presence of non-frontal illumination, as it will be shown
in Subsection 4.5.1.

The deformation penalty that gets added to the graph distance
during the elastic graph matching phase, is the one based on
physical models, discussed in Section 4.5.2 in [1].

De(i) =
∑
j

[ ∥∥∥~∆I
ij

∥∥∥ − ∥∥∥α~∆M
ij

∥∥∥ ]2 j | ~xj ∈ N (i) (3.16)

The penalties in Equation 3.10 to Equation 3.13 and in Equa-
tion 3.15, proposed by Lades [51] and by Duc [59], respectively,
are only invariant to translations, conversely to the one in Equa-
tion 3.16 that is additionally invariant to rotations, since the
latter preserve the norm of vectors. Moreover, expansions or
contractions of the graph (to account for different face sizes)
are taken into account by the introduction of the scale factor α,
which renders the penalty insensitive to changes of the graph
size. Consequently, the modifications that can be induced by
the simplex downhill step, which enables changes in scale and
orientation, do not contribute to the deformation penalty.

The metric in Equation 3.16 is illustrated in Figure 3.7, depict-
ing a node ~xi and three of its neighbors, labeled A, B and C,
respectively. The reference graph is displayed on the left part
of the figure, whereas the test graph is shown on the right one.
As a result of the change of scale and rotation applied by the
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simplex downhill step, the edge linking ~xi to A in the image
graph is not parallel to the same edge in the model graph. As
a consequence, the norm of the vector ~∆IM

ij = ~∆I
ij − ~∆M

ij is dif-
ferent from zero, and a deformation penalty would be incurred
when applying Equation 3.12 or Equation 3.15. When consider-
ing Equation 3.16, however, the deformation penalty amounts to
zero since the norms of the vectors ~∆I

ij and α~∆M
ij are equal. A

penalty is nevertheless applied in the case of the edge connecting
~xi to an elastically displaced node such as C. It can be argued
that it is possible to displace the node C in a way that incurs
no penalty. This condition is met when C gets moved onto a
circle centered over ~xi, whose radius is equal to the length of the
undistorted edge linking ~xi to C. This would nevertheless distort
other edges, such as those connecting C to D and to E. Therefore,
a penalty would still be applied to account for the displacement
of C, unless all displacements only result from the rotation of
the entire graph, a geometric transformation that should not be
penalized anyway.

The final distance, which gets communicated to the classifier,
corresponds to the features distance — or cost function Cjets —
obtained with the best graph, but without taking the deforma-
tion penalty Cedges into account.

3.3.6 Classification and distance normalization

The distance obtained at the end of the graph matching step is
used to classify the tested individual either as the genuine client,
or as an impostor, by comparing it to a threshold that is deter-
mined experimentally, as this section explains. Let us suppose
that the system is used in authentication mode, and that only
one individual is enrolled in the database. A so-called evaluation
phase, composed of two steps, is carried out by firstly obtaining
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Figure 3.7 : Deformation penalty.
The reference graph is depicted on the left, and the scaled, rotated and
elastically distorted test graph is represented on the right.

the matching distances corresponding to genuine tests, where
faces of the enrolled person are being acquired and matched to
the reference template. The second step consists in repeating
the same procedure, but by presenting this time images of other
people to the system, resulting in a set of matching distances cor-
responding to impostor tests. For the reasons discussed in Sub-
section 2.4.4, the two sets of distances are likely to overlap, which
means that some values can be obtained by the genuine client
as well as by impostors. Following Bayes decision rule [89], each
value will be considered as belonging to the class, either genuine
user or impostor, that has the highest a posteriori probability.
The threshold can thus be selected for instance as the match-
ing distance for which the probability is equal for both classes,
so as to minimize the error probability. It should be however
noted that by doing so, we consider that both kinds of errors —
whether they result in accepting an impostor or in rejecting the
genuine user — have the same severity, which is usually not the
case in a real-world situation. Consequently, the actual threshold
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is selected according to the foreseen scenario. For instance, if the
system protects highly sensitive information, it will be operated
in a configuration where false acceptances are rendered much less
likely than false rejections.

The situation is slightly different if several users are enrolled in
the database, since the distributions of the genuine and impostor
distances, denoted dG,ci and d I,ci , respectively, will differ for each
client, i.e. for each class c. In order to achieve a situation were
a class-independent threshold can be defined, a normalization
needs to be applied on the distances. The solution we retained
is called Z-norm [89, 90] and consists in obtaining the so-called
standardized impostor distances d̂ I,ci for each class c. This is
achieved by computing the Mahalanobis distances of the values
d I,ci to the mean value µI,c of the distribution:

d̂ I,ci =
d I,ci − µI,c

σI,c
(3.17)

where σI,c is the standard deviation of the distribution. If the
latter were normal, it would now have zero mean and unit stan-
dard deviation. The same operation is applied to the genuine
distances, using the mean and standard deviation of the impos-
tors:

d̂G,ci =
dG,ci − µI,c

σI,c
(3.18)

The raw and normalized probability density functions (pdf) P
and P̂ , respectively, corresponding to genuine and impostor dis-
tances3 for two clients are plotted in Figure 3.8. The discussed
normalization is interesting for evaluating the performance of the
system, since it makes it possible to report a single FAR and FRR
curve for all enrolled clients. In a practical application, it is also
easier to employ a single, class-independent threshold instead of
3 These distances are assumed to follow a Gaussian distribution, a property
that is usually not verified in practice.
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multiple, class-dependent ones. Indeed, the class-independent
threshold for a new user cannot be determined without priorly
obtaining the distances achieved both by the genuine user and by
impostors claiming his identity. A class-independent threshold,
derived from the results of experiments performed using evalua-
tion clients and impostors, is therefore preferable.
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Figure 3.8 : Pdf of the matching distances.
The raw (left graph) and normalized (right graph) probability density func-
tions (pdf) of the genuine P G and impostor P I matching distance distri-
butions, plotted for two clients, c1 and c2.

3.4 Features extraction

The information attached to each graph node can be obtained
using a variety of image processing techniques, which extract cer-
tain characteristics from the original image. Ideally, the resulting
features must be very discriminative between faces belonging to
different individuals. The features extracted must also be robust
to external perturbations such as changes in illumination condi-
tions. Finally, in the context of mobile applications, an efficient
implementation on low-power devices must be feasible. In this
section, two types of features extraction techniques are discussed,
based firstly on Gabor filtering and secondly on mathematical
morphology, respectively. Furthermore, a normalization is pro-
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posed, aiming at rendering the latter technique more robust with
respect to varying illumination conditions.

3.4.1 Gabor filters

In the first implementation of Elastic Graph Matching, intro-
duced by Lades et al. [51], Gabor wavelet filter banks were se-
lected to perform the features extraction. This choice was moti-
vated by the similarities between the Gabor transform and neu-
ronal behavior observed in the visual cortex, as reported in [91].
This technique is also widely used in image processing — see for
instance [92, 93, 94, 95] — since it offers an interesting compro-
mise between spatial localization and frequency resolution.

This section provides a brief description of the Gabor-based fea-
tures extraction algorithm used in conjunction with the EGM
algorithm, whereas a more detailed discussion can be found in
Section 4.3.1 in [1]. The Gabor filter bank we employ is based on
the configuration described by Duc [68], and contains 2D filters
characterized by the following complex impulse response:

g(x, y) = 2πσxσy · ei2πωrx̃ · e−π
2(σ2

xx̃
2 + σ2

y ỹ
2) (3.19)

where i is the imaginary unit that verifies i2 = −1, and with:

x̃ = cosφ+ sinφ ; ỹ = − sinφ+ cosφ (3.20)

In the spatial-frequency domain, the first exponential term in
Equation 3.19 corresponds to a sinusoidal plane with frequency
ωr and orientation φ, the second one to an elliptic Gaussian en-
velope that has its major axis oriented along φ, and bandwidths4

σx and σy. The filter bank is constituted of 18 Gabor wavelet fil-
ters, having 3 different frequency resolutions and 6 orientations,
4 The bandwidth corresponds to the standard deviation of the Gaussian in
the frequency domain, i.e. the points where its magnitude drops to 1√

e
.
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as shown in Figure 3.9. The selected orientations are multiples of
π
6 , and the radial bandwidths σx are distributed following an oc-
tave band structure, the bandwidth doubling at each step. The
radial frequencies ωr and the normal bandwidths σy are com-
puted such that neighboring filters intersect along their principal
axes at points where their magnitudes is equal to 1√

e
.
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ωx

π/6
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Figure 3.9 : Gabor filter bank.
Gabor filter bank comprising 18 filters, plotted in the 2D frequency domain.

The feature vector is constructed using the magnitude of the
18 complex resulting images. Figure 3.10 shows the response of
two Gabor filters plotted in the spatial frequency domain, as well
as the corresponding filtered images. The ROC curves (see Sub-
section 2.4.4) obtained when performing EGM with Gabor fea-
tures are reported in Figure 3.11.

The achieved performance is very good, especially in the mul-
tiple templates case, where the FRR is only around 10% for
FAR = 0%. In terms of computational complexity, Gabor fea-
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Figure 3.10 : Features extracted with 2 different Gabor filters.
Original image (left), real part of the Gabor filters response in the fre-
quency domain (center), and magnitude of the filtered images (right).
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Figure 3.11 : ROC curves for EGM with Gabor features.
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tures extraction is advantageously performed in the frequency
domain, where the convolutions can be replaced with complex
multiplications. Even though performing the filtering only for
those pixels actually covered by a graph node might seem more
interesting than processing the whole image, most of the pixels
will actually be scanned when displacing the graph. The com-
plexity thus amounts to computing the forward and reverse Fast
Fourier Transform (FFT) of the image, and to the computation
of the 18 spectral responses, each one requiring a complex multi-
plication, for each point in the transformed image. The required
processing power is therefore prohibitively high for mobile appli-
cations, and it is necessary to employ a different features extrac-
tion method, such as mathematical morphology.

3.4.2 Multiscale mathematical morphology

Mathematical morphology is a non-linear image analysis tech-
nique, that was developed in 19645 at l’École des Mines de Paris,
by Georges Matheron and Jean Serra [96]. It was originally em-
ployed in petrography and mineralogy, to characterize the me-
chanical properties of materials such as sections of rocks or poly-
crystalline ceramics, by analyzing their geometrical structures.
One of its first applications was related to estimating the reserve
of iron ores in Northern France. It has since then become a pow-
erful image processing tool, discussed in most reference books
(e.g. [97]), and used to perform tasks such as segmentation, shape
analysis, or texture analysis. Mathematical morphology finds ap-
plications in fields as diverse as medical imaging, airborne image
processing or optical character recognition (OCR).

5 Coincidentally, research in automated face recognition started that very
same year, see Subsection 2.3.2.
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3.4.2.1 Minkowski algebra

Mathematical morphology is based on the Minkowski algebra [98]
which defines two operations, the set addition and the set sub-
traction. Let us consider two objects A and B, that contain ele-
ments a and b, respectively, specified by their coordinates [ x, y ].
The Minkowski addition is defined as:

A⊕B = { a+ b | a ∈ A, b ∈ B } (3.21)

and the Minkowski subtraction as:

A	B = { h | b+ h ∈ A ∀ b ∈ B } (3.22)

The + operator denotes the translation, defined as:

[ x0, y0 ] + [ x1, y1 ] = [ x0 + x1, y0 + y1 ] (3.23)

As an example, we have:

A = { [0, 1], [1, 0], [1, 1] } (3.24)
B = { [0, 0], [0, 1] } (3.25)

A⊕B = { [0, 1], [0, 2], [1, 0], [1, 1], [1, 2] } (3.26)
A	B = { [1, 0], [1, 1] } (3.27)

Note that in Equation 3.26, the element [1, 1] is actually obtained
twice, once with [1, 0] + [0, 1] and once with [1, 1] + [0, 0], so
that A⊕B contains only 5 elements instead of 6. Equation 3.24
through Equation 3.27 are illustrated in Figure 3.12, the elements
contained in the objects being depicted by black squares.

3.4.2.2 Mathematical morphology

Mathematical morphology uses exactly the same operations, but
they are now envisaged as transforming the object A into a new
one, by the mean of a structuring element, the object SE. There-
fore, the latter can be considered as the equivalent of the con-
volution kernel in linear filter theory. The two basic operations
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Figure 3.12 : Minkowski addition and subtraction.

are the dilation and erosion, corresponding to the Minkowski ad-
dition and subtraction, respectively. Referring to the object A,
the dilation by SE is defined as:

DSE( A ) = A⊕ SE (3.28)

and similarly for the erosion by SE :

ESE( A ) = A	 SE (3.29)

Moreover, the dilation and erosion are now applied to binary
images, by defining that the object consists of all the black pix-
els in the image. Mathematical morphology dilation and erosion
applied to a binary image I(x, y) are illustrated in Figure 3.13,
where the 0 depicted over SE indicates the origin of the coordi-
nate system. Therefore, SE can be described as:

SE = { [0, 0], [0, 1], [1, 0], [−1, 0], [0,−1] } (3.30)

As can be seen in Figure 3.13, the dilated imageDSE( I ) consists
of all the pixels that are covered by SE when its origin is placed
over any pixel of I. Alternately, it can be defined as the ensemble
of pixels where the SE can be centered so that it overlaps at least
one black pixel. Conversely, the eroded image ESE( I ) is the
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Figure 3.13 : Mathematical morphology dilation and erosion.
For DSE( I ), the gray pixels depict the pixels that are black in I, whereas
the black pixels are those that are added consequently to the dilation. For
ESE( I ), the gray pixels indicate the black pixels in I that are removed
by the erosion.

ensemble of all the pixels of I where SE can be centered, so that
all the pixels it covers are black.

The dilation and erosion can be alternately described as follows.
Let us assign the value 1 to black pixels and −1 to white pixels,
respectively. Then, the value of each pixel in the dilated image
can be obtained by centering the SE over the corresponding pixel
in the original image, and taking the maximal value among the
covered pixels. If the SE overlaps the object, this value will be 1,
otherwise it will be −1. The erosion can be performed similarly,
but now the minimal value is looked for. When the SE is placed
entirely over the object, the obtained value will be 1, whereas it
will be −1 when the SE covers at least one white pixel.

With this new definition, the dilation and erosion by a binary
structuring element can be applied to conventional grayscale im-
ages as well. It should be nevertheless noted that in such images,
white pixels have a higher value than black ones. Consequently,
if the image I in Figure 3.13 were a grayscale image containing
only white and black pixels as depicted, the illustrated results
DSE( I ) and ESE( I ) would need to be interchanged.
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3.4.2.3 Multiscale morphology

Multiscale mathematical morphology, or multiscale morphology
was proposed by Jackway et al. [99] as an alternative to convo-
lutions by Gaussian kernels originally used in space-scale anal-
ysis. Space-scale theory, formalized by Witkin [100], provides a
framework for deriving and manipulating representations of sig-
nals at multiple scales. The motivation for such an approach is
that real-world signals, conversely to mathematical functions, are
naturally associated with physical dimensions. Different features
therefore appear at different scales in such signals. For instance,
in an image of a forest, the trees and the leaves are characteris-
tics that are better observed at two different levels of details. A
theoretical discussion of the general multiscale morphology and
of its properties is available in [99]. Only the particular 2D case,
consisting in dilating and eroding grayscale images with flat 2D
structuring elements, will be discussed here.

Applying multiscale morphology to an image consists in obtain-
ing a series of dilated and eroded versions of said image, using a
set of SE sharing the same shape but differing by their size. One
such example is the flat disk SE set, defined as follows:

SEN =
{

[x, y] |
√
x2 + y2 6 N

}
(3.31)

where N is the scale parameter. We will therefore denote DN

and EN the results of the dilation and erosion using SEN , respec-
tively, and refer to them as the dilation and erosion of level N .

It should be noted that the norm in Equation 3.31 is measured
from the origin, either to a) the center of the pixel, or to b) the
pixel corner being closest to the origin. The first 3 SEs obtained
with both variants are depicted in Figure 3.14. It can be seen that
in both cases, the width and height of SEN correspond to 2N+1.
In this work, option b) was used for all the algorithmic evalua-
tions reported in Chapter 3 and Chapter 4. However, since the
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SEs depicted in a) cover less pixels, computing the correspond-
ing dilations and erosions requires a smaller amount of opera-
tions. Moreover, experiments showed that the achieved results
are almost identical in both cases. Consequently, we switched
to option a) to obtain the performance figures for the hardware
architectures discussed in Chapter 5 through Chapter 7.

1

SE1 SE2 SE3

2 3

a)

b)

Figure 3.14 : Multiscale SEN for N = 1, 2 and 3.
The distance is measured from the origin to either a) the center of the
pixel, denoted by crosses, or to b) the corner being closest to the origin.

3.4.2.4 Mathematical morphology features

The motivations for employing mathematical morphology tech-
niques to extract features to perform face recognition using EGM
are exposed by Kotropoulos et al. in [85]. Firstly, dilation and
erosion deal with local extrema in the image, a property associ-
ated with key facial features such as the eyes, the nostrils and the
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nose tip. Moreover, since they can be obtained using solely com-
parisons, the computational complexity is reduced with respect
e.g. to Gabor features. Finally, fast recursive implementations
are possible, as it will be seen in Section 5.3.

Following Kotropoulos et al. [61, 85], we construct the feature
vectors at position (x, y) by taking the results of 9 levels of
erosions and dilations, obtained using SE1 through SE9. The
original value of the pixel I(x, y) is included to these 18 results,
leading to a feature vectorM(x, y) that contains 19 elementsMi

obtained as follows:

M(x, y) = { M0(x, y), M1(x, y), . . . , M18(x, y) } (3.32)

Mi(x, y) =


E9−i(x, y) when 0 6 i 6 8

I(x, y) when i = 9

Di−9(x, y) when 10 6 i 6 18

(3.33)

The images EN andDN obtained for the different levelsN of ero-
sion and dilation, respectively, are depicted in Figure 3.15, along
with the corresponding SEN , while the resulting ROC curves
are reported in Figure 3.16. The achieved performance is sub-
stantially below that obtained with the Gabor features, both in
single and multiple templates configurations. For instance, in
the latter case, when the desired security level is high, e.g. cor-
responding to FAR below 1%, the FRR is only 5% with Gabor
features, whereas the FRR reaches nearly 30% with morphology
features. The same situation is observed for FRR below 1%, with
FAR amounting to 10% for Gabor, versus 50% for morphology.

Since applying erosion and dilation over an image consists in find-
ing local maxima and minima, the results of the morphological
operations are strongly dependent on illumination. This is illus-
trated in Figure 3.17, which shows three extracted images for the
same individual under different lighting. It is obvious that the
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Figure 3.15 : Morphology Features.
Both boxes: eroded (top) and dilated (bottom) images, structuring ele-
ments SEs (middle). From left to right: Level 1 to 5 (top box), Level 6
to 9 (bottom box). The face images and the SEs appearing in the boxes
are not represented at the same scale. The original image is depicted to
the right of the bottom box, with a correctly scaled SE9 underneath.
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Figure 3.16 : ROC curves for Gabor and morphology features.

values obtained for nodes that fall on the shadowed part of the
face will be lower than the ones obtained for the corresponding
features in the image under frontal illumination. If the top and
bottom rows correspond to the enrollment and test conditions,
respectively, this leads to a large distance being computed be-
tween the two graphs. Even though at first sight, images in the
XM2VTS database appear to have been taken under constant
illumination, this is not exactly the case. Examination of the
images of one same individual, taken during different sessions,
reveals that the variations in pixel intensity in uniform areas,
such as the forehead, reach more than 20. Consequently, it is
necessary to normalize the results of the morphology operations,
so as to alleviate the direct dependency between the illumination
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and the extracted features.

Figure 3.17 : Effect of illumination on morphology features.
From left to right: images M3, M5, M9, M12 and M15, according to
Equation 3.33, under frontal (top) and lateral (bottom) illumination. The
two original images, M9, come from the XM2VTS database, the top one
from the regular set (Subsection 4.2.1), the bottom one from the darkened
set (Subsection 4.4.1).

One solution proposed by Kotropoulos et al. [69, 70, 71] to han-
dle lateral illumination consists in splitting the facial region into
two half-ellipses, which approximate the shape of the face when
combined. The values of the pixels in both ellipses are then
corrected, so that their respective average intensity is rendered
equal. For this procedure to be successful, an accurate face de-
tection step is required beforehand. If the location is imprecise,
the normalization can actually make matters worse, as demon-
strated in Figure 4.6 in [1]. Consequently, a solution where the
illumination can be corrected independently of face detection is
preferred.
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3.4.3 Normalized mathematical morphology

The proposed normalization must nevertheless be local, since in
case of lateral illumination, the variations in luminance are not
uniform over the face area, as seen in Figure 3.17. We thus
considered firstly a straightforward approach, already employed
e.g. in [37], that consists in dividing each pixel value by the av-
erage intensity computed over the neighboring pixels. However,
instead of normalizing the pixels themselves, we perform this op-
eration on the extracted features. The normalized features M̃i

are thus obtained by dividing each element Mi of the feature
vector by the average M̄ of the 19 elements:

M̄(x, y) =
1
19

18∑
i=0

Mi(x, y) (3.34)

M̃i(x, y) =
Mi(x, y)
M̄(x, y)

(3.35)

The results obtained for the same two images as in Figure 3.17
are presented in Figure 3.18, and show that the impact of the
changing illumination is indeed more limited. The correspond-
ing ROC curves are provided in Figure 3.19, and compared to
those obtained with Gabor features. Some amelioration can be
noticed when considering low FRR, however the opposite effect is
produced for low FAR. Moreover, in this case, the advantage pre-
viously incurred by the multiple template scenario is lost. One
possible explanation is that the considered normalization tends
to attenuate subtle variations found among the enrollment im-
ages of a single individual, a phenomenon that defeats the very
purpose of extracting multiple templates.

An alternate normalization consists in considering the extrema
found in the feature vector, instead of the average value. It is
obvious that the minimum and maximum values are E9 and D9,
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Figure 3.18 : Normalized features according to Equation 3.35.
From left to right: images M̃3, M̃5, M̃9, M̃12 and M̃15, under frontal (top)
and lateral (bottom) illumination.

respectively, so that the normalized features M̂i are obtained as
follows:

M̂i(x, y) =
Mi(x, y)− E9(x, y)
D9(x, y)− E9(x, y)

=
Mi(x, y)−M0(x, y)
M18(x, y)−M0(x, y)

(3.36)

The resulting effect is that the feature vector is “stretched” over
the entire available dynamic. Indeed, according to Equation 3.36,
M̂0(x, y) and M̂18(x, y) will always be 0 and 1, respectively.
These two elements can therefore be discarded from the feature
vector, the latter being reduced to 17 elements. Examples of im-
ages obtained when normalizing according to Equation 3.36 are
presented in Figure 3.20. The performance of the algorithm is
strongly improved, as shown in Figure 3.19. In fact, the ROC
curves are now almost the same as the ones obtained with Ga-
bor features, especially when considering the multiple templates
scenario. Experimentations carried out using a software-based
demonstrator and a webcam confirmed that using the normalized
features M̂i does indeed increase the robustness of the system.

In terms of computational complexity, the application of the nor-
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Figure 3.19 : ROC curves for normalized features M̃ and M̂ .
The curves labeled “Morpho norm M̃” and “Morpho norm M̂” correspond
to the multiscale morphology normalization performed according to Equa-
tion 3.35 and Equation 3.36, respectively.

malization proposed in Equation 3.36 requires 18 subtractions
and 17 divisions per position. As it will be demonstrated in
Chapter 6, since both the numerator and denominator are re-
stricted to the range 0 to 255, the latter operation can be effi-
ciently implemented using subtractions in the logarithmic space.

3.4.4 Other features

Besides the Gabor and morphology based methods discussed in
the previous sections, EGM can be coupled with other features
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Figure 3.20 : Normalized features according to Equation 3.36.
From left to right: images M̂3, M̂5, M̂9, M̂12 and M̂15, under frontal (top)
and lateral (bottom) illumination.

extraction techniques as well. Tefas et al. [101, 102] proposed
Morphological Signal Decomposition (MSD)6, where the face im-
age is modeled as a sum of components obtained with erosions
and dilations, similarly to eigenfaces but relying on shape instead
of texture information. Reported results achieved on the M2VTS
database are similar to those obtained with Morphological Dy-
namic Link Architecture (MDLA).

The modified version of the Discrete Cosine Transform (DCT),
introduced by Sanderson et al. under the name DCT-mod2, has
been demonstrated to perform well in conjunction with Hidden
Markov Models (HMM) [103, 104], and was also experimented
with EGM in Section 4.3.2 in [1]. In this context, however,
poor convergence of the algorithm was observed, and the results
achieved on the XM2VTS database are not as good as normal-
ized morphology. Although it is reported in Section 4.7.2 of [1]
that the latter is outperformed by DCT-mod2 features in pres-
ence of variations of the illumination direction, we will show in
6 Originally called Morphological Shape Decomposition [101].
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Subsection 4.5.1 that this is actually not the case.

The DCT-phase, consisting in the sign of the transformed coeffi-
cients, has been recently demonstrated by Bracamonte et al. [105]
to perform very well as a way of matching JPEG images in the
compressed domain. It would therefore be interesting to see how
it behaves when used as a features extraction technique for EGM.
However, this last experimentation lies beyond the scope of the
present PhD work.

3.5 Conclusion

In this chapter, we firstly discussed some of the numerous ap-
proaches that have been proposed to perform automatic face
recognition. Taking into account the specific requirements of an
implementation targeting low-power mobile applications, we se-
lected the Elastic Graph Matching algorithm coupled with math-
ematical morphology features. In order to improve the robust-
ness, a normalization of the extracted features was introduced,
that strongly increases the performance of the system with re-
spect to regular morphology features. We showed that the pro-
posed solution, which will be referred to as Morphological Elastic
Graph Matching (MEGM) for the remainder of this report, at-
tains the same level of performance than Gabor features, but at
a much lower computational complexity. In the following chap-
ter, the performance of the proposed solution will be evaluated
using the XM2VTS database, and compared to results reported
for other methods. Its resilience to perturbations such as changes
in scales and rotations, or presence of occlusions or shadows, will
furthermore be assessed.



Chapter 4

Performance and
Robustness Evaluation

4.1 Introduction

This chapter discusses several tests performed to evaluate the
performance of the MEGM1 algorithm introduced in Chapter 3.
Firstly, Section 4.2 reports the results of experiments carried
out using the XM2VTS face database, which was acquired un-
der well-controlled conditions, resulting in mostly constant pose
and illumination. Several algorithmic ameliorations are also in-
troduced and evaluated, and our results are compared to those
achieved by other methods in recent face recognition compe-
titions. Section 4.3 then discusses additional tests performed
using an artificially degraded version of the same database, to
assess the robustness of the algorithm in presence of complex
backgrounds, geometric transformations such as rotations and
changes of scale, and occlusions. Experiments employing the
darkened set of the XM2VTS database, where lateral illumina-

1 Morphological Elastic Graph Matching.
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tion of the test subjects causes the faces to be partially covered by
shadows, are then discussed in Section 4.4. Finally, Section 4.5
reports the identification results achieved under more degraded
illumination conditions, using the Yale Face Database B. Fur-
thermore, several simple heuristic solutions aiming at alleviating
the negative impact of the considered perturbations on the per-
formance of the MEGM algorithm are introduced and evaluated
in this chapter.

4.2 Frontal illumination

In this section, the proposed MEGM algorithm is evaluated on
the standard XM2VTS face database, under optimal test condi-
tions. Indeed, all the images were captured using the same setup,
under frontal and mostly constant illumination, preventing the
formation of shadows. The background is uniformly tinted, in
blue in the original color images, which makes it easy to locate
faces2, and all the individuals are looking straight at the cam-
era, with no rotations, no changes in scale, and no occlusions.
Firstly, the XM2VTS database and the associated test protocols
are presented. We then introduce three ameliorations that were
incorporated in the algorithm, and compare the achieved results
with those reported in the literature for different methods.

4.2.1 XM2VTS database

The Extended M2VTS database, or XM2VTS database [107]
contains 2’390 images extracted from video sequences, acquired
over a four-month period. For each of the 295 subjects, 4 record-
ing sessions were carried out. Two images were extracted from

2 These characteristics being exploited in [106] to artificially degrade the
database by introducing occlusions, see Subsection 4.3.4.
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each session, leading to a total of 8 faces per individual. The
acquisition environment was very well controlled, the scene be-
ing frontally illuminated and the person looking straight into the
camera. Some variations can however be observed on the faces
themselves as they were recorded over the four sessions, such as
a different haircut, glasses being worn at one time but not at
another, and a beard getting either grown or shaved.

As provided, the images are in color RGB format, their size being
720 × 576 pixels. We converted them to grayscale, and scaled
them down to 320× 256 pixels using Adobe Photoshop to speed
up processing. It should be noted that choosing to use the green
component instead of computing the luminance — which could
save some processing in an application scenario where the sensor
provides color images — does not impact the performance of the
algorithm. Two sample images corresponding each to a client
from the XM2VTS database are shown in Figure 4.1.

Figure 4.1 : Two sample images from the XM2VTS database.

To ensure that the results of experiences carried out by different
teams using the XM2VTS database can be meaningfully com-
pared, a standard methodology, known as the Lausanne Proto-
col [108], was established for reporting the performance of face
recognition algorithms in verification mode. The said protocol
subdivides the 295 subjects into three sets, constituted of 200
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enrolled clients, 25 evaluation impostors, and 70 test impostors,
respectively. For each client, the eight images available are fur-
thermore subdivided into three sets, to be used for training, eval-
uation, and test, respectively. The training set contains images
from which the reference features associated with each enrolled
client are extracted. Since several training samples are furnished,
the protocol makes it possible to consider application scenarios
exploiting multiple reference templates per client, as discussed in
Subsection 3.3.4. The images in the two evaluation sets enable
the collection of series of genuine and impostors distances, from
which the parameters needed e.g. for distance normalization (see
Subsection 3.3.6) can be derived. Finally, the images in the two
test sets are used to assess the performance of the algorithm,
using impostors that were so far never seen by the system.

Two different repartition schemes, called Configurations, are de-
fined in the Lausanne Protocol to specify how the client images
are distributed among the training, evaluation and test sets. In
Configuration I, three images are made available for training,
namely shot number 1 of the recording sessions 1, 2 and 3. Shot
number 2 in each of the same three sessions is part of the evalu-
ation set, whereas the two shots in session 4 constitute the test
set. In Configuration II, the training set contains 4 images, cor-
responding to the shots in sessions 1 and 2. The two images in
session 3 are used for evaluation and, similarly to Configuration I,
the two shots in session 4 are part of the test set.

In this report, we follow Configuration II unless specified other-
wise, since it more closely resembles a real-world scenario where
the enrollment will likely need to be executed over a very small
number of sessions, possibly even only one. Indeed, only two ses-
sions are used to provide enrollment images in the chosen config-
uration, whereas three session are used in Configuration I. Since
Section 4.4 in [1] shows that features space reduction (with help
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from PCA, LDA or node weighting) is not adapted to the small
number of training samples available in the XM2VTS database,
this step was skipped in the tests discussed in this report.

4.2.2 Enhancements

In this subsection, three algorithmic modifications are described,
that result in slightly enhanced authentication performance when
evaluating the algorithm using the XM2VTS database. However,
the effectiveness of the proposed enhancements was not qualita-
tively assessed under real conditions, contrarily to the regular
version of the MEGM algorithm discussed in Chapter 3, which
was implemented in a webcam-based demonstrator for this very
purpose. As such, the impact of these ameliorations outside of
the tests performed on the XM2VTS database, has not been
established yet. It is therefore possible for instance that the en-
hanced inverse logarithm table discussed in Subsection 4.2.2.3 is
only effective when used with the images of this specific database.

Each of the three modifications was firstly implemented and
tested individually, in view of determining its proper impact and
the most efficient parameters, as discussed in Subsection 4.2.2.1
to Subsection 4.2.2.3. For each individual experiment, slight im-
provements were observed, although only the results achieved
once all three modifications were implemented will be provided,
in Subsection 4.2.3.

4.2.2.1 Removal of largest node distances

The first enhancement intervenes during the computation of the
graph distance, and consists in discarding the largest contribut-
ing nodes. This reduces the number of false rejections, by ignor-
ing graph nodes that fall on very changeable areas, such as hair
or beard. It can also ameliorate the performance of the system
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in presence of glasses, if they were not worn at enrollment time,
or other perturbations like occlusions (see Subsection 4.3.4.1)
and sideways illumination (see Subsection 4.4.2). However, if
only the very few best matching nodes are retained, the num-
ber of false acceptances logically increases. Experimentally, the
best results were obtained when discarding 32 nodes, or half the
number of nodes in the graph. An alternate approach consisting
in removing nodes whose contribution to the graph distance is
above a predefined threshold was also explored, but this variant
was abandoned since it was not improving the results.

4.2.2.2 Reduced number of features

The second amelioration consists in reducing the size of the fea-
tures extracted at each node, by discarding the ones correspond-
ing to the largest structuring elements. Indeed, we originally
adopted the approach proposed by Kotropoulos et al. [64], who
use 9 circular SE ranging in size from 3 × 3 to 19 × 19 pixels,
but their choice was solely based on empirical observations. Note
that the normalization introduced in Subsection 3.4.3 already led
us to reducing the vector size from 19 down to 17 elements. Here,
best results were obtained when ignoring SEs larger than 13×13,
resulting in a feature vector containing only 13 elements. Similar
experiments, but where the discarded features were those corre-
sponding to the smallest SEs instead of the largest ones, did not
result in any improvement.

4.2.2.3 Stronger inverse logarithm table

The third amelioration was inspired by an observation made
when the divisions involved in features normalization were sub-
stituted — for hardware implementation reasons — with sub-
tractions in logarithmic space. As it will be shown in Subsec-
tion 6.2.2, the performance of the system degrade sensibly in
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terms of accuracy, if the inverse logarithm operation is omitted
at the end of the normalization. Since this operation consists in
replacing the dashed line by the black curve as depicted in Fig-
ure 4.2, we tried to apply even stronger exponential functions,
by setting K = 256 and by reformulating the inverse logarithm
function as stored in the corresponding table as:

INV LOGMEM [ N ] = 256
N
256 =

256
K

K

N
256

and then raising the value of the exponential base K. Best result
are achieved forK = 1536. Even though both curves appear very
similar at first sight when considered over the whole 256 values
in the table (see subplot in grey in Figure 4.2), they nevertheless
differ substantially as seen in Figure 4.2.
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Figure 4.2 : Inverse logarithm.
Illustration of the influence of the base K on values in INVLOGMEM.
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4.2.3 Results and computational cost

The ROC curves obtained when implementing all three enhance-
ments discussed in this section are presented in Figure 4.3, both
for the single and multiple templates scenarios. In the first case,
the FRR diminishes sensibly, especially when considering the sit-
uation where the FAR is below 5%, whereas the gain is marginal
in the second case. For instance, in the single template scenario,
the value of the FRR that corresponds to a FAR of 1% is superior
to 14% when the enhancements are not implemented, and infe-
rior to 11% when they are. In the multiple templates scenario
however, the FRR never decreases by more than 1%.

In terms of computational complexity, the first enhancement (see
Subsection 4.2.2.1) necessitates additional operations to be exe-
cuted in order to identify the smallest K node distances to re-
tain. This can be accomplished with the help of a partitioning
algorithm [109], which reorders a list by placing the smallest K
values at the beginning, and the 64−K largest ones at the end.
Since the values inside both subsets need not be arranged in
any specific order, this operation is less costly than fully sorting
the list using an algorithm such as quicksort [110]. The aver-
age number of comparisons required to partition a series of N
values can be approximated by 2N [109], the actual number de-
pending on the preexisting order in the series. Experimentally,
we indeed observed that, in average, 130 comparisons are per-
formed to partition the 64 node distances. Since half the nodes
are later discarded, we save 32 additions when computing the
overall graph distance, so that the net increase in executed op-
erations amounts to approximately 100 additions. When put in
perspective with the 3’456 MAC operations already required to
compute the graph distance3, the relative overhead incurred is
very low.

3 See Section 6.6.1 in [1].
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Figure 4.3 : Influence of the proposed enhancements.
ROC curves for both the single and multiple templates scenarios, with
and without the three enhancements discussed in Subsection 4.2.2.1 to
Subsection 4.2.2.3.

The second amelioration (see Subsection 4.2.2.2) obviously re-
duces the number of operations to execute to extract the features
and to perform the graph matching, because the feature vectors
comprise fewer elements. Finally, the third enhancement (see
Subsection 4.2.2.3) has no effect on the computational complex-
ity, since it simply consists in writing a different set of values in
the inverse logarithm table when the latter gets initialized.
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4.2.4 Comparisons with other algorithms

In the framework of the ICB 2006 conference, a competition was
organized to assess the recent advances in face recognition [111].
It comprises two distinct parts, the first one being performed on
the XM2VTS database, according to the Lausanne protocol, as
it was the case for ICPR 2000 [112] and AVBPA 2003 [113], so
that the results from these three competitions can be directly
compared. The second part evaluates the performance in pres-
ence of non-frontal illumination, and will be discussed in Sub-
section 4.4.1. Compared to those that took place priorly, the
competition organized for ICB 2006 [111] furnishes only one new
result obtained using automatic face registration and Configu-
ration II of the Lausanne protocol. Indeed, most of the sub-
mitted results were achieved using manual registration instead.
This result is reported in Figure 4.4, labeled CAS, along with
the results from AVBPA 2003 and the ROC curves for our al-
gorithm. It is from the Chinese Academy of Sciences (CAS),
whose method [114] consists in an ensemble learning classifier
based on Gabor features (5 scales and 8 orientations), extracted
from images that are previously photometrically normalized us-
ing region-based histograms equalization. The 40 Gabor features
are then divided into multiple groups using Adaptive Boosting
(AdaBoost), and one classifier is learned for each group through
Fisher Discriminant Analysis (FDA). Finally, the classifiers are
combined using a fusion strategy.

4.3 Degraded conditions

The images in the original XM2VTS database were acquired
under a strictly controlled environment, which obviously corre-
sponds to an ideal situation, but which provides a good initial
comparison basis. Nonetheless, there are some limitations, e.g.
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Figure 4.4 : ROC curves vs. ICB 2006.
Comparison between our results, illustrated by the ROC curves, and those
that were submitted to ICB 2006 [111].

the faces are neither affected by changes in scale nor rotations,
and the illumination is constant. The background is always the
same as well, and is constituted of a uniform surface that fa-
cilitates the detection of the face within the image. All these
aspects help in obtaining performance figures that truly reflect
the discriminative capabilities of the evaluated algorithms, and
the achieved results are thus very useful to compare different
approaches to face verification.



88 Performance and Robustness Evaluation

4.3.1 XM2VTS degraded

In a real world setting, however, the situation is very different.
Indeed, several perturbations can affect the images to be pro-
cessed. Within the framework of the COST Action 275 entitled
Biometrics-Based Recognition of People over the Internet [115],
a program was developed to automatically apply several kinds of
perturbations to the XM2VTS images, resulting in 11 degraded
versions of the database [106]. Some of these simulated problems,
such as packet loss during transmission over TCP/IP networks,
or artefacts caused by strong JPEG compression, are unlikely
to be experienced in our application scenario, namely identifica-
tion carried out locally on a mobile device. Therefore, only three
kinds of alterations were considered, namely occurrence of com-
plex background, geometric transformations (rotation and scal-
ing) and occlusions. In all cases, training and evaluation were
performed using the images in the regular XM2VTS set, whereas
degraded images were used during the test phase, with the ex-
ception of experiments exploiting multiscale references, where
the training set contains images that have been scaled up and
down, as it will be explained in Subsection 4.3.3.1. The achieved
results in presence of each kind of degradations are presented and
discussed in Subsection 4.3.2 to Subsection 4.3.4.

4.3.2 Complex background

In a first degraded version of the XM2VTS database, the images
were processed to remove the uniform background and replace it
with a randomly selected picture from a set of 18 photographs
depicting real world environments, such as an office, a parking
lot or the hall of a building. Face verification tests were carried
out as in Subsection 4.2.1, but the degraded images were used for
the test phase. As illustrated by the two images in Figure 4.5,
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the MEGM algorithm is still able to properly locate the faces.

Figure 4.5 : Graph matching over complex backgrounds.

Since the face is correctly registered, i.e. located, despite the com-
plex background, the performance of the algorithm should not
vary much, as the faces themselves were left untouched. This is
confirmed by the ROC curve reported in Figure 4.6. The small
differences result from the best graph being slightly different in
some cases. Indeed, since the simplex downhill algorithm does
not exhaustively evaluates all possible graphs, the modified back-
ground can cause it to follow an alternative convergence path.

4.3.3 Scaling and rotation

A second degraded version of the XM2VTS database contains im-
ages to which one or several of the following geometric transfor-
mations were applied: change of scale, rotation and translation.
Unfortunately, the combination of these 3 operations sometimes
causes part of the face to end up outside of the image, which then
results in the face being cropped. Since the location of the face
is not known a priori in the test phase, translating it does not
make much sense anyway. Therefore, we constructed our own
databases, where the images are scaled and / or rotated, but
not translated, so as to avoid cropping the faces. The procedure
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Figure 4.6 : ROC curves obtained with complex background.

we followed is detailed in Subsection 4.3.3.1, whereas the results
achieved by the MEGM algorithm in presence of these geometric
transformations will be discussed in Subsection 4.3.3.2.

4.3.3.1 Databases construction

The three databases discussed here were generated by applying
either scaling, rotation, or both operations, to the images in the
test sets of the original XM2VTS database. All manipulations
where performed in Adobe Photoshop, using the highest quality
interpolation settings available. To create the first database, only
scaling operations were considered, using scale factors randomly
selected among the four following values: 84%, 96%, 108% and
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120%, arbitrarily chosen in the interval between 80% and 120%.
Whereas in the degraded XM2VTS images, scale factors range
from 70% to 130%, we did set the upper limit to 120% so that
the enlarged faces would still fit entirely within the image. We
furthermore observed that images scaled below 80%, resulting in
face widths being reduced to ca 50 pixels, are problematic for the
MEGM algorithm, even if the training and evaluation images are
resized accordingly. Graph-based face recognition methods are
indeed known to be less efficient in presence of small images, as
noted in [54]. Consequently, we decided to set the inferior scale
factor limit to 80%.

The second database we generated contains test images that were
only rotated. The operation was applied center-wise, using an
angle randomly selected among the following values: 0°, –12°,
+12°, –24° and +24°, these numbers being arbitrarily chosen so as
to cover what can be considered a reasonable worst case scenario
for a handheld mobile device4.

Finally, a third database was created, where the test images are
both scaled and rotated, each parameter being randomly selected
among the same values as those used to generate the first two
databases. Two sample images from this last database are pre-
sented in Figure 4.7.

4.3.3.2 Experiments

In a first experiment, only scalings are considered. For the scale
factors applied to create the first database, that range from 80%
to 120%, the faces are correctly located by the regular variant
of the MEGM algorithm, where the simplex downhill matching
step adapts the dimension of the graph to account for the scaling
of the face. Nevertheless, since the features extracted from the

4 The rotations in the degraded XM2VTS database range from -30°to +30°.
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Figure 4.7 : Images from the scaled and rotated database.

scaled test images are matched against the templates obtained
from the unscaled training faces, the achieved matching distance
gets increased and the verification performance decreases. This
is illustrated by the curve labeled “Scaling: single-scale reference”
in Figure 4.8, where the EER exceeds 10% and amounts to al-
most twice the value obtained in the absence of scaling, the latter
situation being pictured by the curve labeled “No scaling, no ro-
tation”. Indeed, the morphology features are not invariant to this
kind of geometric transformations. An elegant and very simple
method to compensate for the change of the face size, described
in Subsection 4.5.1 in [1], consists in reindexing the structuring
elements. However, this step must take place before features
normalization since the latter requires the newly adapted val-
ues of D9 and E9 (see Subsection 3.4.3). As the change in scale
is only estimated during the matching phase, this solution can-
not be applied to systems where the features extraction and the
matching constitute two independent steps that are performed
sequentially. Moreover, this approach is not well suited to cases
where the image might need to be enlarged, since the results of
dilation and erosion with SEs larger than SE9 are not available.

A more flexible solution consists in extracting several templates
from the reference image, each at a different scale. This is similar
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Figure 4.8 : ROC curves for scaled and / or rotated images.

to the multiple templates approach discussed in Subsection 3.3.4,
except that the number of references per client is fixed. In our
case, we employ four images, generated by applying the following
scale factors to the first image in the training set of each client:
78%, 92%, 100% and 115%. These numbers were intentionally
chosen so that they differ from those used to scale the images
in the test sets (see Subsection 4.3.3.1). Indeed, in a practical
application, any scale factor in the considered operating range
could be encountered, so that in most cases, the scale factor in
the test image will not exactly match any of those applied to
the reference templates. Consequently, using the same set of
scale factors would lead to a less realistic test case. When using
multiscale reference templates, the results are indeed improved,
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as shown in Figure 4.8, where the corresponding curve, labeled
“Scaling: multiscale reference”, achieves an EER of less than 7%.

The next experiment involves images that were only rotated,
and was carried out using the second database described in Sub-
section 4.3.3.1. Since the normalized mathematical morphology
features are extracted using circular structuring elements, they
are invariant to rotations. Furthermore, the orientation of the
graph is one of the parameters that the simplex downhill match-
ing step optimizes, as explained in Subsection 3.3.5, so that the
presence of rotated faces is not expected to degrade the verifi-
cation performance of the MEGM algorithm. The ROC curve
obtained in this case, labeled “Rotations: single coarse step” in
Figure 4.8, nevertheless indicates that the reality is different since
the achieved ERR reaches 25%. This situation is due to the fact
that the simplex downhill matching algorithm often fails to cor-
rectly optimize the orientation of the graph when the amplitude
of the rotation is ± 24°, as illustrated by the left image in Fig-
ure 4.9. Since the face is not correctly registered, the number of
false rejections gets very high.

To correct this convergence problem, multiple iterations of the
coarse matching step can be performed, using the same rigid
graph with different orientations, instead of relying solely on
the simplex downhill algorithm to determine the amplitude of
the rotation applied to the face. Indeed, the angle yielding the
smallest coarse rigid matching distance can be considered as a
rough estimate of the actual rotation angle, and it therefore con-
stitutes a better starting point for the simplex downhill step
than the default value, namely 0°. In the experiment discussed
here, three coarse matching iterations are performed, with the
rigid graph being rotated center-wise by 0°, –20° and +20°, re-
spectively. With this technique, proper face registration can be
reestablished, as shown by the right image in Figure 4.9. The
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corresponding curve in Figure 4.8, labeled “Rotations: multiple
coarse steps” is very close to the one obtained in the absence of
rotations. The verification performance of the MEGM algorithm
can therefore be rendered almost insensitive to rotations, at least
up to ± 24°.

Figure 4.9 : Graph matching in presence of rotations.
When the face is rotated by ± 24° or more, the simplex downhill matching
algorithm often fails to correctly register the face (left). When additional
coarse matching step iterations are performed, a better start angle can be
determined and the simplex downhill is more likely to succeed (right).

Finally, a last experiment was conducted using the third database
mentioned in Subsection 4.3.3.1, where images are both scaled
and rotated. The graph matching is carried out as follows.
Firstly, three iterations of the coarse rigid matching step are
performed, using the same angles as in the second experiment
described above, and the features extracted from the unscaled
reference face. The best coarse graph then serves as the start-
ing point for four iterations of the simplex downhill matching
step. Each iteration uses a reference template extracted at a
different scale, and the graphs are therefore scaled accordingly
prior to starting the simplex downhill step. Each iteration of the
latter optimizes the position, the size and the orientation of the
considered graph. Finally, the graph that achieved the smallest
distance is then furthermore optimized during the elastic match-
ing step, using the reference template at the corresponding scale.
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The resulting curve, labeled “Scaling and rotations” in Figure 4.8,
achieves an EER of 9%.

4.3.4 Occlusions

To simulate occlusions, one of the set of the degraded XM2VTS
database contains images where 30% of the face is painted with
solid black. One out of four areas is affected, either the top,
bottom, left or right part of the face. This situation clearly con-
stitutes an ideal case, since occlusions occurring in a real-world
scenario would not be as easy to detect. It is nevertheless in-
teresting, in the sense that it will allow us to evaluate the ro-
bustness of the algorithm when only a part of the face is visible,
using simple occlusions detectors in Subsection 4.3.4.1 and Sub-
section 4.3.4.2. A more realistic case, where occlusions exhibit
complex patterns, will be briefly discussed in Subsection 4.3.4.3.

As it is obviously impossible to recover any information per-
taining to the original image in the affected zones, the features
extracted in occluded areas differ significantly from the expected
ones. As a result, the distance contributed by the nodes that
cover occluded parts of the face increases. Since the algorithm
performs automated face registration by minimizing the graph
distance, it tends to place the graph fully over the visible part of
the face. This typically causes the graph to be scaled down or
translated from its correct location, to avoid covering the occlu-
sion, as shown in the left image in Figure 4.10. Unsurprisingly,
the performance of the algorithm degrades drastically in such
a situation. Indeed, since the face registration is not carried
out correctly, the identification of the enrolled clients will hardly
be successful. As shown by the corresponding curve, labeled
“MEGM regular” in Figure 4.11, the EER in this case increases
to more than 40%.
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Figure 4.10 : Graph matching on occluded images.
Best graphs achieved when considering all 64 nodes (left) and only the 32
nodes with the smallest contributed distance (right).
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Figure 4.11 : ROC curves in presence of simple occlusions.
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4.3.4.1 Discarding nodes with large distance

The achieved results are much better if the nodes with the largest
contributed distances are ignored when computing the score, like-
wise to the procedure detailed in Subsection 4.2.2.1. Addition-
ally, the discarded nodes are not displaced during the elastic
graph matching phase. Indeed, since their contribution to the
total graph distance is not taken into account anyway, it makes
no sense to attempt to lower that value. Moreover, doing so of-
ten causes neighboring nodes outside of the occluded area to be
consequentially displaced, in an attempt to reduce the deforma-
tion penalty incurred by the first displacement, which leads to
graphs that are distorted near the occluded areas. Face registra-
tion is now carried out correctly in most cases, as illustrated by
the right image in Figure 4.10. The improvement is also visible
in the ROC curve, the achieved EER being now approximately
16% for the curve labeled “MEGM, discard nodes” in Figure 4.11.

4.3.4.2 Detecting occlusions

Another possible approach consists in attempting to detect the
nodes that cover an occluded part of the face, and to ignore them
when computing the graph distance. When using the occluded
images set from the degraded XM2VTS database, this is eas-
ily achieved since occlusions are constituted of areas where the
pixel values are all zero. To identify the covered area, the re-
sult of dilating the local neighborhood with SE4 is considered:
if this value is zero, then the location is labeled as being part of
an occluded area. Using a dilation result instead of the direct
pixel value ensures that the selection does not include individual
black pixels, or small black spots. Indeed, pure black pixels can
be found in the non-occluded part of the image, e.g. in the nos-
trils. However, this restriction incurs the opposite effects since
the pixel on the internal border of the occlusions are not se-
lected anymore. Indeed, pixels lying just outside the occlusion
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will cause the value of SE4 for pixels just inside to be larger
than zero. Moreover, since the normalization performed when
extracting features consider the local neighborhood under the
largest structuring element, nodes falling over the surroundings
of a blackened area must also be discarded. To account for these
two problems, the binary mask image indicating the detected
occluded areas is further dilated using SE9.

During the matching phase, only nodes falling outside of the
resulting binary mask are taken into account when computing
the graph score S. To compensate for the reduced number of
contributing nodes, the final score Sf is obtained by scaling S
according to the ratio of the total number of nodes Nt to the
number of retained nodes Nr, as indicated by Equation 4.1. The
average distance contribution of the discarded nodes is thus con-
sidered to be equal to that of those retained.

Sf = S
Nt

Nr
(4.1)

Identically to the previous solution, the elastic phase is modified
to avoid displacing nodes located over occluded areas. Visual
inspection of the registered graphs confirms that the face is now
correctly located in most cases. The achieved results are better
than those obtained when discarding nodes based on contributed
distances, as shown by the curve labeled “MEGM, detect occlu-
sions” in Figure 4.11. For genuine clients, the final graph contains
an average of 16 discarded nodes, this number ranging from 12
to 24 in 90% of the tests.

4.3.4.3 Complex occlusions

As already noted, the case studied in the previous section is ideal,
since the occlusion pattern found in the considered XM2VTS
database set is uniform and known beforehand, whereas this
would not be the case in a practical situation. Performing oc-



100 Performance and Robustness Evaluation

clusion detection at the features extraction stage, as discussed
in Subsection 4.3.4.2, is therefore likely to prove more difficult.
During the matching stage however, the distances can be ex-
pected to remain larger for these nodes, since it was shown in
Subsection 4.3.2 that face registration is correctly carried out
over complex background. Consequently, the method consisting
in discarding the nodes with the largest distances, exposed in
Subsection 4.3.4.1, should also be effective in presence of com-
plex occlusions.

To verify this hypothesis, the test images of the first eight clients
in the database were manually modified, the occluded area being
replaced by parts of the complex backgrounds taken from the
images used in Subsection 4.3.2. Matching was then performed
using the proposed approach of discarding the nodes with largest
distances. Over the small test set used, the face registration is
indeed successful, as illustrated in Figure 4.12. More refined ap-
proaches could consist in discarding nodes with large distance
only when they appear in groups, instead of considering them
independently. This would help ensuring that the high contribu-
tions are not due to local dissimilarities in the extracted features
— in which case ignoring those nodes would result in increasing
the number of false acceptances — but are found to cover a larger
area, a situation more likely to denote an actual occlusion.

Figure 4.12 : Best graph on images with complex occlusions.
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The proposed method therefore appears viable, but a larger scale
experiment using a complete database of faces occluded with
complex patterns would obviously need to be carried out to con-
firm or infirm these preliminary results.

4.4 Sideways illumination

In this section, the influence of varying illumination on the ro-
bustness of the algorithm is evaluated. The extracted normal-
ized morphology features are designed to locally compensate for
changes in intensity, so that the algorithm is mostly insensitive
to changes in illumination intensity, even if the variation is not
uniform over the face. One situation where such conditions can
be encountered is the case where the light source is no more
frontally located with respect to the subject, but comes from one
of the sides. Since the face is not flat but has in rough approxi-
mation a cylindrical shape, lateral illumination coming from one
side results in the opposite part of the face appearing darkened.
Furthermore, salient features such as the nose obstruct the light
path, causing cast shadows to appear.

Throughout this section, we use a different set of the XM2VTS
database, containing images with sideways illumination, to assess
the performance of our algorithm is such conditions. Discarding
nodes with large contributed graph distance will be applied once
again to enhance the robustness. Results achieved by other meth-
ods on the same data set in the frame of the ICB 2006 conference
are also reported.
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4.4.1 XM2VTS darkened

The second part of the ICB 2006 competition, mentioned in Sub-
section 4.2.4, employs the so-called darkened set of the XM2VTS
database. In the regular set, all subjects are uniformly and
frontally illuminated, so that virtually no shadow appears on
the faces. The darkened set, on the other hand, contains images
of the same individuals, but with the light source being displaced
either to the left or to the right. There are four images available
per subject, acquired during the last of the four recording ses-
sions (see Subsection 4.2.1), two being lit from the left, and two
from the right. Figure 4.13 shows two sample images from the
darkened set, one for each illumination direction.

Figure 4.13 : XM2VTS darkened – sample images.

The competition guidelines specifiy that Configuration I of the
Lausanne protocol be followed for the training and evaluation
phases, using images from the regular XM2VTS database. For
the test phase, images are taken from the darkened set, the pro-
tocol being slightly modified to account for the fact that there are
now 4 images for both clients and impostors, instead of respec-
tively 2 and 8 in the regular set. Two scenarios are proposed, one
where the faces are manually located, and one where registration
must be carried out automatically.
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In Figure 4.14, we report the results published at ICB 2006
(see [111] that additionally provides ROC curves for some of the
algorithms) for the manual face registration scenario, along with
the ROC curves obtained with our algorithm. The unmodified
version, labeled “MEGM regular”, achieves an EER of approxi-
mately 18.5%, which is much worse than the 5% reached on the
regular XM2VTS database. An improved version is discussed in
the following section.

4.4.2 Discarding nodes with large distance

Since the nature of the degradations observed in the darkened
images is similar to those created by occlusions, we decided to
follow the same approach as in Subsection 4.3.4.1. The situation
improves sensibly, as shown by the curve labeled “MEGM dis-
card” in Figure 4.14. Only two algorithms perform significantly
better in this test, the first one being UNIS-Lda proposed by the
University of Surrey. According to [111], they apply standard
Linear Discriminant Analysis (LDA) on photometrically normal-
ized images, a process carried out using filtering and histogram
equalization. The second one is CAS, from the Chinese Academy
of Science, described in Subsection 4.2.4. It is however noted
in [111] that CAS did “relight the training and evaluation set data
to simulate the illumination conditions of the test set”, which af-
fects the comparability of the results. Indeed, in doing so they
effectively tuned their system for authenticating faces with lat-
eral illumination, which might impact the achieved performance
when faces are uniformly illuminated. On the other hand, as seen
in Subsection 4.2.2.1, the node discarding technique we employ
was verified to avoid producing degraded results in presence of
frontal lighting.

The performance of the MEGM algorithm is not as good when
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the face registration must be performed automatically. Indeed,
in that case, the number of faces incorrectly located when testing
genuine clients amounts to more than 30% with MEGM regular,
and still reaches 14% when rejecting nodes with large contributed
graph distances. Obviously, failure to correctly register the face
sensibly increases the FRR, causing the ERR to raise above 25%,
as illustrated by the gray curve in Figure 4.14. It can be never-
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Figure 4.14 : ROC curves for the darkened XM2VTS set5.
Comparison between our results, illustrated by the ROC curves, and those
that were submitted to ICB 2006.

5 Note that we permuted the values of FAR and FRR for UNIS-Lda, with
respect to those reported in Table 5 in [111]. Indeed, the ROC curve in
Figure 5 of the same reference makes it clear that they are inverted in said
table. This is furthermore confirmed by the granularity of the FRR, which
has to be 0.125% since 800 tests (200 clients × 4 images) are performed.
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theless noted that our results in automatic face registration mode
are superior to those achieved by two other methods when using
manual registration.

4.5 Strongly shadowed faces

Even though the title of the paper reporting results discussed in
the previous section evokes “severe illumination changes” [111],
the situation can get much worse in uncontrolled environments.
In this section, experiments using a database acquired under
64 different illuminations are reported. Another protocol is fol-
lowed, where the performance is evaluated according to an identi-
fication scenario. New algorithmic enhancements are introduced,
that aim at alleviating the sensitivity of the proposed method to
strong perturbations incurred by severe illumination conditions.

4.5.1 Yale Face Database B

The Yale Face Database B [116] contains 5’760 single light source
grayscale images of 10 subjects, each seen under 576 viewing con-
ditions, namely 9 poses multiplied by 64 different illuminations.
Acquisition was realized with the help of a spherical rig holding
a series of spots providing the light sources. The size of the im-
ages is 640 × 480 pixels, and each one is labeled with a number
identifying the individual, the pose, as well as the azimuth and
elevation angles of the spotlight. For each image, the coordinates
of the eyes are provided. The database is freely available and can
be downloaded from [117].

Recently, a new version was made available, the Extended Yale
Face Database B [118]. It includes 28 additional individuals, and
can be freely obtained from [44]. The coordinates of the eyes are
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however not provided, the manual registration scenario relying
instead on a second version of the database, containing manually
cropped, scaled and rotated images.

In the experiments reported here, only the frontal pose was con-
sidered and the identification protocol proposed in [116] was fol-
lowed. For each individual, only 45 images were retained and
divided into four subsets according to the location of the illumi-
nating spotlight, the azimuth and elevation of the light source
increasing with the subset index. Two sample images from each
subset are shown in Figure 4.15. The images in Subset 1, ac-
quired with near frontal illumination, are used to create 7 refer-
ence templates for each individual. The faces in Subset 2, 3 and 4
are then matched against all 70 reference templates, using man-
ual registration. The identification is successful if both the test
face and the best matching reference belong to the same person.
The percentage of errors in each subset for several algorithms is
reported in Table 4.1.

Error rate (%)

Method Subset 2 Subset 3 Subset 4

Cones-attached [116] 0.0 0.0 8.6
Cones-cast [116] 0.0 0.0 0.0

EGM Gabor (dot dist.) 0.0 0.0 12.1
EGM Gabor (Eucl. dist.) 0.8 5.8 63.6
EGM DCTmod2 0.0 5.0 67.1

EGM Morphology
baseline 10.0 47.5 77.9
normalization 1 0.0 13.3 55.0
normalization 2 0.0 0.8 40.7

Table 4.1 : Identification results on the Yale B database.
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a)

b)

c)

d)

Figure 4.15 : Samples from the Yale B database.
The images belong to a) Subset 1, b) Subset 2, c) Subset 3, d) Subset 4.
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For EGM using Gabor or DCT features, the results differ slightly
from those reported in Section 4.7.2 in [1]. This is not surprising
as both experiments did not use the exact same set of images.
Indeed, The Yale B database as available from [117] contains
images whose size is 640 × 480 pixels, which were downsized to
320×240 pixels. Depending on the software used to perform the
resizing, and especially on the downsampling filter it implements,
the resulting images will not be exactly identical. In the case of
the normalized morphology features, however, the observed dis-
parity is much larger and is definitely caused by another factor.
Examination of the archived projects used to generate the results
in [1] revealed that an elastic deformation step was performed af-
ter manual registration of the rigid graph. Since the expression of
the subjects in the Yale B database does not vary much between
the reference and test images6, allowing elastic deformations of
the graph will not yield much improved results. Indeed, when
measured between two images of the same face, the score of the
rigid and elastic graph is very close, as both graphs are almost
identical.

However, if elastic deformations are not sufficiently constrained,
that is if the elasticity coefficient λ in Equation 3.9 is too small,
the number of identification errors increases greatly. Indeed, if
the graph is allowed to get strongly distorted, the distance con-
tributed by some nodes can get very low, even though the ref-
erence and test images do not represent the same face. This is
illustrated in Figure 4.16, where the test image a) from Subset 3
is to be identified. As shown in b), with λ = 0.005, the best
match found among the reference face images does not repre-
sent the same individual and the corresponding graph is indeed
severely distorted. When the value of λ is increased to 0.5, the
result is a graph that exhibits almost no elastic deformation, and
the individual gets correctly identified.

6 All images of the same subject were taken within a 2-second time frame.
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a)

b)

c)

Figure 4.16 : a) Test image from Subset 3, b) Reference image
identified as best match (left) and corresponding graph on test
image (right) for λ = 0.005, c) same as b) but for λ = 0.5.
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The error rate achieved by the MEGM algorithm when using
the best empirically determined elasticity coefficient, λ = 0.5, is
improved by approximately 2% on Subset 4 only, with respect
to the case where elastic deformations are not executed, as seen
in Table 4.2. For this value of λ, the weight of the deformation
penalty on the graph score is of the same order as the contribu-
tion of the Euclidean distance. Only one identification error now
occurs on Subset 3, however even though it is significantly bet-
ter, the error rate for Subset 4 is still very high. The remainder
of this chapter discusses several proposed modifications, aiming
at improving the performance on this subset.

Error rate (%)

Method Subset 2 Subset 3 Subset 4

EGM norm. morpho 2
rigid graph 0.0 0.8 40.7
elastic graph, λ = 0.5 0.0 0.8 38.6
elastic graph, λ = 0.005 0.0 15.0 62.9

Table 4.2 : Influence of the elasticity coefficient λ.

4.5.2 Discarding nodes with large distance

The first approach is similar to the one discussed in Subsec-
tion 4.4.2, and consists in discarding the K nodes exhibiting
the largest contributed graph distances. The results obtained for
various values of K are reported in Table 4.3. The error rate
improves somewhat on Subset 4 for K = 20, unfortunately at
the cost of an increased error rate on Subset 3.

A variant was also tested, where discarded nodes are those whose
contributed distance is above a given threshold T . Since the num-
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Error rate (%)

K Subset 2 Subset 3 Subset 4

10 0.0 1.7 37.9
20 0.0 1.7 37.1
30 0.0 2.5 39.3
40 0.0 2.5 42.9
50 0.0 5.8 42.9
60 1.7 9.2 61.4

Table 4.3 : Results on the Yale B database when discarding
the K nodes with the largest distances.

ber of discarded nodes is not constant anymore, the graph score
is scaled according to Equation 4.1. Several values of T were
tried, starting with T = 3.56, that corresponds to the largest
node distance observed. Some of the collected results are re-
ported in Table 4.4. As it can be observed, the method has no
effect for T > 3.2, whereas smaller values of T actually increase
the error rate in both Subset 3 and 4.

Clearly, discarding nodes based on the sole criteria of their contri-

Error rate (%)

Threshold T Subset 2 Subset 3 Subset 4

> 3.2 0.0 0.8 40.7
2.8 0.0 0.8 42.9
2.4 0.0 1.7 41.4
2.0 0.0 5.8 60.0

Table 4.4 : Results on the Yale B database when discarding
nodes whose contributed distance is greater than T .
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bution to the graph distance is not efficient, and other approaches
will need to be implemented and tested.

4.5.3 Discarding shadowed nodes

Before looking for a method capable of detecting shadowed zones
in the image to enable identification of those areas in which the
nodes will have to be discarded, we will firstly evaluate the effec-
tiveness of such a scheme. Hence, we need to determine the error
rate that can be achieved when the affected areas are known a
priori. To this effect, we exploit the fact that the position of the
illumination source is specified for every image in the database.
Considering only the azimuth, that is the horizontal angle be-
tween the light strobe and the frontal direction, we decompose
the 8 × 8 graphs into a left and right half, composed of 4 × 8
nodes each. For each test image, the half graph located on the
side of the face that is closer to the light source is labeled G (for
good), whereas the other one is labeled B (for bad), as illustrated
in Figure 4.17.

Figure 4.17 : Half graphs G (in black) and B (in white) for
two light sources located on the right.

Note that for cases where the illumination source is also displaced
vertically, as in the right image in Figure 4.17 for instance, strong
shadows can also be found underneath the G graph. The identi-
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fication scenario test was then performed twice. During the first
execution, only the nodes belonging to the G graph were taken
into account when computing the matching distance, whereas
the second execution considered only the nodes of the B graph.

The error rate for both tests is reported in Table 4.5. It can
be seen that the results are sensibly improved on Subset 4 when
using the G graph, without affecting those achieved on Subset 2
and Subset 3. When considering the B graph, however, results
are strongly degraded even in Subset 3.

Therefore, and provided we can find an effective way of determin-
ing which nodes are located inside a shadowed area without using
a priori knowledge, we conclude that the proposed approach of
discarding those nodes should indeed decrease the error rate.

Error rate (%)

Retained half Subset 2 Subset 3 Subset 4

Good (G) 0.0 0.8 27.1
Bad (B) 0.0 19.2 72.9

Full graph (G + B) 0.0 0.8 38.6

Table 4.5 : Results on Yale B database when using good or
bad half graph, according to a priori knowledge of the direction
of illumination.

4.5.4 Shadow detection

In this section, several approaches are presented that were tested
to select nodes to be rejected. For each method, results with the
set of parameters giving the best results when applied in the
frame of the considered identification scenario on the Yale B
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database are reported in Table 4.6. The corresponding detected
shadowed areas for one test image in Subset 4 are presented in
Figure 4.18. The detected area forms the shadow mask, depicted
in white in the figures so as to render it more visible when dis-
played over the face images. During the matching process, the
graph nodes falling over the shadow mask will be discarded when
computing the graph score. The test image in Figure 4.18 was
randomly selected among the ones that are incorrectly identified
when considering all the nodes of the graph. Incidentally, the
chosen image is not correctly labeled when only the nodes of the
G graph of Subsection 4.5.3 are retained.

Error rate (%)

Shadow detection Subset 2 Subset 3 Subset 4

Method 1 0.0 0.8 41.4
Method 2 0.0 0.8 36.4
Method 3 0.0 0.8 32.1

Table 4.6 : Results on Yale B database for Method 1, 2 and 3.

4.5.4.1 Method 1

The first approach tries to locate shadows in the images by iden-
tifying areas where the brightest pixel value is below a given
threshold. It is based on the values of the dilations computed as
part of the features extraction, before normalization is applied.
Indeed, each dilation returns the highest value found among the
pixels covered by the corresponding SE. This prevents the classi-
fication of individual dark pixels or small dark spots as shadowed
area. Experimentally, we obtain the best results when consider-
ing D9, that is the dilation using the largest SE, and when defin-
ing as shadows those areas where D9 < 32. A variant with an
additional condition, requiring E9 to be lower than a specified
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threshold, had no influence on the results. As shown in Table 4.6,
the error rate actually increases when using this method.

4.5.4.2 Method 2

As can be seen in Figure 4.18b, many shaded parts of the image
are not identified by Method 1. This is the case for instance for
the shadow over the depression created by the orbital cavity on
the right. Method 2 attempts to solve this problem by simply
dilating the shadow mask of Method 1, using one of the SEs used
during features extraction. Since the mask is a binary image,
only 1-bit comparisons need to be performed. Best results are
obtained when using the condition D5 < 32 for creating the
mask, and by dilating the latter with SE9. The achieved error
rate is slightly improved, however the test image in Figure 4.18a
is still misidentified.

4.5.4.3 Method 3

The mask obtained with Method 2, shown in Figure 4.18c, does
effectively cover the shadowed parts of the face. It does in fact
cover most of the face, including shaded areas where the normal-
ized morphology features should in fact be able to compensate
the illumination variation. As such, a fair amount of informa-
tion is lost, potentially limiting the ability of the algorithm to
discriminate between individuals. By taking the difference be-
tween the mask from Method 2 and the one from Method 1, we
can expect to obtain a more selective mask. Since some shadows
are covered by both masks, the one from Method 1 is previously
eroded using SE9, to avoid exclusion of these shadowed areas due
to joint coverage by both masks. As seen in Figure 4.18d, the
border of the shadows are still masked out, but the center of some
shaded areas such as the cheek under the eye on the left are now
preserved. Even though this part of the face appears completely
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a)

b)

c)

d)

Figure 4.18 : Shadow detection.
a) Test image; b) shadow mask (left) and shadow mask displayed over the
test image (right) using Method 1; c) same as b) but using Method 2; d)
same as a) but using Method 3.
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black in Figure 4.18a, it does in fact contain some recoverable
information, as it can be seen in Figure 4.20a, depicting one of
the extracted features image.

4.5.4.4 Method 4

Better results can be achieved by following the same approach
as in Method 3, but using SE5 instead of SE9 to erode the initial
mask. The four steps executed to construct this shadow mask are
illustrated in Figure 4.19 and the experimental results are pre-
sented in Table 4.7. Quantitatively, the performance is now equal
to that achieved in Subsection 4.5.3 when using a priori knowl-
edge to select the best half graph. When considering Subset 4,
the error rate now amounts to 27.1%, a 30% percent reduction
compared to the 38.6% obtained when retaining all nodes (see
Table 4.2). Qualitatively, as shown in Figure 4.20, the selectiv-
ity of the shadows is quite good. In the particular case of the
test image in Figure 4.18a, the identification is now carried out
successfully.

Error rate (%)

Shadow detection Subset 2 Subset 3 Subset 4

Method 4 0.0 0.8 27.1

Table 4.7 : Results on Yale B database for Method 4.

Results obtained on Subset 2 of the Yale B database demon-
strates that the proposed node selection approach does not im-
pair the performance of the recognition algorithm for images
where only light shadows are found. To further verify this ob-
servation and to assess its behavior in the absence of shadows,
Method 4 was also incorporated in the XM2VTS tests. The
resulting plot, presented in Figure 4.21, clearly shows that the
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Figure 4.19 : Shadow mask construction for Method 4.
Initial mask (top left), eroded mask (top right), dilated mask (bottom left)
and shadow mask (bottom right). The shadow mask corresponds to the
difference between the dilated and eroded masks.

Figure 4.20 : Normalized feature image (left), same with
shadow mask from Figure 4.19 (right).
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Figure 4.21 : Shadow detection on the standard XM2VTS.

performance is practically unaffected, especially in the multiple
templates case7. This is not surprising when considering Ta-
ble 4.8 showing that, in average, only one node per graph is
discarded. The maximum number of discarded nodes is 18, and
is reached during rigid matching, when part of the graph covers
dark hair or somber clothing elements.

To determine the maximum and average number of discarded
nodes when the graph is located precisely on the faces, shadow
detection was applied during the enrollment of the 200 clients.
During this operation, the graph is manually constructed and

7 See Subsection 3.3.4.
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Discarded nodes

Database Min Max Average

YaleB
Subset 1 0 6 0.7
Subset 2 0 12 2.0
Subset 3 0 25 9.9
Subset 4 8 35 16.2

XM2VTS
Test 0 18 1.01
Enrollment 0 5 0.18

Table 4.8 : Number of discarded nodes for Method 4.
The reported values are the minimum, maximum and average numbers of
nodes discarded per graph. Note that Subset 1 is the enrollment subset.

placed on the image according to the furnished eyes coordinates.
In this case, the maximum number of discarded nodes amounts
to only 5, while in average 0.18 nodes per graph are discarded.

In contrast, the number of discarded nodes is much higher when
measured over the Yale B database. Recalling that manual face
registration is used here, the reported numbers in Table 4.8 con-
cern only graphs fully located over the faces. Up to one fourth of
the nodes are discarded on average when considering Subset 4,
and in extreme cases, the identification is based on less than half
of the node graphs.

4.5.4.5 Method 5

The width of the black curves, observed at the borders of shad-
owed areas in Figure 4.20, depends on the size of SE9, the struc-
turing element used to perform the normalization. Consequently,
it can be reduced if a smaller SE is employed. The left image in
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Figure 4.22 shows the results obtained when such normalization
is applied using SE5, whose size is 11 × 11 pixels. The features
obtained with larger SEs do not need to be extracted anymore,
implying that the dimension of the feature vector can be reduced
from 17 to 9 elements.

Figure 4.22 : Normalized feature image following Method 5
(left), same with corresponding shadow mask (right).

Error rate (%)

Shadow detection Subset 2 Subset 3 Subset 4

Method 5 0.0 0.0 22.1

Table 4.9 : Results on Yale B database for Method 5.

The shadow mask is constructed as in Method 4, but without the
erosion step. Instead, the initial mask is directly subtracted from
the dilated mask, the latter being obtained using SE5. Nodes to
discard are selected according to the same criteria as in Method 4.
The achieved results on the Yale B database are presented in
Table 4.9 and show a significative improvement: the error rate is
now 0% for Subset 3, and decreases to 22.1% for Subset 4.

However, when applied on the XM2VTS database, Method 5 re-
sults in significantly degraded performance, as shown by the gray
curve in Figure 4.23. This is not the consequence of discarding
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Figure 4.23 : Normalization with different SEs on XM2VTS.
The performance degradation is due to the reduced size of the local neigh-
borhood considered when normalizing extracted features, and not to the
fact that some nodes are later discarded.

the nodes identified by the shadow detection step. As a matter
of fact, there are less nodes discarded now than there were when
using Method 4. The problem actually originates from using SE5
instead of SE9 to define the normalization neighborhood, as in-
dicated by the solid black curve in Figure 4.23. The extracted
features obtained with this approach are visibly less efficient. In
presence of strong shadows, the benefit of being able to precisely
identify the affected nodes, as it can be verified in Figure 4.22,
nevertheless seems to offset said negative effect.
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4.6 Conclusion

In this chapter, the performance of the Morphological Elastic
Graph Matching algorithm has been evaluated and compared
to other methods on various data sets. Several improvements
have been proposed, that increase the robustness in some of the
degraded conditions studied. Overall, the algorithm has been
shown to perform very well in presence of complex backgrounds,
whereas occlusions, as well as changes in scale and orientation,
slightly degrade its performance. The results achieved with side-
ways illumination compare well with those reported by others, as
seen in Section 4.4. In particular, one solution we proposed was
evaluated using automated face registration and was nonetheless
found to perform better than two other methods where this oper-
ation was carried out manually. Finally, identification tests were
performed using a database acquired under severely degraded il-
lumination conditions, inducing the presence of strong shadows
on the faces. A mechanism for selecting and discarding the graph
nodes located inside the affected areas was proposed. It was fur-
thermore demonstrated to reduce the number of errors by 30% on
the most degraded images, without impacting the performance
on uniformly illuminated faces.

All the solutions proposed in this chapter to alleviate the effects
of degraded test conditions, intervene during the graph matching
stage, and have no impact on the features extraction step. As
the following chapter, that introduces a System-on-Chip (SoC)
structure for a mobile face verification system, mainly focuses on
the VLSI architecture of a coprocessor dedicated to morphology
features extraction, the implementation of said solutions in the
SoC will not be covered in this report.





Chapter 5

Low-Power Architecture

5.1 Introduction

This chapter describes the hardware architecture elaborated to
implement the morphology features extraction algorithm pre-
sented in Chapter 4. It only discusses the initial coprocessor,
designed before the need for normalizing the extracted features
was established. The architecture modified to also handle this
task will be covered in Chapter 6. In Section 5.2, an overview of
the complete face verification system envisioned in this project
is presented, followed in Section 5.3 by a description of how the
algorithm was optimized to reduce its computational complexity
and the number of required memory transfers. The remainder
of the chapter focuses on the proposed architecture, which is ini-
tially described in Section 5.4 using a simplified coprocessor with
only one processing unit. The actual implementation compris-
ing four processing units working in parallel is then detailed in
Section 5.5. Finally, Section 5.6 discusses the architecture and
behavior of the complete coprocessor, and also provides perfor-
mance figures obtained through simulations.
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5.2 System overview

In this section the complete face verification system is presented.
As depicted in Figure 5.1, it comprises an image sensor, an ex-
ternal memory (RAM), a Master Control Unit (MCU) and two
coprocessors, which are dedicated to morphology features extrac-
tion and to elastic graph matching, respectively. A shared bus
connects these last three elements to the RAM. To prevent con-
flicting accesses to resources, the MCU ensures that only one
component is controlling the bus at any given time. The MCU
can be any appropriate low-power micro-controller programmed
using a high-level language, such as an Intel 8051 compatible
processor [119]. Indeed, its duties mainly consist in handling the
system setup and control, these two tasks requiring neither the
transfer of large amounts of data, nor the execution of computa-
tionally intensive operations1.

In a practical application, the face verification system will most
probably be a subsystem of a particular device. For instance,
it could provide biometric facilities to a mobile phone or to a
Personal Digital Assistant (PDA). In such a scenario, it would
be turned off most of the time, to be powered up by the device’s
main processor, only when user authentication is required, for
instance when access to sensitive information stored locally in
the device, or when connection to paid-for on-line services are
requested. The MCU would then initialize the face verification
subsystem and, when instructed to do so, start up the verifica-
tion process consisting of the steps described in Subsection 5.2.1.
Note that depending on the application scenario, the tasks of the
MCU could also very well be handled by the device’s main pro-
cessor. Finally, the User Interface (UI) will most probably be
provided by the device’s own facilities dedicated to this task.

1 Unless the MCU has also to handle other demanding tasks unrelated to
face authentication.
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Figure 5.1 : Face verification system.

5.2.1 Face verification process

At start of the process, the MCU performs any necessary ini-
tialization operations (e.g. uploading program code to the copro-
cessors) before delegating the control of the shared bus to the
image sensor controller and instructing it to acquire an image
to be stored at a specified address in RAM. If implemented, op-
tional image pre-processing steps such as face detection (see Sub-
section 3.3.1) or image normalization (see Subsection 3.3.2) are
then performed. Nowadays, most portable devices are equipped
with a color image sensor, yet the considered features extraction
algorithm operates on grayscale information only. Even though



128 Low-Power Architecture

it is possible to compute the luminance image from the three
RGB components, this conversion can be avoided and the green
channel can be used directly in place of the true luminance as it
is done for instance for the demonstrator that will be discussed in
Chapter 7. Experiments carried out on the XM2VTS database
resulted in almost identical face verification performance in both
cases. Once notified that the image has been successfully trans-
ferred, the MCU hands over the control of the bus to the mor-
phology coprocessor that reads the image from the RAM, pro-
cesses it and stores the extracted features back to the RAM, as
detailed later. The MCU then retrieves the features correspond-
ing to the claimed identity from the database containing the data
of known users, and uploads them to the matching coprocessor,
in order to compare them against the features extracted from the
acquired image. The matching coprocessor will read morphology
features from the RAM, and then perform the various steps of the
elastic graph matching algorithm (EGM) [1]. Highly regular and
computationally intensive operations (e.g. features space reduc-
tion and distance computations) are performed by the coproces-
sor whereas less frequent, less regular calculations (e.g. graph ro-
tations) are executed by the MCU. As these interactions between
the two components require graphs to be transferred, a fast and
low-latency communication channel is desirable. The matching
coprocessor then returns the resulting score — the lowest dis-
tance obtained between the reference and extracted features —
to the MCU. If the score is lower than a predefined threshold
(see Subsection 3.3.6), the device is notified that the verification
was successful. If the authentication fails and a multiple tem-
plates system is being employed, the matching procedure gets
repeated against one or several additional reference features as-
sociated with the same identity, as explained in Subsection 3.3.4.
Finally, if none of the matches succeeds, the identity claim gets
rejected.
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5.2.2 System partitioning

Whereas the implementation of the image sensor, RAM and
MCU using separate components is obvious due to the clearly
different nature of their function and tasks, it is necessary to
explain more in detail the motivation for designing two sepa-
rate coprocessors for the morphology features extraction and for
the elastic graph matching. Indeed, in case a single coprocessor
executes both algorithms, the number of memory accesses may
be much lower, because the extracted features could be directly
used by the matching algorithm instead of transiting through
the RAM. Moreover, the features extraction could be limited to
the image locations effectively covered by a node of the graph
at least once during the whole graph matching process. This
would however require the features extraction to be performed
on demand every time the graph is displaced, for every one of its
nodes, and this would necessitate loading all the pixels covered
by the structuring elements located at each of the 64 nodes of
the graph2. On the other hand, when performing the features
extraction comprehensively for every pixel by scanning the whole
image sequentially, so as to consider every possible graph posi-
tion, most of the loaded pixels can be reused between neighboring
positions. As a result, fewer memory transfers are required com-
pared to the previously described “on demand” approach. As
most pixels will be covered at least once — and many of them
actually several times — in the course of the graph displacement,
computing morphology for every location in the image does not
actually incur any overhead.

Another important reason in favor of splitting the tasks over two
separate coprocessors is the fact that they are very different in
nature: morphology features extraction uses mostly comparisons,

2 This represents for instance 253 pixels per node for a circular 19× 19 SE
set constructed as indicated in Figure 3.14a in Subsection 3.4.2.3.
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whereas features reduction and graph matching consists mainly
in multiply-and-accumulate (MAC) operations [1]. Therefore,
very few hardware resources could be shared between the two
coprocessors anyway. As a matter of fact, only the instruction
fetch — but not the decoding, since this operation is specific to
each coprocessor — and the external memory addressing unit
could actually be shared. The savings thus would amount to less
than 5% of the total area of the synthesized coprocessor discussed
in Chapter 7. Finally, as the EGM algorithm can be applied on
different kinds of features [120], using a dedicated coprocessor
for features extraction adds flexibility to the system. Indeed, if
an alternate features extraction method would be preferable in
a particular context, the morphology coprocessor can simply be
replaced by a different one, while keeping the EGM coprocessor
unmodified.

5.3 Algorithm implementation

This section describes the various modifications applied to the
multiscale morphology algorithm performing features extraction
that was discussed in Subsection 3.4.2, so as to reduce the com-
putational complexity as well as the number of memory transfers.

5.3.1 Differential multiscale morphology

As explained in Subsection 3.4.2.2, dilating and eroding an image
with a given binary structuring element (SE) consists in finding
the maximal and minimal pixel value under the given SE, re-
spectively. If {SE} denotes the set of the values of the pixels
located under the SE, then the dilation D and the erosion E can
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be expressed as:

D = max ( {SE} ) (5.1)
E = min ( {SE} ) (5.2)

SE can be divided into two arbitrary parts, SE′ and SE′′, as
long as the latter verify:

{SE′} ∪ {SE′′} ≡ {SE} (5.3)

Equation 5.1 and Equation 5.2 can therefore be written as:

D = max ( max ( {SE′} ) , max ( {SE′′} ) ) (5.4)
E = min ( min ( {SE′} ) , min ( {SE′′} ) ) (5.5)

In the case of multiscale morphology (see Subsection 3.4.2.3), we
denote by SEN the SE of level N, whereas DN and EN indicate
the result of the image dilation and erosion operations performed
using SEN , so that:

DN = max ( {SEN} ) = max ( max ( {dSEN} ) , DN−1 ) (5.6)
EN = min ( {SEN} ) = min ( min ( {dSEN} ) , EN−1 ) (5.7)

where the differential structuring element dSEN verifies:

{dSEN} ∪ {SEN−1} ≡ {SEN} (5.8)
{dSEN} ∩ {SEN−1} ≡ ∅ (5.9)

Figure 5.2 illustrates the conditions expressed in Equation 5.8
and in Equation 5.9 for N = 2. Multiscale morphology can thus
be implemented by computing erosions and dilations using differ-
ential SEs. DN and EN are recursively obtained with increasing
level index N ∈ [1, ..., 9], whereas D0 and E0 are both equal to
the value of the original pixel lying under the SE center. The to-
tal number of comparisons required to compute all dilation and
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Figure 5.2 : Differential SE.

erosion levels from 0 to N thus amounts to the number of com-
parisons that would be needed to compute directly DN and EN
only, augmented by the 2N comparisons permitting the recursive
computation of the other levels.

However, this recursive approach suffers from one major draw-
back in the way the pixels have to be addressed, as it will be
explained in the following section.

5.3.2 Partial differential morphology

When pixels are accessed in the order required to compute ero-
sions and dilations of increasing levels, the differential erosions
and dilations are computed sequentially. However, pixels must
be read following a predefined sequence that requires a complex
addressing scheme.

Let us consider the 5× 5 pixels image and the three structuring
elements shown in Figure 5.3. Here, PL,i represents the ith pixel
of level L, whereas PX,i denotes pixels that are not covered by the
SE set. To compute the three erosion and dilation levels when the
center of the SE set is positioned over the pixel in the middle of
the image, the following operations are to be performed. Firstly,
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Figure 5.3 : a) 5× 5 pixels image, b) differential SEs.

D0 and E0 are trivially obtained:

D0 ← P0,0 ; E0 ← P0,0

Two registers, pD and pE, are used to hold partial results for
the dilation and erosion processes, respectively. dD1 and dE1

can then be calculated as follows:

pD ← 0 ; pE ← 255
pD ← max ( pD,P1,0 ) ; pE ← min ( pE, P1,0 )
pD ← max ( pD,P1,1 ) ; pE ← min ( pE, P1,1 )
pD ← max ( pD,P1,2 ) ; pE ← min ( pE, P1,2 )
pD ← max ( pD,P1,3 ) ; pE ← min ( pE, P1,3 )

At this point, dD1 = pD and dE1 = pE so that:

D1 ←max ( pD,D0 ) ; E1 ←min ( pE,E0 )

The process then continues to compute dD2 and dE2:

pD ← 0 ; pE ← 255
pD ← max ( pD,P2,1 ) ; pE ← min ( pE, P2,3 )

... ; ...

pD ← max ( pD,P2,7 ) ; pE ← min ( pE, P2,7 )
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at which point we have dD2 = pD and dE2 = pE, which gives:

D2 ←max ( pD,D1 ) ; E2 ←min ( pE,E1 )

To compute dD1, dE1, dD2 and dE2, the following pixels were
successively read: P1,0, P1,1, P1,2, P1,3, P2,0, P2,1, . . . , P2,7. Ac-
cessing pixels in this order however requires random3 addressing.
To move from one pixel to the next, the modification to apply to
the memory address differs every time. Moreover, the address-
ing sequence depends on the chosen SE set, and a new sequence
needs to be used if the SE set change.

5.3.3 Sequential morphology and SE table

It is however possible to compute erosions and dilations while
reading pixels sequentially, as demonstrated below:

pD1← 0 ; pE1← 255
pD2← 0 ; pE2← 255

pD2← max ( pD2, P2,0 ) ; pE2← min ( pE2, P2,0 )
pD2← max ( pD2, P2,1 ) ; pE2← min ( pE2, P2,1 )

pD1← max ( pD1, P1,0 ) ; pE1← min ( pE1, P1,0 )

pD2← max ( pD2, P2,2 ) ; pE2← min ( pE2, P2,2 )
pD2← max ( pD2, P2,3 ) ; pE2← min ( pE2, P2,3 )

pD1← max ( pD1, P1,1 ) ; pE1← min ( pE1, P1,1 )

Dout← P0,0 ; Eout← P0,0

At this point, D0 = Dout and E0 = Eout.

pD1← max ( pD1, P1,2 ) ; pE1← min ( pE1, P1,2 )
3 i.e. non sequential.
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pD2← max ( pD2, P2,4 ) ; pE2← min ( pE2, P2,4 )
pD2← max ( pD2, P2,5 ) ; pE2← min ( pE2, P2,5 )

pD1← max ( pD1, P1,3 ) ; pE1← min ( pE1, P1,3 )

Dout← max ( pD1, Dout ) ; Eout← min ( pE1, Eout )

At this point, D1 = Dout and E1 = Eout.

pD2← max ( pD2, P2,6 ) ; pE2← min ( pE2, P2,6 )
pD2← max ( pD2, P2,7 ) ; pE2← min ( pE2, P2,7 )

Dout← max ( pD2, Dout ) ; Eout← min ( pE2, Eout )

At this point, D2 = Dout and E2 = Eout.

Instead of the two registers holding the partial results pD and
pE, the new scheme uses two sets of registers, pD1 and pD2,
as well as pE1 and pD2, to store the partial results for each
dilation and erosion level. It is also required that, for every
pixel being processed, the corresponding dSE shall be known so
that the correct registers pDL and pEL, with L ∈ [1, 2] can be
selected. It is easy to see that the value L corresponding to each
pixel is directly related to the dSE covering the said pixel, with
L = 0 being used to indicate the position of the central pixel.
Let us introduce a special value for L, L = IGNORE, denoted
by a dash in the formulas below, indicating that the comparison
operation is disabled, so that the level index of the dSE set can be
stored in a table, as depicted in Figure 5.4b. The dash localizes
the pixels PX,i that are not lying under any dSE and that must
therefore be discarded.

Let us now define the following abbreviated notations, the let-
ters R, M and C standing for Reset, Morphology and Combine,
respectively:

R ≡ pDL← 0 ; pEL← 255 ∀L ∈ [1, 2]
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Figure 5.4 : a) Image, b) SE table describing the SE set.

M(L,P ) ≡ pDL← max ( pDL,P ) ; pEL← min ( pEL, P )
C(L) ≡ Dout← max ( pDL,Dout ) ; Eout← min ( pEL,Eout )

with the following special cases:

M(0, P ) ≡ Dout← P ; Eout← P

M(−, P ) ≡ ignore pixel

The sequence of operations given above can thus be rewritten as:

reset partial registers
R

process first image row
M(−, PX,0)
M(−, PX,1)
M(2, P2,0)
M(−, PX,2)
M(−, PX,3)

process second image row
M(−, PX,4)
M(2, P2,1)
M(1, P1,0)
M(2, P2,2)
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M(−, PX,5)

process third image row
M(2, P2,3)
M(1, P1,1)
M(0, P0,0)

At this point, Dout = D0 and Eout = E0

M(1, P1,2)
M(2, P2,4)

process fourth image row
M(−, PX,6)
M(2, P2,5)
M(1, P1,3)

C(1)

At this point, Dout = D1 and Eout = E1

M(2, P2,6)
M(−, PX,7)

process fifth image row
M(−, PX,8)
M(−, PX,9)
M(2, P2,7)

C(2)

At this point, Dout = D2 and Eout = E2

M(−, PX,A)
M(−, PX,B)

It can be seen that the parameters of the M operations — the
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level L and the pixel P — can now be read sequentially from
the image and from the SE table, respectively. The SE set
used to perform morphology features extraction can moreover
be changed by simply modifying the SE table accordingly, as
illustrated in Figure 5.5.
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Figure 5.5 : Alternative SE tables.

As the C operations also require a parameter L, the size of the SE
table can be augmented so as to incorporate theses parameters.
When executing a C operation, the L value would then be read
from the SE table, but for this operation no pixel would be read
from the image memory. These operations appear once all pixels
belonging to a given level have been processed, which corresponds
to the last occurrence of this level in the SE table. As seen when
comparing the three SE tables in Figure 5.4b, Figure 5.5a and
Figure 5.5b, the position where theses operations occur depends
on the SE set in use. It is however possible to arbitrarily delay
these operations, the only requirement being that the order in
which they are executed gets preserved. For instance, in the
sequence above, pD1 and pE1 are not modified anymore once
pixel P1,3 has been processed. Consequently, all C operations
could be moved to the end of the process, while the values of
their L parameters would be appended at the end of the SE
table.

This option is depicted in Figure 5.6a, where the cells holding
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Figure 5.6 : Location of the C operations in the SE table.
SE tables with morphology results being generated a) in the end, b) regu-
larly over the whole process, in case of row-wise ordered execution.

parameters for the C operations are denoted by white text over
dark background. A more interesting solution however consists
in distributing these operations over the whole process, as il-
lustrated in Figure 5.6b. Indeed, in that case the results can
be stored back to the external memory while features extrac-
tion continues, whereas with the first solution, additional cycles
would need to be inserted at the end of the process. Note that
the SE table is read sequentially, so that both tables shown in
Figure 5.6 could be stored in 27 consecutive words in a memory.
Their representation as bi-dimensional arrays is simply designed
to clarify the layout of the SE sets inside the memory.

5.3.4 Local image memory

Computing all morphological levels at one position in the image
requires accessing a lot of pixels. For instance, using the SE
set illustrated in Figure 3.14a in Subsection 3.4.2.3, a total of
253 pixels are needed. It is obvious that most of these pixels will
also be employed when performing the same operation for the
neighboring positions, which means that many external memory
accesses can be avoided if a local memory is used to store these
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pixels.

To extract morphological features using 9 levels of dilation and
erosion, a window of 19×19 pixels is required. When the process
starts, the local memory is loaded with the 19× 19 monochrome
pixels window located on the top left corner of the original image,
as shown in Figure 5.7. The window then moves by increments
of 1 pixel to the left, so that a new column of 19 pixels has to be
loaded before starting working on the new position. These new
pixels are written over the 19 leftmost pixels which will not be
needed anymore while processing the current row. It should be
noted however that some of these pixels will have to be reloaded
later on, for instance when the second row of the 19× 19 pixels
window has been completely scanned, so that the window reaches
again the leftmost column. Indeed, storing every pixel locally
from the moment it is read for the first time and up to the point
where it is not needed anymore would not be practical, as this
would require a much larger local memory.

content of local
image memory

image

Figure 5.7 : Local image memory updating process.

Each time the rightmost image column is reached, the window is
moved down by one pixel, and the window displacement contin-
ues on the new line, from right to left. To simplify the address-
ing scheme used to dispatch pixels to the morphology processing
units, new data are written to the local memory so that the
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whole window can be read sequentially by simply incrementing
the address pointer, as exposed in Subsection 5.5.6.

5.4 Single-unit coprocessor architecture

A basic morphology coprocessor — whose architecture derives
from the algorithm implementation discussed in Section 5.3 —
will be presented in Subsection 5.4.2. It comprises one single
processing unit, the Elementary Morphology Unit, which is de-
scribed in Subsection 5.4.1.

5.4.1 Elementary morphology unit

The Elementary Morphology Unit (EMU) is the core element
of the coprocessor, and is depicted in Figure 5.8. Its main pur-
pose is to implement the operations required to execute the steps
enumerated in Subsection 5.3.3. The EMU has one data input,
the pixel P to process, and two control inputs: the value L fur-
nished by the SE table and a command signal C provided by the
instruction decoder. The purpose of this command signal is to
distinguish between the M(L, P) and the C(L) operators defined
in Subsection 5.3.3. To perform the dilation and erosion opera-
tions in parallel, the unit contains two 8-bit comparators, each
one being connected to a register bank. The first comparator,
implementing the MAX operation, is used to compute dilations
and is connected to the pD register bank, while the second one
implements the MIN operation necessary to compute erosions
and is connected to the pE register bank. As the SE set used
comprises 9 structuring elements, each bank contains nine regis-
ters, holding the partial dilation or erosion results, respectively.
Two output registers, each one connected to one of the two com-
parators, can be read from outside the unit. The width of all
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registers is 8-bit.

P L

pEpD

C
(command)

Dout Eout

MAX MIN

D E

Figure 5.8 : Elementary Morphology Unit (EMU).

To be able to perform the algorithm discussed in Subsection 5.3.3,
the EMU must implement the following operations, derived from
the operators introduced in said section:

RM, for Reset Morphology : Before features extraction can be-
gin, the two register banks must be reset to neutral values, re-
spectively 0 for dilation and 255 for erosion.
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MM, for Morphology operator M(L, P) : According to the
value of the input L, the EMU must either ignore the incom-
ing pixel P (when L = – ), or store it in both output regis-
ters (when L = 0 ), or perform one step of partial differential
erosion and dilation (when L > 0 ) by comparing P with pDL
and pEL. The result of each comparison is then written back to
pDL and pEL, respectively.

MC, for Morphology operator C(L) : The morphology unit
needs to combine the dilation and erosion results for the dif-
ferential level L, stored in pDL and pEL, by comparing them to
Dout and Eout, respectively. The result of each comparison gets
written to Dout and Eout, respectively.

NOP : No operation instruction. Sent to the EMU when it does
not need to perform any task. This is the case for instance when
updating the content of the local image memory.

Note that the control unit actually schedules operations MM and
MC by sending the same instruction code to the EMU, the lat-
ter determining which operator to consider based on the separate
command signal C, also furnished by the control unit. Defining
two separate instruction codes therefore seems to constitute a
more logical option, which is indeed true for the single-unit ar-
chitecture discussed here. However, in the case of the four-way
parallel coprocessor, to be introduced in Subsection 5.5.2, the
signal C will need to be delayed for some EMUs, and it will
consequently need to be handled separately from the opcode.

5.4.2 Coprocessor architecture

The basic structure of a morphology coprocessor containing only
one processing unit is depicted in Figure 5.9. It is connected to
an external bus that provides access to the RAM that contains
the image and where the extracted morphology features will be
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stored. It incorporates two local memories and one EMU. A mul-
tiplexer can be used to determine from which one of the dilation
and erosion output registers the value to write to the external
memory must be taken. The control signal EnD — for erosion
not dilation — is provided by the external addressing unit. Data
transfers from the local memories are made to a register, so that
the read and write operations can span over the entire clock cycle
for their completion. This allows the use of slower, less power
consuming components. Pixels read from the external memory
are nevertheless sent to the local image memory directly, with-
out transiting through a register, since it is assumed that the
local memories are synchronous4, meaning that they behave like
a register, namely that they sample the input value on the active
clock edge. Additionally, an instruction fetch and decoding unit,
constituting the control unit, that is not depicted in Figure 5.9,
is responsible for reading instructions from a dedicated program
memory —that is not depicted either — and for generating the
control signals steering the various components, including the
signal C furnished to the EMU, as shown in Figure 5.8.

The features extraction as performed by the morphology copro-
cessor can de decomposed into two tasks executed alternately.
The first one consists in updating the local image memory so
that it contains all the pixels needed to extract the morphol-
ogy features at the position currently considered, as described
in Subsection 5.3.4. At this time, neither the EMU nor the SE
Memory is used. When the second task is executed, where the
morphology features are computed and written to the external
memory as they become available, all three components of the
coprocessor, namely the EMU, the SE Memory and the Local
Image Memory are active.

4 This is indeed the case both for the FPGA and for the ASIC implementa-
tions discussed in Chapter 7.
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Figure 5.9 : Structure of a morphology coprocessor with a
single processing unit.

5.5 Four-way parallel coprocessor

To diminish the number of cycles required to process one image,
it is possible to parallelize the task by using multiple independent
elementary morphology units, each one performing features ex-
traction at a different location in the image. This can lead either
to faster processing, or to reduced power consumption, the latter
case being achieved as follows. The operating frequency can be
decreased since more processing is now performed during a given
time unit, which causes the slack margin5 to increase. Conse-
quently, propagation delays can augment without impairing the
functionality of the circuit, which enables the supply voltage to
be lowered. Since the power consumption is proportional to the
square of the supply voltage, the former is also reduced.

5 The slack margin is the difference between the duration of the clock cycle
and the delay of the critical path.
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To maximize reuse of pixels, the considered window locations
must obviously be contiguous. The architecture presented here
makes use of four identical elementary morphology units, or
EMUs, extracting features at each of four neighboring horizontal
window locations. This number was selected to ensure that a
complete face verification could be carried out in less than one
second, assuming an operating frequency of 10 MHz. As reported
in [121], the elastic graph matching needs 680 ms to execute, leav-
ing at most 320 ms for features extraction. It was estimated that
a four-unit morphology coprocessor would require approximately
200 ms to process one image and would thus be the most ade-
quate solution. Simulations results presented in Subsection 5.6.3
later confirmed this estimation.

5.5.1 Single instruction, multiple data architecture

The straightforward way of implementing parallelism when the
exact same operations need to be executed on different data
would be to use a vector or SIMD (single instruction, multiple
data) approach [122]. In our case, that translates to sending the
same control information to all four EMUs, while feeding each
one with a different pixel. This can be achieved by inserting a
pipeline at the output of the local image memory, and by con-
necting each EMU to a different pipeline stage, as illustrated in
Figure 5.10.

However, this approach is not optimal. Indeed, there are pixels
that are to be taken into account by some of the EMUs, but
must be ignored by the others. This is the case for instance for
pixels on the leftmost column of the local window, that are to be
processed only by the EMU extracting features on the leftmost
location, or for most pixels under the top row of a circular SE
set, as seen in Figure 5.33. In a SIMD scheme, all units execute
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Figure 5.10 : Data pipeline in the SIMD approach.

the same operation and as such, a ”neutral” operand should be
fed to EMUs that are to ignore the current pixel. Since pixels
must have a value of 0 to be neutral to the dilation, and a value
of 255 to be neutral to the erosion, there exists no pixel value
that is neutral to both operations.

5.5.2 Delayed instructions, single data architecture

A more advantageous approach consists in delaying the control
signals instead of the data, in a MISD (multiple instructions,
single data) fashion [122]. The same pixel is now fed to all four
EMUs, accompanied by different control signals. Figure 5.11
illustrates the time organization of four EMUs extracting features
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at locations P3, P4, P5 and P6 in such a scheme. The values
read from the SE table — and displayed above each EMU —
indicate the control value L corresponding to each pixel. It is
easy to see that values of L for EMU 1, 2 and 3 are simply value
of L for EMU 0 but delayed by 1, 2 and 3 cycles, respectively.
For instance, L4 is used by EMU 0 when processing pixel P4, but
EMU 1 only needs it during the following cycle, when it processes
pixel P5.

– – –

– – –

– ––

– – –L1 L2 L3 L5 L6L0

P1 P2 P3 P4 P5P0

P1 P2 P3 P4 P5P0
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Time (index of operation cycles)

Figure 5.11 : SE pipeline following the “delayed instructions”
approach.

When the current pixel is to be ignored by one EMU, the value
L = IGNORE — denoted by a dash — is sent. As seen in Fig-
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ure 5.11, the four EMUs must ignore the pixel values preceding
L0 and those coming after L6. To this effect, the pipeline is
initialized with IGNORE values, and a multiplexer enables the
insertion of IGNORE values once L6 has been read from the SE
memory, as detailed in Subsection 5.5.5.

Finally, considering the size of the registers, it can be seen that
this approach only requires storing 5 bits at every stage of the
pipeline: the 4-bit level L provided by the SE Block (see Subsec-
tion 5.5.5) and the 1-bit control flag C distinguishing the com-
bine operation MC from the regular partial morphology opera-
tion MM6. This compares favorably to the 8 bits that would be
required in the SIMD case where the pipeline has to store pixels.

The overall architecture of the four-way parallel morphology co-
processor implemented using this “delayed instructions” approach
is shown in Figure 5.12. The single EMU has been replaced by
a new component, the Morphology Block, discussed in Subsec-
tion 5.5.3.

5.5.3 Morphology block

The Morphology Block (MB), depicted in Figure 5.13, replaces
the single EMU of the morphology coprocessor shown in Fig-
ure 5.9. It encompasses four independent EMUs, whose outputs
are connected to multiplexers controlled by two signals — POS
and EnD — furnished by the Incrementer-Decrementer Block
(ID Block, see Subsection 5.5.7), so that the MB has only one
output M. It also contains three sets of two registers, responsible
for delaying the control signals L and C from one EMU to the
next one, as exposed in Subsection 5.5.2. The inputs P of all

6 The other control signals — conveying the instruction code that triggers
a RM, a MM/MC, or a NOP (see Subsection 5.4.1) — are not delayed.
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Figure 5.12 : Four-way parallel morphology coprocessor.

four EMUs are conversely directly connected to one single bus,
the P input of the MB.

5.5.4 Local memory block

Loaded pixels are stored in the local image memory (see Sub-
section 5.3.4 and Figure 5.12) so that they can be read multiple
times without requiring additional accesses to the larger external
memory. As the local window moves up or down, each pixel will
be read 19 times. The size of the local memory was increased to
19×22 monochrome pixels, globally requiring 418 bytes, so as to
cover the aggregated area of the four memory windows needed
by the EMUs. Originally, the way the window was displaced over
the image was directly derived from Figure 5.7, except that four
columns of 19 pixels were read at a time instead of only one, when
moving toward the left or the right, because of the existence of
the four EMUs. However, this approach was later modified to
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Figure 5.13 : Morphology Block (MB) containing four in-
stances of the EMU shown in Figure 5.8.

move over the image column-wise instead of row-wise, as shown
in Figure 5.14.

While the number of steps remains the same, the former ap-
proach depicted in Figure 5.7 would have involved loading 4×19
pixels most of the time, whereas with the new approach it is
only the case when the local memory window reaches the top
or bottom rows of the image. Otherwise, it suffices to load a
single 22-pixel row. The total number of external memory read
operations can thus be significantly lowered. In the case of an
image of 146× 146 pixels, the number of memory loads reported
in [123] is reduced by 70%, as can be seen in Table 5.2.
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Figure 5.14 : New local memory update scheme.

Figure 5.15 shows the Local Memory Block (LMEM Block),
which comprises the local image memory itself, LMEM, and an
output register, LREG. Every value read from LMEM is stored in
this register before being sent to the morphology block, to relax
timing constraints on the memory. The data input D of LMEM
is connected to the external data bus, cf Figure 5.12, and receives
the pixels read from the external memory. The address provided
to the A input comes from one out of two registers, either LMW
or LMR, located inside the MAS Block that will be described in
Subsection 5.5.6.

5.5.5 Structuring elements block

The Structuring Element Block (SE Block) is depicted in Fig-
ure 5.16 and comprises a memory (SEMEM) as well as the as-
sociated addressing logic. SEMEM holds the description of the
SE set, corresponding to the content of the SE table introduced
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Figure 5.15 : Local Memory Block (LMEM Block).

in Subsection 5.3.3. It is used to communicate to the EMUs
which partial result registers need to be considered for either the
partial morphology M(L, P) or the combine C(L) operation, by
supplying the value of the L parameter, which ranges from 1 to 9.
Additionally, L can take the value 15, corresponding to the dash
employed previously to denote the IGNORE symbol, to indicate
that the current pixel shall be discarded, which happens when
the latter falls outside of the surface covered by the structur-
ing element set associated to the EMU. Finally, L will take the
value 0 to notify that the current pixel corresponds to the center
of the SE set, and that it must be directly copied to both output
registers Dout and Eout (see Figure 5.8).

Since L can take a total of 11 different values, namely 0, 1 to
9 and 15, SEMEM needs to store words that are 4-bit wide.
Moreover, the memory must be able to hold the 19 × 19 SE
set, as well as the 9 parameters used to combine the differential
morphology results (see Subsection 5.3.3), hence requiring a total
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of 370 words, which corresponds to a total size of 1’480 bits. The
actual content of one SE table can be seen in Figure 5.33. As
discussed in Subsection 5.3.3, the SE table is read sequentially, so
that the SEMEM is addressed using a simple counter, constituted
of one register and one incrementer, labeled SEIDX and SEINC,
respectively. Since the memory contains 370 words, the address
needs to be 9-bit wide. An output register, SEREG, is inserted
on the data path between SEMEM and the EMUs, again to relax
the timing constraints on the memory.

As the three leftmost columns of the memory window stored in
LMEM are not used by all four EMUs, the L pipeline in the Mor-
phology Block is initialized with IGNORE values when the pro-
cessing starts for a new set of positions. Similarly, when feeding
each of the three leftmost pixels, a multiplexer (see Figure 5.16)
enables the insertion of an IGNORE value, instructing EMU 0 to
discard the current pixel. No value is read from SEMEM in this
case, and its address register SEIDX is not incremented. Like
all the L parameters fed to the Morphology Block, the inserted
IGNORE values will then propagate to the remaining EMUs, as
explained in Subsection 5.5.3, causing each EMU to ignore the
pixels that are not relevant to the image position it processes.

Note that in Figure 5.16, no data input is shown for SEMEM.
This is due to the fact that the coprocessor never needs to directly
write to this memory, as its initialization is handled by the MCU.

5.5.6 Addressing logic

With the exception of the registers LREG and SEREG inserted
on the data path to relax timing constraints of memories, all
registers lying outsides of the MB are part of the addressing logic.
In addition to SEINC (see Subsection 5.5.3), the morphology
coprocessor contains two adders responsible for updating these
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Figure 5.16 : Structuring Element Block (SE Block).

registers, listed in Table 5.1.

5.5.6.1 Modulo adder-subtracter

The Modulo Adder-Subtracter (MAS) is employed to update the
read and write address pointers of the local memory, as well as
the row and column offsets of the local window accessed in exter-
nal memory (see Subsection 5.5.4). It can be demonstrated that
it is sufficient for the MAS to be able to increment and decrement
the registers by three different constants, namely 1, 4 and 18, to
perform this task. Hence, the MAS is restricted to perform these
six operations, and takes a single operand, indicating the index
of the register to modify. The opcode specifies which operation
to perform (see Subsection 5.5.7), so that the values of the con-
stants enumerated above do not need to be encoded into the
instruction word.
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Name Width Adder Description[bits]

SEIDX 9 SEINC address used when reading SEMEM

LMR 9 MAS address used when reading LMEM
LMW 9 MAS address used when writing LMEM
LR 8 MAS load row index in external memory
LC 8 MAS load col. index in external memory

TR 8 ID temporary copy of LR
TC 8 ID temporary copy of LC
LO 2 ID load offset
SR 7 ID store row index in external memory
SC 5 ID store col. index in external memory
SO 7 ID store offset

RPAGE 3 — offset to image in external memory

Table 5.1 : Control registers and associated adders.

In order for the sliding window mechanism presented in Subsec-
tion 5.5.4 to work, it is necessary that the local memory acts like a
circular buffer, which means that incrementing a pointer beyond
the highest address must transparently roll-over to the beginning
of the memory. Conversely, decrementing an address below zero
must result in addressing the upper end of the memory. This
is accomplished by implementing the increment operations —
denoted A1, A4 and A18, respectively — as:

(R+ 1) mod 418 A1

(R+ 4) mod 418 A4

(R+ 18) mod 418 A18

and the decrement operations — denoted S1, S4 and S18, respec-
tively — as:

(R− 1) mod 418 ≡ (R+ 417) mod 418 S1

(R− 4) mod 418 ≡ (R+ 414) mod 418 S4
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(R− 18) mod 418 ≡ (R+ 400) mod 418 S18

The straightforward implementation of the MAS is depicted in
Figure 5.17 and consists in resorting to a 9-bit adder to perform
the addition, to check whether the operation needs to perform a
roll-over, in which case it executes it by adding 94 to the result,
this value being the difference between 418 and 512, the natural
modulo operation of the 9-bit adder. This approach is interesting
in the sense that the second addition can be bypassed when the
modulo operation does not need to perform a roll-over. The aver-
age amount of energy consumed by the second adder is therefore
very low. However, since the result of the first adder constitutes
one of the operands of the second adder, the critical path of the
MAS is twice that of the other units in the coprocessor, leading
to an unbalanced design.

+

R

+

K

0 1

 
A1
A4
A18
S1
S4
S18

 
1
4

18
417
414
400

res1

RES

1 0

0 094

0 1

1 0

> 417

K 

Figure 5.17 : Sequential implementation of the MAS.
The table on the left indicates the value of the constant K supplied to the
first adder for each MAS operation.
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An alternative implementation consists in performing two addi-
tions in parallel. In this scheme, illustrated in Figure 5.18, the
second adder uses a constant that already incorporates the offset
of 94 for the computation of the modulo operation. The selection
between the two results res1 and res2, cf Figure 5.18, depends
upon on the three MSB of res2. Indeed, if the modulo was neces-
sary, in the sense that it applied a roll-over to its argument, then
res1 must lie within the range [418–435] if the operation was A1,
A4 or A18, and outside the range [400–417] for the operations
S1, S4 and S18. Thus, res2 must be inside the interval [0–17] for
An operations, and outside [494–511] for Sn operations, respec-
tively, for n = 1, 4, 18. Moreover, since the maximum value of
the operand is 417, res2 cannot fall in the intervals [18–94] for
An operations, and [417–493] for Sn operations. Consequently,
the condition can be simplified by considering the intervals [0–63]
and [448–511] instead. The modulo operation is thus performing
a roll-over when res2 is less than 64 for An operations, and less
than 448 for Sn operations. This requires testing only bits of res2
with index 8 down to 6, as well as the opcode bit sub indicating
whether the unit is performing an Sn or an An operation. The
resulting simplified selection logic is shown in Figure 5.18.

The structure of the MAS Block, encompassing the MAS and
the four registers LR, LC, LMR and LMW, is presented in Fig-
ure 5.19. It should be noted that additions with modulo oper-
ations are only needed when dealing with registers that address
LMEM, namely LMR and LMW, and not with registers LR and
LC that address the external memory. However, the latter case
represents less than 0.3% of the operations performed by the
MAS, which does not justify the addition of a dedicated instruc-
tion. Since the considered image width and height are 256 pixels
at most, LR and LC contain values in the interval [0–255] and
are not affected by the modulo operation anyway. The MAS
therefore automatically behaves like a regular adder-subtracter
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+
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+

K1

0
sub

1

K2

 
A1
A4
A18
S1
S4
S18

K1
1
4

18
417
414
400

K2
95
98

112
511
508
494

sub

0

 
1
 

res2 [ 8 : 6 ]res1 res2

RES

sel

Figure 5.18 : Parallel implementation of the MAS.
The table on the right indicates the values of the constants K1 and K2
supplied to the adders for each MAS operation, as well as the value of the
signal “sub” furnished to the logic that selects the result.

when operating on these two registers.

5.5.6.2 Incrementer-decrementer

Figure 5.20 presents the structure of the ID Block, which in-
corporates the so-called Increment-Decrementer (ID) controlling
the registers used to construct external read (TR, TC and LO)
as well as write (SR, SC and SO) addresses, as explained in
Subsection 5.5.6.3. While all six registers can be decremented,
this operation is actually only necessary either for SR or for SC,
depending on the direction in which the local window in the ex-
ternal memory is being displaced. The other four registers need
only be incremented.
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MAS

LC [8]
LMR [9]

LR [8]

LMW [9]

LR
LC
LMR
LMW

Figure 5.19 : MAS Block.

ID

IR

TC [8]
LO [2]

TR [8]

SC [4]
SR [6]

SO[2:0]

LR
LC

SO [7]

Figure 5.20 : ID Block.
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5.5.6.3 External memory addressing unit

The morphology coprocessor contains three addressing units, two
for to the internal memories (LMEM and SEMEM), and one
dedicated to the external memory. Both internal memories are
addressed with register indirect mode, meaning that the address
used is simply a register value: LMR or LMW for LMEM (see
Subsection 5.5.4) and SEIDX for SEMEM (see Subsection 5.5.5).
This section details the external addressing unit (EXT ADDR)
whose structure is presented in Figure 5.21.

IR

ADDRESS 
GENERATION

A

RPAGE   [3]

Figure 5.21 : External Addressing Unit (EXT ADDR).

The full memory map of the external memory is given in Fig-
ure 5.22. When storing results, each page is seen as containing
128×128 pixels, or one complete morphology level. The original
image is stored at hexadecimal address 0x50000, corresponding
to the beginning of memory page 20. Although the dimensions
of the original image are 146 × 146 pixels, each row occupies
256 pixels. Indeed, this makes address generation possible by
simple concatenation of the row and column address register.
Thus, as the memory area storing the image is 146× 256 pixels
in size, it covers a little more than two pages. However, when
reading pixels from the original image, the memory is seen as
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being structured in pages of 256× 256 pixels. The area occupied
by the original image is thus located in page 5, ranging from
hexadecimal addresses 0x50000 to 0x5FFFF.

128 x 128 D1

E1

D2

E2

D9

E9

0

unused

256 x 256

0x00000

0x04000

0x50000

0x48000

original
image}

0x60000

Figure 5.22 : External memory layout.
Layout of the original image and extracted features stored in the external
memory.

5.5.6.4 Load address generation

The detailed layout of the original image as stored in the exter-
nal memory is presented in Figure 5.23. The external memory
load address is constructed from four registers, as shown in Fig-
ure 5.24. A 3-bit register RPAGE — standing for read page —
that gets initialized by the MCU holds the constant value 5 used
to locate the beginning of the memory page. On each row, pixels
occupy addresses 2 to 147 instead of 0 to 145, as explained below.
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RPAGE
LC / TC

256 pixels

LO

LR

146 pixels
TR

146 pixels
2

IMAGE

EXTERNAL MEMORY

LWIN

b)

RPAGE
LC 

LR / TR

146 pixels
2

IMAGE

EXTERNAL MEMORY

LWIN

TC 

256 pixels

a)

Figure 5.23 : External memory load addresses.
Situation when a) loading a new row, b) loading 4 new columns.

18 28 016 15 17

RPAGE TR TC [7:2]

TC(1)
LO(1)

TC(0)
LO(0)

Figure 5.24 : External memory load address generation.
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LR and LC always point to the top-left pixel of the area of the
image that must be loaded, this pixel being pictured in black in
Figure 5.23, and are only updated when the window LWIN is
being translated over the memory space. TR and TC are tempo-
rary copies of LR and LC, produced when the CPY instruction
(see Subsection 5.6.2) is encountered, and modified in the course
of updating the local image memory. TR always locates the
row index of the pixel to read, depicted in gray in Figure 5.23,
whereas the role of TC depends on the action being performed.
When the LWIN window was displaced vertically, meaning that
a new row of 22 pixels must be loaded, TC indicates the column
index of the pixel to read. This situation is illustrated in Fig-
ure 5.23a, where LWIN is moving upward, so that the new row
to load is located on top of the window. However, when LWIN
was displaced horizontally after it reached the top or the bottom
of the image — which means that 4 new columns of 19 pixels
must be loaded — TC indicates the index of the leftmost of the
four columns to be read, as shown in Figure 5.23b. In this case,
the 2-bit register LO is incremented after each load and used
to specify the horizontal offset from TC to the pixel to read, as
detailed below.

Once the window reaches the bottom or the top of the image,
four new columns of 19 pixels must be loaded as explained in
Subsection 5.5.4. The horizontal offset to the first column to
load is 22 from the first pixel of the row. Since the horizontal
offset of this pixel is 2 as noted above, the actual address of the
first column is 24. It is thus possible to obtain the offset of all four
columns — namely 24, 25, 26 and 27 — by simply performing an
OR operation between the last two bits of LC and LO, as seen
in Figure 5.24. As the horizontal displacement of the window
only consists in moving by 4 columns to the right, this will be
always be true. When LWIN is displaced vertically and rows are
being loaded, the value of LO is maintained at zero, so that the
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bit-wise applied OR operation in Figure 5.24 has no effect.

It is worth noting that this scheme was designed when the image
was originally scanned row-wise, to avoid losing one cycle after
loading a pixel in the fourth column. Indeed, in this situation,
both the row and the column indexes need to be modified: TR
must be incremented, whereas TC must be decremented by 3.
With the current column-wise processing, loading 4 columns only
happens a total of 31 times for the considered image width of
146 pixels. Each time, 18 additional cycles would be required
to update both TR and TC when moving from a pixel in the
fourth column to the pixel in the first column on the next row,
in case a decrement by 3 operation is implemented. Otherwise,
if the operation is realized by successively applying operators S4
and A1, 36 additional cycles would be needed. Even in the lat-
ter case, only 1’116 additional cycles would be required over the
whole image, which is negligible. Consequently, the scheme in-
volving the use of register LO as explained above, could be aban-
doned. When considering the original row-wise scanning method
however, 141’732 additional cycles would have been needed, cor-
responding to almost half the number of cycles that were then
devoted to loading pixels, as reported in [123].

5.5.6.5 Store address generation

The detailed layout of the area occupied by the resulting data
stored in the external memory is presented in Figure 5.25. The
external store address is computed as shown in Figure 5.26.
SO[6:2] indicates the erosion and dilation level, while SO[1:0]
is used to identify the position of the pixel. SO[2:0] also controls
the output multiplexers of the morphology block, selecting the
output register containing the result to store. More precisely,
SO[2] provides the EnD signal sent to MB in Figure 5.13 while
SO[1:0] generates the POS signal. With this scheme, increment-
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ing SO by 1 after each store operation in the external memory
suffices to handle the updating of both the offset for each of the
four positions and the dilation and erosion level.

LEVEL
SC

128 pixels

POS

SR

128 pixels

EXTERNAL MEMORY

X X+3

Figure 5.25 : External memory store addresses.

For one given level L, the eight results for the memory locations X
to X+3 as depicted in Figure 5.25 are generated and transferred
to memory in the following order:

EX , EX+1 , EX+2 , EX+3 , DX , DX+1 , DX+2 DX+3

Levels L are ordered in memory in the chronological order in
which they are generated, from Level 1 to 9 with the exception
of Level 0 that consists of only four values — namely those of
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POS

1:0

LEVEL SR SC

18 27 014 13 16

6:2

SO

Figure 5.26 : External memory store address generation.

the original pixels7 — and which will be located after Level 9
(see Figure 5.22), even tough these are the first results to be
available. This allows the memory addresses of images that were
eroded and dilated with the same Level L to differ by only one
bit: addresses corresponding to dilated images have bit 14 set
to 0, while it is set to 1 for eroded images. To achieve this
behavior, only SR and SC are updated after all results for the
current four positions have been stored. The register SO on the
other hand is not reset until after the four results for Level 0 of
the new locations have been stored.

5.5.7 Control unit and instruction set

The control unit is responsible for fetching the instructions from
the program memory and for generating the control signals sent
to the other units. This first task is linked to the architecture
of the morphology coprocessor. The control unit also maintains
the PC stack and the loop counters, this second twofold task
depending only on the behavior and implementation of the PC

7 Even though the original pixels are already available in memory as part of
the original image, they are stored again so that the matching coprocessor
can use a single scheme to construct memory addresses.
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unit. For this second task, the morphology coprocessor uses the
same implementation as the graph matching coprocessor, which
is thoroughly described in Section 6.5.1 in [1], so that only a
quick description of the control unit is given here.

The coprocessor instruction word is 14-bit wide, and is divided
into 5 fields, as shown in Figure 5.27a. The ID and MAS fields
control the Incrementer-Decrementer module described in Sub-
section 5.5.6.2 and the Modulo Adder-Subtracter described in
Subsection 5.5.6.1, respectively. The MMU field (for Mathemat-
ical Morphology Units) holds commands targeting the EMUs (see
Subsection 5.4.1) and the SE Block (see Subsection 5.5.5), the
opcode MN being used to schedule a MM operation together
with the insertion of an IGNORE value, as explained in Sub-
section 5.5.5. The LSU field (for Load and Store Unit) contains
instructions for the External Memory Addressing Unit (see Sub-
section 5.5.6.3), whereas the role of the JMP bit is to indicate
the end of a loop, as explained below.

Loops are declared using the dedicated opcode LOOP in the
ID field. In this case, part of the bits in the instruction word
hold the number of times the loop must be iterated, minus one8,
while the remaining bits are unused (see Figure 5.27b). The end
of the loop is indicated by the JMP bit in the instruction word,
cf Figure 5.27a. When this bit is set and the loop counter is non-
zero, the latter is decremented and the execution continues at
the start of the loop. Otherwise, the loop exits and the following
instruction is executed. As the address of the next instruction to
fetch must be known before the current instruction is executed,
the assembler will set the JMP flag (signaling the end of the loop)
on the second to last instruction in the loop. The loop counter is
thus evaluated while the last loop instruction is fetched. On the

8 As the first iteration is always performed, a value of e.g. 10 would cause the
loop to be executed 11 times. The assembler takes care of this conversion.
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following cycle, the fetch unit knows whether it needs to retrieve
the instruction at the top of the loop or the instruction following
the loop. Consequently, no instruction is ever fetched and then
discarded due to changes in the execution flow, with saves both
energy and time.

JMP LSU MMU MAS ID

1 bit 2 bit 2 bit 5 bit 4 bit

13 0

– COUNT LOOP

3 bit 7 bit 4 bit

13 0

– RET

4 bit

13 0

10 bit

a)

b)

c)

34891012 11

11 10 34

34

Figure 5.27 : Morphology coprocessor instruction word.
Format of the instruction word when holding a) a regular instruction, b) a
loop declaration, and c) the RET instruction.

At the end of the program, a RET (return) instruction is manda-
tory. When it is encountered, the MCU is notified that the co-
processor has completed its task and that it has now entered an
idle state. In the current implementation, the handshaking is
performed through a bit in a control register periodically polled
by the MCU, which was found to be the easiest solution for the
FPGA-based demonstrator (see Section 7.3). A more efficient
solution would consist in letting the coprocessor trigger an in-
terrupt signals on the MCU, so as to avoid unnecessary data
transfers. As shown in Figure 5.27c, the opcode signaling the
RET instruction, located in the ID field, disables the remain-
der of the instruction word, so that no other operation can be
executed at this time.
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The opcodes of each field, along with their binary form represen-
tation are enumerated in Figure 5.28. Note that to minimize the
size of the instruction word, the RM operation was made part of
the MAS field, even though it would have been more logical to
place in the MMU field.

5.6 Coprocessor characteristics

This section discusses and characterizes the architecture of the
complete morphology coprocessor. Its behavior is illustrated us-
ing a few typical code snippets taken from the actual program
it executes to perform features extraction. Finally, some perfor-
mance figures are given in Subsection 5.6.3, that were obtained
through simulations using the tools introduced in Section 7.2.

5.6.1 Architecture overview

The architecture of the complete morphology coprocessor, con-
stituted of the components described previously, is presented in
Figure 5.29. To reduce clutter, the control block, encompassing
the fetch and decode unit as well as the program memory, is not
shown here. Furthermore, the communication interface with the
MCU, the clock and reset signals as well as the buses allowing
the MCU to access any register and memory in the coprocessor
are not depicted either. The coprocessor uses a Harvard-style
architecture, where the instructions and the data use separate
buses and memories, and corresponds to a RISC (reduced in-
struction set computer) machine. Indeed, the instructions share
all the same size, they all execute in one cycle and the processing
units only read their operands from registers, and write results
to registers. Additionally to the parallelism implemented in the
Morphology Block, the coprocessor can dispatch up to four in-
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NOP
CPY
LD

1 1
1 0
0 1

No operation
Copy LC to TC and LR to TR
Load pixel from external memory

JMP
0
1

Regular instruction
Indicates the second to last instruction in a loop

NOP
MM

1 1
1 0

No operation
Partial differential morphology, L     SEREG

LSU

MMU

NOP
RM

1 1 1 No operation
Reset MORPHO BLOCK

MAS

1 1 0
–
–

S1 Subtract 1 from R, mod 4181 0 1 R

A1 Add 1 to R, mod 4181 0 0 R

S4 Subtract 4 from R, mod 4180 1 1 R

A4 Add 4 to R, mod 4180 1 0 R

S18 Subtract 18 from R, mod 4180 0 1 R

0 0 0A18 Add 18 to R, mod 418

0 0
0 1
1 0
1 1

R
LR
LC
LMW
LMRR

NOP
RSO

No operation
Reset SO

ID

RET Terminate execution
Loop declaration

DEC
INC

1 1 0
1 
0 

S

S

Decrement register S
Increment register S

0 0 0
S

SO
0 0 1 LO
0 1 0 TC
0 1 1 TR
1 0 0 SC
1 0 1 SR

LOOP

MC 0 1 Combine differential morphology results
MN 0 0 Partial differential morphology, L     IGNORE

ST 0 0 Store one result to external memory

JUMP

binary re-
presentation

opcode description

1 1 0
1 1 1
1 1 1

0
1
0
1

—

Figure 5.28 : Opcodes of the morphology coprocessor.
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dependent operations per cycle. The architecture does however
not follow the superscalar approach, where the unit selection and
scheduling is handled at runtime by the control unit. Indeed, it is
more interesting to perform the unit selection and scheduling at
compile time where plenty of computational power is available9,
rather than letting the processor analyze and detect parallelism
on the fly, as it executes the code. The coprocessor can thus
be categorized as a VLIW (Very Long Instruction Word) ma-
chine, even though its instruction word size amounts to 14 bits
only. Indeed, the determining characteristic is the presence of
four independent fields, each scheduling an instruction to a spe-
cific functional unit.

5.6.2 Sequencing

This section illustrates the features extraction as performed by
the morphology coprocessor, using three typical segments of the
executed program.

Firstly, Figure 5.30 shows a snippet of code used to update the
local memory window when traveling the image downward. Both
LMR and LR get incremented to point to the next row in LMEM
and in the external memory, respectively. Before starting the
loop that performs the actual loading of the 22 new pixels in
LMEM, the CPY instruction is issued to replicate LC to TC and
LR to TR. Finally, the RM instruction is issued to reset the L
pipeline inside the Morphology Block, the register banks inside
the EMUs as well as SEIDX and SEOUT in the SE Block.

The segment of code in Figure 5.31 performs morphology fea-
tures extraction on rows 2 to 10 of the SE set. For each row,

9 Since no dedicated compiler was developed in this project, the schedul-
ing and the resource allocation effort must currently be furnished by the
human being that writes the assembly code.
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Figure 5.29 : Architecture of the morphology coprocessor.

;  LSU       MMU        MAS           ID
        
   nop   :   nop   :   a18 lmr   :   nop
   nop   :   nop   :    a4 lmr   :   nop
   cpy   :   nop   :   inc lr    :   nop

   LOOP 11
     ld  :   nop   :   inc lmw   :   inc tc
     ld  :   nop   :   inc lmw   :   inc tc
   JUMP

   nop   :   nop   :     rm      :   nop

Figure 5.30 : Snippet of code for updating the local memory.
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19 MM followed by 3 MN instructions are issued, while LMR
gets incremented during each cycle. Processing one row of the
SE set requires 22 cycles, totaling 23 cycles when adding the one
consumed by the declaration of the inner loop.

;     LSU      MMU        MAS        ID

   _se_loop_row_2_10_
   LOOP 9

     LOOP 9
       nop :   mm   :   inc lmr  :   nop
       nop :   mm   :   inc lmr  :   nop
     JUMP

     nop   :   mm   :   inc lmr  :   nop
     nop   :   mn   :   inc lmr  :   nop
     nop   :   mn   :   inc lmr  :   nop
     nop   :   mn   :   inc lmr  :   nop

   JUMP

Figure 5.31 : Snippet of code for extracting morphology fea-
tures.

The segment of code in Figure 5.32 performs the morphology
features extraction on rows 12 to 18 of the SE set. It is sim-
ilar to the previous code segment, except that during the first
8 instructions of each of the row, results are stored back to the
external memory. This is accomplished using the ST instruction
while incrementing SO. At this time, all processing units are ac-
tive. Towards the end of each of the row, an MC instruction is
issued to generate the final results.

The sequencing of the morphology features extraction is illus-
trated in Figure 5.33. Every cell corresponds to one cycle, and
indicates the value read from SEMEM — unless the IGNORE
symbol is inserted by the MN instruction — as well as the opera-
tions being executed. The first store operations transfer the last
8 results (erosion and dilation Level 9) from the previous set of
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;     LSU       MMU        MAS         ID

   _se_loop_row_12_18_
   LOOP 7

     LOOP 4
       st   :   mm   :   inc lmr  :  inc so
       st   :   mm   :   inc lmr  :  inc so
     JUMP

     LOOP 5
       nop  :   mm   :   inc lmr  :   nop
       nop  :   mm   :   inc lmr  :   nop
     JUMP

     nop    :   mm   :   inc lmr  :   nop

     nop    :   mc   :   inc lmr  :   nop
     nop    :   mn   :   inc lmr  :   nop
     nop    :   mn   :   inc lmr  :   nop

   JUMP

Figure 5.32 : Snippet of code for extracting the morphology
features and for storing results to external memory.

4 locations, before one of the external store address registers gets
updated according to the direction of displacement. The first re-
sults to be output for the new locations are the original central
pixels. At this time, the value of SO[6:2] is 18, corresponding
to the 128× 128 memory page where Level 0 will be stored (see
Figure 5.22). The RSO instruction is issued afterwards to reset
SO to 0, so that it now points to the first memory page, where
results will be stored for the dilation Level 1.

Replacing the circular SE set used here with a different one would
simply require changing the values stored in SEMEM. No mod-
ification to the architecture of the coprocessor or to the code of
the program would be required.
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MM + STORENMCN

N MM + INC / DEC  SR or SCMM + RSON
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Figure 5.33 : Graphical view of the sequencing of the features
extraction algorithm executed on the morphology coprocessor.
The number 15, denoting the IGNORE value, has been replaced
by a dash for clarity.
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5.6.3 Performance

Table 5.2 reports the simulation results for the morphology co-
processor. The program consists of 273 instructions of 14 bits,
requiring a memory size of 3’822 bits. Thanks to the use of the
local memory, pixels in the original image are only read 4.3 times
on average during the processing.

Type of operation Nb of occurrences

External memory read 92’182
External memory write 311’304
Local image memory read 1’720’320
Local image memory write 92’182
SE memory read 1’519’616
EMU comparisons (circular SE set) 8’552’448
EMU comparisons (maximum) 12’091’392
SEINC increments 1’519’616
MAS additions / subtractions 1’825’537
ID increments / decrements 412’286
Loop declarations 127’030
NOP cycles (all units being idle) 19

Total nb of executed cycles 1’966’882

Static nb of instructions (program size) 273

Table 5.2 : Performance of the morphology coprocessor.

The total number of comparisons executed to extract morphology
features from one image depends on the shape of the structuring
elements in the SE set. It amounts to approximately 8.5 million
comparisons when using the circular SE set shown in Figure 5.33,
but it can increase to more than 12 million when SEMEM does



178 Low-Power Architecture

not contain any IGNORE value10. The number of cycles to ex-
ecute to process one image is approximately 2 million, which
means that a very low operating frequency would still enable
features to be extracted in much less than one second.

Note that these results differ from the ones reported in [123] on
two accounts. Firstly, the static number of instructions in the
program increased from 217 to 273. This was caused by mod-
ifications to the implementation of the loop mechanism, so as
to avoid wasting cycles when jumping. As a consequence, loops
are now restricted to contain at least two instructions, as it was
also explained in Section 6.5.1 in [1]. This necessitated the ap-
plication of loop unrolling in some parts of the program, which
led to substantially increasing the number of instructions it con-
tains. Secondly, the change in the way the local memory window
is displaced over the image, as explained in Subsection 5.5.4,
resulted in reducing both the number of external memory read
operations and the number of cycles dedicated to manipulating
the corresponding address registers. Globally, the number of ex-
ecuted cycles now amounts to less than 2 million, representing a
reduction of 12% with respect to the figures previously reported
in [123].

Task % of executed cycles

Loop declarations 6.4 %
Control and local memory refresh 6.1 %
Features extraction and results stores 87.5 %

Table 5.3 : Percentage of execution cycles devoted to loop
declarations and to the two main tasks performed by the mor-
phology coprocessor.

Table 5.3 shows the relative importance, in terms of the number
10 This would be the case for instance when using a square SE set.
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of consumed execution cycles, of the two main tasks performed by
the coprocessor. The first one, consisting in control operations
and refreshing the local memory, represents only about 6% of
the execution time while the features extraction, even though it
is performed using 8 comparators working in parallel, requires
almost 15 times more cycles.

Finally, Table 5.4 reports the duty cycle of the adders and com-
parators of the morphology coprocessor. Depending on the cho-
sen SE set, the 8 comparators inside the EMUs are working dur-
ing 54% to 77% of the number of executed cycles. The MAS
is particularly active, since it is being employed during every
phase of the features extraction program, as seen in Figure 5.30
to Figure 5.32. Unlike the MAS, the ID unit is only used when
refreshing the local memory or when storing results to the exter-
nal memory, and as such it is only active for approximately one
fifth of the duration of the complete program.

Component Duty cycle

Comparators in EMUs (circular SE set) 54.4 %
Comparators in EMUs (maximum) 76.8 %
Modulo Adder-Subtracter (MAS) 92.8 %
Incrementer-Decrementer (ID) 21.0 %
SE Block incrementer (SEINC) 77.3 %

Table 5.4 : Duty cycle of the components of the morphology
coprocessor.

5.7 Conclusion

In this chapter, a coprocessor dedicated to low-power morphology
features extraction was presented. It was shown that by using
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a specifically crafted architecture, it is possible to minimize the
number of comparisons, as well as to drastically reduce the num-
ber of necessary external memory accesses. Less than 2 million
cycles were found to be sufficient for extracting features out of
one face image. As a result, such a device could operate at a
very low frequency yet still performing operations fast enough
to be acceptable from the user’s point of view. Even though it
is highly optimized, the proposed solution is not tied to a pre-
defined set of structuring elements. Indeed, the latter can be
easily replaced since this operation simply consists in uploading
the description of the new SE set to SEMEM, whereas both the
architecture and the software program remain identical. To a
certain degree, more extensive changes, such as those concerning
the image size or to the number of considered morphology levels,
can be implemented by modifying the software program.

In addition to its validation carried out using the custom tool dis-
cussed in Section 7.2, the morphology coprocessor was described
in VHDL in the framework of a master’s thesis project [124],
in view of realizing an FPGA-based demonstrator. Whereas
the VHDL implementation was completed and simulations could
be performed to validate the architecture, the development of
the demonstrator was not finalized beyond closure of the MSc
project, and this for the following reason. Indeed, in the mean-
time, the need for normalizing the extracted features according
to Subsection 3.4.3, was established, so that no further work was
furnished on the FPGA implementation of the solution discussed
in this chapter. Instead, the architecture was modified to include
the normalization step, which led to a second coprocessor ver-
sion being developed. The latter, which will be introduced in
Chapter 6, was then described in VHDL and implemented on an
FPGA-based demonstrator, as it will be discussed in Chapter 7.



Chapter 6

Architecture including
Features Normalization

6.1 Introduction

This chapter describes the enhanced coprocessor, which normal-
izes the morphology features after they have been extracted, as
described in Subsection 3.4.3. The algorithm implementation is
laid out in Section 6.2, which explains how the normalization task
was incorporated into the existing architecture so as to minimize
both the additional hardware resources required as well as the
impact on the execution time. Section 6.3 then details the modi-
fications brought to the individual components and discusses the
newly introduced support for subroutines. Finally, Section 6.4
illustrates the behavior of the coprocessor using code samples
extracted from the actual features extraction and normalization
code, and provides some performance figures obtained through
simulations and later validated using the FPGA-based demon-
strator presented in Chapter 7.
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6.2 Implementation of the normalization

According to Equation 3.36 and as discussed in Subsection 3.4.3,
the normalized morphology features M̂i are obtained as follows:

M̂i =
Mi − E9
D9− E9

i ∈ [1, . . . , 17] , E9 = M0 , D9 = M18 (6.1)

Normalization of any extracted feature thus requires knowledge
of the values of E9 and D9 for the corresponding position. As
E9 and D9 are the last values computed when performing mor-
phology features extraction, normalization cannot start before
all results have been obtained for the four current locations. To
avoid power-consuming accesses to external memory, these 19
values must be stored locally until normalization can be carried
out. Each EMU already comprises two banks of 9 registers each
(see Subsection 5.4.1), which, ideally, would have to be reused
to store the extracted features. A supplementary register should
still be added in one of the register banks depicted in Figure 5.8,
to store the value of the central pixel when it is fed to the EMU,
whereas the nine erosion and dilation results would be stored to
the register banks when they are recursively generated, in addi-
tion to being written to the two output registers.

In order to minimize the number of additional cycles induced by
the normalization task, the latter should preferably be performed
in parallel with features extraction. However, as already men-
tioned, it cannot start before all features have been extracted.
Neither can it be executed while the local memory is updated,
as both tasks would interfere given the fact that they would both
need to access the external memory. Moreover, refreshing the lo-
cal memory usually involves loading a new row of 22 pixels (see
Subsection 5.5.4), whereas the number of features to normalize
amounts to 68. Indeed, there are 4 locations processed in par-
allel, each producing 17 values as explained in Subsection 3.4.3.
Hence, the ideal solution would consist in performing normaliza-
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tion while extracting features for the next four locations. Yet
the register banks holding the features to normalize will start
getting overwritten with the partial results of the ongoing mor-
phology operations. This conflicting use of resources can however
be lifted, provided that we can impose one minor constraint to
the shape of the structuring elements.

6.2.1 Sequencing of the normalization operations

It can be observed that when an MC instruction is executed in-
side one EMU, it frees up one register in each bank. Indeed,
once the differential erosion and dilation for level L have been
combined with the previous results EL−1 and DL−1, respectively,
the level won’t appear again for the current location, as no ad-
ditional pixels belonging to dSEk, with k 6 L, needs to be
processed. Considering the first half of the features extraction
algorithm, covered by the upper half of the structuring element
set (see Figure 5.33), we observe a symmetrically reversed situa-
tion: registers pDk and pEk, with k 6 L, are not needed before
encountering the first pixel underneath dSEk. If we now as-
sume the upper half of the SE set to be symmetrical to the lower
half1, it becomes possible to keep the morphology results in pDk

and pEk until the first pixel underneath dSEk is processed when
working on the next four positions, as illustrated in Figure 6.1.
Consequently, 22 cycles (see Subsection 5.6.2) would be available
to normalize all eight morphology features of one single level. As
an additional cycle will be needed anyway to retrieve the values
to normalize from the register banks of the EMUs, a total of 23
cycles will effectively be available.

Once all morphology features are available in the EMUs, namely
that the features extraction was completed for the current posi-

1 This is already required to obtain features invariant to rotations.
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K ≤ L

K > L

K > L

Figure 6.1 : Symmetrical SE set. dSEL is drawn in black.

tions, the normalization task itself is a two-stage process. The
first step, described in Subsection 6.2.3, aims at obtaining the
constants that will be required when normalizing the extracted
features, E9 and D9 − E9. At this time, both D9 and E9 are
available in the output registers Dout and Eout of the morphol-
ogy units. The four values D9−E9 can be computed in parallel
by their respective EMUs, provided that we upgrade one of the
comparators to a complete subtracter. At this time, pD9 and
pE9 are reset, so that features extraction can start for the fol-
lowing four positions. The second step consists in performing
the actual normalization of each of the 4×17 extracted features,
which is also a two-stage process: first compute Mi − E9, and
then execute the division, as explained in Subsection 6.2.4.

Since a subtracter is needed to perform these operations, the nor-
malization unit will be implemented as a part of the ID BLOCK,
which was therefore renamed IDNORM. One single adder will
thus be used both for the subtractions necessary to the normal-
ization process and for the original tasks of the ID BLOCK,
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namely updating the address registers. Once they have been
normalized, the features will finally be written to the external
memory.

6.2.2 Implementation of the division

The required divisions are implemented as subtractions in log-
arithmic space, with the help of two lookup tables (LUT). The
first one is used to convert both operands to logarithms, while the
second performs the inverse operation. The values M̂i in Equa-
tion 6.1 are thus replaced by M̂ ′′i according to Equation 6.3:

M̂ ′i = loga M̂i = loga (Mi − E9)− loga (D9− E9) (6.2)

M̂ ′′i = aM̂
′
i = invloga M̂

′
i = M̂i (6.3)

Extracted morphology features are integers ranging from 0 to
255, which means that LOGMEM, the memory holding the log-
arithm LUT, needs to contain 256 words. The logarithm values
are computed as follows:

LOGMEM [ N ] =

{
0 when N = 0

256 · log256 (N) when 1 6 N 6 255

They are then truncated to the nearest integer, so that they
can be stored as 8-bit values. The inverse logarithm operation
is implemented using another LUT, stored in a second memory,
INVLOGMEM. The values it contains are obtained as follows:

INV LOGMEM [ N ] = 256
N
256

N ∈ [0, . . . , 255]

Likewise to LOGMEM, the computed values are then truncated
to the nearest integer and stored as 8-bit values. Implementing
the proposed normalization thus requires the inclusion of two
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256 × 8 bits memories, as well as the replacement of the incre-
menter / decrementer found in the ID Block by a true subtracter.

Simulations were performed on the XM2VTS database to eval-
uate the influence of replacing the division on the performance
of the algorithm. The results, reported for both the single and
multiple templates scenarios when using 8-bit precision, are pre-
sented in Figure 6.2 and clearly show that the impact is very
limited in both cases.
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Figure 6.2 : ROC with subtractions in logarithmic space.
ROC curves for normalized morphology features, using either full floating-
point divisions, or 8-bit subtractions in the logarithmic domain, the face
matching being performed using M̂ ′′

i in Equation 6.3 in the latter case.

Since both M̂ ′i and M̂
′′
i are monotonous functions, further tests

were carried out on the XM2VTS database to determine whether
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the step in Equation 6.3 could be suppressed by considering di-
rectly M̂ ′i for the matching of the faces. This would remove
the need for the second lookup table and for the memory that
contains it. However, the results obtained reveal a strong degra-
dation of the system accuracy when graph matching is performed
using features expressed in the logarithmic domain. Indeed,
when considering low FAR, the achieved FRR is much worse
when the inverse logarithm operation is skipped, as shown in
Figure 6.3, both for the single and multiple templates scenarios.
Consequently, the inverse logarithm operation was retained.
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Figure 6.3 : ROC without inverse logarithm operation.
ROC curves for normalized morphology features, with and without the
inverse logarithm operations.
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6.2.3 Initialization of the normalization

Before starting normalization for all extracted features at one
given position, the following initialization operations must be
executed:

rE9 ← E9
RANGE ← D9− E9

LOGRNG ← LOGMEM [ RANGE ]

At this time, registers pD9 and pE9 are also reset to 0 and 255,
respectively, so that features extraction can proceed for the next
positions alongside the features normalization for the current po-
sition. At the first occurrence of the MC instruction, registers
Dout and Eout will be overwritten. As all four E9 values must
be kept available until the last feature has been normalized, they
have to be preserved in some way. To this effect, a register rE9
is added next to each EMU as seen Figure 6.7.

Since D9 and E9 are still present in the output registers at this
time, the three operations can be expressed as:

rE9 ← Eout

Dout ← Dout− Eout
LOGRNG ← LOGMEM [ Dout ]

The first two operations above can be executed in parallel, and at
the same time in the four morphology units, in response to a new
opcode, DE9 (short form standing for D9 – E9), belonging to the
MMU field of the instruction word (see Subsection 6.3.7). As the
third operation requires access to LOGMEM, only one value can
be computed per cycle. Consequently, the normalization unit
will need four cycles to obtain the four LOGRNG values. A new
opcode, NLI, is introduced in the IDNORM field to trigger the
execution of the logarithm operation that generates LOGRNG.
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The signal POS, constituted by the lower two bits of SO, cf Fig-
ure 5.26, is used to select between the four EMUs, similarly to
the way this was performed when results to be stored to external
memory were selected in the original architecture, cf Figure 5.13.
In addition to performing the logarithm operation, the NLI in-
struction also increments SO, hence its name which stands for
Normalization Logarithm Increment. As only the four Dout reg-
isters are accessed at this time, the signal EnD is set to 0. The
sequence of operations needed to initialize the normalization for
the four current locations thus becomes:

rE9[ 0 ] ← Eout[ 0 ]
Dout[ 0 ] ← Dout[ 0 ]− Eout[ 0 ]

rE9[ 1 ] ← Eout[ 1 ]
Dout[ 1 ] ← Dout[ 1 ]− Eout[ 1 ]

DE9
rE9[ 2 ] ← Eout[ 2 ]
Dout[ 2 ] ← Dout[ 2 ]− Eout[ 2 ]

rE9[ 3 ] ← Eout[ 3 ]
Dout[ 3 ] ← Dout[ 3 ]− Eout[ 3 ]


1 cycle

LOGRNG[ 0 ] ← LOGMEM [Dout[ 0 ] ] NLI
LOGRNG[ 1 ] ← LOGMEM [Dout[ 1 ] ] NLI
LOGRNG[ 2 ] ← LOGMEM [Dout[ 2 ] ] NLI
LOGRNG[ 3 ] ← LOGMEM [Dout[ 3 ] ] NLI

 4 cycles

One occurrence of the DE9 opcode is sufficient to obtain, in
one cycle, the values RANGE (available in Dout) and rE9 for
all four EMUs, whereas four instances of the NLI opcode are
needed to generate the four LOGRNG, so that five cycles are
required for initializing the normalization procedure for the four
current positions. These five cycles can be scheduled in parallel
with the local memory update process, as it will be shown in
Subsection 6.4.2. Consequently, the total number of executed
cycles does not increase.
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6.2.4 Normalization pipeline

When the initialization stage is completed, each morphology fea-
ture Mi[n] — computed by EMU n, with n ∈ [0, . . . , 3] — can
be normalized and stored to the external memory by executing
the following sequence of five operations:

DELTA ← Mi[ n ]− rE9[ n ] ME9
LOGDELTA ← LOGMEM [ DELTA ] LOG
LOGNORM ← LOGRNG[ n ]− LOGDELTA DR

NORM ← INV LOGMEM [LOGNORM ] ILOG
SRAM [ ..., n, i ] ← NORM ; SO ← SO + 1 ST ; INC

The aim of this sequence is to obtain the value of the normal-
ized feature M̂ ′′i according to Equation 6.3. Firstly, the op-
code ME9 (short form standing for Mi – E9) computes the nu-
merator DELTA = Mi − E9, the logarithm of DELTA being
then retrieved from the first LUT by the LOG opcode. The
third step, denoted by the opcode DR (short form standing
for DELTA – RANGE), performs the subtraction in the loga-
rithmic space. However, instead of computing LOGDELTA −
LOGRNG[ n ], the two operands are interchanged, so that the
result LOGNORM can never be negative2. The following op-
eration, ILOG, consists in obtaining the inverse logarithm of
LOGNORM . To compensate for the exchange of operands that
occurs during the third step, the values inside the second LUT
are stored in reverse order. At this point, the normalized feature
M̂ ′′i is available in the NORM register, and can be stored to the
external memory using the ST opcode of the LSU. During this
last step, the opcode INC furthermore instructs the IDNORM
unit to increment the SO register to prepare for the next itera-
tion.

2 Indeed, since Mi − E9 6 D9− E9 ∀i, then LOGDELTA 6 LOGRNG.
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Before each new dilation and erosion level is processed, a new
instruction MO, for morphology output, is issued to the EMUs.
In response, all four units copy the result of the corresponding
dilation and erosion level, from the register banks pD and pE
to their output registers Dout and Eout, so that they can be
later read by the ME9 operation. Similarly to the other EMU
instructions, the register banks are addressed using the control
signal L, originating from the SE Block. To this effect, the size
of SEMEM will need to be increased (see Subsection 6.3.4), so
that it can store 9 additional parameters, corresponding to the
parameters of MO for Level 0 to 8.

The sequence of operations discussed at the beginning of this
subsection must be executed eight times to normalize one entire
morphology level (four erosion and four dilation results to pro-
cess), which would require a total of 8×5 = 40 cycles, much more
than the 23 cycles found to be available to perform normalization
in parallel with features extraction (see Subsection 6.2.1). It is
nevertheless possible to pipeline the normalization sequence, in
order to output a new result every three cycles instead of five, as
shown in Figure 6.4, that illustrates two iterations of the consid-
ered sequence. Indeed, since the two operations LOG and ILOG
do not make use of the adder in the IDNORM unit, each one can
be scheduled in parallel with another operation.

The resulting pipelined sequencing of the normalization sequence
is shown in Figure 6.5. During the second cycle, namely when the
LOG operation is executed, the register SO gets incremented as
denoted by the INC opcode, taking advantage of the fact that the
adder is otherwise idle. This makes it possible to start normal-
izing the second feature during the fourth cycle, by scheduling
a ME9 operation on the adder, which is not used by the ILOG
operation pertaining to the normalization of the first feature. As
a result, the adder is now constantly in use, and a new normal-
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Figure 6.4 : Sequence of the normalization operation.
The sequence of operations needed to normalize 2 features is depicted.
The background color of the OPCODE columns differentiates between the
5 cycles concerning the first (light gray) and second feature (dark gray).
Boldfaced text indicates that the opcode requires the adder (OPCODE
column), and also which operation is performed (ADDER column), and
the value read from the SO register (SO column). For the ST operation,
italicized text indicates the value read from SO. The MEMORIES column
indicates whether the SRAM, or the logarithm or inverse logarithm LUT,
denoted LUT1 and LUT2, respectively, are accessed.

ized feature can be output every three cycles. It is nevertheless
mandatory to keep a copy of the value held by SO before it is
incremented, for use by the DR and ST operations for the first
feature, since they occur after the second step, i.e. after SO gets
incremented. To this effect, a new register, PSO — for previous
SO — gets added to the IDNORM unit.

As the opcode ILOG always occurs together with the opcode
ME9, see Figure 6.5, the former can be implicitly scheduled by
the latter, so that the ILOG opcode can be discarded. Similarly,
the LOG opcode is removed and replaced with NLIC, standing
for Normalization Logarithm Increment Copy. In response to
this new opcode, the IDNORM unit performs the logarithm op-
eration that computes LOGDELTA, copies the value of SO to
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PSO, and increments SO. The INC opcode is however not re-
moved from the instruction set, since it is also needed outside of
the normalization sequence, to update the address registers as
explained in Subsection 5.5.6.2.

Since the pipeline now outputs one normalized value every three
cycles, normalizing one morphology level for four locations in the
image requires 24 cycles. Given that we previously determined
in Section 3.2 that 23 cycles were available, only one extra cycle
has to be added, instead of 40 − 23 = 17 for the non-pipelined
solution. Compared to the 22 cycles that are needed to extract
the morphology features without normalization, as reported in
Subsection 5.6.2, the net increase corresponds to 2 cycles per
level, or 16 cycles for all 8 levels. Finally, when considering the
whole image, the increase amounts to 65’536 cycles, representing
less than 4% of the total number of cycles reported in Table 5.2,
so that the impact of the normalization on the execution time of
the algorithm has been rendered almost negligible.

6.3 Modified architecture

This section details the modifications brought to the architecture
of the coprocessor, to its different components and to its instruc-
tion set, in order to implement features normalization following
the scheme outlined in Section 6.2.

6.3.1 Elementary morphology unit

The following modifications were made to the design of the EMU.
Firstly, the MC instruction was modified to store its results back
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Figure 6.5 : Pipelined execution of the normalization step.
The same sequence of operation as in Figure 6.4 is depicted, using a
pipelined implementation. For each cycle, represented by one row in the
table, boldfaced characters indicate which operation uses the adder, as well
as the register furnishing the control signals (either SO or PSO). Similarly,
italicized text is used to denote the register used to construct the SRAM
address needed by the ST operation. The three opcodes typeset in white
over dark gray on the right replace the ones in the two OPCODES columns,
except for ST since this opcode does not belong to the IDNORM unit.

to the partial results register banks:

pD[ L ] , Dout ← MAX( pD[ L ], Dout )
pE[ L ] , Eout ← MIN( pE[ L ], Eout )

The added complexity is marginal, as the comparators outputs
were already connected to the register banks, so that partial
results could be updated when an MM instruction is executed.

Once D9 and E9 are available in the output registers, a new
instruction, DE9 is issued to instruct the dilation comparator to
compute the normalization range, D9 - E9. At the same time, the
four E9 values are preserved in registers inside the Morphology
Block (see Subsection 6.3.2) as they are needed when normalizing
(see Equation 6.2). Finally, this instruction also resets pD[ 9 ]
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Figure 6.6 : Modified Elementary Morphology Unit.
Since for Level 0, the result — namely, the value of the original pixel — is
identical for both the dilation and the erosion, register pE0 is superfluous.

and pE[ 9 ] to 0 and 255, respectively:

Dout ← Dout− Eout
pD[ 9 ] ← 0
pE[ 9 ] ← 255

An additional register was inserted in the dilation bank to store
the value of the central pixel, as shown in Figure 6.6. This oper-
ation occurs when the unit performs partial differential morphol-
ogy with L = 0, in addition to copying the pixel value to both
output registers, to serve as the basis for the recursive computa-
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tion of all dilation and erosion levels:

Dout ← P
Eout ← P

pD[ 0 ] ← P

Another new instruction MO — for morphology output — is in-
troduced to copy the full erosion and dilation results from the
registers banks to the output registers, so that they can be fed
to the normalization pipeline. It also resets the two registers it
reads to 0 or 255, so that partial erosion and dilation computa-
tions can begin for the specified level:

Dout ← pD[ L ]
Eout ← pE[ L ]

pD[ L ] ← 0
pE[ L ] ← 255

The RM instruction still resets the L pipeline inside the Morphol-
ogy Block and SEIDX, while the registers in the partial results
are now reset by the MO instruction, one level at a time as previ-
ously exposed. Moreover, it also resets register SO — previously
reset by the discarded RSO instruction — as well as register PSO
in the IDNORM block.

As there are now three operations to delay — partial morphology,
combine differential results and output features — the width of
the signal C increased from 1 to 2 bits.

6.3.2 Morphology block

The modified Morphology Block, presented in Figure 6.7, in-
cludes four new registers to preserve the E9 values until normal-
ization is complete. A multiplexer was also added so that the
normalization unit (see Subsection 6.3.5) can select and read the
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register rE9 corresponding to the position being processed. The
other output, previously connected to the external data bus and
used to send extracted features to the external memory, is now
connected to the normalization unit. Additionally, this connec-
tion is also used to retrieve the RANGE value from the Dout
registers, after the DE9 operation has been performed by the
EMUs. As noted in Subsection 6.3.1, the width of C increased
and thus registers in the pipeline used to generate the delayed
control signals for the EMUs are now also 2-bit wide.
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Figure 6.7 : Modified Morphology Block.



198 Architecture including Features Normalization

6.3.3 Local memory block

No changes were made to this block, with respect to the descrip-
tion given in Subsection 5.5.4.

6.3.4 Structuring elements block

The architecture of the SE Block is identical to the one described
in Subsection 5.5.5. However, to accommodate the parame-
ters for the new MO instruction that was introduced in Sub-
section 6.2.4, SEMEM now stores 380 4-bit words.

6.3.5 Normalization unit and addressing logic

While the MAS Block could be used as it is without modifica-
tions, the ID Block required extensive changes. In addition to be-
ing responsible for incrementing and decrementing the addresses
used when loading data from — and storing results to — the
external memory, it now also handles most operations required
to normalize the extracted features. As already mentioned, its
name was consequently changed to IDNORM.

6.3.5.1 Normalization unit

The structure of the Normalization Unit (IDNORM) is shown
in Figure 6.8. In addition to the registers already found in ID
Block, IDNORM contains PSO, the LOGRNG register bank, the
registers belonging to the normalization pipeline as well as the
LOGMEM and INVLOGMEM memories (see Section 6.2.). The
address A furnished to LOGMEM is provided by a multiplexer
steered by the control unit, which selects the values RANGE for
NLI instructions and DELTA for NLIC instructions, respectively.
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Figure 6.8 : Normalization Unit (IDNORM).
Registers DELTA and LOGNORM are drawn in gray to indicate that they
are not actually needed. Indeed, both LOGMEM and INVLOGMEM are
synchronous memories and as such, they latch the provided address inter-
nally. They can thus be directly connected to the output of the subtracter.
However, both registers are implemented in the current design so that their
value can be read for debugging purpose.
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The first normalization operation is performed in response to the
NLI instruction, and consists in computing LOGMEM[RANGE ]
and storing the result in one of the four registers in the bank
LOGRNG. As explained in Subsection 6.2.3, this is executed
for the four current positions, by sequentially reading the Dout
register of each EMU. Priorly, the opcode DE9 was issued to the
EMUs to request that the value RANGE = D9 – E9 be computed
and placed in Dout.

NLI

LOGRNG[ SO[1 : 0] ] ← LOGMEM [ Dout[ SO[1 : 0] ] ]

The three other new instructions, ME9, NLIC and DR, handle
the normalization process, as explained in Subsection 6.2.4.

ME9
DELTA ← OUTPUT [ SO[2 : 0] ]− E9[ SO[1 : 0] ]
NORM ← INV LOGMEM [ LOGNORM ]

NLIC
LOGDELTA ← LOGMEM [ DELTA ]

PSO ← SO
SO ← SO + 1

DR

LOGNORM ← LOGRNG[ PSO[1 : 0] ]− LOGDELTA

The signal OUTPUT used by the ME9 instruction originates
from the Morphology Block (MB), see Subsection 6.3.2, and is
used to read the results available in the EMUs, according to the
value of the register SO. The two LSB, SO[1:0] are connected to
the POS signal in Figure 6.7 and they determine which EMU is
accessed, whereas S[2] is connected to the signal EnD and selects
between the two output registers Dout and Eout. To retrieve
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the values stored in the Dout registers, the opcode NLI also sets
POS to SO[1:0], but forces the signal EnD to 0.

6.3.5.2 External memory addressing unit

The external addressing unit, EXT ADDR, depicted in Fig-
ure 6.9, was not modified with respect to the one presented in
Figure 5.21. However, it now relies on register PSO instead of
SO for deriving the LEVEL and POS part of the store address,
as explained in Subsection 6.2.4. Except for this difference, the
load and store addresses are constructed as before (see Subsec-
tion 5.5.6.4 and Subsection 5.5.6.5).

IR

ADDRESS 
GENERATION

A

PSO

RPAGE   [3]

Figure 6.9 : Modified external addressing unit (EXT ADDR).

Whereas results were previously generated in the ascending order
of dilation and erosion levels, starting with the original image,
the sequence is now reversed. The new layout of the external
memory, shown in Figure 6.10 follows the order in which results
are normalized: starting with Level 8, descending down to Level 1
and finishing with the original values, the latter corresponding
to Level 0.
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Figure 6.10 : Layout of normalized features in memory.

6.3.6 Subroutines support

In the baseline version of the program, the last results obtained
were written to the external memory only after starting work
on the next four positions, as explain in Subsection 5.5.6.5. In
consequence, some control instructions responsible for updating
registers used to compute external memory addresses had to be
executed while morphology features were being extracted. As
these control operations would depend on the direction of the
displacement, it was not possible to replace the four morphol-
ogy processing segments with a single subroutine. This is no
longer the case with the normalized version: all external mem-
ory write operations occurring during features extraction deal
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with the same set of four positions.

Subroutine support in the coprocessor can be built on top of the
loop mechanism with almost no additional hardware. Indeed,
a call to a subroutine (denoted by the jump to subroutine, or
JSR instruction) requires that the decoder be able to memorize
the address of the following instruction, for use when reaching
the return to caller instruction, or RTC, indicating the end of
the subroutine. It must also be able to continue execution at
an absolute memory address specified in the opcode. The first
action is very similar to the result of a loop declaration, where
the address of the current instruction is to be memorized in the
stack. In loop declarations, the information retrieved from the
opcode is used to initialize the loop counter, while it will specify
the next program memory address to fetch in the case of a JSR
instruction. The second action is identical to the behavior ex-
hibited when a JUMP instruction is encountered at the end of a
of a loop, except that the jump is always taken. The same stack
of PC can be used to store addresses linked to loops declarations
(address of the first instruction in the loop) and subroutines calls
(address of the first instruction following the call), each register
containing now a new one-bit flag employed by the control unit
to determine whether a JMP corresponds to the end of a loop
or to the RTC of a subroutine. Indeed, both are encoded using
the same bit in the instruction word, as seen in Figure 6.14 and
cannot be differentiated in the object code. As it is the case with
loops, the JUMP flag is placed on the second to last instruction,
so that the address of the next instruction to execute is known
early enough to avoid fetching an instruction at an incorrect ad-
dress. This requires that, similarly to loops, subroutines contain
at least two real instructions (excluding RTC). Finally, jump in-
structions (whether they denote the end of loop or the end of
subroutine) must always be separated by two regular instruc-
tions.
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Figure 6.11 shows a sample call to subroutine. The source code
— on the left — gets translated into binary object code by the
assembler, which permutes the JSR with the preceding instruc-
tion. It also sets the JMP flags on the second to last instruction
in the subroutine. Once the whole source code as been parsed
a first time, a second pass is executed to resolve references to
subroutine labels. At this time, the absolute address of the first
instruction in the subroutine is placed into the dedicated field of
the instruction word.

;  LSU       MMU       MAS      IDNORM
        
   nop   :   nop   :   nop   :   nop
        
   JSR _DEMO_
        
   nop   :   nop   :   nop   :   nlic
   nop   :   nop   :   nop   :   nli
        
   RET
        
   SUBROUTINE _DEMO_
        
     nop :   nop   :   nop   :   dr
     nop :   nop   :   nop   :   me9
            
   RTC

#0    0  00  000  00101  1101

#1    0  11  111  11100  1111

#2    0  11  111  11100  0011
#3    0  11  111  11100  0010

#4    0  00  000  11000  0000

#5    1  11  111  11100  0001
#6    0  11  111  11100  0000

Figure 6.11 : Sample assembly code for calling a subroutine.

The execution of the sample code of Figure 6.11 is detailed in Fig-
ure 6.12. The PC indicates the address of the instruction being
fetched, which will be executed during the following cycle. When
instruction #0 is executed, the next value of PC as computed by
the adder is stored in the first available register jmp_addr in
the PC stack, while the associated flag jmp_is_jsr is set to
indicate that jmp_addr is the return address of a subroutine,
and not the top address of a loop. The actual value that the
PC takes during the next cycle is jsr_addr, extracted from the
instruction word. When instruction #5 is executed, the is_jmp
signal is asserted. As jmp_is_jsr is true, the jump is treated
as an RTC, and the PC is simply set to jmp_addr. In the other
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case where the jump denotes the end of a loop, it would have
been handled as described in [1].

clk

pc

jmp_addr

jmp_is_rtc

is_jmp

jsr_addr

adder_in1

adder_out

adder_in2

is_jsr

Instruction

1 5 6 2 3

5

1 2 6 3 4

1 1

1 5 2 3

2

0

0

#0 #1 #5 #6 #2

Figure 6.12 : Temporal execution of a call to a subroutine.

6.3.7 Instruction set

The new coprocessor instruction word, whose size is increased
from 14 to 15 bits due to the additional opcodes introduced in
the MMU field, is shown in Figure 6.13. The JSR calls are de-
noted by a dedicated opcode in the IDNORM field, while some
of the remaining bits in the instruction word hold the absolute
address of the subroutine. As the current program memory holds
a maximum of 256 words, only 8 bits are reserved for storing this
address. The same number of bits is used to store the COUNT
field for loops declarations, allowing up to 256 iterations to be
executed. The maximum number of iterations currently used



206 Architecture including Features Normalization

amounts to 128 and corresponds to the size of the resulting im-
ages.

JMP LSU MMU MAS IDNORM

1 bit 2 bit 3 bit 5 bit 4 bit

14 0

– ABSOLUTE ADDRESS JSR

3 bit 8 bit 4 bit

14 0

14 0

a)

b)

c)

– COUNT LOOP

–

4 bit

RET

3 bit

–

6 bit

–

2 bit

3489111213

341112

3489 56

Figure 6.13 : Format of the normalized morphology copro-
cessor instruction word for a) regular instructions; b) loop dec-
larations and subroutine calls; c) RET instruction.

The corresponding opcodes for each field are given in Figure 6.14
and Figure 6.15. It can be noted that RSO does no longer ex-
ist. Indeed, the task of resetting SO (and PSO) is now handled
by the RM instruction, additionally to resetting the L pipeline
in the Morphology Block and resetting SEIDX and SEOUT, as
these two operations can now be executed simultaneously. As
both CPY and RM schedule operations for this unit — copy LC
and LR to TC and TR and reset SO and PSO, respectively —
the IDNORM field must be set to NOP when either of theses
opcodes appear in the instruction word. The simulator and the
assembler would report an error if this condition is not respected.
To accommodate the new normalization instructions without in-
creasing the size of the field IDNORM, the DEC operation can
no longer access all the registers in the unit, but is restricted to
registers SC and SR only. As noted in Subsection 5.5.6.2, it was
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never necessary to decrement the other four registers in the first
place, so that this limitation does not have any practical impact.

NOP
CPY
LD

1 1
1 0
0 1

No operation
Copy LC to TC and LR to TR
Load pixel from external memory

JMP
0

1

Regular instruction
Indicates the second to last instruction in a 
loop or in a subroutine

NOP
—

1 1 1
1 1 0

No operation
unused

LSU

MMU

RM 1 0 1 Reset MORPHO BLOCK, SEIDX and SEOUT
DE9 1 0 0 Compute RANGE and reset pD9 and pE9

ST 0 0 Store one result to external memory

JUMP

binary re-
presentation

opcode description

MO
MC

0 1 1
0 1 0

Output results for normalization
Combine differential morphology results

MM 0 0 1 Partial differential morphology, L     SEREG
MN 0 0 0 Partial differential morphology, L     IGNORE

—

Figure 6.14 : Opcodes of the normalized morphology copro-
cessor.

6.4 Coprocessor characteristics

In this section, the complete architecture of the normalized co-
processor is presented. The execution of some typical parts of
the program code is detailed. Finally, some performance figures
are provided, that were obtained through simulations using the
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NOP No operation
IDNORM

JSR A Jump to absolute address A
Loop declaration

DEC
INC

S 

S 

1 0 1 Decrement register S
Increment register S

0
S

SC
1 SR

LOOP

binary re-
presentation

opcode description

1 1 0
1 1 0
1 1 1
1 1 1

0
1
0
1

1 0 0
INC
INC

0 1 1
0 1 0

T 

U 

Increment register T
Increment register U

0
T

TC
1 TR

0
U

SO
1 LO

NLIC
NLI
DR
ME9 0 0 0

0 0 0
0 0 1
0 0 1

0
1
0
1 Compute LOGDELTA

Compute LOGRANGE
Compute LOGNORM
Compute DELTA

NOP
–

1 1 1 No operation
unused

MAS

1 1 0
–
–

S1 Subtract 1 from R, mod 4181 0 1 R

A1 Add 1 to R, mod 4181 0 0 R

S4 Subtract 4 from R, mod 4180 1 1 R

A4 Add 4 to R, mod 4180 1 0 R

S18 Subtract 18 from R, mod 4180 0 1 R

0 0 0A18 Add 18 to R, mod 418

0 0
0 1
1 0
1 1

R
LR
LC
LMW
LMRR

RET Terminate execution

Figure 6.15 : Opcodes of the normalized morphology copro-
cessor (cont’d).
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tools discussed in Section 7.2.

6.4.1 Architecture overview

The complete architecture of the morphology coprocessor imple-
menting the features normalization is presented in Figure 6.16.
The control block, encompassing the fetch and decode unit as
well as the program memory, is not shown here. Also missing are
the communication interface with the MCU, the clock and reset
signals as well as the buses allowing the MCU to access any reg-
ister and memory in the coprocessor. Compared to the original
architecture, shown in Figure 5.29, the major difference concerns
the data path followed by the extracted features. Whereas the
latter were directly transferred from the EMUs to the external
memory, they are now fed to the IDNORM unit beforehand.

6.4.2 Sequencing

Similarly to Subsection 5.6.2, three portions of typical code ex-
ecuted by the normalized coprocessor are discussed. The first
code snippet, shown in Figure 6.17 is similar to the code snippet
of Figure 5.30. It also updates the content of the local memory,
but additionally performs the initialization step of the normal-
ization process, using instructions DE9 and NLI, as described in
Subsection 6.2.3. Finally, the RM instruction is issued to reset
the L and C pipelines in the Morphology Block, and SEIDX and
SEOUT in the SE Block as explained in Subsection 6.3.1.

Figure 6.18 shows as snippet of code that performs morphology
features extraction on row 1 to 8 of the SE set. Moreover, as ex-
plained in Subsection 6.2.1, previously extracted features residing
in the register banks of the EMUs are normalized and stored to
external memory. At the beginning of each row of the SE set,
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Figure 6.16 : Complete normalized morphology coprocessor.

;  LSU       MMU         MAS      IDNORM

   cpy   :   de9   :   nop      :   nop
   nop   :   nop   :   nop      :   nli
   nop   :   nop   :   a18 lmr  :   nli
   nop   :   nop   :   a4 lmr   :   nli
   nop   :   nop   :   inc lr   :   nli

   LOOP 11
     ld  :   nop   :   inc lmw  :  inc tc
     ld  :   nop   :   inc lmw  :  inc tc
   JUMP _11_

   nop   :   rm    :     nop    :   nop

Figure 6.17 : Snippet of code for updating the local memory
and initializing the normalization.
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the MO operation is issued to the EMUs so that the extracted
features of the current level being normalized get transferred to
the output registers. The total number of cycles to process one
row of the SE set (including the cycle taken by the loop declara-
tion) has risen to 25, since normalization requires 24 operation
cycles for each row as explained in Subsection 6.2.4.

;     LSU       MMU        MAS      IDNORM

   _se_loop_row_1_8_
   LOOP 8

     nop    :   mo   :    nop     :  dr

     LOOP 6

       nop  :   mm   :  inc lmr   :  me9
        st  :   mm   :  inc lmr   :  nlic
       nop  :   mm   :  inc lmr   :  dr

     JUMP _6_

     nop    :   mm   :  inc lmr   :  me9
     st     :   mn   :  inc lmr   :  nlic
     nop    :   mn   :  inc lmr   :  dr
     nop    :   mn   :  inc lmr   :  me9
     st     :   nop  :    nop     :  nlic

   JUMP

Figure 6.18 : Snippet of code for extracting, normalizing and
storing morphology features.

Finally, Figure 6.19 shows the code handling the bottom half of
the SE set. It is basically the segment presented in Figure 5.32,
however without the instructions handling the storage of the mor-
phology features to the external memory.

The sequence of instructions is represented in graphic form in
Figure 6.20. As was the case with the previous architecture, the
SE set can still be changed by simply replacing the values stored
inside SEMEM.
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;     LSU      MMU        MAS      IDNORM

   _se_loop_row_10_19_
   LOOP 10

     LOOP 9
        nop :  mm    :  inc lmr   :  nop
        nop :  mm    :  inc lmr   :  nop
     JUMP

     nop    :  mm    :  inc lmr   :  nop

     nop    :  mc    :  inc lmr   :  nop
     nop    :  mn    :  inc lmr   :  nop
     nop    :  mn    :  inc lmr   :  nop

   JUMP

Figure 6.19 : Snippet of code to extract morphology features.

6.4.3 Performance

Table 6.1 presents the simulation results for the normalized co-
processor. The architecture functionality as well as the required
number of cycles were furthermore validated based on the VHDL
description of the hardware, running both on the FPGA demon-
strator and using post-synthesis simulations of the ASIC design,
as described in Section 7.3 and Section 7.4.

Comparing the results to the ones given in Table 5.2, it can
be noted that the number of write instructions to the external
memory has decreased. This is due to the reduced set of features
containing only 17 values per position instead of 19. While the
number of comparisons performed by the EMUs did not change,
the latter now also perform one subtraction per position being
processed, in response to the DE9 instruction. The simplifica-
tions in the program code that led to the handling of subroutines
also caused the number of loop declarations to decrease. Whereas
the number of instructions in the code is reduced by almost 40%,
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Figure 6.20 : Graphical sequencing of the features extraction
algorithm executed on the morphology coprocessor. The actual
value of the IGNORE symbol, denoted here by a dash, is 15.
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Type of operation Nb of occurrences

External memory read 92’182
External memory write 282’693
Local image memory read 1’720’511
Local image memory write 92’182
SE memory read 1’560’752
LOG memory read 294’984
INVLOG memory read 282’693
EMU comparisons (circular SE set) 8’552’448
EMU comparisons (maximum) 12’091’392
EMU subtractions 16’388

SEINC increments 1’560’752
MAS additions / subtractions 1’833’919
ID increments / decrements 957’257
Loop declarations 94’271
JSR calls 4’096

NOP cycles (all units idle) 8’211
NOP cycles (no JSR) 19

Total nb of executed cycles 2’022’425
” w/o JSR 2’010’137

Static nb of instructions (program size) 142
” w/o JSR 235

Table 6.1 : Performance of the normalized coprocessor.



6.4 Coprocessor characteristics 215

the number of cycles increases by less than 1% when using sub-
routines. The total cost of each JSR call is three instructions:
in addition to the cycle consumed by the instruction itself, the
subroutine contains two NOP operations, so as to fulfill the con-
straints imposed on the location of the RTC symbol.

The repartition of the number of executed cycles among the vari-
ous tasks performed by the coprocessor is given in Table 6.2. The
numbers do not differ much from the previous architecture and
reflect the slight increase of instructions needed to accommodate
the normalization pipeline.

Task % of executed cycles

Loop declarations 4.7 %
Calls to subroutines 0.2 %
Control and local memory refresh 5.0 %
Features extraction and results stores 90.1 %

Table 6.2 : Percentage of execution cycles devoted to loop
declarations, calls to subroutine and to the two main tasks per-
formed by the coprocessor.

As seen in Table 6.3, while it remains stable for the other com-
ponents, the duty cycle of the adder in the IDNORM (formerly
ID Block) unit did more than double. Unlike before where it was
only employed when accessing the external memory, it is now
also employed while normalizing the features, which corresponds
to approximately half the processing time devoted to morphology
features extraction.
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Component Duty cycle

Comparators in EMUs (circular SE set) 53.1 %
Comparators in EMUs (maximum) 74.9 %
Modulo Adder-Subtracter (MAS) 91.1 %
IDNORM adder (ID) 47.6 %
SE Block incrementer (SEINC) 77.2 %

Table 6.3 : Duty cycle of the components of the coprocessor.

6.5 Conclusion

This chapter introduced a modified coprocessor that expands the
architecture that was presented in Chapter 5. In addition to ex-
tracting features, the new coprocessor also performs the normal-
ization step proposed in Subsection 3.4.3. By reusing existing
hardware, it limits the additional resources that need to be im-
plemented. It also preserves the flexibility that makes the SE
set easily modifiable. Moreover, by executing the additional op-
erations in parallel with the existing processing, it can process
one complete image with less than 3% additional cycles with re-
spect to the original solution. Although 4’096 bit of additional
memory is required to implement the division, the total increase
is reduced by 40% once the reduced memory footprint of the
software program is taken into account.

In addition to being validated using the tools discussed in Sec-
tion 7.2, this coprocessor was furthermore described in VHDL
and synthesized both for FPGA and ASIC, as discussed in Chap-
ter 7. The FPGA version, which also incorporates the EGM co-
processor detailed in [1], was used to produce a real-time demon-
strator for the face verification system presented in Section 5.2.



Chapter 7

Architecture Validation
and Demonstrator

7.1 Introduction

In Chapter 5, a coprocessor dedicated to low-power mathematical
morphology features extraction was presented, that was subse-
quently enhanced in Chapter 6 to additionally handle features
normalization. The present chapter describes the design process
that was followed to develop and validate these two hardware ar-
chitectures. It starts by discussing the high-level implementation
of the algorithm, in Section 7.2, that furthermore covers the selec-
tion of the architecture as well as the tools developed to simulate
the coprocessors and to elaborate their software programs. An
FPGA-based demonstrator, whose twofold purpose is firstly to
validate the VHDL description of the coprocessor incorporating
features normalization and, secondly, to enable real-time execu-
tion of the complete face verification process, is then presented
in Section 7.3. Finally, the resulting silicon die area occupied
by the morphology coprocessor in a 0.18 µm ASIC technology is
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reported, along with the power consumption obtained through
simulations carried out on the synthesized design.

7.2 Hardware and software co-design

This section reports how the two coprocessors, detailed in Chap-
ter 5 and Chapter 6, respectively, were derived from the morphol-
ogy features extraction algorithms introduced in Chapter 3, and
how their respective software programs were written and tested.

7.2.1 High-level software implementation in C

In the course of their development, algorithms are usually im-
plemented firstly in environments based on high-level languages,
such as MATLAB or C, that typically offer a great deal of flexi-
bility and provide facilities to optimize, debug and analyze var-
ious implementation variants. At this stage, all computations
are performed using high-precision arithmetic, using for instance
the double floating-point type in case the C language is be-
ing employed. Indeed, processors found in modern workstations
are equipped with specialized units capable of performing op-
erations on high-precision floating-point numbers at the same
speed as their integer unit counterparts. When ultimately the
goal is to target an embedded platform that is more limited
performance-wise, such as a fixed-point Digital Signal Proces-
sor (DSP) or a dedicated custom processor implemented in an
ASIC (Application-Specific Integrated Circuit), it is necessary
to ensure that the algorithm still performs satisfactorily with re-
duced precision. In the case of the morphology features extrac-
tion algorithm considered in this work, this step was not neces-
sary since all operations are carried out on 8-bit integer numbers.
Regarding the version of the algorithm that incorporates features
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normalization, simulations were performed to verify that the im-
plementation of the division by means of a subtraction in 8-bit
logarithmic space does not degrade the accuracy of the face au-
thentication procedure, as reported in Subsection 6.2.2.

7.2.2 Architecture selection

Both the description of the algorithms given in Chapter 4 and
the corresponding implementations in the environment discussed
in Subsection 7.2.1 are purely sequential, i.e. they consist in a
series of operations executed one at a time in a predetermined
order. The major benefit of a hardware architecture on the other
hand is its ability to perform several operations at the same time,
thanks to multiple processing units working in parallel. To help
selecting the most adequate architecture to implement a given
algorithm, it is therefore necessary to analyze beforehand the
considered sequence of operations, in view of determining where
and how parallelism can be introduced. The first step consists
in identifying sections of the algorithm that either can, or can-
not be performed concurrently, either because one section relies
on results generated by another, or because they both require
access to the same hardware resources. Indeed, processing units
such as arithmetic logic units (ALU) or comparators can usually
be replicated without much impact if such need is established,
whereas other components such as shared memories, used for in-
stance to exchange data between processing units, are harder to
duplicate without affecting the data flow.

Moreover, operations must be carefully scheduled to avoid sit-
uations where multiple accesses are attempted simultaneously
to a shared resource. Whereas in a fixed logic architecture, such
scheduling can be achieved, it is not the case with programmable
systems, where the sequence of operations is software-based and
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therefore subject to change. Consequently, it is often easier to
serialize the tasks that could lead to conflicting resource usage.
This is the case for instance with the two tasks that access the
memory LMEM, either to update its content or to retrieve the
values of the pixels to process, as explained in Subsection 5.4.2.

The exploration of the various possible approaches leading to a
parallel architecture was carried out using the C language, and
was based on a framework developed in the course of a previous
project [125]. Here, a clock cycle is decomposed into two succes-
sive stages. Firstly, actual operations to execute in parallel are
performed sequentially, since the C language does not support
parallelism, but all the variables that emulate storage resources,
such as registers or memories, are restricted to read operations
and cannot be modified. Instead, all write operations are di-
rected towards temporary storage variables, to accurately mimic
the behavior of a synchronous architecture in which all regis-
ters are updated simultaneously at the end of the clock cycle.
Moreover, variables that represent storage resources cannot be
accessed directly, but only through so-called accessors, namely
functions that, in addition to implementing the read or write op-
eration, also perform several verifications. For instance, accessors
make sure that the source and destination registers are indeed
connected to the units that try to access them, and that the
values of the supplied parameters — e.g. an immediate constant
— are valid. All results generated during one clock cycle are
transferred from the temporary to the actual storage resources
in the course of the second stage, which emulates the clock edge
triggering the update of the registers in the actual circuit.

Performing this exploratory process in the C language offers
much more flexibility than in VHDL for instance. Indeed, some
parts of the code can be directly reused from the high-level im-
plementation, giving the opportunity to rework the algorithm
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“piece by piece” while preserving the ability to execute it in full
at any point in time during the development cycle. This is very
useful to ensure that the functionality is maintained throughout
the whole optimization process. For both variants of the mor-
phology coprocessor, this step resulted in a detailed description
of the hardware architecture to implement being laid out, includ-
ing the size of all required registers and memories, the kinds of
processing units needed, as well as the exact number of cycles
consumed to perform the complete algorithm. Even though it
would have been possible to use this description as the basis for
the VHDL implementation, the architectures were firstly ported
to the C++ simulator discussed in the next section, to enable both
a more formal validation and the finalization of their respective
assembly software programs.

7.2.3 Software development

The C++ simulator was adapted from the tool originally elabo-
rated during the development of the EGM coprocessor, discussed
in Section 6.2.5 in [121], to add support for the operators that
are specific to the morphology features extraction algorithm. In
addition to providing a true register transfer level (RTL) de-
scription of the architecture, the simulator was also employed to
develop and debug the software program. The provided facilities
include step by step execution, display and manipulation of the
values in any register or memory, as well as collection of statistics
concerning the activity of each unit. The software program that
the coprocessor has to execute is written in assembly language,
using the instruction set and syntax presented in Subsection 5.5.7
and in Subsection 6.3.7. The text file containing the program is
firstly fed to a scanner, or tokenizer, implemented using the pop-
ular tool Flex [126], which recognizes lexical patterns described
by a set of regular expressions (regexps). The output is then sent
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to GNU Bison [127], a language parser that generates executable
C or C++ code according to a provided description of the language
syntax. The latter, called a grammar, is written in Backus-Naur
formalism, or BNF [128], a widely used method of describing the
syntax of computer languages. The C++ simulator furthermore
serves as an assembler that generates the binary object code to
be uploaded to the program memory of the coprocessor.

7.2.4 VHDL description

Following the steps discussed so far, the morphology coprocessor
incorporating features normalization as introduced in Chapter 6,
was described in VHDL and synthesized to be implemented on
the FPGA demonstrator that will be presented in Section 7.3.
Once the VHDL was fully tested and debugged, the ASIC syn-
thesis of the design was carried out, targeting the UMC 0.18 µm
VLSI process. The achieved figures for silicon die area and power
consumption will be reported in Section 7.4.

7.3 FPGA demonstrator

The goal of the FPGA1 demonstrator is twofold. Firstly, it en-
ables real-time validation of the proposed architecture, which
cannot be achieved when running VHDL simulations. Secondly,
it can be used to perform the complete face verification process,
from the image acquisition up to the obtainment of the matching
distance. To this effect, the demonstrator, shown in Figure 7.1,
is constituted of several components that are briefly described in
Subsection 7.3.1 to Subsection 7.3.5.

1 Field-programmable gate array.
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Figure 7.1 : FPGA-based demonstrator.

7.3.1 VGACam image sensor

VGACam is a low-power CMOS color image sensor [129], which
features a resolution of 648 × 488 pixels at 10 bits per pixel2.
The sensor is covered by a layer of colored filters, each pixel be-
ing either red, green or blue, following an arrangement known as
the Bayer pattern [130] in which there are twice as much green
pixels as there are red and blue ones, respectively. Since the mor-
phology features extraction algorithm operates on monochrome
images, only one pixel out of four is considered. Indeed, green
pixels are retrieved and used directly, in place of the true lu-
minance, avoiding the need for computing the latter out of the
red, green and blue channels. The resulting image resolution
therefore corresponds to 324×244 pixels, from which an array of
146 rows of 256 pixels gets extracted to be stored in the SRAM,
according to the layout depicted in Figure 5.22.

7.3.2 FPGA and SRAM boards

The Constellation board [131] manufactured by Nova Engineer-
ing supports an APEX 20K600-E3 FPGA from Altera Corpo-

2 However, only 8 bits per pixel are used in the demonstrator.
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ration, which incorporates the morphology and matching copro-
cessors, as well as the interfaces for the SRAM, the VGACam
image sensor and the USB communication. Additionally, the
board also includes an USB port and controller, which can be
used to interact with the FPGA from an application running on
a computer. The synthesized design is uploaded to the FPGA
through the USB connection, to be stored either temporarily or
permanently. In the first case, the design is only retained while
power is supplied to the device. This mode is used for debugging
and testing purpose, but once a stable version is available, the
second mode becomes useful, where the design gets written to
a dedicated embedded Flash memory. Subsequently, the FPGA
will automatically configure itself when powered up. Naturally,
the design can be replaced at any time by simply reprogram-
ming the Flash memory. The FPGA primary clock signal runs
at 40 MHz and is furnished by an on-board oscillator. Since the
amount of memory embedded in the FPGA is too limited to ac-
commodate a complete image, an expansion board supporting
four static random-access memories (SRAM) is connected to the
Nova board.

7.3.3 Computer

The computer, or PC, plays a dual role in the demonstrator.
Firstly, it provides the user interface, in the form of a Windows
application that communicates with the FPGA board through
the USB connection, and secondly, it emulates the functional-
ity of the master control unit (MCU) discussed in Section 5.2.
The Windows application manages a simple database, where the
reference features extracted from the clients at enroll time are
stored. Thereafter, acquired images can be matched against tem-
plates in the database in order to be authenticated. Instead of
relying on VGACam sensor for acquiring images, the latter can
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alternately be read from files, which is useful to formally verify
that the results furnished by the demonstrator are correct.

7.3.4 USB interface

The Windows application on the PC and the FPGA communi-
cate over a USB connection. The USB controller on the Nova
board exchanges data with the USB interface in the VHDL de-
sign through 64 8-bit registers [131], that are accessed using four
elementary functions provided by Nova, namely: read register,
write register, burst read, and burst write. The burst mode
speeds up the transfer of large blocks of data, by transmitting
only the base address, that gets subsequently incremented after
each read or write operation in the sequence. To enable access
to the entire set of registers in the design, as well as to the lo-
cal and external memories, wider addresses are needed. To this
effect, the PC application decomposes the address and data to
be transmitted into several parts, each one being written in a
different 8-bit register in the USB interface. A write operation
therefore consists of up to 7 parts, namely: three 8-bit write op-
erations to transmit a 24-bit address, three 8-bit write operations
to send the 24-bit data, and one 8-bit write operation to trigger
the execution of the requested action. In the FPGA, the 24-bit
addresses and data are reconstructed by simple concatenation.
Since the latency of the USB communication channel is rather
high, a cache mechanism is implemented on the PC to maintain a
copy of the content of the USB interface registers. Consequently,
the only write operations that actually need to be performed are
those that cause the values in the interface registers to change.
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7.3.5 SRAM interface

The SRAM memories available on the expansion board are asyn-
chronous and therefore require that the data and address buses
be stable for the whole duration of the write pulse. Indeed, if the
address is not settled at the start of the write cycle, data might
get written at random memory locations, potentially overwriting
useful information. Since the coprocessor is fully synchronous,
the address and data buses, as well as the write pulse, are guar-
anteed to be stable on the rising clock edge only. Indeed, in
case a synchronous memory was used, the latter would sample
the buses and the signal at this instant. To work around this
problem, the address and data buses are latched for the dura-
tion of two cycles, whereas the write pulse gets delayed by half
a cycle. As a consequence, write operations targeting the exter-
nal memory can only occur every two cycles. This is an issue
neither for the EGM coprocessor, which does not write to the
external memory, nor for the morphology coprocessor, since the
latter only generates results every three cycles, as seen in Sub-
section 6.4.2. No latching or delaying needs to be applied for
read operations, which is fortunate since that would prevent the
coprocessors from loading one pixel every cycle. Indeed, glitches
appearing on the address bus, even after the start of the read
pulse, are not problematic since the results of the read opera-
tions are always stored in a register, which means that only the
value that is available on the data bus when the clock edge occurs
is taken into consideration.

7.3.6 Results of the FPGA synthesis

Synthesis for the FPGA is performed using firstly Physical Com-
piler from Synopsys, that converts the VHDL description of the
design into an Electronic Design Interchange Format (EDIF)
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netlist of standard FPGA cells. The netlist is then loaded into
Quartus II from Altera for the final compilation stages, which
involves resources allocation (consisting in physically allocating
logic elements, or LEs, and embedded memories), routing (inter-
connecting the LEs, the FPGA ports and the embedded RAM
cells) and finally, timing analysis. During this last step, the tool
examines the propagation delays of the signals and verifies that
all timing requirements are met. The output of the compilation
consists in a Tabular Text File (TTF) that contains the design to
upload to the FPGA. The resources required by each component
are reported, in Table 7.1 for the number of LEs and in Table 7.2
for the number of memory bits. Note that the provided figures
are those of the coprocessor already encompassing the Ethernet
interface that will be introduced in Subsection 7.3.8. Moreover,
numbers for all embedded memories are reported separately in
Table 7.2, even those for LMEM and SEMEM, although the lat-
ter are actually part of LMEM Block and SE Block, respectively,
as shown in Figure 5.15 and Figure 5.16. Finally, PROGMEM
denotes the program memory, which holds the instructions that
the coprocessor has to execute.

The complete design, including both the morphology and the
EGM coprocessors, occupies less than half the total number of
logic cells, and one quarter of the available memory. It would
therefore be possible to incorporate additional functionalities to
the demonstrator, such as a micro-controller core for handling
part of the processing currently taking place on the PC. The
critical path delay amounts to 66.1 ns, which translates to a slack
margin of 33.9 ns since the demonstrator runs at 10 MHz, a clock
that is derived from the 40 MHz signal furnished by the Nova
board. The maximal operating frequency is therefore 15.1 MHz,
which could be achieved, provided a more complex clock division
logic gets implemented.
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Components Flip- Area Percentage
flops in LEs of FPGA

Clock division 2 2 0.01
USB / Ethernet interface 188 609 2.5
VGACam interface 138 257 1.05
SRAM interface 2 155 0.64

EGM coprocessor 2’503 6’740 27.7

Morphology coprocessor 1’052 3’304 13.6

MCU interface 32 245 1.01
Control unit 132 408 1.68
EXT ADDR 3 25 0.1
LMEM Block 8 55 0.23
IDNORM 108 455 1.88
MAS Block 34 136 0.56
SE Block 13 58 0.24

Morpho Block 722 1’922 7.9

Control 18 207 0 .85
EMU 0 176 419 1 .72
EMU 1 176 433 1 .78
EMU 2 176 441 1 .81
EMU 3 176 422 1 .74

Total 3’885 11’067 45.5

Table 7.1 : Occupation of the FPGA logic elements (LEs).
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Components Size Percentage
in bits of FPGA

EGM coprocessor 64’768 20.8

Morphology coprocessor 12’816 4.1

PROGMEM 3’840 1.23
LMEM 3’344 1.07
LOGMEM 2’048 0.66
INVLOGMEM 2’048 0.66
SEMEM 1’536 0.49

Total 77’584 24.9

Table 7.2 : Occupation of the FPGA memory bits.

7.3.7 USB demonstrator performance

The USB interface available on the Nova Constellation board,
discussed in Subsection 7.3.4, incurs a high latency affecting the
communication with the computer. When a face verification is
performed, the matching coprocessor needs to interact with the
MCU, which is emulated by the PC running the Windows ap-
plication. The configuration of the graphs used by the simplex
downhill matching algorithm are for instance computed on the
MCU, as explained in Section 6.3.3 in [1]. Consequently, during
this stage, data need to be exchanged quite frequently between
the PC and FPGA. Whereas the actual processing time required
by the matching coprocessor to handle one face verification is ap-
proximately 0.6 second, the overhead of the communication over
the USB bus increases this value to approximately 8 seconds, in
spite of the caching mechanism mentioned in Subsection 7.3.4.
It must be stressed that this problem will not affect the actual
System-on-Chip system, where the communication between the
MCU and the coprocessors is carried out over dedicated data and
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address buses (see Figure 5.1), incurring virtually no latency and
enabling one face verification to be processed in less than one sec-
ond. Nevertheless, the demonstrator was enhanced, to try and
offer a user experience that more closely resembles that of the
actual system.

To lower the communication overhead, two actions can be taken.
The first one would consist in reducing the time needed to ex-
change data, which requires a different, faster interface. Indeed,
both the USB driver on the computer and the USB controller
on the FPGA board are closed components that cannot be mod-
ified. Among the possible replacement interfaces, the following
were considered: USB 2.0, Bluetooth and Ethernet. The original
idea was to add an external board supporting the new connector
or transmitter, as well as a hardware module dedicated to han-
dling the physical layer of the chosen protocol, whereas the higher
level of the communication stack would be implemented on the
FPGA. However, all these protocols are rather complex, so that
replacing the communication channel would represent a substan-
tial development effort. The second approach would consist in
seeking to reduce the amount of data being exchanged between
the FPGA and the computer, by performing some of the tasks
currently handled by the Windows application, directly on the
demonstrator board instead. To this effect, a micro-controller
core would need to be implemented on the FPGA.

7.3.8 Ethernet interface

Eventually, we settled for a third option, consisting in using an
external board called Ethernut, that combines the advantages of
the two solutions discussed above. Indeed, as it will be seen in
the next subsection, it both replaces the USB connection with
Ethernet and provides a CPU capable of performing certain op-
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erations without requiring data to be exchanged with the PC.
The enhanced demonstrator is depicted in Figure 7.2.

FPGA

SRAM 
interface

USB / Ethernet interface

EGM 
coprocessor

Morphology 
coprocessor

VGACam 
interface VGACam

Computer USB

SRAM

Ethernut 
board

Ethernet

Figure 7.2 : FPGA-based demonstrator with Ethernut board.

7.3.8.1 Ethernut board

Ethernut [132] is an open source hardware and software project,
aiming at providing Ethernet connectivity to embedded devices.
The hardware consists in a family of standalone boards3 equipped
with a 8-bit micro-controller, namely an Atmel ATMega 128 with
embedded SRAM and Flash memory, running at 14.7 MHz, as
well as a full duplex Ethernet controller. The board also supports
a serial interface, a JTAG connector and an expansion port. On
the software side, Ethernut runs the NutOS, a very simple real-
time operating system (RTOS) targeted at embedded systems,
that offers libraries for TCP/IP network software development,
in addition to a fairly complete implementation of the C stan-
dard libraries. Provided demonstration applications comprise a
DHCP client, a simple telnet server, as well as a basic HTTP

3 The board used in our demonstrator is Version 2.0 Revision A.



232 Architecture Validation and Demonstrator

server. Starting with Version 3.0, Ethernut is now built around
a much faster and more powerful CPU, namely a 32-bit ARM7
TDMI processor running at 73.7 MHz.

The expansion port of the Ethernut board enables direct access
to the ATMega address and data buses, as well as to the associ-
ated memory read and write control signals. As a result, it was
possible to implement communication with the FPGA by simply
mapping the existing interface registers into an otherwise unused
part of the ATMega address space. To this effect, the existing
USB interface on the FPGA was modified to detect and respond
to read or write operations performed by the ATMega that target
addresses falling into the mapped memory space. The addition
of this new functionality was carried out in a way that did not
affect the existing support for theses operations when performed
over the USB interface. As a matter of fact, it is even possible
to use the Ethernet and the USB connections concurrently, pro-
vided that no temporal overlap between two operations initiated
on a different interface occurs4.

The ATMega on the Ethernut board operates at 14.7 MHz, and
the pulses on the read and write signals are only guaranteed to
last as least 67 ns. However, the processor can be configured to
increase the duration of the pulses when accessing some speci-
fied memory ranges. We make use of this facility to obtain pulses
lasting 134 ns when targeting the FPGA memory space, so that
the read and write signals can be sampled using the 10 MHz
clock. Furthermore, a simple electrical interface is required to
connect the FPGA to the Ethernut board. Indeed, the former
uses 3.3V I/O signals, whereas the latter mostly employs 5V,
the standard I/O level of the ATMega CPU5. Unidirectional ad-
4 Currently, operating both interfaces at the same time furthermore requires
disabling the cache mechanism discussed in Subsection 7.3.4, although it
would be easy to modify the PC application to remove this limitation.

5 Some address bits are however latched by a CPLD and use 3.3V.
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dress signals output by the ATMega can be directly connected
to the FPGA, since the latter can be configured to accept 5V
inputs [133]. The ATMega however does not tolerate 3.3V in-
puts, so conversion needs to be applied on the data bus. To this
effect, a bi-directional level-shifter is employed. By default, it
converts the 5V outputs of the ATMega to 3.3V inputs suitable
for the FPGA. When the Ethernut interface on the latter has
determined that the ATMega is attempting to perform a read
operation from the FPGA address space, it reverses the direc-
tion of the level shifter, so that it now converts the 3.3V signals
driven by the FPGA to the 5V level that the ATMega requires.

7.3.8.2 Communication protocol

The communication between the PC and the Ethernut board is
based on the telnet protocol [134]. A simple telnet client was
included in the Windows application, so that the latter can open
a TCP/IP connection to the Ethernut board when starting up.
Currently, the Ethernut board uses a static TCP/IP address that
must be coherent with the subnet it is connected to, and known to
the Windows application. If the board gets moved to a different
subnet, its firmware will therefore need to be updated to become
aware of the new address. Furthermore, the latter must also
be communicated to the Windows application. This could be
avoided by configuring the board to rely on its built-in DHCP
client to dynamically obtain an IP address from the network
when booting. A simple broadcast-based discovery scheme could
then be included in the Windows application, to enable it to
automatically find out the address attributed to the board.

Using the overloading mechanism offered by the C++ language,
the four elementary USB functions described in Subsection 7.3.4
can be transparently replaced with functions that perform the
same tasks by using the telnet protocol instead. Each command



234 Architecture Validation and Demonstrator

consists of a short text string, starting with a single 8-bit ASCII
character, followed by the address — and data in the case of a
write operation — written in decimal. For burst operations, the
number of bytes that need to be transmitted is included in the
text command, whereas the data block itself gets transmitted
in binary form. On the Ethernut board, the standard functions
of the C library are used to parse and interpret the command
string, which is then translated into a read or write operation
that targets the memory space mapped to the FPGA.

At this point, the demonstrator can be fully operated over Eth-
ernet, without requiring that the USB connection be available.
The gain is however marginal, the observed latency of the Ether-
net connection being almost as high as that of the USB6. To
effectively improve the performance of the demonstrator, the
number of transactions that take place between the FPGA and
the PC must still be reduced. This was achieved by introducing
10 higher-level commands, which are interpreted by the ATMega
on the Ethernut board, to generate sequences of elementary com-
mands to be sent to the FPGA. For instance, a single command
replaces the seven operations that were required to write a 24-
bit value, as explained in Subsection 7.3.4. Following this step,
the time required to perform one face verification is 3 seconds,
representing one third of the duration measured with USB.

Finally, we implemented one supplementary high-level command,
that triggers and manages the execution of the following sequence
of operations, that is part of the simplex downhill matching al-
gorithm mentioned in Subsection 3.3.5:

1. Upload a new graph configuration from the PC to the
FPGA.

6 Note however that no caching mechanism was implemented for Ethernet.
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2. Set the program counter (PC) of the EGM coprocessor to
a known, constant address.

3. Start the EGM coprocessor by sending it a run command.

4. Poll the coprocessor until it indicates that it has completed
the execution of the requested task.

5. Retrieve the resulting graph score from the FPGA and
transmit it to the PC.

The new command simply uploads the graph generated by the
PC to the Ethernut board, the latter taking care of interacting
with the FPGA to execute the four remaining operations in the
list above. Therefore, only one Ethernet transaction suffices for
the whole sequence. After this last command was introduced, the
duration of the face verification process was reduced to 1.6 sec-
ond. The communication overhead was therefore reduced by a
factor of 10, dropping from 8 seconds to 0.8 second, approxi-
mately. The 15 commands available when using the Ethernet
interface are summarized in Figure 7.3.

7.4 ASIC Synthesis

Following the validation of the hardware architecture carried out
on the FPGA demonstrator, the design was synthesized in a low-
power ASIC technology. Indeed, to verify that the proposed so-
lution is effectively suitable for mobile, battery-powered devices,
it is necessary to accurately assess the energy required for oper-
ating the coprocessor. This section discusses the ASIC synthesis
flow, and reports the achieved results in terms of both silicon
area and power consumption. Synthesis was carried out using
memories and standard cells from a library supplied by Virtual
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Figure 7.3 : Commands available with the Ethernet interface.
For each command, the table indicates the size (in bits) of the operands.
Burst write operations are followed by count bytes of binary data, contain-
ing either 8-bit or 16-bit words. The command A is followed by 128 bytes,
corresponding to the coordinates of the 64 nodes of the graph to upload.

Silicon Technologies. The target technology was the 0.18 µm,
6 metal layers process from UMC [135].

7.4.1 Synthesis flow

During the initial ASIC synthesis stage, the VHDL description
is translated into a netlist of standard cells using Physical Com-
piler from Synopsys, which is instructed to optimize the design
so as to minimize the total area. The netlist is output in VHDL
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format, alongside a Standard Delay Format (SDF) file containing
the complete timing specifications of the circuit, such as setup
and hold constraints, as well as the propagation delays over the
nets and through the standard cells. Both files are then loaded
into ModelSim from Mentor Graphics, where simulations are per-
formed using a temporal resolution of 1 ps. This very low number
ensures that all transitions incurred by glitches are taken into ac-
count when determining the activity — or toggle rate — of each
net in the coprocessor. To verify the functionality of the cir-
cuit, the test bench employed consists in the actual morphology
features extraction software program, executed over an entire
face image7. The activity gets written to a Standard Activity
Interchange Format (SAIF) file, which gets loaded into Physi-
cal Compiler so as to annotate each net in the design with the
toggle rate determined by ModelSim. Further optimizations are
then carried out, aiming now at minimizing the dynamic power
consumption of the circuit. The resulting updated VHDL netlist
and SDF files are again fed to ModelSim, and a second simula-
tion is carried out, using the same test bench as before. This
leads to the generation of a new SAIF file, that Physical Com-
piler uses to update the design annotation. Finally, the power
analysis and reporting tool of Synopsys is invoked to compute
the power consumption achieved by the final design.

7.4.2 Area of the synthesized ASIC

The area of the resulting ASIC for the morphology coprocessor
incorporating features normalization is detailed in Table 7.3. The
total surface of the circuit amounts to 0.33 mm2, i.e. more than
half of the area being occupied by the five embedded memories.
The four Elementary Morphology Units (EMUs), that implement

7 This operation takes approximately seven hours when carried out on a
SunBlade 2000 Ultra-Sparc III workstation running at 1.2 GHz.
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the core processing functionality, account for nearly 60% of the
area devoted to standard cells. One can note that, even though
they were synthesized from multiple instances of the same VHDL
entity description, the four EMUs are not implemented using
the exact same set of standard cells. Indeed, the compiler was
not restricted in replicating the same synthesized design for all
four instances, but was on the contrary given the opportunity
to independently optimize each one. For instance, it can select
among multiple variants of the same standard cell, differing only
by the size of their output buffer, depending on the capacitive
load that must be driven by each particular instance.

7.4.3 Estimation of the power consumption

As described in Subsection 7.4.1, simulations carried out on the
synthesized design consisted in performing features extraction
over a entire face image, to precisely and realistically determine
the activity of each node in the netlist. Using this information,
together with the values of the node capacitances that were ob-
tained during synthesis, the power analysis tool can accurately
derive the average power dissipated by the circuit when process-
ing an image. The achieved results for the dynamic power con-
sumption are reported in Table 7.4. A distinction is made be-
tween the internal power, consisting in the power consumed by
the node transitions that occur inside the standard cells, and the
switching power, representing the power dissipated by the tran-
sitions of the nets that interconnect the cells. The overall static
power consumption, or leakage power, is much smaller than the
dynamic one and amounts to 2.3 µW only.
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Components Area (in µm2) Percentage

combi- non-combi- w/o
national national Total mem

MCU interface 3’167 2’984 6’151 1.86 4.31
Control unit 8’902 9’731 18’633 5.65 13.0
EXT ADDR 564 223 787 0.24 0.55
LMEM Block 1’052 593 1’645 0.5 1.15
IDNORM 9’438 7’664 1’7102 5.19 12.0
MAS Block 3’868 2’348 6’216 1.88 4.36
SE Block 1’597 777 2’374 0.72 1.66

PROGMEM 48’430 48’430 14.7
LMEM 46’431 46’431 14.1
LOGMEM 32’641 32’641 9.9
INVLOGMEM 32’641 32’641 9.9
SEMEM 26’827 26’827 8.14

Morpho Block 37’414 52’493 89’907 27.2 62.9

Control 4’829 1’297 6’126 1.86 4.29
EMU 0 8’154 12’799 20’953 6.35 14.7
EMU 1 8’148 12’799 20’947 6.35 14.7
EMU 2 8’145 12’799 20’944 6.35 14.7
EMU 3 8’138 12’799 20’937 6.35 14.7

Glue logic 32 32 0.01 0.02

Total 66’034 263’783 329’817

Memories 186’970 56.7
Cells 142’847 43.3

Table 7.3 : Area of the synthesized ASIC.

7.5 ASIC Synthesis with clock gating

In a synchronous design, the clock tree is usually directly con-
nected to every flip-flop. Due to the switching capacitance of
the gates located behind the clock pin, power is consumed each
time a clock edge occurs, even when the flip-flop value does not
change. As seen in Table 7.4, the contribution of the clock tree
amounts to approximately one third of the total switching power.
If unnecessary transitions could be avoided in the flip-flops, this
number would be reduced. Let us consider the case of the erosion
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Components Power (in mW) Percentage

internal switching w/o
power power Total mem

MCU interface 0.024 0.000 0.024 0.68 2.03
Control unit 0.112 0.043 0.155 4.4 13.1
EXT ADDR 0.002 0.001 0.003 0.09 0.25
LMEM Block 0.009 0.014 0.023 0.65 1.95
IDNORM 0.080 0.019 0.099 2.81 8.38
MAS Block 0.031 0.009 0.040 1.14 3.39
SE Block 0.015 0.004 0.019 0.55 1.61

PROGMEM 0.546 0.546 15.5
LMEM 0.423 0.423 12.0
LOGMEM 0.504 0.504 14.3
INVLOGMEM 0.504 0.504 14.3
SEMEM 0.363 0.363 10.3

Morpho Block 0.563 0.138 0.701 19.9 59.4

Control 0.026 0.013 0.039 1.11 3.30
EMU 0 0.134 0.032 0.166 4.71 14.1
EMU 1 0.134 0.029 0.163 4.63 13.8
EMU 2 0.134 0.032 0.166 4.71 14.1
EMU 3 0.135 0.032 0.167 4.74 14.1

Clock tree 0.117 0.117 3.32 9.91

Total 3.176 0.345 3.521

Memories 2.340 66.4
Cells 1.181 33.6

Table 7.4 : Dynamic power consumption.

and dilation register banks in the EMUs. At any time, at most
one 8-bit register per bank can get modified, which amounts to
a total of 8 registers, or 64 flip-flops, for the four EMUs. Since
there are a total of 4 dilation and 4 erosion register banks in the
EMUs, counting 10 and 9 registers each, respectively, the number
of flip-flops globally amounts to 608. Consequently, at least 554
flip-flops — corresponding to more than half the total number in
the entire circuit — are clocked during every cycle, even though
their content is guaranteed not to change.
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To avoid this situation, a technique called clock gating can be
employed. The flip-flop update logic is usually implemented by
using an enable condition to command a multiplexer connected
to the flip-flop input. In the case where the flip-flop does not need
to be updated, its current data output is selected to be the next
data input value. With clock gating, the multiplexer is removed
and the signal carrying the new data value goes directly to the
flip-flop input. The clock pin of the flip-flop is connected to the
output of an AND gate, whose inputs are the clock signal and the
latched enable signal that was formerly steering the multiplexer.
The latch, which is transparent when the clock signal is low, is
inserted to protect from glitches that can occur on the enable
signal. If the flip-flop needs no updating, the clock edge will be
canceled by the AND gate, so that no transition occurs on the
clock pin. When applied to a single flip-flop, this technique does
not make much difference. Indeed, the transitions on the clock
input gate of the flip-flop now occurs on the AND gate instead.
The impact can however become significant when considering a
register, since the latter needs only one latch and one AND gate
for all its flip-flops.

7.5.1 Clock gating insertion

Physical Compiler is in theory capable of automatically inserting
clock gating during the synthesis process. Registers that share a
common enable condition are indeed correctly identified, and all
their clock pins get connected to the output of one single AND
gate. However, the library cell chosen to implement the gate has
an input capacitance that is actually almost seven times higher
than the one on the clock pin of a flip-flop. In the considered de-
sign, most registers are constituted of 8 flip-flops, so that even if
none of the latter were ever updated, the gain would be marginal.
Moreover, when the value held by a register needs to be mod-
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ified, the energy consumed almost doubles with respect to the
situation without clock gating, since transitions now occur both
on the AND gate and on the clock pin of the flip-flops. As a
matter of fact, the reported power consumption of the circuit
is effectively higher with clock-gating. Fortunately, the library
provides dedicated standard cells for the clock gating logic, that
Physical Compiler can be instructed to use instead. Since the
input capacitance of these cells is slightly inferior to that of the
clock pin on the flip-flops, the power consumption gets indeed
reduced in this case, as reported in the following section.

7.5.2 Power consumption

As seen in Table 7.5, the total dynamic power consumption of
the cells decreases by 32% when clock gating is applied. The
most significant reductions are observed in the elements that con-
tain many registers that are rarely updated, such as the MCU
interface8, the IDNORM and the EMUs. Conversely, the situa-
tion slightly worsens for the SE BLOCK, whose two registers are
modified during most of the executed cycles. Finally, the power
dissipated by the clock tree is reduced by 45%, and the static
power consumption now amounts to 2.2 µW.

7.5.3 Area of the circuit

Enabling clock gating during synthesis also reduces the area oc-
cupied by the library cells by more than 7.6%, as it can be seen
in Table 7.6. As explained in Subsection 7.5.1, the modifica-
tions made by the synthesizer consisted in replacing the input
multiplexers of the flip-flops in the clock-gated registers with a

8 Used to manage read and write requests made by the MCU, so that the
registers it contains are never modified when the coprocessor is running.
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Components Power (in mW) Percentage

internal switching w/o
power power Total mem

MCU interface 0.003 0.000 0.003 0.1 0.38
Control unit 0.088 0.044 0.132 4.21 16.6
EXT ADDR 0.002 0.001 0.003 0.1 0.38
LMEM Block 0.009 0.010 0.019 0.61 2.39
IDNORM 0.047 0.018 0.065 2.07 8.19
MAS Block 0.024 0.009 0.033 1.05 4.16
SE Block 0.015 0.006 0.021 0.67 2.64

PROGMEM 0.546 0.546 17.4
LMEM 0.423 0.423 13.5
LOGMEM 0.504 0.504 16.1
INVLOGMEM 0.504 0.504 16.1
SEMEM 0.363 0.363 11.6

Morpho Block 0.311 0.143 0.454 14.5 57.2

Control 0.023 0.012 0.035 1.12 4.41
EMU 0 0.071 0.036 0.107 3.41 13.5
EMU 1 0.073 0.032 0.105 3.35 13.2
EMU 2 0.072 0.033 0.105 3.35 13.2
EMU 3 0.072 0.030 0.102 3.25 12.9

Clock tree 0.064 0.064 2.04 8.06

Total 2.839 0.295 3.134

Memories 2.340 74.7
Cells 0.794 25.3

Table 7.5 : Dynamic power consumption with clock-gating.

single dedicated cell. Since the latter drives the clock pin of all
the flip-flops in the register, it must be equipped with a large
output buffer, and it is expected to be rather large. Based on
the cell sizes provided in the library datasheet, applying clock
gating should result in a larger circuit. Indeed, for one EMU for
instance, the inserted clock gating cells increase the size by 6%,
whereas the multiplexers that were removed represent less than
1% of the area. The explanation for the size reduction is actually
furnished by the fact that different flip-flops are used. Indeed,
whereas flip-flops in the original circuit were equipped with an
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Components Area (in µm2) Difference

combi- non-combi- compared to
national national Total non-gated (%)

MCU interface 3’135 2’345 5’480 -10.9
Control unit 9’357 8’506 17’863 -4.1
EXT ADDR 561 212 773 -1.8
LMEM 1’058 487 1’545 -6.1
IDNORM 9’806 6’541 16’347 -4.4
MAS Block 3’890 2’009 5’899 -5.1
SE Block 1’597 761 2’358 -0.7

PROGMEM 48’430 48’430
LOCALMEM 46’431 46’431
LOGMEM 32’641 32’641
INVLOGMEM 32’641 32’641
SEMEM 26’827 26’827

Morpho Block 37’578 44’109 81’687 -9.1

Control 4’838 1’249 6’087 -0.6
EMU 0 8’183 10’715 18’898 -9.8
EMU 1 8’180 10’715 18’895 -9.8
EMU 2 8’187 10’715 18’902 -9.7
EMU 3 8’190 10’715 18’905 -9.7

Glue logic 32 32 0

Total 67’014 251’940 318’954 -3.3

Memories 186’970
Cells 131’984 -7.6

Table 7.6 : Area of the ASIC with clock-gating.

enable pin, the ones used in conjunction with clock-gating lack
such input, and are on average 25% smaller. Since it was verified
that the enable pins were not used anyway in the former case, it
is surprising that Physical Compiler chose to use such cells.

7.5.4 Power consumption at lower supply voltage

The reported slack margin of the synthesized circuit is 87 ns
when operating at 10 MHz at the nominal 1.8V supply voltage.
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Therefore, the coprocessor would still function correctly when
clocked at higher frequencies, up to 75 MHz. In such a case,
the power consumption would increase linearly with the oper-
ating frequency, but it would be compensated by the fact that
the time interval required to complete a task would get smaller.
Consequently, the amount of energy needed to process one face
would not change. The slack margin can also be exploited to re-
duce the power consumption, by operating the circuit at a lower
supply voltage, as detailed below.

According to the alpha-power law [136, 137], reducing the supply
voltage Vdd increases the propagation delay τ, which reduces the
slack margin:

τ = k
Vdd

(Vdd − Vth)α (7.1)

Vth denotes the threshold voltage and α represents the velocity
saturation of the charge carriers, which depends on the technol-
ogy. k is a constant for a particular design in a given technology.
In the case of the UMC 0.18 µm process, the values are as follows:

Vdd = 1.8 V Vth = 0.5 V α ∼= 1.5

Since the slack margin is 87 ns, the largest cumulated gate delay
in our design can be estimated to 13 ns, so that we can rewrite
Equation 7.1 to obtain the value of k:

k = τ
(Vdd − Vth)α

Vdd
= 10.7 (7.2)

In order to determine the lowest supply voltage that can be ap-
plied, we then let τ = 100 ns in Equation 7.1 and solve it nu-
merically. The achieved result is 0.67 V, which corresponds to a
reduction factor of 2.69 with respect to the nominal Vdd value.
It is well known that the dynamic power consumption is pro-
portional to the square of the supply voltage, which means that
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the power would then be reduced by a factor of 7.23. Theoreti-
cally, if the circuit was running at 10 MHz with a supply voltage
of 0.67 V, the power consumption of the cells would therefore
amount to 0.11 mW only.

The memories provided by Virtual Silicon for the target process
are designed for high-speed applications running at several hun-
dreds megahertz. Indeed, their access time is inferior to 3 ns,
which means that when they operate at 10 MHz, the slack mar-
gin is higher than 97 ns. To estimate the power consumption
that could be achieved with more suitable components, we rely
on one SRAM, reported in [138] and whose characteristics are re-
called in Table 7.7. Since our architecture was designed so that
the memories are directly connected to registers, the specified
access time is sufficiently fast.

Tech- Supply Access
nology Memory size voltage time Current

0.25 µm 4096 × 16 bits 0.8 V 65 ns 9 µA/MHz

Table 7.7 : Characteristics of a low-power SRAM.

Using the alpha-power law, we can determine that the standard
cells in the morphology coprocessor would consume 0.16 mW
with a 0.8V supply voltage and a 10 MHz operating frequency.
Under these conditions, the power consumption of the 64-kbit
SRAM above would amount to 72 µW. Since the total size of all
five memories in the circuit represents less than 13 kbits, we can
conservatively estimate that their combined power consumption
would be less than 40 µW when implemented using the same
technique as the SRAM in Table 7.7. Consequently, with appro-
priately designed memories, the power dissipated by the complete
coprocessor and all the embedded memories at 10 MHz can be
estimated to be less than 0.2 mW when the supply voltage gets
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reduced to 0.8V.

If the supply voltage is lowered to 0.8V, the power consumption
of the standard cells in the EGM coprocessor would amount to
0.63 mW. Since the total size of the embedded memories is five
times higher in the EGM coprocessor than in the morphology
coprocessor, the power consumption incurred by the memories
in the later can be roughly estimated to represent 200 µW. The
total power consumed by the EGM coprocessor, including the
memories, therefore amounts to ca 0.83 mW. Considering the ex-
ecution time needed to carry out features extraction and graph
matching, namely 0.2 sec and 0.66 sec, respectively, we can cal-
culate the energy required to perform each operation, namely
0.04 mJ and 0.55 mJ, respectively. The two coprocessors there-
fore consume less than 0.6 mJ to perform one face verification.

7.6 Conclusion

In this chapter, the various steps related to the design and the
validation of the hardware architecture presented in Chapter 5
and Chapter 6 were discussed. Two versions of an FPGA-based
demonstrator system, employed to validate one of the proposed
solutions, were described. Finally, the results obtained after the
morphology coprocessor supporting the features normalization
step was synthesized in a 0.18 µm ASIC technology are reported,
in terms of silicon die area and power consumption. Since the
slack margin is very high at the considered operating frequency,
an estimation of the power consumption that could be achieved
by reducing the supply voltage and using low-power memories,
is provided. In such conditions, the coprocessor would offer the
same computational power and would therefore still need 0.2 sec-
ond to process one image, yet its power consumption would de-
crease to approximately 0.2 mW.
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It can be noted that further savings in power consumption could
probably be achieved by using advanced optimization techniques.
For instance, it is sometimes interesting to recode the signals
transmitted by the buses, to reduce the activity of the latter
by minimizing the average number of transitions occurring be-
tween two consecutive states. The resulting gains are however
typically much smaller than those that can be achieved at the
algorithmic and system levels, which were the levels considered
in this project.



Chapter 8

Conclusion

8.1 Summary and recall of contributions

Following the apparition in the course of the last few years of new
generations of mobile devices, that provide many additional func-
tionalities beside vocal communication, the need for enhanced
access control security grew stronger. In this context, biomet-
ric authentication based on the face modality provides an inter-
esting solution, combining low intrusiveness with the faculty of
reusing the image sensor already providing digital camera func-
tionality. However, the deployment of face verification on mobile
devices is confronted with several challenges in order to fulfill
the constraints of such an environment. The research activities
that were presented in this PhD report mainly focused on two
of these aspects. Firstly, uncontrolled image acquisition condi-
tions require algorithms that are robust to perturbations such as
varying illumination or pose. Secondly, the computational com-
plexity must be sufficiently low, so as to remain compatible with
battery-powered applications, calling for dedicated hardware ar-
chitectures that are highly optimized for specific tasks.
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The following contributions were reported in this PhD thesis.
Firstly, a normalization technique for mathematical morphology-
based features extraction was proposed in Chapter 3, bringing
the face authentication performance of the Elastic Graph Match-
ing algorithm to the same level that gets achieved with Gabor-
based features, while incurring only a small increase in computa-
tional complexity. Another contribution was given in Chapter 4,
where further algorithmic enhancements were introduced, that
yield slightly improved results. Other contributions in Chapter 4
concerned the assessment of the robustness of the Morphological
Elastic Graph Matching (MEGM) algorithm under various de-
graded conditions, as well as the evaluation of several heuristic
approaches to enhance its robustness in such cases. In Chapter 5,
another contribution was made, namely the description of the
hardware architecture of a coprocessor dedicated to mathemati-
cal morphology features extraction for a low-power face authen-
tication System-on-Chip. An enhanced version implementing an
additional features normalization step was then introduced in
Chapter 6. Finally, a twofold contribution can be identified in
Chapter 7, in the form of an FPGA-based demonstrator on one
hand, enabling real-time validation of the proposed solution, and
of the synthesis of the corresponding ASIC on the other, furnish-
ing accurate silicon die area and power consumption figures.

8.2 Other state-of-the-art solutions

In this section, the most significant academic research results and
commercial products recently disclosed in the field of face recog-
nition targeting low-power mobile applications are presented.
Only the cases where the biometric algorithms are completely
executed on the mobile device itself are considered. No solution
equivalent to the hardware-based approach discussed in this re-
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port could be identified, and so the discussed systems are mostly
software-based. In many cases, the algorithm is executed on a
variant of the fifth generation of the ARM 32-bit processor archi-
tecture, known as ARMv5 [139] and commonly found in current
PDAs and high-end mobile phones such as smartphones.

8.2.1 Academic work

In the framework of the SecurePhone project [140], a prototype
platform called the SecurePhone PDA was designed, by supple-
menting a commercially available mobile phone1 with specific
software modules and a customized SIM card. One of the goal
of the project is to enable multi-modal biometric authentication,
based on voice, face and signature to be carried out on the device.
The approach followed for the face modality is described in [141].
It is based on the Discrete Wavelet Transform (DWT), and the
discussed implementation can process 10 images per second on
the embarked XScale2 PXA263 processor that runs at 400 MHz
and consumes 500 mW. The energy required to perform one face
verification thus amounts to 50 mJ. The system is not very accu-
rate, the achieved EER — measured over a custom face database
acquired with the phone built-in camera — reaching 28%.

A solution based on eigenfaces (see Subsection 3.2.2) is reported
in [142]. The highly optimized software implementation needs
5.2 seconds to perform one authentication when running on a
400 MHz XScale PXA255 processor, which consumes 400 mW.
Hence, the amount of energy required for one authentication rep-
resents 2 J. The achieved EER, estimated from the provided ROC
curve obtained with the FERET database [143], lies between 7%

1 The chosen model bears the model name Qtek 2020 in European markets.
2 XScale is the name of the Intel implementation of the ARMv5 architecture,
that was sold to Marvell Technology Group in 2006.
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and 8%. Using similar optimization techniques, an alternate so-
lution running on the same processor but based on Elastic Bunch
Graph Matching (EBGM) is proposed in [144]. The approach fol-
lowed is that of Wiskott et al. [57], where the graph nodes are
located over facial landmarks and the features extraction is per-
formed with Gabor filters. To reduce the computational com-
plexity, lookup-tables are used, however the required memory
size is not specified. One face authentication can be performed
in 1.3 second, which corresponds to 520 mJ. The reported EER
ranges from 5% to 20%, depending on the database set employed.

Finally, a hardware approach is proposed in [145], where the bio-
metric algorithm is based on eigenfaces (see Subsection 3.2.2)
and executed on the Xtensa reconfigurable processor architec-
ture [146] running at 100 MHz. A dedicated coprocessor was
added to the system, to accelerate the image enhancement stage,
since it was found that the latter represents more than 85% of
the total processing time3. The optimized image enhancement
step is reported to consume 28.3 mJ per image when the copro-
cessor is implemented in a 0.18 µm technology, but no figures
are provided for the complete system. Performing one face ver-
ification takes 1.4 second, whereas an EER of 6.3% is achieved
when evaluating the solution using sets of the FERET database
where the faces are frontally illuminated.

8.2.2 Commercial devices and solutions

In 2006, two mobile phones with face verification capabilities
were commercially released in Japan. The user’s manual of each
device stresses that great care should be taken to acquire images
where the face is evenly and brightly lit to avoid false rejections.

3 This stage is in particular responsible for precisely scaling and aligning the
faces, as required by eigenfaces-based methods.
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Moreover, both devices require the user to setup an alternate
identification method, such as a secret code, to enable access to
the phone when the biometric authentication does not succeed.

The first device, the Vodafone 904SH [147] manufactured by
Sharp Electronics, was introduced in April 2006 by Vodafone
Japan4. It uses a face recognition technology developed by the
Japanese company OKI and called FSE (Face Sensing Engine),
that can perform one authentication in 200 ms on an ARM9 pro-
cessor running at 200 MHz. Since the latter consumes 160 mW
when integrated in a 0.18 µm process, the corresponding amount
of energy can be estimated to 32 mJ for one face authentication.

No information is available regarding the solution employed by
the second mobile phone, the FOMA P903i [148] released in
November 2006 by NTT DoCoMo. The device is manufactured
by Panasonic and needs one second to process one face, albeit
the processor type and operating frequency are unknown.

Beside customer products such as cellular phones, face verifica-
tion was also implemented on devices employed by law enforce-
ment agencies. However, in most mobile solutions, the device
merely handles the acquisition of the face images, and trans-
mits them to a remote server where the actual biometric opera-
tions are performed. Nonetheless, the HIIDE (Handheld Intera-
gency Identity Detection Equipment) Series 4 commercialized by
SecuriMetrics [149] constitutes a complete standalone solution.
The device, which is rugged and weighs over 1.3 kg, is equipped
with an AMD Geode 533 processor running at 400 MHz and
consuming 1.1 W, which enables biometric face verification to be
carried out onboard. However, no indication is given regarding
the duration of the operation, so that it is not possible to estimate
the amount of energy needed to authenticate one individual.

4 The company was subsequently sold and became Softbank Mobile.
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Finally, Omron, another Japanese company, also announced and
demonstrated a face authentication solution targeted at mobile
phones in 2005. According to the published information, process-
ing one image requires one second when running on an ARM9
processor operating at 266 MHz, which corresponds to more than
200 mJ being consumed per face verification if a 0.18 µm tech-
nology is assumed.

When considering solely the energy consumed by the processor
that executes the biometric authentication algorithm — ignoring
the energy needed for related operations such as acquiring the im-
age or storing it — the best result is achieved by OKI, whose so-
lution requires 32 mJ to verify one face on a processor integrated
in 0.18 µm. In comparison, post-synthesis simulations showed
that the hardware solution discussed in Chapter 7 only needs ca
6 mJ in a similar technology when operating at the nominal 1.8 V
supply voltage, and less than 0.6 mJ if the latter is reduced to
0.8 V. Moreover, the System-on-Chip structure enables further
power consumption savings by strongly reducing the number of
signals that must be driven off-chip. Dedicated hardware solu-
tions such as the one proposed in this report therefore remain
significantly more efficient energy-wise then software-based ap-
proaches, even when the latter are implemented on processors
specifically designed for mobile embedded systems.

8.3 Perspectives

At the time of writing this report, the major challenge that re-
mains to be surmounted before face recognition can become an
efficient biometric modality on mobile devices is robustness to
changes in image acquisition conditions, particularly in the case
of varying illumination. To alleviate theses problems, many ap-
proaches now rely on 3D information, exploited in addition to
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regular 2D images, in view of modeling and compensating non-
linear effects such as shadows. Even though newer generations
of 3D cameras are smaller, cheaper and less power hungry, they
are still far from satisfying the constraints of mobile devices such
as cellular phones. Therefore, it still makes sense to pursue re-
search on methods based purely on 2D images, either by look-
ing for features extraction techniques that are more invariant to
environmental conditions, or by applying supplementary prepro-
cessing steps to enhance the robustness of the algorithm. By
resorting to highly optimized hardware architectures dedicated
to specific tasks, huge savings in energy consumption can be
achieved, thereby enabling additional operations to be imple-
mented and executed on the device itself while still fulfilling the
power consumption constraints of mobile applications.

With respect to the contributions presented in this report, several
future research activities can be envisioned. Firstly, as mentioned
in Subsection 3.4.4, other kinds of features could be experimented
in conjunction with the Elastic Graph Matching algorithm, such
as the DCT-phase that has proved to be very effective for match-
ing images. Further experiments should also be carried out to
assess the performance of the MEGM algorithm under degraded
conditions, such as those discussed in Chapter 4, considering
for instance the combined influence of several kinds of pertur-
bations jointly affecting the acquired face images. Finally, the
morphology and the graph matching coprocessors, discussed in
this report and in Jean-Luc Nagel’s thesis [1], respectively, could
be integrated into one single design, possibly including a micro-
controller, a memory and an image sensor, so as to realize a
complete low-power System-on-Chip solution for providing face
authentication on mobile devices.





References

[1] J.-L. Nagel, “Algorithms and VLSI Architectures for Low-Power
Mobile Face Verification,” PhD thesis No. 1850, University of
Neuchâtel, Switzerland, 2006.

[2] http://www.merriam-webster.com/dictionary/biometry

[3] http://www.tibs.org/interior.aspx?id=290

[4] http://www.biometrics.org/intro.htm

[5] M. Nisenson, I. Yariv, R. El-Yaniv, and R. Meir, “Towards Be-
haviometric Security Systems: Learning to Identify a Typist,” in
Proc. 7th European Conf. on Principles and Practice of Knowl-
edge Discovery in Databases (PKDD 2003), Cavtat-Dubrovnik,
Croatia, Sep. 2003, pp. 363–374.

[6] A. Jain, A. Ross, and S. Prabhakar, “An Introduction to Biomet-
ric Recognition,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 14, no. 1, pp. 4–20, 2004.

[7] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook
of Fingerprint Recognition, Springer, 2003.

[8] A. C. Weaver, “Biometric Authentication,” IEEE Computer,
vol. 39, no. 2, pp. 96–97, 2006.

[9] A. Bertillon, “Une Application Pratique de L’Anthropométrie
sur un Procédé D’Identification,” Annales de Démographie In-
ternationale, vol. 5, pp. 330–350, 1881.

http://www.merriam-webster.com/dictionary/biometry
http://www.tibs.org/interior.aspx?id=290
http://www.biometrics.org/intro.htm


258 References

[10] C. Champod, C. Lennard, P. Margot, and M. Stoilovic, Finger-
prints and Other Ridge Skin Impressions, International Forensic
Science and Investigation Series, CRC Press, 2004.

[11] F. J. Mouat, “Notes on M. Bertillon’s Discourse on the Anthropo-
metric Measurement of Criminals,” Journal of the Anthropolog-
ical Institute of Great Britain and Ireland, vol. 20, pp. 182–198,
1891.

[12] R. Fosdick, “The Passing of the Bertillon System of Identifica-
tion,” Journal of the American Institute of Criminal Law and
Criminology, vol. 6, no. 3, pp. 363–369, 1915.

[13] M. Trauring, “Automatic Comparison of Finger-Ridge Patterns,”
Nature, vol. 197, no. 4871, pp. 938–940, 1963.

[14] A. Roddy and J. Stosz, “Fingerprint Features-Statistical Anal-
ysis and System Performance Estimates,” Proceedings of the
IEEE, vol. 85, no. 9, pp. 1390–1421, 1997.

[15] M. Ballantyne, R. S. Boyer, and L. Hines, “Woody Bledsoe: His
Life and Legacy,” AI Magazine, vol. 17, no. 1, pp. 7–20, 1996.

[16] N. Herbst and C. Liu, “Automatic Signature Verification Based
on Accelerometry,” IBM Journal of Research and Development,
vol. 21, pp. 245–253, 1977.

[17] D. Maio, D. Maltoni, R. Cappelli, J. Wayman, and A. Jain,
“FVC2004: Third Fingerprint Verification Competition,” in
Proc. 1st Int’l Conf. on Biometric Authentication (ICBA ’04),
Honk Kong, July 2004, pp. 1–7.

[18] R. H. Ernst, “Hand ID System,” U.S Patent No. 3’576’537, 1971.

[19] R. P. Miller, “Finger Dimension Comparison Identification Sys-
tem,” U.S Patent No. 3’576’538, 1971.

[20] N. Kanwisher, J. McDermott, and M. Chun, “The Fusiform
Face Area: A Module in Human Extrastriate Cortex Specialized
for Face Perception,” Journal of Neuroscience, vol. 17, no. 11,
pp. 4302–4311, 1997.



References 259

[21] J. Haxby, E. Hoffman, and M. Gobbini, “Human Neural Sys-
tems for Face Recognition and Social Communication,” Biologi-
cal Psychiatry, vol. 51, no. 1, pp. 59–67, 2002.

[22] P. Sinah and T. Poggio, “I Think I Know that Face. . . ,” Nature,
vol. 384, no. 6608, p. 404, 1996.

[23] F. Tsalakanidou, S. Malassiotis, and M. G. Strintzis, “Exploita-
tion of 3D Images for Face Authentication Under Pose and Il-
lumination Variations,” in Proc. 2nd Int’l Symposium on 3D
Data Processing, Visualization, and Transmission (3DPVT’04),
Chapel Hill, NC, USA, 2004, pp. 50–57.

[24] V. Blanz, S. Romdhani, and T. Vetter, “Face Identification across
Different Poses and Illuminations with a 3D Morphable Model,”
in Proc. 5th IEEE Int’l Conf. on Automatic Face and Gesture
Recognition (FG ’02), 2002, pp. 192–197.

[25] C. Beumier, “Identity Authentication Through 3D Face Analy-
sis,” PhD thesis, Ecole Nationale Supérieure des Télécommuni-
cations de Paris, France, 2003.

[26] A. Bronstein, M. Bronstein, and R. Kimmel, “Expression-
Invariant 3D Face Recognition,” in Proc. 4th Int’l Conf.
on Audio- and Video-based Biometric Person Authentication
(AVBPA ’03), Guildford, UK, June 2003, pp. 62–69.

[27] J. Daugman, “How Iris Recognition Works,” IEEE Trans. Cir-
cuits and Systems for Video Technology, vol. 14, no. 1, p. 21,
2004.

[28] J. Daugman, “Results from 200 Billion Iris Cross-Comparisons,”
Technical Report No. 635, Computer Laboratory, University of
Cambridge, UK, 2005.

[29] J. G. Daugman, “Biometric Personal Identification System Based
on Iris Analysis,” U.S Patent No. 5’291’560, 1994.



260 References

[30] J. Mäntyjärvi, M. Lindholm, E. Vildjiounaite, S.-M. Mäkelä,
and H. Ailisto, “Identifying Users of Portable Devices from
Gait Pattern with Accelerometers,” in Proc. 30th IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing
(ICASSP 2005), Philadelphia, USA, Mar. 2005, vol. 2, pp. 973–
976.

[31] L. Bai, D. Chou, D. Yen, and B. Lin, “Mobile Commerce: Its
Market Analyses,” International Journal of Mobile Communica-
tions, vol. 3, no. 1, pp. 66–81, 2005.

[32] T. Iso and K. Yamazaki, “Gait Analyzer Based on a Cell Phone
with a Single Three-Axis Accelerometer,” in Proc. 8th Confer-
ence on Human-Computer Interaction with Mobile Devices and
Services (MobileHCI ’06), Helsinki, Finland, Sep. 2006, pp. 141–
144.

[33] R. Brunelli and T. Poggio, “Face Recognition Through Geometri-
cal Features,” in Proc. of the 2nd European Conference on Com-
puter Vision (ECCV 92), Santa Margherita Ligure, Italy, May
1992, pp. 792–800.

[34] A. Samal and P. A. Iyengar, “Automatic Recognition and Anal-
ysis of Human Faces and Facial Expressions: A Survey,” Pattern
Recognition, vol. 25, no. 1, pp. 65–77, 1992.

[35] A. L. Yuille, “Deformable Templates for Face Recognition,” Jour-
nal of Cognitive Neuroscience, vol. 3, no. 1, pp. 59–70, 1991.

[36] M. Nixon, “Eye Spacing Measurement for Facial Recognition,”
SPIE Proceedings, vol. 575, pp. 279–285, 1985.

[37] R. Brunelli and T. Poggio, “Face Recognition: Features versus
Templates,” IEEE Trans. on Pattern Analysis and Machine In-
telligence, vol. 15, no. 10, pp. 1042–1052, 1993.

[38] T. Kanade, “Picture Processing System by Computer Complex
and Recognition of Human Faces,” PhD thesis, Department of
Information Science, Kyoto University, Japan, 1973.



References 261

[39] M. Zobel, A. Gebhard, D. Paulus, J. Denzler, and H. Niemann,
“Robust Facial Feature Localization by Coupled Features,” in
Proc. 4th IEEE Int’l Conf. on Automatic Face and Gesture
Recognition (FG ’00), Grenoble, France, Mar. 2000, pp. 2–7.

[40] A. Schubert, “Detection and Tracking of Facial Features in Real
Time Using a Synergistic Approach of Spatio-Temporal Mod-
els and Generalized Hough-Transform Techniques,” in Proc. 4th
IEEE Int’l Conf. on Automatic Face and Gesture Recognition
(FG ’00), Grenoble, France, Mar. 2000, pp. 116–121.

[41] E. Sabert and A. M. Tekalp, “Frontal-View Face Detection and
Facial Feature Extraction Using Color, Shape and Symmetry
Based Cost Functions,” Pattern Recognition, vol. 19, no. 8,
pp. 669–680, 1998.

[42] H. P. Graf, T. Chen, E. Petajan, and E. Cosatto, “Locating
Faces and Facial Parts,” in Proc. Int’l Workshop on Automatic
Face- and Gesture-Recognition, Zurich, Switzerland, June 1995,
pp. 41–46.

[43] L. Sirovich and M. Kirby, “Low-Dimensional Procedure for the
Characterization of Human Faces,” Journal of the Optical Soci-
ety of America A, vol. 4, no. 3, pp. 519–524, 1987.

[44] http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html

[45] M. Turk and A. Pentland, “Eigenfaces for Recognition,” Cogni-
tive Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[46] Y. Moses, Y. Adini, and S. Ullman, “Face Recognition: The
Problem of Compensating for Changes in Illumination Direc-
tion,” in Proc. 3rd European Conf. Computer Vision, Stockholm,
Sweden, May 1994, pp. 721–732.

[47] P. N. Belhumeur, J. Hespanha, and D. J. Kriegman, “Eigen-
faces vs. Fisherfaces: Recognition Using Class Specific Linear
Projection,” IEEE Trans. on Pattern Analysis and Machine In-
telligence, vol. 19, no. 7, pp. 711–720, 1997.

[48] M. S. Bartlett, M. H. Lades, and T. J. Sejnowski, “Independent
Component Representations for Face Recognition,” Proc. SPIE,
vol. 3299, pp. 528–539, 1998.

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html


262 References

[49] C. von der Malsburg, “The Dynamic Link Architecture,” in The
Handbook of Brain Theory and Neural Networks (M. A. Arbib,
ed.), pp. 365–368, MIT Press, Cambridge, MA, USA, 2nd ed.,
2002.

[50] C. von der Malsburg, “Pattern Recognition by Labeled Graph
Matching,” Neural Networks, vol. 1, no. 2, pp. 141–148, 1988.

[51] M. Lades, J. C. Vorbrüggen, J. Buhmann, J. Lange, C. von der
Malsburg, R. P. Würtz, and W. Konen, “Distortion Invariant
Object Recognition in the Dynamic Link Architecture,” IEEE
Trans. Computers, vol. 42, no. 3, pp. 300–311, 1993.

[52] M. Lades, J. C. Vorbrüggen, and R. P. Würtz, “Recognising
Faces with a Transputer Farm,” in Proc. Third Int’l Confer-
ence on Applications of Transputers, Glasgow, U.K., Aug. 1991,
pp. 148–153.

[53] L. Wiskott, “Labeled Graphs and Dynamic Link Matching
for Face Recognition and Scene Analysis,” PhD thesis, Ruhr-
Universität, Bochum, Germany, 1995.

[54] W. Zhao, R. Chellappa, P. Phillips, and A. Rosenfeld, “Face
Recognition: A Literature Survey,” ACM Computing Surveys,
vol. 35, no. 4, pp. 399–458, 2003.

[55] X. Tan, S. Chen, Z. Zhou, and F. Zhang, “Face Recognition
from a Single Image per Person: A Survey,” Pattern Recognition,
vol. 39, no. 9, pp. 1725–1745, 2006.

[56] L. Wiskott, J.-M. Fellous, N. Krüger, and C. von der Malsburg,
“Face Recognition and Gender Determination,” in Proc. Int’l
Workshop on Automatic Face- and Gesture-Recognition, Zurich,
Switzerland, June 1995, pp. 92–97.

[57] L. Wiskott, J. Fellous, N. Kuiger, and C. von der Malsburg, “Face
Recognition by Elastic Bunch Graph Matching,” IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol. 19, no. 7,
pp. 775–779, 1997.



References 263

[58] K. Okada, J. Steffens, T. Maurer, H. Hong, E. Elagin, H. Neven,
and C. von der Malsburg, “The Bochum/USC Face Recognition
System and How it Fared in the FERET Phase III Test,” in
Face Recognition: From Theory to Applications (H. Wechsler,
P. J. Phillips, V. Bruce, F. F. Soulié, and T. S. Huang, eds.),
pp. 186–205, Springer-Verlag, 1998.

[59] B. Duc, “Feature Design: Applications to Motion Analysis and
Identity Verification,” PhD thesis No. 1741, Swiss Federal Insti-
tute of Technology (EPFL), Lausanne, Switzerland, 1997.

[60] B. Duc, S. Fischer, and J. Bigun, “Face Authentication with
Sparse Grid Gabor Information,” in Proc. of the 1997 IEEE
Int’l Conf. on Acoustics, Speech, and Signal Processing (ICASSP
’97), Munich, Germany, Apr. 1997, vol. 4, pp. 3053–3056.

[61] C. Kotropoulos, I. Pitas, S. Fischer, and B. Duc, “Face Authen-
tication Using Morphological Dynamic Link Architecture,” in
Proc. 1st Int’l Conf. on Audio- and Video-Based Biometric Per-
son Authentication (AVBPA ’97), Crans-Montana, Switzerland,
Mar. 1997, pp. 169–176.

[62] S. Pigeon and L. Vandendorpe, “The M2VTS Multimodal Face
Database (Release 1.00),” in Proc. 1st Int’l Conf. on Audio- and
Video-Based Biometric Person Authentication (AVBPA ’97),
Crans-Montana, Switzerland, Mar. 1997, pp. 403–409.

[63] C. Kotropoulos and I. Pitas, “Face Verification Based on Morpho-
logical Dynamic Link Architecture,” in Proc. 3rd IEEE Work-
shop on Nonlinear Signal and Image Processing (NSIP ’97),
Mackinac Island, Michigan USA, Sep. 1997.

[64] C. Kotropoulos, A. Tefas, and I. Pitas, “Frontal Face Authen-
tication Using Morphological Elastic Graph Matching,” IEEE
Trans. Image Processing, vol. 9, no. 4, pp. 555–560, 2000.

[65] C. Kotropoulos and I. Pitas, “Face Authentication Based on Mor-
phological Grid Matching,” in Proc. Int’l Conf. on Image Pro-
cessing (ICIP 97), Santa Barbara, CA, USA, Oct. 1997, vol. 1,
pp. 105–108.



264 References

[66] M. Lades, “Face Recognition Technology,” in Handbook of Pat-
tern Recognition and Computer Vision (C. H. Chen, L. F. Pau,
and P. S. P. Wang, eds.), pp. 667–683, World Scientific Publish-
ing Company, 2nd ed., 1998.

[67] C. Kotropoulos, A. Tefas, and I. Pitas, “Frontal Face Authentica-
tion Using Variants of Dynamic Link Matching Based on Math-
ematical Morphology,” in Proc. Int’l Conf. on Image Processing
(ICIP 98), Chicago, USA, Oct. 1998, vol. 1, pp. 122–126.

[68] B. Duc, S. Fischer, and J. Bigun, “Face Authentication with Ga-
bor Information on Deformable Graphs,” IEEE Trans. on Image
Processing, vol. 8, no. 4, pp. 504–516, 1999.

[69] C. Kotropoulos, A. Tefas, I. Pitas, C. Fernandez, and F. Fernán-
dez, “Performance Assessment of Morphological Dynamic Link
Architecture under Optimal and Real Operating Conditions,”
in Proc. of the IEEE-EURASIP Workshop on Nonlinear Signal
and Image Processing (NSIP ’99), Antalya, Turkey, June 1999,
pp. 355–359.

[70] C. Kotropoulos, A. Tefas, and I. Pitas, “Morphological Elastic
Graph Matching Applied to Frontal Face Authentication un-
der Optimal and Real Conditions,” in Proc. IEEE Int’l Conf.
on Multimedia Computing and Systems (ICMCS 99), Florence,
Italy, July 1999, vol. 2, pp. 934–938.

[71] C. Kotropoulos, A. Tefas, and I. Pitas, “Morphological Elastic
Graph Matching Applied to Frontal Face Authentication un-
der Well-Controlled and Real Conditions,” Pattern Recognition,
vol. 33, no. 12, pp. 1935–1947, 2000.

[72] M. A. Fischler and R. A. Elschlager, “The Representation and
Matching of Pictorial Structures,” IEEE Trans. Computers,
vol. 22, pp. 67–92, Jan. 1973.

[73] F. Samaria and F. Fallside, “Face Identification and Feature Ex-
traction Using Hidden Markov Models,” in Image Processing:
Theory and Applications (G. Vernazza, A. N. Venetsanopoulos,
and C. Braccini, eds.), pp. 295–298, Elsevier, 1993.



References 265

[74] A. Nefian and M. Hayes III, “Hidden Markov Models for Face
Recognition,” in Proc. IEEE Int’l Conf. on Acoustics, Speech,
and Signal Processing (ICASSP’98), Seattle, WA, USA, May
1998, vol. 5, pp. 2721–2724.

[75] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Black,
“Face Recognition: A Convolutional Neural-Network Approach,”
IEEE Trans. Neural Networks, Special Issue on Neural Networks
and Pattern Recognition, vol. 8, no. 1, pp. 98–113, 1997.

[76] Y. Gao and M. Leung, “Face Recognition Using Line Edge
Map,” IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, vol. 24, no. 6, pp. 764–779, 2002.

[77] S. Arca, P. Campadelli, and R. Lanzarotti, “A Face Recogni-
tion System Based on Local Feature Analysis,” in Proc. 4th Int’l
Conf. on Audio- and Video-based Biometric Person Authentica-
tion (AVBPA ’03), Guildford, UK, June 2003, pp. 182–189.

[78] G. G. Gordon, “Face Recognition from Frontal and Profile
Views,” in Proc. Int’l Workshop on Automatic Face- and
Gesture-Recognition, Zurich, Switzerland, June 1995, pp. 47–52.

[79] K. Yu, X. Jiang, and H. Bunke, “Face Recognition by Facial Pro-
file Analysis,” in Proc. Int’l Workshop on Automatic Face- and
Gesture-Recognition, Zurich, Switzerland, June 1995, pp. 208–
213.

[80] Z. Liposcak and S. Loncaric, “A Scale-Space Approach to Face
Recognition from Profiles,” in Proc. of the 8th Int’l Conf. on
Computer Analysis of Images and Patterns (CAIP ’99), Ljubl-
jana, Slovenia, Sep. 1999, pp. 243–250.

[81] K. Bowyer, K. Chang, and P. Flynn, “A Survey of Approaches to
Three-Dimensional Face Recognition,” in Proc. 17th Int’l Conf.
on Pattern Recognition (ICPR 2004), Cambridge, UK, Aug.
2004, vol. 1.

[82] S. Kong, J. Heo, B. Abidi, J. Paik, and M. Abidi, “Recent
Advances in Visual and Infrared Face Recognition — A Re-
view,” Computer Vision and Image Understanding, vol. 97, no. 1,
pp. 103–135, 2005.



266 References

[83] H. Wechsler, Reliable Face Recognition Methods: System Design,
Implementation and Evaluation, Springer, 2007.

[84] J. Zhang, Y. Yan, and M. Lades, “Face Recognition: Eigenface,
Elastic Matching, and Neural Nets,” Proceedings of the IEEE,
vol. 85, no. 9, pp. 1423–1435, 1997.

[85] C. Kotropoulos, A. Tefas, and I. Pitas, “Frontal Face Authenti-
cation Using Discriminating Grids with Morphological Feature
Vectors,” IEEE Trans. Multimedia, vol. 2, no. 1, pp. 14–26, 2000.

[86] M. Yang, D. Kriegman, and N. Ahuja, “Detecting Faces in Im-
ages: A Survey,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 24, no. 1, pp. 34–58, 2002.

[87] E. Hjelmas and B. Low, “Face Detection: A Survey,” Computer
Vision and Image Understanding, vol. 83, no. 3, pp. 236–274,
2001.

[88] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright,
“Convergence Properties of the Nelder-Mead Simplex Algorithm
in Low Dimensions,” SIAM Journal on Optimization, vol. 9,
no. 1, pp. 112–147, 1998.

[89] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification,
John Wiley & Sons, Inc., 2nd ed., 2001.

[90] S. Bengio, J. Mariéthoz, and S. Marcel, “Evaluation of Biomet-
ric Technology on XM2VTS,” IDIAP Research Report 01-21,
IDIAP, Martigny, Switzerland, 2001.

[91] D. A. Pollen and S. F. Ronner, “Visual Cortical Neurons as Lo-
calized Spatial Frequency Filters,” IEEE Trans. Systems, Man,
and Cybernetics, vol. 13, no. 5, pp. 907–916, 1983.

[92] T. S. Lee, “Image Representation Using 2D Gabor Wavelets,”
IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 18, pp. 959–971, Oct. 1996.

[93] A. Jain and F. Farrokhnia, “Unsupervised Texture Segmenta-
tion Using Gabor Filters,” Pattern Recognition, vol. 24, no. 12,
pp. 1167–1186, 1991.



References 267

[94] T. Ebrahimi and M. Kunt, “Image Compression by Gabor Ex-
pansion,” Optical engineering, vol. 30, no. 7, pp. 873–880, 1991.

[95] J. Daugman, “Complete Discrete 2-D Gabor Transforms by Neu-
ral Networks for Image Analysis and Compression,” IEEE Trans.
Acoustics, Speech, and Signal Processing, vol. 36, pp. 1169–1179,
July 1988.

[96] G. Matheron and J. Serra, “The Birth of Mathematical Morphol-
ogy,” in Proc. 6th Intl. Symp. Mathematical Morphology (ISMM
02), 2002, pp. 1–16.

[97] R. C. Gonzalez and R. E. Woods, Digital Image Processing,
Prentice Hall, 2nd ed., 2001.

[98] H. Heijmans, “Mathematical Morphology: Basic Principles,” in
Proc. of Summer School on Morphological Image and Signal Pro-
cessing, Zakopane, Poland, Sep. 1995.

[99] P. Jackway and M. Deriche, “Scale-Space Properties of the Multi-
scale Morphological Dilation-Erosion,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 18, no. 1, pp. 38–51,
1996.

[100] A. Witkin, “Scale-Space Filtering: A New Approach to Multi-
Scale Description,” in Proc. IEEE Int’l Conf. on Acoustics,
Speech, and Signal Processing (ICASSP’84), San Diego, USA,
Mar. 1984, vol. 9, pp. 150–153.

[101] A. Tefas, C. Kotropoulos, and I. Pitas, “Face Verification Based
on Morphological Shape Decomposition,” in Proc. 3rd IEEE Int’l
Conf. on Automatic Face and Gesture Recognition (FG ’98),
Nara, Japan, Apr. 1998, pp. 36–41.

[102] A. Tefas, C. Kotropoulos, and I. Pitas, “Face Verification Using
Elastic Graph Matching Based on Morphological Signal Decom-
position,” Signal Processing, vol. 82, no. 6, pp. 833–851, 2002.

[103] C. Sanderson and K. Paliwal, “Polynomial Features for Robust
Face Authentication,” in Proc. IEEE Int’l Conf. on Image Pro-
cessing (ICIP ’02), Rochester, NY, USA, June 2002, vol. 3,
pp. 997–1000.



268 References

[104] C. Sanderson and S. Bengio, “Robust Features for Frontal Face
Authentication in Difficult Image Conditions,” in Proc. 4th Int’l
Conf. on Audio- and Video-based Biometric Person Authentica-
tion (AVBPA ’03), Guildford, UK, June 2003, pp. 495–504.

[105] J. Bracamonte, M. Ansorge, F. Pellandini, and P.-A. Farine,
“A Low Complexity Change Detection Algorithm Operating in
the Compressed Domain,” in Proc. 6th COST 276 Workshop on
Information and Knowledge Management for Integrated Media
Communication, Thessaloniki, Greece, May 2004, pp. 88–93.

[106] N. Pavešić, I. Fratrić, and S. Ribarić, “Degradation of the
XM2VTS Database Face Images,” in Proc. 2nd COST 275 Work-
shop on Biometrics on the Internet, Vigo, Spain, Mar. 2004,
pp. 15–19.

[107] K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maître,
“XM2VTSDB: The Extended M2VTS Database,” in Proc. 2nd
Int’l Conf. on Audio- and Video-based Biometric Person Au-
thentication (AVBPA’99), Washington, D.C, USA, Mar. 1999,
pp. 72–77.

[108] J. Luettin and G. Maître, “Evaluation Protocol for the extended
M2VTS Database (XM2VTSDB),” IDIAP Communication 98-
05, IDIAP, Martigny, Switzerland, 1998.

[109] R. Sedgewick, Algorithms, Addison-Wesley, 1988.

[110] C. A. R. Hoare, “Quicksort,” The Computer Journal, vol. 5, no. 1,
p. 10, 1962.

[111] K. Messer, J. Kittler, J. Short, G. Heusch, F. Cardinaux, S. Mar-
cel, Y. Rodriguez, S. Shan, Y. Su, W. Gao, and X. Chen, “Per-
formance Characterisation of Face Recognition Algorithms and
Their Sensitivity to Severe Illumination Changes,” in Proc. 2nd
Int’l Conference on Biometrics (ICB 2006), Honk Kong, Jan.
2006, pp. 1–11.



References 269

[112] J. Matas, M. Hamouz, K. Jonsson, J. Kittler, Y. Li,
C. Kotropoulos, A. Tefas, I. Patas, T. Tan, H. Yan, F. Smeraldi,
J. Bigun, N. Capdevielle, W. Gerstner, S. Ben-Yacoub, Y. Ab-
deljaoued, and E. Mayoraz, “Comparison of Face Verification Re-
sults on the XM2VTS Database,” in Proc. Int’l Conf. on Pattern
Recpognition (ICPR ’00), Barcelona, Spain, Sep. 2000, vol. 4,
pp. 4858–4863.

[113] K. Messer, J. Kittler, M. Sadeghi, S. Marcel, C. Marcel, S. Ben-
gio, F. Cardinaux, C. Sanderson, J. Czyz, L. Vandendorpe,
S. Srisuk, and et al., “Face Verification Competition on the
XM2VTS Database,” in Proc. 4th Int’l Conf. on Audio- and
Video-based Biometric Person Authentication (AVBPA ’03),
Guildford, UK, June 2003, pp. 964–974.

[114] Y. Su, S. Shan, B. Cao, X. Chen, and W. Gao, “Multiple Fisher
Classifiers Combination for Face Recognition based on Grouping
AdaBoosted Gabor Features,” in Proc. 16th British Machine Vi-
sion Conference (BMVC 2005), Oxford, UK, Sep. 2005, vol. 2,
pp. 569–578.

[115] http://www.cost.esf.org/index.php?id=118

[116] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From
Few to Many: Illumination Cone Models for Face Recognition
under Variable Lighting and Pose,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 23, no. 6, pp. 643–660,
2001.

[117] http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html

[118] K. Lee, J. Ho, and D. Kriegman, “Acquiring Linear Subspaces for
Face Recognition under Variable Lighting,” IEEE Trans. on Pat-
tern Analysis and Machine Intelligence, vol. 27, no. 5, pp. 684–
698, 2005.

[119] R. H. Barnett, The 8051 Family of Microcontrollers, Prentice
Hall, 1995.

http://www.cost.esf.org/index.php?id=118
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html


270 References

[120] J.-L. Nagel, P. Stadelmann, M. Ansorge, and F. Pellandini,
“Comparison of Feature Extraction Techniques for Face Veri-
fication Using Elastic Graph Matching on Low-Power Mobile
Devices,” in Proc. IEEE Region 8 Int’l. Conf. on Computer as
a Tool (EUROCON’03), Ljubljana, Slovenia, Sep. 2003, vol. 2,
pp. 365–369.

[121] J.-L. Nagel, P. Stadelmann, M. Ansorge, and F. Pellandini, “A
Low-Power VLSI Architecture for Face Verification using Elas-
tic Graph Matching,” in Proc. XIth European Signal Process-
ing Conference (EUSIPCO 2002), Toulouse, France, Sep. 2002,
vol. 3, pp. 577–580.

[122] M. J. Flynn and K. W. Rudd, “Parallel Architectures,” ACM
Computing Surveys, vol. 28, no. 1, pp. 67–70, 1996.

[123] P. Stadelmann, J.-L. Nagel, M. Ansorge, and F. Pellandini, “A
Multiscale Morphological Coprocessor for Low-Power Face Au-
thentication,” in Proc. XIth European Signal Processing Con-
ference (EUSIPCO 2002), Toulouse, France, Sep. 2002, vol. 3,
pp. 581–584.

[124] M. Nadeem, “Design and VHDL Implementation of a Low-Power
Face Verification Architecture for 3G Mobile Communicators,”
MSc thesis, Dept. of Microelectronics and Information Technol-
ogy, Royal Institute of Technology, Stockholm, Sweden, Mar.
2003.

[125] P. Stadelmann, “IRISSA: Iris Programming Environment,” Tech-
nical documentation, CTI Projet No. 4757, Institute of Mi-
crotechnology, University of Neuchâtel, 2002.

[126] http://flex.sourceforge.net/

[127] http://www.gnu.org/software/bison/

[128] http://en.wikipedia.org/wiki/Backus-Naur_form

[129] S. Tanner, S. Lauxtermann, M. Waeny, M. Willemin, N. Blanc,
J. Grupp, R. Dinger, E. Doering, M. Ansorge, P. Seitz, and
F. Pellandini, “Low-Power Digital Image Sensor for Still-Picture
Image Acquisition,” in Proc. SPIE Photonics West Conf. 2001,
San José, USA, Jan. 2001, vol. 4306, pp. 358–365.

http://flex.sourceforge.net/
http://www.gnu.org/software/bison/
http://en.wikipedia.org/wiki/Backus-Naur_form


References 271

[130] B. E. Bayer, “Color Imaging Array,” U.S Patent No. 3’971’065,
1976.

[131] Nova Engineering, Constellation-20KE User Manual, 2002.

[132] http://www.ethernut.de/en/index.html

[133] Nova Engineering, Using Selectable I/O Standards in APEX
20KE, Dec. 2001.

[134] http://tools.ietf.org/html/rfc854

[135] http://www.umc.com/English/process/d.asp

[136] T. Sakurai and A. Newton, “Alpha-Power Law MOSFET Model
and its Applications to CMOS Inverter Delay and Other For-
mulas,” IEEE Journal of Solid-State Circuits, vol. 25, no. 2,
pp. 584–594, 1990.

[137] K. Nose and T. Sakurai, “Optimization of VDD and VTH for
Low-Power and High-Speed Applications,” in Proc. Asia South
Pacific Design Automation Conference (ASP-DAC ’00), Yoko-
hama, Japan, Jan. 2000, pp. 469–474.

[138] J.-M. Masgonty, S. Cserveny, and C. Piguet, “Low-Power
SRAM and ROM Memories,” in Proc. Int’l Workshop on Power
And Timing Modeling, Optimization and Simulation (PATMOS
2001), Yverdon-Les-Bains, Switzerland, 2001.

[139] ARM Architecture Reference Manual, ARM Limited, 2005.

[140] http://www.secure-phone.info/

[141] R. Ricci, G. Chollet, M. Crispino, S. Jassim, J. Koreman,
M. Olivar-Dimas, S. Garcia-Salicetti, and P. Soria-Rodriguez,
“SecurePhone: A Mobile Phone with Biometric Authentication
and e-Signature Support for Dealing Secure Transactions on the
Fly,” Proceedings of SPIE, vol. 6250, pp. 76–86, 2006.

[142] K. Pun, Y. Moon, J. Chen, and H. Yeung, “A Face Authen-
tication System for Mobile Devices: Optimization Techniques,”
Proceedings of SPIE, vol. 5684, pp. 265–273, 2005.

[143] http://www.nist.gov/humanid/feret/feret_master.html

http://www.ethernut.de/en/index.html
http://tools.ietf.org/html/rfc854
http://www.umc.com/English/process/d.asp
http://www.secure-phone.info/
http://www.nist.gov/humanid/feret/feret_master.html


272 References

[144] Y. Moon, K. Pun, K. Chan, M. Wong, and T. Yu, “Enabling
EBGM Face Authentication on Mobile Devices,” in Proc. 2nd
Int’l Workshop on MultiModal User Authentication, Toulouse,
France, May 2006.

[145] N. Aaraj, S. Ravi, A. Raghunathan, and N. Jha, “Hybrid Ar-
chitectures for Efficient and Secure Face Authentication in Em-
bedded Systems,” IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 15, no. 3, pp. 296–308, 2007.

[146] http://www.tensilica.com/products/xtensa_overview.htm

[147] http://broadband.mb.softbank.jp/mb/en/product/vf/
904sh-e-manual.pdf

[148] http://www.nttdocomo.co.jp/english/binary/pdf/support/
manual/foma/f903i/F903i_E_All.pdf

[149] http://www.securimetrics.com/solutions/hiide.html

Internet links were verified to be valid as of September 30, 2008.

http://www.tensilica.com/products/xtensa_overview.htm
http://broadband.mb.softbank.jp/mb/en/product/vf/904sh-e-manual.pdf
http://broadband.mb.softbank.jp/mb/en/product/vf/904sh-e-manual.pdf
http://www.nttdocomo.co.jp/english/binary/pdf/support/manual/foma/f903i/F903i_E_All.pdf
http://www.nttdocomo.co.jp/english/binary/pdf/support/manual/foma/f903i/F903i_E_All.pdf
http://www.securimetrics.com/solutions/hiide.html


Publications involving the author

Publications related to biometrics

• M. Ansorge, F. Pellandini, S. Tanner, J. Bracamonte, P. Sta-
delmann, J.-L. Nagel, P. Seitz, N. Blanc, and C. Piguet, “Very
Low-Power Image Acquisition and Processing for Mobile Com-
munications Devices,” Keynote paper, in Proc. IEEE Int’l Sym-
posium on Signals, Circuits and Systems (SCS 2001), Iasi, Ro-
mania, July 2001, pp. 289–296.

• M. Ansorge, S. Tanner, X. Shi, J. Bracamonte, J.-L. Nagel,
P. Stadelmann, F. Pellandini, P. Seitz, and N. Blanc, “Smart
Low-Power CMOS Cameras for 3G Mobile Communicators,” In-
vited paper, in Proc. 1st Int’l Conf. on Circuits and Systems
for Communications, ICS’02, St-Petersburg, Russia, June 2002,
pp. 216–225.

• J.-L. Nagel, P. Stadelmann, M. Ansorge, and F. Pellandini, “A
Low-Power VLSI Architecture for Face Verification using Elas-
tic Graph Matching,” in Proc. XIth European Signal Process-
ing Conference (EUSIPCO 2002), Toulouse, France, Sep. 2002,
vol. 3, pp. 577–580.

• P. Stadelmann, J.-L. Nagel, M. Ansorge, and F. Pellandini, “A
Multiscale Morphological Coprocessor for Low-Power Face Au-
thentication,” in Proc. XIth European Signal Processing Con-
ference (EUSIPCO 2002), Toulouse, France, Sep. 2002, vol. 3,
pp. 581–584.



274 Publications involving the author

• J.-L. Nagel, P. Stadelmann, M. Ansorge, and F. Pellandini,
“Comparison of Feature Extraction Techniques for Face Veri-
fication Using Elastic Graph Matching on Low-Power Mobile
Devices,” in Proc. IEEE Region 8 Int’l. Conf. on Computer as
a Tool (EUROCON’03), Ljubljana, Slovenia, Sep. 2003, vol. 2,
pp. 365–369.

• M. Ansorge, J.-L. Nagel, P. Stadelmann, and P.-A. Farine, “Bio-
metrics for Mobile Communicators,” in Proc. 2nd IEEE Int’l
Conf. on Circuits & Systems for Communications (ICCSC’04),
Moscow, Russia, June 2004.

• J.-L. Nagel and P. Stadelmann, “Face Authentication for Low-
Power Mobile Devices,” Invited talk, Conf. on Biometrical Fea-
ture Identification and Analysis, Göttingen, Germany, Sep. 2007.

Other publications

• J. Bracamonte, P. Stadelmann, M. Ansorge, and F. Pellandini,
“A Multiplierless Implementation Scheme for the JPEG Image
Coding Algorithm,” in Proc. 4th IEEE Nordic Signal Processing
Symposium (NORSIG 2000), Kolmården, Sweden, July 2000,
pp. 17–20.

• M. Ansorge, F. Pellandini, J. Bracamonte, S. Tanner, and P. Sta-
delmann, “Advances in Very Low-Power Image Sensing and Com-
pression For Mobile Multimedia Communicators,” Invited paper,
in Proc. EURASIP Conf. on Digital Signal Processing for Multi-
media Communications and Services (ECMCS 2001), Budapest,
Hungary, Sep. 2001, pp. 141–150.

• M. Ansorge, J. Grupp, F. Pellandini, P.-A. Farine, P. Heck,
S. Tanner, J. Bracamonte, and P. Stadelmann, “Microcamera
Embedded in a Wristwatch,” Invited talk, 8th IEEE Int’l Sym-
posium on Signals, Circuits, and Systems (ISSCS 07), Iasi, Ro-
mania, July 2007.



Publications involving the author 275

• S. Grassi, P. Heck, P. Stadelmann, P. Cotofrei, P. Dinissen,
F. Meylan, J.-P. Mignot, J.-N. Pfeuti, F. Piccini, P. Geiser,
G. Biundo, P.-A. Farine, J. Grupp, and K. Stoffel, “Watch-
Dictaphone for Automatic Medical Codification,” in Proc. XVIth
European Signal Processing Conference (EUSIPCO 2008), Lau-
sanne, Switzerland, Aug. 2008.





Acknowledgments

This PhD thesis could not have been successfully completed with-
out the help and support of many people, who are all kindly
acknowledged.

Firstly, I wish to express my sincere gratitude to Prof. Fausto
Pellandini, for offering me the opportunity to join his research
team, as well as for being my PhD adviser. I am also very grate-
ful to his successor, Prof. Pierre-André Farine, for letting me
finish this thesis in the most favorable conditions, and for being
a member of my jury committee. I heartily thank them both for
their understanding and patience in waiting for the completion
of this work.

I would like to thank the CSEM for financially supporting the
research projects that led to this thesis. I am in particular grate-
ful to Dr. Nicolas Blanc for kindly accepting to be part of my
jury committee.

I am deeply indebted to PD Dr. Michael Ansorge for the huge
amount of time and energy he invested in reviewing this disser-
tation. I would also like to thank him wholeheartedly for the
much appreciated encouragement and advice he provided when
the structure of this report was being laid out, as well as for the
countless comments and suggestions he offered throughout the
entire redaction process.



278 Acknowledgments

I would like to thank all friends and colleagues from ESPLAB
and PARLAB, both former and present, for the very fruitful col-
laborations in the framework of several projects, and / or for the
numerous memories of fun and enjoyable moments they remain
associated with.

I am deeply grateful to Dr. Javier Bracamonte, who supervised
two of my student projects, and thusly introduced me to the
captivating world of digital image processing.

In direct connection with this thesis, I am very much obliged
to Dr. Jean-Luc Nagel, whom I collaborated with in the course
of several projects in the field of biometrics. I am especially
thankful for the support he provided during the VHDL imple-
mentation, simulation and synthesis stages. My thanks also go to
Dr. Christian Schuster, who was always keen on sharing LaTeX
tips, and on helping me solve issues with the design tools.

I would like to thank the people in IMT’s other laboratories,
as well those in the administrative department, either for their
very precious help in sorting out all sorts of matters, or for the
always rejoicing encounters at the building’s cafeteria or at IMT’s
Christmas and summer’s parties.

I am very much thankful to my friend and family for being very
supportive and understanding, especially during the finalization
of this thesis, when I sometimes was about to forget that there
is still a world outside of IMT!

Finally, I am deeply grateful to my parents for their trust and
indefectible support during all my years of studying.


	Title
	Copyright
	Imprimatur
	Abstract
	Keywords
	Résumé
	Mots-clés
	Contents
	Abbreviations
	Introduction
	Motivations and objectives
	Context
	Structure of the report
	Contributions

	Biometrics
	Introduction
	Definition
	History
	Bertillon's system
	Modern biometrics

	Biometric system
	Overview
	Operations
	Enrollment
	Verification
	Identification

	Applications
	Performance evaluation
	Positive vs. negative recognition

	Biometric modalities
	DNA analysis
	Fingerprints
	Hand geometry
	Face
	Iris
	Retina
	Voice
	Signature
	Gait
	Others

	Biometrics for mobile applications
	Conclusion

	Face Verification
	Introduction
	Face recognition algorithms
	Feature-based methods
	Eigenfaces
	Graph-based methods
	Gabor-based features
	Morphology-based features

	Other methods
	Recent surveys
	Algorithm selection

	Elastic Graph Matching algorithm
	Overview
	Image normalization
	Features space reduction
	Single and multiple templates
	Matching distance
	Classification and distance normalization

	Features extraction
	Gabor filters
	Multiscale mathematical morphology
	Minkowski algebra
	Mathematical morphology
	Multiscale morphology
	Mathematical morphology features

	Normalized mathematical morphology
	Other features

	Conclusion

	Performance and Robustness Evaluation
	Introduction
	Frontal illumination
	XM2VTS database
	Enhancements
	Removal of largest node distances
	Reduced number of features
	Stronger inverse logarithm table

	Results and computational cost
	Comparisons with other algorithms

	Degraded conditions
	XM2VTS degraded
	Complex background
	Scaling and rotation
	Databases construction
	Experiments

	Occlusions
	Discarding nodes with large distance
	Detecting occlusions
	Complex occlusions


	Sideways illumination
	XM2VTS darkened
	Discarding nodes with large distance

	Strongly shadowed faces
	Yale Face Database B
	Discarding nodes with large distance
	Discarding shadowed nodes
	Shadow detection
	Method 1
	Method 2
	Method 3
	Method 4
	Method 5


	Conclusion

	Low-Power Architecture
	Introduction
	System overview
	Face verification process
	System partitioning

	Algorithm implementation
	Differential multiscale morphology
	Partial differential morphology
	Sequential morphology and SE table
	Local image memory

	Single-unit coprocessor architecture
	Elementary morphology unit
	Coprocessor architecture

	Four-way parallel coprocessor
	Single instruction, multiple data architecture
	Delayed instructions, single data architecture
	Morphology block
	Local memory block
	Structuring elements block
	Addressing logic
	Modulo adder-subtracter
	Incrementer-decrementer
	External memory addressing unit
	Load address generation
	Store address generation

	Control unit and instruction set

	Coprocessor characteristics
	Architecture overview
	Sequencing
	Performance

	Conclusion

	Architecture including Features Normalization
	Introduction
	Implementation of the normalization
	Sequencing of the normalization operations
	Implementation of the division
	Initialization of the normalization
	Normalization pipeline

	Modified architecture
	Elementary morphology unit
	Morphology block
	Local memory block
	Structuring elements block
	Normalization unit and addressing logic
	Normalization unit
	External memory addressing unit

	Subroutines support
	Instruction set

	Coprocessor characteristics
	Architecture overview
	Sequencing
	Performance

	Conclusion

	Architecture Validation and Demonstrator
	Introduction
	Hardware and software co-design
	High-level software implementation in C
	Architecture selection
	Software development
	VHDL description

	FPGA demonstrator
	VGACam image sensor
	FPGA and SRAM boards
	Computer
	USB interface
	SRAM interface
	Results of the FPGA synthesis
	USB demonstrator performance
	Ethernet interface
	Ethernut board
	Communication protocol


	ASIC Synthesis
	Synthesis flow
	Area of the synthesized ASIC
	Estimation of the power consumption

	ASIC Synthesis with clock gating
	Clock gating insertion
	Power consumption
	Area of the circuit
	Power consumption at lower supply voltage

	Conclusion

	Conclusion
	Summary and recall of contributions
	Other state-of-the-art solutions
	Academic work
	Commercial devices and solutions

	Perspectives

	References
	Publications involving the author
	Acknowledgments

