
Efficient Architectures and Power
Modelling of Multiresolution

Analysis Algorithms on FPGA

A thesis submitted for the degree of

Doctor of Philosophy

by

Abdul Naser Sazish
B.E.

Electronic and Computer Engineering

School of Engineering and Design

Brunel University, West London

February 2011

A

Abstract

In the past two decades, there has been huge amount of interest in Multiresolution Analysis

Algorithms (MAAs) and their applications. Processing some of their applications such as

medical imaging are computationally intensive, power hungry and requires large amount

of memory which cause a high demand for efficient algorithm implementation, low power

architecture and acceleration. Recently, some MAAs such as Finite Ridgelet Transform

(FRIT) Haar Wavelet Transform (HWT) are became very popular and they are suitable

for a number of image processing applications such as detection of line singularities and

contiguous edges, edge detection (useful for compression and feature detection), medical

image denoising and segmentation. Efficient hardware implementation and acceleration

of these algorithms particularly when addressing large problems are becoming very chal-

lenging and consume lot of power which leads to a number of issues including mobility,

reliability concerns. To overcome the computation problems, Field Programmable Gate

Arrays (FPGAs) are the technology of choice for accelerating computationally intensive

applications due to their high performance. Addressing the power issue requires optimi-

sation and awareness at all level of abstractions in the design flow.

The most important achievements of the work presented in this thesis are summarised

here.

Two factorisation methodologies for HWT which are called HWT Factorisation Method1

and (HWTFM1) and HWT Factorasation Method2 (HWTFM2) have been explored to

increase number of zeros and reduce hardware resources. In addition, two novel efficient

and optimised architectures for proposed methodologies based on Distributed Arithmetic

(DA) principles have been proposed. The evaluation of the architectural results have

shown that the proposed architectures results have reduced the arithmetics calculation

(additions/subtractions) by 33% and 25% respectively compared to direct implementa-

tion of HWT and outperformed existing results in place. The proposed HWTFM2 is

implemented on advanced and low power FPGA devices using Handel-C language. The

FPGAs implementation results have outperformed other existing results in terms of area

and maximum frequency. In addition, a novel efficient architecture for Finite Radon Trans-

form (FRAT) has also been proposed. The proposed architecture is integrated with the

developed HWT architecture to build an optimised architecture for FRIT. Strategies such

as parallelism and pipelining have been deployed at the architectural level for efficient im-

plementation on different FPGA devices. The proposed FRIT architecture performance

iv

has been evaluated and the results outperformed some other existing architecture in place.

Both FRAT and FRIT architectures have been implemented on FPGAs using Handel-C

language. The evaluation of both architectures have shown that the obtained results out-

performed existing results in place by almost 10% in terms of frequency and area. The

proposed architectures are also applied on image data (256× 256) and their Peak Signal

to Noise Ratio (PSNR) is evaluated for quality purposes.

Two architectures for cyclic convolution based on systolic array using parallelism and

pipelining which can be used as the main building block for the proposed FRIT architec-

ture have been proposed. The first proposed architecture is a linear systolic array with

pipelining process and the second architecture is a systolic array with parallel process.

The second architecture reduces the number of registers by 42% compare to first architec-

ture and both architectures outperformed other existing results in place. The proposed

pipelined architecture has been implemented on different FPGA devices with vector size

(N) 4,8,16,32 and word-length (W=8). The implementation results have shown a signifi-

cant improvement and outperformed other existing results in place.

Ultimately, an in-depth evaluation of a high level power macromodelling technique for

design space exploration and characterisation of custom IP cores for FPGAs, called func-

tional level power modelling approach have been presented. The mathematical techniques

that form the basis of the proposed power modeling has been validated by a range of

custom IP cores. The proposed power modelling is scalable, platform independent and

compares favorably with existing approaches. A hybrid, top-down design flow paradigm

integrating functional level power modelling with commercially available design tools for

systematic optimisation of IP cores has also been developed. The in-depth evaluation of

this tool enables us to observe the behavior of different custom IP cores in terms of power

consumption and accuracy using different design methodologies and arithmetic techniques

on virous FPGA platforms. Based on the results achieved, the proposed model accuracy

is almost 99% true for all IP core’s Dynamic Power (DP) components.

Certificate of Originality

I hereby certify that the work presented in this thesis is my original research and has not

been presented for a higher degree at any other university or institute.

Signed: Dated:

(Abdul Naser Sazish)

v

To my parents

vi

Acknowledgements

First off all I would like to take the opportunity to thank my family for their endless

support whenever the need arose. A very special thank goes to my mother and my father

for their morale and financial support from miles away throughout the difficult days of

my life. I could not ask a better mum and dad than them. This thesis is dedicated to my

mother’s memory who I have lost during the last stage of my research work and can not

be replace with anything. Also I would like thank my brothers (specially Salih Sazish) and

sisters for their support and being with me throughout my study. I would like to thank

H. Halim for her endless moral support whenever I need it during my research.

The completion of this PhD would not have been possible, without the constant support,

encouragement, motivation and most importantly constructive criticism provided by my

supervisor, Dr. Abbes Amira. I greatly value the opportunity of working with him.

The only gift I could give to him in return is a very special thank. I would like to take

the opportunity to thank Dr Maysam Abbod for his positive and constructive feedback

throughout my research.

I would like to thank Thomas Gerald Gray Charitable Trust for the financial support

over the period of this research and all the support staff in the School of Engineering and

Design for their help and assistance.

Finally, I would like to thank Miss J. Markechova for her caring and passionate support

throughout my studying. last but not less, I would like to thank all my friends and family,

specially my colleagues who I shared office with during this period. It was a great pleasure

to work with them.

vii

Author’s Publication

Journal Papers (Submitted)

1. A. N. Sazish, M. S. Sharif and A. Amira, ”Efficient FPGA Implementation of HWT

using Sparse Matrix Factorisation for Medical Imaging” Elsevier Journal of Digital

Signal Processing (DSP)

2. A. N. Sazish, A. Amira, ”Architecture Level Optimization and Efficient FPGA

Implementation of Finite Ridgelet Transform” Special Issue on Embedded System

Implementation Using Reconfigurable Hardware, EURASIP Journal on Embedded

Systems

3. A. N. Naser, S. Chandrasekaran, and A. Amira ”High level Power Modelling Tech-

nique for Custom IP Cores on FPGAs. IET Computer and Digital Techniques.

Conference Papers (Accepted)

1. A. N. Sazish and A. Amira, ”An efficient architecture for HWT using Sparse Matrix

Factorisation and DA Principles,” IEEE Asia Pacific Conference on Circuits and

Systems, 2008. APCCAS 2008, Dec 2008, pp. 1308-1311 Macau.

2. M. S. Sharif, Abdul N. Sazish, and A. Amira ”An Efficient Algorithm and Archi-

tecture for Medical Image Segmentation and Tumour Detection” IEEE Biomedical

Circuits and Systems Conference (BIOCAS-2008), November 20-22, 2008, Balti-

more, HD. USA.

3. A. N. Sazish, S. Chandrasekaran, and A. Amira, ”Efficient Systolic Architecture and

Power Modeling for Finite Ridgelet Transform,” IEEE 12th International Confer-

viii

ix

ence on Computer Vision Workshops (ICCV Workshops), Oct. 2009, pp. 821-827

Japan.

4. A. N. Sazish, M. Sharif, and A. Amira, ”Hardware Implementation and Power

Analysis of HWT for Medical Imaging,” 16th IEEE International Conference on

Electronics, Circuits, and Systems, 2009 ICECS 2009, Dec. 2009, pp. 775-778,

Tunisia.

5. H. Taha, A. N. Sazish, A. Ahmad, M. S. Sharif, and A. Amira ”Efficient FPGA Im-

plementation of a Wireless Communication System Using Bluetooth Connectivity”,

IEEE International Conference on Circuits and Systems (ISCAS 2010), Proceedings

of May 2010 Paris, France.

Contents

Abstract iii

Declaration v

Acknowledgements vii

Author’s Publication viii

List of Abbreviations xxiii

1 Introduction 1

1.1 Hardware Acceleration . 2

1.1.1 Application Specific Integrated Circuits Hardware 4

1.1.2 Digital Signal Processors . 6

1.1.3 Graphic Processing Unit . 8

1.2 Field Programmable Gate Arrays . 8

1.2.1 FPGA Structure . 9

1.2.2 FPGA Design Flow and Synthesis 12

1.3 The Importance of Power in FGPA . 17

1.3.1 Motivations for Power Awareness . 17

1.3.2 FPGA Power Dissipation Details 19

1.4 Research Objectives and Motivations . 21

1.5 Overall Project Plan . 22

1.6 Organisation of the Thesis . 23

2 Literature Review 24

2.1 Introduction . 24

2.2 FPGA Implementations of Selected Algorithms and Related Architectures . 25

x

Contents xi

2.2.1 Existing Architectures and FPGA Implementation of Wavelet Trans-

form Filters . 25

2.2.2 Existing Spare Matrix Factorisation Methodologies 31

2.2.3 Existing Architectures and Efficient FPGA Implementation of Finite

Radon & Ridgelet Transforms . 33

2.2.4 Related Architecture and FPGA implementation of Cyclic Convo-

lution . 40

2.3 Power Modelling . 46

2.3.1 High-Level Power Estimation of FPGA 46

2.3.2 Functional Level Power Analysis Modeling on Complex Processors . 47

2.3.3 Power Model for Field-Programmable Gate Arrays 47

2.3.4 High-Level Power Modelling of CPLDs and FPGAs 49

2.3.5 Macromodels for High Level Area and Power Estimation on FPGAs 49

2.3.6 Functional Level Power Analysis and Modeling on IP Cores 50

2.3.7 Methodology for Dynamic Power Estimation of FPGA Based Designs 52

2.3.8 Post Synthesis Level Power Modelling of FPGAs 53

2.3.9 Power Estimation for Cycle-Accurate Functional Descriptions of Hard-

ware . 53

2.3.10 Power Estimation Technique for FPGAs 55

2.3.11 Power Modelling and Characteristics of Field Programmable Gate

Arrays . 56

2.4 Limitation of Existing Work and Research Opportunities 57

2.5 Conclusions . 59

3 Efficient Implementation of HWT using Sparse Matrix Factorisation 60

3.1 Introduction . 60

3.2 Haar Wavelet Transform: A Review . 62

3.2.1 HWT Decomposition Methods . 62

3.3 Mathematical Background . 63

3.4 Distribute Arithmetic: A Review . 64

3.5 HWT Factorisation Methodologies . 66

3.5.1 The Proposed HWT Factorisation Method 1 66

3.5.2 The proposed HWT Factorisation Method 2 68

Contents xii

3.6 Proposed Architectures for HWTFM1

and HWTFM2 . 71

3.6.1 Proposed Architectures for HWTFM1 71

3.6.2 Proposed Architectures for HWTFM2 73

3.6.3 Comparison with Existing Architectures 74

3.6.4 HWT Host Application for FPGA 75

3.7 FPGA Implementation Results and Analysis 75

3.7.1 Hardware/Software Implementation of HWT

on Medical Imaging . 78

3.8 Conclusions . 82

4 Architecture Level Optimisation and Efficient FPGA Implementation of

Finite Ridgelet Transform 84

4.1 Introduction . 84

4.2 The Finite Radon Transform: A Brief Review 85

4.3 Proposed Architectures for FRAT - Design and Evaluation 87

4.3.1 FRAT Comparison with Existing Architectures 89

4.4 FRAT FPGA Implementation . 90

4.4.1 Applying FRAT on Image Data . 91

4.4.2 Chip Level Details . 92

4.5 Finite Ridgelet Transform: A Brief Review 93

4.5.1 Mathematical Background of the Finite Ridgelet Transform 94

4.5.2 Haar Wavelet Transform . 94

4.5.3 Building the FRIT from FRAT and DWT 95

4.6 Proposed Architectures for FRIT . 95

4.6.1 Results and Analysis . 97

4.6.2 Image Data . 97

4.6.3 FRIT Host-FPGA system . 98

4.7 FRIT FPGA Implementation . 99

4.7.1 FPGA Chip Level Details . 101

4.8 Conclusions . 101

5 Efficient FPGA Implementation of Cyclic Convolution using Systolic

Design 103

Contents xiii

5.1 Introduction . 103

5.2 Mathematical Background of Cyclic Convolution 104

5.2.1 Block Cyclic Convolution using Optimal Short Length Algorithm . . 105

5.3 Proposed Systolic Architectures for Block Cyclic Convolution Algorithm . . 106

5.3.1 Proposed Pipelining Architecture . 106

5.3.2 Proposed Parallel Architecture . 107

5.4 Result and Analysis for Proposed Architectures 109

5.4.1 Architectural Results . 109

5.4.2 FPGA Implementation . 111

5.5 Conclusion . 114

6 Functional Level Power Modelling Approach: An In-depth Evaluation 116

6.1 Introduction . 116

6.2 Underlying Concepts of the Proposed Power Modeling 117

6.3 Mathematical Background . 120

6.3.1 Power Analysis . 122

6.4 Proposed Modeling Methodology Applied on HWT Core 124

6.4.1 HWT Area Modeling Details . 124

6.4.2 Clock Power Model . 125

6.4.3 Signal Power Model . 126

6.4.4 Logic Power Model . 126

6.4.5 Input Power Model . 127

6.5 Proposed Modeling Methodology Applied on FRIT Core 127

6.5.1 Area Model for FRIT . 128

6.5.2 Clock Power Model . 129

6.5.3 Signal Power Model . 129

6.5.4 Logic Power Model . 130

6.5.5 Input Power Model . 131

6.5.6 Output Power . 131

6.6 Proposed Modelling Methodology Applied on Cyclic Convolution Core . . . 132

6.6.1 Area Model for Cyclic Convolution 132

6.6.2 Clock Power Model . 132

6.6.3 Signal Power Model . 133

6.6.4 Logic Power Model . 133

Contents xiv

6.6.5 Input Power Model . 134

6.7 Modeling Evaluation and Analysis . 135

6.7.1 Functional Level Approach Model Accuracy 135

6.7.2 Comparison Modeling Characteristics of Functional Level Approach

with Existing Work . 137

6.7.3 Observations and Analysis . 138

6.8 Conclusion . 139

7 Conclusions and Future Work 140

7.1 Introduction . 140

7.2 Evaluation of Results and Contributions . 141

7.2.1 Measurement of Success . 142

7.2.2 Results Achieved . 142

7.2.3 Limitations . 144

7.3 Future Work . 145

Bibliography 148

Appendix ii

A FPGA Prototyping Board ii

A.0.1 Spartan 3 FPGA . ii

A.0.2 RC1000 FPGA Board . iv

A.1 Other FPGA Devices Used in This Research vi

A.1.1 Virtex-5 . vi

A.1.2 Virtex-4 . vii

B Tools and Software Packages x

B.1 Handel-C . x

B.1.1 Parallel Hardware Generation . xii

B.1.2 Channel Communications . xii

B.1.3 Memory . xiii

B.2 Xilinx-ISE . xiii

B.2.1 ISE Translation . xiv

B.2.2 ISE Timing Constraints . xv

Contents xv

B.2.3 Placement Constraints . xv

B.2.4 Synthesis Constraints . xv

B.2.5 Place & Route . xv

B.2.6 Core Generator . xvii

B.2.7 XPower Estimation . xvii

B.3 Nonlinear Regression Analysis Tool . xix

B.4 FPGA Power Dissipation . xix

B.4.1 Static Power Dissipation . xx

B.4.2 Dynamic Power Dissipation . xxi

B.4.3 The Finite Radon Transform . xxii

List of Figures

1.1 Flexibility and performance of FPGA with other rivals [1] 3

1.2 Basic elements of the FPGA architecture [2] 9

1.3 Configurable Logic Block Architecture for Virtex-5 FPGA [3] 10

1.4 Virtex-5 FPGA slice architecture [4] . 11

1.5 FPGA switch box [5] . 12

1.6 FPGA design cycle . 13

1.7 G. Moore’s law which shows the increase of transistors every year [6] 18

1.8 Growth of FPGA with relation to Moore’s law [2] 18

1.9 Power density comparison with computation [2] 19

1.10 FPGAs dynamic power dissipation . 20

2.1 FPGA block diagram [7] . 26

2.2 A partitioned-LUT DA implementation of the Daubechies FIR filter [8] . . 27

2.3 A parallel distributed arithmetic Daubechies FIR filter [8] 28

2.4 Architecture for the computation of the 2D-HWT based on the 1D-HWT [9] 29

2.5 Reconfigurable architecture for DWT and CWT [10] 30

2.6 Top-level architecture for DBWT [10] . 31

2.7 DA based architecture for the fast Hadamard transform [11] 32

2.8 DA based architecture for FHT [12] . 33

2.9 Block diagram of proposed FRAT implementation [13] 34

2.10 FRAT architecture with parallel core [14] 35

2.11 Reference architecture for the FRAT [15] 36

2.12 Memoryless architecture for the FRAT [15] 37

2.13 FRIT architecture with the FRAT and DWT sub-blocks [14] 38

2.14 Standard pseudocode based architecture for the FRAT [16] 38

2.15 DBWT sub-block based on the àtrous algorithm [16] 39

xvi

List of Figures xvii

2.16 Generic architecture for the FRAT [17] . 40

2.17 Generic tree-based architecture for the DWT [17] 40

2.18 Standard pseudocode based architecture for the FRAT [17] 41

2.19 DWT sub-block for the standard pseudocode based FRIT architecture [17] . 41

2.20 Linear systolic array for the computing a pair of three-point cyclic convo-

lutions. (a) The linear array. (b) Function of each PE [18] 42

2.21 Thirteen-point DCT using six point (6 = 3× 2) fast cyclic convolution [19] 43

2.22 Architecture for convolution using pipelining [20] 44

2.23 Implementation block diagram [21] . 45

2.24 Model for FPGA design flow estimation [22] 46

2.25 Modeling methodology block diagram [23] 48

2.26 Modified VPR framework used for power modelling [24] 48

2.27 High level power macromodelling for reconfigurable hardware [25] 50

2.28 Macro-model characterisation procedure . 51

2.29 Design flow for FLPAM based power and energy optimised design of FPGA

cores [26] . 51

2.30 High level FPGA power estimation methodology [27] 52

2.31 Power modeling tool infrastructure [28] . 53

2.32 Overview of the CAFD power estimation methodology [29] 54

2.33 CAD flow for activity analysis [30] . 55

2.34 Overall power calculation [31] . 56

3.1 Proposed system for medical image segmentation using HWT with FPGA

acceleration . 61

3.2 DA Harware Architecture . 66

3.3 Generalised formulation for HWT factorisation method 1 67

3.4 Generalised formulation for HWT factorisation method 2 68

3.5 Proposed architecture for HWTFM1 . 71

3.6 HWTFM1 structure for a vector when N is 8 and W is 8 72

3.7 Proposed architecture for HWTFM2 . 73

3.8 Host application for FPGA implementation of HWT 76

3.9 Architecture for FPGA implementation of HWTFM2 using Handel C par-

allelism . 76

List of Figures xviii

3.10 Chip layout of Virtex-5 and Spartant-3L for 2D HWTFM2 (a) Chip layout

of Virtex-5 for HWTFM2 when the transform size (N) is 16 (b) Chip layout

of Spartan-3L for HWTFM2 when the transform size N is 16 78

3.11 The design flow for HWT hardware and software implementation 80

3.12 (a) Original real PET image (256 x 256) (b) HWT first level of decomposi-

tion (c) Segmented image (thresholding) using FPGA (d) Original real PET

image (256 x 256) (e) HWT first level of decomposition (f) Segmented im-

age (thresholding) using MATLAB (g) Original real PET image (256 x 256)

(h) HWT first level of decomposition (i) Segmented image (thresholding)

using Visual C++ . 81

4.1 FRAT Flowchart . 88

4.2 Proposed architecture for FRAT . 89

4.3 Spatial domain and transformed images (a) Spatial domain human brain (b)

FRAT domain, p = 7 (c) Reconstructed image (d) Spatial domain human

lung (e) FRAT domain, p = 7 (f) Reconstructed image (g) Spatial domain

human chest (h) FRAT domain, p = 7 (i) Reconstructed image 92

4.4 Chip layout of Virtex-5 and Spartant-3L for FRAT (a) Chip layout of

Virtex-5 for FRAT when the block size (P) is 17 (b) Chip layout of Spartan-

3L for FRAT when the block size (P) is 17 93

4.5 Finite ridgelet transform obtained by performing HWT on the FRAT vectors. 95

4.6 Proposed architecture for FRIT . 96

4.7 Spatial domain and transformed images (a) Spatial domain human lung (b)

FRIT domain, p = 7 (c) Spatial domain human brain (d) FRIT domain, p

= 7 . 98

4.8 Host application for FRIT . 99

4.9 Chip layout of Virtex-5 and Spartant-3L for FRIT (a) Chip layout of Virtex-

5 for FRIT when the block size (P) is 31 (b) Chip layout of Spartan-3L for

FRIT when the block size (P) is 31 . 101

5.1 Proposed pipelined systolic architecture for block cyclic convolution 107

5.2 Data flow for proposed pipelining architecture when N is 4 108

5.3 Proposed parallel systolic architecture for block cyclic convolution 109

5.4 Data flow for proposed parallel architecture when N is 4 110

List of Figures xix

5.5 Slice utilisation with different transform sizes on different FPGA platforms 112

5.6 LUT utilisation with different transform sizes on different FPGA platforms 113

5.7 Chip layout of Virtex-5 for proposed design when the (N) is 32 113

5.8 Chip layout of Virtex-E for proposed design when the (N) is 32 114

5.9 Chip layout of Spartan-3 for proposed design when the (N) is 32 114

6.1 The steps involved to build the functional level modelling approach 118

6.2 Proposed design flow for functional level approach for FPGA IP cores . . . 119

6.3 FPGA sub-block (B) . 121

6.4 Power diagram for different FPGA platforms 123

6.5 Power diagram for different components of DP on Virtex-2000E 123

6.6 Clock power chart for 2D HWT when the transform (N) size is 16 at dif-

ferent frequencies . 125

6.7 Sinal power chart for 2D HWT when the transform (N) size is 16 at different

frequencies . 126

6.8 Logic power chart for 2D HWT when the transform (N) size is 16 at different

frequencies . 127

6.9 Input power chart for 2D HWT when the transform (N) size is 16 at dif-

ferent frequencies . 128

6.10 Clock power chart for FRIT when the block (P) size is 7, 17 and 31 at

different frequencies . 129

6.11 Signal power chart for FRIT when the block (P) size is 7, 17 and 31 at

different frequencies . 130

6.12 Logic power chart for FRIT when the block (P) size is 7, 17 and 31 at

different frequencies . 130

6.13 Input power chart for FRIT when the block (P) size is 7, 17 and 31 at

different frequencies . 131

6.14 Clock power chart for cyclic convolution when the transform size (N) is 4,

16 and 32 at different frequencies. 133

6.15 Signal power chart for cyclic convolution when the transform size (N) is 4,

16 and 32 at different frequencies. 134

6.16 Logic power chart for cyclic convolution when the transform size (N) is 4,

16 and 32 at different frequencies. 134

List of Figures xx

6.17 Input power chart for cyclic convolution when the transform size (N) is 4,

16 and 32 at different frequencies. 135

7.1 The steps involved to build the functional level modelling approach 146

A.1 RC10 board with Xilinx Spartan . iii

A.2 Xilinx Spartan 3 block diagram [32] . iv

A.3 Xilinx RC1000 board . v

A.4 Xilinx RC100 block diagram [33] . vi

A.5 A simplified diagram of a Xilinx Virtex-5 FPGA slice [4] viii

A.6 A simplified diagram of a Xilinx Virtex-4 FPGA slice [34] ix

B.1 Handel-C/ANSI-C comparison [35] . x

B.2 The DK design synthesis tool . xi

B.3 The PAR construct [35] . xii

B.4 Channel communication [35] . xiii

B.5 ISE Project navigator display window . xiv

B.6 FPGA Editor showing the place and route of a design xvi

B.7 The design flow of Xilinx Core Generator xviii

B.8 ISE XPower user interface . xviii

B.9 NLREG user interface window . xx

B.10 Transistor leakage current for FPGA . xxi

List of Tables

1.1 The quality comparison of different hardware implementation approaches [1] 4

3.1 Comparison of the design parameters with other existing architectures (where

N is transform size and W is the word length) 74

3.2 Comparison of logic elements used in the proposed methodologies when

N = 8 and W = 8 . 75

3.3 Comparison of implementation results of HWTFM2 with different platforms

and existing work . 77

3.4 The PSNR analysis of HWT using FPGA, MATLAB and VC++ 82

4.1 Comparison with existing architectures . 89

4.2 Performance matrices of FRAT core on different FPGA platforms 90

4.3 Comparison of performance metrics with existing FPGA implementations . 91

4.4 The PSNR analysis of reconstructed images from 8 bit FRAT images 93

4.5 Comparison of design parameters of FRIT with existing architectures . . . 97

4.6 The PSNR and timing analysis of 8 bit FRIT images 98

4.7 Comparison of performance metrics with existing FPGA implementations . 100

5.1 Comparison of the design parameters with other existing architectures (where

N is vector size) . 111

5.2 FPGA implementations results for the proposed cyclic convolution archi-

tecture . 111

5.3 FPGA implementations results comparison of the proposed design 113

6.1 Functional level approach model accuracy for the optimised FRIT and HWT

IP cores implemented on different platforms 135

6.2 Functional level approach model accuracy comparison with Xilinx Xpower

for the optimised FRIT and HWT IP cores on different FPGA platforms . 136

xxi

List of Tables xxii

6.3 Regression modeling observation of FRIT with different FPGA platforms . 136

6.4 Values for scaling coefficient of power models for the proposed FRIT IP

core architecture on FPGA Platforms . 137

6.5 Values for scaling coefficient of power models for the proposed HWT IP

core architecture on FPGA Platforms . 137

6.6 Comparison modeling characteristics of different approaches with functional

level approach model . 138

xxiii

List of Abbreviations

AC : Area Complexity

AG : Address Generator

ALI : Address Logic Initialiser

ASIC : Application Specific Integrated Circuit

CAFD : Cycle Accurate Functional Description

CDFG : Control-Data Flow Graph

CDMA : Code Division Multiple Access

CLB : Configurable Logic Block

CMOS : Complementary Metal Oxide Semiconductor

CP : Clock Power

CT: Computed Tomography

CWT : Continues Wavelet Transform

CPLD : Complex Programmable Logic Device

CAD : Computer Aid Design

DA : Distributed Arithmetic

DBWT : Discrete Bi-orthogonal Wavelet Transform

DCT : Discrete Cosine Transform

DICOM: Digital Imaging and Communications in Medicine

xxiv

DFF : D Flip Flop

DFG : Data Flow Graph

DFT : Discrete Fourier Transform

DHT : Discrete Hartley Transform

DOT : Discrete Orthogonal Transform

DES : Data Encryption standard

DP : Dynamic Power

DSP : Digital Signal Processing

EDIF : Electronic Design Interchange Format

FFT : Fast Fourier Transform

FHT : Fast Hadamard Transform

FMAT : FPGA MATrix Algorithms

FPGAs : Field Programmable Gate Arrays

FRAT : Finite Radon Transform

FRIT : Finite Ridgelet Transform

GMM : Gaussian Mixture Modelling

GPU : Graphic Processing Unit

GPP : General Purpose Processor

HDL : Hardware Definition Language

HLS : High Level Synthesis

HDTV : High Definition TeleVision

HT : Hadamard Transform

HWT : Haar Wavelet Transform

HWTM1 : Haar Wavelet Transform Method 1

xxv

HWTM2 : Haar Wavelet Transform Method 2

I/O : Input/Output

IC : Integrated Circuit

IP : Intellectual Property

InP : Input Power

IVSL : Image and Vision Systom Laboratory

JPEG: Joint Photographic Experts Group

LE : Logic Element

LFSR : Linear Feedback Shift Registers

LP : Logic Power

LPW : Linear PieceWise

LSB : Least Significant Bit

LUT : Look Up Table

MB : Memory Block

MAAs : Multiresolution Analysis Algorithms

MPGAs : Mask Programable Gate Arrays

MRI : Magnetic Resonance Imaging

MSB : Most Significant Bit

MIMO : Multiple Input Multiple Output

OP : Output Power

PACE : Pinout Area Constraints Editor

PAL : Programmable Array Logic

PAR : Place and Route

PDA : Personal Digital Assistant

xxvi

PE : Processing Element

PLD : Programmable Logic Device

PSNR : Peak Signal to Noise Ratio

RAM : Random Access Memory

ROM : Read Only Memory

RT : Radon Transform

RTL : Register Transfer Level

RAG : Reconfigurable Address Generator

SIPOSR : Serial-In Parallel-Out Shift Register

SoC : System on Chip

SoPC : System on a Programmable Chip

SP : Signal Power

SRAM : Static Random Access Memory

TC : Time Complexity

TDM : Time Division Multiplexing

VPR : Versatile Place and Route

W-H : Walsh-Hadamard

WHT : Walsh-Hadamard Transform

XCL : Xilinx Coregen Library

Chapter 1

Introduction

Fast advancement in the world of technology specially in the field of digital image pro-

cessing brings new challenges everyday and leaves the researchers to search for a better

solution. In the past decades digital image and signal processing is one of the fastest grow-

ing areas of the electronics industry. These technologies are having an increasing impact

in a wide variety of application areas such, wireless communications, telecommunication,

biometrics, biomedical imaging, multimedia indexing storage, computer vision and remote

sensing.

The characterisation of signal processing has changed in many applications, especially

those involving sophisticated algorithms that require real-time processing of high volumes

of data. Increasing demands for faster and more sophisticated processing show absolutely

no sign of failing for signal processing applications. Therefore, appropriate algorithms and

high performance systems are required by the developers for fast computations of these

applications.

Advanced image and signal processing techniques in a wide range of disciplines and appli-

cations, from computer vision and medical imaging to image and video compression, are

replacing previous generations’ technology offering enhancements, such as better stream-

ing capability, higher compression for a given quality and lower latency. This can be seen

from the considerable amount of literature on the subject, including major international

conferences and emerging standards such as JPEG2000 for image compression [36], and

Digital Imaging and Communications in Medicine (DICOM) for 3D medical imaging [37].

Researchers are working round the clock to develop efficient algorithms and architectures

suitable for these applications. Therefore, application designers face many new and diffi-

1

1.1. Hardware Acceleration 2

cult challenges as they attempt to deploy technology that can execute high-performance

computations, manipulate larger and larger data sets and better visualise increasingly

complex data. Among these algorithms, multiresolution analysis one of them to be con-

sidered carefully due to the huge interest in recent years. Multiresolution algorithms such

as Discrete Wavelet Transforms (DWT), Finite Ridgelet Transform (FRIT) and Curvelet

Transform (CT) are highly suitable for a number of image processing applications such

as detection of line singularities and contiguous edges, edge detection, image compression,

video compression and surveillance [38, 39], image denoising, image segmentation, medi-

cal imaging [40], astronomical imaging [41, 42], High Definition (HDTV) [43] and digital

cinema [44,45].

Recently, the ridgelet and curvelet transforms [46–48] have been generating a lot of in-

terest due to their superior performance over wavelets. The wavelet transform has been

extensively used in image and video processing during the last ten years. However, it

has long been known that the wavelet transform has many limitations when it comes to

representing straight lines and edges in image processing. While wavelets have been very

successful in applications such as denoising and compact approximations of images con-

taining zero dimensional (point) singularities, they do not isolate the smoothness along

edges that occur in images. Wavelets are thus more appropriate for the reconstruction

of sharp point-like singularities than lines or edges. These shortcomings of wavelets are

well addressed by the ridgelet and curvelet transforms, as they extend the functionality

of wavelets to higher dimensional singularities, and are effective tools to perform sparse

directional analysis. The applications for these algorithms (specially medical imaging) are

computationally intensive, which require real-time acceleration process and make hardware

acceleration essential.

1.1 Hardware Acceleration

Manipulating large data sets and execution of complex algorithms such as multiresolu-

tion analysis make the appearance of hardware acceleration inevitable for providing the

necessary performance. Hardware design paradigms are also undergoing a sea change in

order to address the various issues involved. There is a perceptible shift towards top-down

design flow and a preference for modular, integrated and flexible solutions.

Currently, there are range of processors such as General Purpose Processors (GPPs), Dig-

1.1. Hardware Acceleration 3

ital Signal Processors (DSPs), Application Specific Integrated Circuits (ASICs), Graphics

Processing Unit (GPU) and Field Programable Gate Arrays (FPGAs) which are used as

hardware platforms to resolve complex and intensive applications. These processors have

their own preference and flexibility. For instance, GPPs and DSPs, in consequence of the

overhead paid for the flexibility, processors are rather inefficient regarding performance

and power consumption [49]. ASICs are efficient regarding performance and power con-

sumption, but they lack flexibility, as no programmable resources are provided [49]. The

realisation of reconfigurable systems was enabled through the introduction of the FPGAs

in the mid eighties. FPGAs share with ASICs the capability to implement application-

specific circuits, with the key difference that FPGA circuits are programmed by means of a

configuration data stream that specifies the logical functionality and connectivity [49,50].

FPGAs can perform mathematical operation on an entire vector or matrix at the same

time. FPGAs have been evolving and improving rapidly, and have consistently shown

the fastest rates of performance gains and supports the fine-grained parallelism of many

pipelined DSP applications. The flexibility and performance of FPGA with other rivals

are illustrated in Fig. 1.1.

Preformance

F
le

xi
be

lit
y

FPGA's

CPU's / DSP's

GPU

Asic's

Figure 1.1: Flexibility and performance of FPGA with other rivals [1]

The quality of different implementation approaches can be evaluated using various metrics

1.1. Hardware Acceleration 4

such as performance, energy consumption, logic area, cost, time to market and flexibility to

incorporate functional requirement changes. These issues recently become the top agenda

for venders and designers considerations.

Table 1.1: The quality comparison of different hardware implementation approaches
[1]

Performance Cost Power Flexibility Design Time to
Cycle Market

ASIC High High Low Low High High
DSP Medium Medium Medium Medium Medium Mediam
GPP Low Low Medium High Low Low
GPU High Medium High Medium Medium Medium
FPGA Medium/High Low Medium High Low low

In the past two decades, performance and cost have become more significant as digital

image processing has migrated from predominantly military and scientific applications

into numerous low-cost consumer applications. Energy consumption has also become an

important measure as digital image processing techniques have been widely applied in

portable, battery-operated systems and devices. Design cycle and time to market also

playing an important role as there is always a high demand in the market. Finally, flex-

ibility has emerged as one of the key differentiators in image processing implementations

since it allows changes to system functionality at various points in the design life cycle.

These trade-offs have resulted in the five primary implementation options which are indi-

cated in Table 1.1. Each implementation option presents different trade-offs in terms of

performance, cost, power and flexibility [1]. The quality comparison of different hardware

implementation approaches is shown in Table 1.1. A lot of research has been carried out

into several areas of architectural support for complex applications using different hard-

ware approaches, some of the conventional approaches for hardware acceleration are listed

as follow:

1.1.1 Application Specific Integrated Circuits Hardware

ASICs are designed specifically to perform a given computation and consequently they

efficiently perform the given computation according to the application’s design objectives.

ASICs have some advantages and drawbacks compare to other rivals. They support large,

complex design with high performance and low power consumption. Meantime, they are

1.1. Hardware Acceleration 5

difficult to design, have long development time and after fabrication the circuit can not be

altered. This forces a re-design and a re-fabrication of any part of the chip which requires

modification. This is an expensive process, especially when one consider the difficulties in

replacing ASICs in a large deployed system [51,52].

The main disadvantages of this approach can be summarised in the three following points:

• Special purpose hardware has a long development time, from design through simu-

lation and fabrication;

• It can also be expensive if it is a one-off solution or if the volume required cannot

justify its fabrication costs; and

• Once this special purpose hardware is built, it is not possible to change the hard-

ware to accommodate slightly different needs. With such a solution a new piece of

hardware is usually required for each new algorithm.

The underlying concept behind structured ASICs is fairly simple, it contains a small

amount of generic logic implemented either as gates and/or multiplexers and/or a Look-

Up Table (LUT). Depending on the particular architecture, the tile may contain one or

more registers and possibly a very small amount of local Random Access Memory (RAM).

An array (sea) of these tiles is then prefabricated across the face of the chip. Structured

ASICs also typically contain additional prefabricated elements, which may include con-

figurable general-purpose Input/Output (I/O), microprocessor cores, gigabit transceivers,

embedded (block) RAM and so forth. Structured ASIC technology is especially suitable

for platform ASIC designs that have integrated most of the Intellectual Property (IP)

blocks and leave some space for custom changes [53,54]. There are different type of ASICs

but the following types of ASICs are currently often mentioned:

• Standard cell based ASIC, it is probably the most generic type of ASIC nowadays.

This type of ASIC is constructed from the cell library usually provided by the semi-

conductor fabrication plant. The set of standard cells is automatically synthesized

from the RTL description on VHDL or Verilog;

• Full-custom ASIC, it differs from the previous type of ASIC in that the ASIC de-

signer designs some logic cells and/or layout specifically for this ASIC. Some of the

cells can still be taken from the library. This approach has to be used when the

1.1. Hardware Acceleration 6

standard library doesn’t contain some specific cells or when the standard cells don’t

meet some specific requirements on performance, area or power dissipation; and

• Structured ASIC, it is quite a different term that shouldn’t be confused with the

previous ones. This term is usually used in connection with ASICs built on basis

of FPGA. Major FPGA vendors can produce chips pre-configured with customer’s

FPGA bitstream, for the price a few times lower than that of FPGA. The design

costs are thereby similar to the design costs for FPGA projects. This can be a

cost-effective solution for medium-volume products. This technique is implemented

by Xilinx under the brand EasyPath and by Altera under the brand HardCopy

A more recent approach, which aims to benefit from the advantages of special purpose

hardware by avoiding many of its disadvantages, is to use dynamically reprogrammable

hardware in the form of FPGAs. A brief overview of FPGAs is provided in the next

section.

1.1.2 Digital Signal Processors

DSP processors are microprocessors designed to perform digital signal processing the math-

ematical manipulation of digitally represented signals. DSP is one of the core technologies

in rapidly growing application areas such as wireless communications, audio and video

processing, and industrial control. DSP was first introduction of the first commercially

successful DSP chips in the early 1980s and have been used intensively in last two decades

for signal processing applications. General-purpose microprocessors and operating systems

can execute DSP algorithms successfully, but are not suitable for use in portable devices

such as mobile phones and Personal Digital Assistant (PDAs) because of power supply

and space constraints. A specialised DSP will tend to provide a lower-cost solution, with

better performance, lower latency, and no requirements for specialised cooling or large

batteries. DSP processor has features designed to support high-performance, repetitive

and numerically intensive tasks. Some of the DSP features are described as follow [55]:

• The ability to perform one or more multiply-accumulate operations (often called

MACs) in a single instruction cycle. The multiply-accumulate operation is useful in

DSP algorithms that involve computing a vector dot product, such as digital filters,

correlation, and Fourier transforms. To achieve a single-cycle MAC, DSP processors

integrate multiply-accumulate hardware into the main data path of the processor;

1.1. Hardware Acceleration 7

• Most DSPs are able to complete several accesses to memory in a single instruction

cycle. This allows the processor to fetch an instruction while simultaneously fetching

operands and/or storing the result of a previous instruction to memory. For example,

in calculating the vector dot product for an FIR filter, most DSP processors are able

to perform a MAC while simultaneously loading the data sample and coefficient for

the next MAC. Such single cycle multiple memory accesses are often subject to

many restrictions;

• Specialised execution control. Usually, DSP processors provide a loop instruction

that allows tight loops to be repeated without spending any instruction cycles for

updating and testing the loop counter or for jumping back to the top of the loop;

• DSPs have one or more dedicated address generation units to speed arithmetic pro-

cessing. Once the appropriate addressing registers have been configured, the address

generation unit operates in the background (i.e., without using the main data path of

the processor), forming the addresses required for operand accesses in parallel with

the execution of arithmetic instructions. In contrast, general-purpose processors

often require extra cycles to generate the addresses needed to load operands;

• DSP processors are known for their irregular instruction sets, which generally allow

several operations to be encoded in a single instruction. For example, a processor

that uses 32-bit instructions may encode two additions, two multiplications and four

16-bit data moves into a single instruction. In general, DSP processor instruction

sets allow a data move to be performed in parallel with an arithmetic operation.

GPPs, in contrast, usually specify a single operation per instruction;

• DSPs have low-cost, high-performance input and output, most DSP processors in-

corporate one or more serial or parallel I/O interfaces, and specialized I/O handling

mechanisms such as low-overhead interrupts and direct memory access (DMA) to

allow data transfers to proceed with little or no intervention from the rest of the

processor.

As a result, DSPs have been successfully used in a wide range of image processing appli-

cations [56,57]. They provide the computing power necessary to process large amounts of

data in real-time [58].

1.2. Field Programmable Gate Arrays 8

1.1.3 Graphic Processing Unit

GPU is a specialised microprocessor that off-loads and accelerates 3D or 2D graphics ren-

dering from the microprocessor. It is used in embedded systems, mobile phones, personal

computers, workstations, and game consoles. Modern GPUs are very efficient at manip-

ulating computer graphics, and their highly parallel structure makes them more effective

than general-purpose CPUs for a range of complex algorithms. In a personal computer, a

GPU can be present on a video card, or it can be on the motherboard. More than 90% of

new desktop and notebook computers have integrated GPUs, but these GPUs are not as

power full as those ones which come on a dedicated video card for intensive applications.

There are many companies have produced GPUs under a number of brand names, but

currently, Intel, NVIDIA and AMD/ATI are the market leaders.

A GPU is a processor attached to a graphics card dedicated to calculating floating point

operations. A graphics accelerator incorporates custom microchips which contain special

mathematical operations commonly used in graphics rendering. The efficiency of the

microchips therefore determines the effectiveness of the graphics accelerator. They are

mainly used for playing 3D games or high-end 3D rendering. A GPU implements a number

of graphics primitive operations in a way that makes running them much faster than

drawing directly to the screen with the host CPU. Modern GPUs also have support for

3D computer graphics, and typically include digital video related functions.

1.2 Field Programmable Gate Arrays

FPGAs are first introduced in the mid 1980 and they have steadily established themselves

as an alternative for implementing digital logic in systems. FPGAs were originally cre-

ated to serve as a hybrid device between Programmable Arrays Logic (PALs) and Mask

Programmable Gate Arrays (MPGAs). First generation FPGAs were used to provide a

designer solution for glue logic, but now they have expanded their applications to the point

that it is not uncommon to find FPGAs as the central processing devices within systems.

However, the flexibility, capacity, and performance of these devices have opened up com-

pletely new avenues in high-performance computation, forming the basis of reconfigurable

computing [59]

Nowadays FPGAs can be found everywhere. Researchers and students use them in to run

experiments. Companies use them on development boards to help refine new chip designs.

1.2. Field Programmable Gate Arrays 9

Companies and universities are using them in cutting-edge research on topics ranging from

programming technology, cryptography to real-time systems. As a result of rapid advances

in the semiconductor industry, FPGAs themselves are getting so inexpensive that some

companies do not even fabricate an ASIC. They simply include the FPGA in their final

product. The considerable interest in reconfigurable hardware has been highlighted by an

increasing amount of research carried out in the area, coupled with the development of

several commercial systems based on FPGAs. There is no doubt that this level of interest

will certainly continue to grow over the next number of years. With the emergence of such

reconfigurable hardware it is not surprising that there has been wide ranging research into

the use of FPGAs to increase the performance of a wide range of computationally intensive

applications.

1.2.1 FPGA Structure

The basic architecture of FPGAs consists of three kinds of components logic blocks, routing

and I/O blocks. Generally, FPGAs consist of an array of programmable logic blocks that

can be interconnected to each other as well as to the programmable I/O blocks through

some sort of programmable routing architecture. Fig. 1.2 provides a very simplified

diagram of a generic FPGA architecture.

Programmable

Interconnect

Fully

Programmable.

Replace All Functionality in

<50ms

Input/Output

Block

(IOB)

Digital Clock

Manegement Blocks

(DCM)

Configurable

Logic Block

(CLB)

Block

Memory

Figure 1.2: Basic elements of the FPGA architecture [2]

1.2. Field Programmable Gate Arrays 10

Configurable Logic Block

The Configurable Logic Blocks (CLBs) are the main logic resources for implementing

sequential as well as combinatorial circuits. Each CLB element is connected to a switch

matrix for access to the general routing matrix. Each CLB contains number of slices

which depends on FPGA, some FPGA CLB contains two slices and some contains four

slices. For instance Virtex-5 CLB captains two slices and each slices contains four LUTs.

These slices do not have direct connections to each other, and each slice is organised as a

column. Each slice in a column has an independent carry chain. For each CLB, slices in

the bottom of the CLB are labeled as slice(0), and slices in the top of the CLB are labeled

as slice(1). A typical Virtex-5 CLB block architecture is illustrate in Fig. 1.3.

Figure 1.3: Configurable Logic Block Architecture for Virtex-5 FPGA [3]

Slices

A typical advanced slice contains four 6-input LUTs, four Data-Flip-Flops (DFF) and mul-

tiplexers [3]. The LUTs are implemented as true 6-LUTs, rather than being constructed

using smaller LUTs that can be optionally combined together via multiplexer. The true 6-

LUTs provide excellent performance for implementing large 6-input logic functions. Slices

receive/produce carry signals from/to neighboring slices for implementing fast arithmetic

functions. The LUTs allow any function to be implemented, providing generic logic. The

DFF can be used for pipelining, registers, state holding functions for finite state machines,

or any other situation where clocking is required. The fast carry logic is a special resource

1.2. Field Programmable Gate Arrays 11

provided in the cell to speed up carry-based computations, such as addition, parity, wide

AND operations, and other functions. The multiplexers are used to combine up to four

function generators to provide any function of seven or eight inputs in a slice. As there

has been a great deal of experimentation in FPGA logic block architectures, there has

been equally as much investigation into interconnect structures [59]. A typical advanced

Xilinx Virtex-5 FPGA slice is shown in Fig. 1.4.

Real 6-Input LUT

I
mproved Carry

Chain Architecture

for Arithmetic Ops
 Faster FF for

Pipelined Design

Multiplexers

DFF

A

Figure 1.4: Virtex-5 FPGA slice architecture [4]

Routing

The routing architecture is designed to handle versatile connection configurations. Most

FPGA architectures organise their routing structures as a relatively smooth sea of routing

resources, allowing fast and efficient communication along the rows and columns of logic

blocks. The logic blocks are embedded in a general routing structure, with input and

output signals attaching to the routing fabric through connection blocks [59].

1.2. Field Programmable Gate Arrays 12

Connection Blocks

The connection blocks provide programmable multiplexers, selecting which of the signals

in the given routing channel will be connected to the logic block’s terminals. These blocks

also connect shorter local wires to longer distance routing resources. Signals flow from

the logic block into the connection block and then along longer wires within the routing

channels [59] the typical connecting block is also shown in Fig. 1.2.

Switch Boxes

At the switch boxes there are connections between the horizontal and vertical routing

resources to allow signals to change their routing direction. Once the signal has traversed

through routing resources and intervening switch boxes, it arrives at the destination logic

block through one of its local connection blocks. In this manner, relatively arbitrary

interconnections can be achieved between the logic blocks in the system. While the routing

architecture of an FPGA is typically quite complex - the connection blocks and switch

boxes surrounding a single logic block typically have thousands of programming points -

they are designed to be able to support fairly arbitrary interconnection patterns [59]. Fig.

1.5 shows a typical switch box architecture for FPGA.

Wire

Segment

Programmable

Switches

Figure 1.5: FPGA switch box [5]

1.2.2 FPGA Design Flow and Synthesis

A typical design flow for FPGA design is given in Fig. 1.6. It consists of a number of tools:

high-level design languages (Handel C which has been used for most implementations

1.2. Field Programmable Gate Arrays 13

carried out in this research project), Hardware Description Languages (HDLs), schematic

capture tools, simulation tools, netlist converters and Place And Route (PAR) tools.

Handel
-
C

Description

with VHDL,

Coregen
 module

instantiations

Hardware

Description

Languages

(HDLs)

Schematic

Capture

Mentor Graphics

DK Compiler

Synthesis

Tool

Wirelister

Tool

Netlist (EDIF)

Mapping

On Chip Scope

Insetion

Place & Route

IO Config

Hierarchial

Floorplaning

Power Analysis

Power

constraints

IO constarints

Timing

Constarints

Simulation

Simulation

FPGA

Configuration

Algorithms

Schematic

Figure 1.6: FPGA design cycle

Schematic Design Entry

Schematic tools provide a graphic interface for design entry. You can use these tools to

connect symbols representing the logic components in your design. You can build your de-

sign with individual gates, or you can combine gates to create functional blocks. Schematic

1.2. Field Programmable Gate Arrays 14

capture tools allow the developer to specify a circuit at a low level as a 2D diagram by

connecting together logic components. This can be done using one of a number of front

end design tools (such as Xilinx ISE, Viewlogic’s ViewDraw and etc [2, 60]). The logic

components are usually contained in a library supplied by the FPGA vendor. Because of

the vendor specific nature of the components, schematic designs produced for a specific

FPGA architecture are not easily portable to other architectures. Once a design has been

specified using schematic capture, it can be converted into a netlist by a schematic-to-

netlist converter tool, such as Viewlogic’s Wirelister [61]. The Schematic Editor, Symbol

Editor, and Library Manager allows to capture the users design with a combination of

schematics, FPGA library macros, or HDL modules. Hierarchy is established by instan-

tiating a symbol from a customer symbol produced by the IPexpress or your own RTL

module. The major schematic tools are listed below:

• Schematic editor, a graphical editor for placing library symbols, adding attributes,

and wiring connections

• Symbol editor,a graphical editor for creating and modifying library symbols

• Library manager, a graphical interface to collect library symbols

• Hierarchy navigator, a graphical tool to explore schematic/HDL design hierarchy

Hardware Description Languages (HDLs)

Hardware description language or HDL is a computer language or programming language

for formal description of electronic circuits, and more specifically, digital logic. It can

describe the circuit’s operation, its design and organization, and tests to verify its opera-

tion by means of simulation. HDLs are standard text-based expressions of the spatial and

temporal structure and behaviour of electronic systems. Like concurrent programming

languages, HDL syntax and semantics includes explicit notations for expressing concur-

rency. However, in contrast to most software programming languages, HDLs also include

an explicit notion of time, which is a primary attribute of hardware. Languages whose only

characteristic is to express circuit connectivity between a hierarchy of blocks are properly

classified as netlist languages used on electric computer-aided design (CAD). The two most

commonly used are Very High Speed Integrated Circuits Hardware Description Language

(VHDL) [62,63] and Verilog [64].

1.2. Field Programmable Gate Arrays 15

Handel-C Language

Handel-C is a high level programming language which targets low-level hardware, most

commonly used in the programming of FPGAs. It is a rich subset of C, with non-standard

extensions to control hardware instantiation with an emphasis on parallelism. Unlike

many other design languages that target a specific architecture Handel-C can be compiled

to a number of design languages and then synthesised to the corresponding hardware.

This frees developers to concentrate on the programming task at hand rather than the

idiosyncrasies of a specific design language and architecture. Handel-C allows hardware to

be directly targeted from software, allowing a more efficient implementation to be created.

In [65–68] have shown that Handel-C shortens design time by a factor of 3-4 times with

approximately the same operating speed compared to traditional HDLs. A number of

recent projects developed under Handel-C illustrate the languages wide applications fit.

• Internet Security, Data Encryption Standard (DES) encryption algorithm in hard-

ware for Secure Sockets Layer (SSL) acceleration.

• Digital Music, MP3 decoding in reconfigurable hardware.

• Internet Telephony, voice-over-IP phone implementing H.323 and Transmission Con-

trol Protocol (TCP)/IP in hardware.

• Image Processing, accelerating complex image processing algorithms in FPGAs.

Synthesis and Netlist Representation

Design synthesis can be defined as the transformation of a design to a level of lower ab-

straction. This definition is sometimes refined to the transformation of a design from a

point in the functional domain to one in the structural domain. CAD tools can be used

to perform synthesis tasks at different design points and with various levels of interac-

tivity with the designer. Logic synthesis and high-level synthesis as two of the major

synthesis areas used in digital design. High Level Synthesis (HLS) is the translation of an

algorithmic design specification into an interconnection of combinational logic (functional

units) and the Register Transfer Level (RTL). The actual logic descriptions at the RTL

are specified in a generic manner perhaps as boolean equations or as generic gates. It is

the task of logic synthesis to map these descriptions onto a specific structure suitable for

the target architecture. After running synthesis the designs become netlist files that are

1.2. Field Programmable Gate Arrays 16

accepted as input to the next implementation steps. Netlist describes the connectivity

of an electronic design and usually convey connectivity information and provide nothing

more than instances, nets, and perhaps some attributes. Most netlists either contain the

descriptions of the parts or devices used in the design. Each time a part is used in a

netlist, this is called an instance and each instance has a master or definition. These

definitions will usually list the connections that can be made to that kind of device, and

some basic properties of that device. These connection points are called ports or pins,

among several other names [2]. The netlist format can be in the standard Electronic Data

Interchange Format (EDIF) format [69], or in another vendor specific format (e.g. Xilinx

Netlist Format -XNF from Xilinx).

Simulation

simulation is used to verify the functionality of the design early in the design flow by

simulating the HDL description. Testing the design through the simulation before the

design is implemented at the RTL or gate level allows user to make any necessary changes

early in the design process. There are normally two way of simulating the design effectively.

One, with larger hierarchical HDL designs, perform separate simulations on each module

before testing the entire design. This makes it easier to debug your code. Second, create

a test bench to verify that the entire design functions as planned. Use the same test

bench again for the final timing simulation to confirm that the design works as expected

under worst-case delay conditions. The Xilinx tools are normally used to simulate are ISE

simulator and ModelSim.

Place And Route

Place and Route Tools (PAR) is a map stage in the design of integrated circuits, and

FPGA. As implied by the name, it is composed of two steps, placement and routing.

The first step, placement, involves deciding where to place all electronic components,

circuitry, and logic elements in a generally limited amount of space. This is followed by

routing, which decides the exact design of all the wires needed to connect the placed

components. This step must implement all the desired connections while following the

rules and limitations of the manufacturing process. Routing between the cells is then

performed based on this placement and the routing resources available. Timing-driven

routing is automatically invoked if PAR finds timing constraints associated with the design

1.3. The Importance of Power in FGPA 17

(e.g. in a user constraint file). After PAR operation a bitstream file can be generated which

can be used to configure the FPGA [61].

1.3 The Importance of Power in FGPA

Recent advances in semiconductor process technology has led to rapid scaling of transistor

dimensions, allowing a large number of them to be packed on the same chip, this make

power dissipation a very important issue and a very high attention is required in the early

stages of the design cycle. Poor design choices early on in the design cycle can result in

expensive corrections and modifications. Taking this issues into account, the advent of

battery operated devices and increased deployment of processing in energy and thermal

constrained environments such as satellites has accelerated interest in power awareness as

a key requirement of the design process.

1.3.1 Motivations for Power Awareness

The well known Moore’s Law [70] has been the guiding beacon for the electronics industry.

He stated that the number of transistors that can be placed inexpensively on an integrated

circuit has doubled approximately every two years. The trend has continued for more than

half a century and is not expected to stop until 2015 or later. This is entirely true for

FPGAs as well. FPGA vendors are embracing latest cutting edge fabrication technologies

resulting in a quadrupling of FPGA capabilities every three years and latest FPGAs have

even surpassed the one billion transistor mark [2]. The Moore’s law diagram which shows

the increase of transistors and power is presented in Fig. 1.7. The logic growth of FPGAs

with relation to Moore’s law is shown in Fig. 1.8. The growth of power density with

computation is shown in Fig. 1.9

Based on information provided in Fig. 1.7, 1.8, 1.9 and the implementation of power

hungry algorithms on FPGAs, it can be concluded that there is a huge demand for adoption

of power aware design practices for FPGAs. The motivations for lowering power and power

aware design are listed below:

• Advancement in electronics continuously bring products with bitter resolution and

better color display such as mobile computing, camera and gaming functions and

high-speed communication. processing these applications become more complicated

1.3. The Importance of Power in FGPA 18

Moore's Law

Figure 1.7: G. Moore’s law which shows the increase of transistors every year [6]

1X

100X

10X

1000X

Year

Figure 1.8: Growth of FPGA with relation to Moore’s law [2]

they consume more power, which drives the need for a power aware design to improve

the efficiency and reduce the size of new generation batteries;

• The mobility is an important issue in a number of environments and portable devices,

a power aware design will help reduce the size of battery and consume less power.

1.3. The Importance of Power in FGPA 19

Figure 1.9: Power density comparison with computation [2]

• Thermal stability and noise immunity are the most important issues to be acknowl-

edged during the design cycle. A computer owner in Britain demonstrated the extent

of the thermal and heat density issues by placing a dish of aluminum foil above the

chip inside his PC and frying an egg for breakfast [71]. The Passive components,

such as resistors, capacitors and inductors typically change in value with tempera-

ture unpredictable operation, leakage currents typically increase. Some applications

such as satellites and network chips are very susceptible to such effects, due to lower

tolerance and high sensitivity to the effects of drift. Interference can be unaccept-

able in sensitive environments such as satellites and Magnetic Resonance Imaging

(MRI) scanners where FPGAs are used heavily for processing large volumes of data.

• Environmental concerns is also on of the main factor for lowering the power due to

global warming.

1.3.2 FPGA Power Dissipation Details

Compared to other custom chips, FPGAs contain long routing tracks with significant

parasitic capacitance. During high-speed operations, the switching activity on these long

routing tracks causes significant power dissipation. Power dissipation calculations for

FPGAs are similar to other complementary metal-oxide semiconductor application-specific

integrated circuit (Complementary Metal Oxide Semiconductor (CMOS) ASIC) devices.

The total power for FPGA can be broken into two categories Static Power (SP) and

Dynamic Power (DP). DP is consumed due to the switching of gates and is still responsible

for a large percentage of the total power dissipated in current computing devices, although

1.3. The Importance of Power in FGPA 20

power dissipation related to SP is expected to increase in the future. The DP consumption

of FPGAs can be separated into three main part: data-path, synchronisation and off-chip

power which is shown in Fig. 1.10.

Dynamic Power

Data Path
 Synchronization
 Off Chip

Clock
Regiters
 Buffers
 I/O

pads

Combination

Block

Interconection

Figure 1.10: FPGAs dynamic power dissipation

The FPGAs DP is classified into clock, signal, logic, input and output power. Power

consumption of the data-path interconnection (programmability) is the highest of the

three parts and increases linearly with the input clocking frequency. Various techniques

(including pipelining and partitioning, clock gating, bus multiplexing, asynchronous design

and clock frequency reduction) can be applied to an FPGA design to reduce this power

consumption.

Importance of Power Modelling

Power dissipation is becoming a major concern for semiconductor vendors and customers.

If current design trends continue, a typical microprocessor will consume 50 times more

power than that can be supported by cost-effective packaging techniques. It is clear

that power will become one of the two most serious design concerns (along with design

complexity) in coming process generations. FPGAs will not escape this trend; already,

FPGA vendors report that power consumption is one of the primary concerns of their

customers. Compared to ASICs and other custom chips, FPGAs contain long routing

tracks with significant parasitic capacitance; during high speed operations, the switching

activity on these long routing tracks causes significant power dissipation.

There have also been numerous CAD algorithms that target low power. Often, these

studies rely primarily on reducing switching activity to result in a low-power solution.

Although reducing switching activity does lower the power, power also depends on the

architecture, the lengths of critical signal routes, the rise and fall times of the signals, and

the amount of static power. Though neglected in the past, static power is expected to

1.4. Research Objectives and Motivations 21

become an increasingly important part of the total power. In order to adequately evaluate

these new CAD algorithms and techniques, designers are working hard to optomise their

designs in way to reduce the power dissipation as minimum as possible.

One way to overcome the issue of power dissipation is the development of power mod-

elling tools that provide reliable estimates of the power, to enable the designer to make

the right design choices while optimising the IP core. Models have always been important

for electronic system design at all levels, whether at the component (Integrated Circuit

(IC) design), board or system level. lately, large FPGAs can easily exceed 5-10W power

dissipation as a function of the foregoing variables. Currently, most approaches to hard-

ware power estimation and modelling operate at the Register-Transfer Level (RTL) or

lower levels of design abstraction. Attempts at power estimation for functional descrip-

tions have suffered from poor accuracy because the design decisions performed during their

synthesis lead to an unavoidable, large uncertainty in any power estimate that is based

solely on the functional description.

1.4 Research Objectives and Motivations

Computationally intensive image applications are power hungry and require a large amount

of memory which causes a high demand for efficient algorithms implementation to over-

come the problems. Most of all, the processing time is a real concern which lead to high

demand for acceleration. The development of advanced and fast reconfigurable hardware

in form of FPGAs bring a huge interest in real-time image processing which can perform

mathematical operation on an entire vector or matrix at the same time. FPGAs are

emerging to be one of the most reliable platform for intensive image and signal processing

algorithm due to its high performance, security, low design-turnaround time, low power

and reconfigurability. FPGAs are everywhere companies use them on development boards

to help refine new chip designs. Students use them in the classroom to run experiments.

Companies and universities are using them in cutting edge research on topics ranging from

programming technology to cryptography to real time systems. The parts themselves are

getting so inexpensive that some companies do not even fabricate an ASIC, they simply

include the FPGA in their final product.

There is no doubt that this level of interest will certainly continue to grow over the next

number of years. It is not surprising that there has been a considerable amount of research

1.5. Overall Project Plan 22

into the use of FPGAs to increase the performance of a wide range of computationally in-

tensive applications. However, wider acceptance of FPGAs as a replacement to traditional

hardware and software platforms for performance enhancement acceleration depends on

the ability of FPGA based designers to learn from experiences in the ASIC design domain

and to evolve solutions to the greatest FPGA design challenges for the next decade adopt-

ing higher level design paradigms and simultaneously addressing the challenges of power

consumption. Keeping these challenges in perspective, the key objectives of this research

project can be broadly summarised as follows:

• To develop novel architectures for MAAs using advanced arithmetic techniques and

design methodologies through the optimisation strategies at various abstraction lev-

els;

- To explore and implement efficiently HWT on FPGAs using factorisation method-

ologies for a range of 1-D 2D transforms;

- To implement the proposed FRIT architecture efficiently on FPGAs using pipelin-

ing and parallelism techniques for a range of 1-D and 2D transforms;

- To develop and implement cyclic convolution on FPGAs using parallelism and

systolisation which can be integrated in mutiresulation architectures as the main

building block for efficient computation; and

• To further evaluate the accuracy of a high level power modelling for proposed custom

IP cores such as HWT FRIT and etc.

1.5 Overall Project Plan

Image and Vision Systems (IVS) research lab at Brunel university, led by Dr A. Amira

has developed a number of high performance cores that have been grouped together into a

library. It is the aim of this work to explore the library and add a couple of multiresolution

algorithms IP cores to existing library. The existing cores (prior to the commencement

of the work in this thesis) can be broadly classified into image and signal processing

transforms and other matrix operations including decompositions. The library includes

transform based cores such as the Finite Ridgelet Transform (FRIT) [14], Fast Hadamard

Transform (FHT) [11,72], Discrete Hartley Transform (DHT) [73], Fast Fourier Transform

1.6. Organisation of the Thesis 23

(FFT) [74], Discrete Wavelet Transform (DWT) [75], etc. Matrix operations based cores

in this library include matrix multiplication and Colour Space Conversion (CSC) [76].

Decomposition related cores that have been implemented include Singular Value Decom-

position (SVD). Historically, computational efficiency and compact area footprint were

the key objectives in the design of the cores in this library. This research work is primarily

concerned with optimising multiresolution analysis cores the from library with particu-

lar emphasis on applying techniques for minimising power and energy consumption. The

other objective of this work is to design and implement additional novel and optimised

cores to be added to the library. It is worth mentioning that this research is also focusing

on further evaluation of a high level power modelling in terms of accuracy for the proposed

custom multiresolution analysis cores.

1.6 Organisation of the Thesis

The structure of this thesis is as follows. Chapter 2 takes a closer look at the most recent

architectures and systems for the various IP cores that have been developed in this research

work including HWT, FRAT, FRIT and cyclic convolution. A detailed and thorough of

various power modelling approaches for FPGAs are also provided in this chapter. High

performance and power efficient architectures of HWT based on Distributed Arithmetic

(DA) principles and sparse matrix factorisation techniques, which is suitable for FPGA

implementation are presented in Chapter 3. Architectural techniques such as parallelism,

and pipelining have been exploited to yield efficient and power aware architectures for

FRAT and FRIT are discussed in Chapter 4. Chapter 5 explores optimised architectures

and efficient FPGA implementation for cyclic convolution using systolisation, parallelism

and pipelining. In Chapter 6, further evaluation of high level power modelling method-

ology and mathematical formulation of this model which has been applied to number of

benchmark circuits developed in the previous chapters are presented. Concluding remarks

and opportunities for future work are presented in Chapter 7.

Chapter 2

Literature Review

2.1 Introduction

In recent years, Multiresolution Analysis Algorithms (MAAs) have proven to be useful

decomposition tools in a wide variety of applications throughout mathematics, science, and

engineering. For example, image compression standard known as JPEG2000 and video

compression standard, MPEG-4, are entirely wavelet based. In addition, MAAs have

been used in many image processing applications such as image segmentation (medical

imaging), edge detection for object recognition etc. Among other MAAs Discrete Wavelet

Transform (DWT), Haar Wavelet Transform (HWT) and some latest transforms including

Finite Ridgelet Transform (FRIT) which is a combination of Finite Radon Transfrom

(FRAT) and HWT and Curvelet transforms are gaining the momentum to be used for

these applications. Among other image processing applications medical imaging is one

of the hottest topic in the field. There is a high demand for an accurate processin and

acceleration. The nature of medical images defers form other images and have some

features (involving lots curves, line and edge discontinuity) which are very important to

be considered during the process. These applications are matrix based transform and

data intensive which involve large operation, power hungry and computability intensive

[77]. Researchers are working round the clock to improve the performance of matrix

multiplication algorithms. One way of obtaining high performance for these algorithms is

through implementation of hardware acceleration which has described in details in chapter

1.

This chapter takes a closer look at the most recent architectures for MAAs (FRIT and

24

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 25

HWT) and cyclic convolution which are implemented on different reconfigurable hardware.

A number of performance metrics including area occupied, maximum frequency, through-

put rate, power dissipation and so on need to be considered while validating the work

presented in this thesis against comparable existing work. In the area of power modelling,

the nature of comparison needs to include quantitative and qualitative measures such as

model accuracy, parametrisation, scalability and model abstraction level among others.

In order to benchmark our IP cores and modelling methodology with the best in class, a

thorough and extensive literature survey has been conducted and updated throughout the

period of research in this work.

The rest of this chapter is organised as follows. Existing architectures and FPGA imple-

mentations for FRAT, FRIT, HWT and cyclic convolution are presented in Section 2.2.

An overview of the existing power modelling methodologies for FPGAs is presented in

Section 2.3. A synopsis of the shortcomings of existing work and concluding remarks are

provided in Sections 2.4 and 2.5 respectively.

2.2 FPGA Implementations of Selected Algorithms

and Related Architectures

In this section, the existing architectures and implementations for a number of matrix

operation based algorithms including HWT, FRAT, FRIT and cyclic convolution are pre-

sented.

2.2.1 Existing Architectures and FPGA Implementation of

Wavelet Transform Filters

In the past two decades, there has been an ever increasing amount of interest in wavelet

transform. Wavelet transform is an emerging signal processing technique that can be

used to represent real life non-stationary signals with high efficiency. Efficient hardware

implementation and acceleration of the algorithms used in these applications are becoming

very important due to the amount of time required for its processing and the real need for

embedded solutions in most of the advanced image and vision systems. In the following

sections a number of existing architectures for wavelet transform filters and their hardware

implementation are presented.

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 26

Acceleration of Haar Wavelet Transform Using FPGA

In [7] an approach to accelerate the Haar-classifier based on face detection algorithm with

highly pipelined micro-architecture and parallel arithmetic is presented. The proposed

FPGA architecture is presented in Fig. 2.1. It is also reported that their approach is

flexible toward the resources available on the FPGA chip. This work provides an un-

derstanding toward using FPGA for implementing non-systolic based vision algorithm

acceleration. The proposed approach has been implemented on a HiTech Global PCIe

card that contains a Xilinx Vitex-5 (XC5VLX110T) FPGA chip. The integral image

stores into the BRAM (Block RAM) as a 32× 32 array. During pixel scan mode, in each

cycle, FPGA reads out one line of the integral image to the 17 × 17 buffer sub-window,

and latches the buffer sub-window data to the 17 × 17 image window every 17 cycles as

the source images integral sub-window to compute with the classifiers.

Figure 2.1: FPGA block diagram [7]

In this work it has been reported that the software version, the Haar classifier face detection

application could only achieve performance of 5 frames/sec, while for 1-classifier FPGA

implementation 37 frames/sec, and 16-classifier FPGA implementation 98 frames/sec.

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 27

Wavelet Transform Implementation based on Distributed Arithmetic

In [8] a parallel based Distributed Arithmetic (DA) FPGA implementation of the Discrete

Wavelet Transform (DWT) and its inverse has been described. In [8] they use the maximal

utilization of the look-up table architecture of the FPGAs platform by reformulating the

wavelet computation in accordance with the parallel DA algorithm. In this work, a DA

implementation of the Daubechies 8-tap wavelet FIR filter which consists of LUT, shift

registers and a scaling accumulator is presented. The LUT stores all possible sums of the

Daubechies 8-tap wavelet coefficients.

8-Bits Shif Register

8-Bits Shif Register

8-Bits Shif Register

8-Bits Shif Register

8-Bits Shif Register

8-Bits Shif Register

8-Bits Shif Register

8-Bits Shif Register

LUT

Xin

1-Bit Scaling

Accumulator

REG

MS

LS

P

1/2

Y
Out

+

+

+

+

LUT

Figure 2.2: A partitioned-LUT DA implementation of the Daubechies FIR filter [8]

Since the LUT size increases exponentially with the number of coefficients, the 8-bit LUT

is decomposed into two 4-bit LUTs which called Serial Distributed Arithmetic (SDA) is

shown in Fig. 2.2, which corresponds to partitioning the input sample into sub-samples

and processing these sub-samples in parallel. The outputs using a two-input accumulator.

The 4-bit LUT partitioning is optimum in terms of logic resources utilization, since this

matches naturally the Virtex FPGA slice architecture.

A parallel implementation of the inherently serial distributed arithmetic (SDA) FIR filter,

shown in Figure 4, corresponds to partitioning the input sample into M sub-samples and

processing these sub-samples in parallel.

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 28

+

+

4-Bit Shift Register

LUT

LUT

LUT

LUT

Xin (Even Number Bits)

Xin (Odd Number Bits)

+

+

1/2

+

+

4-Bit Shift Register

4-Bit Shift Register

4-Bit Shift Register

4-Bit Shift Register

4-Bit Shift Register

4-Bit Shift Register

4-Bit Shift Register

4-Bit Shift Register

4-Bit Shift Register

4-Bit Shift Register

4-Bit Shift Register

4-Bit Shift Register

4-Bit Shift Register

4-Bit Shift Register

4-Bit Shift Register

2-Bit Scaling

Accumulator

LS

MS

+

+

REG

P

1/4

Out

Figure 2.3: A parallel distributed arithmetic Daubechies FIR filter [8]

A 2-bit Parallel Distributed Arithmetic (PDA) FIR filter implementation is shown in Fig.

2.3. It corresponds to feeding the odd bits of the input sample to a SDA LUT adder tree,

while feeding the even bits simultaneously to an identical tree. Compared to the SDA

filter, shown is Fig. 2.2, each shift register is replaced with two similar shift registers at

half the bit size. The odd bit partials are left shifted to properly weight the result and

added to the even partials before accumulating the aggregate by a 1-bit scaling adder.

Finally, since two bits are taken at a time, the scaling accumulator is changed from 1-to-

2-bit shift (1/4) for scaling. The design has been implemented on Virtex XCV300 with

slices utilization of 645 and maximum frequency of 48.1 MHz.

FPGA Implementation of Haar Wavelet Transform for Imaging

In [9] an image coding processing scheme based on a variant of HWT which uses only ad-

dition and subtraction process is presented. After computing the transform, the selection

and coding of the coefficients is performed using a methodology optimized to attain the

lowest hardware implementation complexity. Coefficients are sorted in groups according

to the number of pixels used in their computing. The proposed architecture of the 2D

HWT processor for images is presented in Fig. 2.4. The first block computes the one-

dimensional transform using one 1D-transform processor, being the intermediate results

stored in a memory. In the 2D-HWT architecture, the first 1D-HWT transform is applied

to each row of the complete image (pixels in raster order), the intermediate coefficients are

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 29

stored in the intermediate memory, IMem; then, a new 1D-HWT transform is applied to

each column of IMem to obtain the 2D-HWT of the complete image. The 1D-processors

use only two adder/subtracters and a register file to store the intermediate data.

In order to verify the operation of the designed architecture in this work, an implementa-

tion has been made using a mixed type VHDL/schematic description. Images with 256x256

pixels (256 grey levels) have been used. The devices used to verify its architecture is the

ALTERA APEX20K FPGA.

Figure 2.4: Architecture for the computation of the 2D-HWT based on the 1D-
HWT [9]

It uses only one general-purpose configurable EP20K60ETC144-1 of the ALTERA APEX20K

family. The core processor structure, the 2D-WHT, is of the 1D-HWT Intermediate Mem-

ory 1D-HWT type. This intermediate memory (dual-port RAM type) is external to the

chip, its size being that corresponding to two images. The encoder processor uses only

97.2% of the FPGA Logic Elements (LEs), 128 ESB and 96of the available pins.

Efficient Reconfigurable Architecture for Wavelet Transform

In [10] a unified computation framework for DWT and Continuous Wavelet Transform

(CWT) based on lifting scheme is presented. A reconfigurable architecture that includes

reconfigurable lifting step arrays and reconfigurable address generator is also presented. In

order to validate this architecture, an FPGA prototype is built to test the reconfiguration

of 2D discrete 5/3 and 9/7 transforms (defined in JPEG2000) and 2D HWT. The proposed

reconfigurable architecture for DWT and CWT is present in Fig. 2.5.

Reconfigurable Address Generator (RAG) is responsible for calculating the address of

access to the two dual-port SRAM memories. Reconfigurable Lifting Step Array (RLSA)

is connected by some reconfigurable lifting step kernels. RLSA can be configured for

different wavelet transforms by modifying some parameters such as the number of delay

registers and pipeline registers. The two dual-port SRAM memories are used for storage of

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 30

FPGA/Asic

Mem1
 Mem2

RAG

MCU

RLSA

Figure 2.5: Reconfigurable architecture for DWT and CWT [10]

image or signal source and computation results. Multipoint Control Unit (MCU) is used

as mean controller. In this work, the 5/3 and 9/7 wavelet filters are chosen for 2D DWT.

The HWT which is widely used in image edge detection is taken as the wavelet filter of 2D

CWT. The proposed designed has been implemented with frequency of 20 MHz on Xilinx

Virtex II (x2v500) FPGA, it utilized 1175 slices, 612 flip flops and 2176 LUTs.

Efficient Architecture for Discrete Biorthogonal Wavelet Transform

In this work, a high-speed/high-throughput architecture for 1-D Discrete Biorthogonal

Wavelet Transform (DBWT) is presented. This architecture performs 1-D DBWT decom-

position of an N0 sample input signal with K decomposition levels in N0/2 clock cycles.

The architecture offers efficient hardware utilisation for VLSI implementation by combin-

ing the linear phase property of biorthogonal filters with decimation. In order to avoid this

underutilization, this propose an architecture consisting of two PEs. PE1 performs the

first level of decomposition (k = 1) where k is the decomposition level, while the second

PE2 is responsible for the higher level of decompositions (2 6 k 6 K) based on Recursive

Pyramid Algorithm (RPA) approach. A top-level scheme of the proposed architecture is

shown in Fig. 2.6, where the coefficients d and a are representing the detail and approxi-

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 31

mation components. It is worth mentioning that this kind of pipelined approach leads to

a high-speed /high-throughput, low-power and also highly efficient architecture.

Figure 2.6: Top-level architecture for DBWT [10]

2.2.2 Existing Spare Matrix Factorisation Methodologies

In this section, a brief description about existing and related Spare Matrix Factorisation

Methodologies based on different algorithms have been presented.

Sparse Matrix Distributed Arithmetic Based Architecture

In [11] two approaches suitable for FPGA implementation of Fast Hadamard Transforms

(FHT) is presented. Two architectures for FHT using both a systolic architecture and dis-

tributed arithmetic techniques are also presented in this paper. The first approach uses the

Baugh-Wooley multiplication algorithm for a systolic architecture implementation. The

second approach is based on both a distributed arithmetic ROM and accumulator struc-

ture, and a sparse matrix factorisation technique. To reduce the number of arithmetic

operations and to speed up the process, the symmetry in the FHT matrix coefficients and

a sparse matrix factorisation are exploited in this architecture. The architecture for trans-

form length N = 8 is presented in in this work. Four separate ROM-Accumulate blocks

calculate the eight transforms as follows: a butterfly structure of bit-serial adders and sub-

tractors is used to generate the elements of the input matrix as shown in Fig. 2.7. This

architecture has an effective computational complexity of 2n where n is the wordlength.

This DA based architecture is designed and implemented on the Xilinx XCV1000E FPGA

of the Virtex-E family [78]. For N, n = 8, it is reported that a maximum frequency of

approximately 50 MHz is achieved and the design occupies around 75 FPGA slices.

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 32

8D–

+
X1

X2

8D–

+
X3

X4

8D–

+
X5

X6

8D–

+
X7

X8

Y1 Y2

select

o
d

d
+

/
e
v
e
n

c
o

e
ff
ic

ie
n

ts
–

invert

ROM12 SHIFTACC

ROM56 SHIFTACC

ROM34 SHIFTACC

ROM78 SHIFTACC

Y3 Y4

Y5 Y6

Y7 Y8

odd

results

even

results

4
in

p
u

t
d

a
ta

Figure 2.7: DA based architecture for the fast Hadamard transform [11]

Sparse Matrix Factorization Based on DA Architecture

In [12] a novel algorithmic transformation for the FHT based on sparse matrix factorization

and DA principles has been presented. The architecture has been parallelized and pipelined

in order to achieve high throughput rates. The architecture for the 1-D FHT is shown

in Fig. 2.8. The inputs (W = 8 bit) are fed in bit-serial fashion from the input port.

The ADD/SUB block in the input module operates on every odd clock pulse and their

output is appended to the input buffer two words at a time (one addition value and one

subtraction value) on every even clock pulse in a systolic manner until the full vector to

be transformed has been read.

During the first nine cycles, eight bit-serial outputs for each even vector are produced in

parallel and during the second 9 cycles eight bit-serial outputs for each odd vector are

produced in parallel. In order to verify the performance of the proposed architecture for

FHT, the design has been prototyped on the Celoxica RC1000 [33] board containing the

Xilinx XCV2000E FPGA. The implementation results show the design utilised 162 slices

with maximum frequency of 115MHz.

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 33

ROM 12

ROM 34

ROM (N-1)N

Shift Acc/

Sub

Shift Acc/

Sub

Shift Acc/

Sub

+

-

S

y
s

t
o

l
i
c

O

/
P

B

u
f

f
e

r

O/P

I/P
 I
0
I
2
I
N/2

I
N/2+1
 I
1
I
3

Toggle

Flip-Flop

T T’

ODD / EVEN Select

Controller

Clock

Systolic

Input Sub-

Block

Distributed

Arithmetic

Core

Figure 2.8: DA based architecture for FHT [12]

2.2.3 Existing Architectures and Efficient FPGA Implemen-

tation of Finite Radon & Ridgelet Transforms

FRIT has gained attention recently due to superior compaction over wavelets due to

its directional nature (different angles projections), resulting in better performance in

applications such as compression and denoising. The FRIT is generated by performing a

FRAT on a non-dyadic sized block of the source image followed by a wavelet transforms

operation. Existing FPGA based implementations of the FRAT and FRIT are presented

in this sections.

Serial Inputs Architecture and FPGA Implementation of FRAT

In [13] a serial input architecture for FRAT which is suitable for Ridgelet or Curvelet is

presented. The proposed architecture is presented in Fig. 2.9. The input buffer is a linear

Distributed RAM with p2 address locations, where p is the block size. The output buffer is

a linear array of shift registers with p locations. The main component of this architecture

is the controller. It calculates the list of which points in the input image affect which

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 34

Controller

Input Addr
Initialiser

Addr. Counter

Input
Buffer

Output Addr
Initialiser

Output
Buffer

Addr
Decoder

Input
Image FRATP

Accumulator

n

l k

l

Figure 2.9: Block diagram of proposed FRAT implementation [13]

points in the output image. The accumulator is a Lo-bit accumulator that accumulates

the lth pixel value for the kth Radon projection. The input is taken in serial format during

the first p2 clock cycles. The processing takes p2 clock cycles. The p rows of the FRAT

are purged from the output buffer (p + 1) times in parallel fashion, once every p2 clock

cycles.

In order to verify the performance of the proposed architecture, the design has been

implemented on a Virtex-E2000 FPGA chip with different vector size. The design utilized

198 slices and 112.867 MHz frequency when the block size is 7.

Parallel Cyclic FRAT Architecture

In [14] a parallel, systolic FRAT which is parametrisable, scalable and high performance

core with a time complexity of O(p2), where p is the block size. The FRAT architecture

is a serial I/O architecture with a parallel core that computes all (p + 1) FRAT vectors

simultaneously. The standard pseudocode [79] is not used as a basis for developing the

design. Instead, a novel systolic based dereferencing technique is used to compute the

FRAT coefficients. The input and core section of the design are completely pipelined.

The architecture uses an array of registers that store the address dereferencing values for

each FRAT vector. An systolic array is used to store the address dereferencing values.

Additionally, instead of using arrays to store the output coefficients, the design choice of

using dual ported RAMs helps in reduction of area. The proposed architecture is shown

in Fig. 2.10.

The first register in each column is used as the address dereferencer for each output RAM

buffer. At the end of p2 clock cycles, the output buffer contains the image block in the

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 35

D
1(p-1)
 D
2(p-1)
 D
p(p-1)

D
12
 D
22
 D
p2

D
11
 D
21
 D
p1

D
10
 D
20
 D
p0

D
0(p-1)

D
02

D
01

D
00

Address Logic Initialiser

RAM

1

RAM

2

RAM

3

RAM

p

Output Controller

I/P

Systolic Address De-Reference Registers

G

l
o

b
a

l

C

o
n

t
r

o
l

l
e

r

O/P

O/P

Dual

Port

px(p+1)

RAM

Buffer

+
 +
 +
 +
 +
 +
+
 +

 log

2

(p+1)

bits

8 bits

log

2

256x(p+1)

bits

 log

2

256x(p+1) bits

Clock

Figure 2.10: FRAT architecture with parallel core [14]

transform domain. They are then ejected in a serial fashion from the output port. In order

to verify the performance of the proposed architecture, the design has been prototyped

on the Celoxica RC1000 [33] and implemented on Xilinx XC2V8000 (Virtex-II) [80] and

XC4VLX200 (Virtex-4) [34] platforms.

Reference and Memoryless Implementation of FRAT

In [15] two architectures for the FRAT and their FPGA implementation have been de-

scribed. The first architecture is called a reference FRAT architecture and is a direct hard-

ware implementation of a suitable modified variant of the standard FRAT pseudocode [79].

The architecture comprises an address logic initialiser, multiplexer, accumulators and two

memory blocks for storing transform vectors. The first proposed archeticture is shown in

Fig. 2.11.

The second architecture presented in [15] is a Memoryless FRAT architecture which op-

erates in a parallel manner with p times the throughput of the first architecture, where

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 36

Figure 2.11: Reference architecture for the FRAT [15]

p is the block size. The second presented architecture is shown in Fig. 2.12. Address

Logic Initialiser (ALI), wide multiplexer and adder blocks are used as sub-blocks in this

architecture. The ALI drives the Address Generators (AG) that turn generate signals to

control the address bus. It is worth mentioning that the multiplexer operates on all the

p2 pixels simultaneously in this architecture and hence scalability may not be inherently

feasible as a result of wiring complexities.

Both architectures have been designed using Verilog HDL and synthesised by Xilinx ISE

development tools using the Virtex-II device family [80]. The reference architecture oc-

cupies 159 slices and provides a maximum operating frequency of 100 MHz with a power

consumption of 114.98 mW at 50 MHz. The memoryless architecture requires 558 FPGA

slices and provides a maximum operating frequency of about 82 MHz. Power is consumed

at the rate of 253 mW at 50 MHz. Xilinx XPower [2] is used for power estimation assuming

a 1.5 V supply.

Efficient VLSI Architecture and FPGA Implementation of FRIT

In [14] an efficient architecture for the FRIT suitable for VLSI implementation based on

a parallel, systolic FRAT and DWT sub-block, respectively is presented. The proposed

VLSI architecture with parallel core is shown in Fig. 2.13. The first register in each column

is used as the address dereferencer for each output RAM buffer. At the end of p2 clock

cycles, the output buffer contains the image block in the transform domain. They are then

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 37

Figure 2.12: Memoryless architecture for the FRAT [15]

ejected in a serial fashion from the output port. In order to verify the performance of the

proposed architectures for FRIT, the design has been prototyped on the Celoxica RC1000

board containing the Xilinx XCV2000E FPGA. For a fair comparison with existing work

the authors resynthesised and implemented without any architectural modifications for

the Xilinx XC2V8000 (Virtex-II) platform. Synthesis is also carried out on the low-cost

Spartan 3L platform because it is a popular low cost and low-power FPGA. The FPGA

implementation for proposed designs occupies 1,176 slices with 40.60MHz frequency when

the block size is 17.

FPGA Implementation of FRIT Based on Standard FRAT and DWT

In [16], a FPGA implementation of the FRIT for image processing applications is pre-

sented. The proposed architecture uses the FRAT and 1-D Discrete Biorthogonal Wavelet

Transform (DBWT) as building blocks. The architecture of FRAT that is implemented

in [16] is a straightforward implementation of the FRAT pseudocode presented in [79]

and Appendix B. The address logic initialiser along with controller block constitute the

address generator that generates addresses, i.e., Lk,l for memory blocks. The accumulator

is a LO-bit accumulator that accumulates the lth pixel value for the kth Radon projec-

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 38

D
1(p-1)
 D
2(p-1)
 D
p(p-1)

D
12
 D
22
 D
p2

D
11
 D
21
 D
p1

D
10
 D
20
 D
p0

D
0(p-1)

D
02

D
01

D
00

Address Logic Initialiser

RAM

1

RAM

2

RAM

3

RAM

p

Output Controller

I/P

Systolic Address De-Reference Registers

G

l
o

b
a

l

C

o
n

t
r

o
l

l
e

r

O/P

O/P

Dual

Port

px(p+1)

RAM

Buffer

+
 +
 +
 +
 +
 +
+
 +

 log

2

(p+1)

bits

8 bits

log

2

256x(p+1)

bits

 log

2

256x(p+1) bits

Clock

T1

T2
 - >>

+ >>

Scaling Accumulator/

Subtractor Pair

Pipeline

Register

T3

Swi-

tch

Haar DWT Block

Figure 2.13: FRIT architecture with the FRAT and DWT sub-blocks [14]

PxP (L
i
-bit)

Input

Memory

PxP (L
O
-bit)

Output

Memory

Input

Image Accumulator

Block

k l

Output

Image

Controller

Address Initialiser

Figure 2.14: Standard pseudocode based architecture for the FRAT [16]

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 39

tion. The controller block organises the flow of this process with input and output data

flow. Architectural details of the FRAT and the DBWT sub-blocks in [16] are pictorially

presented in Figs. 2.14 and 2.15 respectively. In order to verify the performance of these

architectures, the designs have been ported to a Xilinx Virtex-II FPGA [80] chip using

Handel-C [35]. The implementation results show that the core speed for the FRIT archi-

tecture in [16] is around 100MHz and it occupies 491 Slices for an input image size of 7×7

with a distributed RAM based implementation.

+

+

+

M 4M
01

M
23

+

X X X

a2(0),0,a 2(1),0, a 2(2),0,a 2(3),..,
Buffer +

S S

Output
Buffer

a1(0),a 1(1), a 1(2), ..,

l
2

l
3

l0

l
1

l4

0

Figure 2.15: DBWT sub-block based on the àtrous algorithm [16]

Generic and Pseudo-code Based Implementation of the FRIT

In [17], two architectures have been presented for the implementation of FRIT. The first

architecture uses a generic block that uses a combination of LUTs, matrix of accumulators

and multiplexers to perform the FRAT. This is followed by a tree structure based architec-

ture for implementing the DWT. The time complexity of this design is O(p4), where p is

the block size. The maximum frequency for the forward transform using this architecture

is reported to be 33MHz. The first proposed architecture for FRAT and DWT is shown

in Fig. 2.16 and Fig. 2.17 respectively.

The second FRIT architecture presented in [17] is based on the standard FRAT pseudocode

which is also provided in [79] and Appendix B. It has a core time complexity of O(p4 ·
(p + 1)). The Radon Transform Module in this architecture contains a FRAT calculator

which uses address generators, accumulators, RAMs and local control logic to perform the

FRAT iteratively. Both the Haar and the àtrous algorithm have been implemented for the

wavelet sub-section of this FRIT. The proposed FRAT architecture is presented in Fig.

2.18. The block diagram of the wavelet module is reproduced in Fig. 2.19. Each ridgelet

block in this architecture consisting one FRAT and one HWT sub-block. The design has

been implemented on FPGAs and occupied a total area of 828 slices.

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 40

Accumulator

Accumulator

Accumulator

Accumulator

Accumulator

Accumulator

Accumulator

Accumulator

LUT MUXControl
Block

Pixel In

Pixel
Out

Figure 2.16: Generic architecture for the FRAT [17]

Sub/2

Add/2

Sub/2

Add/2

Sub/2

Add/2

Sub/2

Add/2

Sub/2

Add/2

Sub/2

Add/2

Sub/2

Add/2

I1

I2

I3

I4

I7

I8

I5

I6

O1

O2

O3

O4

O5

O6

O7

O8

Figure 2.17: Generic tree-based architecture for the DWT [17]

2.2.4 Related Architecture and FPGA implementation of

Cyclic Convolution

Many image processing operations such as scaling and rotation require re-sampling or

convolution filtering for each pixel in the image. Convolutions on digital images are im-

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 41

Local
control

Accumulator

FRAT
Calculator

Address
generator

Ram2
Control

Ram1
Control

Ram1
Control

Ram1
Data

Ram2
Data

From main
control

Figure 2.18: Standard pseudocode based architecture for the FRAT [17]

Local
control

Haar
Transform

Registers Registers

From main
control

Ram2
Data

Ram1
Data

Figure 2.19: DWT sub-block for the standard pseudocode based FRIT architecture
[17]

portant since they represent operations that are more general than the operations that

can be performed on analog images. Convolution has many applications which have great

significance in discrete signal processing. Some of the major uses of convolution are state

Image processing; Wavelets generated by using discrete singular convolution kernels and

Fourier transform applications. The cyclic convolution of two aperiodic functions occurs

when one of them is convolved in the normal way with a periodic summation of the other

function. That situation arises in the context of the Circular convolution theorem. The

identical operation can also be expressed in terms of the periodic summations of both

functions. In this section, the existing architectures and FPGA implementations of cyclic

convolution have been presented.

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 42

New Systolic Algorithm and Array Architecture of DST Based on Cyclic

Convolution

In [18] a new formulation for computing an N-point prime-length Discrete Sine Transform

(DST) through two pairs of [(N − 1)/4] point cyclic convolutions, where [(N − 1)/4] is

an odd number is presented. The cyclic convolution based algorithm is used further to

obtain a simple regular and locally connected linear systolic array for concurrent pipelined

implementation of the DST. The proposed systolic array architecture for cyclic convolution

is presented in Fig. 2.20.

Figure 2.20: Linear systolic array for the computing a pair of three-point cyclic
convolutions. (a) The linear array. (b) Function of each PE [18]

The proposed linear systolic array is used to realize a pair of three-point cyclic convo-

lutions, this convolution structure can be used further for the computation of 13-point

DST. The input values are fed to the individual PEs through a circularly extended input

interface, such that the input values to a PE are staggered by one cycle-period with re-

spect to the preceding PE to maintain the data dependency requirement. The function

of each PE of the structure is shown in Fig. 2.20(b) where each PE performs a pair

of multiplications (C1 × Uin) where C1 and C2 constant coefficient and a pair of addi-

tions (C1 × Uin)+(X1in) in each cycle period. The multiplications in a PE are always

performed with a pair of fixed coefficients. This feature of the PEs can be utilized to

implement the multiplications in each PE by a pair of Look Up Table (LUT) ROMs that

store the product values for all possible input values for the given pair of multiplying

coefficients of the PE.

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 43

Hardware Efficient Fast DCT Based on Novel Cyclic Convolution Struc-

tures

In [19] a new fast cyclic convolution algorithm, which is hardware efficient and suitable

for high-speed VLSI implementation, especially when the convolution length is large. The

proposed thirteen point DCT hardware implementation using fast cyclic convolution al-

gorithm is presented in Fig. 2.21.

Six-point (2*3) cyclic convolutio
n.

Figure 2.21: Thirteen-point DCT using six point (6 = 3× 2) fast cyclic convolution
[19]

The proposed fast cyclic convolution algorithm is applied to the implementation of prime

length DCT , the proposed high-throughput implementation of 1297 length DCT design

saves 1216 (94%) multiplications, 282 (22%) additions, and 4792 (74%) delay elements

compared with those of recently proposed systolic array based algorithms. Furthermore,

the proposed algorithm can run at a speed that is 1.5 times of previous designs, it also

requires less I/O cost as long as the word length L is less than 20 bits.

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 44

FPGA Implementation of Convolution using Pipelining

In [20], a variable kernel convolution implementation with three different architectures

metrologies is presented. The first uses sequential streaming, the second uses pipelining

and the third solution is call convolve and gather. The proposed architecture for convolu-

tion using pipelining is presented in Fig. 2.22

K25 K24 K23 K22 K21 K20 K19

K18 K17 K16 K15 K14 K13

K12 K11 K10 K9 K8 K7

K6 K5 K4 K3 K2 K1

x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

P1413 P1412 P1411 P1410....P1061

P706 P705 P703 P702....P354

P1060 P1059 P1058 P1057....P707

P353 P351P1

Pixel

discaded

Pixel loaded

into pipeline

Kernal

buffer 4

Kernal

buffer 3

Kernal

buffer 2

Kernal

buffer 1

Kernal

Generator

Pipeline 1
 Pipeline 2
 Pipeline 3
 Pipeline 4

New Pixel

Value

Figure 2.22: Architecture for convolution using pipelining [20]

In this work, the pipeline computation is distributed between four pipeline stages by

allocating 354 pixels (P1060 to P1413) and seven kernel coefficients (K19-K25) to the first

pipeline, 353 pixels (P707 to P1059) and six kernel coefficients (K13-K18) to the second

pipeline, 353 pixels (P354 to P707) and six kernel coefficients (K7-K12) to the third

pipeline and 353 pixels (P1 to P353) and six kernel coefficients (K1-K6) to the fourth

pipeline. In this setup, kernel coefficients are loaded in from above (i.e. from the kernel

buffers), while pixels are loaded in from the left. Each clock cycle a new pixel is loaded in,

all the pixels in the pipeline are shifted right and the rightmost pixel is discarded. Every

clock cycle the pixels are multiplied with the corresponding kernel coefficients and the

2.2. FPGA Implementations of Selected Algorithms and Related
Architectures 45

results of multiplications are added together to generate the new convolved pixel. This

proposed design was also implemented on Xilinx Virtex 2Pro (XC2VP70-6) chip with

maximum frequency of 167 MHz and utilized 3501 slices.

Efficient FPGA Implementation of Convolution

In [21] a direct method of reducing convolution time using hardware computing and im-

plementations of discrete linear convolution of two finite length sequences (N × N) are

presented. This implementation method is realized by simplifying the convolution building

blocks. The basic building block for proposed design is shown in Fig. 2.23.

Figure 2.23: Implementation block diagram [21]

In this paper, the circuit deals with two signals having N values. It considers the two

numbers like two arrays having four locations each to store values. Each array is fed into

a quadruple 4× 1 Mux separately. The selection of values is done by selection switches of

each Mux. The selected values go into the array multiplier and from there they are routed

into Parallel Load Registers (PLR) through a 1X16 Demux. The proposed implementation

uses a modified hierarchical design approach, which efficiently and accurately speeds up

computation; reduces power, hardware resources, and area significantly. The efficiency of

the proposed convolution circuit is tested by embedding it in a top level FPGA. Simulation

and comparison with different design approaches show that the circuit saves almost 35%

of area and it is four times faster than what is implemented in previous work. In addition,

the presented circuit uses less power consumption and has a delay of 20ns from input to

2.3. Power Modelling 46

output using 32nm process library.

2.3 Power Modelling

Power dissipation has become a key design issue in FPGA based architectures. In this

section, a brief description of various existing FPGA power modelling techniques operating

at different design abstraction levels have been presented in the following sections.

2.3.1 High-Level Power Estimation of FPGA

In [22] a power estimation and exploration methodology based on high level power model-

ing approach of reconfigurable devices such as FPGA is presented. In order to address the

different abstraction levels and the various targets, a global methodology is proposed here

to elaborate suitable models. In this work the FPGA power estimation can be obtained

at early stage of the design process. The proposed model for FPGA design flow is shown

in Fig. 2.24.

Figure 2.24: Model for FPGA design flow estimation [22]

In this paper different ways of getting an estimation from a given specification are presented

in order to refine the specification while exploring the design space and optimizing the

2.3. Power Modelling 47

power consumption of the targeted FPGA implementation. According to [22] the designers

are able to estimate the power in three different level such as system, algorithm and

architecture level. In other words this methodology relies on multi-level power models.

The choice of the estimation level depends on the models and information at disposal.

In [22] indicates that this approach gives relatively good results. The average error goes

from about 3% to 30% depending on the considered level. The maximum error never

exceeds 37%. Indeed, the precision appears better in the algorithmic level than the system

level.

2.3.2 Functional Level Power Analysis Modeling on Com-

plex Processors

In [23] a high level consumption estimation methodology and its associated tool, Soft-

Explorer are presented. The estimation methodology uses a functional modeling of the

processor combined with a parametric model to allow the designer to estimate the power

consumption when the embedded software is executed on the target. The block diagram

for the methodology is presented in Fig. 2.25.

The first step, divides the processor architecture into different functional blocks and sub-

blocks. Then, the relevant consumption parameters are selected as the significant links

between these blocks. There are two types of parameter: algorithmic parameter values de-

pend on the executed algorithm (typically the cache miss rate) and architectural parameter

values depend on the processor configuration settled by the designer (typically the clock

frequency). The second step is the characterization of the processor power consumption

when the parameters vary. Characterization can be performed either by measurements or

by simulation. This work shows that the average error of the SoftExplorer results against

the physical measurements is about 2.4%.

2.3.3 Power Model for Field-Programmable Gate Arrays

In [24,81] a detailed and flexible power model which has been integrated in the widely used

Versatile Place and Route (VPR) CAD tool. This power model estimates the dynamic,

short-circuit, and leakage power consumed by FPGAs. It is the first flexible power model

developed to evaluate architectural tradeoffs and the efficiency of power-aware CAD tools

for a variety of FPGA architectures, and is freely available for noncommercial use. The

2.3. Power Modelling 48

Figure 2.25: Modeling methodology block diagram [23]

model is flexible, in that it can estimate the power for a wide variety of FPGA architectures,

and it is fast, in that it does not require extensive simulation, meaning it can be used to

explore a large architectural space. In addition, in this work it has been show that how

this model can be used to investigate the impact of various architectural parameters on the

energy consumed by the FPGA, focusing on the segment length, switch block topology,

look up table size, and cluster size. The authors claim the model is flexible, in that

Figure 2.26: Modified VPR framework used for power modelling [24]

it can estimate the power for a wide variety of FPGA architectures, and it is fast, in

2.3. Power Modelling 49

that it does not require extensive simulation, meaning it can be used to explore a large

architectural space. The model has two modules: an activity generation module and

a power estimation module. The first module employs the transition density model to

determine the switching activities inside the circuit. The second module estimates the

power consumption at the transistor level. The model was calibrated using Simulation

Program with Integrated Circuit Emphasis (HSPICE) with the technology parameters

from a 1.8V, 0.18-µ CMOS technology. Dynamic power estimation includes routing and

logic block components. Short circuit power is assumed to be 10% of total dynamic power.

HSPICE simulations for NMOS and PMOS transistors have been carried out to determine

effective leakage power. The block diagram of the proposed model is shown in Fig. 2.26.

2.3.4 High-Level Power Modelling of CPLDs and FPGAs

In [25] a high-level power modelling technique to estimate the power consumption of re-

configurable devices such as Complex Programmable Logic Devices (CPLDs) and FPGAs

is presented . The development of models is based on input and output signal statistics

to estimate the internal power consumption of FPGAs. Input signal modelling is based

on the determination of optimal signal partitioning, probability estimation, transition

density, signal space correlation followed by output signal transition density. Models for

differently-configured circuits are based on the same power macromodel template. To

achieve tradeoff between accuracy and efficiency, an adaptive regression method is used

to tackle the problem of biased training sequences. In this paper, experimental results

indicate that the average relative error is only 3.1% compared to low-level FPGA power

simulation methods. The overall process flow diagram is presented in Fig. 2.27.

2.3.5 Macromodels for High Level Area and Power Estima-

tion on FPGAs

In [82] a high-level power model equation based area and power macro-models for various

RTL level operators such as adders, multipliers, and logical operators is presented. These

models are derived by actual synthesis of these RTL operators using back-end logic synthe-

sis and PAR tools. The presented area estimation technique is based on high-level compile

time estimation of the areas of the Control-Data Flow Graph (CDFG) nodes. Each CDFG

node represents an operator and is parameterised with the bit-widths of the inputs (such

2.3. Power Modelling 50

Yes

No

Figure 2.27: High level power macromodelling for reconfigurable hardware [25]

as N -bit adders and multipliers) and characterising the results obtained from post layout

to take into account route-through. The proposed power macromodelling approach in [82]

is based on average input signal probability Pin, the average input transition density Din

and the average input spatial correlation Sin as the candidates of input metrics. Input bit

width N is also taken into account. This platform independent modelling approach has

varying levels of accuracy (depends on the core that is modelled) and is not scalable. The

block diagram of proposed model is shown in Fig. 2.28.

2.3.6 Functional Level Power Analysis and Modeling on IP

Cores

In [12, 26], a behavioral functional level power modelling methodology called Functional

Level Power Analysis and Modelling (FLPAM) that provides a good trade off between

complexity and accuracy, and enables the designer to achieve incremental improvements

in power and energy metrics throughout the design process is presented. The underlying

2.3. Power Modelling 51

Xilinx

Synthesis

Sequence

Generator

Xpower
Power Estimation

ModelSim

Simulation

Xilinx
Place & Route

Design

Entry

MATLAB

Data Analysis

.vhd

.vhd

(post_layout)

.pcf

.ncd

.do

(simulation)

.vcd

(activity)

f

Pin, Din, Sin

Pout

Figure 2.28: Macro-model characterisation procedure

concept of FLPAM is to build a mathematical model that incorporates all the system

variables, enabling the user to perform high level estimation of the power and energy

metrics of the core for a given set of parameters early on in the design cycle itself. The

proposed design flow for FLPAM is presented in Fig. 2.29.

Figure 2.29: Design flow for FLPAM based power and energy optimised design of
FPGA cores [26]

2.3. Power Modelling 52

The FLPAM methodology has been successfully incorporated into a proposed design flow

presented in Fig. 2.29 for obtaining power and energy efficient implementations of FPGA

based designs.

2.3.7 Methodology for Dynamic Power Estimation of FPGA

Based Designs

In [27] a circuit-level simulations to characterise a simple, coarse-grained FPGA architec-

tural model is presented. The overall proposed power estimation methodology is presented

graphically in Fig. 2.30. The dynamic power estimation technique presented in this work

involves two processes. First, each resource is characterised to find its effective capaci-

tance. Characterisation is subdivided into global wire modelling and input dependency.

Next, power of a given design is estimated by finding the utilisation of each resource and

determining its switching activity. Power estimation and accuracy evaluation is performed

for a set of 14 designs against silicon measurement. The measurements were taken on an

internally developed test board hosting an XC3S1000 FPGA, a mid sized device with 1,920

CLBs. The avarage error was 18% from the measured value. Furthermore, the evaluation

has been preformed on Spartan-3 and the results find that in the 90nm FPGA, routing

resources and clock trees account for 84% of the total power. Compared to earlier studies,

that the clock tree consumes more power and contributes about 39% of the total power.

Block N

Netlist
Load

Model
Block 1

Circuit

Netlist

Load

Model

Block

Capacitances

Simulation

Engine

(HSPICE

or Nanosim)

Simulation

Settings

(Process,

Voltage,

Temp)

Custom

Script

Estimated

Power

Simulation-based

Characterization

Extract

Utilization

Timing

Simulation

Effective Block

Capacitances

Resource

Utilization

Switching

Activity

FPGA Circuit

Netlists

User

Design

(NCD)

Test

Vectors

Figure 2.30: High level FPGA power estimation methodology [27]

2.3. Power Modelling 53

2.3.8 Post Synthesis Level Power Modelling of FPGAs

In [28] a methodology and tool suite capable of modelling the power consumption of an

FPGA design at the post synthesis, or EDIF, level is presented. It is suggested that

modelling at this level has the following advantages: Firstly, early power feedback in the

design flow. Secondly power results are displayed at a high level, closer to the logical

design entry point. Finally, the elimination of bulky, low-level timing accurate simulation

and stimulus files. These three aspects allow a designer to quickly and easily generate

power estimates, relate the results back to their original logical level design entry and

explore design trade-off scenarios. The power modelling approach in this work consists

of: 1) developing a tool infrastructure to support synthesis level simulation and circuit

queries and 2) developing a synthesis-level power model. This modelling approach has a

high accuracy of 97%, but is not scalable and not platform independent. The proposed

power podeling tool infrastructure diagram is shown in Fig. 2.31.

Figure 1. Power Modeling Tool Infrastructure

Source

Code

Synthesis

Map
Place &

Route

Xpower

Bitgen

EDIF

Parser

JHDL
Power Analysis &

Visualization

Generic

Power

Model

Synthesis

Power

Model

Routed

Circuit

Model

EDIF

VHDL

Verilog

JHDL

Xilinx Tool

Flow

.ncd .ncd

To

Target

.xdl

Power

Tools

Figure 2.31: Power modeling tool infrastructure [28]

2.3.9 Power Estimation for Cycle-Accurate Functional De-

scriptions of Hardware

In [29] a methodology for Cycle-Accurate Functional Descriptions (CAFD) power estima-

tion that combines the accuracy achieved by power estimation at the structural RTL with

the efficiency of cycle accurate functional simulation by viewing a CAFD as an abstrac-

tion of a specific is presented. This work describes that for a given CAFD, corresponding

2.3. Power Modelling 54

simulation testbench and a power model library (generated once for each fabrication tech-

nology, using well-known characterisation techniques) for RTL components preprocessed

is first carried out in order to enable easier back-annotation of RTL information. Virtual

component instantiation and idle cycle analysis is then performed resulting in an RTL-

aware CAFD which is is co-simulated with the power model library to determine average

power. An adaptive state-based sampling technique is used to optimise the allocation

of sampling probabilities to different control states for improved representation of states

with a higher time-variance of power. It is claimed that the accuracy of this architectural

level modelling technique is high. Although it is scalable and parameterisable, the key

disadvantage is the unsuitability of this modelling approach for IP core macromodelling.

The diagrammatic representation of the modelling methodology is shown in Fig. 2.32.

CAFD

RTL

Preprocessing

Synthesis

RTL information extraction

Virtual component instantiation

Idle cycle analysis

RTL-aware
CAFD

Power
model
library

Simulation
testbench

Cycle-accurate
functional simulation

Power
report Input

Output

Power

Power vs. time

Resource,
timing

constraints

CAFD

RTL

Preprocessing

Synthesis

RTL information extraction

Virtual component instantiation

Idle cycle analysis

RTL-aware
CAFD

Power
model
library

Simulation
testbench

Cycle-accurate
functional simulation

Power
report Input

Output

Power

Power vs. time

Input

Output

Power

Power vs. time

Resource,
timing

constraints

Figure 2.32: Overview of the CAFD power estimation methodology [29]

2.3. Power Modelling 55

2.3.10 Power Estimation Technique for FPGAs

In [30] empirical prediction models for these parameters, suitable for use in power aware

layout synthesis, early power estimation/planning, and other applications is presented. In

this work the authors examine how switching activity on a net changes when delays are

zero (zero delay activity) versus when logic delays are considered (logic delay activity)

versus when both logic and routing delays are considered (routed delay activity). In this

work a novel approach for prelayout activity prediction that estimates a nets routed delay

activity using only zero or logic delay activity values, along with structural and functional

circuit properties is described. The experimental results in this work show the proposed

prediction models work well given the noise limitations. The process flow diagram for

proposed design is presented in Fig. 2.33.

Figure 2.33: CAD flow for activity analysis [30]

In this work it has been shown that for capacitance prediction the prediction accuracy

is improved by considering aspects of the FPGA interconnect architecture in addition to

generic parameters, such as net fanout and bounding box perimeter length. It is also

demonstrated that there is an inherent variability (noise) in the switching activity and

capacitance of nets that limits the accuracy attainable in prediction. The proposed pre-

diction model is validated on the Xilinx Virtex-II PRO FPGA family.

2.3. Power Modelling 56

2.3.11 Power Modelling and Characteristics of Field Pro-

grammable Gate Arrays

In [31] a mixed-level power model that combines switch-level models for interconnects

and macromodels for LUTs considering both dynamic and leakage power is developed.

Gate-level netlists back-annotated with postlayout capacitances and delays are generated

and cycle accurate power simulation is performed using the mixed-level power model. The

resulting power analysis framework is named as FPGA EVA-LP2. This work experiments

Figure 2.34: Overall power calculation [31]

show that FPGA EVA-LP2 achieves high fidelity compared to SPICE simulation, and the

absolute error is merely 8% on average. This work shows that FPGA EVA-LP2 can be used

to examine the power impact of FPGA circuits, architectures, and CAD algorithms. It is

shown that interconnect power is dominant and leakage power is significant in nanometer

technologies. In addition, tuning cluster and LUT sizes lead to 1.7 times energy difference

and 0.8 times delay difference between FPGA architectures, and FPGA area and power

are reduced at the same time by tuning the cluster and LUT sizes. The overall process flow

diagram for proposed model ia shown Fig. 2.34. This mixed level modelling approach has

a medium accuracy level of 92% and it is scalable. However, it is not platform independent.

2.4. Limitation of Existing Work and Research Opportunities 57

2.4 Limitation of Existing Work and Research Op-

portunities

As it can be seen from the preceding sections, there has been extensive research on the

hardware implementation of multiresolution algorithms, there still remains plenty of scope

for further research in exploiting reconfigurable computing for the various applications spe-

cially medical images and algorithms that have been addressed. Medical image processing

is one of the hottest topic in the field of image processing applications and there is a high

demand for an efficient implementation. Take these issues into consideration, our group

which has been led by Dr Amira are concentrating on software/hardware implementation

of medical image application by using MAAs and other appropriate algorithms. The major

limitations of the existing work can be identified as follows:

• Multiresolution algorithms are used in many image processing applications but lim-

ited work has been carried out on FPGA implementation and optimisation of med-

ical imaging based on multiresolution algorithms;

• The design optimisation of multiresolution algorithms has not been considered as a

holistic challenge balancing the demands for power, performance, area etc;

• In recent work the most of the effort towards the design and hardware implementa-

tion (in the form of VLSI and FPGA) of wavelet transforms has been concentrated

on the orthonormal wavelet family. One of the main reasons for this is that or-

thonormal wavelets were the first functions to be implemented in the form of filter

banks. Even though, HWT is very easy and simple to implement;

• Although impressive image processing performance has been achieved with FRIT,

the complexity of their implementation still remains as a heavy burden on stan-

dard microprocessors where large amounts of data have to be processed. Surveying

the literature, not many FPGA-based implementation has been found for Ridgelet

transform. Therefore, the design of high-performance architectures and their FPGA

implementation for Ridgelet transform is strategic for applications that require real-

time performances;

• Surveying the literature also shows that some VLSI implementations of DST and

2.4. Limitation of Existing Work and Research Opportunities 58

DCT based on cyclic convolution have been carried out, but few FPGA based im-

plementations for cyclic convolution have been found;

• Literature review shows that power awareness has not been a major consideration

in existing implementations of FPGA based design. Although, there is a very high

demand for power efficient design;

• Literature survey also shows that many of power modelling tools are available for

ASICs (VLSI, in general), and only limited solutions are available for FPGAs; and

• Existing power modelling tools for FPGAs may have some features such as high

accuracy, low/mixed/high level, platform independence, scalability in varying mea-

sures; but generally not all features at the same time.

Based on the limitations of existing work, the main contribution in this work presented in

this thesis can be summarised as follows:

• To develop novel architectures for MAAs using advanced arithmetic techniques and

design methodologies through the optimisation strategies at various abstraction lev-

els;

- To design and implement scalable, parameterisable, efficient FPGA based 1-D and

2D multiresolution IP cores suitable for use in both general and medical imaging

applications;

- To explore and implement efficiently HWT on FPGAs using factorisation method-

ologies;

- To implement a novel FRIT architecture efficiently on FPGAs using pipelining

and parallelism techniques;

• To develop and implement cyclic convolution on FPGAs using parallelism and sys-

tolisation which can be integrated in multiresolution architectures as the main build-

ing block for efficient computation;

• To investigate and apply optimisation strategies at various abstraction levels (sys-

tem, algorithmic and architectural level) and to analyse the effectiveness of these

techniques for performance enhancement and power reduction;

• To investigate the best performance trade-offs such as area/speed for the FPGA

implementations of these cores; and

2.5. Conclusions 59

• To evaluate futher the accuracy of a high level power modelling for the proposed

custom IP cores such as HWT FRIT and etc.

2.5 Conclusions

This chapter reviews a number of significant architectures and systems suitable for MMAs

implemented on different FPGA platforms using different design methodologies. In addi-

tion, the advantages and drawbacks of the existing architectures have also been highlighted.

Existing power modelling techniques at various levels for FPGA based designs have also

been reviewed. It is the aim of the research work presented in this thesis to address

the limitations presented in the previous section through efficient implementations, power

aware design and evaluation of power modelling methodology. Efficient architectures for

HWT based on DA and factorisation methodologies will be presented in the next chapter.

Chapter 3

Efficient Implementation of HWT

using Sparse Matrix Factorisation

3.1 Introduction

In the past two decades, there has been an ever increasing amount of interest in wavelet

transform. Wavelet transform is an emerging signal processing technique that can be

used to represent real life non-stationary signals with high efficiency. Indeed, the wavelet

transform is gaining the momentum to become an alternative contrivances to traditional

time frequency representation techniques. Efficient hardware implementation and accel-

eration of the algorithms used in these applications are becoming very important due to

the amount of time required for its processing and the real need for embedded solutions

in most of the advanced image and vision systems. Images can be transformed into large

matrices which require a large amount of memory, high power dissipation and compu-

tationally intensive. For example a typical 640 x 480 color image has nearly a million

elements to store, manipulating or storing intensive images require huge amount of time,

which leads to an efficient hardware acceleration.

The development of advanced and fast reconfigurable hardware in form of Field Program-

able Gate Arrays (FPGAs) brings a huge interest in real time image processing. FPGAs

can perform mathematical operation on an entire vector or matrix at the same time. There

are different arithmetic techniques and design metrologies such as Distributed Arithmetic

(DA) and systolic design used to implement image processing algorithms efficiently on

FPGA. Even though, these techniques help the designers to implement efficiently the

60

3.1. Introduction 61

large images on FPGA, but the issue about power consumption still remains a big concern

due to advancement of FPGA. Researchers are working round the clock to address this

issue in a efficient way.

In this chapter two novel factorisation methodologies for the implementation of the HWT

and their impact on FPGA implementation using DA principles are presented. The hard-

ware embedded solution for HWT will be used to accelerate the process in the proposed

system. Fig. 3.1 illustrates the overall process of the proposed segmentation system, where

medical image volume is acquired from a Positron Emission Tomography (PET) scanner.

The proposed HWT methodologies are used to segment the acquired image (slice by slice).

The process of segmentation is implemented on FPGA for acceleration using the proposed

architectures. The detailed infromation about the proposed architectures is explores in

the following sections.

 Slices

Segmented

Slices

Medical Image

Acquisition

(PET)

Segmentation using

Proposed DA based HWT

Methodology

FPGA

Implementation

(Acceleration)

Suitable

Architecture

Figure 3.1: Proposed system for medical image segmentation using HWT with
FPGA acceleration

The rest of this chapter is organised as follows. A review of HWT and DA are presented

in Section 3.2 and 3.3. The proposed HWT Factorisation Methodologies (HWTFM1 and

HWTFM2) are present in Section 3.4. Two novel architectures for proposed HWTFM1

3.2. Haar Wavelet Transform: A Review 62

and HWTFM2 based on DA principles are presented in Section 3.5. The efficient FPGA

implementation results and analysis for proposed algorithms are presented in Section 3.6.

Concluding remarks are presented in Section 3.7.

3.2 Haar Wavelet Transform: A Review

The first recorded mention of what is now called a ”wavelet” seems to be in 1909, in a thesis

by Alfred Haar. An image is represented as a Two Dimensional (2D) array of coefficients,

each coefficient representing the brightness level in that point. In wavelet analysis, a signal

can be separated into approximations or averages and detail or coefficients. Averages are

the high-scale, low frequency components of the signal. The details are the low scale, high

frequency components. From all wavelet filters Haar wavelet is one of the simplest possible

wavelet transform. The disadvantage of the Haar wavelet is that it is not continues and

therefore not differentiable.

3.2.1 HWT Decomposition Methods

Image is presented mathematically in a form of matrix. Haar wavelet uses a method for

manipulating these matrices called averaging and differencing in other word it is called

decomposition. There are two types of decomposition methodologies standard and non-

standard.

The Standard Decomposition

• First apply the one-dimensional wavelet transform to each row of pixel values.

• Treat these transformed rows as if they were themselves an image and apply the

one-dimensional transform to each column

The Nonstandard Decomposition

• Apply one step of horizontal pair wise averaging and differencing on the pixel values

in each row of the image.

• Apply vertical pair wise averaging and differencing to each column of the result.

The Nonstandard Decomposition

3.3. Mathematical Background 63

Averaging and differencing is very effective method but the calculations can quickly become

quite tedious for large matrix sizes. For instance, if we apply averaging and differencing

on a vector of 256× 1, it needs 8 level decompositions, but if we apply the same process it

on 256× 256, it requires 2048 level of decompositions. It shows the difficulty of averaging

and differencing for large matrix. The process od averaging and differencing are described

below:

• For the first step, take the average of each pair of pixels from the first row (orig-

inal image) and places the results in the first four position of our new row. The

remaining four numbers are the differences of the first element in each pair and its

corresponding average. These numbers are called detail coefficients. The result of

the first step therefore contains four average and four detail coefficients.

• The same procedure is applied to the first four components of the new row resulting

in two new average and their corresponding detail coefficients. The remaining four

are carried directly down from previous step.

• The same method is applied to the remaining two pairs and the last six are directly

carried down from previous step. The new string after three steps ends up with one

average and seven detail coefficients. For vector of 8 elements 3 steps are required

so the calculation for larger matrix it would very difficult and time consuming.

By applying linear algebra a general [83] formula can be generated to average and

difference (decompose) any matrix.

3.3 Mathematical Background

HWT is a matrix-vector based operation and can be formulated as follows [84]:

I =


 a00 a01

a10 a11


 (3.1)

H =
1
2


 1 1

1 −1


 (3.2)

Q = I ×H (3.3)

3.4. Distribute Arithmetic: A Review 64

Q = ((IH)T H)T = HT IH (3.4)

I = (H−1)T QH−1 (3.5)

where I is a 2x2 input matrix, H contains the Haar coefficients and Q is the transformed

matrix. Eq. 3.4 and Eq. 3.5 show the transposed and reconstructed matrices respectively.

3.4 Distribute Arithmetic: A Review

DA provides an efficient method of computing vector or matrix multiplication by means

of bit level rearrangement of the multiply accumulate process. DA distributes arithmetic

operations rather than grouping them as multipliers do. Conventional DA, called ROM-

based DA, decomposes the variable input of the inner product to bit level in order to

generate pre-computed data. ROM partitioning techniques for the efficient implementa-

tion of DA for large vector sizes have been presented in [85, 86]. The basic operations

required for performing DA-based inner product are a sequence of ROM look ups, addi-

tion, subtraction and shift operations of the input data sequence. All of these functions

are efficiently mapped to FPGA structures. DA exploits parallelism (at the vector level)

and pipelining (at the bit level) and is highly suitable for FPGA implementation due to

their fine grained device fabric, massive parallelism capabilities, register rich architecture

that enables efficient implementation of ROM structures in LUTs [2, 87]. The superior

performance and hardware efficient nature of DA when compared to conventional arith-

metic has been suitably demonstrated in the implementation of various algorithms such

as algorithms based on matrix-vector multiplication which is presented in [8, 76].

Since HWT is a matrix-vector based operation, DA is a suitable arithmetic technics for

it to implements the HWT on FPGAs due to its efficiency of mechanization, however

it becomes slow particularly when deadline with large transformations because of its bit

serial nature. Although by using some modification like partitioning and bit pairing its

performance can be significantly increased.

Let the input and transformed data be represented by two vector X and Y of size K,

respectively. Then Y can be written as follows:

3.4. Distribute Arithmetic: A Review 65

Y =
K∑

k=1

AkXk(n) (3.6)

where A is the constant coefficients, X is the input data word, and Y is the transformed

vector (output data). If Xk is considered to be in the form of a scaled 2’s complement

binary number, it can be represented as:

Xk = −bk0 +
W−1∑

n=1

bkn2−n (3.7)

where bkn is the nth bit of Xk ”which can be ’0’, or ’1’”,−bk0 is the sign bit, bk,W−1 is the

Least Significant Bit (LSB), and W is the word length. Substituting Eq.3.7 into 3.6, we

get the following:

Y =
K∑

k=1

Ak

[
−bk0 +

W−1∑

n=1

bkn2−n

]
(3.8)

By rearranging the order of summations in order to convert the conventional sum of

products into a “distributed” form, we get:

Y =
W−1∑

n=1

[
K∑

k=1

Akbkn

]
2−n +

K∑

k=1

Ak(−bk0) (3.9)

The term
K∑

k=1

Akbkn can have only 2k possible values, which makes it possible to pre-

compute and store these values in a ROM. By addressing this ROM through N cycles using

the input data and performing simple shift-accumulate operations. The final mathematical

DA equation can be represented into hardware architecture which is shown in Fig. 3.2

Fig. 3.2 shows a typical hardware architecture which consists of ROM (made of LUT),

adder-structure and a shift-accumulator. Using bit-serial input data with the Least Sig-

nificant Bit (LSB) one bit of each inputs are used to address the LUT. After each shift

operation one output bit is generated in a serial form. This is repeated until the sign bit is

high, then a subtraction is performed. The most significant part is generated in a parallel

form. When the size of the inner products increases the ROM area increases exponentially

and becomes impracticably large, even when using ROM partitions.

3.5. HWT Factorisation Methodologies 66

Shifter >>
Shifter >>

ROM
ROM

+/-

X
1

X
2

T
S

Y

Parallel output

X
n

The content of the LUT (W=3)

+

+

+

+
 +

Figure 3.2: DA Harware Architecture

3.5 HWT Factorisation Methodologies

HWT is based on averaging and differencing neighbor pixels in which the computation time

can be increased when dealing with large matrices. There would be a high demand for a

fast and efficient implementation. However, applying direct HWT coefficients generated

by linear algebra can decrease the computational time, but it will not be efficient in

terms of hardware implementation due to so many arithmetic calculations. Since we

are dealing with matrices, two factorisation methodologies can be proposed to factorise

the HWT coefficients shown in Eq.3.2 to increase the sparsity of the matrix (increase

number of zeros in the matrix to reduce the use of logics in term of hardware). The

factorisation methodologies are called HWT Factorisation Method 1 (HWTFM1) and

HWT Factorisation Method 2 (HWTFM2) which are described in the following sections.

3.5.1 The Proposed HWT Factorisation Method 1

The process of averaging and differencing systematically averages two neighboring pixels

in a given matrix, then finds the difference between the same pixels. The averaging

and differencing method is very effective, but the calculations can quickly become quite

tedious for larger images. By introducing the Haar coefficients through linear algebra

3.5. HWT Factorisation Methodologies 67

in the form of the matrix shown in Eq.3.2, we could easily simplify the transformation

process. However, it is a suitable method for software implementation but it is still not

ideal for hardware implementation due to so many arithmetic calculations. To generate

the Haar transformation process suitable for hardware implementation, Eq.3.2 is factorised

into two matrices to introduce more zeros in the matrices to reduce the use of logic in the

hardware process. The factorisations have been formulated in generalized term which can

be used for any matrix size. It is worth mentioning that the matrix row and column have

to be based-2 to decompose using HWT decomposition methodologies. For instance, if

the matrix row is 8 × 1 then it is based-2 format (23) and it can be decomposed with 3

level of HWT decompositions. The generalized factorisation methodology for HWTFM1

is shown in Fig. 3.3.

0

HWT

Figure 3.3: Generalised formulation for HWT factorisation method 1

It can be seen from, Eq.3.2 that it is divided into two matrices as shown in Fig. 3.3,

where A is constant number (0.5) and N is the size of matrix. Each formula in the matrix

represents the number of zeros in the jth column of N ×N matrix. It is worth mentioning

that that formulas represent number of zeros until the first non zero element appears in the

3.5. HWT Factorisation Methodologies 68

same column. From Fig. 3.3 it is clear that the upper matrix divided into two halves and

all non zero elements appear in a diagonal format in each half. It is not the case in lower

half, the matrix divided into two halves and the first half divided in three halves where

each half has different number of zeros and different non zero elements. This generalised

HWTFM1 has been tested with different N size with positive outcomes.

3.5.2 The proposed HWT Factorisation Method 2

The same procedure as HWTFM1 is applied to the HWTFM2 to increases number of zeros,

the only difference is that the second matrix has more zeros than the second matrix of

MWTFM1. The advantages and disadvantages of these two methods will be explained in

the next section where the architectures for these methods are proposed. The generalized

HWTFM2 is shown in Fig.3.4. As it has been presented for HWTFM1, A is a constant

0

HWT

Figure 3.4: Generalised formulation for HWT factorisation method 2

number and N is the size of the matrix. All formulas in both matrices represent the

3.5. HWT Factorisation Methodologies 69

number of zeros in the Jth column of each matrix. HWTFM2 has also been tested with

different N size with positive outcome. It is clear from the HWTFM2 that second matrix

has more zeros which help to reduce the arithmetic calculation even more in the case of

hardware logic. For clarification of HWTFM1 and HWTFM2 a simple matrix where N=8

is used as an example which is shown in the following equations.

The HWTFM1 when N=8




Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8




=




1
2 0 0 0 1

2 0 0 0
1
2 0 0 0 −1

2 0 0 0

0 1
2 0 0 0 1

2 0 0

0 1
2 0 0 0 −1

2 0 0

0 0 1
2 0 0 0 1

2 0

0 0 1
2 0 0 0 −1

2 0

0 0 0 1
2 0 0 0 1

2

0 0 0 1
2 0 0 0 −1

2




×

×




1
4

1
4

1
2 0 0 0 0 0

1
4

1
4 −1

2 0 0 0 0 0
1
4 −1

4 0 1
2 0 0 0 0

1
4 −1

4 0 −1
2 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




×




X1

X2

X3

X4

X5

X6

X7

X8




(3.10)




Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8




=




1
2 0 0 0 1

2 0 0 0
1
2 0 0 0 −1

2 0 0 0

0 1
2 0 0 0 1

2 0 0

0 1
2 0 0 0 −1

2 0 0

0 0 1
2 0 0 0 1

2 0

0 0 1
2 0 0 0 −1

2 0

0 0 0 1
2 0 0 0 1

2

0 0 0 1
2 0 0 0 −1

2




×




1
4 (X1 +X2 +2X3)
1
4 (X1 +X2− 2X3)
1
4 (X1−X2 +2X4)
1
4 (X1−X2− 2X4)

X5

X6

X7

X8




(3.11)

3.5. HWT Factorisation Methodologies 70

The HWTFM2 when N=8




Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8




=




1
4 0 1

4 0 1
2 0 0 0

1
4 0 1

4 0 −1
2 0 0 0

1
4 0 −1

4 0 0 1
2 0 0

1
4 0 −1

4 0 0 −1
2 0 0

0 1
4 0 1

4 0 0 1
2 0

0 1
4 0 1

4 0 0 −1
2 0

0 1
4 0 1

4 0 0 0 1
2

0 1
4 0 1

4 0 0 0 −1
2




×




1
2

1
2 0 0 0 0 0 0

1
2 −1

2 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




×




X1

X2

X3

X4

X5

X6

X7

X8




(3.12)




Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8




=




1
4 0 1

4 0 1
2 0 0 0

1
4 0 1

4 0 −1
2 0 0 0

1
4 0 −1

4 0 0 1
2 0 0

1
4 0 −1

4 0 0 −1
2 0 0

0 1
4 0 1

4 0 0 1
2 0

0 1
4 0 1

4 0 0 −1
2 0

0 1
4 0 1

4 0 0 0 1
2

0 1
4 0 1

4 0 0 0 −1
2




×




1
2 (X1 +X2)
1
2 (X1−X2)

(X3)

(X4)

X5

X6

X7

X8




(3.13)

3.6. Proposed Architectures for HWTFM1
and HWTFM2 71

3.6 Proposed Architectures for HWTFM1

and HWTFM2

In this section, two novel architectures have been proposed for the implementation of

HWTFM1 and HWTFM2 which are followed by a tabular comparison of the various

parameters of the proposed architectures with other existing architectures in place.

3.6.1 Proposed Architectures for HWTFM1

The proposed architecture for the HWTFM1 (Arch1) is illustrated in Fig. 3.5. The

inputs to the circuit are fed in bit-serial fashion from the input port. The arithmetic

calculation will be processed by a number of Processor Elements (PEs) and ROMs. In

ROM
1

ROM
1

ROM
2

ROM
2

ROM
3

ROM
3

ROM
N

ROM
N

PE
1

PE
1

+
 Add/Sub

Reg >>

ACC

Output

1
X

2
X

PE
 N
 1
log

2

X
 N
 2
log
2
 2

+/-

X
 n
,
1

X
 n
,
2

X
 n
N
,

X
 n
N
 ,
2
log
2
 2

Contorller

Clock

In
pu

t C
od

e

Figure 3.5: Proposed architecture for HWTFM1

the case of Arch1, log2N − 1 PEs are used as address generator, where each PE contains

3.6. Proposed Architectures for HWTFM1
and HWTFM2 72

ADD/SUB and Shift Register which are used to generate the elements of second matrix

in Eq.3.11. Another N ROMs are used to store the values of first matrix in Eq.3.11. Since

the architecture is based on DA principles, it is worth mentioning that each ROM stores

the content of each row in Eq.3.11. The values in row1 will be stored in ROM1 and the

Content of ROM
1

H
8
,
1
 +
H
7
,
1
 +
 H
6
,
1
 +
H
5
,
1
+
H
4
,
1
 +
H
3
,
1
 +
H
3
,
1
 +
H
2
,
1
 +
H
1
,
1

H
8
,
1
 +
H
7
,
1
 +
 H
6
,
1
 +
H
5
,
1
+
H
4
,
1
 +
H
3
,
1
 +
H
3
,
1
 +
H
2
,
1

H
8
,
1
 +
H
7
,
1
 +
 H
6
,
1
 +
H
5
,
1
+
H
4
,
1
 +
H
3
,
1
 +
H
3
,
1
 +
H
1
,
1

0

+

+

H
 6
,
1

H
 8
,
1

H
 7
,
1
H
 8
,
1

H
 7
,
1

H
 6
,
1
 H
 8
,
1

+
 Add/Sub

Reg >>

ACC

Output

+/-

Parallel output

Reg >> 2

Reg >> 2

Reg >> 1

Reg >> 1

+
-

+

+

-

-

X
 n
,
1

X
2

X
3

X
4

X
 n
,
5

X
 n
,
6

X
 n
,
7

X
 n
,
8

X
1

X
 n
,
2

X
 n
,
3

X
 n
,
4

PE1

PE2

x
x
x
x
x
x
x
x
 n
n
n
n
n
n
n
n
 8
7
6
5
4
3
2
1

0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1

0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Input Code

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 1

Figure 3.6: HWTFM1 structure for a vector when N is 8 and W is 8

value of rowN will be stored in ROMN . The controller is used to select the ROMs and

based on the inputs (column) the decoder selects the corresponding ROM addresses and its

contents. For instances, if inputs are from column2 the content of ROM2 will be selected

then the DA principles will be applied to calculate the outputs. A delay of two clock

cycles has been incorporated in the architecture to synchronise inputs (X1........X2log2−2)

with inputs((X2log2−2)+1......XN) then another N clock cycles are needed to complete the

overall operation. For clarification purposes we explore the address generator and the

content of ROM for HWTFM1 vector whenN is 8 and W is 8. The detailed process is

illustrated in fig. 3.6. It can be seen from fig. 3.6 that the ROM1 contains the values of

first row in the Haar coefficients, a 8 bit decoder is used to access the appropriate contents

of ROM1. The same procedure is applied to other Haar coefficients.

3.6. Proposed Architectures for HWTFM1
and HWTFM2 73

3.6.2 Proposed Architectures for HWTFM2

The proposed architecture for the HWTFM2 (Arch2) is illustrated in Fig. 3.7. The design

for Arch2 is similar to Arch1, with some advantages and drawbacks. In the case of Arch1

log2N − 1 PEs are required to generate the elements of the second matrix as shown in

Eq.3.11, but it is not the case for Arch2, where there will be no PE to generate the

elements of the input matrix, only two shift registers and one ADD/SUB are required

to generate the first two elements of the input matrix. It means Arch2 uses less logic

for address generator than Arch1. On the other hand the number of non zeros elements

X
1

X
2
 Reg >> 1

Reg >> 1
 +

-
 ROM
1

ROM
1

ROM
2

ROM
2

ROM
3

ROM
3

ROM
N

ROM
N

+
 Add/Sub

Reg >>

ACC

Output

+/-

X
 n
,
1

X
 n
,
3

X
 n
N
,

X
 n
,
2

X
 n
,
4

Contorller

Clock

In
pu

t C
od

e

Figure 3.7: Proposed architecture for HWTFM2

increases in the first matrix of Eq.3.13 which are the constant content of the ROMs in

Arch2, in other word there will be more non zero elements to be stored in the ROM of

Arch2 compare to Arch1 and more arithmetic calculations are required to process the

outputs. The computation time will be the same as the Arch1.

3.6. Proposed Architectures for HWTFM1
and HWTFM2 74

3.6.3 Comparison with Existing Architectures

A direct implementation of DA based HWT without any modification requires (in the case

of W = 8 and N = 8) 24 additions and subtractions where N and W are the transform size

and word length respectively. Applying HWTFM1 reduces the additions and subtractions

to 16 and in the case of HWTFM2 it reduces to 18. Design parameters such as Time

Complexity (TC) and Area Complexity (AC) of the proposed design and other existing

architectures are presented in Table 4.5. It is worth noting that since Arch1 and Arch2

are DA based on DA, the TA depends on W. It is worth mention that the number of

bits used to represent each word in the victor and not victor length. Thus, the latency

of the design and number of clock cycle remains constant for a given input wordlength

for all victor size. In this case, when W = 8, Arch2 requires ten clock cycles (W+2) to

produce (Y1). During the first two clock cycles (X1) and (X2) are fed in the additional

circuitry to synchronies with other inputs (X3....XN) and during the last eight clock cycles

output (Y1) is produced. The AC of both architectures are based on the ROMs (LUTs,

ADD/SUB and shift registers) and the additional circuitry which synchronies the inputs.

It is worth noting that the AC depends on victor (N) and it increases exponentially with

(N). It is clear from Table 4.5 that the proposed architectures outperform the other

existing architectures in term of AC, TC and ADDs/SUBs.

Table 3.1: Comparison of the design parameters with other existing architectures
(where N is transform size and W is the word length)

TC AC Add/Sub
Proposed 1 O(W + 2) O((log2N − 1) + N) 3N − 8
Proposed 2 O(W + 2) O(N + 1) (Nlog2N − 6)

[12] DA Based O(2(W + 1)) O(2N/2) Nlog2N
[88] SA B. Level (2N − 1)(W + log2N) O(N2) NA
[11] Serial DA O(2(W + 1)) O(2N/2) NA

[11] Parallel DA O((N + 1)W) O(2N) NA
[89] Bit L. Vector O(2N) O(N2) NA

The comparison of logic elements for different methodologies are shown in Table 3.2. It is

clear that the proposed methodologies increases number of zeros in the content of ROM

and reduces the logic resource used such as adders and subtractors. It is worth mentioning

that by applying the proposed methodologies increased the number of zeros in the content

of ROM by 33% and 20% respectively compare to direct implementation of HWT without

any modification. Proposed mythologies also reduced the arithmetics (add/sub) by 33%

3.7. FPGA Implementation Results and Analysis 75

and 25%. In other word the proposed methodologies increase zeros and use less logic

resource in terms of hardware than other existing methodologies.

Table 3.2: Comparison of logic elements used in the proposed methodologies when
N = 8 and W = 8

Method N W Add/Sub Zeros in LUTs
Applying HWT 8 8 24 32

Proposed HWTFM1 8 8 16 48
Proposed HWTFM2 8 8 18 40

[12] 8 8 24 32

3.6.4 HWT Host Application for FPGA

The communication between FPGA and user is always been complex, to resolve this issue a

host application has been generated for user to provide an easy access to FPGA. The Host

application provides a user interface with pull down menus to interactively select the type

of implementation and level of decomposition for chosen image. Based on the requirements

of the system architect the image can be selected, then FPGA configuration bitstream is

loaded on the FPGA initiating the transformation process. All the current RC boards

(including RC10) come with some type of Flash memory on board, flash memory is used

to store data which can be accessed by FPGA and user (Host) through USB controller.

The flash can be accessed through read and write functions and the data stores in the array

of indexes of 1 to 254 (1 byte per index). The Host application sends the data to flash

memory. On completion of input data, the Host sends a signal to the FPGA and releases

control over the flash memory. The FPGA takes control over the flash memory, and reads

the image from the flash. Each image block is transformed to the HWT stored back into

flash. After the entire image is processed, control over the flash memory is released by the

FPGA back to the Host. The transformed image is read by the Host from flash memory

and displayed in the user interface. A snapshot of the host-FPGA system is shown in Fig.

3.8. It is worth mentioning that the image size is used to store in the flash was 256× 256

and the maximum size flash memory on the RC10 board is 16 MB.

3.7 FPGA Implementation Results and Analysis

The proposed HWTFM1 and HWTFM2 are implemented on FPGA using Handel C [35]

to gain maximum benefit in performance from the target hardware by using its parallel

3.7. FPGA Implementation Results and Analysis 76

Software

Hardware

Haar Level

1

16 MB

Flash

Memory

Xilinx

Spartan 3

3S1500L-4

Processing

Haar Transform

Transformed

Image

Scanned

Image

Figure 3.8: Host application for FPGA implementation of HWT

constructs. The detailed explanations of Handel-C performance is provided in Appendix-

B. The FPGA implementation process using Handel-c is shown in Fig. 3.9. The data

are stored in sperate locations of the SRAMs in parallel by using Handel C parallelism

instruction. Once the data are written in the SRAMs, FPGA reads data from the SRAMs

in parallel fashion and execute them, after the execution, the data are restored in different

locations of SRAMs which is ready to be used by the user.

SRAM
SRAM
SRAM
SRAM
SRAM

00
a
 01
a
)
1
(
0

n
a

00
a
 01
a

)
1
(
0

n
a

Output

(Processed

data)

Handel C

.......

.......

01

00

a

a
{

Par

}

FPGA

+

+

shift
 -
+

+

shift
 -
+

+

shift
 -
+

+

shift
 -

)
1
(
0
01
00

..........

n
a
a
a

)
1
(
0
11
10

..........

n
a
a
a

)
1
)(
1
(
1
)
1
(
0
)
1
(

 n
n
n
n
 a
a
a

Figure 3.9: Architecture for FPGA implementation of HWTFM2 using Handel C
parallelism

In order to evaluate the performance of the proposed HWT hardware implementations, the

3.7. FPGA Implementation Results and Analysis 77

designs have been implemented on the latest FGPA Virtex-5 (XC5VLX330) [90] devices

and low power FPGA Spartan3 (3s1500L) [91]. In addition, the results have been com-

pared with other existing implementation results in place. The implementation results for

proposed 2D HWTFM2 with N=16 is shown in Table 3.3. It is clear from Table 3.3 that

the implementation results for the proposed architecture outperformed the other existing

implementations results in terms of area and maximum frequency. The chip layout for

proposed HWTFM2 IP core on different FPGA is shown in Fig. 3.10. It is worth men-

tioning that the the computation times for implementation 16 x 16 image was 185.791 ms

using MATLAB and 6.49 ns using FPGA. The question may occur that the comparison

between MATLAB and FPGA is not fair, but it is not the case, we simply highlight the

importance of FPGA in term of image processing acceleration.

Table 3.3: Comparison of implementation results of HWTFM2 with different plat-
forms and existing work

Area Freq.
Platforms N (slices) LUTs I/Os (MHz)

Proposed (HWTFM2) Virtex-5 16 186 332 49 154
Proposed (HWTFM2) Virtex-4 16 286 314 49 125

Virtex-4 [92] 16 358 N/A 21 121
Virtex-E [92] 16 335 N/A 21 67

Proposed (HWTFM2) Spartan-3L 16 288 315 48 80

Chip Level Details

After the implementation, the place and route of critical nets and manual pin assignment

for the designs have been performed using Xilinx Pinout Area Constraints Editor (PACE)

and Floorplanner [2]. This process yields compact and optimised design with short nets

and serves two important purposes. Firstly, short nets have lesser propagation delay and

up to 25% gains in maximum frequency have been achieved. Second, short nets have

lesser parasitic capacitance and DC load and therefore dissipate lesser power than long

nets. Manual pin assignment also enables us to locate the I/O pads close to the design

area, further aiding the above two criteria. The chip diagram for N = 16 is shown in Fig.

3.10.

3.7. FPGA Implementation Results and Analysis 78

(a)

(b)

Figure 3.10: Chip layout of Virtex-5 and Spartant-3L for 2D HWTFM2 (a) Chip
layout of Virtex-5 for HWTFM2 when the transform size (N) is 16 (b) Chip layout
of Spartan-3L for HWTFM2 when the transform size N is 16

3.7.1 Hardware/Software Implementation of HWT

on Medical Imaging

HWT has been used in many vital applications including medical image segmentation, due

to its multiresolution capability for signal representation. Medical image segmentation is

an essential stage in medical image processing. This stage includes significant analysis work

by delineating the anatomical structures and discriminating them from image background

[93], [94]. More detailed information about HWT segmentation can be found in [95].

The HWT FPGA implementation by using Handel-C is used to implement and segment

medical images to highlight the importance of hardware in terms of accelerations. On the

other hand, it is also implemented using softwares Central Processing Unit (CPU). The

3.7. FPGA Implementation Results and Analysis 79

hardware implementation is coded with Handel C and prototyped on RC10 board which is

equipped with Spartan-3 (3S1500L-4) [32]. It is worth mentioning that the implementation

of HWT is based on normal standard HWT pseudocode which is presented in [96]. The

design flow for both hardware and software implementation is shown in Fig. 3.11.

FPGA Implementation

The scanned medical image is loaded to the Flash memory through Host application, due

to the limitation on the RC10 board peripherals the image has been partitioned into a

block of 64x64; therefore, the image size of 256x256 is divided into 4 blocks of 64x64 then

each block is sent to the FPGA board to be processed and sent back into flash by FPPGA

to be read by Host. The design implementation (256x256) occupied 609 FFs, 8,027 LUTs,

4,594 slices and with maximum frequency of 32.519MHz. The hardware segmented medical

image applying fist level decomposition is shown in Fig. 3.12 (b,c).

MATLAB Implementation

MATLAB is a high-level technical computing language and interactive environment that

enables you to perform computationally intensive tasks faster than with traditional pro-

gramming languages such as C, C++, and Fortran [97]. This interactive environment can

be used for algorithm development, data visualization, data analysis, and numeric com-

putation. MATLAB has been used in a wide range of applications, including signal and

image processing, communications, control design, test and measurement, financial mod-

eling and analysis, and computational biology. Add-on toolboxes (collections of special-

purpose MATLAB functions, available separately) extend the MATLAB environment to

solve particular classes of problems in these application areas. Since MATLAB is a suit-

able environment for image processing, HWT has been also implement using MATLAB for

quality purposes with FPGAs implementation. It is worth mentioning that the MATLAB

implementation of HWT base on the design flow shown in Fig 3.11. A standard HWT

decomposition function (based on averaging and deferencing) which is available in Matlab

tool box is used to segment the real PET image. The MATLAB segmented medical image

applying first level decomposition is shown in Fig. 3.12 (f,g).

3.7. FPGA Implementation Results and Analysis 80

Host

Select Image

Start

Hardware

FPGA
Software

Apply HWT Decomposition

(Averaging and Differencing to Rows and Columns)

FPGA

 Reads From Flash

Store Image

In RAM [N][N]

Store Image

Into Flash Memory

FPGA

 Write back To Flash

The Processed Data

Segment the Image

(Thresholding)

Host

Read From Flash

Display

Store Image

Into an Array

Load Input Image

Store Image

Into an Array

MATLAB
Visual C++

Choose WT Tool Box

From MATLAB Library

Code

The HWT Function

Using C++

Display

The Processed Image

MATLAB

Display

The Processed Image

Using Host

FPGA implementation

Figure 3.11: The design flow for HWT hardware and software implementation

3.7. FPGA Implementation Results and Analysis 81

(e)
(d)
 (f)

(b)
(a)
 (c)

(h)
(g)
 (i)

Figure 3.12: (a) Original real PET image (256 x 256) (b) HWT first level of de-
composition (c) Segmented image (thresholding) using FPGA (d) Original real PET
image (256 x 256) (e) HWT first level of decomposition (f) Segmented image (thresh-
olding) using MATLAB (g) Original real PET image (256 x 256) (h) HWT first level
of decomposition (i) Segmented image (thresholding) using Visual C++

Visual C++ Implementations

Visual C++ provides a powerful and flexible development environment for creating Mi-

crosoft Windows based and Microsoft .NET based applications. Visual C++ consists

of the following components. The Visual C++ Libraries include the industry-standard

Active Template Library (ATL), the Microsoft Foundation Class (MFC) libraries, and

standard libraries such as the Standard C++ Library, consisting of the iostreams library

and the Standard Template Library (STL), and the C Runtime Library (CRT). In addi-

tion to conventional graphical user-interface applications, Visual C++ enables developers

to build Web applications, smart-client Windows-based applications, and solutions for

thin-client and smart-client mobile devices. Throughout our research we have used Visual

3.8. Conclusions 82

C++ as user interface application to send data to FPGAs and read data from FPGAs.

Since it is a powerful and flexible development environment and used as user interface

application we have decided to carry on the the HWT image segmentation using Viual

C++ for quality purposes with MATLAB and FPGA implementation. The Visual C++

coding is based on the HWT pseudocode which is presented in [96]. The Visual C++

segmented medical image applying fist level decomposition is shown in Fig. 3.12 (h,i).

Fig. 3.12 shows the first level of decomposition of HWT and segmented image using

thresholding on medical image with size of 256 x 256. The PSNR analysis is shown in

Table 3.4, it is clear form the Table 3.4 that PSNR values for all implantation are very good.

It means the quality of image using hardware/software is the same, but computational

time for the first level of decomposition is 212.81 ms using MATLAB and 2630.12 ms using

Visual C++ which show a real need for acceleration. In this case hardware implementation

Table 3.4: The PSNR analysis of HWT using FPGA, MATLAB and VC++

Tools Image HWT 1 level Decom. HWT Thresh.
Size PSNR (dB) PSNR (dB)

FPGAs 256×256 33.187 32.302
MATLAB 256×256 34.132 33.210
VC++ 256×256 33.297 32.823

can be the best solution for the acceleration. The same image is implemented using

FPGAs with computation time of 32.30 ns. From these results it is clear that MATLAB

computation time is by far faster than Visual C++, but considerably slower than FPGA’s

computation time. Again it is not fair to compare the computation time between hardware

and software, but it is not the case, we simply highlight the importance of hardware

(FPGAs) over software in term of image processing acceleration. It is worth mentioning

that we have used the same threshold value (190) for all three implementations, it clear

from the segmented images and their PSNR valuse that all three outputs are almost the

same in terms of quality. In other word, the FPGAs can accelerate the process without

losing important information.

3.8 Conclusions

In this Chapter, two HWT factorisation methodologies HWTFM1 and HWTFM2 have

been proposed to increase number of zeros and reduce hardware resources. The pro-

3.8. Conclusions 83

posed factorisation methodologies have been formulated in generalized term which can

be used for any matrix size. The generalized proposed factorisation methodologies have

test on different matrix size with positive outcomes. In addition two efficient and opti-

mised architectures for proposed methodologies based on DA principles have been pro-

posed. The proposed novel architectures are based on DA principles and sparse matrix

factorisation technique, and they are suitable for FPGA implementation. The first pro-

posed architectures (HWTFM1) has a time complicity of O(W + 2), area complexity of

O((log2N − 1) + N) and uses 3N − 8 adders/subtractors. The second proposed architec-

ture HWTFM2 has a time complexity of O(W + 2), area complexity of O(N + 1) and

uses (Nlog2N − 6) adders/subtractors. The evaluation of the architectural results have

shown that these architectures outperforms existing architectural results in place. It is

worth mentioning that by applying the proposed methodologies the arithmetics calcula-

tion (additions/subtractions) is reduced by 33% and 25% respectively compared to direct

implementation HWT.

The proposed 2D HWTFM2 when N=16 is implemented on FPGA using Handel-C to

gain maximum benefit in performance from the target hardware by using its parallel

constructs. In order to evaluate the performance of 2D HWTFM2 hardware implementa-

tion, the proposed design has been implemented on the advanced FPGA (Virtex-5) and

low power FPGA (Spartan3). The implementation results for the proposed architecture

outperformed the other existing implementations results in terms of area and maximum

frequency. It is worth mentioning that the the computation times for implementation

N=16 image was 185.791 ms using MATLAB and 6.49 ns using FPGA. It highlights

the importance of FPGA in term of image processing acceleration. In the next chapter,

an architectural level optimisation and efficient FPGA implementation of FRIT will be

discussed.

Chapter 4

Architecture Level Optimisation

and Efficient FPGA

Implementation of Finite Ridgelet

Transform

4.1 Introduction

Recently, the ridgelet and curvelet transforms [46–48] have been generating a lot of in-

terest due to their superior performance over wavelets. The wavelet transform has been

extensively used in image and video processing during the last ten years. However, it

has long been known that the wavelet transform has many limitations when it comes to

representing straight lines and edges in image processing. Wavelets are thus more appro-

priate for the reconstruction of sharp point-like singularities than lines or edges. These

shortcomings of wavelets are well addressed by the ridgelet and curvelet transforms, as

they extend the functionality of wavelets to higher dimensional singularities, and are ef-

fective tools to perform sparse directional analysis. Although impressive image processing

performance has been achieved with ridgelet transform, the complexity of its implemen-

tation still remains as a heavy burden on standard microprocessors where large amounts

of data have to be processed. Therefore, the complexity of ridgelet can be resolved by

introducing parallelism and pipelining into hardware implementation. Parallelism can be

used to assign different tasks to different concurrent objects in the design, or to speed

84

4.2. The Finite Radon Transform: A Brief Review 85

up certain iterative operations by performing the same operation on different data-sets

concurrently [98, 99]. Parallelism can be exploited in the implementation of matrix oper-

ations based transforms such as the Finite Radon Transform (FRAT) where redundant

subexpressions can be effectively parallelised. Although additional hardware resources are

utilised, but savings can be made in other areas such as minimising buffers and memory

elements, reducing frequency to maintain throughput etc.

Pipelining is a well known technique used in Application Specific Integrated Circuits

(ASICs) for reducing logic depth and improving throughput at the cost of additional

latency. Pipelining is most effective for complex repetitive tasks where each task can be

broken down into independent sub-tasks (or stages) which can be executed in a sequen-

tial manner. The key advantage of pipelining is the reduction of circuit glitching [100],

which is particularly significant in the case of FFPGAs, because of limited availability of

programmable interconnects [101]. In this chapter, efficient and optimised architectures

for FRAT and Finite Ridgelet Transform (FRIT) by applying principles of parallelism,

pipelining and systolisation as appropriate are explored. The proposed architectures are

then implemented on different FPGA platforms and the results have been evaluated with

other existing work in place.

The rest of this chapter is organised as follows. A brief review for FRAT is presented

in Sections 4.2. The proposed architecture for the FRAT and its FPGA implementation

are presented in Sections 4.3 and 4.4 respectively. A brief review for FRIT is presented

in Section 4.5. The proposed architecture for FRIT and its FPGA implementation are

presented in Sections 4.6 and 4.7 respectively. Concluding remarks are presented in Section

4.8

4.2 The Finite Radon Transform: A Brief Review

FRAT was first introduced in [102] as the finite analogue of integration in the continu-

ous Radon Transform (RT), with origins in the field of combinatorics. The mathematical

representation of an injective form of the FRAT to ensure invertibility when applied on

finite Euclidian planes has been presented in [79]. In recent years the RT has received

much attention, due to its ability to transform two dimensional images with lines into a

domain of possible line parameters, where each line in the image will give a peak posi-

tioned at the corresponding line parameters. This have led to many applications within

4.2. The Finite Radon Transform: A Brief Review 86

image processing and computer vision. The FRAT is defined as summations of image

pixels over a certain set of lines. Those lines are defined in a finite geometry in a simi-

lar way as the lines for the continuous Radon transform in the Euclidean geometry. RT

is an integral transform used to represent an image as a collection of projections along

various directions. Sparse representation of image data, especially in images that contain

a number of line discontinuities can be effectively achieved using RT. It has enjoyed a

position of fundamental importance to many applied problems in mathematics, physical

and functional analysis. Applications of RT include seismology, radio astronomy, electron

micrography and most famously in tomography [103]. While easy to implement in digital

form by discretising the input image, the absence of a corresponding inverse was a key

issue. It is worth mentioning that the FRAT is not a discrete version of the RT, but a

discrete finite version.

To explore the FRAT mathematically let’s consider a cyclic group Zp denoted by Zp =

(0, 1, ..., p − 1) such that p is a prime number. Let the finite grid Zp
2 be defined as the

Cartesian product of Zp×Zp. This finite grid has (p+1) non trivial subgroups [79], given

by:

Lk,l = {(i, j) : j = (ki + l)(modp), i ∈ Zp}, k < p (4.1)

and

Lp,l = {(l, j) : j ∈ Zp} (4.2)

where each subgroup Lk,l , is the set of points that define a line on the lattice Zp, k and

l represent the slop and intercept of the line respectively. The Radon projection of the

function f on the finite grid Z2
p is [79] then given by:

rk[l] = FRATf (k, l) =
1√
p


 ∑

(i,j)∈Lk,l

f [i, j]


 (4.3)

The FRAT is the basic building block for a number of transforms, including the FRIT

and curvelets, more discussion of the theory, mathematics and applications of the FRAT

can be found in [79]. It has been also been shown in this work that the Filtered Back

Projection (FBP) provides a perfect inversion for the FRAT. Also, the algorithm for the

FBP and FRAT are synonymous. Hence the same architecture can be used to implement

both the forward and inverse transforms. The overall design flow of FRAT is presented in

4.3. Proposed Architectures for FRAT - Design and Evaluation 87

Fig. 4.1 which is based on the standard FRAT pseudocode presented in [79]. It is clear

form the flow chart that an image is divide into number of sub-blocks with size of p where

p is a prime number. Then the FRAT operation is applied to each block separately. It

takes the average of each row of the input block and replace it in the first row of the new

FRAT block. The rest of the new block’s rows depend on the value k, l where k and l are

the slop and the intercept of the line, based on the value of k, l, it adds all the pixels of

the line and find the averages and put them in the second, third and others row of the

new FRAT block. For the final row of the new block it adds and finds the average all

columns of the input block and replace in the last row of the new block. At the end the

new FRAT block merges. The same procedure will be applied to all blocks.

4.3 Proposed Architectures for FRAT - Design

and Evaluation

In this section, the proposed FRAT architecture is explored which is a serial I/O archi-

tecture with a parallel core that computes all p + 1 FRAT vectors simultaneously. The

block diagram describe the proposed FRAT architecture is presented in Fig. 4.2. As it

is clear for the diagram it is a serial input architecture. The advantage of a serial in-

put architecture is that the FRAT block can be easily included into a sequence of image

processing/compression steps such as the ridgelet or curvelet, without imposing any re-

strictions on the nature of the inputs. No clock cycles are wasted in buffering the whole

input block, and the input section can be pipelined. The controller has p + 1 counters

with size of 8-bits which generate the address and the read/write status of the output

buffer (dual port RAMs). The address vector decoder generates the correct sequence of

addresses accessed in the output buffer based on the values of k,l. Each accumulator reads

the contents of the specified location from the dual port RAMs, adds the data from the

input port, and writes it back to the deferent location of the RAM, since it is a dual port

RAM, all operation happens within the same clock cycle. The input and core section of

the design are completely pipelined. The output stage cannot be pipelined because the

FRAT is an over-complete transform that yields p(p+1) output points for p2 input points.

For maintaining design simplicity and due to power considerations, a non-pipelined serial

data flow in the output section is adopted. The generated FRAT vectors will be stored

by a number dual part RAM. In total, there are p independent dual port RAM buffers at

4.3. Proposed Architectures for FRAT - Design and Evaluation 88

Bock 3

First row i in new Block =

Avg. of row i in input Block

k,l > P

NO

YES

Add all the pixel on the line k,l

find the Avg

The new row of FRAT block =

Avg. of column j in input Block

NO

YES

FRAT N
FRAT 1
 FRAT 2

END

START

FRAT N-1

Read Image of

size (x, y)

Divide the image into

N blocks of size (P,P)

Merge FRAT blocks

(P+1)

Image with

FRAT domain

Block N
Block 1
Block 1
 Block N-1

put in row i =2

j ++

i > P

i++

j > P

j++

k,l ++

NO

YES

Figure 4.1: FRAT Flowchart

the output section, one for each FRAT vector. The architecture uses a distributed RAM

(LUTS) that stores the address values for each FRAT vector rather than multiplexer or

counter chains that have been used in previous designs. Multiplexers and arrays utilise

deep logic, and also lie in the critical path of the design. This naturally reduces the max-

imum frequency obtained. The novelty of this architecture lies in the fact that a different

approach has been taken to implement the FRAT efficiently, instead of just parallelising

the standard FRAT pseudocode presented in [79]. Additionally, instead of using arrays to

store the output coefficients, the design takes the advantages of hardware resources avail-

able on the new advanced FPGA and using dual ported RAMs which helps in reducing the

4.3. Proposed Architectures for FRAT - Design and Evaluation 89

Accumulator

4

RAM

Accumulator

PE

4
PE

4
PE

4
RAM4

Contoroller

LUT2

Address Victor

Decoder

LUT1
 LUTp
 FRAT1

FRAT

8 Bit

Input

FRAT O/P

)
(
256
log

2

O
u

tp
u

t

bits

256 (P+1)
log
2

+

+

+

+

+

1

P
+

P

1

P
+

P

(P)
P
 k,l
 [7:0]

Figure 4.2: Proposed architecture for FRAT

area. This used of dual port RAMs also contributes to improved frequency performance

when compared to previous designs due to multiple access within one clock cycle. At the

end of p2 clock cycles, the output contains the image block in the transform domain. They

are then ejected in a serial fashion from the output port. It ia worth mentioning that the

output size for each FRAT is p + 1 with pixel size of 8-bits (log2256(P + 2)).

4.3.1 FRAT Comparison with Existing Architectures

The Time Complexity (TC), Area Complexity (AC) and I/O types obtained for the pro-

posed FRAT block are presented in Table 4.1.

Table 4.1: Comparison with existing architectures
TC AC I/O

Proposed O(p2) O(2p2) Serial
[17] Generic O(p2) NA Parallel
[17] Serial O(p2(p + 1)) O(2p2) Serial

[15] Reference O(p2(p + 1)) O(2p2) Serial
[15] Memoryless O(p(p + 1)) NA Parallel

[14] Parallel O(p2) O(2p2) Parallel
[16] Reference O(p2(p + 1)) O(2p2 + p) Serial

It can be seen from Table 4.1 that the proposed parallel architecture has the least time

complexity compared to other parallel cores. Since the inputs and outputs are stored in

4.4. FRAT FPGA Implementation 90

RAM and distributed RAM the area is the same other parallel cores. It is also worth

mentioning that the type of I/O used also has an impact on the I/O power of the de-

sign. Serial architectures in general consume lesser I/O power when compared to parallel

architectures.

4.4 FRAT FPGA Implementation

In this section the proposed FRAT IP core implementation on different FPGA platforms

has been explored. In addition, evaluation of performance in comparison with other exist-

ing work are also presented. In order to verify the performance of the proposed architecture

Table 4.2: Performance matrices of FRAT core on different FPGA platforms
Platforms Parameters P = 7 P = 17 P = 31

Area (Slices) 312 520 1007
Max Freq. (MHz) 101.2 96.06 90.82

Spartan-3L Dual P. RAM 176 468 832
Registers 18 65 193

Area (Slices) 244 756 1436
Max Freq. (MHz) 180.83 111,98 103,62

Virtex-2 Dual P. RAM 176 936 1664
Registers 20 56 193

Area (Slices) 133 354 608
Max Freq. (MHz) 175.16 166.19 154.12

Virtex-5 Dual P. RAM 96 252 392
Registers 19 54 113

for FRAT has been prototyped on the Celoxica RC1000 [33]. In order to provide a fair

results the IP cores developed are re-synthesised and implemented without any architec-

tural modifications with advanced FPGA platform Xilinx LX110T (Virtex-5). Synthesis is

also carried out on the low power FPGA Spartan3L 3s1500l-4 platform. A brief overview

and features of Vitex-5 and Spartan-3 FPGA platforms used are provided in Appendix

A. Various performance metrics like area occupied, maximum frequency, number of dual

port RAMs and registers of the implementation results obtained for proposed FRAT is

presented in Table 4.2. In order to provide a fair comparison with other existing work

the design has also implemented with Xilinx Virtex-2. The results obtained have been

compared with other existing work. It can be seen from table 4.3 that the implementation

results from the proposed architecture outperforms other existing implementations results

in terms of area and specially maximum frequency. This is because the proposed architec-

4.4. FRAT FPGA Implementation 91

ture has parallel cores and using RAMs to store data rather than arrays which consume

more hardware. It is worth noting that the reference and parallel in Table 4.3 represent

the method of the design, reference means serial core and parallel means parallel cores.

Table 4.3: Comparison of performance metrics with existing FPGA implementations
Area Freq.

Platform P Design (Slices) (MHz)
7 Proposed 244 180.83

Virtex-2 17 Proposed 756 111,98
31 Proposed 1436 103,62

Virtex-2 7 [15] Reference 159 100.13
7 [15] Parallel 558 81.92

Virtex-2 7 [14]Parallel 245 96.46
17 [14]Parallel 824 N/A
7 [16]Parallel 198 112.86

Virtex-2 17 [16]Parallel 638 87.44
31 [16]Parallel 1118 80.29

4.4.1 Applying FRAT on Image Data

In recent year FRAT has been used for many applications including medical imaging

(tomography) [103]. The FRAT has been applied on medical images (human chest, lung

and brain which are obtained from a CT scanner) for evaluation purposes which is shown in

Fig. 4.3. It can be observed that the averaging effect of the FRAT and the block artifacts

of the image in the transform domain become clearly visible as p increases. It is worth

mentioning that the Peak Signal to Noise Ratio (PSNR) depends only on the accuracy

required. The PSNR is used in image processing as a physical measure of the sensitivity

of an imaging system. Image quality is excellent when PSNR is 32 dB and if PSNR is

20 dB the image is acceptable in term of quality. The truncation or rounding step that

follows the FRAT determines the PSNR figures. The rounding or truncation process can

easily be incorporated along with the wavelet block with no extra computational effort by

suitably modifying the wavelet coefficients. However, to illustrate the effect of bit-width

limitations on PSNR, reconstruction has been carried out on standard images stored at

eight Bits Per Pixel (BPP) in the FRAT domain. The PSNR values of the reconstructed

images have been presented in Table 4.4. It can be seen from Table that the PSNR of the

reconstructed image image drops almost by 10dB when the block size increased from P=7

to P=31. This is because as p increases, the rounding error become more significant. Using

4.4. FRAT FPGA Implementation 92

h
g

f
e

c
b
a

d

i

Figure 4.3: Spatial domain and transformed images (a) Spatial domain human brain
(b) FRAT domain, p = 7 (c) Reconstructed image (d) Spatial domain human lung
(e) FRAT domain, p = 7 (f) Reconstructed image (g) Spatial domain human chest
(h) FRAT domain, p = 7 (i) Reconstructed image

a driver with greater precision can reduce the rounding error. It also worth mentioning

that when the block size is increasing, the processing time is also increasing.

4.4.2 Chip Level Details

In addition to FPGA implementation, a careful manual PAR of critical nets and manual

pin assignment for the designs has been performed using Xilinx Floorplanner [2]. The

FPGA chip layout for FRAT post PAR when P = 17 is shown in Fig. 4.4.

4.5. Finite Ridgelet Transform: A Brief Review 93

Table 4.4: The PSNR analysis of reconstructed images from 8 bit FRAT images

Image Block FRAT FRAT Processing
Name Size PSNR (dB) Time (sec)

7 49.66 0.37
Brain 13 39.23 0.62

31 31,56 0.93
7 28.67 0.92

Lung 13 21.92 1.21
31 17.43 1.54
7 53.71 0.92

Chest 13 50.32 0.97
31 45.29 1.44

(a)

(b)

Figure 4.4: Chip layout of Virtex-5 and Spartant-3L for FRAT (a) Chip layout of
Virtex-5 for FRAT when the block size (P) is 17 (b) Chip layout of Spartan-3L for
FRAT when the block size (P) is 17

4.5 Finite Ridgelet Transform: A Brief Review

FRIT has gained attention recently due to superior compaction over wavelets due to its

directional nature, resulting in better performance in applications such as compression and

4.5. Finite Ridgelet Transform: A Brief Review 94

denoising. These applications are computationally intensive, which require realtime accel-

eration process. Software implementation of the FRIT is usually based upon the standard

pseudocode for the FRAT presented Appendix B followed by a suitable DWT block. The

computational complexity of the FRAT and DWT blocks in the FRIT make hardware

acceleration essential for fast computing and achieving real time processing. A straight-

forward translation of this pseudocode for hardware implementation is sub-optimal, as it

does not exploit the parallelism capabilities of dedicated processors. Non-dyadic transform

lengths and modulo operations in the FRAT sub-block necessitate algorithmic transfor-

mations to yield efficient hardware implementation. The DWT block is based on the

HWT, which provides the best energy compaction (minimum entropy) when compared to

other higher order wavelets. It is the aim of this work to present a novel and platform

independent VLSI architecture for FRIT. Efficient FPGA implementation of the proposed

architecture is also performed on different FPGA platforms for evaluation.

4.5.1 Mathematical Background of the Finite Ridgelet Trans-

form

The FRAT has been described in details in the previous section. Additionally, a compre-

hensive mathematical review about the FRAT has also been provided in previous section.

The final expression for the FRAT is reprinted here as a refresher:

The Radon projection of the function f on the finite grid Z2
p is given by:

rk[l] = FRATf (k, l) =
1√
p


 ∑

(i,j)∈Lk,l

f [i, j]


 (4.4)

4.5.2 Haar Wavelet Transform

There are many popular discrete wavelets which are used in different applications. Among

these wavelets, HWT is one of the simplest wavelet transforms. Although its simplicity

makes it unsuitable for a number of applications, particularly due to the fact that it is not

continuous and hence not differentiable, it is highly suitable for constructing the FRIT due

to the following reasons. Firstly, the HWT is very simple in structure and is less expensive

to compute compared to other wavelets. Secondly, due to the averaging characteristics of

the FRIT, it has been observed that the HWT displays superior performance in energy

compaction when compared to other wavelets. HWT has been explored in details in

4.6. Proposed Architectures for FRIT 95

Chapter 3.

4.5.3 Building the FRIT from FRAT and DWT

FRIT is obtained by performing the HWT on each FRAT projection sequence with fixe

value of k. The continuous ridgelet transform of a bivariate function f(x) is given by [48]:

RT =
∫

R2

ψa,b,θ(x)f(x)dx (4.5)

However, the use of digital images necessitates the development of suitable variations of

the ridgelets to deal with images in the digital domain. The process of FRIT is represented

in Fig.4.5.

Image
 FRAT
 HWT
 FRIT

Domain

Figure 4.5: Finite ridgelet transform obtained by performing HWT on the FRAT
vectors.

Mathematically, this is given by [46]:

FRITi,i+1(k, l) = bFRATi,i+1(k, l)×H2c2∀i = 1, 3, ...p (4.6)

The directional attributes of these higher dimensional generalisations of wavelets make

them ideal for a number of applications such as alternate image representation, compres-

sion, denoising, etc.

4.6 Proposed Architectures for FRIT

In this section, the design flow used to generate the optimised architecture for FRIT using

the novel FRAT block which has been presented in section 4.3 and novel HWT block

which has been explored in Chapter 3 is presented. The generated FRAT vectors will be

stored in dual part RAMs. In totally, there are p independent dual port RAM buffers at

the output section, one for each FRAT vector. The block diagram description of the FRIT

architecture with parallel core is shown in Fig.4.6. The HWT sub-block is fully pipelined,

4.6. Proposed Architectures for FRIT 96

and is efficiently implemented using accumulate shift and accumulate subtract sub-unit

circuits that perform the combined task of computing the sum and differences, as well

as scaling the image in the wavelet domain. It can be seen from Fig. 4.6 that it consist

two part, FRAT part which is the same FRAT which has been explored earlier in this

chapter. The other part is HWT, HWT is the simplest wavelet and has a better entropy

measures which indicate that it has a better performance than other complex wavelets for

performing the FRIT. The outputs of the FRAT domain with size p+1 is fed as inputs to

the HWT then the HWT operation (averaging and differencing) is applied to obtain the

FRIT outputs. The controller generate the address and the read/write status of the dual

port RAMs, it also select the outputs sequences of FRAT to HWT. It is worth mentioning

that the HWT is based on Haar Wavelet Transform Factorisation Method 1 (HWTFM1)

which has been explored in Chapter 3.

Accumulator

4

RAM

Accumulator

PE

4
PE

4
PE

4
RAM4

Contoroller

LUT2

Address Victor

Decoder

LUT1
 LUTp

FRAT1

FRAT

8 Bit

Input

)
(
256
log

2

+

+

+

+

H
W

T

FRIT O/P

bits

256
log

2

)
1
(
P
+

O
u

tp
u

ts

>>

>>

+

-

-

+

h

h

g

g

1
P
+

1
P
+

1
P
+

1
P
+

1
P
+

(P)

[7:0]

k,l (p)

Figure 4.6: Proposed architecture for FRIT

4.6. Proposed Architectures for FRIT 97

4.6.1 Results and Analysis

In order to evaluate the performance of the proposed FRIT, the designs parameters have

been compared with other existing architectures. Additionally, the proposed FRIT has also

been implemented on different FPGA platforms, the obtained results have been compared

with other existing FPGA implementations in place. The results comparison is present in

the following subsections.

Comparison with Existing Architectures

Design parameters such as TC, AC and I/O type of the proposed design and other existing

architectures are presented in Table 4.5. It can be seen that the proposed architecture has

a competitive area complexity figure. It can also be seen from Table 4.5 that the proposed

architecture has the least time complexity compared to some other IP cores presented

in Table 4.5. It is also worth mentioning that the impact of I/Os are very important in

FPGA power consumption. Serial architectures in general consume less power compared

to parallel architectures.

Table 4.5: Comparison of design parameters of FRIT with existing architectures
Design TC AC

Proposed Architecture O(p2) O(log2p + 2p2)
[17] Generic O(p2) NA
[17] Serial O(p2(p + 1)) O(2p2)

[15] Reference O(p2(p + 1)) O(2p2)
[15] Memoryless O(p(p + 1)) NA

[14] Parallel O(p2) O(2p2)
[16] Parallel O(p2(p + 1)) O(2p2 + p)

4.6.2 Image Data

FRIT has been applied on some medical images for evaluation and the outcome is shown

in Fig. 4.7. The truncation or rounding step that follows the HWT sub-block determines

the PSNR figures. The level of precision required is a choice best left to the end user.

Hence the IP cores that have been developed operate at full precision. The PSNR and

the processing time for FRIT is shown in Table 4.6. It is worth mentioning that when p

is increasing the PSNR is not changing significantly, but the time processing is increasing

by 50 % when p changes from 7 to 13.

4.6. Proposed Architectures for FRIT 98

a
 b

c
 d

Figure 4.7: Spatial domain and transformed images (a) Spatial domain human lung
(b) FRIT domain, p = 7 (c) Spatial domain human brain (d) FRIT domain, p = 7

Table 4.6: The PSNR and timing analysis of 8 bit FRIT images

Image Block FRIT FRIT Processing
Name Size PSNR (dB) Time (sec)

7 4.55 23.06
Lung 13 3.67 16.71

31 2.81 9.41
7 5.52 55.33

Brain 13 4.12 34.91
31 3.21 27.12
7 8.13 47.42

Chest 13 6.62 24.97
31 6.29 10.44

4.6.3 FRIT Host-FPGA system

The Host application provides a user interface with pull down menus to interactively select

the image to be transformed. Based on the requirements of the system architect, the

4.7. FRIT FPGA Implementation 99

block size required for the FRIT can be selected. The corresponding FPGA configuration

bitstream is loaded on the FPGA initiating the transformation process. Next, the Host

application sends the data to flash memory RC FPGA boards. On completion the Host

sends a signal to the FPGA and releases control over the flash memory. The FPGA takes

control over the flash memory, and reads the image from the flash. Each image block is

transformed to the FRIT domain stored back into flash memory. After the entire image

is processed, control over the flash memory is released back to the Host. The Host reads

the transform image from flash memory and displayed in the user interface. A snapshot

of the host-FPGA system is shown in Fig. 4.8. It is worth mentioning that the maximum

size flash memory on the RC10 board is 16 MB.

FRIT Domain

P=17+1
���������������

FLASH

RAM

16 MB

���������
Xilinx Spartan 3

3S1500l-4

Porcessing

The FRIT

P=17

Input

image

Figure 4.8: Host application for FRIT

4.7 FRIT FPGA Implementation

In this section, various details of FRIT implementation on different FPGA platforms has

been explored. In addition, evaluation of performance in comparison with existing work,

4.7. FRIT FPGA Implementation 100

chip diagrams are also presented. In order to provide to compare with other existing work

FRIT has been prototyped on the Celoxica RC10 [33]. The FRIT IP core developed are

also re-synthesised and implemented without any architectural modifications with Virtex-

5 (LX110T) platform to verify the performances. Synthesis is also carried out on the

low power FPGA Spartan 3 to perform a critical comparison of power dissipation on a

low-power FPGA platform, more details about these platforms can be found in Appendix

A. The implementation results obtained for proposed FRIT is presented in Table 4.7. The

Table 4.7: Comparison of performance metrics with existing FPGA implementations
Area Freq.

Design P Platform (Slices) (MHz)
Proposed 7 Virtex-5 186 173.55
Proposed 17 Virtex-5 502 166.23
Proposed 7 Spartan-3L 298 85.5
Proposed 17 Spartan-3L 1,110 48.6
Proposed 7 Virtex-E 309 72.63
Proposed 17 Virtex-E 1,112 51.56

[17] Generic 17 Virtex-E n/a 33.00
[17]Serial 17 Virtex-E 828 18.00

[14]Parallel 7 Spartan-3L 312 76.3
[14]Parallel 17 Spartan-3L 1,124 40.23
[14]Parallel 7 Virtex-E 312 70.55
[14]Parallel 17 Virtex-E 1,176 40.23

[16]Reference 7 Virtex 2 476 101.00
[16]Reference 17 Virtex 2 911 32.00

implementation results from the proposed architecture of FRIT outperformed the other

existing implementations results in terms of area and maximum frequency. This is because

the proposed architecture has a parallel FRAT core and a DA based HWT. It can be seen

from Table 4.7 the FRIT core is implemented and tested with p= 7 and 17. The advance

FPGA (virtex-5) has the highest frequency which is almost 50% faster than other FPGAs

and utilizes almost 50% less logic (slices), it is because of the structure of new CLBs in

Virtex-5. It can be also seen from the Table 4.7 that proposed FRIT (with parallel cores

and DA based HWT) improved the frequency by 11% compare to other recent parallel

cores implementations and reduces the logic resources used almost by 8%. It is worth

mentioning that Generic, Reference and Parallel in Table 4.7 represent the methodologies,

Parallel means parallel core FRAT and Reference means serial FRAT.

4.8. Conclusions 101

4.7.1 FPGA Chip Level Details

In addition to FPGA implementation, a careful manual PAR of critical nets and manual

pin assignment for the designs has been performed using Xilinx Floor planner [2]. The

FPGA chip layout for FRIT post place and route when P = 31 is shown in Fig. 4.9.

(a)

(b)

Figure 4.9: Chip layout of Virtex-5 and Spartant-3L for FRIT (a) Chip layout of
Virtex-5 for FRIT when the block size (P) is 31 (b) Chip layout of Spartan-3L for
FRIT when the block size (P) is 31

4.8 Conclusions

In this Chapter, an architecture with a parallel core for FRAT which is suitable for FRIT

has been proposed. The outputs of proposed architecture are a non-pipelined serial data

flow and They are stored by a number dual part RAMs. In total, there are p independent

dual port RAM buffers at the output section, one for each FRAT vector. The architecture

uses a distributed RAMs (LUTS) to stores the address values for each FRAT vector rather

4.8. Conclusions 102

than multiplexer or counter chains that utilise deep logic. This naturally helped to reduces

the maximum frequency and area. The used of dual port RAMs have also contributed

to improved frequency performance, compared to previous designs due to multiple access

within one clock cycle. At the end of p2 clock cycles, the output contains the image

block in FRAT domain. They are then ejected in a serial fashion from the output port.

The proposed FRAT architecture has a core latency of O(p2) and AC O(2P 2). It ia

worth mentioning that the output bus for each FRAT is p + 1 with word-length of 8-

bits (log2256(P + 2)). The evaluation of the implementation results has shown that the

proposed architecture outperformed other existing results in place.

The proposed FRAT architecture is combined with HWTFM2 which has been explored

in Chapter 3 to present a high performance, power aware and optimised architecture

for FRIT core. The proposed FRIT architecture performance has been evaluated and the

results have outperformed some other existing architecture in place. It is worth mentioning

that since FRAT is mean building block of FRIT the TA is the same as FRAT and the

AC is changing O(log2p + 2P 2) because of HWT. Both proposed architectures have been

implemented on FPGA using Handel-C to gain maximum benefit in performance from

the target hardware by using its parallel constructs. In order to evaluate the designs

have been implemented and tested with p= 7 and 17 on low power and advanced FPGAs.

The advance FPGA (virtex-5) has the highest frequency which is almost 50% faster than

other FPGAs and utilizes almost 50% less logic (slices), because of the structure of new

CLBs in Virtex-5. The evaluation of both architectures have shown that the obtained

implementations results outperformed other existing results in place by almost 10% in

terms of frequency and area.

The proposed architectures are also applied on image data (256×256). It has been observed

that the FRAT PSNR of the reconstructed image image drops almost by 10dB when the

block size increased from P=7 to P=31. This is because as p increases, the rounding

error become more significant. On the other hand there is not a significant change in

FRIT PSNR when P is changed from 7 to 31, but the time processing is increased almost

by 50% when P is changed from 7 to 31. To summarise, architectural level optimisation

techniques and FPGA implementation of FRAT and FRIT have been discussed in this

chapter. In the next chapter, an efficient FPGA implementation of cyclic convolution

using systolic architecture is discussed.

Chapter 5

Efficient FPGA Implementation of

Cyclic Convolution using Systolic

Design

5.1 Introduction

In digital signal processing, the design of fast and computationally efficient algorithms

has been a major focus of research activity. Systolic designs represent an attractive ar-

chitectural paradigm for efficient VLSI and Field Programmable Gate Arrays (FPGA)

implementation of computation-intensive digital signal processing applications supported

by the features like simplicity, regularity, and modularity of structure. Moreover, they

also possess significant potential to yield a high-throughput rate by exploiting high level

of concurrency using pipelining, parallel processing, or both.

In recent year several attempts have been made for implementation of signal processing IP

cores like the Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), Dis-

crete Sine Transform (DST) and Discrete Hartley Transform (DHT) in systolic hardware

through cyclic convolutional formulation [18,104–109] due to its remarkable advantage over

the others, particularly for efficient input/output and data transfer operations. Moreover,

the convolutional representation of all these transforms is found to be more suitable for

hardware efficient high throughput memory based systolic realisation [106–108]. Signif-

icant work has been done to decompose the sinusoidal transforms into multiple shorter

convolutions, and to implement them in parallel in order to design systolic structures with

103

5.2. Mathematical Background of Cyclic Convolution 104

lower area and time complexity [18,105–109].

In this chapter, two architectures for cyclic convolution using optimal short length algo-

rithm have been developed by applying principles of parallelism, pipelining and systoli-

sation as appropriate. The proposed designs have been implemented on different FPGA

platforms and the obtained results have been compared with other existing work. The pre-

sented architecture has been implementation using a power aware design flow and complete

design space exploration. Power modelling details for one of the proposed architecture are

presented in Chapter 6. It is worth mentioning that this work is a collaborative work with

Pramod Kumar Meher School of Computer Engineering, Nanyang Technological Univer-

sity, Singapore. The first architecture and mathematical background in this chapter is

presented by Meher. The second proposed architecture, FPGA implementation and result

analysis for both architectures are explored by the author.

The rest of this chapter is organised as follows. Brief introduction into the principles

and mathematical basis for cyclic convolution are presented in Section 5.2. The proposed

architectures for cyclic convolution are explored in Section 5.3. The architectural results

and FPGA implementation results are presented in Section 5.4. Concluding remarks are

provided in Section 5.5.

5.2 Mathematical Background of Cyclic Convolu-

tion

In this section, the general mathematical formulation for cyclic convolution with block

cyclic convolution algorithm have been explored. The general formula for cyclic convolu-

tion can be expressed as [110]:

y(n)
N−1∑

k=0

x(k)h((n− k) mod N) n = 0, 1......, N − 1 (5.1)

where x denoting the input sequence, h denoting the kernel, and y denoting the output

sequence. It is understood that, in general, each of the three sequences may be complex.

In this case the circular convolution is accomplished by forming the product as [111]:

YN = HN .XN (5.2)

5.2. Mathematical Background of Cyclic Convolution 105

where Y= [y0 y1 y2 y3,....yN−1] X=[x0 x1 x2 x3,....xN−1] and H is a circulate matrix of

size N ×N which is generated by h(N) and given by [111]

H =




h0 hN−1 hN−2 h1

h1 h0 hN−1 h2

h2 h1 h0 h0

.

.

.

hN−2 hN−3 hN−4 hN−1

hN−1 hN−2 hN−3 h0




(5.3)

where the convolution length N is a composite number and in matrix form the cyclic

convolution can be written as [111]:




y0

y1

y2

.

.

.

.

yN−1




=




h0 hN−1 hN−2 h1

h1 h0 hN−1 h2

h2 h1 h0 h0

.

.

.

hN−2 hN−3 hN−4 hN−1

hN−1 hN−2 hN−3 h0




×




x0

x1

x2

.

.

.

.

xN−1




(5.4)

5.2.1 Block Cyclic Convolution using Optimal Short Length

Algorithm

Block cyclic convolution was first presented in [110], when the block cyclic convolution

length is the element of composite number, it could be possible to compute the convolution

output in a computationally efficient way using the optimal short-length cyclic convolution

algorithms [111] and the mathematical block cyclic constellation can be presented as [110]:

Yi =
M−1∑

j=0

Cij .Pj , 0 ≤ i ≤ M − 1 (5.5)

5.3. Proposed Systolic Architectures for Block Cyclic Convolution
Algorithm 106

where Pi = Qi.Si, 0 ≤ i ≤ M − 1 (5.6)

Qi =
M−1∑

j=0

Aij .Hj , 0 ≤ i ≤ M − 1 (5.7)

Si =
M−1∑

j=0

Bij .Xj , 0 ≤ i ≤ M − 1 (5.8)

Since we are using optimal short-length cyclic convolution the elements of A, B and C

matrices are mostly very small integers [111], the matrix-vector products with these ma-

trices can be preformed by repetitive addition/subtraction operations. In most practical

situations, one of the input sequences is known as priori and remains fixed. The corre-

sponding products of Eq.5.5, in such cases, may be pre-computed and stored. In term of

hardware concern the most computation intensive part of this algorithm is the the Equ.5.6

which is implemented using systolic array design. In this work, the concentration is only

on efficient hardware implementation of Eq. 5.6.

5.3 Proposed Systolic Architectures for Block Cyclic

Convolution Algorithm

In this section, two architectures based on systolic array using parallelism and pipelining

are proposed to implement the matrix vector products given by Eq.5.6. First architecture

is based on pipelining the second architecture based on parallelism.

5.3.1 Proposed Pipelining Architecture

The proposed pipelining architecture is shown in Fig.5.1, which is a linear systolic array

with pipelining process and consists of N Processing Elements (PEs) where N is the vector

size.

The input sequences (q0q1...qN−1) and (S0S1...SN−1) are loaded in each PE and are stag-

gered by one clock cycle with respect to its preceding PE to maintain the data dependence

requirement. The Dependence Graph (DG) for the input sequences and its flow for the

proposed architecture is presented in [110]. Inputs (S0S1...SN−1) remain stored in respec-

tive PEs for N cycles, while (q0q1...qN−1) gets shifted across the systolic array during each

5.3. Proposed Systolic Architectures for Block Cyclic Convolution
Algorithm 107

q'
1
 q'
2
 ...q'
N-1

S
1
S
0

PE
2

PE
2
PE
1

PE
1
 PE
3

PE
3
 PE
N

PE
N

S
2
 S
N-1

q
0

q
1

q
2
 q
N-1

0

P
N-1
 P
N-2
...P
0

Input Register

×

+

+

Reg

S
1
q
1

S
0
q
0

size (q
.
s)

Output

size (q
.
s)

Reg>>

[7:0]

Reg>>

[7:0]

Delay

Figure 5.1: Proposed pipelined systolic architecture for block cyclic convolution

cycle. Input (q′1q
′
2...q

′
N−1) are fed one by one in each clock cycle to PE1 a shown in Fig.5.1.

The first convolved output is obtained from the structure after a latency of N cycles. The

remaining outputs are obtained in every clock cycle after the N cycles. The final output

is obtained after (N − 1) clock cycle. The processing operation of each clock cycle for

proposed pipelined architecture when (N = 4) is shown in Fig. 5.2. The function of each

PE is also shown in Fig. 5.1 which is consist of multiplier, adder, shift register and output

registers which helps the flow of the pipelining. It is worth noting that the size of input

registers are 8-bits and the output registers for each PE are the q × s. In the first clock

cycle it takes S0× q0 + 0 and store the result in a register to be ready for next PE. In the

first clock cycle it also shift the input q′N−1 one step to the right. The same procedure is

applied for all PEs until the last convolved output is obtained.

5.3.2 Proposed Parallel Architecture

The proposed systolic architecture for block cyclic convolution with parallel inputs is

shown in Fig. 5.3. In this architecture all inputs (q0q1...qN−1) and (S0S1...SN−1) are fed

in parallel. The function of each PE stay the same as the first architecture as it has been

5.3. Proposed Systolic Architectures for Block Cyclic Convolution
Algorithm 108

1
S
0
S

1

'
q

2
S
 3
S

Initial

0

2

'
q
 3

'
q

0
q

0
q

1
S
0
S

1

'
q

2
S
 3
S

Clock cycle 1

0

2

'
q

3

'
q
 0
q
 1
q

3
q

1
q

0
q

0
S

0
S

1

'
q

2
S
 3
S

Clock cycle 2

0

2

'
q
 3

'
q
 0
q

1
q

0
S
 0
q
3

'
q
 0
S
 +

 1
q

1
S

1
S

2
q

2
q

1

'
q

2
S
 3
S

Clock cycle 3

0

2

'
q
 0
q

1
q

+

1
S

2
q

0
S

3

'
q

2

'
q
 0
S
 3

'
q

0
S
 0
q
 1
S
 0
S
 0
q
 +

 1
q

1
S
 +

 2
q
 2
S

3
q

1

'
q

2
S
 3
S

Clock cycle 4

0

0
q

1
q

1
S

2
q

0
S

3

'
q
 3
q
2

'
q

1

'
q
 0
S
 2

'
q
 0
S
 +

 3

'
q
 1
S
 +

3

'
q
 0
S
 0
q
 1
S
 +

 1
q

2
S
 0
S
 0
q
 +

 1
q

1
S
 +

 2
q
 2
S
+

 3
q

3
S

Output 1

2
S
 3
S

Clock cycle 5

0

0
q
 1
q

1
S

2
q

0
S

3

'
q
2

'
q

Output 2

1

'
q

1

'
q
 0
S
 +

 2

'
q
 1
S
 2

'
q
 0
S
 +

 3

'
q
 1
S

0
q
+

2
S
 +

3

'
q
 0
S
 0
q
 1
S
 1
q

2
S
+

 +

 2
q
 3
S

2
S
 3
S

Clock cycle 6

0

0
q

1
S
0
S

3

'
q
2

'
q

Output 3

1

'
q
 1
q

1

'
q
 1
S
 1

'
q
 0
S
 +

 2

'
q
 1
S
 +

 3

'
q
 2
S
 2

'
q
 0
S
 +

 3

'
q
 1
S

0
q
+

2
S
 +

 1
q

3
S

2
S
 3
S

Clock cycle 7

0

0
q

1
S
0
S

3

'
q
2

'
q

Output 4

1

'
q

1

'
q
 1
S
 +

2
S
2

'
q
 1

'
q
 0
S
 +

 2

'
q
 1
S
 +

 3

'
q
 2
S
 0
q
+

 3
S

Figure 5.2: Data flow for proposed pipelining architecture when N is 4

outline in Fig.5.3, the only deference in this architecture is that all resources are used in

each PE. It is clear from PE function in Fig. 5.3 that (q0q1...qN−1) are fed parallel in N/2

PEs which will be shifted every clock cycle to next PEs. The operation of the proposed

architure for each clock cycle is presented in Fig. 5.4. In this case parallelism helps to

reduce the area complexity rather than the time complexity. As it ia clear form Fig. 5.4

that after 4th the first convolved output is available and after N − 1 clock cycle the last

output is available which is the same time as first architecture. On the other the inputs

5.4. Result and Analysis for Proposed Architectures 109

q'
1
 q'
2
 ...q'
N-1

S
1

S
0

PE
2

PE
2
PE
1

PE
1
 PE
3

PE
3
 PE
N

PE
N

S
2
 S
N-1

q
0
 q
1

q
2
 q
N-1

0

Output

P
N-1
 P
N-2
...P
0

size (q
.
s)

×

+

+

Reg

S
1
q
2

S
0
q
0

size (q
.
s)

Reg>>

[7:0]

Reg
>>

[7:0]

q
N-1

Parellel

Parellel

Figure 5.3: Proposed parallel systolic architecture for block cyclic convolution

are fed in parallel and there is no need for delay registers to hold (q0q1...qN−1) as it is in

the first architecture.

5.4 Result and Analysis for Proposed Architec-

tures

In order to evaluate the performance of the proposed architectures, the designs parameters

have been explored and compared with other existing architectures. Additionally, the

proposed architectures has also implemented on different FPGA platforms, the results

have been compared with other existing FPGA implementations. The results comparison

is present in the following subsections.

5.4.1 Architectural Results

The architecture comparison results of the design parameters with other existing architec-

tures is presented in Table 5.1. It is clear from Table 5.1 that the TC of both architectures

are the same and second architecture consume less registers. It is worth mentioning that

5.4. Result and Analysis for Proposed Architectures 110

1
S
0
S

1

'
q

2
S
 3
S

 Clock Cycle 1

0

2

'
q

3

'
q
 1
q
 2
q

1
S
0
S

1

'
q

2
S
 3
S

Initial

0

2

'
q
 3

'
q

1
q
 2
q

3
q

3
q

0
q

0
q

1
S
0
S

1

'
q

2
S
 3
S

 Clock Cycle 2

0

2

'
q
 3

'
q
 3
q
0
q
 2
q

1
q

0
S
0
q
 2
q

1
S

1
S
0
S

1

'
q

2
S
 3
S

 Clock Cycle 3

0

2

'
q
 3
q
0
q

2
q
1
q
3

'
q

0
S
3

'
q
 2
q

1
S
 3
q

2
S
+

2

'
q

0
S
 1
q

0
S
0
q
 1
S
+

0
S
3

'
q
 +

 0
q

1
S
 +

1
q

0
S
0
q
 1
S
+

2
q
 2
S
 2
q

1
S
 3
q

2
S
+

1
S

1

'
q

2
S
 3
S

 Clock Cycle 4

0

3
q
0
q

2
q
1
q
3

'
q

+

0
S

2

'
q

2

'
q

0
S
 +

3

'
q
 1
S
 0
S
3

'
q
 +

 0
q

1
S
 1
q
 2
S
 1
q

0
S
0
q
 1
S
+

 +

 2
q

2
S
 3
q
+

 3
S

Output 1

1
S
 2
S
 3
S

 Clock Cycle 5

0

0
q
 2
q
1
q
3

'
q

+

0
S

2

'
q

+

 2
S
 +

 +

 3
S

Output 2

1

'
q

1

'
q
 0
S

1

'
q
 0
S
 2

'
q
 1
S
 2

'
q
 0
S
 +

3

'
q
 1
S
 0
q
 2
q

1
q
 2
S
0
S
3

'
q
 +

 0
q

1
S

1
S
 2
S
 3
S

 Clock Cycle 6

0

0
q
 1
q
3

'
q

+

0
S

2

'
q

+

 3
S

Output 3

1

'
q

1
S
1

'
q
 +

1

'
q
 0
S
 2

'
q
 1
S
 3

'
q
 2
S
 +

 2
S
2

'
q
 0
S
 +

3

'
q
 1
S
 0
q

1
q

1
S
 2
S
 3
S

 Clock Cycle 7

0

0
q
3

'
q

0
S

2

'
q

Output 4

1

'
q

1
S
1

'
q
 +

 2

'
q

2
S

+

+

1

'
q
 0
S
 2

'
q
 1
S
 3

'
q
 2
S
 +

3
S
0
q

Figure 5.4: Data flow for proposed parallel architecture when N is 4

the proposed architectures show a significant improvement in terms of Time Complexity

(TC) and number of registers compare to the other existing architecture in place. It is

also worth noting that the in second proposed architecture the inputs (q0q1...qN−1) and

(S0S1...SN−1) are fed in parallel which helps to reduce the registers by 42.8% compared

to the first proposed architecture. This is because in the second architecture there is no

need for delay registers to hold the value of (q1...qN−1).

Since power is one of the main concern of the design, It is also worth mentioning that the

5.4. Result and Analysis for Proposed Architectures 111

Table 5.1: Comparison of the design parameters with other existing architectures
(where N is vector size)

Design TC Multipliers Registers I/Os

Proposed 1 (2N − 1) (N) ((2N − 1) +
N∑

i=1

Ni−1) Serial

Proposed 2 (2N − 1) (N) (2N − 1) Perallel
[104] (2N) (N) (5N) N/A
[18] (N/2 + 2) (N) (4N − 4) Serial
[110] (N/4 + 4) (9N/8 + 4) (5N − 12) Serial

type of I/O has an important impact on power dissipation of the design. Serial architec-

tures in general consume less I/O power when compared to parallel architectures. The pro-

posed architecture can be modified even more by using a decoder for inputs (q0q1...qN−1)

to reduce the inputs.

5.4.2 FPGA Implementation

In this section, FPGA implementation of the proposed pipelined cyclic convolution on

different platforms has been explored. In order to verify the performance of the proposed

architecture the design has been prototyped on the Celoxica RC1000 [33]. For further

evaluation the design is re-synthesised and implemented without any architectural modifi-

cations with advance Xilinx FPGA Xc5vlx220(Virtex-5) platform. Synthesis is also carried

out on the low power FPGA Spartan-3 3s1500l-4 platform to perform a critical comparison

of power dissipation on a low power FPGA platform.

Table 5.2: FPGA implementations results for the proposed cyclic convolution archi-
tecture

FPGA Area Freq.
Platforms N W (Slices) I/Os DSP (MHz)
Virtex-E 4 8 296 89 N/A 81.55
Virtex-E 16 8 1211 281 N/A 76.23
Virtex-E 32 8 1,695 403 N/A 68.9

Spartan-3L 4 8 60 90 N/A 126.50
Spartan-3L 16 8 253 282 N/A 120.5
Spartan-3L 32 8 512 404 N/A 117.50
Virtex-5 4 8 35 90 4 298.95
Virtex-5 16 8 117 282 16 290.95
Virtex-5 32 8 268 404 32 152.89

The implementation results obtained for proposed architecture is presented in Table 5.2,

5.4. Result and Analysis for Proposed Architectures 112

where N is the vector size and W is the word-length. It is clear from Table 5.2 that

there is a significant difference in terms of frequency and area occupied (slices) between

each FPGA platforms. For instance Virtex5 uses less (30%) slices compared to Virtex-

E, in other words the variation of the area in each platform depends on the technology

used which can be further improved if available resources on these platforms are used. In

Virtex4, CLBs contain four slices, each slice has two LUTs and two flip-flops. In the latest

FPGA platform (Virtex5), CLBs have two slices which contain four LUTs and four flip-

flop compared to previous platforms. Virtex-E platform have two slices per CLB which

occupies more slices by the design. The slice and LUT utilisation on different FPGA

platforms are presented in Fig. 5.5 and Fig. 5.6 respectively. It is clearly visible from Fig.

5.5 and Fig. 5.6 that latest FPGA (Virtex-5) uses less logic than Spartan-3 with same N

value. It can be seen from Fig. 5.5 and Fig. 5.6 that the deference between Virtex-5 and

Spartan-3 is not clear when N is 4, this is because of large scales of the graph, otherwise

the deference between them are almost 40% for all value of N including N=4.

Figure 5.5: Slice utilisation with different transform sizes on different FPGA plat-
forms

In order to obtain a comparison the proposed design has been implemented on Virtex-

4 (XC4VS X35) and the results have been presented in Table. 5.3. It is clear from

Table. 5.3 that the results for proposed design has significantly improved in terms of Max.

frequency and some other elements compare to [112]. Since we are implementing Eq.5.6

which is a matrix vector multiplication, it is worth mentioning that the obtained results

has been compared with existing implementation of FPGA matrix vector multiplication

results rather than cyclic convolution results.

5.4. Result and Analysis for Proposed Architectures 113

Figure 5.6: LUT utilisation with different transform sizes on different FPGA plat-
forms

Table 5.3: FPGA implementations results comparison of the proposed design
FPGA Area Flip Eq.Gtae Freq.

Platforms N (Slices) DSP48s Flop Count (MHz)
Virtex-4 [Proposed] 4 72 4 48 832 275.77

Virtex-4 [112] 4 48 4 96 1024 210.6

FPGA Chip Level Details

In addition to FPGA implementation, a careful manual place and route of critical nets

and manual pin assignment for the designs have been performed using Xilinx PACE and

Xilinx Floorplanner [2]. The FPGA chip layout of Virtex-5, Virtex-4 and Spartan-3L for

proposed design is shown in Fig. 5.7 5.8 and Fig. 5.9 respectively.

Figure 5.7: Chip layout of Virtex-5 for proposed design when the (N) is 32

5.5. Conclusion 114

Figure 5.8: Chip layout of Virtex-E for proposed design when the (N) is 32

Figure 5.9: Chip layout of Spartan-3 for proposed design when the (N) is 32

5.5 Conclusion

In this Chapter, two architectures based on systolic array using parallelism and pipelining

have been proposed to implement the matrix-vector products given by Eq.5.6. The first

proposed architecture is a linear systolic array with pipelining process. This architecture

needs (
N∑

i=1
Ni−1) number of delay registers to keep the process of pipeline flow. It is not

the case in the second architecture, all inputs (q0q1...qN−1) are fed in parallel in first N/2

PEs then they are shifted to next PE in every clock cycle. The only deference in second

architecture is that all resources are used in first N/2 PEs. In this case parallelism helps

to reduce the area complexity rather than the time complexity. This is because all inputs

are fed in parallel and there is no need for delay registers. It worth mentioning that the

second architecture reduces the number of registers by 42% compare to first architecture

and outperformed other existing results in place.

The proposed pipelined architecture for cyclic convolution is implemented on different

FPGA platforms with vector size (N) 4,8,16 and 32 with word-length (W=8) to see the

impact of N when it is increasing. The results have shown that there is a significant differ-

5.5. Conclusion 115

ence in terms of frequency and area occupied (slices) between each FPGA platforms. For

instance, Virtex5 used 40% less slices compared to Virtex-E, in other words the variation

of the area in each platform depends on the technology used which can be further improved

if the available resources on these platforms are used in appropriate way. The implementa-

tion results have clearly shown a significant improvement and outperformed other existing

results in place. To summarise, architectural level optimisation techniques and efficient

FPGA implantation for cyclic convolution and have been discussed in this chapter. In the

next chapter, an in-depth evaluation of a high level power modeling approach for FPGA

based designs is discussed.

Chapter 6

Functional Level Power Modelling

Approach: An In-depth

Evaluation

6.1 Introduction

Power budgets are becoming increasingly stringent and need higher attention in the early

stages of the design cycle. The advent of battery operated devices and the increased

deployment of processing in energy and thermal constrained environments such as satellites

has accelerated interest in power modeling. Hardware implementations of power aware

applications necessitate the design space exploration to realise an optimal solution. Field

Programmable Gate Arrays (FPGAs) have been evolving and improving rapidly, and

have consistently shown the fastest rates of performance gains. While capacity doubling

in CPUs occurs every 18 months, in line with the prediction of the well known Moores

Law, the performance of FPGAs increases at an even more rapid rate of four times every

two years [2].

Design improvement is typically an iterative process that must take into account opti-

misation strategies at all feasible levels of abstraction. Power dissipation has become a

key design issue in FPGAs based architectures because of a number of factors including:

mobility, battery limitations, thermal constraints, reliability issues and cost of cooling

sub-systems. In fact, power has been cited as a limiting factor in the ability of FPGAs to

continue to replace Application Specific Integrated Circuits (ASICs) [113]. Todays largest

116

6.2. Underlying Concepts of the Proposed Power Modeling 117

FPGAs implement complex systems with millions of gates that can consume several watts

of power [114]. The most effective strategies must then be selected by analysing the impact

of the different choices on a level-by-level basis, instead of just at the very end of the flow.

This enables us to shorten the design flow. However, it requires the development of power

modelling tools that provide reliable estimates of the power to enable the designer to make

the right design choices while optimising the core. Models have always been important

for electronic system design at all levels, whether at the component level (IC design), the

board level or the system level.

To overcome the limitations of existing work described in Chapter 2, an in-depth power

modelling evaluation based on functional level power modeling approach [115] is presented

in this chapter. In this model each individual component of Dynamic Power (DP), i.e.

Clock Power (CP), Signal Power (SP), Logic Power (LP), Input Power (IP) and Output

Power (OP) is measured separately, and modelled individually. The power models are

obtained by performing non linear regression analysis on system variables.

The rest of this Chapter is organised as follows. The underlying concepts of the proposed

model is presented in Section 6.2. Brief introductions into mathematical background for

presented modeling is described in Section 6.3. The presented modeling approach applied

to various IP cores (HWT, FRIT and cyclic convolution) is presented in Section 1.4, 1.5

and 1.6 respectively. The proposed modelling evaluation and analysis is presented in

Section 1.6. Concluding remarks are provided in Section 6.8.

6.2 Underlying Concepts of the Proposed Power

Modeling

The underlying concept is to build a mathematical model that incorporates all the sys-

tem variables, enabling the user to perform high level estimation of the power and energy

metrics of the core for a given set of parameters early on in the design cycle itself. The

steps involved in building the power model are described in Fig. 6.1. Functional level

modeling is used to describe the capability of a circuit. It means the circuit is modelled

as a connection of identifiable function blocks. Typical functions would be counters, de-

coders, memories and specific IP cores. The most significant difference between existing

modeling methods and functional level approach is that our presented solution is a high

level modeling technique, and is used for modeling IP cores rather than the general fab-

6.2. Underlying Concepts of the Proposed Power Modeling 118

Modelling tools

(Xpower)

Measure dynamic power

components

(Signal, Logic, Clock and I/O)

Identify system variables

(Frequency, Area, Voltage ...etc)

Deduce the order and number of

terms in each equation from the

logic resources used which are

unknown parameters

Optimise the model parameters

by iterative analysis

(Design modification)

Determine the final operational

parameters for the model

Derive the coefficients for power

components

(Using Non-Regression tool)

Determine the values of the

constant coefficients in the

model

(Using Non-Regression tool)

Is sum of

square deviation

low?

Final power

Model

Other variables and

parameters should be

introduced into model

for better accuracy

Yes

No

Figure 6.1: The steps involved to build the functional level modelling approach

ric of the FPGA or the ASIC. This has a number of advantages. The functional level

approach methodology scales very well with changes in platforms, and even prototyping

technologies. Advances in the device technology of the prototyping platform naturally

6.2. Underlying Concepts of the Proposed Power Modeling 119

result in lower power and energy consumption metrics. Although this results in different

constant coefficients for each platform, it is important to highlight that the model itself

remains unchanged. The other key differentiator lies in the fact that the functional level

approach tool is used by the IP core developer to optimism and model the core whereas it

provides the system designer with the information that enables him to select the optimum

set of core parameters to achieve the performance budgets and even to analyse if the bud-

gets are realistic in the first place. Low level power estimation techniques, on the other

hand assume that core development and core deployment are integrated, which leads the

designer to perform both tasks. The functional level methodology has been successfully

incorporated into a proposed design flow presented in Fig. 6.2 for obtaining power efficient

implementations of FPGA based designs.

Functional Level

Description

Architectural

Description

Handel – C

Code

 Xilinx cores

(Coregen)

Mentor Graphics

DK Synthesis tool

P&R, Xilinx

XPower

Timing

Constraints

Meet

prototype

targets?

 Final Optimised

Power Models

Generate

Bitstream

Power

efficiency

improved ?

Find the constant

coeffivcients

(non-linear regrassion)

Undo Design

Changes

Yes

No

No

Yes

Measure the DP

power components

Mathematical model for each

component

 CP = (Vdd*c
1
 ..F..A*c
1
)

Power

model

accurate?

Add or change the

model parameters

Modelling process

Yes

No

Figure 6.2: Proposed design flow for functional level approach for FPGA IP cores

6.3. Mathematical Background 120

Fig. 6.2 shows the over all process of functional level for proposed methodology. Based

on the functional description and architectural optimization the design will be coded with

hardware languages in our case Handel-C, then the synthesis tool (Mentor Graphic DK)

is used to synthesize the code. Once the synthesis operation is finished the design is

imported to the power modelling tools (Xpower). The modelling power tool is used to

measure the estimated DP components (clock, signal, input, logic and ouput) with different

frequency. On the other hand, based on the function and architecture the area will be

estimated, by this time the independent variables (voltage and frequency) are also known.

Having this information will leads to model mathematically each DP component with

some scaling coefficient, after the mathematical model is derived the model is imported

to Non-regression tool to find the value scaling coefficient and test for accuracy. If the

power efficiency is not improved then the design need to improved and all the processes

are repeated until power efficiency is achieved. Once the power accuracy and efficiency

is satisfactory then the final model can be drawn. Based on this methodology a number

of low power cores for various applications including different HWT, FRIT and cyclic

convolution have been successfully evaluated using a combination proposed power model

and the proposed design flow.

6.3 Mathematical Background

The mathematical background behind the evaluated methodology is derived as follows.

We define the instantaneous DP dissipation of an FPGA based implementation as:

Pt = Vcc · α · f · δt ·A (6.1)

where Vcc is supply voltage, α is constant of proportionality, f is operational frequency δt

is instantaneous activity rate and A is the area occupied.

The average power dissipated in one computational cycle (Pcaverage) is then given by:

Pcaverage =

∫
T

Pt · dt

T
(6.2)

FPGAs DP comprises I/O, clock, logic and SP. Expanding Eq. 6.2, we get:

Pcaverage =

∫
T

∑
d

Ptd · dt

T
(6.3)

6.3. Mathematical Background 121

where T is one complete computational cycle and d is input, output, clock, signal, logic

For complex design take each B separately where B is sub-block, and substituting Eq. 6.1

in Eq. 6.3, we get:

Pcaverage =
Vcc · f ·A

T

B∑

b=1

∫

T

∑

d

αdb · δtb · dt (6.4)

Each component of DP is modelled individually. By separating the models and rearranging

the orders of integration and summation, we get:

Pcaverage d =
Vcc · f ·A

T

B∑

b=1

αdb

∫

T

δtb · dt (6.5)

Each architecture in FPGA consisting of Bs, let us consider one B which is shown in Fig.

6.3 that the signal transition probability at the output of each block at instant t to be

defined by a function of present and previous inputs as follows:

δtb = φb(ib(t), ib(t− 1)) (6.6)

FPGA

Sub-block (B)

t

t

Input

Input

i
b

Figure 6.3: FPGA sub-block (B)

By substituting Eq.6.6 in Eq.6.5, we get:

Pcaverage d =
Vcc · f ·A

T

B∑

b=1

αdb

∫

T

φb(ib(t), ib(t− 1)) · dt (6.7)

Since we are interested in constructing a high level model, average power dissipation

independent of signal statistics needs to be estimated. The average power dissipated over

a full cycle operation is determined. If the model we construct consists of N parameters,

where each parameter is represented by the symbol k, the model can be described in

general as a function of k. Our model can be defined to be equivalent to the power

equation as follows:

6.3. Mathematical Background 122

Ψd(k1, k2, ...kN) =
Vcc · f ·A

nT

∑
n

B∑

b=1

αdb ·∆b (6.8)

where ib is set of inputs applied to block, ∆b is average activity rate for each block and n:

length of the maximal sequence

The estimation of each individual component of DP are obtained using Xilinx Xpower [2],

and the only unknown terms in Eq.6.5 are the model coefficients and scaling coefficients

αdb. These coefficients are determined by means of an adaptive choice of the model Hessian.

The algorithm is essentially a combination of Gauss-Newton and Levenberg-Marquardt

methods. The fundamental mathematical concept that is used for determining the co-

efficients is non-linear regression, and is implemented using NLREG [116]. This process

yields an intermediate model which is used as a basis for iterative design optimisation.

6.3.1 Power Analysis

There are two primary types of power consumption in FPGAs: static and dynamic power.

Static Power is consumed due to transistor leakage. Dynamic power (DP) is consumed

by toggling nodes as a function of voltage, frequency, and capacitance which shown in

Eq.6.9 [2]:

DP =
∑

i

(Ci × Fi × V 2) (6.9)

Where Ci and Fi are the capacitance and average toggle rate of the ith net, and V is the

internal voltage. The DP for different FPGA platform is presented in Fig. 6.4 and the

power DP components is presented in Fig. 6.5 respectively. It ia worth noting that the

power is measured by using Xilinx XPower [2]. It can be seen from Fig.6.4 that the DP

dissipation for each platform is directly proportional to the frequency used. The higher

frequency used the more power dissipated. It also verifies that the power consumption has

been minimised with the most recent and advanced FPGA platforms. Virtex5 consumed

15% less power than Virtex4 and almost 50% less than Virtex-E (V2000E). It worth

mentioning that DP shown in Fig.6.4 is measured based on four mean components (clock,

signal, logic and input) which meanly dominate the total dynamic power.

Fig.6.5 illustrates the estimated power consumption for different components of DP on

V2000E platform. From Fig.6.5 it can be seen that signal power and logic power are the

6.3. Mathematical Background 123

0

200

400

600

800

1000

1200

1400

25
 50
 75
 100
 125
 150
 175
 200
 225
 250

Frequency (MHz)

D
yn

am
ic

 P
o

w
er

 (
m

w
)

Virtex 2000E

Virtex 4

Virtex 5

Figure 6.4: Power diagram for different FPGA platforms

mean two components which dominating the DP. Based on this results 85% of the DP is

formed by signal and logic powers. It also shows that all the DP components are directly

proportional to frequency.

0

200

400

600

800

1000

1200

1400

1600

25
 50
 75
 100
 125
 150
 175
 200
 225
 250

Frequency (MHz)

P
o

w
er

 (
m

W
)

Clock Power

Input Power

Logic Power

Signal Power

Dynamic Power

Figure 6.5: Power diagram for different components of DP on Virtex-2000E

6.4. Proposed Modeling Methodology Applied on HWT Core 124

6.4 Proposed Modeling Methodology Applied on

HWT Core

In the section the power modeling for HWT core based on DA is presented. The archi-

tectural and implementation details have been presented in Chapter 3. The only further

opportunity for optimisation that has been exploited is the use manual PAR of critical

nets and manual pin assignment for the designs has been performed using Xilinx Floor-

planner [2]. This process yields compact and optimised design with short nets, and serves

two important purposes. Firstly, short nets have less propagation delay, and upto 25%

gains in maximum frequency have been achieved. Second, short nets have less parasitic

capacitance and DC load, and therefore dissipate less power than long nets. Manual pin

assignment also enables us to locate the I/O pads close to the design area.

Power modelling is performed for implementations on the Virtex-5 (XUPV5-LX110T) and

Spartan-3 (3S1500L-4) FPGA chips. Differences in implementation results obtained are

due to different chip topologies (area, pin distribution, etc). However, since the design

remains unaltered, the same model can be used to define the power consumption for all

implementations. The corresponding models are derived by performing non-linear regres-

sion analysis on the power data obtained. On iterating the regression until convergence

is achieved, the values of the scaling coefficients in the models can be determined. By

back substitution of these values back into the model, a global equation that defines the

power consumption of the system for any given combination of system parameters has been

derived. The power measurements data on which the models are based are graphically

represented in the following subsections.

6.4.1 HWT Area Modeling Details

The area occupied by the implementation of HWT is represented in terms of slices, which

depends on two components in the architecture: the control logic area and the ROM

area. The ROM area increases exponentially with vector length. It is also proportional

to logarithm of vector length. This term is represented by the variables associated with

coefficient α1 in Eq. 6.10. The area occupied by the control logic and arithmetic blocks

(shifters, adders etc.) is proportional to the vector length, and is represented by the

variables associated with coefficient α2. Coefficient α3 is introduced to accommodate

unrepresented additional areas of the architectures to balance the models effectively. Based

6.4. Proposed Modeling Methodology Applied on HWT Core 125

on these observations, the area model for the proposed HWT architecture is described in

Eq. 6.10:

TA = α1 ·N + α2 · (log2(255 ∗N)) + α3 (6.10)

where TA is the total area occupied by the proposed architecture, α1, α2 and α3 are the

scaling coefficients in the area model.

6.4.2 Clock Power Model

Clock Power (CP) in FPGAs depends on the distribution of the clock nets (which depends

on the chip area over which the design is spread out). Other factors influencing clock power

are chip frequency f , and voltage v. Based on these parameters, the same clock power

model holds true for FPGA platforms. From the power data pictorially represented in

Fig. 6.6, an appropriate model has been selected and is described in Eq. 6.11. Where

c1, c2 and c3 are scaling coefficients in the clock power model.

CP = c1 · v2 · TA + c3 · f + c2 · f + c3 (6.11)

0

2

4

6

8

10

12

14

16

18

20

0
 20
 40
 60
 80
 100
 120
 140

Frequency (MHz)

Clock Power

Virtex 5, N=16

Spartan 3L, N=16

P
o

w
er

 (
m

W
)

Figure 6.6: Clock power chart for 2D HWT when the transform (N) size is 16 at
different frequencies

6.4. Proposed Modeling Methodology Applied on HWT Core 126

6.4.3 Signal Power Model

Signal Power (SP) is proportional to the number and length of nets over which signal

switching occurs. It also depends on the voltage levels between which the switching occurs,

as well as the frequency of switching. Taking into consideration these parameters, and the

SP data presented in Fig. 6.7, the SP model for the proposed HWT core is defined in Eq.

6.12 where s1, s2, s3 and s4 are scaling coefficients.

SP = s1 · v2 · TAs2 · f · s3 · f + s4 (6.12)

0

5

10

15

20

25

30

35

40

45

0
 20
 40
 60
 80
 100
 120
 140

Frequency (MHz)

Signal Power

Virtex 5, N=16

Spartan 3L, N=16

P
o

w
er

 (
m

W
)

Figure 6.7: Sinal power chart for 2D HWT when the transform (N) size is 16 at
different frequencies

6.4.4 Logic Power Model

Logic Power (LP) consumption is a function of the number of slices occupied, chip fre-

quency and voltage. By observing and interpreting the power data presented in Fig. 6.8,

the best model describing the LP for the proposed HWT architecture is described in Eq.

6.13. Where l1, l2, l3 and l4 are scaling coefficients in the LP model.

LP = l1 · v2 · TA + f + l2 · f + l3 (6.13)

6.5. Proposed Modeling Methodology Applied on FRIT Core 127

0

5

10

15

20

25

30

35

0
 20
 40
 60
 80
 100
 120
 140

Frequency (MHz)

Logic Power

Virtex 5, N=16

Spartan 3L, N=16

P
o

w
er

 (
m

W
)

Figure 6.8: Logic power chart for 2D HWT when the transform (N) size is 16 at
different frequencies

6.4.5 Input Power Model

Input Power (IP) depends on the number of input pins in the design, the block size, chip

voltage, and input frequency. The corresponding model that satisfies the curve fitting

requirements of the HWT architecture for the data presented in Fig. 6.9 is defined in

Eq. 6.14, where i1, i2 and i3 are scaling coefficients. It worth mentioning that the input

buffers of the Spartan 3L platform dissipate no power, and hence the coefficients in the

corresponding models for this platform are zero.

IP = i1 · v2 · f + i4 · (N)i2 + i3 (6.14)

6.5 Proposed Modeling Methodology Applied on

FRIT Core

Modelling of FRIT with parallel FRAT core whose architectural and implementation de-

tails have been explained in detail in Chapter 4 is presented in this section. The corre-

sponding parameters that influence the choice of the model have been explained in the

following subsections.

6.5. Proposed Modeling Methodology Applied on FRIT Core 128

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0
 20
 40
 60
 80
 100
 120
 140

Frequency (MHz)

Input Power

Virtex 5, N=16

P
o

w
er

 (
m

W
)

Figure 6.9: Input power chart for 2D HWT when the transform (N) size is 16 at
different frequencies

6.5.1 Area Model for FRIT

The area occupied by the design in term of number of slices depends on two components

in the architecture: the control logic area and the memory area where the vector values

are stored. The area occupied by memory increases exponentially with vector length.

It is also proportional to logarithm of vector length. This term is represented by the

variables associated with coefficient α1 in Eq. 6.15. The area occupied by the control

logic and arithmetic blocks (shifters, adders etc.) is proportional to the vector length, and

is represented by the variables associated with coefficient α2. Coefficient α3 is introduced

to accommodate unrepresented additional areas of the architectures; and to balance the

models effectively. Based on these observations, the area model for the proposed FRIT

architecture is described in Eq. 6.15:

TA = α1 · p(p + 1) · d(log2(255 ∗ p))e+ α2 · d(log2(255 ∗ p))e+ α3 (6.15)

where TA is the total area occupied by the proposed architecture, α1, α2 and α3 are the

scaling coefficients in the area model. It has been observed that there are minor variations

in the number of occupied slices for different FPGA platforms. This is because of differ-

ences in the number of slices per CLB in different platforms. Correspondingly, the logic

capacity of each CLB and interconnect structure between CLBs also differ. Placement and

routing takes into account these variations in the FPGA fabric and results in differences

in the area metrics for the same architecture on different platforms.

6.5. Proposed Modeling Methodology Applied on FRIT Core 129

It is interesting to note that the very same area model holds true for the FPGA platforms.

The model equations are identical, and achieve 99% accuracy for all three platforms. The

differences in the fabric of these different platforms are accounted for by the coefficients

in the model, which naturally vary across different platforms. The modeling methodology

is high level as it is not influenced by low level details such as routing and circuit fabric.

6.5.2 Clock Power Model

Clock Power (CP) in FPGAs depends on the distribution of the clock nets (which depends

on the chip area over which the design is spread out). Other factors influencing clock power

0

5

10

15

20

25

30

35

40

45

50

0
 20
 40
 60
 80
 100
 120
 140

Frequency MHz)

Clock Power

Spartan 3L, p=7

Spartan 3L, p=17

Spartan 3L, p=31

Virtex 5, P = 7

Virtex 5, P = 17

Virtex 5 P = 31

P
o

w
er

 (
m

W
)

Figure 6.10: Clock power chart for FRIT when the block (P) size is 7, 17 and 31 at
different frequencies

are chip frequency f , and voltage v. Based on these parameters, the same clock power

model holds true for FPGA platforms. From the power data pictorially represented in

Fig. 6.10, an appropriate model has been selected and is described in Eq. 6.16 where

c1, c2 and c3 are scaling coefficients in the clock power model.

CP = c1 · v2 · TA · f + c2 · f + c3 (6.16)

6.5.3 Signal Power Model

Signal Power (SP) is proportional to the number and length of nets over which signal

switching occurs. It also depends on the voltage levels between which the switching occurs,

as well as the frequency of switching. Taking into consideration these parameters, and the

6.5. Proposed Modeling Methodology Applied on FRIT Core 130

SP data presented in Fig. 6.11, the SP model for the proposed FRIT core is defined in

Eq. 6.17 where s1, s2, s3 and s4 are scaling coefficients.

SP = s1 · v2 · TAs2 · f + s3 · f + s4 (6.17)

0

50

100

150

200

250

300

350

400

450

0
 20
 40
 60
 80
 100
 120
 140

Frequency (MHz)

Signal power

Spartan 3L, p=7

Spartan 3L, p=17

Spartan 3L, p=31

Virtex 5, P = 7

Virtex 5, P = 17

Virtex 5 P = 31
P
o

w
er

 (
m

W
)

Figure 6.11: Signal power chart for FRIT when the block (P) size is 7, 17 and 31
at different frequencies

6.5.4 Logic Power Model

Logic Power (LP) consumption is a function of the number of slices occupied, chip fre-

quency and voltage. By observing and interpreting the power data presented in Fig. 6.12,

Figure 6.12: Logic power chart for FRIT when the block (P) size is 7, 17 and 31 at
different frequencies

the best model describing the LP for the proposed FRIT architecture is described in Eq.

6.18 where l1, l2, l3 and l4 are scaling coefficients in the LP model.

6.5. Proposed Modeling Methodology Applied on FRIT Core 131

LP = l1 · v2 · TAP · f + l2 · f + l3 (6.18)

6.5.5 Input Power Model

Input Power (IP) depends on the number of input pins in the design, the block size, chip

voltage, and input frequency. The corresponding model that satisfies the curve fitting

requirements of the FRIT architecture for the data presented in Fig. 6.13 is defined in Eq.

6.19 where i1, i2 and i3 are scaling coefficients. It worth mentioning that by changing the

block size P the number inputs do not change the power for P = 7, p = 17 and p = 31

are identical.

IP = i1 · v2 · f · (p2)i2 + i3 (6.19)

0

20

40

60

80

100

120

140

15
 35
 55
 75
 95
 115
 135
 155
 175

Frequency (MHz)

Inputs

Virtex 5, P = 7

Virtex 5, P = 17

Virtex 5, P = 31

P
o

w
er

 (
m

W
)

Figure 6.13: Input power chart for FRIT when the block (P) size is 7, 17 and 31 at
different frequencies

6.5.6 Output Power

The Output Power (OP) depends on the number of output pins in the design, the output

block size, output voltage Vcco, and frequency f . The corresponding model for OP is

described in Eq. 6.20 where p is the block size, of the output vector, where o1, o2 and o3

are scaling coefficients in the output power model.

OP = o1 · (v2 ·N) · f2 · d(log2(255 · p))e · p · (p + 1)(o2/2) + o3 (6.20)

6.6. Proposed Modelling Methodology Applied on Cyclic Convolution
Core 132

6.6 Proposed Modelling Methodology Applied on

Cyclic Convolution Core

Modelling of cyclic convolution core whose architectural and implementation details have

been explained in detail in Chapter 5 is presented in this section. The corresponding

parameters that influence the choice of the model have been explained in the following

subsections.

6.6.1 Area Model for Cyclic Convolution

The area occupied by the design in term of number of slices depends on two components in

the architecture: the control logic area and PEs. Since it is linear architecture the area oc-

cupied is proportional to vector length. It means the area occupied by PEs is proportional

to the vector length, and is represented by the variables associated with coefficient α1 and

α2 in Eq. 6.21. Coefficient α3 is introduced to accommodate unrepresented additional

areas of the architectures. Based on these observations, the area model for the proposed

cyclic convolution architecture is generated based on the contained of the PEs (registers,

multipliers and adders) rather than the number of PEs. The proposed area model for

cyclic convolution is described in Eq. 6.21:

TA = α1.(N)W + α2((2N − 1) + (
N∑

i=1

ni − 1))W + α3 (6.21)

where TA is the total area occupied by the proposed architecture, α1, α2 and α3 are the

scaling coefficients in the area model, N is the vector size and W is the word length. It has

been observed that there are minor variations in the number of occupied slices for different

FPGA platforms. This is because of differences in the number of slices per CLB in different

platforms. Correspondingly, the logic capacity of each CLB and interconnect structure

between CLBs also differ. Placement and routing takes into account these variations in

the FPGA fabric and results in differences in the area metrics for the same architecture

on different platforms.

6.6.2 Clock Power Model

Clock Power (CP) in FPGAs depends on the distribution of the clock nets (which depends

on the chip area over which the design is spread out). Other factors influencing clock power

6.6. Proposed Modelling Methodology Applied on Cyclic Convolution
Core 133

are chip frequency f , and voltage v. Based on these parameters, the same clock power

model holds true for FPGA platforms. From the power data pictorially represented in

Fig. 6.14, an appropriate model has been selected and is described in Eq. 6.22 where

c1, c2 and c3 are scaling coefficients in the clock power model.

CP = c1 · v2 · TA · f + (f · c2) · f + c3 (6.22)

0

5

10

15

20

25

30

35

40

45

50

0
 20
 40
 60
 80
 100
 120

Freqency (MHz)

Clock Power

Virtex
-
5 (N=4, W=8)

Virtex
-
5 (N=16, W=8)

Virtex
-
5 (N=32, W=8)

P
o

w
er

 (
m

W
)

Figure 6.14: Clock power chart for cyclic convolution when the transform size (N)
is 4, 16 and 32 at different frequencies.

6.6.3 Signal Power Model

Signal Power (SP) is proportional to the number and length of nets over which signal

switching occurs. It also depends on the voltage levels between which the switching occurs,

as well as the frequency of switching. Taking into consideration these parameters, and the

SP data presented in Fig. 6.15, the SP model for the proposed cyclic convolution core is

defined in Eq. 6.23 where s1, s2, s3 and s4 are scaling coefficients.

SP = s1 · v2 · TAs3 · f + s2 · f + s3 (6.23)

6.6.4 Logic Power Model

Logic Power (LP) consumption is a function of the number of slices occupied, chip fre-

quency and voltage. By observing and interpreting the power data presented in Fig.

6.16, the best model describing the LP for the proposed cyclic convolution architecture is

described in Eq. 6.24. l1, l2, l3 and l4 are scaling coefficients in the LP model.

6.6. Proposed Modelling Methodology Applied on Cyclic Convolution
Core 134

0

50

100

150

200

250

300

350

0
 20
 40
 60
 80
 100
 120
 140

Frequency (MHz)

Signal Power

Virtex
-
5 (N=4, W=8)

Virtex
-
5 (N=16, W=8)

Virtex
-
5 (N=32, W=8)

P
o

w
er

 (
m

W
)

Figure 6.15: Signal power chart for cyclic convolution when the transform size (N)
is 4, 16 and 32 at different frequencies.

LP = l1 · v2 · TA · f + l2 · f + l3 (6.24)

0

10

20

30

40

50

60

70

80

90

0
 20
 40
 60
 80
 100
 120
 140

Frequency (MHz)

Logic Power

Virtex
-
5 (N=4, W=8)

Virtex
-
5 (N=16, W=8)

Virtex
-
5 (N=32, W=8)

P
o

w
er

 (
m

W
)

Figure 6.16: Logic power chart for cyclic convolution when the transform size (N)
is 4, 16 and 32 at different frequencies.

6.6.5 Input Power Model

Input Power (IP) depends on the number of input pins in the design, the block size, chip

voltage, and input frequency. It is worth noting that by increasing the input the pins are

changing but the input bits are constant (8-bits). The corresponding model that satisfies

the curve fitting requirements of the cyclic convolution architecture for the data presented

in Fig. 6.17 is defined in Eq. 6.25 where i1, i2 and i3 are scaling coefficients.

IP = i1 · v2 · f · (2N)W · i2 + i3 (6.25)

6.7. Modeling Evaluation and Analysis 135

0

50

100

150

200

250

300

350

400

450

0
 20
 40
 60
 80
 100
 120
 140

Frequency (MHz)

Input Power

Virtex
-
5 (N=4, W=8)

Virtex
-
5 (N=16, W=8)

Virtex
-
5 (N=32, W=8)

P
ow

er
 (

m
W

)

Figure 6.17: Input power chart for cyclic convolution when the transform size (N)
is 4, 16 and 32 at different frequencies.

6.7 Modeling Evaluation and Analysis

In this section, the characteristics functional level modeling approach parameters are evalu-

ated. The results from non linear regression have been analysed. In addition, the presented

model has been compared with other approach in terms of accuracy.

6.7.1 Functional Level Approach Model Accuracy

It is interesting to note that the models are platform independent, and differences in the

chip fabric are accounted by the model coefficients. The proportion of variance of the

models (R2) is presented in Table 6.1. (R2) is the fraction of variance, the factors affect

are deflation, logging, seasonal, adjustment and differencing. It is interesting to note that

Table 6.1: Functional level approach model accuracy for the optimised FRIT and
HWT IP cores implemented on different platforms

Spartan-3L Virtex-5
FRIT HWT FRIT HWT

Clock 99.89% 98.12% 99.89% 97.91%
Logic 99.10% 99.99% 99.75% 99.96%
I/P 99.60% 98.23% 98.92% 99.99%
O/P 99.72% 99.88% 99.88% 99.86%

Signal 99.45% 99.90% 99.89% 99.45%
Average 99.55% 99.22% 99.67% 99.43%

the accuracy of FRIT core is higher than the HWT core, it is because FRIT used more

logic than HWT. In other word the model will be more accurate if the core utilise large

6.7. Modeling Evaluation and Analysis 136

amount of resources. Additionally, it is important to highlight that the accuracy of the

Table 6.2: Functional level approach model accuracy comparison with Xilinx Xpower
for the optimised FRIT and HWT IP cores on different FPGA platforms

Spartan-3L Virtex-5
FRIT HWT FRIT HWT

Clock 2.00% 0.80% 2.20% 1.10%
Logic 1.30% 1.00% 1.80% 1.20%
I/P 1.40% 0.70% 2.40% 1.00%
O/P 2.00% 1.30% 3.20% 1.20%

Signal 2.20% 1.60% 2.60% 1.40%
Average 1.78% 1.08% 2.44% 1.18%

power models derived are relative to the accuracy of the power measurements / estimates

obtained, and do not indicate the absolute accuracy by themselves. In the case of models

built on Xilinx Xpower [2] estimation data, we must take into account the accuracy of

the XPower estimate as well, while calculating the absolute accuracy of the models. For

models based on chip power measurements, the accuracy of the models is limited to the

resolution of the power supply and measuring tools used. A functional level approach

model accuracy comparison with Xilinx Xpower [2] for the optimised FRIT and HWT

IP cores on different FPGA platforms is shown in Table 6.2. The non linear regression

modeling observation for different FPGA platforms is shown in Table 6.3.

Table 6.3: Regression modeling observation of FRIT with different FPGA platforms
No. FPGA Squared Error Average

Observation Platforms. Deviation Estimated Deviation
Clock 18 Spartan-3L 2.27E-001 1.23E-01 9.60E-2
Logic 18 Spartan-3L 1.13E+001 8.68E-01 6.71E-1
Signal 18 Spartan-3L 8.39E+002 7.47E+0 5.45E+0
Input 18 Spartan-3L n/a 8.68E-01 6.71E-01

Output 18 Spartan-3L 2.12E+001 2.48E-01 5.71E-01
Clock 18 Virtex-5 4.27E-001 2.23E-02 2.60E-2
Logic 18 Virtex-5 1.13E+01 4.68E+01 2.71E+1
Signal 18 Virtex-5 8.39E+002 7.47E+0 5.45E+0
Input 18 Virtex-5 1.43E+02 2.48E-01 5.71E-01

Output 18 Virtex-5 4.22E+01 1.48E-01 4.11E-01

The scaling coefficient values of the power models are obtained by performing non linear

regression until convergence, and are presented in Table 6.4 and 6.5 respectively.

6.7. Modeling Evaluation and Analysis 137

Table 6.4: Values for scaling coefficient of power models for the proposed FRIT IP
core architecture on FPGA Platforms

Spartan-3L Virtex-5
c1 4.39E-005 1.396E+00
c2 1.649E-02 -3.331E+03
c3 -9.33E-02 3.000E-03
s1 2.393E-04 3.087E-01
s2 1.143E+00 -2.990E+02
s3 1.143E+00 -8.999E-02
s4 8.498E-01 -3.441E-01
l1 1.607E-03 7.030E-03
l2 5.082E-02 5.095E+02
l3 3.810E-01 5.203E-01
i3 2.113E+01 1.991E-02
i4 3.448E-001 2.421E-01
i1 3.617E-03 4.130E-02
o3 3.14E+001 -3.949E-01
o4 4.498E-01 -2.11E-01
o1 2.227E-03 3.230E-02

Table 6.5: Values for scaling coefficient of power models for the proposed HWT IP
core architecture on FPGA Platforms

Spartan-3L Virtex-5
c1 3.290E-005 2.126E+00
c2 1.449E-02 -3.452E+03
c3 -7.13E-02 2.900E-03
s1 2.393E-04 2.687E-01
s2 1.243E+00 -2.591E+02
s3 1.343E+00 -8.399E-02
s4 6.898E-01 -3.241E-01
l1 2.007E-03 6.030E-03
l2 4.992E-02 4.995E+02
l3 4.010E-01 4.903E-01
i3 0.002E+01 2.191E-02
i4 0.001E-001 2.621E-01
i1 0.002E-03 3.930E-02

6.7.2 Comparison Modeling Characteristics of Functional

Level Approach with Existing Work

Unlike most high power modeling the functional level approach modeling methodology

scales very well with changes in platforms, and even prototyping technologies. Advances

in the device technology of the prototyping platform naturally result in lower power and

6.7. Modeling Evaluation and Analysis 138

energy consumption metrics. Although this results in different constant coefficients for

each platform, it is important to highlight that the model itself remains unchanged. A

comparison of functional level approach with existing FPGA power modeling methodolo-

gies is presented in Table 6.6.

Table 6.6: Comparison modeling characteristics of different approaches with func-
tional level approach model

Avg r2 Level Scaleable Platform
Agnostic

Proposed .99 High Yes Yes
[25] .97 High No Yes
[24] Low Arch. Yes No
[117] .95 High No No
[118] .95 RTL No No
[27] .82 High Yes No
[82] Various High No Yes
[28] .97 High No No
[29] High Arch. Yes Yes
[31] .92 Mixed Yes No

6.7.3 Observations and Analysis

From the power model graphs, it can be seen that the power is directly proportional to

frequency f for clock, signal, logic and input. In addition, it can be also clearly seen that

the models are robust and can consistently provide good estimates of power dissipation

within the design space for all platforms. This clearly shows the scalability of the proposed

power models. The differences in the FPGA fabric are low level / circuit level character-

istics, and should have no effect on the models since the proposed model is a high level

modelling methodology. The architectural differences, and consequent variations in power

consumption across different platforms are accounted by the coefficients in the models as

shown in Tables 6.4 and 6.5 respectively. Table 6.1 presents the model accuracy for all

power components, it can been seen that the model accuracy is almost 99% true for all

power components. The results for proposed model are also compared with Xilinx Xpower

tools, it can be seen from Table 6.2 that the margin of difference between Xpower and

proposed is very small.

6.8. Conclusion 139

6.8 Conclusion

In this Chapter, an in-depth evaluation and application of a high level IP core macromod-

elling methodology called functional level power modeling approach that overcomes some

of the weakness in other existing modelling methodologies for FPGA based designs have

been presented. The mathematical techniques that form the basis of the proposed power

modeling has been validated by a range of custom IP cores which have been developed in

previous Chapters. Unlike most high level power modeling the functional level modeling

methodology scales very well with changes in platforms, and even prototyping technolo-

gies. The differences in the FPGA fabric are low level/circuit level characteristics, and

should have no effect on the models since the proposed model is a high level modelling

methodology. It has been observed that the power is directly proportional to frequency

f for clock, signal, logic and input. Based on the results achieved, the proposed model

accuracy is almost 99% true for all DP components. The results for proposed model have

also been compared with Xilinx Xpower tools and the difference between Xpower and pro-

posed were very small. A characteristics comparison of the proposed model has also been

carried out with other existing models in place. In the next chapter, concluding remarks

and future suggestions about the work presented in this thesis will be presented.

Chapter 7

Conclusions and Future Work

7.1 Introduction

Advanced image and signal processing techniques in a wide range of disciplines and appli-

cations, from computer vision and medical imaging to image and video compression, are

replacing previous generations’ technology offering enhancements, such as better stream-

ing capability, higher compression for a given quality and lower latency. Many of these

operations such as transformations of images and signal analysis, classification, communi-

cation, etc are matrix transforms, which occur frequently in a wide variety of real world

algorithms used in digital image and video processing applications [77,119].

Researchers are working round the clock to develop efficient algorithms and architectures

suitable for these applications. Therefore, application designers face many new and diffi-

cult challenges as they attempt to deploy technology that can execute high-performance

computations, manipulate larger and larger data sets and visualise the complex data in

a better way. Multiresolution algorithms are among these algorithms to be carefully con-

sidered. Multiresolution algorithms are highly suitable for a number of image processing

applications as described in previous Chapters. They offer efficient implementation for

these applications but the processing time still remain peculiar. Researchers are working

round the clock to fine the best solution for these algorithms. Recently, Field Program-

able Gate Arrays (FPGAs) are gaining the momentum to be used for acceleration of

these applications because of the parallelism offered by these devices which can perform

mathematical operations on an entire vector or matrix at the same time [120].

Among multiresolution algorithms ridgelet and curvelet transforms [46–48] have been gen-

140

7.2. Evaluation of Results and Contributions 141

erating a lot of interest due to their superior performance over wavelets. Wavelets have

been very successful in applications such as denoising and compact approximations of im-

ages but they do not isolate the smoothness along edges that occurs in images. These

shortcomings of wavelets are well addressed by the ridgelet and curvelet transforms, as

they extend the functionality of wavelets to higher dimensional singularities, and are ef-

fective tools to perform sparse directional analysis.

However, it is worth mentioning that the nature of the applications and algorithms that

have been targeted in this work very often impose serious limitations on the amount of

hardware involved and the rate of power consumption due to some factors including mo-

bility constraints, cost performance trade-offs, and etc. Thus, there has been a continued

effort to meet the conflicting challenges of ever-growing computational demand with min-

imal utilisation of hardware resources and power [121].

The main goal of the work reported in this thesis is to exploit techniques at the algorithmic

and architectural level to deliver highly optimised and efficient multiresolution algorithms

for FPGA based designs, suitable for use in both general purpose and specific image

(medical) and signal processing problems. Another key objective is to address the issues

of dynamic power dissipation in FPGAs through the evaluation and application of a high

level power modelling approach technique encapsulated within a suitable design flow to

optimise and model the aforementioned multiresolution algorithm cores. The proposed

architectures have been implemented using hybrid approaches, for instance in most of the

design Handel-C, Xilinx CoreGen cores (adders and multipliers) are combined in order to

take advantage of each design entry and then prototyped on the RC1000 and RC10 FPGA

boards and implemented on Virtex-4 and Virtex-5 without any architecture modification.

The rest of this chapter is arranged as follows. The evaluation of results and contributions

obtained throughout this research are summarised and evaluated in Section 7.2. Some

possible routes to be investigated for a future extension of this work are also provided in

Section 7.3.

7.2 Evaluation of Results and Contributions

The preceding Chapters described different design methodologies used for the efficient

design and implementation of various transform methods and signal processing algorithms

on FPGAs. A brief analysis of FPGAs power and an in-depth evaluation of presented high

7.2. Evaluation of Results and Contributions 142

level power modelling for FPGAs have also been discussed. This section is concerned with

the evaluation of the work presented in these Chapters.

7.2.1 Measurement of Success

In this project the measurement and comparison of new proposed architectures with ex-

isting implementations are presented. The comparison was based on the computation

time, area required, throughput rate and power dissipation; all of which depends on the

the various design optimisation strategies pursued and design parameters such as word-

length of the input data and transform size. In the case of the implementation of these

architectures, the comparison was based on the number of CLBs, slices, LUTs, the max-

imum running frequency of the design and the power. The proposed architectures were

implemented and synthesised on different FPGA devices in order to make a fair and con-

sistent comparison with existing cores using the same platform. A functional level power

modeling approach has been developed in response to the lack of availability of a similar

tool for FPGA based designs, which precludes the possibility of a direct comparison with

existing methodologies. However, an objective comparison based on model accuracy and

a number of other parameters such as modelling level, scalability and platform indepen-

dence has been performed to evaluate the ability of the presented model to perform stated

objectives.

7.2.2 Results Achieved

In Chapter 2, a set of goals were specified which would determine the success of the work

presented in this thesis, namely:

• Novel architectures for multiresolution analysis algorithms using advanced arith-

metic techniques and design methodologies through the optimisation strategies at

various abstraction levels have been developed;

• Scalable, parameterisable, efficient FPGA based multiresolution IP cores suitable

for use in both general and medical imaging applications have been designed and

implemented;

• Optimisation strategies at various abstraction levels to analyse the effectiveness

of these techniques for performance enhancement and power reduction have been

7.2. Evaluation of Results and Contributions 143

investigate and applied;

• The best performance trade-offs such as area/speed for the FPGA implementations

of these presented cores have been investigated; and

• An in-depth evaluation of a high level power modelling in terms accuracy for pro-

posed multiresolution algorithms IP cores has been presented.

• In Chapter 3, high performance and power efficient architectures of Haar Wavelet

Transform (HWT) based on factorisation methodologies using Distributed Arith-

metic (DA) principles, which is suitable for FPGA implementation [95, 96, 122] has

been presented. The proposed architectures have been implemented on different

FPGA platforms for evaluation. In order to evaluate, the designs have been also

implemented on low power and advanced FPGAs. The evaluation of the imple-

mentation results has shown that the obtained results have outperformed existing

implementations in place.

• In Chapter 4, architectural techniques such as parallelism, and pipelining have been

exploited to yield efficient and power aware architectures for Finite Radon Transform

(FRAT) and Finite Ridgelet Transform (FRIT) [123]. The proposed architectures

have been implemented using different FPGA platforms. The performances have

been evaluated with other existing work in place. The architectural and FPGA

implementation results have outperformed some other existing in various key per-

formance metrics.

• In Chapter 5, architecture techniques such systolisation, parallelism and pipelining

have been explored to yield a power aware and optimised architectures for cyclic

convolution. Efficient FPGA implementations of the proposed pipelined architec-

ture for cyclic convolution have been also presented, the architectural and FPGA

implementation results are compared with other existing work in place. The results

clearly showsn a significant improvement and outperformed other existing results in

place.

• In Chapter 6, an in-depth evaluation of high level IP core macromodelling method-

ology called functional level power modeling approach [123] has been presented. The

model evaluated in this chapter has overcome some of the weakness in other existing

FPGA based modelling methodologies. The model has successfully verified on the

7.2. Evaluation of Results and Contributions 144

various FPGA IP Cores presented in preceding chapters (HWT, FRIT and cyclic

convolution).

It can therefore be claimed that the project has made significant progress in meeting the

key stated objectives.

7.2.3 Limitations

The objectives stated in Chapter 2 have been met and fully achieved. In the meantime, a

few of restrictions and limitations have been raised during the development of this research

project:

• With some more effort and time the architectures developed for multiresolution

algorithms can be modified further in terms of efficiency and power dissipation. For

instance, since the HWT coefficients are mtrix based it can be implemented using

systolic array architecture or using parallelism to access more than one ROM at

the time which helps to seep up the process. For FRIT and HWT it would have

been very nice to see the impact of cyclic convolution as main building block. The

cyclic convolution can be improved further by introducing a multiplexer to select

the inputs rather than parallel inputs which use all the inputs of FPGA pins with

a small design.

• Real hardware implementation of the proposed custom IP cores have been carried

out on the RC1000 development board equipped with Virtex-2000E and the Low

power FPGA (RC10 board) which is equipped with Spartan-3. It is worth mention-

ing that the proposed designs are platform independent and can be adopted/implemented

on the most recent FPGAs. It would be nice to use the latest FPGA platforms fea-

ture (Virtex-6,7 and Spartan-6) and see their impacts; and

• Scope for improving the efficiency of deploying the power model presented in this

work in iterative designs by using it to develop super-models incorporating a num-

ber of IP cores. The model based on estimation using software tools, it would be

very interesting to build the model based real measurement data. This is a logical

extension which is certain to achieve interesting outcomes; but at present has not

been carried out due to time limitations.

7.3. Future Work 145

7.3 Future Work

The work undertaken in this research project has concentrated on efficient implementation

of some multiresolution algorithms (IP cores) for medical imaging applications. An in-

depth high level power modelling methodology has also been applied in conjunction to a

power aware design flow in order to optimise these cores. A set of objectives for the future

include:

• Further optimisation of the proposed multiresolution algorithms:

As researchers we can say that there is always place for more improvement almost

in everything. In this case further improvement and optimisation can be done on

all multiresolution algorithm IP cores which are not addressed in this work. In

additions to medical imaging application the impact of the proposed IP cores on

other image applications which contain many line and edge discontinuities is also

an important objective for the future;

• Cyclic convolution integration with proposed multiresolution algorithms:

This can be a very important objective in the future to integrate the proposed cyclic

convolution into multiresolution algorithms for efficient computation and investigate

its impacts. In addition, it would be interesting to evaluate the impact of MAC from

Xilinx Corgen in the design (cyclic convolution) rather than coding the MAC using

VHDL. It is worth noting that the proposed cyclic convolution implementation is

coded in VHDL including MAC.

• Further evaluation of the presented power model :

The presented power model is very successful in high level modelling of FPGA based

IP cores. With the increasing tendency for IP core driven design, we believe this

methodology holds a lot of promise for assisting in power aware design. However,

a logical extension to this model will be the development of techniques to model a

complete system comprising a number of IP cores, using individual core data. In

addition, it would be very nice to evaluate the model further by collect data from

real measurement of FPGA rather than using software estimation data;

• Intelligent Optimisation Unit (IOU):

Since power consumption on FPGA is influenced by a number of factors such as

frequency, design density (number of interconnects), activity rates, logics and in-

7.3. Future Work 146

terconnect structure of the specific FPGA, voltage levels and output load, a new

environment can be introduced to the model to optimise even further. It consists

of an IOU, control logic and memory. The IOU should predicts and optimise the

Intelligent

Optimisation

Unit

Output

Load

Predicted

Area

Input

Voltage

Frequency

Memory

Control

Logic

1
x

3
x

2
x

1

n
x

Arch 2

Arch 1

Figure 7.1: The steps involved to build the functional level modelling approach

power based on four parameters area (control logic and the memory), input voltage

(depends on the activity rate), frequency (depends on the design itself) and output

load. Providing sufficient detail to IOU the system should predict the power and

give sufficient information about your design in terms of hardware implementation

efficiency. It would be very interesting to see the outcome of this environment in

future. The proposed intelligent optimisation unit environment is presented in Fig.

7.1.

• Further validation on custom FPGA platforms:

It would be very interesting to evaluate the accuracy of the presented power model

7.3. Future Work 147

on real FPGA development boards, However, in this case, only a generalised power

model can be derived, as it is not possible to measure individual components of

power such clock, signal, logic, etc. separately; and

• Customised version of the IP cores:

Finally, it would be very nice to see customise version of the proposed cores and

make it available for the end user to use them for their needs.

Bibliography

[1] R. Tessier and W. Burleson, “Reconfigurable Computing for Digital Signal Process-

ing: A Survey,” J. VLSI Signal Process. Syst., vol. 28, pp. 7–27, May 2001.

[2] [Online]. Available: www.xilinx.com (05. 2009)

[3] T. Ahmed, P. D. Kundarewich, J. H. Anderson, B. L. Taylor, and R. Aggarwal,

“Architecture-specific packing for virtex-5 FPGAs,” Proceedings of the 16th inter-

national ACM/SIGDA symposium on Field programmable gate arrays, Monterey,

California, USA, pp. 5–13, 2008.

[4] “Xilinx Virtex-5 65nm FPGA Family ,” Xilinx, Articles. [Online]. Available:

www.dsp-fpga.com/articles (22.10.2009)

[5] [Online]. Available: www. commons.wikimedia.org (04. 2010)

[6] P. D. Vecchio, Senior performance analyst, Software and So-

lutions Group, Intel Corp, Tech. Rep. [Online]. Available:

www.developers.net/intelisnshowcase/view/127 (2009.04.04)

[7] C. Gao and S.-L. Lu, “Novel FPGA based Haar Classifier Face Detection Algo-

rithm Acceleration,” Field Programmable Logic and Applications, 2008. FPL 2008.

International Conference, pp. 373–378, 2008.

[8] A. M. Al-Haj, “An FPGA Based Parallel Distributed Arithmetic Implementation of

the 1-D Discrete Wavelet Transform,” Signal Processing, The World Scientific and

Engineering Academy and Society, 2003.

[9] F. J. Diaz, A. M. Buron, and J. M. Solana, “Haar Wavelet Processor for Adaptive

on-Line Image Compression,” vol. 5837, no. 1. SPIE, 2005, pp. 204–212.

148

Bibliography 149

[10] Kang Sun, Xuezeng Pan, Zugen Liu and Tao Wu, “Design of A Reconfigurable

Architecture for Discrete and Continuous Wavelet Transformsn,” Communication

Technology, ICCT 06 International Conference on, Nov 2006.

[11] A. Amira, A. Bouridane, P. Milligan, and M. Roula, “Novel FPGA Implementations

of Walsh-Hadamard Transforms for Signal Processing,” IEE Proceedings on Vision,

Image and Signal Processing, vol. 148, no. 6, pp. 377–383, 2001.

[12] A. Amira and S. Chandrasekaran, “Power Modeling and Efficient FPGA Imple-

mentation of FHT for Signal Processing,” IEEE Ttransaction On Very Large Scale

Itegration (VLSI) Systems, vol. 15, no. 3, pp. 286–296, March 2007.

[13] I. S. Uzun, “Design and FPGA Implementation of Matrix Transforms for Image

and Video Processing,” PhD thesis, Queen’s University of Belfast, pp. 177–185, Sep

2006.

[14] S. Chandrasekaran, A. Amira, S. Minghua, and A. Bermak, “An efficient VLSI

architecture and FPGA implementation of the Finite Ridgelet Transform,” Real-

Time Image Proc, springer, vol. 3, no. 15, p. 183 193, May 2008.

[15] C. A. Rahman and W. Badawy, “Architectures the Finite Radon Transform,” IEE

Electronic Letters, vol. 40, no. 15, pp. 931–932, July 2004.

[16] I. S. Uzun and A. Amira, “Design and FPGA Implementation of Finite Ridgelet

Transform,” Proceedings of the IEEE International Symposium on Circuits and Sys-

tems, vol. 6, pp. 5826–5829, May 2005.

[17] J. Wisinger and R. Mahapatra, “FPGA Based Image Processing with the Curvelet

Transform,” Texas A & M University, TX, Tech Report TR-CS-2003-01-0, 2003.

[18] P. K.Meher and M. N. S. Swamy, “New Systolic Algorithm and Array Architecture

for Prime-Length Discrete Sine Transform,” IEEE Trans. Circuits Syst. II, vol. 54,

pp. 262 –266, March 2007.

[19] C. Cheng and K. Parhi, “Hardware Efficient Fast DCT Based on Novel Cyclic Con-

volution Structures,” IEEE Transactions on Signal Processing, vol. 54, no. 11, pp.

4419 –4434, Nov 2006.

Bibliography 150

[20] V. Sriram and D. Kearney, “A FPGA Implementation of Variable Kernel Convo-

lution,” Parallel and Distributed Computing, Applications and Technologies, 2007.

Eighth International Conference on Parallel and Distributed computing, pp. 105–110,

2007.

[21] K. Mohammad and S. Agaian, “Efficient FPGA Implementation of Convolution,”

Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference

on System, Man, and Cybernetics, pp. 3478–3483, 2009.

[22] N. Abdelli, A. Fouilliart, N. Mien, and E. Senn, “High-Level Power Estimation of

FPGA,” ISIE 2007. IEEE International Symposium, pp. 925 –930, June 2007.

[23] J. Laurent, N. Julien, E. Senn, and E. Martin, “Functional Level Power Analysis: An

Efficient Approach for Modeling the Power Consumption of Complex Processors,”

Proceedings of the conference on Design, automation and test in Europe, p. 10666,

2004.

[24] K. K. Poon, S. J. E. Wilton, and A. Yan, “A Detailed Power Model for Field-

Programmable Gate Arrays,” ACN Transactions on Design Automation of Elec-

tronic Systems, vol. 10, no. 2, pp. 279–302, April 2005.

[25] L. Shang and N. K. Jha, “High-Level Power Modeling of CPLDs and FPGAs,” Pro-

ceedings of the International Conference on Computer Design, pp. 46–51, September

2001.

[26] S. Chandrasekaran and A. Amira, “A New Behavioural Power Modelling Approach

for FPGA based Custom Cores.” IEEE Computer Society, 2007, pp. 350–357.

[27] V. Degalahal and T. Tuan, “Methodology for High Level Estimation of FPGA Power

Consumption,” Proceedings of the Asia and South PacificDesign Automation Con-

ference (ASP-DAC), vol. 1, pp. 657–660, Jan 2005.

[28] M. French, L. Wang, T. Anderson, and M. Wirthlin, “Post Synthesis Level Power

Modeling of FPGAs,” Proceedings of the 13th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, pp. 281–282, April 2005.

[29] L. Zhong, S. Ravi, A. Raghunathan, and N. K. Jha, “Power Estimation for Cycle-

accurate Functional Descriptions of Hardware,” Proceedings of the IEEE/ACM In-

ternational Conference on Computer Aided Design, pp. 668– 675, November 2004.

Bibliography 151

[30] J. H. Anderson and F. N. Najm, “Power Estimation Techniques for FPGAs,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 10, pp.

1015–1027, October 2004.

[31] F. Li, Y. Lin, L. He, D. Chen, and J. Cong, “Power Modeling and Characteristics of

Field Programmable Gate Arrays,” IEEE Transactions nn Computer-Aided Design

of Integrated Circuits and Systems, vol. 24, no. 11, pp. 1712–1724, November 2005.

[32] “RC10 Platform Developers Kit,” Celoxica Ltd., Manual, January 2008.

[33] “RC1000 Development Platform Product Brief,” Celoxica Ltd., Datasheet v1.1, Au-

gust 2002.

[34] “Virtex-4 Family Overview,” Xilinx Inc., Tech. Rep. DS112 (v2.0), January 2007.

[35] “Handel-C Language Reference Manual,” Metor Graphic Ltd., Tech. Rep., 2010.

[36] D. Taubman and M. Marcellin, “JPEG2000-Image Compression Fundamentals,

Standards and Practice,” Kluwer Academic Publishers, 2002.

[37] “Digital imaging and communications in medicine (dicom) supplement 61,”

JPEG2000 Transfer Syntaxes.

[38] A. J. Teh, P. Hobson, F. Ziliani, and J. Reichel, “Scalable Video Requirements

for Surveillance Applications,” IEE Intelligent Distributed Surveillance Systems, pp.

17–20, Feb 2004.

[39] S. Wu Bo and L. Shufang, “The Application of Wavelet Theory in Video Compres-

sion,” IEE Intelligent Distributed Surveillance Systems Antenna, Propagation and

EMC Technologies for Wireless Communications, vol. 2, pp. 1234–1236, Aug. 2005.

[40] D.-Z. Tian and M.-H. Ha, “Applications of Wavelet Transform in Medical Image

Processing,” International Conference on Machine Learning and Cybernetics, vol. 3,

no. 1, pp. 1816–1821, August 2004.

[41] J. Starck, F. Murtagh, E. Candes, and D. Donoho, “Gray and Color Image Contrast

Enhancement by the Curvelet Transform,” IEEE Transactions on Image Processing,

vol. 3, pp. 706–717, June 2003.

[42] M. Xing and Z. Bao, “High Resolutio ISAR Imaging of High Speed Moving Targets,”

IEE Proceedings Radar, Sonar and Navigation, vol. 152, pp. 58–67, April 2005.

Bibliography 152

[43] C. Poynton, “Digital Video and HDTV Algorithms and Interfaces (The Morgan

Kaufmann Series in Computer Graphics),” Morgan Kaufmann, Jan. 2003.

[44] D. Lee, “JPEG 2000: Retrospective and New Developments,” Proceedings of the

IEEE, vol. 93, pp. 32–41, Jan 2005.

[45] C. Peisong and J. Woods, “Video Coding for Digital Cinema,” Proceedings of Inter-

national Conference on Image Processing, vol. 1, pp. 749–752, Sep 2002.

[46] M. N. Do and M. Vetterli, “Orthonormal Finite Ridgelet Transform for Image Com-

pression,” Proceedings of the International Conference on Image Processing, vol. 2,

pp. 367–370, September 2000.

[47] E. J. Candes and D. L. Donoho, Curves and Surfaces. Vanderbilt University Press,

2000, ch. A Surprisingly Effective Nonadaptive Representation for Objects With

Edges, pp. 105–120.

[48] E. Candes, “Ridgelets: Theory and Application,” September 1998.

[49] R. Enzler, “The Current Status of Reconfigurable Computing,” Technical Report,

July 2000.

[50] M. Trope, “FPGAs: Past, Present, Future,” Electrical Engeneering and Computer

Science, University of Kansas, May 2004.

[51] B. L. Hutchings, “ASICs, Processors and Configurable Computing,” Proceedings of

the 30th Hawaii International Conference on System Sciences, vol. 1, p. 719, January

1997.

[52] W. S. Carter, “The Future of Programmable Logic and its Impact on Digital System

Design,” Proceedings of the IEEE International Conference on Computer Design:

VLSI in Computers and Processors, pp. 10–16, October 1990.

[53] B. Zahiri, “Structured ASICs: Opportunities and Challenges,” Proceedings of the

International Conference on Computer Design, pp. 404–409, October 2003.

[54] K. Wu and Y. Tsai, “Structured ASIC, Evolution or Revolution,” Proceedings of the

International Symposium on Physical Design, pp. 103–106, April 2004.

[55] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor Fundamentals: Ar-

chitectures and Features. IEEE Press, 1997.

Bibliography 153

[56] K. Rajan, K. S. Sangunni, and J. Ramakrishna, “Dual-DSP Systems for Signal and

Image-Processing,” The EUROMICRO Journal on Microprocessing and Microsys-

tems, vol. 19, no. 9, pp. 556–560, 1993.

[57] T. Akiyama and H. Aono and K. Aoki and K. W. Ler and B. Wilson and T. Araki and

T. Morishige and H. Takeno A. Sato and S. Nakatani and T Senoh, “MPEG2 video

codec using image compression DSP,” IEEE Transactions on Consumer Electronics,

vol. 40, no. 3, pp. 466–472, August 1994.

[58] P. Donachy, “Design and Implementation of a High Level Image Processing Machine

Using Reconfigurable Hardware,” PhD Thesis, School of Computer Science, The

Queen’s University of Belfast, 1996.

[59] K. Compton and S. Hauck, “Reconfigurable Computing: A Survey of Systems and

Software,” ACM Computing Surveys, vol. 34, no. 2, pp. 171–210, June 2002.

[60] [Online]. Available: www.mentor.com (2009)

[61] K. Benkrid, “Design and Implementation of a High Level FPGA Based Co-processor

for Image and Video Processing,” PhD Thesis, School of Computer Science, The

Queen’s University of Belfast, Tech. Rep., 2000.

[62] “Manual, ”IEEE Standard VHDL Reference Manual”,” IEEE Standard, Tech. Rep.,

2000.

[63] Z. Navabi, “A High Level Language for Design and Modeling of Hardware,” Journal

of System Software, pp. 5–18, 1992.

[64] P. Moorby, “History of Verilog,” IEEE Design and Test of Computers, vol. 9, no. 3,

pp. 62–63, 1992.

[65] S. M. Loo, B. E. Wells, N. Freije, and J. Kulick, “Handel-C for Rapid Prototyping

of VLSI Coprocessors for Real Time Systems,” Proceedings of the Thirty Fourth

Southeastern Symposium on System Theory, no. 3, pp. 6–10, March 2002.

[66] D. Sulik, M. Vasilko, D. Durackova, and P. Fuchs, “Design of a RISC Microcontroller

Core in 48 Hours,” Embedded Systems Show, May 2000.

[67] P. Voles, L. Holasek, and M. Vasilko, “ANSI C and Handel-C Based Rapid Pro-

totyping Framework for Real Time Image Processing Algorithms,” Proceedings of the

Bibliography 154

International Conference on Engineering of Reconfigurable Systems and Algorithms,

Las Vegas, Nevada, USA,, Jun 2002.

[68] “Handel-C for Hardware Design,” White Paper, vol. 9, Agust 2002.

[69] J. D. Crawford, “EDIF: A Mechanism for the Exchange of Design Information,”

IEEE Design and Test of Computers, vol. 2, no. 1, pp. 63–69, 1984.

[70] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics,

vol. 38, no. 8, April 1965.

[71] G. Johnson, “At Los Alamos, Two Visions of Supercomputing,” The New York

Times, June 25 2002.

[72] A. Amira, A. Bouridane, P. Milligan, and A. Belatreche, “Design of efficient archi-

tectures for discrete orthogonal transforms using bit level systolic structures,” IEE

Proceedings - Computers and Digital Techniques, vol. 149, no. 1, pp. 17–24, January

2002.

[73] A. Amira, “An FPGA Based Parameterisable System for Discrete Hartley Trans-

forms implementation,” Proceedings of the IEEE International Conference on Image

Processing, vol. 2, pp. 567–570, 2003.

[74] I. S. Uzun and A. Amira, “A FPGA-Based Parametrizable System for High-

Resolution Frequency-Domain Image Filtering,” Journal Of Circuits Systems And

Computers, vol. 14, no. 5, pp. 895–922, February 2005.

[75] I. Uzun and A. Amira, “Real-time 2D wavelet transform implementation for HDTV

compression,” Real-time imaging, vol. 11, no. 2, pp. 151–165, April 2005.

[76] F. Bensaali and A. Amira, “Accelerating Colour Space Conversion on Reconfigurable

Hardware,” Image and Vision Computing (Elsevier), vol. 23, no. 11, pp. 935–942,

October 2005.

[77] A. Amira, “A Custom Coprocessor for Matrix Algorithm ,” PhD thesis, School of

Computer Science, The Queen’s University of Belfast, 2001.

[78] “Virtex-E 1.8 V Field Programmable Gate Arrays,” Xilinx Inc., Datasheet DS022-1

(v2.3), July 2002.

Bibliography 155

[79] F. Matus and J. Flusser, “Image Representation via a Finite Radon Transform,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, pp. 996–

1006, October 1993.

[80] “Virtex-II platform FPGAs: Complete Data Sheet,” Xilinx Inc., Datasheet DS031

(v3.3), June 2008.

[81] K. K. Poon, A. Yan, and S. J. E. Wilton, Proceedings of the International Conference

on Field Programmable Logic and Applications, ser. Lecture Notes in Computer

Science. Springer Berlin / Heidelberg, September 2002, vol. 2438/2002, ch. A

Flexible Power Model for FPGAs, pp. 312–321.

[82] T. Jiang, X. Tang, and P. Banerjee, “Macro-models for High Level Area and Power

Estimationon on FPGAs,” pp. 162–165, 2004.

[83] G. Strang, ”Introduction To Linear Algebra”. Addison Wesley, 2003.

[84] P. Raviraj and M. Sanavullah, “The Modified 2D-Haar Wavelet Transformation in

Image Compression,” Middle-East Journal of Scientific Research, vol. 2, no. 2, pp.

73–78, 2007.

[85] S. A. White, “Applications of distributed arithmetic to digital signal processing :

Tutorial review,” ASSP Magazine, vol. 6, p. 419, 1989.

[86] K. P. Lim and A. B. Premkumar, “A Modular Approach to the Computation of

Convolution Sum Using Distributed Arithmetic Principles,” IEEE Transactions on

Circuits and Systems II: Analog and Digital Signal Processing, vol. 46, p. 9296, 1990.

[87] G. R. Goslin, “A Guide to Using Field Programmable Gate Arrays FPGAs for

Application Specific Digital Signal Processing Performance,” Proceedings of SPIE

in High-Speed Computing, Digital Signal Processing, pp. 321–331, 1996.

[88] L.-W. Chang and M.-C. Wu, “A Bit Level Systolic Array for Walsh-Hadamard

Transforms,” Signal Processing, vol. 31, no. 3, pp. 341–347, April 1993.

[89] S. S. Nayak and P. K. Meher, “High Throughput VLSI Implementation Of Discrete

Orthogonal Transforms Using Bit-Level Vector-Matrix Multiplier,” IEEE Transac-

tions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 46, no. 5,

pp. 655–658, May 1999.

Bibliography 156

[90] “Virtex-5 Family Overview,” Xilinx Inc., Datasheet, February 2009.

[91] “Spartan-3L Low Power FPGA Family,” Xilinx Inc., Tech. Rep. DS313 (v1.1),

September 2005.

[92] A. Amira, S. Chandrasekaran, “Power Modelling and Efficient FPGA Implemen-

tation of FHT for Signal Processing,” IEEE Transactions on VLSI System, pp.

286–295, 2007.

[93] Joseph D. Bronzino, “The biomedical engineering handbook, Medical devices and

systems,” CRC Press, vol. 2, 2006.

[94] J. Beutal, H. Kundel and R. Van Metter, “Handbook of Medical Imaging,” Physics

and Psychophysics, SPIE Press, 2006.

[95] M.S. Sharif, A. N. Sazish, and A. Amira, “An Efficient Algorithm and Architecture

for Medical Image Segmentation and Tumour Detection,” IEEE Biomedical Circuits

and Systems Conference (BIOCAS), November 2008.

[96] A. Sazish, M. Sharif, and A. Amira, “Hardware Implementation and Power Analysis

of HWT for Medical Imaging,” 16th IEEE International Conference on Electronics,

Circuits, and Systems, 2009 ICECS 2009., pp. 775 –778, Dec. 2009.

[97] [Online]. Available: www.mathworks.com/products/matlab (03. 2010)

[98] R. J. Petersen and B. Hutchings, “An Assessment of the Suitability of FPGA-Based

Systems for Use in Digital Signal Processing,” Proceedings of the 5th International

Workshop on Field-Programmable Logic and Applications, pp. 293–302, 1995.

[99] T. J. Callahan and J. Wawrzynek, “Instruction-Level Parallelism for Reconfigurable

Computing,” Proceedings of the 8th International Workshop on Field-Programmable

Logic and Applications, From FPGAs to Computing Paradigm, pp. 248–257, 1998.

[100] N. Rollins and M. Wirthlin, “Reducing energy in FPGA multipliers through glitch

reduction,” Proceedings of the 7th Annual International Conference on Military Ap-

plications of Programmable Logic Devices, September 2005.

[101] S. J. E. Wilton, S.-S. Ang, and W. Luk, “The Impact of Pipelining on Energy

per Operation in Field-Programmable Gate Arrays,” Lecture Notes in Computer

Science, pp. 719–728, 2004.

Bibliography 157

[102] E. D. Bolker, “The finite Radon transform,” S. Helgason, R. L. Bryant, V. Guillemin,

, and R. O. Wells, Jr, Eds., 1987, vol. 63, pp. 27–50.

[103] P. Toft, “The Radon Transform - Theory and Implementation,” Ph.D. Thesis, In-

formatics and Mathematical Modelling, Technical University of Denmark, 1996.

[104] J. I. Guo, C. M. Liu, and C. W. Jen., “A new array architecture for prime-length dis-

crete cosine transform,” IEEE Trans.Signal Processing, vol. 41, p. 436 442, January

1993.

[105] D. F. Chiper, M. N. S. Swamy, M. O. Ahmad, and T. Stouraitis, “A systolic array

architecture for the discrete sine transform,” vol. 50, pp. 2347 –2354, Sept 2002.

[106] P. K. Meher, J. C. Patra, and M. N. S. Swamy, “Highthroughput Memory Based Ar-

chitecture for DHT Using a New Convolutional Formulation,” IEEE Trans. Circuits

Syst. II, vol. 54, pp. 606 –610, July 2007.

[107] H. C. Chen, J. I. Guo, T. S. Chang, and C.-W. Jen, “ A Memory Efficient Realization

of Cyclic Convolution and Its Application to Discrete Cosine Transform,” IEEE

Trans. Circuits Syst for Video Technol, vol. 15, pp. 445 –453, March 2005.

[108] D. F. Chiper, M. N. S. Swamy, M. O. Ahmad, and T. Stouraitis, “Systolic Algorithms

and A Memory Based Design approach for a unified architecture for the computation

of DCT/DST/IDCT/IDST,” IEEE Trans. Circuits Syst-I, vol. 52, pp. 1125 –1137,

June 2005.

[109] P. K. Meher, “Systolic designs for DCT using a lowcomplexity concurrent convolu-

tional formulation,” IEEE Trans. Circuits and Systems for Video Technology, vol. 16,

pp. 041 –1050, Sep 2006.

[110] ——, “Efficient Systolization of Cyclic Convolution for Systolic Implementation of

Sinusoidal Transforms,” Application Specific Systems Architectures and Processors

conference ASAP 2008, pp. 97 – 101, July 2008.

[111] R. C. Agarwal and J. W. Cooley, “New algorithms for Digital Convolution,” IEEE

Trans. Acoust. Speech Signal Process, vol. 25, pp. 392 –410, Oct 1977.

[112] A. C. Atoche, D. T. Roman, and Y. Shkvarko, “Reconfigurable Architecture

of Systolic Array Processors for Real Time Remote Sensing Image Enhance-

Bibliography 158

ment/Reconstruction,” WSEAS TRANSACTIONS on SIGNAL PROCESSING,

vol. 5, pp. 293 –303, August 2009.

[113] L. Stok and J. Cohn , “There is Life Left in ASICs,” IEEE Int.Symp. Physical

Design, pp. 48–50, 2003.

[114] L. Shang, A. Kaviani, and K. Bathala, “Dynamic Power Consumption in the Virtex-

II FPGA Family,” in Proc. ACM Int. Symp. Field-Programmable Gate-Arrays, p.

157164, 2002.

[115] S. Chandrasekaran and A. Amira, “A New Behavioural Power Modelling Approach

for FPGA based Custom Cores,” Conference on Adaptive Hardware and Systems,

NASA/ESA Los Alamitos, CA, USA, pp. 350–357, 2007.

[116] [Online]. Available: www.nlreg.com (2008)

[117] T. Osmulski, J. T. Muehring, B. Veale, J. M. West, H. Li, S. Vanichayobon, S.-H.

Ko, J. K. Antonio, and S. K. Dhall, “A Probabilistic Power Prediction Tool for

the Xilinx 4000-Series FPGA,” Proceedings of the 15 IPDPS 2000 Workshops on

Parallel and Distributed Processing, pp. 776–783, 2000.

[118] H. G. Lee, S. Nam, and N. Chang, “Cycle-accurate energy measurement and high-

level energy characterization of FPGAs,” Proceedings of the Fourth International

Symposium on Quality Electronic Design, pp. 267–272, March 2003.

[119] F. Bensaali, “Accelerating Matrix Product on Reconfigurable Hardware for Image

Processing Applications,” Phd Thesis, School of Computer Science, The Queen’s

University of Belfast, May 2005.

[120] “FPGA Co-Processing Solutions for High-Performance Signal Processing Ap-

plications,” Altera Corporation, Altera Corporation, 101 Innovation Drive,

San Jose, California 95134, USA, White Paper WP-041905-1.1, May, online:

http://www.altera.com/literature/.

[121] J. C. Chen, K. M. Sivalingam, P. Agrawal, and R. Acharya, “Scheduling Multimedia

Services in a Low-Power MAC for Wireless and Mobile ATM Networks,” IEEE

Transactions on Multimedia, vol. 1, no. 2, pp. 187–201, June 1999.

Bibliography i

[122] A. Sazish and A. Amira, “An Efficient Architecture for HWT Using Sparse Matrix

Factorisation and DA Principles,” IEEE Asia Pacific Conference on Circuits and

Systems, 2008. APCCAS 2008., pp. 1308 –1311, Dec 2008.

[123] A. Sazish, S. Chandrasekaran, and A. Amira, “Efficient Systolic Architecture and

Power Modeling for Finite Ridgelet Transform,” IEEE 12th International Conference

on Computer Vision Workshops (ICCV Workshops), 2009, pp. 821 –827, Oct. 2009.

[124] I. Page and W. Luk, “Compiling Occam into Field-Programmable Gate Arrays,”

FPGAs, Oxford Workshop on Field Programmable Logic and Applications, pp. 271–

283, 1991.

[125] DK Design Suit, Version 5.2 ed., Metoe Graphic Ltd, 2010.

[126] “Xpower Tutorial: FPGA Design,” Xilinx, Tech. Rep., July 2002.

Appendix A

FPGA Prototyping Board

In this thesis two FPGA boards RC10 and RC1000 are used to prototype the proposed

designs. RC10 board is fitted with Xilinx Spartan 3 XC3S1500L-4-FG320 FPGA and is

packaged with a set of comprehensive support libraries intended for use with Celoxica’s

suite of ESL design tools including the DK Design Suite and PixelStreams image and

video processing library [32]. The RC10 is packed with a powerful set of I/O features

including 2 high-speed ADC channels, VGA video output, 1-bit DAC audio outputs, CAN

bus and a CMOS camera connector. A high-speed USB 2.0 interface allows high data-

rate communication between PC host programs and FPGA applications on the board.

RC10 is a portable board which can be access through USB, beside the FPGA it has

other additional features including 8 LEDs, 2 seven-segment displays, PS/2 keyboard and

mouse sockets, and a 5-way mini joystick which can be used in conjunction with FPGA.

RC10 also provides a user interface (FTU3) to upload or access the FPGA through USB.

RC10 Board expansion capabilities include a 50-way expansion socket providing 33 data

I/Os, 2 clock pins as well as +12V, +5V and +3.3V power supplies, a 4 way LVDS

connector also suitable for driving a TFT screen, and connections for 4 standard servos.

Fig. A.1 shows the RC10 and its features.

A.0.1 Spartan 3 FPGA

The Spartan-3L family architecture consists of five fundamental programmable functional

elements [32]:

• Configurable Logic Blocks (CLBs) contain RAM-based Look-Up Tables (LUTs) to

implement logic and storage elements that can be used as flip-flops or latches. CLBs

ii

Appendix A. FPGA Prototyping Board iii

Sevensegment

Display

Piezo Buzzer

ADC Inpupts

ADC Inpupts
Optional

External Power

Reset

USB

PS/2

Camara

Connector

Audio Out

CAN Buss

Connector
 LCD Screen

Connector
 Servo Motor

Connector

Joystick

VGA Output

JTAG Computor

Serial Output

ATA

Connector

16 MB

Flash

Memory

Xilinx

Spartan3

3S1500L-4

Figure A.1: RC10 board with Xilinx Spartan

can be programmed to perform a wide variety of logical functions as well as to store

data.

• Input/Output Blocks (IOBs), Spartan 3l family control the flow of data between the

I/O pins and the internal logic of the device. Each IOB supports bidirectional data

flow plus 3-state operation. Twenty-six different signal standards, including eight

high-performance differential standards, are available. Double Data-Rate (DDR)

registers are included. The Digitally Controlled Impedance (DCI) feature provides

automatic on-chip terminations, simplifying board designs.

• Block RAM provides data storage in the form of 18 Kbit dual-port blocks.

• Multiplier Blocks accept two 18-bit binary numbers as inputs and calculate the

product.

• Digital Clock Manager (DCM) Blocks provide self-calibrating, fully digital solutions

for distributing, delaying, multiplying, dividing, and phase-shifting clock signals.

The block diagram of Spartan 3l is shown in Fig. A.2

Appendix A. FPGA Prototyping Board iv

Block Memory
CLB

DCM
DCM

Multiplier

Figure A.2: Xilinx Spartan 3 block diagram [32]

A.0.2 RC1000 FPGA Board

RC1000 is a standard PCI bus plug-in card for PCs equipped with a Xilinx XCV2000E-6

Virtex-E FPGA chip. It has 8 MB of SRAM directly connected to the FPGA in four 32

bit wide memory banks. The memory is also visible to the host CPU across the PCI bus

as if it was normal memory. Each of the 4 banks may be granted to either the host CPU or

the FPGA at any time. Data can therefore be shared between the FPGA and host CPU

by placing it in the SRAM on the board. It is then accessible to the FPGA directly and

to the host CPU either by Direct Memory Access (DMA) transfers across the PCI bus or

simply as a virtual ad- dress. High speed DMA, data buffering and clock speed control

Appendix A. FPGA Prototyping Board v

make it suitable for high speed cryptographic applications. The actual Rc1000 board is

shown in Fig. A.3 and the functional block for RC1000 is shown in Fig. A.4

The FPGA has two of its pins connected to the clocks. One pin is connected to either a

programmable clock or an external clock. The programmable clocks are programmed by

the host PC, and have frequency range of 400 KHz to 100 MHz [33].

Virtex-E

XCV2000E-6

Figure A.3: Xilinx RC1000 board

The RC1000 board is supported with a macro library (the PP1000 library,) that simplifies

the process of initialising and talking to the hardware. This library comprises driver

functions with the following functionality:

• Initialisation and selection of a board

• Handling of FPGA configuration files

• Data transfer between PC and the RC1000 board

• Function to help with error checking and debugging these library functions can be

included in a C or C++ program that runs on the host PC and performs data

transfer via the PCI bus [35]

DMA, data buffering and clock speed control make the RC1000 suitable for high-speed

applications.

A.1. Other FPGA Devices Used in This Research vi

Virtex-E

XCV2000E-6

Figure A.4: Xilinx RC100 block diagram [33]

A.1 Other FPGA Devices Used in This Research

In this research a variety of FPGA devices have been used in order to implement the

proposed architectures for evaluation and comparison purpose. The choice of the device

used depends on previous works and analysis factors:

A.1.1 Virtex-5

The Virtex-5 family provides the newest most powerful features in the FPGA market.

Using the second generation Advanced Silicon Modular Block (ASMBL) column-based

A.1. Other FPGA Devices Used in This Research vii

architecture. Each Virtex-5 platform contains a different ratio of features to address the

needs of a wide variety of advanced logic designs. In addition Virtex-5 FPGAs contain

many hard-IP system level blocks, including powerful 36-Kbit block RAM/FIFOs, sec-

ond generation 25x18 DSP slices, SelectIO technology with built in digitally controlled

impedance, system monitor functionality, enhanced clock management tiles with inte-

grated Digital Clock Managers (DCM) and phase-locked-loop (PLL) clock generators,

and advanced configuration options. and high-performance PowerPC 440 microproces-

sor embedded blocks. These features allow advanced logic designers to build the highest

levels of performance and functionality into their FPGA-based systems. Virtex-5 FP-

GAs offer the best solution for addressing the needs of high-performance logic designers,

high-performance DSP designers, and high-performance embedded systems designers with

unprecedented logic, DSP, hard/soft microprocessor, and connectivity capabilities. The

Virtex-5 LXT, SXT, TXT, and FXT platforms include advanced high-speed serial connec-

tivity and link/transaction layer capability [90]. A simplified diagram of Xilinx Virtex-5

FPGA slice is shown in Fig. A.5 and ML505 evaluation platform which equipped with

Xilinx Virtex-5 LXT FPGA is shown in Fig. ??. The most important features of Virtex-5

is listed below:

• Most advanced, high-performance, optimal-utilization, FPGA fabric, real 6-input

Look-Up Table (LUT) technology, 64-bit distributed RAM option, advanced DSP48E

slices

• Powerful clock management tile (CMT) clocking

• 36-Kbit block RAM/FIFOs

• High-performance parallel SelectIO technology

• System Monitoring capability on all devices

• Integrated Endpoint blocks for PCI Express Designs

A.1.2 Virtex-4

Virtex-4 family from Xilinx greatly enhances programmable logic design capabilities, mak-

ing it a powerful alternative to ASIC technology. Virtex-4 FPGAs comprise three platform

families LX, FX, and SX offering multiple feature choices and combinations to address all

A.1. Other FPGA Devices Used in This Research viii

MUX

MUX

MUX

LUT

LUT

LUT

LUT

LUT

CLK

CE

SR

CLK

CE

SR

CLK

CE

SR

CLK

CE

SR

Arithmatic

and Carry

logic

Figure A.5: A simplified diagram of a Xilinx Virtex-5 FPGA slice [4]

complex applications. The wide array of Virtex-4 FPGA hard-IP core blocks includes

the PowerPC processors (with a new APU interface), MACs, 622 Mb/s to 6.5 Gb/s serial

transceivers, dedicated DSP slices, high speed clock management circuitry, and source syn-

chronous interface blocks. The basic Virtex-4 FPGA building blocks are enhancements of

those found in the popular Virtex, Virtex-E, Virtex-II, Virtex-II Pro, and Virtex-II Pro X

product families, so previous-generation designs are upward compatible. Virtex-4 devices

are produced on a state of the art 90nm copper process using 300 mm (12-inch) wafer

technology [34]. A simplified diagram of a Xilinx Virtex-4 FPGA slice is shown in Fig

A.6. The important features of Vitex-4 are listed below:

• Xtreme DSP Slice 18 x 18, twos complement, signed Multiplier.

• Built-in Accumulator (48-bit) and Adder/Subtracter.

• Smart RAM Memory Hierarchy (distributed RAM and dual-port 18-Kbit RAM

blocks)

• IBM PowerPC RISC Processor Core

• Multiple Tri-Mode Ethernet MACs

A.1. Other FPGA Devices Used in This Research ix

MUXFX

CLK

CE

SR

CLK

CE

SR

CLK

CE

SR

CLK

CE

SR

4-input

LUT

(F)

4-input

LUT

(G)

MUXFX

MUXF5

Arithmatic

and Carry

logic

YMUX

XMUX

Figure A.6: A simplified diagram of a Xilinx Virtex-4 FPGA slice [34]

Appendix B

Tools and Software Packages

There are many tools and software packages which are used to program FPGAs, in this

research DK suit and ISE are used to program the proposed designs on FPGAs, more

details about these two tools are explored in the following sections.

B.1 Handel-C

Handel-C is a high level programming language which targets low-level hardware, most

commonly used in the programming of FPGAs. It is a rich subset of C, with non-standard

extensions to control hardware instantiation with an emphasis on parallelism. Fig B.1

shows the most important additional features between Hadel-C and ANSI-C.

Enhanced bit manipulation

Parallelism – par { }

Macro procedures

Macro expressions

Variable size register

Interface

RAM & ROM

Signals
Channels

H-C Standard Library

ANSI-C Standard Library

Side effects
i.e. x=I++ * j++;

Recursion

Pre-processor macro s
i.e. #define

ANSI-C constructs
For, while, if, switch

Structures

Functions

Arithmetic operators
i.e. +, -, *, /, %

Arrays

Pointers

Logical operators
i.e. &&, ||, !

Bitwise logical
operators

Enhanced bit manipulation

Parallelism – par { }

Macro procedures

Macro expressions

Variable size register

Interface

RAM & ROM

Signals
Channels

H-C Standard Library

ANSI-C Standard Library

Side effects
i.e. x=I++ * j++;

Recursion

Pre-processor macro s
i.e. #define

ANSI-C constructs
For, while, if, switch

Structures

Functions

Arithmetic operators
i.e. +, -, *, /, %

Arrays

Pointers

Logical operators
i.e. &&, ||, !

Bitwise logical
operators

Handel-CANSI-C

Figure B.1: Handel-C/ANSI-C comparison [35]

Handel-C is to hardware design what the first high level programming languages were to

programming CPUs. Unlike many other design languages that target a specific architec-

x

B.1. Handel-C xi

ture Handel-C can be compiled to a number of design languages and then synthesised to

the corresponding hardware. This frees developers to concentrate on the programming

task at hand rather than the idiosyncrasies of a specific design language and architecture.

Research into the field of hardware compilation for FPGAs started in 1991, when Ian

Page and Wayne Luk (Hardware Compilation Group at at the Programming Research

Group (PRG) within the Oxford University Computing Laboratory (OUCL)), developed

a compiler that transformed a subset of Occam into a netlist suitable for loading onto an

FPGA [124].

The technology developed at Oxford was spun off to mature as a cornerstone product

for Embedded Solutions Limited (ESL) in 1996. ESL was renamed Celoxica in Septem-

ber 2000. Handel-C was adopted by many university hardware research groups after its

release by ESL, as a result was able to established itself as a hardware design tool of

choice within the academic community, especially in the United Kingdom. In early 2006,

Celoxica’s ESL business was acquired by Catalytic, a startup selling a MATLAB to C

tool. Soon thereafter, Celoxica and Catalytic merged to form Agility, which developed

and sold, among other products, ESL tools supporting Handel-C. In January 2009, Men-

tor Graphics acquired Agility’s C synthesis assets. Handel-C aimed at compiling high level

algorithms directly into gate level hardware. In order to support the use of the language

the vendor also supplies a graphical design environment called DK (Design Kit) (Fig. B.2)

that incorporates simulator, debugger, compiler and implementation generation, in EDIF,

VHDL or Verilog [125].

Figure B.2: The DK design synthesis tool

B.1. Handel-C xii

B.1.1 Parallel Hardware Generation

The target of the Handel-C compiler is low-level hardware. This means that you get

massive performance benefits by using parallelism. It is essential for writing efficient

programs to instruct the compiler to build hardware to execute statements in parallel.

Handel-C parallelism is true parallelism, not the time-sliced parallelism familiar from

general-purpose computers. When instructed to execute two instructions in parallel, those

two instructions will be executed at exactly the same instant in time by two separate pieces

of hardware. When a parallel block is encountered, execution flow splits at the start of

the parallel block and each branch of the block executes simultaneously. Execution flow

then re-joins at the end of the block when all branches have completed. Any branches that

complete early are forced to wait for the slowest branch before continuing. Fig B.3 [35].

Parallel

Block

Statement

(a) Parallel branch execution flow

Sequential Block

// 3 Clock Cycles
{

a=1;
b=2;
c=3;

}

Parallel Block

// 1 Clock Cycles
{

par
{

a=1;
b=2;
c=3;

}
}

(b) PAR construct example

Figure B.3: The PAR construct [35]

B.1.2 Channel Communications

Channels provide a link between branches executing in parallel. One parallel branch

outputs data onto the channel and the other branch reads data from the channel. Channels

can be constructed with and without FIFO capacities.

• Channels constructed as FIFOs, a channel can be constructed as a FIFO queue. In

this case, the data is written to the head of the FIFO is read from the tail. If the

FIFO is full, write blocks until an element is read from the FIFO. If the FIFO is

empty, read blocks until there is data ready to be read

B.2. Xilinx-ISE xiii

• Channels constructed without FIFO capacity, these channels provide synchroniza-

tion between parallel branches because the data transfer can only complete when

both the transmitter and the receiver are ready. If one side is not ready, the other

must wait.

In Fig B.4, the channel is shown transferring data from the left branch to the right branch.

If the left branch reaches point a before the right branch reaches point b, the left branch

waits at point a until the right branch reaches point a [35].

a b
Channel

Statement

Figure B.4: Channel communication [35]

B.1.3 Memory

RAMs and ROMs can be implemented directly using the keywords ram and rom respec-

tively. Handel-C allows access to a number of different types of RAM:

• Distributed RAM, which is implemented in look-up tables in the logic blocks of the

FPGA

• Block RAM, which is available on certain chips, can be identified by specifying the

block parameter in conjunction with the ram keyword

• Off-chip RAM [35]

B.2 Xilinx-ISE

ISE is a software tool produced by Xilinx for synthesis and analysis of HDL designs, which

enables the developer to synthesize (”compile”) their designs, perform timing analysis,

B.2. Xilinx-ISE xiv

examine RTL diagrams, simulate a design’s reaction to different stimuli, and configure

the target device with the programmer. Through the Project Navigator interface, you can

access all of the design entry and design implementation tools. Fig.B.5 shows the snapshot

of ISE 9.1i project navigator. The different design entry steps in ISE are described in the

following subsections.

Figure 1-1: Project Navigator

Figure B.5: ISE Project navigator display window

B.2.1 ISE Translation

The translate process merges all of the input netlists and design constraints and outputs

a Xilinx native generic database (NGD) file, which describes the logical design reduced

to Xilinx primitives. During translation, the NGD build program performs the following

functions. Converts input design netlists and writes results to a single merged NGD netlist

and adds the User Constraints File (UCF) to the merged netlist.

B.2. Xilinx-ISE xv

B.2.2 ISE Timing Constraints

Timing constraints are typically specified globally but can also be specified for individual

paths. Global constraints include period constraints for each clock (PERIOD), setup times

for each input (OFFSET-IN), and clock-to-out constraints for each output (OFFSET-

OUT). You can enter timing constraints using the Create Timing Constraints process in

project navigator. This creates a text-based UCF, which is used during implementation.

You can enter timing constraints for synthesis in a separate XCF file. More information

on entering timing constraints is provided in [2]. Results for the timing constraints are

automatically reported after implementation, and are also available from the ISE Design

Summary. To analyze the results of your timing specifications, use Timing Analyzer or

the command line tools TRACE (Timing Reporter and Circuit Evaluator) for FPGAs.

B.2.3 Placement Constraints

For FPGAs, you can specify placement constraints for each type of logic element, such as

flip-flops, ROMs and RAMs, FMAPs, BUFTs, CLBs, IOBs, I/Os, and global buffers in

FPGA designs. Individual logic gates, such as AND and OR gates, are mapped into CLB

function generators before the constraints are read and cannot be constrained. However,

if gates are represented by an FMAP symbol, you can use a placement constraint on that

symbol.

B.2.4 Synthesis Constraints

Synthesis constraints instruct the synthesis tool to perform specific operations. When

using XST for synthesis, synthesis constraints control how XST processes and imple-

ments FPGA resources. Synthesis constraints also allow control of register duplication

(REGISTER-DUPLICATION) and fanout control (MAX-FANOUT) [2] during global tim-

ing optimization. To give XST specific targets during global optimization, you can enter

timing constraints for synthesis in the XCF file.

B.2.5 Place & Route

Place & Route (PAR) are composed of two steps, placement and routing. The first step,

placement, involves deciding where to place all electronic components, circuitry, and logic

elements in a generally limited amount of space. This is followed by routing, which decides

B.2. Xilinx-ISE xvi

the exact design of all the wires needed to connect the placed components. This step must

implement all the desired connections while following the rules and limitations of the

manufacturing process. The PAR can be verified using ISE FPGA Editor. The FPGA

Editor reads and writes Native Circuit Description (NCD) files, Nativc Macro Circuit

(NMC) files and Physical Constraints Files (PCF). It performs the following tasks:

• Place and route critical components before running the automatic place-and-route

tools;

• Finish placement and routing if the routing program does not completely route your

design;

• Add probes to the design to examine the signal states of the targeted device;

• View and change the nets connected to the capture units of an Integrated Logic

Analyser (ILA) core in the design;

• Run the BitGen program and download the resulting bitstream file to the targeted

device; and

• View and change the nets connected to the capture units of an Integrated Logic

Analyser (ILA) core in your design.

A snapshot of the FPGA editor is shown in Fig. B.6.

Figure B.6: FPGA Editor showing the place and route of a design

B.2. Xilinx-ISE xvii

B.2.6 Core Generator

The CORE Generator System is a design tool that delivers parameterized COREs opti-

mized for Xilinx FPGAs. It provides you with a catalog of ready-made functions ranging

in complexity from simple arithmetic operators such as adders, accumulators, and multi-

pliers, to system-level building blocks such as filters, transforms, FIFOs, and memories [2].

For each core it generates, the CORE Generator System produces an Electronic Data In-

terchange Format (EDIF) netlist (EDN file), a Verilog template (VEO) file with a Verilog

(V) wrapper file, and/or a VHDL template (VHO) file with a VHDL (VHD) wrapper file.

It may also create one or more NGC and NDF files. NGC files are produced for certain

cores only.

The Electronic Data Netlist (EDN) and NGC files contain the information required to

implement the module in a Xilinx FPGA. Since NGC files are in binary format, ASCII

NDF files may also be produced to communicate resource and timing information for NGC

files to 3rd party synthesis tools. The ASY and XSF symbol information files allow you to

integrate the CORE Generator module into a schematic design for Mentor or ISE tools.

VEO and VHO template files contain code that can be used as a model for instantiating

a CORE Generator module in a Verilog or VHDL design. Finally, V and VHD wrapper

files are provided to support functional simulation. These files contain simulation model

customization data that is passed to a parameterized simulation model for the core. In

the case of Verilog designs, the V wrapper file also provides the port information required

to integrate the core into a Verilog design for synthesis the over all design flow of Xilinx

Core Generator is shown in Fig. B.7.

B.2.7 XPower Estimation

XPower calculates power based on dynamic power consumption in CMOS circuits which

is primarily due to switching activity. Each element (LUT, FF, BRAM, routing segment)

that can switch has a capacitance model associated with it. Clock signals and primary

input signals are assigned specific frequencies by the user. Synchronous elements are

assigned activity (or toggle) rates relative to their associated clock. Activity rates for

DLL and BUFG outputs are set relative to their input clock. User-supplied activity rates

combine with device-specific capacitance, static power, and other data to produce a power

estimate for a design. The accuracy of the switching activity data is crucial in obtaining

B.2. Xilinx-ISE xviii

Figure B.7: The design flow of Xilinx Core Generator

an accurate estimate of power consumption [126]. The ISE Xpower interface is shown in

Fig. B.8.

Figure B.8: ISE XPower user interface

B.3. Nonlinear Regression Analysis Tool xix

B.3 Nonlinear Regression Analysis Tool

Nonlinear Regression (NLREG) is a powerful statistical analysis program that performs

linear and nonlinear regression analysis, surface and curve fitting. NLREG determines

the values of parameters for an equation, that cause the equation to best fit a set of data

values. NLREG can handle linear, polynomial, exponential, logistic, periodic, and general

nonlinear functions. Unlike many ”nonlinear” regression programs that can only handle

a limited set of function forms, NLREG can handle essentially any function whose form

you can specify algebraically [116].

NLREG features a full programming language with a syntax similar to C for specifying

the function that is to be fitted to the data. This allows you to compute intermediate

work variables, use conditionals, and even iterate in loops. If the function being modelled

is well behaved and the starting value for the parameter is not too far from the optimum

value, the procedure will eventually converge to the best estimate for the parameter. This

procedure is carried out simultaneously for all parameters and is, in fact, a minimisation

problem in n-dimensional space, where ’n’ is the number of parameters. NLREG performs

true nonlinear regression analysis and curve fitting, it does not transform the function into

a linear form.

The basis for the minimisation technique used by NLREG is to compute the sum of the

squared residuals for one set of parameter values and then slightly alter each parameter

value and recompute the sum of squared residuals to see how the parameter value change

affects the sum of the squared residuals. By dividing the difference between the original

and new sum of squared residual values by the amount the parameter was altered, NLREG

is able to determine the approximate partial derivative with respect to the parameter. This

partial derivative is used by NLREG to decide how to alter the value of the parameter for

the next iteration. Fig. B.9 shows the NLREG user interface window where a power data

is modelled.

B.4 FPGA Power Dissipation

Total power in an FPGA is the sum of two components: static power and dynamic power.

The total power usage of an FPGA device (PTotal) can be broken down into total Static

B.4. FPGA Power Dissipation xx

Figure B.9: NLREG user interface window

Power (SP) and total Dynamic Power (DP):

PTotal = SP + DP (B.4.1)

B.4.1 Static Power Dissipation

Static power results primarily from transistor leakage current in the device. Leakage cur-

rent is the small current that ”leaks,” either from source-to-drain or through the gate

oxide, even when the transistor is logically ”off.” the device and it is, therefore, frequency

dependent. The static power of an FPGA is proportional to the static current Idd the

current that flows regardless of gate switching (transistor is ‘on’ or ‘off’). This is other-

wise called the quiescent power. DC power dissipation can be estimated by the worst-case

equivalent equation: StP = VddIdd. Static power is inherently dependant on the archi-

tectural layout of the FPGA itself and is technology dependant. As such, it cannot be

controlled by the FPGA based designer and will not be addressed in this work.

ICCINTQ = IS −→ D + IGATE (B.4.2)

B.4. FPGA Power Dissipation xxi

Figure B.10: Transistor leakage current for FPGA

As mentioned, static power is largely a result of transistor leakage current. Basic rules of

semiconductor physics indicate that as you shrink the size of transistors (e.g., move from

90 nm to 65 nm devices), leakage current tends to increase. This predicted increase is

directly related to the smaller physical dimensions of the CMOS transistors. The shorter

channel lengths and thinner gate oxides that are generally used at the new process node

make it easier for current to ”leak,” either across the channel region or through the gate

oxide of the transistor. Fig. B.10 shows the two forms of transistor leakage, source-to-drain

(also called sub-threshold) leakage and gate leakage.

B.4.2 Dynamic Power Dissipation

Dynamic power (DP) dissipation is caused by signal transitions in the circuit. A higher

operating frequency leads to more frequent signal transitions and results in increased power

dissipation. The most significant source of dynamic power consumption in CMOS circuits

is the charging and discharging of capacitance. This can be modeled as

Power Dynamic =
∑

i

(Ci × fi × V 2) (B.4.3)

where Ci, Vi, and fi are the capacitance, voltage swing, and operating frequency. The DP

consumption of FPGAs can be separated into three main part: data-path, synchronisation

and off-chip power.

Datapath power corresponds to combinational blocks and associated interconnection power.

Synchronisation power is the power consumed by registers, clock lines and buffers. Data

path and synchronisation power are together termed as on-chip DP. Off-chip power is

the fraction dissipated in the circuit output pads. Knowledge of the relationship between

B.4. FPGA Power Dissipation xxii

these components for a given FPGA technology is fundamental in calculating the power

consumption of an FPGA-based system.

B.4.3 The Finite Radon Transform

The FRAT was first introduced in [102] as the finite analogue of integration in the con-

tinuous radon transform, with origins in the field of combinatorics. The mathematical

representation of an injective form of the FRAT to ensure invertibility when applied on

finite Euclidian planes has been presented in [79]. A pseudocode for the implementation

of FRAT has also been provided in [79], and is reproduced in Codeblock 1. In all previous

implementations of the FRAT, it has become convention to label an architecture based on

the straightforward implementation FRAT pseudocode as the “reference architecture”.

Algorithm 1 Pseudocode for the FRAT

1: for k = 0 : (p− 1) do
2: n = k;
3: for j = 0 : (p− 1) do
4: n = n− k;
5: if n < 0 then
6: n = n + p;
7: end if
8: l = n− 1;
9: for i = 0 : (p− 1) do

10: l = l + 1;
11: if l > p then
12: l = l − p;
13: end if
14: FRAT(k, l) = FRAT(k, l) + f(i, j);
15: end for
16: end for
17: end for
18: for j = 0 : (p− 1) do
19: for i = 0 : (p− 1) do
20: FRAT(p, j) = FRAT(p, j) + f(i, j);
21: end for
22: end for

