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ABSTRACT 

 The Software Communication Architecture (SCA) is a method developed for the U.S military's Joint Tactical 

Radio Systems that aims to standardized the way in which software defined radios for the U.S armed forces are to be 

configured and built. Most developmental software defined radios use proprietary software such as GNURadio 

Companion (GRC) or Gqrx SDR to construct waveforms for RF applications. Here we utilize a suite of tools called eCo 

Architect and eCo Inspector developed by NordiaSoft, which conforms the end-to-end waveform to satisfy the SCA 

requirements. In this paper, we present an evaluation on waveform development using the SCA in a lab environment of 

integrating two waveforms using NordiaSoft's eCo Suite in conjunction with an Ettus E310 Software Defined Radio 

(SDR). A comparison in data packet recovery between GRC and eCo Suite was also performed. The same waveforms 

were used in both GRC and eCo Suite with differences in component algorithm construction.  

Introduction 

Since the development of configurable receivers in the 

1980's, waveform development for radio communications 

has become significantly more versatile than its traditional 

counterpart which has limited cross-functionality and 

requires physical hardware intervention in order to adjust 

its capabilities for signal and data processing. Radios that 

are software defined, improve on production cost and 

flexibility for handling multiple waveform standards. The 

context of a waveform for our application is related to the 

lower layers (network, data-link, and physical) of the ISO-

OSI model. Efforts to facilitate the flexibility of SDRs and 

the re-use of waveforms across multiple radio sets lead to 

the initiative program Joint Tactical Radio Systems 

(JTRS). Due to the lack of interoperability across the 

spectrum and insufficient bandwidth that was required for 

communications, the intentions of JTRS was to provide the 

warfighter with software-programmable radios that could 

aid in an advantage in voice and data communications 

across the battlespace.  

 

The need for an open framework that the Department of 

Defense (DoD) could utilize without having to seek 

outside vendor support for software updates and fixes led 

to the design and implementation of the SCA. The SCA 

provides its users with a transparency to how hardware and  

 

software components must work together. The SCA was 

originally developed to accommodate software 

requirements for the DoD because of the limitations on 

current tactical communication systems. These limitations 

evolved from traditional systems being designed to meet 

service and mission specific requirements. An area of 

programmable systems that benefit greatly from the SCA 

are SDRs. Although the SCA's intent was to be a standard 

for programmable and integratable systems, it has not quite 

been fully adopted by many developers within the DoD. 

Various groups using SDRs still rely on proprietary 

softwares such as GNURadio Companion (GRC) for 

waveform development mainly because of its open source 

free access and large community of like developers.  The 

waveforms that are described were originally developed 

within GRC and transitioned into NordiaSoft's eCo Suite. 

Both GRC waveform flow diagrams were constructed by 

collaborators at the Naval Post Graduate School (NPS) and 

the Hawaii Space Flight Laboratory (HSFL) at the 

University of Hawaii at Manoa. In Section 3A and 3B, we 

take a look at the end-to-end waveform characteristics and 

properties for two waveforms PropCube and HiakaSat 

respectively. 
 

The Software Communication Architecture 

Being a component based development architecture, the 

SCA is independent of the application domains; meaning, it 

is not strictly confined for SDRs, but it can be applied to 

other various systems given a set of well-defined API's. This 

is the reason the SCA has such versatility across tactical 

systems. Groups that have presented work using the SCA, 

developed applications within its older version 2.2.2. The 

work presented in this paper demonstrates end-to-end packet 

recovery using the SCA 4.1 architecture. Unattractive 
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aspects of using the SCA 2.2.2 included aspects such as 

monolithic interfaces. The SCA 4.1 provides a baseline set 

of capabilities that are structured to enhance security, 

improving infrastructure performance, maximizing 

waveform portability and providing a wide range of 

flexibility and extensibiltiy. The SCA's software 

components are divided into three function groups; radio 

management, devices, and applications. These functional 

groups take part in the framework of the SCA as seen in 

Figure 1. The middleware that connects these groups with 

the operating system (OS) is the Common Object Request 

Broker Architecture (CORBA). CORBA is often referred 

to as a "software bus" since it acts as a software interface 

that controls the locating and accessing of information 

between objects. Application components can 

communicate with one another no matter where they are 

located or who designed them. This makes development 

with CORBA a location and language independent 

interface. 

 

 
Figure 1: The SCA framework and its integration 

with hardware devices 

 

The Radio Management (RM) is the core framework that 

takes care of both manager clients; Domain and Device. it 

also consists of the ApplicationFactory and Application. 

RM is responsible for all the actions from installing the 

applications of interest to configuring and deploying those 

applications. The second functional group, Devices, 

provides link access between the executables and hardware 

components. These devices can be loadable devices or 

executable devices. Lastly, the third group is applications. 

To understand the application group, it is important to 

understand how things graphically look in an SCA radio as 

shown in figure 2. There will be one Domain Manager. To 

the left of the domain manager in figure 2, the handling of 

the hardware is taken care of by the device managers. Each 

node will have a single device manager and a device 

manager can handle as many devices as needed. To the 

right of the domain manager, application factories enable 

the instantiation of the waveform application. The 

application group is arguably the most important group of 

the SCA because the SCA is geared towards making the 

applications portable between platforms. An application is 

composed of resources. Here, a resource is a software 

component that will consist of an input and output port 

allowing it to connect to other components or rather other 

resources. Resources can have multiple properties that alter 

the way in which it behaves. Resources can be modified to 

interact with other components in various ways, such as 

developing software to handle complex I/Q or bytes of data. 

Because a resource provides access to particular API's to a 

given port of another resource, it is considered to be a port 

supplier. 

 
Figure 2: Graphical representation of an application 

structure with a hardware device 

 

An SCA API can be seen in figure 3. Here, we have a 

resource that inherits behaviors from other API's. This 

component based development consists of individual boxes 

that get connected in assembly. For example, in figure 3, the 

API associated with operation getPort() will allow a port to 

be obtained by that given resource. This will enable the 

possibility for the resource to establish connection with 

other components. Because a component requires a control, 

there will be operations that initialize or release an object of 

a component. This is a result of the specification of the RM 

to enforce the life cycle of the component. Other operations 

such as configure() and query() allows a resource to access 

the internal values of various properties for any SCA 

component. A given resource must also be able to invoke 

tests that can be started and stopped during the run of an 

assembly. 

 
Figure 3: A resource API inherits other API allowing 

components to be connected together in assembly for 

component based development 
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Figure 4: Waveform applications will interact with 

hardware components 

 

 

Using the SCA on Radios 

The application group and its resources that are 

individually constructed with the logic and 

specifications previously described can be applied to 

any domain that can be used for component based 

development. The research described in this paper 

focuses only on radio development. To put this more 

into perspective, waveform applications eventually 

interact with hardware devices. Unfortunately, 

waveform applications cannot talk directly with 

hardware devices, so a proxy representation of the 

hardware devices is needed to map waveforms to the 

hardware. The SCA defines three types of devices: 

device, loadable device, and an executable device. A 

device can be any generic device such as a modem or 

audio device. Loadable devices act as a proxy to 

devices such as FPGA's and executable devices 

generally act as a proxy to a general purpose processor 

(GPP). Figure 4 illustrates the idea that waveform 

applications are forbidden to interact with hardware 

components on their own. For waveform applications to 

interact with hardware devices, a proxy representation 

of the three pieces of hardware is needed; devices, 

loadable devices, and executable devices. 

 

 The core framework, or rather the RM group is 

the supporting infrastructure that allows a developed 

waveform application to be generated. The RM group 

consists of four components: Domain Manager, 

Application Factory, Application, and Device Manager. 

The Domain Manager, is the heart of the given 

specification that has defined functionality to enable the 

radio to operate and applications to be instantiated. The 

Application Factory invokes the creation of a waveform 

application. The application box shown in figure 5 is a 

place holder for information to be stored about the 

application that is being deployed. A radio consists of a 

variable amount of nodes. Radio nodes in this context 

can be considered any device capable of running 

CORBA enabled code when that device is powered on. 

The Device Manager boots the radio nodes and launches 

the proxies associated with the physical hardware. 

 
Figure 5: Application API used for storing 

information about a given application 

 
 

Waveform for PropCube SmallSat 

A waveform structure developed by NPS is currently 

being used to collect data and telemetry from low earth 

orbit (LEO) satellite constellations called PropCube. 

PropCube is a series of three CubeSat LEOs used by the 

Naval Research Laboratory (NRL). The mission of 

interest for PropCube is for basic research to demonstrate 

the capability of beacon CubeSats for determining 

potential effects the ionosphere may have on radio 

systems, the ability to track and communicate with 

multiple CubeSats immediately after launch, and 

providing the value of radio beacons complementing 

ground based soundings of the ionosphere [2]. The Space 

Systems Academic Group (SSAG) of NPS delegates 

efforts to improving upon hardware systems such as 

SDRs to provide cost-efficient, flexible, and robust 

software solutions. In collaboration with NPS, we took 

upon the efforts to transition their existing layout that was 

designed within GRC and make it SCA compatible. The 

waveform discussed here utilizes the functionality of a 

Parsing AX.25 data link protocol decoding scheme.The 

command and control uplink and downlink frequencies 

for PropCube are fup = 449.775 MHz and fdown = 914.00 

MHz respectively. For our test purposes between two 

SDRs, we ran tests using both frequencies from the 

transmit and receiving applications. The signal 

modulation is based off the Gaussian Minimum Shift 

Keying (GMSK) scheme with a data rate of r = 9600baud 

and sample rate of fSR = 400 kHz. The raw data that is 

sourced for the PropCube waveform consists of a pseudo 

data packet that abides by the KISS protocol. The KISS 

protocol frames the packet with a leading 0xC0 0x10 and 

a trailing 0x10. Figure 13 in the appendix displays the 

cascading of transmit and receiving components used for 

the PropCube waveform, respectively. 

  

 The sent packet is un-KISSED and appended with 

the appropriate packet protocol taken care of by the 

HDLC Encoder allowing for the data to be placed on a 

carrier for modulation, re-sampling, and filtering to the 
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frequency bandwidth of interest. The receiving signal 

frequency is up-sampled from 240kHz to 400kHz and 

passed through a low-pass filter with a cutoff frequency 

fc = 5kHz. The signal is demodulated to baseband and 

uncompressed from 1-bit per byte to 8-bits per byte 

before passing through the decoding components. The 

decoding aspect of the waveform takes care of 

descrambling, differential decoding, and parsing. 

Scrambling and non-return to zero (NRZ) 

transformation of the data message was performed by 

the HDLC Encoder, thus descrambling and differential 

decoding is needed on the receiving end. 

 

Waveform for HiakaSat CubeSat 

The second waveform that is analyzed in this paper is 

structured very similar to that of PropCube with the 

exception of a few new components that were developed 

as shown in figure 6. Certain parameters that were 

designated for HiakaSat's components also differ from 

PropCube's. The HiakaSat waveform was developed by 

HSFL and both transmit and receive waveforms are 

shown in the appendix in figure 14 respectively. HSFL 

is a mission developmental group at the University of 

Hawaii at Manoa which aims to develop, launch and 

operate small space crafts from the Hawaiian Islands. 

HiakaSat was a cubesat that HSFL had launched in the 

past using a Li-1 SDR with its corresponding software 

developed within GRC. Because the biggest take away 

from using SDRs is its versatility, one of the milestones 

set for this paper was to evaluate two waveforms using 

an Ettus E310 SDR to demonstrate the effectiveness of 

SDRs in both lab environments as well as during real-

time satellite passes. 

 

a) 

 
b) 

 
Figure 6: Application API used for storing 

information about a given application 

 

 

The uplink and downlink frequencies used for HiakaSat 

are fup = 440.030 MHz fdown = 440.030 MHz 

respectively. HiakaSat is also based off of a GMSK 

modulation scheme. The sampling rate was set to fSR = 

450.2 MHz. Two components that were added to the 

HiakaSat waveform that will also be added to 

PropCube's waveform during testing are the AX25 

Framer and Deframer. Licensed operators are assigned 

an alphabetized regional-based call sign, it is proper 

practice to append the call sign of the operator who is 

transmitting as well as the call sign of the receiving 

operator to the signal. The appended call signs are taken 

care of by the Framer on the transmitting side of the 

waveform and the Deframer removes the call signs 

during the decoding stage on the receiving side of the 

waveform. The ParseAX.25 protocol is no longer used 

for this waveform. However, similar functions such as 

CRC checking are utilized in the HDLC Decoder. The 

Decoder encompasses the certain functionality that of the 

descrambler, differential decoder, and parse ax.25. The 

execution of the decoder's algorithm however, is not 

equivalent to placing all three components together in 

assembly. 

 

Methods 

A series of tests were performed within a lab 

environment to observe the robustness of both waveforms 

as well as the software platforms in which they were 

tested with. All tests were conducted at the the Hawaii 

Space Flight Laboratory at the University of Hawaii at 

Manoa. A total of twelve test cases were performed with 

PropCube and HiakaSat. Six cases were set-up with 

NordiaSoft transmitting and receiving applications; three 

hardline and three over-the-air cases were done. The 

other Six cases were carried out using GRC as the 

transmit and receive platform. A hardline test using GRC 

as the transmit and receive software was used as a 

baseline test because of its ability to decode over 90% of 

the incoming packets.Two variations of the PropCube 

waveform was carried out as well as the HiakaSat 

waveform. The two variations of the PropCube waveform 

were demonstrated because the waveform going up from 

the ground station to the satellite and the waveform 

coming down from the satellite back to the ground station 

have slightly altered parameters such as the sync word 

and frequency. 

 
Figure 7: Lab set up with two E310 SDRs connected 

by an RF capable between the Tx and Rx ports 
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Here, we utilized the network mode capability of the 

Ettus E310 for narrow band signal observation and 

evaluation. The NordiaSoft license used for 

development and testing can only be used on x86 

processors. Because the E310 uses an ARM based 

processor on board, we were unable to deploy the 

waveforms onto the radios themselves, thus requiring 

network mode. The RF cables were calibrated before 

testing using a Aniritsu vector network analyzer (VNA). 

A 30dB attenuator was placed at both transmit and 

receive ports of the radios for the hardline tests. For 

each test case, seven runs were done incrementally. 

 
Figure 8: Lab set up with two E310 SDRs separated 

by a distance of 3ft with antennas at the Tx and Rx 

ports 

 

The transmit signal gain was increased from 65dB to 

100dB in increments of 5dB for all eight test cases. A 

30dB attenuator was placed only at the transmitting port 

for the over-the-air tests due to the effect of space path 

loss on the signal gain. The obtained results comparing 

SCA with GRC are shown in figure 9 and 10. The 

presented data demonstrates the lack of robustness and 

stability in the waveforms. Figure 11 displays the wide 

range of the number of packets that were recovered 

between each run. There was no clear linear relationship 

between the increasing gain transmit levels and the total 

number of packets recovered. It was observed that the 

combining weight of the attenuators and RF cable 

relative to the size of the E310 caused the cables to bend 

downward at the connecting port preventing a snug 

connection between cable and port. A trend of packet 

recovery for the different sample rates that were tested 

with is shown in figure 12. To the right of the sample 

rate displayed on the plot is the data buffer sizes that 

were used on the receiving end of the test. 

 
Figure 9: Number of packets received over the 

various different receive input power levels. Hardline 

and over-the-air tests were compared 

 

 
 

Figure 10: Number of packets received over the 

various different receive input power levels. Hardline 

and over-the-air tests were compared 
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Figure 11: Comparison in stability of packet 

recovery for each test run between GRC and 

NordiaSoft 

 

 
 

Figure 12: Number of packets received out of 200 

packets sent over the various sample rates used for 

the hardline tests 

 

Future Work 

Our teams efforts to deploy our developed SCA 

waveform into an existing Mobile Cubesat Command & 

Control (MC3) ground station to collect real-time 

satellite pass data is currently in progress. All materials 

needed to integrate our current E310 USRP radio into an 

MC3 have been acquired. New sets of variables such as 

doppler shifting will need to be accounted for in the 

waveform application in order to communicate with 

LEO's. Our team has been proficiently putting together a 

test plan as well as the necessary link budget parameters 

for space telecommunications. Collaborative efforts 

with HSFL to design an end-user GUI application is 

also currently being worked on alongside the SDR 

integration efforts. The intentions of creating a graphical 

interface for the end-user is so our waveform 

applications can eventually become independent from 

NordiaSoft's eCo Suite tool kit. With an independent 

system, applications can be loaded and executed from the 

SDR without the need for a license commercial software. 

The eCo Suite licensed software that our team is 

currently using is also only SCA compliant for x86 

systems.This license allows for development and testing 

applications within a lab environment. However, because 

the SDR's that we are developing with have ARM 

processor's on board, we will eventually need to convert 

over to an ARM eCo Suite license for deployment. The 

lab environment tests that were presented in this paper 

will also be validated using other SDRs such as the Ettus 

N300. We would like to demonstrate the cross-platform 

functionality of the SCA by loading and executing both 

waveforms on two separate SDRs to confirm the 

flexibility aspect of the SCA 

 

Conclusion 

In this paper we presented a lab environment test set-up 

between two SDRs. Direct connection tests and over-the-

air tests were performed to juxtapose the quality and 

stability of the waveforms developed on the transmitting 

and receiving end. Our findings display some 

inconsistencies in data packet recovery for a given value 

in transmitting gain. Our teams efforts aim to narrow 

down any instabilities among the waveform with 

intentions of having a more robust application. Alongside 

these efforts, our group has begun work on integrating 

the Ettus E310 SDR into an existing MC3 ground station 

at the University of Hawaii. The integration of hardware 

into the MC3 has been started and after further validation 

of our waveform, a real-time satellite pass will be 

monitored and recorded. Once our waveform application 

has been fine tuned sort-of speak, our team aims to 

deploy the waveform application onto the E310's ARM 

processor for further space communication testing. 
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Appendix  

 

 a) 

 

b) 

 
Figure 13: a) Transmitting and b) receiving block diagram for the PropCube waveform 
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b) 

 
Figure 14: a) Transmitting and b) receiving block diagram for the HiakaSat waveform 

 

 


