
Acosta AIAA/USU Conference on Small Satellites 1

SSC19-VIII-03

Utilization of The Software

Communication

Architecture for Software

Defined Radio Waveform

Development

Noah Acosta University of

Hawaii at Manoa
nmacosta@hawaii.edu

Faculty Advisor: Miguel Nunes
University of Hawaii at Manoa

ABSTRACT

 The Software Communication Architecture (SCA) is a method developed for the U.S military's Joint Tactical

Radio Systems that aims to standardized the way in which software defined radios for the U.S armed forces are to be

configured and built. Most developmental software defined radios use proprietary software such as GNURadio

Companion (GRC) or Gqrx SDR to construct waveforms for RF applications. Here we utilize a suite of tools called eCo

Architect and eCo Inspector developed by NordiaSoft, which conforms the end-to-end waveform to satisfy the SCA

requirements. In this paper, we present an evaluation on waveform development using the SCA in a lab environment of

integrating two waveforms using NordiaSoft's eCo Suite in conjunction with an Ettus E310 Software Defined Radio

(SDR). A comparison in data packet recovery between GRC and eCo Suite was also performed. The same waveforms

were used in both GRC and eCo Suite with differences in component algorithm construction.

Introduction

Since the development of configurable receivers in the

1980's, waveform development for radio communications

has become significantly more versatile than its traditional

counterpart which has limited cross-functionality and

requires physical hardware intervention in order to adjust

its capabilities for signal and data processing. Radios that

are software defined, improve on production cost and

flexibility for handling multiple waveform standards. The

context of a waveform for our application is related to the

lower layers (network, data-link, and physical) of the ISO-

OSI model. Efforts to facilitate the flexibility of SDRs and

the re-use of waveforms across multiple radio sets lead to

the initiative program Joint Tactical Radio Systems

(JTRS). Due to the lack of interoperability across the

spectrum and insufficient bandwidth that was required for

communications, the intentions of JTRS was to provide the

warfighter with software-programmable radios that could

aid in an advantage in voice and data communications

across the battlespace.

The need for an open framework that the Department of

Defense (DoD) could utilize without having to seek

outside vendor support for software updates and fixes led

to the design and implementation of the SCA. The SCA

provides its users with a transparency to how hardware and

software components must work together. The SCA was

originally developed to accommodate software

requirements for the DoD because of the limitations on

current tactical communication systems. These limitations

evolved from traditional systems being designed to meet

service and mission specific requirements. An area of

programmable systems that benefit greatly from the SCA

are SDRs. Although the SCA's intent was to be a standard

for programmable and integratable systems, it has not quite

been fully adopted by many developers within the DoD.

Various groups using SDRs still rely on proprietary

softwares such as GNURadio Companion (GRC) for

waveform development mainly because of its open source

free access and large community of like developers. The

waveforms that are described were originally developed

within GRC and transitioned into NordiaSoft's eCo Suite.

Both GRC waveform flow diagrams were constructed by

collaborators at the Naval Post Graduate School (NPS) and

the Hawaii Space Flight Laboratory (HSFL) at the

University of Hawaii at Manoa. In Section 3A and 3B, we

take a look at the end-to-end waveform characteristics and

properties for two waveforms PropCube and HiakaSat

respectively.

The Software Communication Architecture

Being a component based development architecture, the

SCA is independent of the application domains; meaning, it

is not strictly confined for SDRs, but it can be applied to

other various systems given a set of well-defined API's. This

is the reason the SCA has such versatility across tactical

systems. Groups that have presented work using the SCA,

developed applications within its older version 2.2.2. The

work presented in this paper demonstrates end-to-end packet

recovery using the SCA 4.1 architecture. Unattractive

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/224734939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acosta AIAA/USU Conference on Small Satellites 2

aspects of using the SCA 2.2.2 included aspects such as

monolithic interfaces. The SCA 4.1 provides a baseline set

of capabilities that are structured to enhance security,

improving infrastructure performance, maximizing

waveform portability and providing a wide range of

flexibility and extensibiltiy. The SCA's software

components are divided into three function groups; radio

management, devices, and applications. These functional

groups take part in the framework of the SCA as seen in

Figure 1. The middleware that connects these groups with

the operating system (OS) is the Common Object Request

Broker Architecture (CORBA). CORBA is often referred

to as a "software bus" since it acts as a software interface

that controls the locating and accessing of information

between objects. Application components can

communicate with one another no matter where they are

located or who designed them. This makes development

with CORBA a location and language independent

interface.

Figure 1: The SCA framework and its integration

with hardware devices

The Radio Management (RM) is the core framework that

takes care of both manager clients; Domain and Device. it

also consists of the ApplicationFactory and Application.

RM is responsible for all the actions from installing the

applications of interest to configuring and deploying those

applications. The second functional group, Devices,

provides link access between the executables and hardware

components. These devices can be loadable devices or

executable devices. Lastly, the third group is applications.

To understand the application group, it is important to

understand how things graphically look in an SCA radio as

shown in figure 2. There will be one Domain Manager. To

the left of the domain manager in figure 2, the handling of

the hardware is taken care of by the device managers. Each

node will have a single device manager and a device

manager can handle as many devices as needed. To the

right of the domain manager, application factories enable

the instantiation of the waveform application. The

application group is arguably the most important group of

the SCA because the SCA is geared towards making the

applications portable between platforms. An application is

composed of resources. Here, a resource is a software

component that will consist of an input and output port

allowing it to connect to other components or rather other

resources. Resources can have multiple properties that alter

the way in which it behaves. Resources can be modified to

interact with other components in various ways, such as

developing software to handle complex I/Q or bytes of data.

Because a resource provides access to particular API's to a

given port of another resource, it is considered to be a port

supplier.

Figure 2: Graphical representation of an application

structure with a hardware device

An SCA API can be seen in figure 3. Here, we have a

resource that inherits behaviors from other API's. This

component based development consists of individual boxes

that get connected in assembly. For example, in figure 3, the

API associated with operation getPort() will allow a port to

be obtained by that given resource. This will enable the

possibility for the resource to establish connection with

other components. Because a component requires a control,

there will be operations that initialize or release an object of

a component. This is a result of the specification of the RM

to enforce the life cycle of the component. Other operations

such as configure() and query() allows a resource to access

the internal values of various properties for any SCA

component. A given resource must also be able to invoke

tests that can be started and stopped during the run of an

assembly.

Figure 3: A resource API inherits other API allowing

components to be connected together in assembly for

component based development

Acosta AIAA/USU Conference on Small Satellites 3

Figure 4: Waveform applications will interact with

hardware components

Using the SCA on Radios

The application group and its resources that are

individually constructed with the logic and

specifications previously described can be applied to

any domain that can be used for component based

development. The research described in this paper

focuses only on radio development. To put this more

into perspective, waveform applications eventually

interact with hardware devices. Unfortunately,

waveform applications cannot talk directly with

hardware devices, so a proxy representation of the

hardware devices is needed to map waveforms to the

hardware. The SCA defines three types of devices:

device, loadable device, and an executable device. A

device can be any generic device such as a modem or

audio device. Loadable devices act as a proxy to

devices such as FPGA's and executable devices

generally act as a proxy to a general purpose processor

(GPP). Figure 4 illustrates the idea that waveform

applications are forbidden to interact with hardware

components on their own. For waveform applications to

interact with hardware devices, a proxy representation

of the three pieces of hardware is needed; devices,

loadable devices, and executable devices.

 The core framework, or rather the RM group is

the supporting infrastructure that allows a developed

waveform application to be generated. The RM group

consists of four components: Domain Manager,

Application Factory, Application, and Device Manager.

The Domain Manager, is the heart of the given

specification that has defined functionality to enable the

radio to operate and applications to be instantiated. The

Application Factory invokes the creation of a waveform

application. The application box shown in figure 5 is a

place holder for information to be stored about the

application that is being deployed. A radio consists of a

variable amount of nodes. Radio nodes in this context

can be considered any device capable of running

CORBA enabled code when that device is powered on.

The Device Manager boots the radio nodes and launches

the proxies associated with the physical hardware.

Figure 5: Application API used for storing

information about a given application

Waveform for PropCube SmallSat

A waveform structure developed by NPS is currently

being used to collect data and telemetry from low earth

orbit (LEO) satellite constellations called PropCube.

PropCube is a series of three CubeSat LEOs used by the

Naval Research Laboratory (NRL). The mission of

interest for PropCube is for basic research to demonstrate

the capability of beacon CubeSats for determining

potential effects the ionosphere may have on radio

systems, the ability to track and communicate with

multiple CubeSats immediately after launch, and

providing the value of radio beacons complementing

ground based soundings of the ionosphere [2]. The Space

Systems Academic Group (SSAG) of NPS delegates

efforts to improving upon hardware systems such as

SDRs to provide cost-efficient, flexible, and robust

software solutions. In collaboration with NPS, we took

upon the efforts to transition their existing layout that was

designed within GRC and make it SCA compatible. The

waveform discussed here utilizes the functionality of a

Parsing AX.25 data link protocol decoding scheme.The

command and control uplink and downlink frequencies

for PropCube are fup = 449.775 MHz and fdown = 914.00

MHz respectively. For our test purposes between two

SDRs, we ran tests using both frequencies from the

transmit and receiving applications. The signal

modulation is based off the Gaussian Minimum Shift

Keying (GMSK) scheme with a data rate of r = 9600baud

and sample rate of fSR = 400 kHz. The raw data that is

sourced for the PropCube waveform consists of a pseudo

data packet that abides by the KISS protocol. The KISS

protocol frames the packet with a leading 0xC0 0x10 and

a trailing 0x10. Figure 13 in the appendix displays the

cascading of transmit and receiving components used for

the PropCube waveform, respectively.

 The sent packet is un-KISSED and appended with

the appropriate packet protocol taken care of by the

HDLC Encoder allowing for the data to be placed on a

carrier for modulation, re-sampling, and filtering to the

Acosta AIAA/USU Conference on Small Satellites 4

frequency bandwidth of interest. The receiving signal

frequency is up-sampled from 240kHz to 400kHz and

passed through a low-pass filter with a cutoff frequency

fc = 5kHz. The signal is demodulated to baseband and

uncompressed from 1-bit per byte to 8-bits per byte

before passing through the decoding components. The

decoding aspect of the waveform takes care of

descrambling, differential decoding, and parsing.

Scrambling and non-return to zero (NRZ)

transformation of the data message was performed by

the HDLC Encoder, thus descrambling and differential

decoding is needed on the receiving end.

Waveform for HiakaSat CubeSat

The second waveform that is analyzed in this paper is

structured very similar to that of PropCube with the

exception of a few new components that were developed

as shown in figure 6. Certain parameters that were

designated for HiakaSat's components also differ from

PropCube's. The HiakaSat waveform was developed by

HSFL and both transmit and receive waveforms are

shown in the appendix in figure 14 respectively. HSFL

is a mission developmental group at the University of

Hawaii at Manoa which aims to develop, launch and

operate small space crafts from the Hawaiian Islands.

HiakaSat was a cubesat that HSFL had launched in the

past using a Li-1 SDR with its corresponding software

developed within GRC. Because the biggest take away

from using SDRs is its versatility, one of the milestones

set for this paper was to evaluate two waveforms using

an Ettus E310 SDR to demonstrate the effectiveness of

SDRs in both lab environments as well as during real-

time satellite passes.

a)

b)

Figure 6: Application API used for storing

information about a given application

The uplink and downlink frequencies used for HiakaSat

are fup = 440.030 MHz fdown = 440.030 MHz

respectively. HiakaSat is also based off of a GMSK

modulation scheme. The sampling rate was set to fSR =

450.2 MHz. Two components that were added to the

HiakaSat waveform that will also be added to

PropCube's waveform during testing are the AX25

Framer and Deframer. Licensed operators are assigned

an alphabetized regional-based call sign, it is proper

practice to append the call sign of the operator who is

transmitting as well as the call sign of the receiving

operator to the signal. The appended call signs are taken

care of by the Framer on the transmitting side of the

waveform and the Deframer removes the call signs

during the decoding stage on the receiving side of the

waveform. The ParseAX.25 protocol is no longer used

for this waveform. However, similar functions such as

CRC checking are utilized in the HDLC Decoder. The

Decoder encompasses the certain functionality that of the

descrambler, differential decoder, and parse ax.25. The

execution of the decoder's algorithm however, is not

equivalent to placing all three components together in

assembly.

Methods

A series of tests were performed within a lab

environment to observe the robustness of both waveforms

as well as the software platforms in which they were

tested with. All tests were conducted at the the Hawaii

Space Flight Laboratory at the University of Hawaii at

Manoa. A total of twelve test cases were performed with

PropCube and HiakaSat. Six cases were set-up with

NordiaSoft transmitting and receiving applications; three

hardline and three over-the-air cases were done. The

other Six cases were carried out using GRC as the

transmit and receive platform. A hardline test using GRC

as the transmit and receive software was used as a

baseline test because of its ability to decode over 90% of

the incoming packets.Two variations of the PropCube

waveform was carried out as well as the HiakaSat

waveform. The two variations of the PropCube waveform

were demonstrated because the waveform going up from

the ground station to the satellite and the waveform

coming down from the satellite back to the ground station

have slightly altered parameters such as the sync word

and frequency.

Figure 7: Lab set up with two E310 SDRs connected

by an RF capable between the Tx and Rx ports

Acosta AIAA/USU Conference on Small Satellites 5

Here, we utilized the network mode capability of the

Ettus E310 for narrow band signal observation and

evaluation. The NordiaSoft license used for

development and testing can only be used on x86

processors. Because the E310 uses an ARM based

processor on board, we were unable to deploy the

waveforms onto the radios themselves, thus requiring

network mode. The RF cables were calibrated before

testing using a Aniritsu vector network analyzer (VNA).

A 30dB attenuator was placed at both transmit and

receive ports of the radios for the hardline tests. For

each test case, seven runs were done incrementally.

Figure 8: Lab set up with two E310 SDRs separated

by a distance of 3ft with antennas at the Tx and Rx

ports

The transmit signal gain was increased from 65dB to

100dB in increments of 5dB for all eight test cases. A

30dB attenuator was placed only at the transmitting port

for the over-the-air tests due to the effect of space path

loss on the signal gain. The obtained results comparing

SCA with GRC are shown in figure 9 and 10. The

presented data demonstrates the lack of robustness and

stability in the waveforms. Figure 11 displays the wide

range of the number of packets that were recovered

between each run. There was no clear linear relationship

between the increasing gain transmit levels and the total

number of packets recovered. It was observed that the

combining weight of the attenuators and RF cable

relative to the size of the E310 caused the cables to bend

downward at the connecting port preventing a snug

connection between cable and port. A trend of packet

recovery for the different sample rates that were tested

with is shown in figure 12. To the right of the sample

rate displayed on the plot is the data buffer sizes that

were used on the receiving end of the test.

Figure 9: Number of packets received over the

various different receive input power levels. Hardline

and over-the-air tests were compared

Figure 10: Number of packets received over the

various different receive input power levels. Hardline

and over-the-air tests were compared

Acosta AIAA/USU Conference on Small Satellites 6

Figure 11: Comparison in stability of packet

recovery for each test run between GRC and

NordiaSoft

Figure 12: Number of packets received out of 200

packets sent over the various sample rates used for

the hardline tests

Future Work

Our teams efforts to deploy our developed SCA

waveform into an existing Mobile Cubesat Command &

Control (MC3) ground station to collect real-time

satellite pass data is currently in progress. All materials

needed to integrate our current E310 USRP radio into an

MC3 have been acquired. New sets of variables such as

doppler shifting will need to be accounted for in the

waveform application in order to communicate with

LEO's. Our team has been proficiently putting together a

test plan as well as the necessary link budget parameters

for space telecommunications. Collaborative efforts

with HSFL to design an end-user GUI application is

also currently being worked on alongside the SDR

integration efforts. The intentions of creating a graphical

interface for the end-user is so our waveform

applications can eventually become independent from

NordiaSoft's eCo Suite tool kit. With an independent

system, applications can be loaded and executed from the

SDR without the need for a license commercial software.

The eCo Suite licensed software that our team is

currently using is also only SCA compliant for x86

systems.This license allows for development and testing

applications within a lab environment. However, because

the SDR's that we are developing with have ARM

processor's on board, we will eventually need to convert

over to an ARM eCo Suite license for deployment. The

lab environment tests that were presented in this paper

will also be validated using other SDRs such as the Ettus

N300. We would like to demonstrate the cross-platform

functionality of the SCA by loading and executing both

waveforms on two separate SDRs to confirm the

flexibility aspect of the SCA

Conclusion

In this paper we presented a lab environment test set-up

between two SDRs. Direct connection tests and over-the-

air tests were performed to juxtapose the quality and

stability of the waveforms developed on the transmitting

and receiving end. Our findings display some

inconsistencies in data packet recovery for a given value

in transmitting gain. Our teams efforts aim to narrow

down any instabilities among the waveform with

intentions of having a more robust application. Alongside

these efforts, our group has begun work on integrating

the Ettus E310 SDR into an existing MC3 ground station

at the University of Hawaii. The integration of hardware

into the MC3 has been started and after further validation

of our waveform, a real-time satellite pass will be

monitored and recorded. Once our waveform application

has been fine tuned sort-of speak, our team aims to

deploy the waveform application onto the E310's ARM

processor for further space communication testing.

Acknowledgments

 The work presented in this paper is funded on

behalf of the Naval Information Warfare Center (NIWC)

Pacific. Collaborative efforts from Members Giovanni

Minelli from NPS and members Miguel Nunes, Eric

Pilger, Isaac Rodrigues, and Kacey Hagi of HSFL made

the research and development for this project a much

faster process. Appreciationll members have contributed

valuable time to make the results and future work for this

project possible.

References

1. Kopitzki, J. "Development and implementation of a

 communication scheme for software defined

 radios." Naval Post Graduate School (2014)

2. Roehrig, J.M. "development of a versatile

 groundstation utilizing software defined radios."

 Naval Post Graduate School

Acosta AIAA/USU Conference on Small Satellites 7

3. Jondral, Friedrich K. "Software-defined radio:

 basics and evolution to cognitive radio."

 EURASIP journal on wireless

 communications and networking 2005, no. 3

 (2005): 275-283

4. Bernier, Steve, Martin Phisel, and David Hagood.

 "INCREASING PERFORMANCES OF SCA

 APPLICATIONS THAT USE OPENCL."

5. Springer, Jonathan, Steve Bernier, James Ezick,

 Juan Pablo Zapata Zamora, and Janice McMahon.

 "Accelerating SCA compliance testing with

 advanced development tools." Analog Integrated

 Circuits and Signal Processing (2015): 1-13.

6. Ulversoy, Tore. "Software defined radio:

 Challenges and opportunities." IEEE

 Communications Surveys & Tutorials 12, no. 4

 (2010): 531-550.

7. Bard, John, and Vincent J. Kovarik Jr. Software

 defined radio: the software communications

 architecture. Vol. 6. John Wiley & Sons, 2007.

8. Quinn, Todd, and Thomas Kacpura. "Strategic

 adaptation of SCA for STRS." (2007).

Acosta AIAA/USU Conference on Small Satellites 8

Appendix

 a)

b)

Figure 13: a) Transmitting and b) receiving block diagram for the PropCube waveform

Acosta AIAA/USU Conference on Small Satellites 9

b)

Figure 14: a) Transmitting and b) receiving block diagram for the HiakaSat waveform

