7 research outputs found

    Utilization of the Software Communication Architecture for Software Defined Radio Waveform Development

    Get PDF
    The Software Communication Architecture (SCA) is a method developed for the U.S military\u27s Joint Tactical Radio Systems that aims to standardized the way in which software defined radios for the U.S armed forces are to be configured and built. Most developmental software defined radios use proprietary software such as GNURadio Companion (GRC) or Gqrx SDR to construct waveforms for RF applications. Here we utilize a suite of tools called eCo Architect and eCo Inspector developed by NordiaSoft, which conforms the end-to-end waveform to satisfy the SCA requirements. In this paper, we present an evaluation on waveform development using the SCA in a lab environment of integrating two waveforms using NordiaSoft\u27s eCo Suite in conjunction with an Ettus E310 Software Defined Radio (SDR). A comparison in data packet recovery between GRC and eCo Suite was also performed. The same waveforms were used in both GRC and eCo Suite with differences in component algorithm construction

    The Virtual Bus: A Network Architecture Designed to Support Modular-Redundant Distributed Periodic Real-Time Control Systems

    Get PDF
    The Virtual Bus network architecture uses physical layer switching and a combination of space- and time-division multiplexing to link segments of a partial mesh network together on schedule to temporarily form contention-free multi-hop, multi-drop simplex signalling paths, or 'virtual buses'. Network resources are scheduled and routed by a dynamic distributed resource allocation mechanism with self-forming and self-healing characteristics. Multiple virtual buses can coexist simultaneously in a single network, as the resources allocated to each bus are orthogonal in either space or time. The Virtual Bus architecture achieves deterministic delivery times for time-sensitive traffic over multi-hop partial mesh networks by employing true line-speed switching; delays of around 15ns at each switching point are demonstrated experimentally, and further reductions in switching delays are shown to be achievable. Virtual buses are inherently multicast, with delivery skew across multiple destinations proportional to the difference in equivalent physical length to each destination. The Virtual Bus architecture is not a purely theoretical concept; a small research platform has been constructed for development, testing and demonstration purposes

    Kommunikation und Bildverarbeitung in der Automation

    Get PDF
    In diesem Open-Access-Tagungsband sind die besten Beiträge des 9. Jahreskolloquiums "Kommunikation in der Automation" (KommA 2018) und des 6. Jahreskolloquiums "Bildverarbeitung in der Automation" (BVAu 2018) enthalten. Die Kolloquien fanden am 20. und 21. November 2018 in der SmartFactoryOWL, einer gemeinsamen Einrichtung des Fraunhofer IOSB-INA und der Technischen Hochschule Ostwestfalen-Lippe statt. Die vorgestellten neuesten Forschungsergebnisse auf den Gebieten der industriellen Kommunikationstechnik und Bildverarbeitung erweitern den aktuellen Stand der Forschung und Technik. Die in den Beiträgen enthaltenen anschaulichen Beispiele aus dem Bereich der Automation setzen die Ergebnisse in den direkten Anwendungsbezug

    On the Edge of Secure Connectivity via Software-Defined Networking

    Get PDF
    Securing communication in computer networks has been an essential feature ever since the Internet, as we know it today, was started. One of the best known and most common methods for secure communication is to use a Virtual Private Network (VPN) solution, mainly operating with an IP security (IPsec) protocol suite originally published in 1995 (RFC1825). It is clear that the Internet, and networks in general, have changed dramatically since then. In particular, the onset of the Cloud and the Internet-of-Things (IoT) have placed new demands on secure networking. Even though the IPsec suite has been updated over the years, it is starting to reach the limits of its capabilities in its present form. Recent advances in networking have thrown up Software-Defined Networking (SDN), which decouples the control and data planes, and thus centralizes the network control. SDN provides arbitrary network topologies and elastic packet forwarding that have enabled useful innovations at the network level. This thesis studies SDN-powered VPN networking and explains the benefits of this combination. Even though the main context is the Cloud, the approaches described here are also valid for non-Cloud operation and are thus suitable for a variety of other use cases for both SMEs and large corporations. In addition to IPsec, open source TLS-based VPN (e.g. OpenVPN) solutions are often used to establish secure tunnels. Research shows that a full-mesh VPN network between multiple sites can be provided using OpenVPN and it can be utilized by SDN to create a seamless, resilient layer-2 overlay for multiple purposes, including the Cloud. However, such a VPN tunnel suffers from resiliency problems and cannot meet the increasing availability requirements. The network setup proposed here is similar to Software-Defined WAN (SD-WAN) solutions and is extremely useful for applications with strict requirements for resiliency and security, even if best-effort ISP is used. IPsec is still preferred over OpenVPN for some use cases, especially by smaller enterprises. Therefore, this research also examines the possibilities for high availability, load balancing, and faster operational speeds for IPsec. We present a novel approach involving the separation of the Internet Key Exchange (IKE) and the Encapsulation Security Payload (ESP) in SDN fashion to operate from separate devices. This allows central management for the IKE while several separate ESP devices can concentrate on the heavy processing. Initially, our research relied on software solutions for ESP processing. Despite the ingenuity of the architectural concept, and although it provided high availability and good load balancing, there was no anti-replay protection. Since anti-replay protection is vital for secure communication, another approach was required. It thus became clear that the ideal solution for such large IPsec tunneling would be to have a pool of fast ESP devices, but to confine the IKE operation to a single centralized device. This would obviate the need for load balancing but still allow high availability via the device pool. The focus of this research thus turned to the study of pure hardware solutions on an FPGA, and their feasibility and production readiness for application in the Cloud context. Our research shows that FPGA works fluently in an SDN network as a standalone IPsec accelerator for ESP packets. The proposed architecture has 10 Gbps throughput, yet the latency is less than 10 µs, meaning that this architecture is especially efficient for data center use and offers increased performance and latency requirements. The high demands of the network packet processing can be met using several different approaches, so this approach is not just limited to the topics presented in this thesis. Global network traffic is growing all the time, so the development of more efficient methods and devices is inevitable. The increasing number of IoT devices will result in a lot of network traffic utilising the Cloud infrastructures in the near future. Based on the latest research, once SDN and hardware acceleration have become fully integrated into the Cloud, the future for secure networking looks promising. SDN technology will open up a wide range of new possibilities for data forwarding, while hardware acceleration will satisfy the increased performance requirements. Although it still remains to be seen whether SDN can answer all the requirements for performance, high availability and resiliency, this thesis shows that it is a very competent technology, even though we have explored only a minor fraction of its capabilities
    corecore