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Abstract 

The Virtual Bus network architecture uses physical layer switching and a combination of space- and 

time-division multiplexing to link segments of a partial mesh network together on schedule to 

temporarily form contention-free multi-hop, multi-drop simplex signalling paths, or 'virtual buses'.  

Network resources are scheduled and routed by a dynamic distributed resource allocation mechanism 

with self-forming and self-healing characteristics.  Multiple virtual buses can coexist simultaneously in 

a single network, as the resources allocated to each bus are orthogonal in either space or time.  The 

Virtual Bus architecture achieves deterministic delivery times for time-sensitive traffic over multi-hop 

partial mesh networks by employing true line-speed switching; delays of around 15ns at each 

switching point are demonstrated experimentally, and further reductions in switching delays are 

shown to be achievable.  Virtual buses are inherently multicast, with delivery skew across multiple 

destinations proportional to the difference in equivalent physical length to each destination.  The 
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Chapter 1  

 

The Rationale for the Virtual Bus Network 

Architecture 

 

 

1.1 Introduction 

This chapter presents and discusses the reasoning that led to the conceptualization of the Virtual Bus 

network architecture, and that informed the design decisions that have led to its realization. 

Section 1.2 presents the aims of the research: the problem space is defined, the high-level 

requirements are identified, and performance targets are specified.  Sections 1.3 through 1.6 explore 

how the previously identified requirements might be addressed: section 1.3 considers issues around 

the timing of signal delivery, and the factors that affect it; section 1.4 explores how networks are 

structured, and the consequences of particular structural choices; section 1.5 briefly considers how 

networks support the relationships that underpin distributed modular-redundant control systems; 

and section 1.6 explores the fault hypothesis for the Virtual Bus architecture.  Conclusions are 

presented in section 1.7. 

1.1.1 Related Research 

A review of relevant literature has been carried out and is reported in the context of each of the 

technical chapters 2 through 5.  Refer to each of sections 2.2, 3.2, 4.2 and 5.2.  Extensive references 

to related research are also made throughout Chapter 1. 

1.1.2 Originality 

The only truly unoriginal content included in this dissertation is Mr Chuck Benz's Verilog 

implementation of the 8b10b encoder and decoder logic [1], which in turn is derived from and refers 

to the original patent by Franaszek and Widmer [2].  I have referenced this clearly, and I have obtained 

email consent from Mr Benz. 

More generally, the reality is that networking is a well-travelled problem space, and even the more 

challenging real-time networking space has produced many very respectable and widely used 
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solutions.  Identifying a truly new and original approach was and is very challenging.  I am satisfied 

that the Virtual Bus architecture is holistically original because it combines existing concepts together 

in ways that, as far as I can determine, have not previously been considered. 

All of the building blocks of the VB architecture are commonly used throughout communications 

networks, both wired and wireless, and networked real-time control systems: space- and time-division 

multiplexing [3][4][5]; mapping, tunnelling and resource allocation protocols [6][7][8][9]; shortest-

path calculation [10][11][12]; individualised link-layer treatment of different traffic classes [5]; 

improved reliability and availability through redundant signalling [13]; producer-consumer 

relationships [14][15][16]; and time synchronization diffusion using clock correction, phase-locked 

loops and the mutual synchronization properties of loosely coupled oscillators [17][18][19]; to name 

just a few. 

The originality of the work presented in this dissertation is in assembling these building blocks into a 

new form and demonstrating that this form is both theoretically possible and practically achievable, 

not least by designing and constructing a research platform composed of custom physical hardware; 

programmable logic; and a firmware implementation of the protocol stack. 

The principal and original scientific contributions of the work are: 

1. A hybrid physical and link layer model in which discrete multi-drop segments of a packet-

switched partial mesh network are cyclically configured to operate in a circuit-switched mode, 

allowing time-sensitive traffic to be switched at line speed at the physical layer, and thus 

enhancing network performance in terms of message timing by: 

a. Constraining the end-to-end delivery delay across a multi-hop network to the line 

propagation delay, plus a small offset for each switching point. 

b. Constraining the propagation delay contribution to destination-to-destination 

multicast skew such that it is proportional to the differential link lengths to each 

destination. 

c. Entirely avoiding delays introduced by contention for network resources by pre-

allocating network resources in space and time to particular traffic flows. 

2. The Distributed Agent Resource Protocol (DARP); a distributed peer-to-peer resource 

allocation protocol for routing and scheduling real-time signalling paths. 

3. An implementation of peer-to-peer time synchronization by diffusion in a partial mesh 

network. 

4. A “constrained broadcast” mechanism that was originally designed to reduce the network 

load imposed by link state broadcasting for the Network Mapping Service, and redeployed to 

meet several other peer-to-peer broadcasting requirements within the architecture. 

1.1.3 Potential Applications of the Research 

The Virtual Bus architecture was originally conceived as, in effect, a “better version of CAN”.  VB is 

certainly aimed at the same field bus [20] space as CAN, although considering that VB is intended to 

be deployed as a partial mesh network, “field mesh” might be a more appropriate term.  However, 

given the enormous advancement of real-time and mixed-criticality Ethernet, e.g. by the IEEE Audio-

Video Bridging (AVB) [21] and later by the Time-Sensitive Networking (TSN) [22] working groups, over 

the almost 10 years since VB was first conceived, it is also fair to say that field buses are almost 

certainly a dead end – many of the problems that VB originally aimed to solve have since been solved 
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to some greater or lesser extent by the wider real-time networking research community in the context 

of real-time and time-sensitive Ethernets, or have considerable academic and industry resources still 

committed to researching new and/or enhanced solutions.  However, the lessons learned during the 

research detailed here may still be of value. 

VB is presented here both as an architectural design, and as an implementation of that design.  While 

many of the implementation-specific components, such as the design specifics of the media access 

controllers and protocol stack, are for the most part not directly compatible with existing network 

architectures, including CAN, Ethernet and their real-time variants, each of the scientific contributions 

listed above could be integrated into existing network architectures. 

Line-speed switching of traffic in a multi-hop network has been a goal of network design for decades.  

The potential network performance gains, particularly when compared to more classical multi-hop 

store-and-forward signalling such as is employed by Ethernet, are perhaps best illustrated by Figure 

1-6 through Figure 1-12.  As a practical example, VB’s physical layer switching approach could be used 

to achieve the synchronization of ad-hoc actions across a highly redundant mixed-criticality multi-hop 

control network with consistent nanosecond-scale timing differentials between destinations.  The 

rationale for physical layer switching is discussed in section 1.3, and the behaviour of VB’s 

implementation of same is discussed in detail in Chapter 2.   Appendix B, Appendix C and Appendix 

D.3.2 detail the programmable logic design of the media access controller (MAC); the interface 

presented by the MAC to a host microprocessor; and the firmware implementation that mediates 

access to the MAC by the higher layers of the protocol stack. 

Dynamic allocation of network capacity to real-time data flows has also been a goal of real-time 

networking research for some time.  Software-defined networking, and the User-Network Interface 

(UNI) of TSN, are examples of work in progress in this space, but both of these research areas are 

principally focussed on centralized solutions and, unfortunately, centralized solutions represent a 

potential single point of failure.  The TSN UNI does offer a fully distributed solution but it is explicitly 

limited to soft real-time signalling.  In contrast, DARP is fully distributed, peer-to-peer and supports 

hard real-time signalling.  The behaviour of DARP is discussed in detail in section 3.5, and a firmware 

implementation is detailed in Appendix D.3.5. 

VB’s distributed peer-to-peer approach to time synchronization presents as an alternative to the 

master-slave paradigm employed by IEEE1588 [23] network time synchronization and its derivatives, 

including IEEE802.1AS [24].  The experimentation presented in section 5.9 shows that for nodes 

separated by distance 𝑑 (hops), VB’s time synchronization mechanism is able to deliver mean 

synchronization error and interval period jitter between nodes of 𝑑ns, i.e. 1ns/hop, with standard 

deviation of approximately 15 ln(𝑑) + 20ns, given 𝑑 ≤ 8 and a simple linear topology.  In more 

interconnected topologies such as grids or surfaces, the rate of growth of standard deviation with hop 

count has been observed to be as much as 80% lower when compared to linear topologies.  Diffusion 

time synchronization is introduced in section 1.3.6 and discussed in detail in Chapter 5, including VB’s 

implementation parameters and experimental data.  Note that VB’s time synchronization mechanism 

executes at the link layer, in the MAC logic design, and is completely transparent to higher layers. 

Constrained broadcast is only of utility in networks built on a mesh topology, i.e. generally not 

Ethernet as loops are typically avoided and/or disabled in Ethernet networks.  Given a network that 

does contain loops, analysis and experimentation have shown that constrained broadcast achieves 
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reductions of up to 50% in total network utilization when a message is broadcast into a network with 

a grid topology.  Constrained Broadcast is discussed in detail in section 3.4.2. 

Given the volume and success of the research effort directed towards real-time Ethernet, and the 

resulting steady and ongoing erosion of the fieldbus space by Ethernet, I can see no more appropriate 

place for the contributions made by this research to be realized in practice.  Of particular interest is 

that there are some common threads that connect the operation of TSN’s scheduled traffic and cyclic 

queuing and forwarding, as described in the IEEE802.1Q-2018 standard [25], and VB’s time-triggered 

physical layer switching. 

The parallels between TSN’s cyclic queuing and forwarding strategy and VB’s approach to time-

triggered switching could be leveraged by implementing VB’s S/TDM switching behaviour into 

Ethernet switches and managing S/TDM switching with a gate control list, in a similar fashion to 

802.1Q’s scheduled traffic shaping.  This would afford an additional option for true line-speed 

switching of real-time messages as an accompaniment to the asynchronous traffic shaping of 802.1Qcr 

[26] and the scheduled traffic of 802.1Q-2018, enabling the constant end-to-end delays and 

nanosecond-scale jitter and multicast delivery skew that can be delivered by VB’s physical layer 

switching to be incorporated into a TSN network as a new real-time traffic class.  Merging VB’s solution 

into TSN thus has the potential to further advance the real-time performance of mixed-criticality time-

sensitive Ethernet while maintaining full backwards compatibility with existing TSN standards. 

Consider that a subset of the supporting behaviours developed independently to realize the Virtual 

Bus architecture have already been specified for TSN Ethernet, including: 

VB TSN 

Physical layer switching No equivalent 

Distributed Agent Resource Protocol (DARP) No equivalent 

Redundant Dataflow Model (RDM) Path control and reservation (802.1Qca) [27] 

Frame replication and elimination for reliability (802.1CB) [13] 

Producer-Consumer Protocol (PCP) A producer/consumer data model (802.1Qcp / YANG) [28] 

Self-configuration [29][30][31] 

Time synchronization Time synchronization (802.1AS) [24] 

Table 1-1 : Comparison of VB Features to TSN 

Note that 802.1Qcc Stream Reservation Protocol [9] (SRP) may appear to be equivalent to DARP, but 

in its fully distributed form it is explicitly qualified only to work with the best-effort Credit-Based 

Shaper (CBS) of 802.1Qcr [26], i.e. it does not support distributed time-triggered resource reservation.  

The traffic scheduling of 802.1Q-2018 is more closely aligned with VB’s time-triggered signalling, but 

802.1Qcc does not include a similar distributed reservation mechanism that is designed to interact 

with the scheduled traffic shaper.  IEEE802.1Qcs, which may have been intended to fulfil this role, has 

been suggested [32] but I could find no published indications that it has been further explored. 

The paragraphs above have highlighted some of the specific and intentional outcomes of the research, 

and suggested ways in which particular components of VB might be utilized and expanded upon by 

the wider real-time networking research community.  There is an additional point to be made around 

a concept that became apparent during the research, but that has not been explored in any real depth 

herein: the opportunities for capacity and parallelism that can be realized by networks that employ 
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true mesh topologies, in contrast to the star and tree topologies preferred by e.g. Ethernet.  Given a 

network architecture that is designed with the goal in mind, the reliability and availability of data flows 

can be enhanced simply by increasing the amount of interconnection between the nodes.   

Summarizing the brief discussion of this topic in section 1.4, every node is potentially an end station, 

but if every node is also a switch that is connected to at least two other nodes, i.e. there are no end 

stations that have a single connection to the network, then every node increases the total capacity of 

the network; the parallel capacity of the network, i.e. the number of partially or entirely disjoint routes 

between any two nodes; and the ability of the network to provide redundancy to mission-critical data 

flows in the event of damage to its individual parts.  Further, and as discussed in Chapter 5, the 

effectiveness of diffusion time synchronization is demonstrably enhanced in a mesh topology 

compared to a tree, star or simple linear topology. 

1.1.4 Limitations 

Although the design and implementation of the VB architecture was a successful exercise in many 

respects, it is certainly not free of architectural design or implementation faults. 

There are a number of architectural link layer design choices that are problematic, including: 

• A constant cyclic rate (intervals), coupled with an expectation that all of the signalling of the 

supported control system can or does employ the same cyclic rate.  See sections 1.3.5 and 

2.3.3. 

• Uniform TDM timeslot duration, set by the time required to transmit a single fixed-size cell, 

as explained in section 2.4.5. 

• A “uniform grid” of TDM timeslots that is relatively inflexible compared to e.g. the traffic 

scheduling of 802.1Q-2018. 

• A maximum end-to-end physical transmission distance that is a function of the duration of the 

TDM guard time, which in turn influences the overall size of each cell, as explained in section 

2.4.4. 

• A maximum length for any individual link of about 200m, as explained in section 2.4.4.  

There are also implementation-specific link layer limitations, i.e. they are not a consequence of the 

architecture, but nonetheless have a negative impact on the performance and utility of the network: 

• Relatively high perceived transmission latency, i.e. the delay between an application loading 

an S/TDM cell into the MAC and the cell actually being transmitted on the physical layer.  See 

section 2.3.3. 

• Relatively high perceived reception latency, i.e. the delay between a S/TDM cell being received 

at a destination MAC and an application in the destination node retrieving and parsing the 

cell.  See section 2.3.3. 

• A maximum address space limited to 62 nodes.  See section 2.5.3. 

The Distributed Agent Resource Protocol (DARP) at the network layer is also problematic.  While being 

distributed and peer-to-peer affords DARP far more fault-tolerance than a centralized routing and 

scheduling mechanism, it also introduces some unfortunate implementation problems, including: 

• Unreliable disjointness when constructing replica virtual buses, most likely due to 

insufficiently thorough analysis when selecting optimal term weights for path selection metric 

calculation, per section 3.5.2.1.1, (3-9) and as explored experimentally in section 4.3.5.2. 
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• Under certain circumstances that are not difficult to replicate, as shown in section 3.5.4.11, 

redirection of a virtual bus under construction can result in the routing algorithm repeatedly 

probing and re-probing the same section of the network, causing a “redirection storm”.  See 

section 3.5.2.1.3 for discussion of a possible mitigation strategy, but note that the strategy 

has not been implemented or tested. 

• An assumption that the ratio of transmissions for any given virtual bus to network cycles 

(intervals) is uniformly 1-to-1. 

These flaws are certainly not terminal for the utility of the VB architecture.  Many of the design choices 

were useful in the context of exploring the scientific concepts behind the architecture, including 

physical layer line-speed switching and a distributed peer-to-peer resource allocation scheme for real-

time switching resources.  However, the constraints on performance and flexibility that they impose 

limit the possible applications for which the architecture in its current form might be suitable. 

1.2 The Aims of the Research 

1.2.1 Hypothesis 

I set out to design a network architecture for distributed real-time control systems from first 

principles.  However, some of my initial thoughts on requirements appeared to conflict. 

• Deterministic delivery times.  Consequently, not a multi-hop network because multi-hop 

requires store-and-forward, which introduces the potential for unacceptably large delivery 

times in a heavily loaded network due to the need for message queuing at each hop to deal 

with contention.  Better to use a bus. 

• Minimise single points of failure.  Consequently, no buses, and no dedicated routing or 

switching nodes, because both represent single points of failure.  Better to use a multi-hop 

network. 

• Self-healing, to allow the network to re-route traffic around network breaks and faults – think 

the Terminator©, re-routing around damaged systems.  So, no buses, or if I use buses, they 

must be crosslinked somehow.  Self-forming is a natural extension of self-healing. 

• Multicast, because several control system modules may require access to the same data at 

the same time.  Better to use a bus because buses are a natural broadcast medium. 

• No duplex signalling, because it either causes delays to avoid collisions, or allows collisions 

that cause delays. 

• All network algorithms and functions must be distributed and peer-to-peer because any 

master-slave arrangement is fundamentally a single point of failure. 

It was clear that no published network architecture met all these requirements.  It was also clear that 

my hypothetical new network architecture was going to need to incorporate subsets of the 

characteristics of both multi-hop networks and buses, and the first inklings of an answer became 

visible: there's no obvious way to make a bus into a multi-hop network, but a multi-hop network can 

be configured as, virtually, a set of buses if traffic can be switched at the physical layer.  This can 

perhaps be viewed as not dissimilar at a high level to the DECOS framework [33], or even IEEE802.1Q 

virtual LAN’s [34], although neither proposed physical layer switching. 
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This idea was the kernel of my vision of what I would try to achieve: a network architecture and 

associated protocol stack that makes the implementation of a modular-redundant distributed periodic 

real-time control system as simple as constructing a network and attaching dependent control system 

modules to that network at any location, just as if the modules were attached to a simplex multi-drop 

bus, and with the timing and collision-free behaviour of a simplex multi-drop bus.  In order to achieve 

this, the relationships and real-time delivery paths between the modules would need to form 

themselves, and in order to maintain an acceptable level of reliability and availability they must also 

be able to self-heal in the event of unexpected changes to network topology. 

1.2.2 Problem Space Analysis 

My vision for the Virtual Bus was a self-forming, self-healing network architecture that allows the 

components, or modules, of a modular-redundant distributed periodic real-time control system to 

behave as if they are attached to a simplex multi-drop bus rather than a multi-hop partial mesh 

network.  However, it will become clear to the reader that a virtual bus network does not physically 

resemble a bus. 

Unpacking some of these concepts: 

• A distributed control system is one in which the set of modules that make up the control 

system – typically, sensors, controllers and actuators – are separated physically, logically or 

both and interconnected by a communications network. 

• A modular-redundant control system [35] is one in which some or all of the set of modules 

that make up the control system are replicated, such that individual modules are replaced 

with sets of replica modules.  Each set of replica modules is redundant; one or more members 

of a set can fail without affecting the operation of the overall control system, as long as each 

set of modules is available, i.e. always has at least one functional member that is able to 

provide the required functionality to the control system. 

• A periodic control system is one in which the operation of the control system, and hence the 

interactions between the modules of the control system via the network, occurs with a well-

defined periodicity. [36] 

• A hard real-time control system is one in which the control system must respond to a change 

of input within a tightly defined timeframe.  A failure to respond in the required timeframe 

can be regarded as a total failure of the control system. 

• A self-forming network determines the nature of the control system modules connected to it 

and the form of the relationships required between the modules; establishes the 

relationships; then allocates the resources required to service the relationships. 

• A self-healing network monitors itself for faults that have disrupted relationships between 

control system modules; attempts to re-allocate resources to bypass the fault; then, if 

necessary, attempts to form alternate relationships in order to maintain the control system's 

performance. 

For context, this research is nominally directed at control systems for small to medium-sized 

Unoccupied Aerial Vehicles (UAV's).  This does not exclude the research from having the potential to 

benefit other types of hard real-time control system, e.g. for occupied or autonomous vehicles of any 

type, or industrial machinery, but it may help to clarify some of the design decisions. 
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It is evident that the communications network that interconnects the operating modules in a 

distributed control system is itself a module of that control system because the wider control system's 

operation is entirely reliant on communication between its modules.  It follows that as a module in a 

modular-redundant control system, the communications network should also be modular-redundant.  

Similarly, as a module in a hard real-time control system, the communications network on which such 

a control system rests must also be able to meet hard real-time constraints for data delivery. 

The strategy of modular redundancy protects the availability of critical control system functions by 

replacing individual modules with sets of redundant replica modules.  When at least one of the 

redundant replicas is always available, the critical control system function encapsulated in the original 

module is presumed to be available.  Where a modular redundant control system also employs the 

distribution strategy, the availability of a set of redundant modules is enhanced by physically 

distributing the members of the set of replicas.  Physical distribution of replicas seeks to reduce the 

risk that a single incident or event that causes damage to the control system might compromise the 

availability of one or more critical functions. [37]  Both these strategies achieve their goal of enhanced 

availability by removing single points of failure, in exchange for increased complexity, volume, mass, 

power consumption and cost. 

I have noted above that the communications network that allows distribution of control system 

modules is itself a control system module [38] that can and arguably should be made redundant for 

distributed modular-redundant control systems.  Further, I posit that there are strategies over and 

above replication of network hardware components that can be used to improve the availability of 

communications between control system modules, and hence the availability of the control system.  

Such strategies tend to follow a common thread: the removal of single points of failure, for example 

by avoiding the master-slave paradigm by design and employing distributed, peer-to-peer solutions 

wherever possible. [19] 

A periodic control system must adhere to a well-defined schedule; to adhere to that schedule, its 

modules must exchange information with at least the same periodicity.  If the modules are closely 

interconnected this is trivial, but if the modules are distributed then this periodic communication 

between modules is characterized by a requirement that the communications network must be able 

to accommodate: data flows.  Conceptually, a data flow is a periodic transfer of a volume of data from 

a source to one or more destinations; the data flow is an output from the source, and an input to the 

destinations. [36]  I assume that the required capacity of any data flow is the worst-case (largest) 

amount of data that may need to be transferred in any period.  Specifying the maximum volume and 

flow rate of data that will be transferred from source to destination for each particular purpose allows 

the worst-case network resource utilization of all control system data flows to be characterized, and 

hence the network capacity required for the control system to be modelled. [35] 

Communications across packet-switched networks are organised into blocks of data referred to as 

packets, messages, or more generically, protocol data units (PDU's) [39].  The characteristics of a PDU 

are defined by the network protocol layer from which it originates.  The naming convention for PDU's 

tends to vary with the network architecture and/or the protocol layer; for example, in Ethernet [40] 

at layer 2 a PDU is referred to as a frame, and in the Internet Protocol (IP) [41] at layer 3 a PDU is 

referred to as a datagram or packet.  Note that although a data flow is physically a pulsed stream and 

logically a continuous stream, it must be constructed from discrete PDU's in order to traverse a packet-

switched network and its protocol stack.  One of the functions of a network protocol stack is to manage 
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the fragmentation of larger (typically, higher-layer) PDU's, e.g. a segment of a stream of data, into sets 

of smaller PDU's, or fragments, for transmission; and then reconstruct the higher-layer PDU at the 

receiver from the fragments as they are received. 

Depending on the design of the lower layers of a network architecture it may be possible for messages 

to arrive in an order different to that in which they were sent, and it is always a possibility that a 

message may not arrive at all.  If messages are lost in transmission and the network architecture is 

designed to timeout and request retransmission of missing messages, e.g. the transport layer, TCP 

[42], performs this function in TCP/IP, then reconstruction and delivery of the original data will be 

delayed until all messages have been delivered.  Messages may arrive out of order if it is possible for 

related messages to be delivered across different paths that have non-uniform and/or non-

deterministic delay characteristics.  Note that delivering related messages out of order is not 

necessarily problematic in terms of content; the original data flow can always be reconstructed if the 

original ordering of the messages can be reconstructed. 

Even in the absence of a need for message re-ordering, the low jitter requirement discussed below for 

hard real-time control systems makes it impractical to use a strategy combining either or both 

bidirectional signalling (ACK/NAK) and timeout-and-retransmission to manage message loss and 

ensure data flow reliability, because such strategies make it difficult to accurately estimate worst-case 

bounds for message delivery times. [43]  An alternate strategy to improve data flow reliability is to 

treat data flows as redundant modules that can be replicated.  For any given period of a replicated 

data flow, if at least one complete replica of a period's data arrives at a destination within the required 

time frame then the data flow has been successfully delivered for that period.  This strategy of data 

flow replication has a price in terms of network utilization: if a data flow is replicated 𝑘 times then the 

network utilization of the data flow will likely be increased proportionately by a factor of 𝑘. Note also 

that the network receiver's protocol stack must recognise that there is a relationship between the 

replicas and collate them into a single instance of the original data flow for the control system. 

Consider also that if a network architecture supports replicated data flows, there is no particular 

reason that the replication factor 𝑘 must be uniform across all data flows.  The processes of a complex 

control system will not necessarily all have the same criticality or require the same level of fault 

tolerance.  High criticality functions with low fault tolerance would justify a relatively high level of data 

flow redundancy, whereas low criticality functions with high fault tolerance may be adequately served 

by a relatively low level of data flow redundancy. 

The principal network timing issue in distributed hard real-time control is not the delivery delay 

associated with inter-module communications; up to a point, known and stable delivery delays can be 

factored into the operation of the control system.  The problem is variable delivery delay, or jitter. 

[44]  If the worst-case jitter that a network architecture can achieve for all data flows cannot be 

guaranteed to be less than or equal to an upper bound defined by the requirements of a dependent 

control system, the architecture is likely not useful as a communications platform for that control 

system.  For a network architecture to be optimal in terms of delivery timing, and hence useful for any 

distributed control system, not least hard real-time control systems, it must place a well-defined upper 

bound on jitter in delivery timing by design.  In the ideal, that upper bound is zero. [45] 

Delivery timing constraints are particularly important for the multicast data flows that are typical of 

modular-redundant distributed control, not least because they enable the optimal condition of replica 

determinism to be achieved and preserved [46].  Replica determinism in the context of a modular-
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redundant control system dictates that all the members of a set of replica modules must receive the 

same inputs, in the same order, and at the same time.  That is, the timing of the delivery of each 

multicast data flow to the set of replicas must be constant across all the members; and the relative 

order of delivery for a number of separate multicast data flows delivered to a set of replicas must also 

be constant across all of the members.  Again, to achieve this, a network architecture must place a 

well-defined upper bound on differential delivery timing, or skew, at each multicast destination by 

design, even for multi-hop network implementations in which the number of hops to each of the 

destinations of a multicast data flow is not uniform.  In the ideal, that upper bound is zero. 

The combination of self-forming and self-healing qualities can be viewed as self-organizing. [47]  In 

order for a network to be self-forming, the network nodes must have an understanding that they are 

not isolated, they are parts of a larger network, and they must know which nodes make up, or are 

members of, the network. [48]  Given that the network must also be self-healing, in the context of 

membership it should be possible for faulty nodes to be removed from the distributed member list, 

and new (or restored) nodes to be added to the distributed member list.  Further, given a network 

with a diameter greater than 1, i.e. not a bus, membership services must be able to propagate across 

multiple hops. 

1.2.3 Requirements 

Reviewing the aim statement and problem space analysis above, there are some clear functional and 

behavioural requirements for the operation of the lower levels of the network architecture that must 

be addressed if the aim of the research is to be met.  In no particular order: 

• Minimization of single points of failure, particularly by avoiding any master-slave 

arrangements. 

• A dynamic multi-hop membership service. 

• Self-forming and self-healing data delivery arrangements between active members. 

• Support for multicast real-time data flows. 

• Maximization of the reliability and availability of real-time data flows at destinations, 

particularly through the provision of multiple layers of individually scalable redundancy. 

• Minimization of end-to-end delay for delivery of real-time data flows.  Ideally, end-to-end 

delay should be a function only of transmission line propagation delay. 

• Extremely low multicast delivery delay skew of real-time data flows from destination to 

destination for each data pulse.  Ideally, zero. 

• Jitter in delivery timing of real-time data flows from period to period to be no greater than 

one bit symbol at the physical layer signalling rate. 

• No variation in delivery ordering of real-time data flows from destination to destination each 

pulse. 

Acknowledging that this is a research exercise, rather than the design and implementation of an 

industrial network, my goals in terms of the network size and capacity to be supported by the 

implementation herein are modest. 

• The network must support no less than 32 nodes. 

• The network must support a diameter of no less than 9 nodes, i.e. 8 hops. 

• The maximum data capacity of any real-time signalling path must be no less than that of the 

Controller Area Network [49], i.e. a payload throughput of not less than 500kbps. 
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• Each node must have at least four network interfaces. 

However, it must be clearly acknowledged and understood that the latter list defines implementation 

goals, not architectural goals.  The VB network architecture should not and does not impose or 

enforce these constraints. 

1.3 Network Delivery Timing 

1.3.1 Collisions 

Collisions are the principal cause of variability in network delivery times.  Collisions in a 

communications network are generally considered to be events in the physical domain; for example, 

a physical domain collision will occur when the signals generated by more than one transmitter 

overlap in space and time.1  If this occurs then in all likelihood all of the overlapping signals will be 

corrupted.  Collisions can also occur in the logical domain, possibly as a result of attempts to avoid 

physical domain collisions.  A logical domain collision occurs when there is more than one message 

queued for transmission via a shared signalling channel. [50][51]  Logical domain collisions do not 

cause signal corruption and consequent message loss; rather, they cause messages to be delayed as 

they await access to the signalling channel or, in the worst case, cause messages to be dropped if there 

is insufficient memory in a transmission queue.  Logical domain collisions are more commonly referred 

to as contention, because queued messages are contending for access to the signalling channel, but 

they are collisions nonetheless. 

Taking into account timeout-and-retransmit strategies to recover from lost messages, e.g. TCP, the 

first-order effect of both of these types of collisions is non-deterministic delivery delays and, in the 

worst case, e.g. a low-priority CAN message [49] that is unable to obtain access to a busy bus [52], 

there may be no upper bound to the delivery delay [53].2  If a network architecture does not need to 

support hard real-time systems then variable delivery delays may be tolerable; but a network 

architecture that is required to support hard real-time systems must guarantee that delivery delays 

will be constrained to bounds dictated by the dependent control system.  The bounds are both upper 

and lower, i.e. stable non-zero delay may be acceptable, but wide variance in delay – jitter – is not. 

If it is not possible for collisions to occur in either the physical and logical domains then the delivery 

delay for every transmission that follows a particular path between any two network nodes will be a 

constant function only of the propagation delay of the path, noting that in a multi-hop network, each 

hop will likely incur an additional switching or forwarding delay over and above simple propagation 

delays due to link length.  If a transmission is multicast to several destination nodes then the delivery 

timing skew with respect to each destination is the difference in delivery delays.  Propagation and 

switching delays are therefore central to the timing performance of a distributed hard real-time 

control network that is collision-free by design. 

 
1 Note that I explicitly do not consider other non-baseband multiplexing techniques here, such as frequency or 
code division multiplexing, not least because none of the related wired network architectures that VB is 
compared against (including Ethernet (and its RT variants), CAN, and TTP) utilize FDMA or CDMA. 
2 There are techniques to mitigate the risk of this occurring, but it is beyond doubt that raw CAN has this 
limitation in the worst case. 
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A shared medium such as a bus is not optimal for collision-free networking because in the absence of 

a strong media access control scheme, e.g. the time-division multiplexing (TDM) solution used for Time 

Triggered Protocol (TTP) [54], a shared medium is likely to be regularly subject to either or both 

physical and logical collisions.  On the other hand, in the absence of collisions then in any network 

constructed from a single shared medium, delivery delays from any node to every other node – 

including multicast data flows – are a function only of the physical length of cabling between the 

source and destination nodes and the propagation delays inherent to the signalling technology 

implementation. 

Simplex signalling channels can never suffer from physical domain collisions because the design of the 

signalling channel dictates that there is at most one transmitter that can access the channel; ARINC429 

is a relevant example. [55]  Full duplex point-to-point signalling channels are logically constructed from 

a pair of simplex signalling channels, neither of which is subject to physical domain collisions [56]; full 

duplex IEEE802.3 Ethernet [57] is a good example.  Time-Triggered Ethernet's (TTE) [3] quality of 

service extension to 802.3 has shown that logical domain collisions in single-hop Ethernet can be 

avoided by using TDM to guarantee the availability of a transmitter and its dedicated signalling 

channel at a particular time.  More recently, in the last 10 or so years, the IEEE’s Time-Sensitive 

Networking (TSN) group [22], which evolved from the Audio-Video Bridging (AVB) group, has defined 

a range of standards [58] that, used in cooperation, afford an approximation of fault-tolerant and 

safety-critical [59] multi-hop end-to-end TDM over Ethernet networks.  The scheduled traffic shaping 

of the 802.1Q-2018 standard [34], supported by, amongst others, 802.1AS [24] for time 

synchronization; 802.1Qca [27] for path control; and 802.1CB [13] for frame redundancy, are the 

arguably the key components of real-time Ethernet as specified by the TSN group. 

1.3.2 Message Forwarding 

Even in the absence of collisions, store-and-forward networking introduces substantial per-hop delays 

due to the requirement to receive, validate and re-transmit a message at each hop.  This delay may 

be non-trivial: consider that even for gigabit Ethernet using a minimum-size frame made up of 72 

octets plus an inter-frame gap of 12 octets, the time required per hop, just to transfer the frame, is 

672ns. 

Additional delays can be expected due to factors such as the propagation delays through the physical 

layer send and receive circuitry; link length propagation delays; processing delays due to frame 

validation, outbound port selection, and receive-to-transmit memory copy operations in switches. 

In the case of multicast frames that are replicated and re-transmitted via several outbound ports of a 

switch, each re-transmission will be skewed relative to one another if the receive-to-transmit memory 

copies must be carried out sequentially for each outbound port.  Given that processing delays can be 

expected to be influenced by the load on a switch, in the worst case, multicast replication processes 

could be interrupted by competing processing requirements, which would cause unexpectedly high 

skew for some of the replicas.   Consider also that all re-transmission delays are additive at each hop; 

given a multicast data flow for which each destination is a different number of hops away from the 

transmitter, there is a risk that delivery timing skews will incrementally increase for some of the 

replicas. 

Cut-through switching may be employed with Ethernet to reduce per-hop delays compared to the 

default store-and-forward switching strategy. [58][60]  In cut-through switching the process of 
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transferring a frame from the receiver to the transmitter can commence immediately the destination 

MAC address has been decoded, i.e. at the 14th octet, incurring a switching delay that is theoretically 

as low as just 112ns for gigabit links.  Note that cut-through switching does not prevent logical domain 

collisions; it simply reduces the switching delay if, and only if, the outbound port is not already in use.  

If an Ethernet frame arrives at a cut-through switch and the required outbound port is already in use 

by an earlier frame then, in the absence of a pre-emption mechanism, the newly arrived frame must 

wait until the outbound port is free.  That is, cut-through switching reduces the lower bound of the 

switching delay, but has no impact at all on the open-endedness of the upper bound.  Cut-through 

switching also comes at a price compared to store-and-forward: frames cannot be validated prior to 

retransmission and hence faulty frames are not discarded by switches. 

As noted above, the IEEE TSN group has been developing standards for real-time Ethernet.  The 

principal output of the TSN group that contributes to reducing end-to-end delays and jitter for real-

time traffic is under the IEEE802.1Q standard’s banner.  Several traffic-shaping policies are defined 

under 802.1Q, including a Credit-Based Shaper (CBS); the Asynchronous Traffic Scheduler (ATS) of 

802.1Qcr [26] and traffic scheduling under 802.1Q-2018 [25].  CBS and ATS are soft real-time, but the 

TAS is genuinely hard real-time, and consequently is utterly dependent upon time synchronization of 

the behaviour of switches, as described under the IEEE802.1AS standard. [24] 

When a frame is received by a TSN-capable switch, its priority (carried in the frame in 802.1Q tags) is 

read, an outbound (egress) port is selected, e.g. as a result of the application of 802.1Qcc Stream 

Reservation Protocol [9], and the frame is queued for retransmission in the egress port’s queue for 

that priority.  A gate control list (GCL) for each port and queue determines when and for how long the 

queue is available for transmission, i.e. when the “gate” on the queue opens and closes.  Queues that 

are not available are blocked; no transmission can occur from a blocked queue.  If multiple queues are 

available simultaneously then frames are transmitted from the highest priority queue that is not 

empty. 

Scheduled traffic will generally be assigned the highest priority, such that if the scheduled traffic queue 

is not blocked then it will always have first right of access to the signalling channel.  A clear path for a 

scheduled data flow can be constructed through the network by inserting entries in the GCL’s of the 

switches that the frame will traverse, such that at a particular time at each switch, the scheduled 

traffic queue will be empty, the signalling channel will be available, and a received scheduled frame 

can be immediately retransmitted towards its destination; consider the cyclic queuing and forwarding 

strategy discussed in Annex T of 802.1Q-2018.  Consequently, in a well-configured and fault-free 

network, scheduled traffic experiences no logical collisions and hence no unexpected delays, 

minimizing its end-to-end delivery delay and jitter. 

Note that cut-through switching can also be incorporated into 802.1Q-2018-compliant switches to 

further reduce the frame propagation delay through each switch.3  On the one hand, given that TSN’s 

traffic scheduling relies upon not only the destination address but also the 802.1Q tags being received 

and decoded to be able to determine the egress port and queue, the value of cut-through switching 

would appear to be relatively limited.  On the other hand, given that one of the functions of traffic 

 
3 As of 2019 [58] no decision had been made as to whether or not cut-through switching will be explicitly included 
or excluded from the IEEE802.1Q standard, although my reading of [58] is that it is likely to be explicitly excluded. 
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scheduling is to ensure that the outbound signalling channel is free when a scheduled frame arrives 

for re-transmission, cut-through switching might be particularly effective. 

802.1Q’s traffic scheduling, and cyclic queuing and forwarding, allows a network designer to 

implement a highly flexible TDM scheme for scheduled traffic, including features such as: 

• Timeslots may be assigned sequentially along a chain of switches, such that they must be the 

same duration but need not overlap in time, and even to the extent that a frame may wait at 

intermediate switches for some period of time before being forwarded; 

• Multiple data flows can be scheduled and routed completely independently, i.e. without any 

need for time synchronization other than ensuring that there are no resource conflicts; 

• Timeslots are not explicitly constrained to a particular duration, i.e. each data flow’s timeslots 

may have a duration sufficient to permit the passage of multiple frames, or frames with 

inconsistent cycle-by-cycle sizes; or even different cycle-by-cycle durations. 

Further, these features are realized in a mixed-criticality network, i.e. rate-constrained and best-effort 

traffic are still possible, but real-time traffic can be scheduled to minimize end-to-end delivery times 

and cycle-by-cycle jitter.  However, minimization of end-to-end delivery times is compromised by the 

need to receive and retransmit frames at each hop, particularly in the absence of address-only cut-

through switching. 

Note that the TDM approach taken by the IEEE TSN group is closely related to the TDM approach taken 

by TTE; that is, link-by-link TDM.  Under this approach, a timeslot is defined only for a particular link; 

where a frame must traverse multiple hops, it is re-transmitted in a new timeslot across each link.  The 

primary constraint on the timeslot used for each hop in the chain is that the next timeslot must be 

later than the previous timeslot.  It should also be noted that if cut-through switching is implemented 

then it is possible to overlap the timeslots in the chain of hops. 

Further, regardless of whether cut-through switching is implemented, there is an additional 

propagation delay incurred by a frame during transit through a switch: store-and-forward frames must 

be validated using a checksum or CRC, which necessitates reception of the entire frame; an egress 

port must be identified; and the frame must be transferred to the selected egress queue.  Each of 

these steps takes time, and while it would certainly be possible to design a switch that minimizes this 

time, e.g. through dedicated hardware and/or parallel processing, it is improbable that it would ever 

be possible to achieve a delay that approximates line speeds because of the need to decode at least a 

portion, and preferably all, of the frame before it can be transferred to an egress port. 

Avni et al [61] have posited that, given a globally shared view of time to enable synchronized 

scheduling at each hop, it is possible for a time-triggered message to pass along a chain of nodes with 

minimal delay if the fact of the message, and the path that it will take, is known (and scheduled) in 

advance by the intermediate nodes.  The scheduling of the passage of the message removes the need 

for any hop-by-hop decision-making, reducing the transit time through each intermediate node.  This 

appears to be closely related to the cyclic queuing and forwarding strategy described in Annex T of 

IEEE802.1Q-2018. 

Schweissguth et al [4] have explored the use of end-to-end timeslots for Ethernet, controlled by 

OpenFlow [62] SDN.  Under their scheme, a single window of time is defined for the passage of a time-

triggered frame from source to destination across multiple hops.  The frame experiences minimal 

delay at each hop because the egress ports are guaranteed to be available for the transmission 



Page 15 

 

window.  This approach is less efficient than that proposed by Avni, and cyclic queuing and forwarding, 

because of the switching delay imposed by each hop.  If that switching delay can be reduced to the 

quantum of line speed then there is the potential for real gains in performance. 

1.3.3 Link Utilization Efficiency 

Consider that this research is focussed primarily on the vehicular networking space, in which individual 

links are likely to be 10m or less4, which equates to signalling channel propagation delays of 50ns or 

less per hop.  Using gigabit Ethernet as our baseline, discounting historical and non-real-time switching 

variants (e.g. classical; AFDX; TTE) and considering only current and emerging real-time switching 

standards (802.1Q-2018 traffic scheduling, without cut-through), recall that the transmission duration 

for a minimum-size (total 84-octet) frame is 672ns.  Even with cut-through switching that includes a 

single 802.1Q tag, 24 octets must be received before retransmission can potentially commence, i.e. 

192ns.  It is evident that the per-hop delay incurred by store-and-forward retransmission can be more 

than an order of magnitude larger than the speed-of-light propagation delay, i.e. transmission time 

dominates propagation delay. [63] 

Even the hop-by-hop TDM schemes employed by TSN and TTE require that a proportion of the network 

capacity dedicated to a transmission be consumed by a guard time.  A guard time is a brief period 

during which no transmitter will attempt to signal into the medium, preventing time synchronization 

errors and the effects of propagation delay from corrupting the leading and trailing portions of 

messages.  As a rule, each message will be bracketed by a leading guard time and a trailing guard time; 

the total guard time between any two contiguous messages is the sum of the trailing and leading guard 

times.  Guard times, and the related issues of time synchronization and propagation delay, have a 

negative impact on network utilization efficiency because they represent some portion of time during 

which the signalling medium is not used.  This reduction in utilization efficiency is part of the price that 

a TDM scheme pays in exchange for a lack of collisions. 

Consider a simple example based on minimum-size Ethernet frames transmitted using store-and-

forward TDM signalling.  Given the flexibility afforded by 802.1Q-2018’s traffic scheduling, we consider 

only the single-hop utilization efficiency case.  Assume that TDM timeslots are uniform in duration, 

contiguous in time, and that there is a one-to-one relationship between messages and timeslots.  The 

duration of a timeslot is made up of at least five components: 

 

Figure 1-1 : Composition of a Timeslot 

The utilization efficiency 휂 is the proportion of a timeslot spent actively transmitting a message, hence: 

 휂 =
𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒

𝑡𝑙𝑒𝑎𝑑 + 𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒 + 𝑡𝑔𝑎𝑝 + 𝑡𝑝𝑟𝑜𝑝 + 𝑡𝑡𝑟𝑎𝑖𝑙
 

(1-1) 

 
4 This is true for many use-cases but is certainly not universal, e.g. large ground vehicles such as multi-trailer 
road transport, rail transport, and large passenger aircraft. 

Leading Guard Time Message Inter-Frame Gap Propagation Delay Trailing Guard Time 
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𝑡𝑙𝑒𝑎𝑑 and 𝑡𝑡𝑟𝑎𝑖𝑙 are governed by the precision of the network time synchronization scheme.  We will 

assume that the worst-case timing error with respect to network time that is exhibited by any node is 

±100ns, such as might be realized by IEEE802.1AS. 

𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒 is a function of the message size and the line speed.  We are considering only minimum-size 

Ethernet messages; as discussed above, this is 72 octets or 576 bits. 

𝑡𝑔𝑎𝑝 is a function of the network physical layer and potentially the line speed.  For Ethernet, this is 12 

octets or 96 bits. 

𝑡𝑝𝑟𝑜𝑝 is a function of the link length.  For Ethernet this is up to 90-100m, and assuming twisted pair 

cable with a velocity factor of ~0.67, this is up to 500ns of delay.  However, assume that links are 10m 

in length for consistency, i.e. delay is assumed to be 50ns. 

Consider now Figure 1-2 below.  The 휂𝑓𝑟𝑎𝑚𝑒 trace indicates the efficiency for the entire frame, 

whereas the 휂𝑝𝑎𝑦𝑙𝑜𝑎𝑑 trace indicates the efficiency for the payload only (42 octets, assuming a single 

802.1Q tag). 

It is evident from Figure 1-2 that the line speed has an inverse relationship with the utilization 

efficiency.  The reason for this is that at lower line speeds, the proportion of a timeslot devoted to 

actually sending payload dominates; but as the line speed increases in the absence of a proportional 

improvement to the fixed time components of the timeslot; i.e. the guard times, the propagation 

delay, and the switching time; these factors increasingly dominate and utilization efficiency is 

compromised, to the point that at gigabit or higher line speeds the value of TDM becomes 

questionable. 

 

Figure 1-2 : Utilization Efficiency and Timeslot Duration by Line Speed 

Note that it is possible to improve the performance at higher line speeds somewhat by permitting 

multiple messages to be embedded in a single timeslot. [64]  Consider gigabit Ethernet with some 

number of minimum-sized frames grouped together and transmitted in a single timeslot: 
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Figure 1-3 : Utilization Efficiency and Timeslot Duration by Frames per Timeslot at 1Gbps 

Evidently, as more frames are packed into a single timeslot, the utilization efficiency improves.  

However, a number of minimum-size frames, ideally at least 6 given the specified conditions, must be 

transported in a timeslot at gigabit line speeds before the utilization efficiency approximates the 

efficiency of a single frame per timeslot at 10Mbps line speeds.  Further, while higher utilization 

efficiency is clearly desirable, it comes at the price of making scheduling of these multi-frame timeslots 

relatively challenging; several short timeslots are easier to distribute across a busy but somewhat 

porous schedule than a single long timeslot. [65] 

1.3.4 End-to-End Collision-Free Transmission across a Multi-hop Network at Line Speeds 

Cut-through switching demonstrates that propagation delays through switches can be reduced if 

messages are not validated at each hop.  If this can be coupled with a means of knowing when the 

frames of a particular data flow will arrive at an inbound port, and which outbound port (or ports) 

those frames are to be forwarded through, then line-speed switching of frames is potentially 

achievable.  

Several of the components of TSN could potentially provide these functions: IEEE802.1Qcc Stream 

Reservation Protocol [9] coupled with the traffic scheduling of 802.1Q-2018 under the control of 

IEEE802.1AS time synchronization. [58][66]  However, given that the TSN group is evidently reluctant 

to use cut-through switching, and noting that cut-through switching is in any case not line-speed 

because it relies upon partial decoding, there is room to explore alternative solutions that can achieve 

line-speed switching. 

Nayak et al [50] proposed that “queueing can be eliminated if… the source host initiates transmission 

only when the entire network path over which the flow traverses is exclusively reserved for it”.  

However, as they considered only switched store-and-forward Ethernet, the message dwell time at 

each hop can be expected to be in the microsecond range.  Craciunas et al [67] demonstrated that it 

is possible to specify a set of scheduling constraints that will ensure collision-free delivery across a TSN 

Ethernet using the time-aware shaper of IEEE802.1Qbv5 [5], although in later work, Serna Oliver et al 

[68] pointed out that such fully deterministic communication “restricts the solution space for valid 

schedules due to the isolation of streams in the time domain”. 

 
5 The progenitor to IEEE802.1Q-2018 scheduled traffic. 
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In counterpoint to the store-and-forward message switching employed by Ethernet, if there is no need 

to receive and decode any part of a message for validation purposes before the message is forwarded 

then switching can take place in the analogue domain.  The delay incurred by switching can thus be 

reduced to the propagation delay through the switching electronics.  Consider that differential 

communication multiplexers with sub-nanosecond propagation delays are readily available 

commercially, e.g. the SY89545L part from Micrel™ [69].  This is physical layer switching, as opposed 

to the layer 2 (link layer) switching generally associated with Ethernet.  Note that per the OSI reference 

model [39] a device that carries out physical layer switching is referred to as a relay rather than a 

switch, but I have chosen to align this approach to the generic 7-layer protocol stack by referring to it 

as physical layer switching. 

Note that there is an additional benefit to this approach in terms of differential delivery performance 

for multicast data flows.  When a data flow is multicast, the messages that make up the flow must at 

some point be replicated by one or more of the switches that the flow traverses.  Conventionally such 

replication would be carried out by a switch copying the message from an ingress queue to several 

egress queues.  As a rule, we would expect that such copying processes would be sequential, e.g. given 

three network interfaces 𝐴, 𝐵, 𝐶, a switch would copy from 𝑄𝐴
𝑟𝑥 → 𝑄𝐵

𝑡𝑥, then 𝑄𝐴
𝑟𝑥 → 𝑄𝐶

𝑡𝑥.  Sequential 

copying would thus likely induce delivery skew between the replicas, such that the message would 

likely be retransmitted from 𝑄𝐵
𝑡𝑥 slightly earlier than it is retransmitted from 𝑄𝐶

𝑡𝑥.6  However, using 

physical layer switching, we can physically connect 𝐴𝑖𝑛 to 𝐵𝑒𝑔 and 𝐶𝑒𝑔 in the analogue domain, at an 

electrical (physical layer) level; consequently, the retransmission skew between the replicas is the 

skew between the egress ports of the switch, which can be expected to be in the sub-nanosecond 

range. 

 

Figure 1-4 : Physical Layer Switch Matrix and Multiplexing 

Note also that physical layer switching makes it not only practical but efficient to use a single TDM 

timeslot for end-to-end delivery across multiple hops, an approach that has also been explored by 

Schweissguth et al [4] in the context of an SDN-controlled switched Ethernet.  Consider Figure 1-4 

above, in which a simple physical layer switch matrix with four ingress and four egress ports (left) is 

constructed from four multiplexers (right). 

 
6 This is principally true in a lightly loaded network in which egress queues are generally empty.  Other factors 
such as the traffic scheduling of 802.1Q-2018 or the asynchronous traffic shaper of 802.1Qcr [26] could also 
affect this in a TSN system. 
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Figure 1-5 : Nodes and Links Chained Together Into a Simplex Multi-drop Bus 

If a message must traverse multiple hops through multiple physical layer switches, it can be relayed 

from end to end of a chain of links and multiplexers as a single transmission; the chain of links and 

switches becomes the extended physical layer of a single transmitter, as shown in Figure 1-5 above.  

This extended physical layer behaves virtually like a simplex multi-drop bus: a single transmitter is 

connected by a single simplex signalling channel to one or more receivers.  Note that this is not a bus 

abstraction, such as is sometimes used for e.g. wireless networking [38]; the chain of connected 

network segments is physically a bus for the duration of the transmission.  The operation of the 

network switches controls which receivers are connected to the transmitter. 

In terms of end-to-end timing a message can pass along the extended physical layer as if it has been 

circuit-switched rather than packet-switched. [70]  The signalling channel is free of physical collisions 

because at most one transmitter can signal into it, and it is free of logical collisions because messages 

are not queued at intermediate nodes and never need to contend for access to the signalling channel 

during the transmission of any message.  I refer to these chains of links as virtual buses. 

Physical layer switching is an example of Space Division Multiplexing (SDM).  The "space" domain that 

is being multiplexed is the set of network links.  Each link can be mapped to a segment in a network 

resource graph in which graph segments can be joined together through switches.  The physical layer 

switches chain space-domain network resource segments together to construct paths through the 

resource graph that traverse multiple network hops.  These paths can branch at any switch, but the 

single transmitter constraint means that the child paths produced by branching cannot be permitted 

to re-join because this would result in a collision at the physical layer.  Branched paths of this type are 

equivalent to the virtual tree structures that are commonly used throughout other networking 

architectures, including Ethernet. 

Signalling is time-triggered, so any given switch configuration needs last no longer than the time 

required to transfer a message end-to-end across a virtual bus. [71]  The end-to-end message transfer 

time across any number of hops7 is then the duration of a TDM timeslot. [38]  The network resource 

graph thus extends into two dimensions: time, in terms of TDM timeslots; and space, in terms of 

network links.  In the context of the network resource graph, I refer to the time (𝑥) dimension as the 

T-plane and the space (𝑦) dimension as the S-plane.  This approach to media access control combines 

 
7 At least, some presently undefined but reasonably large number; the target for my implementation of the 
virtual bus architecture is a minimum of 8 hops. 
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Space and Time Division Multiplexing, so I refer to it as an "S/TDM" scheme.  Referring again to Figure 

1-5 above; Bus 0 (red) and Bus 1 (green) follow the same path from Node 0 to Node 1 via Switch 0 and 

Switch 1, so they are sharing the same S-plane segments of the resource space; in order for this sharing 

of the S-plane to occur, they must be transmitted in different TDM timeslots so that they do not also 

share the same section of the T-plane.  Observe also that Bus 1 and Bus 2 (blue) follow the same chain 

of links between Node 0 and Node 2, but in the opposite direction; they can be transmitted in the 

same timeslot without causing a collision because the links are full duplex and the directionally 

opposed signalling channels map to physically separate segments of the S-plane.  We can therefore 

say that each of the buses is isolated either spatially, or temporally, or both, from every other bus. 

A consequence of ensuring that a data flow is always delivered to all of its destinations using the same 

subset of network resources for every data pulse is that the delivery of the data flow is atomic; it is 

never interrupted by other data flows because it is always delivered at the same time and over the 

same physical path.  This property of atomicity is particularly important because it proposes to realize 

one of the requirements identified in section 1.2.3: delivery ordering is invariant with respect to other 

data flows. 

A consequence of removing both physical and logical collisions using an S/TDM scheme is that the 

linkage between utilization and performance (in terms of the various aspects of delivery timing) is 

broken.  Consider that for switched best-effort “classical” 802.3 Ethernet, performance degrades 

slowly as utilization increases until a "knee" occurs at around 40% utilization, then degrades very 

rapidly for utilization above the knee. [72]  The principal cause is that under heavier loads the 

outbound queues of switches are rarely empty when a new message is ready for re-transmission, so 

new messages must wait until they reach the head of the queue.  The delay incurred by queueing is 

proportional to the volume of the messages already in the queue, so higher network loading causes 

longer delays. [52]  Additionally, if switches use simple sequential processing for memory-to-memory 

copying in order to transfer messages from inbound ports to outbound port queues, there may be 

delays on the inbound side as received messages wait to be transferred to outbound queues.  If 

inbound-to-outbound transfers at switches are parallelized and guarantee uniformly nanosecond-

scale delays due to the SDM scheme (physical layer switching), and outbound ports are always 

guaranteed to be available for a message at a particular time due to the use of time-triggered 

signalling, utilization of every switch and link (and hence the entire network) can take any value up to 

and including 100% with no effect on the delivery timing of any message.  For these conditions to be 

met, all of the network resources in both the S-plane and T-plane required to transfer a message from 

a source to all of its destinations must be committed to the message before transmission commences. 

[68]  That is, the path that an S/TDM message will follow through all the involved physical layer switch 

matrices must be dedicated to that message for the entire duration of its timeslot. 

A difficulty with the virtual bus approach to switching is that messages are not validated at each hop; 

rather, they are validated at each receiver.  It is reasonable to presume that this exposes the virtual 

bus to a greater risk of Byzantine errors [73] in comparison to standard switched Ethernet, i.e. 

instances where different multicast destinations receive the same message with different, 

undetected, errors.  VB manages this risk in two ways: an error-checking mechanism in the form of a 

Cyclic Redundancy Check (CRC) [74] to validate each message, applied to all message content (header 
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and payload); and by data flow redundancy, as discussed in section 1.4.5 below, and that could 

incorporate a voting system to discard validated but non-matching messages from a redundant set.8 

Note that there are both similarities and differences between the approach taken by TTE, and by the 

IEEE TSN group, which was evidently informed by TTE, to allocating network resources, and the virtual 

bus approach. 

At the switch level, TTE, TSN and VB all treat network resources as a 2-dimensional matrix of time 

(timeslots) and space (egress or outbound network ports).  Similarly, all of the architectures allow and 

expect that a message will traverse the space plane under tight control, progressing along a previously 

defined chain of network links.  Where they diverge is in their treatment of the time plane. 

Under TTE and TSN, a timeslot is allocated for a single switch only in the space plane; when a message 

is forwarded to the next switch, it is assigned a new egress timeslot that may or may not be contiguous, 

but certainly is not parallel, with the ingress timeslot.  This is advantageous in that it is possible to 

schedule a message’s transit across the network to take advantage of small holes in the time plane of 

an existing network schedule [65] by delaying messages at intermediate hops to allow signalling 

channels further along the path to become free.  The price that is paid for this scheduling flexibility is 

the potential for increased end-to-end delay for a single destination, and increased delivery skew 

across several destinations for multicast traffic.  In any case, because the timeslots are at best 

contiguous and in the absence of cut-through switching will never overlap, the end-to-end delivery 

time to any destination is dominated by the number of switches traversed, particularly when the 

network is physically compact, e.g. links less than 10m in length. 

Conversely, under VB, a timeslot is allocated for the end-to-end delivery of a message from the 

transmitter to all configured destinations.  This is advantageous in that messages are always delivered 

in the minimum possible time: they are never delayed in the network.  In combination with the effects 

of physical layer switching, this ensures that the delivery time of a message is dominated by the end-

to-end propagation delay due to the physical length of the cabling between the source and 

destination, with little regard for the number of switches traversed, so multicast delivery skew is 

dominated by the difference in lengths between the destinations.  Further, because messages are 

never delayed in the network for any reason, cycle-to-cycle jitter becomes a function only of the 

precision of network time synchronization.  The price that is paid for these gains is limited scheduling 

flexibility compared to the TSN architecture. [45] 

There is arguably some correlation between the behaviours of VB, TSN and TTE, and the IEEE802.15.4 

[75][76] wireless protocol’s Time-Slotted Channel Hopping (TSCH) media access control mechanism: 

VB and TTE/TSN use a per-switch 2-dimensional resource matrix of space and time (S/TDM), and TSCH 

uses a 2-dimensional resource matrix of frequency and time (F/TDM).  However, given that two 

different properties (space and frequency) are being manipulated to isolate signalling channels; that 

TSCH implies a single egress port whereas VB and TTE/TSN have multiple egress ports; and that there 

are other wireless schemes, including almost all digital mobile telephony since even the venerable 

GSM standard that have used a combination of space, time and frequency division multiplexing, the 

relationship between TSCH and VB is too tenuous to be worthy of any further discussion. 

 
8 A voting system such as suggested is explicitly out of scope for this research and is not considered further; it is 
raised here only as an indicative and additional measure by which the risk of signalling errors could be managed. 
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Note that in terms of resource utilization as measured by timeslots and links, there is little to 

differentiate VB and TTE/TSN.  A VB data flow’s utilization is characterized by assigning the same set 

of timeslots 𝑋 to a set of links 𝑌 for a total utilization of |𝑋||𝑌|.  Conversely, a TTE/TSN data flow is 

characterized by assigning a new set of timeslots 𝑋 at each element 𝑦 ∈ 𝑌, where the number of 

elements in each 𝑋 is the same, but where each element of 𝑋𝑦+1 is greater (more advanced in time) 

than the corresponding element in 𝑋𝑦, i.e. the total resource utilization is also |𝑋||𝑌|. 

However, in terms of end-to-end delay across a multi-hop path, VB’s physical layer switching offers a 

significant advantage over TTE and TSN at line speeds, even at gigabit and higher speeds, as shown in 

Figure 1-6 through Figure 1-12 below.  The charts use the same frame timing assumptions as Figure 

1-2 and Figure 1-3 in section 1.3.3, but apply those assumptions to estimate the end-to-end 

propagation delay across a series of hops through a network.  There is one additional parameter in 

this analysis that was not considered for section 1.3.3: the switching delay at each hop, i.e. the time 

taken to transfer a message from an ingress port to an egress queue (for Ethernet) or to an egress 

port (for VB). [8][77]  The assumptions used below are switching delays of 500ns for Ethernet, and 

10ns for VB.  While I freely acknowledge that these are speculative values, they do align with existing 

research [50][63] and data reported by manufacturers, e.g. Microchip™ have published a switching 

delay of just under 700ns for their VSC7546TSN switch core [78] running their IStaX turnkey TSN 

switching software package [79], and I have noted above that Micrel™ offer a part that would afford 

VB a physical layer switching delay of less than 1ns, whilst my observations using the VB research 

platform demonstrate a switching delay of approximately 15ns when switching through FPGA fabric, 

as shown at section 2.6.2. 

Note also that the charts are formulated on three additional assumptions: 

• VB uses the same (minimum) frame size as Ethernet. 

• VB can operate at bit rates other than 2.5Mbps. 

• There is no delay introduced at any hop for Ethernet signalling due to contention. 

It should be clear that, although the first two assumptions have not been realized in practice as a result 

of this research, they certainly could be.  In any case, the assumptions are helpful as they align the 

estimated performances of a subset of parameters for each architecture for comparison purposes. 

 

Figure 1-6 : Multi-hop TSN Ethernet End-to-End Delay (1Mbit-1Gbit) 
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Figure 1-7 : Multi-hop VB End-to-End Delay (1Mbit-1Gbit) 

 

Figure 1-8 : Multi-hop TSN Ethernet End-to-End Delay (10-100Mbit) 

 

Figure 1-9 : Multi-hop VB End-to-End Delay (10-100Mbit) 
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Figure 1-10 : Multi-hop TSN Ethernet End-to-End Delay (100Mbit-1Gbit) 

 

Figure 1-11 : Multi-hop VB End-to-End Delay (100Mbit-1Gbit) 

In numerical terms, the relative performance gain that can be achieved by using physical layer 

switching increases with bit rate and hop count as the switching delays dominate, as we can see in 

Figure 1-12 below.  For example, at 1Gbit and 8 hops, VB’s delay is just 9.1% of Ethernet’s, and at 

10Gbit and 8 hops, VB’s delay is as low as 6.4% of Ethernet’s.  Further, recall that these figures assume 

that all Ethernet traffic experiences zero delays at any hop, i.e. no frame ever has to wait for access to 

the signalling medium due to resource conflicts, which is unlikely to be true for every frame in a 

network with even a moderate load; it could even be said that the highly permeable scheduling [65] 

afforded by the traffic scheduling of 802.1Q-2018 treats this as a desirable outcome.  Consequently, 

these figures are a comparison between the best-case performance of Ethernet (in terms of end-to-

end delay) and the default performance of VB. 
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Figure 1-12 : Ratio of Ethernet delay to VB delay over 𝒏 hops versus line speed 

1.3.5 Network Periodicity and Message Timing 

Although it is not in general true that all data flows used by a distributed control system must have 

identical periodicity, I have worked from the assumption that they do.  I acknowledge that this does 

limit the direct applicability of the VB architecture because there may be a limited subset of real-world 

scenarios where this behaviour is useful in practice or is an acceptable compromise.  Certainly, VB as 

it stands at this point does not have the flexibility in terms of data flow timing of established real-time 

network architectures, including TTE, TSN, and the Flexible Time-Triggered (FTT) [80] paradigm.  This 

research has evolved into the exploration of a limited subset of network behaviours and qualities that 

impact real-time data flows.  It should not be viewed as the development of a network architecture 

for immediate deployment in industrial or vehicular systems. 

Given that VB assumes that all data flows have the same periodicity, and recalling that the network 

can be considered to be a module of the control system, network time is segmented into uniform 

periods, or intervals [35], that are synchronized in frequency, but phase-shifted with respect to, the 

control system's period.  All the control system's real-time data flows for an interval must be entirely 

delivered within the bounds defined for that interval; if any data flow's delivery time overflows into 

the next interval, the network (and hence, the control system) will have failed to meet a hard real-

time constraint. 

During each interval the control system's modules process data from their inputs, including data from 

other modules delivered via the network, and generate output control signals.  Some of these control 

signals must then be transported via the network in order to become inputs for other control system 

modules during the next interval.  This timing model, described by Kopetz as the Sparse Time model 

[35], partitions each interval of the control system into two sub-intervals: an Interval of Activity, during 

which the modules are actively processing data, e.g. transforming inputs into outputs; and an Interval 

of Silence, during which the modules are inactive. 
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Figure 1-13 : Distributed Control System View of Sparse Time 

The sparse time model assumes that the modules that make up the control system are actively 

processing data and generating control signals during intervals of activity and are inactive during 

intervals of silence as they wait for the next control cycle to commence.  Recall that a control network 

can itself be viewed as a module in a distributed modular control system; in the context of the sparse 

time model, the network module must operate counter-cyclic to the other control system modules, 

because it must wait until the other modules have produced their control signals before it can 

transport those signals to their destinations.  That is, the network module transports time-critical 

control system signals during the control system's intervals of silence, which correspond to the 

network's intervals of activity. 

 

Figure 1-14 : Network View of Sparse Time 

Under VB’s TDM scheme, the network's interval of activity is partitioned into timeslots for delivery of 

real-time data flows; and the network's interval of silence commences once all data flows have been 

delivered.  As discussed above, if network resources in the S-plane and T-plane are dedicated to 

particular data flows then each data flow is always delivered in the same subset of timeslots and to 

the same communications interface.  This introduces an upper bound to control system module 

timing: for each interval, all modules that produce output control signals for transport by the network 

must do so before the start of the timeslot in which the control signal's data flow will be transmitted. 
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An unfortunate consequence of this approach to partitioning time is that the worst-case latency that 

may be experienced by each data pulse associated with a data flow is the duration of an entire interval.  

This is certainly less than ideal for some types of signalling, e.g. event-triggered alarm signals that 

would typically be transported as soft real time traffic in TSN using the IEEE802.1Q credit-based shaper 

(CBS), or the enhanced transmission selection (ETS) algorithm.  However, as previously observed, it is 

not necessarily problematic for time-triggered periodic signalling because the time-triggered latency 

is constant for every cycle and hence can be factored into the operation of the dependent control 

system.  Note also that this approach is not dissimilar to that taken by Kopetz and Grunsteidl in the 

design of TTP [48], where they observe that “TTP’s global time base makes it possible to synchronize 

the time of sampling the data with the arrival of the TDMA slot at the sampling node”. 

There is a particular utility to this static periodicity that should be noted with regards to modular 

redundancy and replica determinism, as discussed in section 1.2.  Recall that in order to possess the 

quality of replica determinism, all the members of a set of replica control system modules “must 

receive the same inputs, in the same order, and at the same time”. [46]  The VB architecture has 

defined a constraint that all a control system’s real-time data flows must be delivered within a well-

defined time period, the interval, a single cycle of the periodic control network.  Further, as Kopetz 

showed in the sparse time model [35][81], we can say that all events that occur in a single interval 

occur simultaneously, at least in a logical sense.  We can therefore say that VB delivers all real-time 

data flows “simultaneously”, not least because, as Figure 1-13 and Figure 1-14 above show, all real-

time messages for all data flows are delivered during the network’s interval of activity, before any 

message is processed during the network’s interval of silence.  Given this logical simultaneity of 

delivery time and actual simultaneity of processing time, well-configured replica control system 

modules are able to ensure that they process real-time messages in some agreed order and hence the 

requirements of replica determinism can be serviced by the VB architecture. 

Note that there are some obvious similarities as well as some clear differences between FTT’s 

Elementary Cycles (EC’s) and VB’s Intervals.  I surmise that the similarities exist because the two 

concepts are independently derived from Kopetz’ work on time-triggered network behaviours, e.g. in 

[81].  The principal difference between VB and FTT is that the proportions of an EC devoted to 

synchronous (time-triggered) and asynchronous (event-triggered) signalling can be varied at run time, 

whereas the duration of VB’s traffic and management phases is fixed at design time.  To my surprise, 

the fact that FTT is built around a master-slave paradigm results in it potentially being more flexible; 

the breakdown of every EC’s timing can be controlled by the master, cycle by cycle, when it emits 

trigger messages (TM) at the start of each EC.  VB is less flexible precisely because it is built around a 

peer-to-peer paradigm: there is no single run-time authority that can vary the structure of each 

interval, so, at least for the purposes of this research, the interval structure is defined statically at 

design time. 

1.3.6 Time Synchronization 

Time synchronization of computer systems, including network time synchronization, is a field that has 

attracted a large volume of academic interest for many decades.  It has gained particular prominence 

in the fields of real-time networking and distributed control, not least because a shared understanding 

of the passage of time is a fundamental requirement of control systems, particularly periodic control 

systems [82]; and of time-division multiplexing media access control schemes in communication 

networks. [83]  All such systems need “to establish a global ordering of events and tasks”. [84]  As a 
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time-triggered network architecture, VB is entirely dependent on network-wide time synchronization: 

the S/TDMA mechanism relies upon a shared global understanding of time so as to apply each virtual 

bus’s switching configuration (the “tasks”) at the correct times at multiple physically disparate 

locations throughout the network. 

There are a host of network time synchronization solutions derived from the later versions of the 

IEEE1588 [23] time synchronization standard.9  Time-triggered Ethernet [3] (which standardized its 

time synchronization mechanism as SAE AS6802); IEEE Time-Sensitive Networking [22] and the 

IEEE802.1AS [24] time synchronization standard;10 and synchronous Ethernet, or SyncE [85], and its 

high-precision variant White Rabbit [84] are all successful examples of network time synchronization 

mechanisms based upon IEEE1588 that are used in science, academia and industry.  Unfortunately, 

because they are all derived from the same source, they are also all reliant on the master-slave 

paradigm, and, as previously noted, master-slave paradigms are by definition a single point of failure: 

if the master fails, the system fails. [86]  This risk was evidently recognized by the authors of IEEE1588 

and its derivatives, and mitigation strategies have been designed and implemented, e.g. evolutions of 

IEEE1588 incorporate hot standby clock grand masters that are intended to seamlessly take over the 

grand master role in the event of a failure [87], or the Best Master Clock selection Algorithm (BMCA) 

that IEEE1588 offers to select a grand master at startup and/or in the event of the current grand 

master failing.  However, and irrespective of any mitigation strategies, the use of a master-slave 

paradigm is a convenience that introduces a design flaw.  As Bojic and Nimoen [19] observe: 

“Synchronization mechanisms that are decentralized do not suffer either from the problem of a 

single point of failure or the problem of achieving a hierarchical structure. However, their 

disadvantage is that they are not as precise as centralized mechanisms. Nevertheless, every 

mechanism that is used in M2M systems should be decentralized since decentralized 

mechanisms are more robust and more scalable” 

This position, which I concur with, influenced my engineering design decisions for VB and caused me 

to discount the use of a master-slave time synchronization solution, including any solution based on 

IEEE1588, just as I have discounted the use of master-slave solutions throughout the VB network 

architecture. 

There is also a point to be made here about directly synchronizing only with immediate neighbours.  

Gutiérrez et al [88] have shown that, in large networks, one of the limiting factors on the 

synchronization quality that can be achieved with IEEE802.1AS is the number of hops between 

synchronization partners; in fact, they determined that synchronization precision is almost 

proportional to the inverse of the number of hops.  Wu et al [89] have noted similar behaviour in 

hierarchical timing structures, e.g. spanning trees, in which pairwise synchronization is carried out 

between layers of the hierarchy; error accumulates along the tree, increasing at each hop from the 

root. 

In contrast to the wired network time synchronization solutions based upon IEEE1588, wireless 

networking architectures have successfully realized time synchronization solutions using the peer-to-

peer paradigm.  This different focus appears to have been driven by the reality that the existence of a 

viable signalling channel between any two nodes in a wireless network at any given time cannot be 

 
9 Often referred to as Precision Time Protocol (PTP). 
10 Often referred to as generalized Precision Time Protocol (gPTP). [58] 
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guaranteed [90], so a stable connection to a timing master or grandmaster similarly cannot be 

guaranteed.  Consequently, wireless networks have utilized other strategies, such as relying on an 

externally synchronized timebase, e.g. GPS/GNSS, which is expensive in terms of size, weight and 

power; or synchronized locally within their immediate vicinity [91] and accepted that the wider 

network is effectively a collection of disjoint subnetworks that may join or fragment, in whole or in 

part and at any time. 

The wireless synchronization solution that drew my attention for its elegance was described by Maggs 

et al [17], who referred to it as “consensus clock synchronization”.  More generally, a consensus 

solution that does not rely upon an external timing reference, or “real time”, may be referred to as 

performing “internal synchronization”, whereas a solution that aims to align system time to some 

external timebase performs “external synchronization” [92].  Consensus synchronization is also 

referred to by several other terms, notably as “diffusion” and “firefly” synchronization. [18] 

In a diffusion synchronization scheme, each node periodically exchanges timing state information with 

only its immediate neighbours, i.e. neighbours at a distance of one hop, and uses the received timing 

information to adjust the frequency and relative offset of its local clock towards some “consensus” 

value with respect to those neighbours only.  At first glance, some elements of the clock correction 

mechanism are not dissimilar to PTP; where they contrast with PTP is that the flow of timing influence 

is bidirectional under a diffusion scheme, whereas it is simplex under PTP’s master-slave scheme.  The 

timing state of every node diffuses through the network, such that all nodes that have some 

connection to the network steer their clock towards consensus in frequency and phase.  Further, the 

more interconnected the network, the more precise the consensus [93], which again is in direct 

contrast to PTP and its’ reliance on spanning trees.  Like any real system, including PTP and its 

derivatives, the precision that can be achieved by a diffusion scheme is unlikely to be perfect [94], but 

diffusion schemes have been proven to be suitable for time synchronization of networks. [18][93][95] 

Consider Figure 1-15 and Figure 1-16 below, in which the flow of synchronization influence11 is 

depicted for the master-slave and peer-to-peer paradigms respectively.  Observe that the master-

slave arrangement forms a directed acyclic graph, or spanning tree, whereas the peer-to-peer 

arrangement forms an undirected cyclic graph.  Influence in the master-slave paradigm is simplex, or 

unilateral: slaves (S) have no influence on their master (M), and masters have no influence on their 

grand master (GM).12  Conversely, influence in the peer-to-peer paradigm is duplex, or bilateral: every 

peer directly influences all of its neighbours at a distance of only one hop, but the influence is coupled 

through those neighbours and consequently diffuses throughout the network.  Koskin et al have 

shown [96] that the error experienced across a unilaterally coupled synchronization network tends to 

grow linearly with hop count, whereas bilaterally coupled systems tend to converge.  The 

approximately linear growth of error in a unilateral synchronization system is supported by the 

observations of Gutiérrez et al [88] in the context of the performance of IEEE802.1AS. 

 
11 The arrows indicate the flow of influence, not signalling. 
12 Note that Figure 1-15 is a very simplified description of a master-slave arrangement and is not a true 
representation of a PTP hierarchy. 
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Figure 1-15 : Flow of time synchronization influence under the master-slave paradigm (PTP/gPTP) 

An interesting outcome of peer-to-peer diffusion is that whilst it is possible for a network using the 

peer-to-peer paradigm to have no reference or grandmaster clock and yet converge to a consensus 

clock frequency, it is also possible to assign a single node to a reference role by causing it to free-run, 

i.e. not steer its frequency to match its neighbours.  The influence of that single node is sufficient to 

drag the frequency of the other nodes to match, even across multiple hops. [17][95][97] 

It should be noted that, in the context of how they achieve synchronization between disparate clocks, 

both the direct master-slave synchronization solution of PTP/gPTP and the diffusion peer-to-peer 

synchronization solution employed by VB function in much the same way: they measure the relative 

offset and rate of change of their clocks by exchanging messages that are specifically tailored for time 

synchronization and use those measurements to control a “clock servo” that influences or steers their 

local timebase towards some target frequency and offset.  The two approaches may differ in how they 

determine their target frequency, particularly in the directionality of their influence, but at the clock 

servo level their behaviour is very similar indeed. 

 

 

Figure 1-16 : Flow of time synchronization influence under the peer-to-peer paradigm (diffusion) 

A key component of the synchronization process is not only the content of the messages, but the times 

at which they are sent and received; the quality of time synchronization that can be achieved is quite 

reliant upon the precision with which the transmit and receive times of these messages can be 

measured. [98]  This leads to time synchronization ideally taking place as close as possible to the 
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physical layer and, in practice, either within or closely coupled to the link layer. [70][82][99]  This is 

likely the last point at which a transmitted message remains within the full control of the transmitter, 

and it is similarly the first point at which a received message comes entirely within the scope of the 

receiver’s control and hence its ability to accurately timestamp the message. 

Note that peer-to-peer time synchronization that relies upon diffusion is far from unique [100] and 

certainly was not invented by Maggs et al.  Its origins appear to be in observations of biological 

systems, e.g. Blair reported in 1915 on his observations of the ability of fireflies to synchronize their 

flashes. [101]  For this reason, this type of synchronization is sometimes referred to as “firefly 

synchronization”.  [18][19]  Other biological systems that rely upon this type of synchronization have 

also been documented; Bojic and Nimoen discuss a large number of such systems, including the 

behaviour of neurons and the synchronized firing of “pacemaker” cardiac muscles, both of which have 

some reliance upon allowing timing to be retarded (inhibited) as well as advanced (excited) by the 

exchange of information pulses.  The principle is also well-understood in the field of physics, with work 

such as the Kuramoto [102] model of coupled oscillators, which Strogatz [103] describes as: 

“the phenomenon of collective synchronization, in which an enormous system of 

oscillators spontaneously locks to a common frequency, despite the inevitable differences 

in the natural frequencies of the individual oscillators”. 

1.4 Network Structure 

 

Figure 1-17 : Example Switched Network 

1.4.1 Terminology 

• A node is a networked device, including the special case of switches.  There is an implied 

mapping between network nodes and control system modules, noting that this mapping is 

not necessarily 1-to-1, e.g. a single node might incorporate zero, one, or several control 

system modules. 

• A switch is a node with a number of communications interfaces that can transfer messages 

from inbound ports to outbound ports.    A node equipped with a single network interface and 

hence no ability to switch is often referred to as an end station or endpoint. 

• A link is a single full-duplex communications channel between two nodes (including a node 

and a switch). 

• A path is a chain of hops that traverses the network between two nodes.  It can be as short as 

a single hop. 
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1.4.2 Network Redundancy 

Network redundancy is fundamental to the availability of otherwise functional control system 

modules.  Some common network topologies, including the bus, ring, star and tree, are shown in 

Figure 1-18 below.  These are obviously not the extent of possible topologies; they are presented 

because they are representative, e.g. the bus and tree, or they are building blocks for larger and more 

complex topologies, e.g. the star and ring. 

The "safest" of the representative topologies below is the ring; two links (or nodes) must become 

faulty to cripple the network and prevent communications between any two nodes.  All the other 

simple topologies depicted above exhibit a single point of failure that, if compromised, will cripple the 

entire network: breaking a bus (or a simplex ring) at any point that isolates more than one node; 

compromising the switch at the centre of a star; or compromising any node or link in a tree that is not 

at the lowest tip of a branch. 

 

Figure 1-18 : Common Network Topologies and Topological Building Blocks 

Control networks designed to support redundancy, including ARINC629 [104], TTP [54], AFDX [105], 

PRP [106] and TTE [3], may offer the option to utilize two (or more) independent and parallel networks 

(or buses) to improve the availability of distributed control system modules.  An example of a dual-

redundant switched network, as used by AFDX and TTE, is shown in Figure 1-19 below. 

 

Figure 1-19 : Redundant Networks 

Recall from section 1.2 that a network, as an integral unit, can be viewed as a (potentially redundant) 

module of the larger control system.  If each node is an endpoint in all of the elements of the set of 
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redundant networks, then the control system modules (whether they are singular, or elements in a 

set of redundant modules) encapsulated by the node are available to the control system as long as 

the network can supply paths to and from partner modules (data producers and data consumers) via 

at least one of the networks.  For example, if any of the links or the switch that make up network A 

fails, the nodes that are isolated in network A can still communicate via network B. 

Gaj et al [107] have observed that network duplication is not an efficient approach.  Rather, they 

propose the adoption of a ring topology, or a mesh network, although they object that in the case of 

a mesh “management and switchover procedures are almost impossible to handle in hard real-time in 

case of a resource failure”.  While this may be true, Grover and Stamatelakis [108] have proposed a 

solution that bypasses this limitation: pre-configured redundant signalling paths. 

As an alternative to increasing the number of elements in the set of redundant networks, each of 

which requires infrastructure (switches, cabling, etc.) and multiple communications interfaces at each 

node, consider the results of increasing the number of communications interfaces at each node and, 

without necessarily discarding the concept of separate dedicated switching nodes, incorporating the 

ability to act as a network switch into every node, i.e. a mesh topology.  This can be thought of as an 

enhancement to the High-Speed Seamless Availability Ring (HSR) protocol [109], in that a mesh has 

far more interconnections and hence more redundancy than a simple ring.  Full mesh topologies, in 

which a physical full-duplex link exists from every node to every other node, are impractical for 

networks of a useful size because the number of links 𝐿 required for a number of fully meshed nodes 

𝑛 is given by: 

 
𝐿 =

𝑛2 − 𝑛

2
 

(1-2) 

Consequently, the number of links grows rapidly in proportion to the number of nodes: an 8-node full 

mesh network requires 28 links, 16 nodes require 120 links, and 32 nodes require 496 links.  Partial 

mesh topologies such as that shown in Figure 1-20 below are more practical because the number of 

links per node is constrained. 

Under the redundant network approach, an entire network is treated as a potentially redundant 

module.  By increasing the number of interconnection points (switches), the partial mesh approach 

offers increased granularity of network redundancy, from redundant networks to redundant network 

links or paths. 

 

Figure 1-20 : Simple Partial Mesh Network Topology 
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Consider the example of a partial mesh cube topology shown in Figure 1-20 above, noting that in the 

context of the building block topologies shown in Figure 1-18 above, the cube can be viewed as being 

constructed from a set of interconnected ring topology primitives.  Assuming that each switch is 

accompanied by one node (not all nodes are shown), observe that there are at least three almost 

entirely independent paths between any two nodes, each of which shares no switches or links with 

any other path other than the hop to the immediate switch; and several secondary paths that share 

one or more switches and/or links.  Further, observe that this simple example of a partial mesh has at 

least the same level of path redundancy as an 8-node triple-redundant switched Ethernet network, 

while using less links (20 instead of 24), due to the amount of interconnection. 

Now, consider integrating the switch immediately adjacent to any node in Figure 1-20 above, with 

that adjacent node. [110] 

 

Figure 1-21 : Simple Partial Mesh Network Topology with Integrated Switches 

This solution has a considerable advantage over the redundant network approach in terms of 

infrastructure requirements; the redundant network design requires 3 dedicated switches and 24 

links, whereas the redundant link design requires no dedicated switches and only 12 links to achieve 

the same amount of interconnection.  Consider also that in the context of the redundant network 

approach shown in Figure 1-19 above, each dedicated switch is a single point of failure for an entire 

network module or segment; increasing the number of switches and integrating them into the nodes 

removes single points of failure, enhances fault tolerance, and enhances the availability of the 

network. 

Note however that Kalman et al [110] have suggested that, while it is expected to reduce network 

costs, this approach may lead to scalability problems because of the increased cabling in comparison 

to less interconnected topologies, and because of increased latency and jitter on long, sparse 

connection trees.  While both of these points are no doubt true, the latter is substantively true only 

for store-and-forward switching methods; VB’s physical layer switching reduces the impact on delivery 

timing of multi-hop paths by orders of magnitude. 

In section 1.3.4 above, I proposed a multi-hop SDM scheme using dedicated switches and separate 

nodes.  Consider now Figure 1-22 below, in which each node integrates both a multi-port network 

transceiver and a physical layer switch matrix, and the example network in Figure 1-23: 
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Figure 1-22 : Virtual Bus Physical Layer Switch Matrix 

 

Figure 1-23 : A Simplex Multi-Drop Virtual Bus 

Each outbound port can be connected to and driven by either any transmitter, or any inbound port.  

If a transmitter is connected to more than one outbound port then messages will be multicast from 

all of the connected outbound ports with trivial skew.  Similarly, if an inbound port is connected to 

more than one outbound port, any messages that are received at the inbound port are multicast from 

all the connected outbound ports with trivial skew.  Every message that arrives at an inbound port can 

be received or ignored as required, because every inbound port incorporates a dedicated receiver. 

Nodes with integrated multi-port switches are ideal for constructing multi-hop partial mesh networks. 

1.4.3 Network Capacity 

Avoiding dedicated network switches and instead incorporating switching into the network nodes has 

a further benefit that is not immediately obvious: improved efficiency of utilization of each link's 

capacity. 

Consider a switched Ethernet network, like the example shown in Figure 1-17 above.  Each node 

utilizes its single link to exchange data flows with other nodes via one or more switches.  Data flows 

traverse a path constructed from network elements (simplex links, and switches), and all the data 

flows that traverse any particular element consume a proportion of that element's capacity.  It is 

improbable that the sum of either inbound or outbound data flows for any particular node will 

approach 100% of the transmission or reception capacity of its link(s) to a switch.  The only exception 

to this is "backbone" links between switches; they may carry all the data flows that originate in one 

network segment, to one or more different segments.  The unused or orphaned capacity on any link 

between a node and a switch, i.e. any utilization less than 100%, is effectively wasted because it cannot 

be used for any other purpose. 
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Compare this to a partial mesh network, such as the one shown in Figure 1-21 above, in which the 

nodes are explicitly constructed with several communications ports and an integrated network switch.  

In this integrated switching model, nodes transmit and receive their own data flows; but they are also 

available to switch the data flows of other nodes.  Every individual link thus has the potential for 100% 

utilization efficiency because when every node has at least two links then there is a path or paths 

through each node that may be utilized by data flows that are unrelated to that node.  Consequently, 

there is no orphaned and unusable capacity anywhere in the network.  Note that this is not a 

guarantee that every link can or will be 100% utilized under all circumstances; it does however make 

it possible for every link to be 100% utilized.  Note also that in practice achieving 100% utilization is 

well-known to be a NP-complete problem [111] and hence computationally intractable.  The difficulty 

of solving NP-complete problems is a limiting factor in achieving such an outcome.  No attempt has 

been made in this research to find a concrete solution for achieving 100% utilization. 

The increase in usable network capacity offered by the integrated switching approach discussed in 

section 1.4.2 in conjunction with using S/TDM to break the linkage between utilization and delivery 

delay as discussed in section 1.3.4 form the foundation on which the use of redundant data flows to 

enhance module availability posited in section 1.4.5 can be built. 

1.4.4 Network Resource Scheduling 

Kopetz discusses some of the low-level decisions that must be made “when designing a protocol for 

the transfer of real-time data between the components of a control system” [36] and suggests that 

there are two choices for bandwidth utilization: competition or cooperation.  Further, he suggests that 

competition is the only option for “open systems, i.e. systems for which the set of communicating 

components is not known a priori”, and posits that in order to organize a network to distribute pulsed 

data flows with optimal delivery delay, network-wide time synchronization and scheduling 

mechanisms are required. 

I have discussed above some of the reasons why periodic real-time data flows in the virtual bus 

network must always follow the same path through the network resource space, although this is not 

necessarily the case for a scheduling mechanism that is not end-to-end in a single timeslot, such as is 

realized by the traffic scheduling of IEEE802.1Q-2018.  However, it is in general desirable for scheduled 

data flows to follow pre-determined paths, as in shortest path bridging [12], because it removes the 

need for decision-making during transport.  Nonetheless, at some point a decision must be taken as 

to which path the flow will take.  That is, delivery of a scheduled data flow is cooperative in order to 

be collision-free and hence deterministic; but determining the path to be taken by the data flow is 

competitive irrespective of the scheduling mechanism because that mechanism must from time to 

time make decisions about how finite network resources will be allocated amongst a competing set 

of data flows. 

Note that backup or redundant data flows, as discussed in section 1.4.5, do not follow the same 

physical path as the primary data flow.  At first glance this might appear to conflict with the statement 

above, but this interpretation would not be correct.  Rather, a backup data flow should be viewed as 

a separate data flow that happens to carry the same information as the primary data flow.  

Consequently, each backup flow must always follow the same path, but in order to maximize fault 

tolerance the paths taken by the primary data flow and each redundant flow should be as disjoint as 

possible with respect to one another in the presence of any constraints imposed by network topology 

and capacity. 



Page 37 

 

Given a scheduler that is static, i.e. the resource allocation decision-making algorithm is executed at 

design time by the network designer using their detailed knowledge of the network topology and 

capacity and the data flow requirements; and the switching nodes are configured with the schedule 

in advance; centralization may be an appealing solution, not least because the result of the resource 

allocation algorithm is composable – formal proofs can be used to show that it is valid and all 

requirements and constraints will be met. [112]  Further, there is no run-time cost to static 

scheduling13 – complex scheduling problems can be resolved at design time, and can thus (nominally, 

at least) take as long to resolve as is required without impacting network performance and without 

consuming any network resources themselves.  The principal problem with static scheduling is that it 

has little if any fault tolerance; if any faults arise in the network then a truly static scheduling 

mechanism will be unable to manage or compensate for them. [61][64] This can be (and in practice 

often is: refer [3][54][104][105]) mitigated somewhat by allocating each data flow a number of 

redundant paths through the resource space, as discussed in section 1.4.2 above.  However, in the 

absence of any redundancy, a static schedule is itself a single point of failure.  Consider that if 

resources to service real-time data flows are assigned by a schedule that cannot be altered at runtime 

and that has no redundancy, if any of the scheduled real-time data flows is made undeliverable by any 

network fault then the schedule unarguably constitutes a single point of failure.  Fault-tolerant 

scheduling must either include redundancy to ensure that all data flows can continue given some 

number of faults; or necessitates a dynamic mechanism with the ability to re-route data flows in the 

presence of network faults; or both.  Of course, calculation of schedules is a complex problem whether 

it is carried out at runtime or design time, and there is a need to ensure that the scheduling function 

works correctly. 

Dynamic scheduling removes the upper bound on fault tolerance that is implied by design-time 

resource allocation; if a delivery path is compromised by faulty or damaged network component/s 

then an alternate path might be found through the resource space at run time.  This is true even if the 

faulty path was a member in a set of redundant paths: if the set of paths 𝑃 from a source to a single 

destination is defined as having up to 𝑚 members, but a network fault causes |𝑃| < 𝑚, then additional 

paths can be allocated, up to the limit of network capacity, until |𝑃| = 𝑚.  Consider however that 

while |𝑃| ≥ 1, the data flow continues to be available to the destination. Grover and Stamatelakis 

[108] refer to this as “distributed preconfiguration”, and Kirrmann et al [109]  refer to it as “bumpless 

recovery”, but they share the same underlying concept: each element in 𝑃 after the first represents a 

pre-configured redundant path that is available for instantaneous failover and hence zero recovery 

time.  Note that where a multicast data flow is to be delivered to several destinations, there is no 

implied requirement that the same set of multidrop paths be used for all destinations, and there is 

also no implied requirement that every destination must be afforded the same amount of path 

redundancy. 

Centralized dynamic scheduling is unappealing because it is a single point of failure by design. [19]  If 

the scheduler fails then the best-case outcome will be that the current state of network resource 

allocation becomes static, i.e. it is no longer possible to route around faults, although it should be 

noted that this single point of failure can be managed somewhat by using a redundant set of 

 
13 In the sense that there is no runtime cost to calculating static schedules; the costs of calculation are paid at 
design time.  There is likely to be a small runtime cost in terms of dispatching but that is a cost that should in 
general be independent of whether the dispatched schedule is calculated at design or runtime. 
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schedulers to afford higher availability to the scheduling mechanism.  There is also a set of problems 

around the timeliness of the scheduler's knowledge of the condition of every network element (nodes, 

switches, links), and the propagation of scheduling decisions, that are less easily mitigated. [113]  

A centralized scheduler must be in regular communication with every network element in order to 

monitor their conditions and local environments.  Timely knowledge about the condition of the 

network is necessary for both construction and maintenance of paths through the network resource 

space: the scheduler must know which resources are available to it, and how they are interconnected, 

if it is to construct a path for a data flow; and it must know if any resources or interconnections that 

are in use by data flows have failed in order to re-route data flows around failures. [114]  If the 

scheduler's knowledge is not correct and current then its routing and scheduling decisions may be 

invalid before they are even implemented; and any delays in learning about failures that affect existing 

data flows (including scheduling failures due to the timeliness of knowledge problem) will extend the 

length of time that the data flow is unavailable.  Further, assuming that there is no separate means of 

communication for the scheduler, both monitoring and managing the network must themselves 

consume network capacity; the larger the network (in terms of the count of network elements), the 

greater the network capacity that must be dedicated to knowledge sharing, i.e. there is a rather 

obvious problem with scalability. 

Despite these issues, centralized routing and scheduling of data flows, including real-time data flows, 

is an area of active and ongoing research interest; the field of research is generally referred to as 

Software-Defined Networking (SDN).  The benchmark for SDN is arguably the OpenFlow standard [62], 

introduced in 2008 and continuing to mature as deployments feed back into the research [115].  

OpenFlow has been successfully integrated with a number of commercial real-time Ethernet designs 

such as PowerLink [116] and FTT-Ethernet [117] as well as the IEEE Time-Sensitive Networking 

standard [66][118]; exploration into using OPC/UA [119] to configure ProfiNet/IO [120] has been 

undertaken; and there is ongoing research sponsored by the IEEE TSN group into 802.1Qcc [9]  Stream 

Reservation Protocol for self-configuration of TSN networks [30][31] via its User-Network Interface 

(UNI).  The latter is currently working towards the concept of a configuration agent that monitors 

network traffic and uses its observations to adapt the configuration of the network to meet quality of 

service targets; OPC UA TSNA [121], IEEE802.1Qcc and NetConf [7] are related industrial and academic 

research in the TSN space.  However, it should be noted that per the 802.1Qcc revision and in direct 

contrast to VB, TSN does not offer a distributed user agent solution for time-triggered hard real time 

signalling.  The fully distributed UNI is explicitly qualified in IEEE802.1Q only with the credit-based 

shaper, which affords only soft real-time delivery guarantees. 

The flaw at the heart of any centralized solution is that they are bound to the master-slave paradigm.  

A key network element is designated as the scheduling master (however it might be termed), which 

represents a single point of failure.  Certainly, functional multi-master solutions have been successfully 

implemented [122], e.g. by defining multiple cooperating scheduling masters, physically distributing 

them, and designating each as being responsible only for monitoring and configuring its immediate 

neighbourhood [123].  However, as with the time synchronization hot-standby grand master approach 

noted above in section 1.3.6, while this might be a useful mitigation strategy, it does not address the 

fundamental single-point-of-failure problem. 

As Levin et al observed [124], many of the problems with centralized scheduling discussed above can 

be managed with a peer-to-peer distributed scheduling mechanism.  Such an approach is entirely 
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consistent with a strategy of avoiding the master-slave paradigm distributing control system functions 

to maximise reliability and availability.  Further, one of the fundamental concepts of SDN, that of 

separating the network into control and data planes and using the control plane to configure the 

operation of the data plane at run time, is readily transferrable to a peer-to-peer paradigm. 

Consider a resource-space-centric view of the network, in which the network is constructed from an 

interconnected set of schedulable elements; in the context of the virtual bus network architecture, 

network nodes with integrated multi-port physical layer switches are schedulable elements.  Consider 

also the implications of devolving the responsibility and authority to schedule the network resources 

that map to, or are owned by, a particular schedulable element, solely to that network element.  Each 

schedulable element has full and complete awareness of its own network environment at all times, 

including any resource allocations that it has agreed to; and any scheduling decisions that it makes are 

implemented without delay.  Schedulable elements must communicate with their immediate 

neighbours in order to cooperatively construct paths through the resource space, but communication 

on the scale required by a centralized scheduling mechanism is not required.  Additionally, each 

element concurrently executes its piece of the distributed scheduling algorithm, allowing unrelated 

paths to be constructed simultaneously in different regions of the network.  In the event that a 

schedulable element fails and compromises data flows, its immediate neighbours are instantly aware 

of the failure because they have perfect and timely knowledge of the state of their local environment; 

they are thus able to respond promptly and trigger the process of re-routing data flows to avoid the 

faulty element. 

In the context of VB, its physical layer switches and resulting virtual bus instances map to the SDN data 

plane concept, and the exchange of non-real-time messages to configure those switches maps to the 

SDN control plane concept. 

1.4.5 Data Flow Redundancy 

In sections 1.4.3 and 1.4.4 above, I have discussed the use of redundant paths, or virtual buses, to 

enhance the availability of data flows.  There is an additional layer to redundancy that merits further 

discussion. 

Revisiting the uppermost layer of redundancy as discussed so far, if several redundant copies of a data 

flow are delivered to a destination via independent paths then the availability of the data flow is 

enhanced because only one of the paths need successfully deliver the content of the data flow in order 

for the data flow to be available. [4][61][108][125][126] 

Data pulses are delivered by atomic units in the form of network messages.  If the total payload of a 

data pulse is too large to be contained in a single message then the data pulse payload must be 

fragmented across several messages and reconstructed at the destination.  Data pulse fragmentation 

is an opportunity for a second layer of redundancy because the fragments are themselves replicas. 

Consider a data flow 𝐹 that is replicated by a set of 𝑘 paths, 𝑃𝐹, such that 𝑃𝐹 = {𝑝1, 𝑝2, … , 𝑝𝑘}.  The 

payload data 𝐷 to be transmitted in a data pulse is fragmented into some number 𝑛 of messages 𝑚, 

such that 𝐷 = {𝑚1, 𝑚2, … , 𝑚𝑛} and a replica 𝐷𝑝 of the data is transmitted over each path 𝑝 such that 

𝐷 = 𝐷1 = 𝐷2 = ⋯ = 𝐷𝑝 and: 



Page 40 

 

 𝐷1 = {𝑚1, 𝑚2, … , 𝑚𝑛} 

𝐷2 = {𝑚1, 𝑚2, … , 𝑚𝑛} 

… 

𝐷𝑝 = {𝑚1, 𝑚2, … , 𝑚𝑛} (1-3) 

Observing that 𝐷1𝑚𝑐 = 𝐷2𝑚𝑐 = ⋯ = 𝐷𝑝𝑚𝑐 where 1 ≤ 𝑐 ≤ 𝑛, it is clear that the original payload 𝐷 =

{𝑚1, 𝑚2, … , 𝑚𝑛} can be reconstructed as long as at least one 𝑚 is received intact for each 𝑐. 

 

Figure 1-24 : Data Pulse Fragment Redundancy 

Figure 1-24 is an example of (1-3) in which 𝐹𝑠𝑟𝑐 transmits a redundant data flow 𝐷 to 𝐹𝑑𝑒𝑠𝑡 using the 

parameters 𝑘 = 3 and 𝑛 = 3 over a set of (evidently low-quality) signalling paths.  Each redundant 

path 𝑝 successfully delivers only one of the 𝑛 fragment replicas that make up a data pulse from 𝐷, but 

if at least one instance of each 𝑚 is available at 𝐹𝑑𝑒𝑠𝑡, the pulse can be reconstructed. 

1.5 Control System Module Relationships 

The VB network architecture treats the issue of organizing relationships between control system 

modules as a producer-consumer problem.  There are protocols and standards in wide use by industry 

and academia that provide solid solutions for this type of problem.  Open Platform Communications 

Unified Architecture (OPC/UA [16]) is a current benchmark standard that has been evolving for over 

10 years from the original OPC Foundation protocol, and that has more recently been extended into 

the TSN space. [60]  Other standards such as OMG Data Distribution Service (DDS) [127], and the 

industrial/automotive SOME IP [128], are also in common use. 

VB evidently does have a need to organise relationships between control system modules, and 

OPC/UA, amongst the others noted, is a proven solution that could perhaps have been adapted for 

use with VB.  However, the comparatively simple module relationship solution implemented by VB 

avoided several issues that this might have caused. 

• VB’s stack is entirely bespoke, i.e. it does not use any of the typical components or libraries 

that might be expected to be found in a commonly employed embedded Ethernet/IP network 
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stack such as LwIP. [129]  For example, and of particular relevance, VB does not implement a 

reliable transport layer like TCP. 

• The majority of VB’s signalling, at all layers of the stack, is designed to be transported in the 

16-byte payload of a single link layer cell. [82]  OPC/UA is far too complex and heavily featured 

for this to be possible. 

• The effort that would have been required to adapt OPC/UA to work with VB’s protocol stack 

would have risked obscuring the real focus of VB: decoupling real-time message delivery 

delays from hop counts. 

The approach that was ultimately chosen with VB is similar to that of CAN: assign a simple numeric 

identifier to differentiate data flows during construction and maintenance.  

1.5.1 Producer-Consumer Model 

The simple model shown in Figure 1-25 below assumes that a control system can be assembled from 

a set of modules of generic classes: 

• Sensors to detect the current state; 

• Operator Agents, either external or internal, that determine when a new state is required and 

what the new state will be; 

• Controllers that determine how to transition from the current state to the required state; and  

• Actuators to alter the current state towards the required state. 

 

Figure 1-25 : A Simple Model of a Distributed Vehicular Control System 

There may be any number of independent modules of each generic class, e.g. a UAV sensor suite might 

include accelerometers, gyroscopes, engine tachometers, and air pressure sensors, to name just a 

few. 

The directed lines between the modules correspond to the data flows of a distributed control system.  

The source module of each line produces data that is consumed by the destination module; that is, 

each line or data flow also represents a producer-consumer relationship.  A module may produce data 

for and/or consume data from any number of other modules.  Control system data flows are generally 

strongly typed, e.g. data produced by an accelerometer is not interchangeable with data produced by 
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a tachometer.  Consider that the posited accelerometer and tachometer are sub-classes of the generic 

sensor class; it follows that modules that consume data must consume specific types of data. 

This simple model can be readily extended to apply to a distributed control system that is also 

modular-redundant.  Consider Figure 1-26 below in which a set of data producers 𝑃 has three 

elements and the set of consumers 𝐶 has three elements.  Each element in 𝑃 has relationships with 

all the elements in 𝐶, so there are nine relationships and at first glance it would appear that nine data 

flows are required to sustain these relationships. 

 

Figure 1-26 : Cross-Multiplication of Data Flows between Redundant Sets of Producers and Consumers 

Consider however that, as discussed in section 1.2.3 above, data flows may be multicast, i.e. each 

element of 𝑃 can transmit a single data flow simultaneously to all of the elements of 𝐶.  Consequently, 

as shown in Figure 1-27 below, the same outcome can be achieved using just three multicast data 

flows, one for each element in 𝑃.  This is particularly relevant if resource utilization is a concern 

because a multicast data flow to several destinations will almost certainly use less network resources 

than achieving the same result by unicasting multiple data flows. 

 

Figure 1-27 : Multicast Data Flows between Redundant Sets of Producers and Consumers 

Observe that Figure 1-25 and Figure 1-27 above can be combined to produce  

Figure 1-28 below, in which individual modules have been replaced by sets of redundant modules, and 

directed lines have been replaced by wider arrows that represent sets of multicast data flows. 
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Figure 1-28 : A Simple Model of a Distributed Modular-Redundant Control System 

1.5.2 Dynamic Relationships 

The producer-consumer relationships between the modules of a distributed and possibly modular-

redundant control system can certainly be defined statically at design time, but as noted in section 

1.4.4, statically defined relationships inherently lack fault tolerance.  The same reasoning that 

supports the use of a distributed dynamic mechanism for network resource scheduling over a static 

mechanism applies equally to producer-consumer relationships.  If the network is or becomes unable 

to deliver a particular data flow to a consumer, the consumer may be able to form a relationship with 

another (redundant) producer of the required data type.  Alternatively, if a consumer determines that 

a particular producer is unreliable, e.g. it appears to be producing data that is erroneous or 

intermittent, the consumer can terminate its relationship with that producer and attempt to form a 

new relationship with an equivalent producer from a redundant set. 

Consider that for purposes of balancing fault-tolerance and network utilization it may be desirable to 

deploy more producers of a particular data type into a network than are nominally required.  For 

example, if triple-modular-redundancy of a particular data type is required by all the consumers of 

that data type, and the producers are replicas and hence are truly interchangeable, then there is no 

explicit requirement that every member of the set of consumers form a relationship with the same 

three producers.  A set of more than three replica producers could be deployed, distributed as widely 

as possible throughout the network.  Each consumer forms relationships with, and receives data flows 

from, any three of the members of the set of producers.  If a network or other fault invalidates any of 

the producer-consumer relationships then the oversized and redundant set of potential producers 

offers the possibility of using failover to maintain the required level of redundancy rather than 

accepting downgraded redundancy. 

This view of a producer-consumer model introduces another layer of scalable fault tolerance and 

redundancy to the network architecture that further protects the availability of any dependent 

distributed control system.  While it is true that the behaviour discussed above could be managed by 

the control system rather than the network, I have come to the view that it is desirable to encapsulate 

the producer-consumer layer into the network architecture.  Incorporating the producer-consumer 
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model into the network rather than the control system allows the decision-making around which data 

producers will afford redundancy to any particular consumer to be completely transparent to the 

control system, because the model as outlined here is sufficiently abstract to manage any relationship 

between control system modules that relies upon periodic flows of strongly typed data. 

1.6 Fault Hypothesis 

The following fault hypothesis is derived from, and closely follows, the fault hypothesis model 

presented by Bauer et al [130]. 

The Virtual Bus architecture provides the following services (amongst many others) to synchronized 

and “correct” nodes: 

• A global timebase of known precision. 

• Best-effort store-and-forward signalling to any other node. 

• Deterministic time-triggered real-time multicast signalling to many other nodes. [131] 

• Protection against faulty network elements by isolating faults to specified fault containment 

regions (FCR’s). [132][133] 

1.6.1 Fault Containment and Correctness 

The virtual bus architecture recognizes three types of fault containment region: 

• Node computers. 

• Single-hop hardwired communication links to immediate neighbours. 

• Multi-hop (and possibly branching) temporary virtual communication links (virtual buses) to 

other nodes. 

FCR’s are expected to fail atomically, and independently of one another. 

It is expected that node computers function only as communication controllers, i.e. no other 

applications are executed by the computer.  “Correctness” of this communication controller may be 

considered from the perspective of two observers: an omniscient external observer; and, other node 

computers that are connected to it by communication links, either directly (neighbours) or virtually. 

From the perspective of an external observer, the node is “correct” when, at a minimum: 

• Its power supply and clock are within specification. 

• Its configuration data is valid. 

• The communication algorithms embedded in the protocol stack are executed correctly. 

• It emits correct and valid signals from its communication interfaces at the correct times. 

From the perspective of its neighbours, a node is correct when, at a minimum: 

• It emits the link signal from each of its network interface egress ports when that port is not 

otherwise in use. 

• It periodically emits synchronization messages at the correct time in each interval. 

• It observes other timing constraints executing various time-triggered operations at the correct 

times, within the limits of synchronization precision, including: 

o Switching between the traffic and management phases. 

o Transmitting time-triggered messages in their correct timeslots. 
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o Applying physical layer switching configurations for their correct timeslots. 

Recall that due to the requirement for nodes to be synchronized with their immediate neighbours 

before they can engage in any other type of communication, it is possible for a node to be correct but 

not yet synchronized.  If a node is correct but unsynchronized then it will not transmit or respond to 

any type of message other than synchronization messages.  If a node is not correct then it is 

improbable that it will be able to achieve or maintain synchronization with any neighbour, in which 

case either it will not be able to transmit; or, its neighbours will not respond to any messages that it 

might send, irrespective of whether those messages are correct; or both. 

A correct direct communication link will deliver a single copy of a message from a single sender to a 

single receiver.  Direct communication links are full duplex, i.e. constructed from two distinct and 

opposed simplex signalling channels, so there is no possibility of collisions in any domain if the link is 

correct. 

A correct virtual communication link will deliver identical copies of a transmitted message from a 

single sender to every connected receiver.  Virtual communication links are simplex multi-drop 

signalling paths, so again there is no possibility of collisions in any domain if the virtual link, and the 

direct links and nodes that it traverses, are correct. 

1.6.1.1 Node Faults 

In establishing the frequency of node faults, the fault hypothesis of the architecture claims that: 

1. Any number of faulty nodes may exist, at any time. 

In terms of specific faults exhibited by nodes, only communication faults are considered: 

2. Transmission faults are consistent, i.e. any faulty message will be consistently recognized as 

faulty by all receivers. 

3. Time-triggered messages are always transmitted at the start of the scheduled timeslot, which 

always commences on the timeslot boundary. 

4. Physical layer switching is always applied in the scheduled timeslot and commences on the 

timeslot boundary. 

5. Nodes never falsify their identity when transmitting messages. 

6. Nodes never falsify the contents of any network information or configuration protocols. 

7. Nodes employ a “never give up” strategy when engaging in distributed resource allocation. 

8. Nodes that are not correct are not able to establish or maintain synchronization with their 

neighbours. 

It is reasonable to consider only communication faults because the only interaction that any node has 

with the remainder of the network is through its communication links to the other nodes.  Any failures 

that are not explicitly communication-related can be expected to cause communication behaviour 

that is outside of the architectural specification and hence will be perceived by neighbours as 

communication faults; the faulty node will be ignored unless and until it spontaneously returns to a 

correct state.  For example, a fault that causes a node to shut down completely and cease all 

transmissions will be detected by the node’s lack of communication with its neighbours at expected 

times. 
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1.6.1.2 Communication Link Faults 

In establishing the frequency of either direct or virtual communication link faults, the fault hypothesis 

guarantees that: 

9. Communication links do not spontaneously create correct messages. 

10. Messages will either be transported across a link within some known maximum delay, or never 

delivered. 

1.6.2 Fault Isolation at the Communication Links 

The virtual bus architecture isolates faults by confining the effects of any fault to either an individual 

node, or to an individual communication link between nodes.  There are two types of communication 

link.  Direct communication links traverse a single hop only and are point-to-point and full duplex; they 

realize a connection between two and only nodes, or more precisely, between two network interfaces 

on two nodes.  Virtual communication links traverse multiple hops and are point-to-multipoint, 

branching, and simplex; they realize a connection between the egress port of a network interface of 

one node, and the ingress ports of the network interfaces of several other nodes by using physical 

layer switching to transparently pass through multiple intermediate (agent) nodes, forming temporary 

electrical connections between one of an agent’s ingress ports and one or more of its egress ports. 

1.6.2.1 Guardian Behaviour of Network Interfaces 

As discussed in section 2.4.2, network interfaces may be in one of three active states: unlinked, linked 

and synchronized.  The classes of message that may be transmitted or received by each network 

interface are governed by its current state. 

State Link Types Transmit Receive 

Unlinked Direct Link signal Link signal 

Linked Direct Synchronization messages Synchronization messages 

Synchronized Direct 

Virtual 

Any message Any message 

Table 1-2 : Supported signals, messages and link types by interface state 

To transition its state upwards (or downwards, per Table 1-2), a network interface must receive the 

appropriate signal or message within a certain timeframe, and in the case of synchronization 

messages, the content of the message must be within a well-defined range. 

To maintain its current state, the conditions required to transition to that state must continue to be 

met.  For example, if an interface is in the synchronized state and reception of the link signal ceases 

for a period of time, the interface state will degrade to unlinked. 

Messages are protected in several ways: 

• All messages are encoded using the 8b10b scheme. [2]  Amongst other properties, 8b10b has 

some error immunity by virtue of it defining a limited subset of valid symbols (in the case of 

VB, 258) from the 1024 possibilities afforded by 10 bits per symbol, i.e. approximately 3 in 4 

errors will be detected by the 8b10b scheme, causing incorrect messages to be discarded. 
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• A valid message is commenced by an 8b10b “start of frame” (SOF) control symbol, which is 

unique in the set of possible symbols and cannot appear as a data symbol.  The received 

bitstream will be ignored until and unless a SOF symbol is received. 

• A valid message is terminated by a CRC-16. [74]  After a message has been decoded from its 

8b10b-encoded bitstream to the original content, it is parsed to validate the CRC.  If a message 

is not able to be validated by its CRC then it is discarded. 

Validation of synchronization messages is particularly important, as synchronization messages govern 

the ability of a network interface to transmit or receive any other type of message.  This constraint 

makes it highly improbable that a network interface that has become a “babbling idiot” [134] will 

cause any interference to the network – in amongst any “babbling”, the interface would need to 

continuously transmit the link signal, and transmit valid synchronization messages at the correct 

times, and would need to do so continuously over a period of time.  Whilst it is not impossible that 

this sequence of events could occur in a “babbling idiot” fault, it does stretch credulity.  Messages sent 

by a network interface that does not meet these criteria will be ignored by a correct partner interface. 

This strong and continuous validation requirement for network interfaces can be viewed as a peer-to-

peer evolution of the master-slave “central guardian” model suggested by Bauer et al [130] for the 

time-triggered protocol, implemented in each and every network interface rather than in a central 

location.  Of further interest is that one of the facilities proposed by Bauer et al is “the ability to open 

some or all ports on demand at the same time” in the context of a guardian connecting a TTP 

transmitter to a subgroup of TTP receivers, which appears to be conceptually similar to the VB 

architecture’s use of physical layer switching to branch a virtual bus at agent nodes.  Unsurprisingly, 

many of the same potential faults that Bauer et al.’s approach introduces are realized in both VB and 

the TTP central guardian model. 

1.6.2.2 Timing of Virtual Bus Timeslots 

VB’s TDMA timeslots are uniform throughout the entire network, i.e. timeslot 𝑠 at any node is the 

same timeslot 𝑠 at every other node; it starts at the same time and has the same duration, irrespective 

of the physical location in the network.  The start time and duration of the segment of each interval 

that is devoted to TDMA signalling, the traffic phase, is also uniform from the perspective of every 

node, so the offset of every timeslot with respect to the start of the traffic phase is defined as the 

index of the timeslot multiplied by the (constant) duration of a timeslot. 

While it is true that the start time and duration of each timeslot is uniform for every node, and it is 

true that the nodes are synchronized, it is also true that time synchronization is imperfect.  

Consequently, it is improbable that every node is in perfect agreement as to when any timeslot starts 

and finishes.  This presents a rather obvious risk of Slightly-off-Specification (SoS) timing errors. [135] 

VB resolves this by devoting a small portion of each timeslot to leading and trailing guard times.  The 

duration of these guard times balances two requirements: ensuring that transmission of the message 

content does not commence until every agent node involved in a virtual bus has executed its physical 

layer switching configuration for this timeslot; and maximization of network capacity utilization by 

minimizing the guard time durations. 

Bauer et al discuss several types of faults that may be caused by imperfect time synchronization in 

multi-hop TDMA [130], all of which amount to misalignment of timeslots between the transmitter, 

guardian and receiving nodes.  VB is exposed to the same fault types and for the same reasons.  
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Although the model of TTP with a central guardian is limited to two hops (transmitter to guardian, 

guardian to receiver/s), it is trivial to extrapolate this fault model to VB’s 𝑛-hop scenario. 

There is another source of timing error that Bauer et al do not discuss further: propagation delay.  As 

a message traverses the extended physical layer of a virtual bus, the propagation delay incurred due 

to link length and switching at agent nodes causes the message to slide towards to the trailing edge 

of the transmission window afforded by the TDMA timeslot.  This behaviour is clearly visible in Figure 

1-29, an actual transmission across a 4-hop virtual bus implemented with the research platform and 

captured with a logic analyser. 

 

Figure 1-29 : Time skew at each hop of a multi-hop virtual bus transmission 

If the total of the delay introduced by the sum of propagation delay and time synchronization 

imprecision is greater than the trailing guard time at any hop, a “cut-off” SoS fault [130] will occur.  

This behaviour is demonstrated at the leading and trailing edges of a blank timeslot in Figure 1-30 

below: the trailing bit of the postamble symbol of the cell that ends at approximately 120µs is slightly 

truncated at its trailing edge, and the trailing edge of the leading bit of the preamble symbol of the 

cell that begins at approximately 220µs appears as a glitch. 

  

Figure 1-30 : Cut-off SoS fault introduced by imperfectly synchronized physical layer switching 

For this reason, the trailing guard time must be guaranteed to be sufficient to meet a well-defined 

maximum end-to-end physical length for virtual buses. 

1.6.2.3 The Extended Physical Layer of a Virtual Bus 

A segment of a virtual bus is constructed by temporarily making an electrical (physical layer) 

connection between either the ingress port or a transmitter of one of the network interfaces of a 

node, and one or more of the egress ports of the other network interfaces of the same node.  A multi-

hop and/or branching virtual bus is constructed by joining a number of these segments together.  The 

result is a discrete signalling channel that traverses multiple nodes whilst being isolated in space by 

the action (or inaction) of the other network switches.  The structure of a virtual bus is temporary 

because it exists as a distinct signalling channel for only a subset of timeslots; outside of those 

timeslots, it ceases to exist, i.e. it is also isolated in time. [71]  Many virtual buses can share the 

network resource space if they observe the constraint that all virtual buses must be orthogonal in 

either space or time: they can either share the same direct links but none of the same timeslots; or 

they can share the same timeslots but none of the same direct links. 
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For the timeslot/s that a virtual bus is in existence, and absent any SoS time errors that might occur at 

the leading and trailing edges of each block of contiguous timeslots due to imperfect time 

synchronization, the single transmitter is electrically connected to the set of receivers as if by a multi-

drop bus.  This is a very useful behaviour: it causes propagation delay to dominate message delivery 

times and hence can in theory achieve significantly better performance for end-to-end delivery delay 

and multicast delivery skew than even the enhanced store-and-forward (or cut-through) switching 

performance that can be achieved with the traffic scheduling of IEEE802.1Q-2018; see section 1.3.3.  

However, it does present as an increased risk of SoS value errors, which will likely be expressed as 

Byzantine errors. 

Under Ethernet’s store-and-forward switching model and irrespective of whether 802.1Q-2018 traffic 

scheduling is in use, frames are validated at each hop, ideally via a CRC.  If a frame is damaged and 

cannot be validated then it is discarded; if it is validated, then it may be parsed and forwarded towards 

its destination.  This hop-by-hop validation ensures that the vast majority of damaged or invalid frames 

do not propagate.  The cut-through switching model of Ethernet is far more permissive, forwarding 

frames immediately the destination address has been decoded, and performing true validation via the 

CRC only at the destination/s.  For a frame to be forwarded under the cut-through model, it need only 

be recognizable as a frame from the first 14 octets.14 

The mechanism used to switch virtual buses diverges significantly from that of Ethernet.  There is no 

need for a decision-making process at each hop of a virtual bus to determine the outbound interface/s 

as the path taken by the bus has been previously agreed and is enforced by the physical layer switching 

mechanism: the ingress port is simply connected to one or more egress ports for the duration of one 

or more timeslots.  Consequently, any bit errors caused by e.g. noise induced into any of the network 

elements that the bus traverses; or by SoS value errors during the conversion of the physical layer 

signal to a logical signal for switching;15 will propagate from that point forwards, replicating at 

branches as dictated by the path, until they reach the receivers at the ends of each branch.  However, 

all VB messages, including time-triggered messages, are validated at the receiver; that is, a Byzantine 

error that results from an SoS value error should result in the affected destinations discarding any 

invalid messages.  Further, because the VB architecture is designed with this risk in mind, the transport 

layer offers end-to-end message and data flow redundancy and replication services through the 

Redundant Dataflow Model (RDM), which offers services similar to the IEEE802.1CB [136] Frame 

Replication and Elimination for Reliability standard. 

1.6.3 Fault Isolation at the Semantic Interface 

The virtual bus network’s isolation at the semantic interface is similar, if not identical, to that of the 

TTP network, as discussed by Bauer et al [130], noting: “fault isolation at the semantic interface needs 

to ensure that the contents of (faulty) frames cannot possibly cause failures at a correct receiver.” 

 
14 To the correct destination – consider that if there is an error in the destination address, and the corrupted 
address is a valid destination that the switch is aware of, the frame will be incorrectly directed to that 
destination. 
15 The risk caused by these conversions is dependent on exactly how the physical layer switching is implemented.  
The research platform implementation is sub-optimal because it converts the received LVDS network signal to a 
single-ended TTL signal; performs switching in the FPGA; and converts the outbound signals back to LVDS.  
Switching in the native LVDS domain, c.f. section 1.3.4, can be expected to reduce the risk of SoS errors as it 
reduces the number of electrical domain transformations experienced by a signal as it traverses the network. 
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As related by Bauer et al, the TTP architecture realizes five relevant “semantic interface” parameters: 

1. Locally stored configuration data, particularly network resource allocation data. 

2. A host computer system. 

3. The progression of global time. 

4. The correctness of received messages. 

5. During startup only, the exchange of time synchronization data. 

VB does not diverge meaningfully from TTP in its treatment of parameters 2 through 4, i.e. Bauer et 

al.’s analysis holds and should be considered directly.  Regarding parameters 1 and 5, there are some 

differences that merit further discussion. 

1.6.3.1 Configuration Semantics 

With regard to parameter 1, VB utilizes three types of configuration data, each of which is dynamic 

and intended to be modified as a result of the exchange of messages with other nodes during the 

normal operation of the network: 

• Link state data, exchanged via Network Mapping Service (NMS) protocol messages, discussed 

in section 3.4. 

• Network resource allocation data, exchanged via Distributed Agent Resource Protocol (DARP) 

messages, discussed in section 3.5. 

• Module producer-consumer relationships, exchanged via Producer-Consumer Protocol (PCP) 

messages, discussed in section 4.4. 

Each of VB’s configuration semantic interfaces is isolated from potential communication faults by the 

design of the communication links, as discussed above; faulty messages are discarded and ignored.  

Further, as noted in section 1.6.1.1, no node will falsify either its own identity, or any of the network 

management protocols.  Consequently and in particular, VB has no security mechanisms with which 

to prevent deliberate falsification of NMS, DARP or PCP messages. 

In contrast, TTP utilizes only Message Descriptor List (MEDL) configuration data, which is read-only 

and cannot be modified by the operation of the network. 

Note that dynamic configuration mechanisms for existing multi-hop networks, e.g. Ethernet, such as 

software-defined networking, e.g. OpenFlow [62] and TSN’s equivalent configurator solution [30][31], 

exhibit the same problem as VB: dynamic configuration data is at risk of being maliciously 

contaminated or accidentally damaged.  In contrast to VB, these are mature solutions that have both 

recognized the risk posed by these threats and had the opportunity to take measures to mitigate them, 

e.g. by implementing node authentication, message authentication, and message encryption. 

1.6.3.2 Time Synchronization Semantics 

VB’s time synchronization mechanism is introduced in section 1.3.6 and discussed in detail in Chapter 

5.  Note that, as discussed in section 1.6.1.1, no node will falsify network management protocols; this 

includes time synchronization messages, which are fundamental to the operation of the network.  

Further, it should be evident that falsified time synchronization messages could be used to totally 

disrupt the operation of the network, e.g. by periodically or intermittently advancing the NCO phase 

by an amount larger than the fine synchronization window. 
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Each node is equipped with a Numerically Controlled Oscillator (NCO) that is steerable in both 

frequency and phase.  In the absence of any synchronization signalling, each node’s NCO has an affine 

frequency, and an unknown relative phase.  The phase of the NCO controls the operation of the link 

and physical layers of the architecture. 

When a physical connection is made between two previously isolated nodes, such that they become 

“neighbours”, after that physical connection has been detected through the exchange of link signals, 

both nodes begin to periodically emit synchronization messages at a particular time (and hence NCO 

phase) offset relative to their NCO.  Each node compares the information in the synchronization 

messages that they receive with their NCO state to determine the relationship between their phases 

and take some action dependent on that relationship: 

• Within a narrow “fine synchronization window”: Activate its clock servo (see section 1.3.6), 

if it is not already activated, to take control of its local NCO and hence track the frequency and 

phase of its neighbour’s NCO. 

• More advanced than the neighbour: Take no action. 

• Less advanced than the neighbour: Advance its NCO’s phase atomically such that it matches 

the neighbour’s phase. 

Note that this means that, given two correct nodes and all messages being correct, it will take at most 

three synchronization messages (one from one node, and two from the other) for synchronization to 

be complete, such that each node’s NCO clock servo is actively tracking the other node’s NCO. 

This approach has a temporary failure mode that takes effect when two isolated network segments, 

each of which is internally synchronized and hence correct, are joined: synchronization of the less 

advanced network segment, in terms of the NCO phase, will fail partially and temporarily as the 

synchronization state of the more advanced segment dominates the synchronization process.  With 

each exchange of synchronization messages, and hence once per network interval, the dominant 

synchronization state will penetrate one hop into the less advanced segment.  In doing so, it will 

disrupt the operation of any existing virtual bus instances in the less advanced segment and force their 

re-negotiation.  Note that this appears to be not dissimilar to potential contamination of the TTP clock 

state that Bauer et al discuss.  As with TTP clock contamination it is an expected and controlled failure 

mode and hence is temporary. 

1.7 Conclusions 

I began in section 1.2 by outlining the problem that my doctoral research aims to address: the design 

of a self-forming, self-healing network architecture designed to support distributed modular-

redundant real-time control systems, and considered first the high-level requirements of the design.  

To restate, these are: 

• Minimization of single points of failure, particularly by avoiding any master-slave 

arrangements. 

• A dynamic multi-hop membership service. 

• Self-forming and self-healing data delivery arrangements between active members. 

• Support for multicast real-time data flows. 
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• Maximization of the reliability and availability of real-time data flows at destinations, 

particularly through the provision of multiple layers of individually scalable redundancy. 

• Minimization of end-to-end delay for delivery of real-time data flows.  Ideally, end-to-end 

delay should be a function only of transmission line propagation delay. 

• Extremely low multicast delivery delay skew of real-time data flows from destination to 

destination for each data pulse.  Ideally, zero. 

• Jitter in delivery timing of real-time data flows from period to period to be no greater than 

one bit symbol at the physical layer signalling rate. 

• No variation in delivery ordering of real-time data flows from destination to destination each 

pulse. 

Having established that deterministic timing of message delivery is perhaps the principal, 

requirement, I continued in section 1.3 by considering the causes of a lack of determinism in message 

delivery timing in existing network architectures, with particular reference to Ethernet due to its 

ubiquity.  I proposed an alternate view of an approach to transmission of messages across a multi-hop 

network that could achieve deterministic delivery times by using a combination of space- and time-

division multiplexing and physical layer switching to ensure that message delivery is always collision-

free and switching delay per hop may be reduced to as little as 1ns: the eponymous Virtual Bus.  I also 

proposed the use of a peer-to-peer diffusion time synchronization approach in order to avoid 

introducing a single point of failure through the use of a master-slave paradigm, which excluded the 

use of IEEE1588. 

In section 1.4 I considered how a network might be structured in order to enable the Virtual Bus 

concept to be realized, drawing further from existing approaches to network design to refine the 

virtual bus model.  I have proposed to integrate network switching into network nodes; to use a 

number of layers of redundancy to minimize the risk of failed message delivery; and to use a 

distributed, redundant, peer-to-peer network resource scheduling mechanism to maximise the fault 

tolerance of data flow delivery.  In section 1.5, I showed that a producer-consumer model provides a 

useful means of understanding and managing the relationships between control system modules and 

discussed how data flows across a Virtual Bus network can be used to service those relationships. 

Sections 1.4 and 1.5 together address the remaining requirements for the network architecture: that 

it be both self-forming and self-healing.  The fault-tolerance mechanisms used to dynamically build 

and maintain producer-consumer relationships, and to dynamically build and maintain data flows, are 

the realization of these requirements; section 1.6 discusses the fault hypothesis of the Virtual Bus 

architecture. 

In the following chapters, I explain in detail the design and operation of the layers that make up the 

Virtual Bus network architecture, and how I have successfully implemented an instance of a Virtual 

Bus network in a research platform built from custom processing and communication electronics 

executing programmable logic and firmware of my own design.  Additional information detailing the 

internal behaviour of my implementation of the architecture is included in the appendices. 
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Chapter 2  

 

The Physical and Data Link Layers 

 

 

 

2.1 Introduction 

This chapter details the operation of the physical and data link layers of the Virtual Bus network 

architecture.  These layers are the foundations of the architecture; their behaviour, and the design 

decisions that shape that behaviour, are fundamental to VB's ability to satisfy its hard real-time 

delivery goals. 

The remainder of this introduction discusses related work in the real-time networking space; 

details the scientific contributions made to the body of real-time networking knowledge within 

this chapter; and places the network services presented in this chapter in the context of the OSI 

reference model. 

Section 2.2 discusses related work, and section 2.3 presents a discussion of the decisions that 

informed the design of the research platform.  These design decisions are revisited in detail in 

later sections; the outlines presented in section 2.3 are intended only to give context to the other 

elements of the physical and link layers.  Section 2.4 begins the technical material proper by 

explaining the operation of the physical layer, with particular attention paid to the processes by 

which each point-to-point link establishes its presence in the network; and the means by which 

the physical layer is extended across multiple network hops, or links.  Section 2.5 continues to 

explain the operation of the data link layer, and Section 2.6 presents a sample of experimentation 

that demonstrates the behaviour of the research platform implementation at the physical and link 

layers.  Section 2.7 highlights the scientific contributions made by the chapter, and the chapter’s 

conclusions are presented in Section 2.8. 

2.1.1 Relationship to the OSI Reference Model 

A multi-hop network is constructed from a set of network nodes, and the communication links 

between those nodes.  It is the communication links that transform a set of isolated computers 
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into a network, and hence provide the foundations on which the higher layers of the network 

architecture are built. 

In the context of the OSI reference model, the individual links between nodes are implemented at 

the physical layer and the data link layer.  The following quotes describing the purposes of the 

physical and data link layers are taken from the OSI reference model. [39]  The OSI model's 

approach, as highlighted in these quotes, informs the separation between VB's physical and data 

link layers. 

From page 46 of the OSI specification: 

7.6.2.1: The Data Link Layer provides functional and procedural means for connectionless 

mode among network entities, and for connection mode for the establishment, 

maintenance and release of data link connections among network entities and for the 

transfer of data link service data units.  A data link connection is built upon one or several 

physical connections. 

7.6.2.2 The Data Link Layer detects and possibly corrects errors which may occur in the 

Physical Layer. 

7.6.2.3 In addition, the Data Link Layer enables the Network Layer to control the 

interconnection of data-circuits within the Physical Layer. 

And from page 49: 

7.7.2: The Physical Layer provides the mechanical, electrical, functional and procedural 

means to activate, maintain and de-activate physical connections for bit transmission 

between data link entities.  A physical connection may involve intermediate open systems, 

each relaying bit transmissions within the physical layer.  Physical layer entities are 

interconnected by means of a physical medium. 

2.2 Related Work 

Avni et al [61] observed that time-triggered switched networks are deterministic.  To achieve 

predictability in delivery times they posit the necessity for a) a globally shared understanding of 

time, and b) a schedule that is defined at each switching node such that a time-triggered message 

that must traverse multiple hops to its destination can pass from one node to the next along a 

pre-determined path at pre-determined times with minimal delay.  One factor that minimizes 

delay is that time-triggered messages are scheduled, so there is no need to make decisions at each 

hop about which egress port/s will be used to forward messages; the decisions are embedded in 

the schedule.  This work is closely aligned with the design of VB’s S/TDM switching mechanism, 

which leverages predetermined switching decisions to achieve true line-speed switching 

(“minimal delay”, i.e. near-zero) by synchronizing the original transmission of the message with 

the operation of switching matrices at each switching node. 

As Guck et al have shown [8], if the timing behaviour of each hop along a signalling path in a multi-

hop network is known a priori, the worst-case end-to-end timing behaviour can be characterized 

and bounded using network calculus [137], and in this context VB’s timing behaviour is consistent 

with their work.  Where VB differentiates from other multi-hop network architectures, including 
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the many flavours of real-time Ethernet culminating in the work of the IEEE TSN group [22], is that 

VB’s per-hop delay is a function only of link length, i.e. is deterministic, and hence the end-to-end 

delay of a time-triggered message traversing multiple hops is also a function of link length and 

deterministic.  The per-hop delay is constant because all of the network resources required for a 

time-triggered message to traverse each intermediate node from an ingress port to one or more 

egress ports are committed to the passage of that message before it is transmitted.  The only 

variable in the per-hop delay is the propagation delay due to the length of the physical layer link 

that realizes the signalling path for the hop.  It is variable only in the sense that not all links are of 

the same physical length, i.e. it is set at network design time, and is improbable that it might 

change during network operation. 

This deterministic latency is one of the key goals voiced by Wollschlaeger et al [138] for the 

ongoing industrial revolution known as Industry 4.0, which include “reduced latencies and 

accurate determinism”.  VB meets this Industry 4.0 goal by using physical layer switching under 

the control of precise time synchronization to construct collision-free multi-hop S/TDMA signalling 

paths with end-to-end latency that is deterministic because it is isolated from other network 

signalling and hence is also decoupled from network utilization. 

Heise et al [131] have proposed in the context of the AFDX network architecture [139] that “For a 

network architecture to be called deterministic, it must fulfill the following points: (a) formal 

verification of maximum end-to-end latencies and (b) mechanisms in the network to guarantee 

that ill-behaved end-systems will not interfere with well-behaved end-systems.”  VB’s link layer 

delivers on both of these requirements.  Formal verification of maximum end to end latencies (for 

time-triggered signalling) is unnecessary under VB, because physical layer switching ensures that 

end-to-end delay is a function of link length as messages are never delayed in the network.  

Additionally, as discussed in section 1.6 and detailed in section 2.5.2, each link between two VB 

nodes is a fault containment region [130] that ensures that it is highly improbable that a faulty 

communications interface, or node, will have any impact on its neighbours.  The latter behaviour 

is related to the problem of self-healing in mobile networks discussed by Khatib et al [47], who 

proposed a means of classifying self-organizing network behaviours.  VB implements the self-

healing behaviours discussed by Khatib et al at the link layer through its continuous monitoring of 

link and synchronization states. 

Yu and Gu [140] noted, with particular reference to trains and ships, that a) multicasting is a 

fundamental requirement for distributed cyber-physical systems (CPS); and b) deterministic 

latency and jitter are vital for real-time control systems.  VB affords all three of these 

requirements, with multicasting taking place at the physical layer due to the behaviour of the 

physical layer switching matrix, ensuring multicast delivery skew is decoupled from dynamic 

network behaviours, including network load; is a function principally of the physical length 

difference between the source and each multicast destination; and hence is deterministic. 

Schweissguth et al [4] developed a modified industrial Ethernet that uses software-defined 

networking (SDN) to configure TDMA transmission across a multi-hop Ethernet network, with 

timeslots that are sufficient to enable end-to-end transmission of Ethernet frames, i.e. resources 

required for an end-to-end transmission are allocated for the entire duration of that transmission.  

They report latencies in the sub-millisecond range.  VB assigns resources to data flows using a 

similar model, delivering messages across multi-hop signalling paths in a single timeslot. 
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Nayak et al [50] have observed that “the elimination of non-deterministic queuing delays in 

network elements is an essential requirement to achieve deterministic network delay and jitter for 

time sensitive traffic”, which amongst other benefits also “eliminates packet loss due to 

overflowing queues”.  They recommend the use of a global timing scheme, specifically referencing 

IEEE1588 [23], to assign packets to timeslots in a global transmission schedule to avoid in-network 

queuing, and they also note that variance in end-to-end delay over network paths of different 

lengths is “inevitable”.  Their views on time-triggered switching are consistent with the behaviour 

of the IEEE TSN group’s traffic scheduling as described in IEEE802.1Q-2018 [25].  VB takes this 

approach one step further by completely eliminating the concept of ingress or egress queues for 

time-triggered signalling, such that a message can traverse a VB switch via an analog-domain 

connection that physically resembles a simplex multi-drop bus and that is scheduled in space and 

time in a 2-dimensional grid of network resources, i.e. true line-speed switching. 

Du and Herlich [83] have observed that, in a time-triggered network, a pre-defined schedule must 

be either distributed and shared by all devices, or published from a master device, as per the 

Flexible Time-Triggered (FTT) paradigm reported by Pedreiras and Almeida [80].  Further, they 

agree that precise time synchronization is necessary in order to use a distributed schedule.  FTT’s 

approach to dividing network time into Elementary Cycles (EC) is conceptually very similar to VB’s 

Intervals.  Drilling further into the components that make up elementary cycles and intervals 

respectively, further similarities are evident; for example, FTT’s asynchronous window 

corresponds to VB’s management phase; and FTT’s synchronous window corresponds to VB’s 

traffic phase.   FTT’s timing scheme is more flexible than VB’s because the durations of FTT’s 

synchronous and asynchronous windows can be altered at runtime, but this flexibility comes at a 

cost: FTT employs the master-slave paradigm, i.e. it relies upon a single central network controller.  

Unfortunately, and as Pedreiras and Almeida acknowledge, FTT’s use of the master-slave 

paradigm for cycle and window timing is a single point of failure that leaves an FTT network 

vulnerable to total failure if the central controller fails in the absence of any redundancy.  In 

contrast, although a VB network’s overall capacity may degrade with the loss of nodes and/or 

links, it is improbable that the loss of any one node or link will cause total failure of the network.  

This point is explored further in VB’s fault hypothesis, discussed in section 1.6. 

Chiti et al [141] proposed the use of Quality-of-Service Optimized Link State Routing (QOLSR), also 

known as Extended OLSR (EOLSR), in which each node reports information about its own 

capabilities and its dynamic (wireless) connections to immediate neighbours.  VB employs the 

periodic exchange of SYNC cells for a similar, if relatively limited, role. 

Tămaş–Selicean et al [142] and Gavrilut et al [64] explored Time-Triggered Ethernet (TTE) [3] and 

its traffic integration policies of shuffling, pre-emption and, of particular interest in the context of 

VB, “timely block”.  VB implements a timely block policy at the link layer to ensure that the 

transmission of lower priority ad-hoc cells can never interfere with the transmission of higher 

priority time-triggered or SYNC cells.  Note that although VB does not assign an explicit priority to 

any cell, it does implicitly treat time-triggered and SYNC cells as higher priority than ad-hoc cells. 

Galloway and Hanke [82] explored the underlying principles of industrial control networks and 

observed that such networks typically use quite small message sizes because the data pulses that 

they transport often need to contain only a single measurement, plus some overhead or 

metadata; consequently, message sizes can generally be on the order of a few bytes.  This 
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contrasts with commercial and office networks, which typically use Ethernet; transport 

substantially more data; and hence need to support significantly larger message sizes.  VB uses 

fixed-size cells with a 16-byte payload, which is consistent with Galloway and Hanke’s views given 

that VB was designed to fit into the industrial fieldbus space. 

Linsenmayer et al [38] propose the use of an “underlying grid of timeslots for all transmissions”, 

the period of which is synchronized to the period of the dependent control system.  They further 

explain how their proposed approach can be realized using the time-aware shaper of 

IEEE802.1Qbv [5].  These concepts align with VB’s cyclic operation, where time is broken into 

“intervals” of equal length, the duration of which is similarly intended to equate to the period of 

the dependent control system; and to VB’s use of globally synchronized timeslots, which could be 

viewed as an “underlying grid”.   

2.3 Design and Implementation 

The Virtual Bus (VB) network architecture is built on a partial-mesh topology in which each node 

is equipped with multiple full-duplex signalling interfaces, each of which is a physical layer 

connection endpoint under the OSI reference model. [39]  All network messages at the link layer 

and below take the form of small, fixed length "cells".  The physical layer utilizes two quite distinct 

signalling modes: an ad-hoc mode, under which cells may be transmitted at any time16; and a 

space-and-time-division multiplexed (S/TDM) mode, under which cells may only be transmitted in 

tightly controlled timeslots.  Each signalling mode maps to a corresponding class of data link layer 

messaging service: the ad-hoc messaging service is intended for non-time-critical data and uses 

the ad-hoc signalling mode; and the Time-Triggered (TT) messaging service is intended for hard 

real-time control data flows via simplex multi-drop paths, or virtual buses, and uses the S/TDM 

signalling mode.  The rationale for using S/TDM switching for real-time control signalling was 

discussed in section 1.3.  Recall that the use of time-triggered signalling is well-established for real-

time control networking. [3][4][5][80][143][144] 

This chapter details the integration of these two signalling modes and corresponding messaging 

services into singular data link and physical layers.  Particular attention is paid to the mechanisms 

that isolate the signalling modes from one another, and from other underlying network 

behaviours, including network time synchronization, as this isolation is the foundation of one of 

the key strategies that the architecture employs to achieve hard real-time signalling: avoidance of 

collisions and contention by design. 

2.3.1 Research Platform Design 

In the first stages of the design of the Virtual Bus network architecture, consideration was given 

to modifying existing low-level network technologies to suit the goals of the research; Controller 

Area Network (CAN) [49] and Ethernet [40] were of particular interest.  The final decision to design 

the low-level network from first principles was driven by a desire to not be forced to compromise 

functionality during the research process in order to retain compatibility with existing network 

architectures.  However, the design decision was made with the understanding that the final 

 
16 Absent some constraints around timing of synchronization signalling. 
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research product should be able to be fed back into existing network architectures, particularly 

Ethernet. 

The data link and physical layers, also referred to as the Media Access Control block, or MAC, of 

the research platform have been implemented in a Xilinx™ Spartan-6 XC6SLX25 Field-

Programmable Gate Array (FPGA) [145].  A gate array was chosen as the implementation platform 

for the lower network layers because it enabled construction of a customised parallel-processing 

logic design with single clock cycle timing granularity.  Apart from critical components such as 

block RAM's and clock managers, the vendor-specific capabilities available in the Spartan-6 FPGA 

were explicitly avoided in order to keep the design as open as possible and hence transferrable to 

other families of FPGA.  The research platform also includes a microprocessor, an ST 

Microelectronics™ STM32F407 ARM™ Cortex-M4 microcontroller [146], that is used to host the 

higher network layers.  The host CPU interacts with the MAC through a conventional half-duplex 

memory bus; from the perspective of the host CPU, the MAC is a memory-mapped 

communications peripheral.  Low-Voltage Differential Signalling (LVDS) [147] was employed for 

the physical layer data circuit technology, implemented with Texas Instruments™ SN65LVDS051 

transceivers [148]. 

 

Figure 2-1 : Research System Physical Architecture 

Note that from the data link layer upwards the architecture is almost entirely independent of the 

physical layer; the only firm requirements for the physical layer are that it be full duplex; and that 

its maximum length per link must be not less than the length set by the time synchronization 

window; as explained in section 2.4.4, this is approximately 200m given the operating parameters 

selected for the research platform.  Note also that this range limit is not fixed by the architecture, 

it is fixed by the selection of the operating parameters of the implementation, and can be varied 

by adjusting those parameters. 

Each node is clocked with a timebase 𝑓𝑂𝑆𝐶  with a frequency that is nominally 25MHz, although the 

actual frequency of each node is within a narrow range around the nominal frequency, and the 

instantaneous frequency of each node may independently vary, e.g. due to environmental 

influences such as temperature. [149]  The 𝑓𝑂𝑆𝐶  timebase drives a numerically controlled oscillator 

(NCO) to arrive at a network interval frequency 𝑓𝑁𝐶𝑂 that is much lower than 𝑓𝑂𝑆𝐶, but that is 

adjustable over a very narrow frequency range, allowing the frequencies and phases of all of the 

NCO's in a network to be continuously re-synchronized in a process of fine synchronization, as 

discussed in Chapter 5. 

A network interval frequency of 100Hz was selected for the NCO, giving an interval period of 10ms.  

The selection of 100Hz was fairly arbitrary, although influencing factors included that it was a 

convenient integral dividend of 25MHz; that the denominator of 250,000 equates to 4ppm, which 
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is in the same quantum as the total error reported by the vendor of the oscillator [150] at 

±4.3ppm; and that 100Hz was as low a frequency as I felt that I could justify for any approximation 

of real-time control. 

Given the MAC's nominal oscillator frequency 𝑓𝑂𝑆𝐶 = 25𝑀𝐻𝑧, each 10ms interval is divided into 

approximately 250,000 ticks of the NCO clock.  The instantaneous NCO tick count, which equates 

to the NCO phase, is generally referred to as 휃𝑁𝐶𝑂 or 휃𝑙𝑜𝑐𝑎𝑙.  Each interval is further divided into 

two sub-intervals: a traffic phase, during which the S/TDM signalling mode is used, and a 

management phase, during which the ad-hoc signalling mode is used.17  The network signalling 

capacity is divided evenly between these two sub-intervals, such that each is 5ms in duration and 

encompasses approximately 125,000 ticks of the NCO clock.  The traffic phase commences at 

휃𝑁𝐶𝑂 = 0 and the management phase commences at 휃𝑁𝐶𝑂 = 125,000. 

The decision to assign an equal length to each phase was completely arbitrary.  At the time the 

decision was made there was no way to determine how much ad-hoc signalling would be required 

to perform the network management function, so 50% was assigned, with the understanding that 

it might be revised in the future.  Unfortunately, an opportunity to undertake that revision has not 

been realized.  In hindsight, it would have been useful to assign 64 timeslots, which would have 

afforded more efficient resource allocation by the Distributed Agent Resource Protocol (DARP) 

using a 64-bit integer (see section 3.5) without wasting 14 bits to zero-stuffing, i.e. given a 10ms 

interval, 6.4ms would be assigned to the traffic phase and 3.6ms assigned to the management 

phase.  It also occurred to me that the ability to vary the number of timeslots in the traffic phase 

and hence open up more timeslots if the traffic network was becoming congested18 would have 

been useful, but I did not explore this, principally because I wanted to keep the link layer 

implementation entirely within the FPGA and I was concerned that increasing its complexity would 

have caused the logic design to exceed the (relatively limited) capacity of the LX25 device. 

Physical layer signalling is at 2.5Mbps of 8b10b-encoded bitstream, or 2Mbps of pre-coding 

throughput, via up to four full-duplex communications interfaces.  All physical layer messages, 

both S/TDM and ad-hoc, are contained in fixed-length cells of 25 octets, equating to 2,500 𝑓𝑂𝑆𝐶  

ticks.  TDM timeslots are also 2,500 𝑓𝑂𝑆𝐶 ticks in duration, i.e. there is a one-to-one relationship 

between physical layer cells and TDM timeslots.  This results in a maximum throughput of 50 

S/TDM cells per interval, per interface.  After all link and physical layer overheads are considered, 

each link has a capacity of 80,000 bytes per second of hard-real time data via the TT messaging 

service, plus a capacity of 78,400 bytes per second of ad-hoc data via the SAF messaging service.  

The balance of 1,600 bytes per second of ad-hoc data capacity, equating to 1% of total link 

capacity, is committed to network time synchronization. 

In hindsight again, it would have been beneficial to either increase the number of symbols in each 

cell or increase the number of cells per interval.  Increasing the symbol count might have been 

used to increase the size of the payload, but I would have particularly liked to increase the number 

of postamble symbols per cell.  A longer postamble would have increased the maximum end-to-

end length of virtual buses, as discussed in Section 2.4.4.  I could have achieved either or both of 

 
17 Note the distinction between the NCO phase as a simple count of clock ticks, and the traffic and 
management phases as distinct sub-intervals. 
18 Rather like FTT [80], in hindsight. 
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these outcomes by reducing the bit clock divider from 10, to some smaller number, perhaps 5, 

and hence increasing the signalling rate from 2.5Mbps to 5Mbps.  Certainly, 5Mbps would have 

been well within the capabilities of the physical layer. 

It is fair to say that there is considerable scope to explore optimization of the research platform 

implementation through variations in any number of system parameters: physical layer 

technology, physical layer signalling rates, cell payload and header sizes, guard times between 

cells, the duration of each interval and the ratio of the split between the traffic and management 

phases all offer opportunities for increased throughput, longer end-to-end signalling paths, finer 

network time granularity and tighter time synchronization.  However, that is not the path that this 

research followed.  There were a host of other tasks that needed to be completed in order to 

achieve the overall research goals, and those tasks were given priority. 

2.3.2 Initialization of a Network Communications Link 

As discussed in sections 1.3.5 and 1.3.6, in order for a TDM signalling scheme to function both the 

transmitter and any receivers must agree on the time, i.e. they must be time-synchronized.  

However, the only means of communication, including communication for the purpose of time 

synchronization, is the communications links.  This is a circular argument – in order to 

communicate, times must be synchronized, but in order to synchronize times, communication 

must occur.  A fault-tolerant means of bootstrapping communications in the absence of time 

synchronization is evidently required.  Note that the negotiation required for the VB bootstrapping 

process is relatively simple compared to, e.g. TTP or FlexRay [151]: consider that VB employs full-

duplex communications links that each join two nodes, whereas TTP and FlexRay employ one or 

more half-duplex communications links that each join 𝑛 nodes. 

The reference for time synchronization in the virtual bus architecture is the interval; in order for 

a pair of VB nodes to be synchronized, they must agree on the start time and duration, i.e. the 

frequency and phase, of every interval, to some as yet unspecified precision. [35]  It is implicit that 

each node is equipped with a local timebase or clock, and that the duration of an interval is some 

integral count of clock oscillations, or ticks.  Given that, at least in the context of a homogenous 

network like the research platform, all nodes are nominally identical, both timebases for any given 

pair of nodes must have the same frequency.  The reality of course is that the nodes and their 

timebases are only approximately identical, or affine; manufacturing tolerances and 

environmental variations effectively ensure that the timebases will have slightly different 

frequencies, and there is no guarantee that any frequency differential is constant. [149]  

Consequently, in the absence of any clock correction or steering, the interval timers in each node 

will also have slightly different frequencies. 

The goal of synchronization is to steer both the frequency and phase of the interval timers such 

that in the ideal the nodes will not drift apart after synchronization has occurred, even in the 

absence of further signalling.  This is of course unrealistic; synchronization must by necessity be 

an ongoing process, because even two nominally identical clocks will almost certainly drift apart 

over time.  However, synchronization cannot be continuous because the process of 

synchronization necessitates communication between network nodes, which uses network 

capacity, and network capacity is not unlimited; continuous synchronization of a pair of nodes 

could consume the entire signalling capacity of the link between them. [18]  Rather, 

synchronization must be periodic; spaced in time as much as is possible in order to minimize 
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network utilization; but often enough that synchronization is not compromised.19  It is convenient, 

although certainly not necessary, that the frequency of synchronization signalling should match 

the frequency of intervals. 

This dissertation contains a detailed discussion of VB's link synchronization mechanism in Chapter 

5.  In brief, step changes of interval phase are used to achieve coarse synchronization and opposing 

pairs of phase-locked loops are used to measure phase errors and drive a clock correction 

mechanism, or clock servo [152], in order to maintain fine synchronization.  Coarse 

synchronization is the primary means of time synchronization bootstrapping and was the first 

synchronization mechanism that was considered.  Fine synchronization was designed and 

implemented at a later stage in order to overcome the limitations of coarse synchronization; 

again, this is discussed in detail in Chapter 5. 

Given that the timebases of a pair of nodes can be expected to have a very small error in 

frequency20, the first step in the bootstrapping process is to match the phases of their interval 

timers.  The interval timer phase is simply a number, an integral count of ticks of the timebase.  A 

synchronization signal contains the phase of the transmitting node at the time of transmission, 

expressed as a number.  Each node periodically, once per interval as measured by its own 

timebase, transmits such a synchronization signal.  During coarse synchronization a receiving node 

compares the phase of the synchronization signal to its own local phase; if the synchronization 

signal's phase is higher the local phase is updated, otherwise the receiver takes no action.  In order 

for a node to recognise that it is synchronized with its partner and communication other than 

synchronization can take place, it must receive a synchronization signal from the partner that has 

a phase equal to or greater than its own phase. 

Consider the simple example in Figure 2-2 below, noting that the propagation delay of the 

transmission path has been ignored, i.e. the time required to transfer a message from Node A to 

Node B or vice versa is treated as zero. 

 

Figure 2-2 : Coarse Synchronization Timeline Example 

 
19 Per Simeone et al [18], continuous synchronization equates to phase coupling of two oscillators, and 
periodic synchronization equates to pulse coupling. 
20 Inexpensive clock oscillators with an error of less than 10ppm are readily available, e.g. the oscillators 
used for the research platform have a published error of ±4.3ppm. 
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Phase 휃 is represented as a periodic integral value in the range 0 ≤ 휃 ≤ 99 that increments 100 

times per interval.  At 휃 = 80, each node transmits a synchronization signal.  In the first instance, 

the two nodes are not linked, and |∆휃| = 50.  At 휃𝐴 = 45 and 휃𝐵 = 95, a link is established 

between the nodes, and at  휃𝐴 = 80 and 휃𝐵 = 30, node A transmits a synchronization signal to 

node B.  Node B inspects the signal, notes that the signal's phase is more advanced than its own, 

and updates its own phase to match; now, 휃𝐴 = 휃𝐵 = 80.  Node B is now synchronized to Node 

A.  In the next interval at 휃𝐴 = 휃𝐵 = 80, Node B transmits a synchronization signal to A, and A is 

now also synchronized to B. 

Synchronization signals are sent towards (but not at) the end of an interval.  If synchronization 

signals were sent in close proximity to an interval boundary then there would be a risk of an 

overrun or underrun error between the phase of the signal and the phase of the receiving node's 

interval timer.  In addition, by delaying the synchronization signal until the second half of the 

interval, even a small clock skew between the two nodes has more time to cause an overflow in 

an interval timer phase quantum and hence be visible as an error that can be corrected for. 

Recall that it is a near-certainty that the two nodes have slightly different frequencies.  The faster 

node will send its synchronization signal slightly earlier than the slower node.  After 

synchronization has occurred and given sufficient time for the interval timers to drift apart 

sufficiently, at some point the synchronized but slower node will receive a synchronization signal 

with a higher value than its own interval timer count.  It responds by updating its own interval 

timer's count to match; in effect, it adds one (or more) clock ticks to its own count.  This keeps the 

start times of intervals approximately aligned, despite clock skew. 

Once a node has achieved coarse synchronization with its partner, bootstrapping is complete and 

the link is initialized.  The node can now use the shared communications link to send and receive 

messages that are not synchronization signals. 

2.3.3 Cyclic Operation of the Virtual Bus Network 

Given that the VB architecture has been designed to support distributed real-time control 

networks and given that real-time control systems are generally time-triggered so as to execute 

their algorithm cyclically and repetitively [35], the VB architecture is also time-triggered, cyclic and 

repetitive.  To this end, network time is broken into intervals, nominally of equal duration and 

with concurrent start times at every node.  Intervals are further decomposed into two phases: the 

traffic phase and the management phase.  The traffic and management phases respectively map 

to the concepts of Intervals of Silence and Intervals of Activity in the Sparse Time model of 

distributed control system time [81] as discussed in section 1.3.5. 

Time-critical control system data flows are transported using the TT messaging service during the 

control system's intervals of silence, which correspond to the network's intervals of activity.  The 

network's intervals of silence, when it is not transmitting time-critical data flows, would represent 

wasted network capacity if they were not utilized.  The VB architecture takes advantage of the 

network capacity encapsulated in the network intervals of silence to transmit non-time-critical 

data, primarily but not exclusively for network management purposes such as time 

synchronization and resource scheduling, using the ad-hoc messaging service. 

Intervals and phases are synchronized by node, not by link; consequently, all of a node's interfaces 

always share a common phase: the node's 휃𝑁𝐶𝑂, as explained in section 2.3.1.  Synchronization of 
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intervals, and of the traffic and management phases, is governed by 휃𝑁𝐶𝑂.  The NCO "wraps" as it 

increments from 249,999 to 0, marking the start of a new interval; for the period 0 ≤  휃𝑁𝐶𝑂 ≤

124,999, a node and all of its interfaces are in the traffic phase; and for the period 125,000 ≤

 휃𝑁𝐶𝑂 ≤ 249,999, a node and all of its interfaces are in the management phase.  Synchronization 

signals are sent during the management phase, nominally at 휃𝑁𝐶𝑂 = 200,000. 

 

Figure 2-3 : Interval Timing Diagram 

VB’s approach of hierarchically decomposing time first into periodic intervals, and further into 

synchronous (time-triggered) and asynchronous sub-intervals or phases, has clear similarities to 

the approach taken by the Flexible Time-Triggered (FTT) architecture [80].  Where the approaches 

taken by FTT and VB differ is that FTT, as the name suggests, has some flexibility in its timing, 

whilst VB’s timing is static.  The principal reason for this is that FTT is predicated upon the master-

slave paradigm: a single, logically central, master node broadcasts Trigger Messages (TM) that 

synchronize the start of each FTT Elementary Cycle (EC).  The duration of the EC is nominally 

fixed,21 but the proportion of each EC devoted to time-triggered traffic (the synchronous window) 

versus the proportion devoted to asynchronous traffic (the asynchronous window) can be varied 

from EC to EC by the master node by altering the contents of the TM.  In contrast, the proportion 

of an interval assigned to each of VB’s traffic and management phases is fixed at design time due 

to VB’s adherence to the use of peer-to-peer relationships throughout its design. 

There are also some similarities evident between VB and Profinet IRT, which decomposes network 

cycles into “separate time domains for cyclic hard real-time, for soft /non real-time over TCP/IP 

traffic, and for the synchronisation mechanism”. [99][149] 

FlexRay [153] uses an approach to time segmentation that is not dissimilar to VB and FTT: 

communication cycles equate to VB intervals and FTT elementary cycles; and the static and 

dynamic segments equate to both VB’s traffic and management phases, and FTT’s synchronous 

and asynchronous windows. [144][154]  

Du and Herlich [83] proposed a means of a delivering multiple real-time Ethernets over a single 

physical infrastructure, and using software-defined networking (SDN) to isolate each distinct 

network, such that “the devices in the two networks would never receive messages from the other 

network and thus this sharing of the physical infrastructure could be completely transparent to the 

participating devices”.  They proposed that the simplest means of achieving this isolation would 

be “reserving half of the time for network 1 and half of the time for network 2”.  They further 

observed that “such a setup may require some form of time synchronization between devices in 

the two networks which could take place in a third virtual network”.  Their proposal is very similar 

indeed to the approach taken by VB: S/TDM and ad-hoc signalling take place in two distinct 

 
21 I can see no reason why the duration of EC’s could not be varied cycle-by-cycle by means of the master 
node changing the periodicity with which it emits TM’s. 
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networks that share the same physical infrastructure but are isolated by a time division scheme 

that affords each network with 50% of the signalling capacity. 

An unfortunate limitation of VB’s cyclic approach is relatively high transmission latency.  That is, 

there may be a non-trivial delay between the time that a message is formulated and loaded into 

a transmit queue during a management phase, and the time that message is transmitted during 

the next traffic phase.  Further, VB, at least in the context of the design of the research platform’s 

media access controller, suffers from receive latency.  That is, there is a delay between when a 

message arrives at a receive queue, and when that message is unloaded from the receive queue 

at the end of the current traffic phase.  Total latency for any time-triggered message under VB can 

be expected to be certainly no less than one interval, and in the worst case may be slightly greater 

than 1.5 intervals. 

Note that VB’s receive latency is an implementation fault, not a limitation of the architecture. 

There is no architectural reason, or even any constraint imposed by the MAC implementation, 

that prevents a time-triggered cell from being unloaded and parsed immediately upon reception, 

or from being loaded into the MAC immediately before it is transmitted.  The limitation is imposed 

by the design of the protocol stack firmware executed by the host microcontroller.  One of the 

most limiting consequences of this fault is that it appears to confound the architecture’s claims of 

very low delivery jitter and multicast skew.  While these goals are indeed achieved in the sense 

that the transfer of cells from a transmitting MAC’s memory to a receiving MAC’s memory over a 

virtual bus has these qualities, in practice the receiver is unable to make timely use of the benefits 

that might otherwise have been realized. 

FTT may also suffer from similar problems with transmission latency: consider the situation of a 

slave node that receives a TM that instructs it to transmit a time-triggered message towards the 

end of the synchronous window, potentially resulting in the slave constructing the message at the 

start of that synchronous window then delaying its transmission until the timeslot flagged in the 

TM.  On the other hand, FTT appears to be unlikely to suffer from receive latency as messages are 

presumably unloaded from a receive queue and parsed shortly after they have been received. 

VB and FTT also differ in how they treat the periodicity of data flows.  FTT does not require that a 

particular data flow must always send its corresponding data pulse at the same time in each EC; 

rather, the TM specifies which data pulses are to be sent in a particular EC, and when.  This allows 

FTT to support time-triggered data flows with a periodicity other than that of the EC.  However, 

given data flows with different periods, it is unavoidable that at some point the desired timing 

windows for those pulses will overlap, causing a logical collision.  The master node can control 

which data flow has priority and is transmitted at the optimum time; any other data flows will be 

delayed, i.e. will be subject to jitter with respect to their nominal periodicity.  Note that this may 

cause a cascade of collisions in a heavily loaded network – when one data pulse is delayed, that 

delay may cause it to overlap another data pulse’s window, ad infinitum. 

The more recently developed IEEE Time-Sensitive Networking [22] group’s approach to time-

triggered signalling, as realized by the traffic scheduling of 802.1Q-2018 [25], has a similar 
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approach to FTT regarding data flow periodicity22, and hence has exactly the same flaw: logical 

collisions when data pulses overlap, typically at least common multiple boundaries, resulting in 

jitter in data pulse delivery. 

Despite the flaw noted above in its implementation, at an architectural level VB does not suffer 

from jitter in data pulse delivery because of its strategy of using uniform timeslots.  As long as a 

higher layer can guarantee that a data flow is always serviced by the same set of timeslots to a 

destination, that destination will experience zero jitter at the MAC.  Such a guarantee does come 

at a price, e.g. in terms of flexibility, as compared to TSN or FTT.  This is certainly true for the 

Distributed Agent Resource Protocol that has been implemented for VB and is detailed in section 

3.5.  However, an alternate Layer 3 resource allocation implementation could be developed for 

VB that prioritises flexibility over jitter-free delivery. 

2.3.4 Classes of Signalling 

The VB architecture is designed to provide collision-free end-to-end signalling across 

communication links that are chained together through physical layer switching by using an 

S/TDM media access control mechanism to direct and confine the signals.  In order to construct 

the requisite chains of communication links, nodes must exchange signals to negotiate the 

allocation of network resources in the form of TDM timeslots and SDM switching.  This is the 

source of another circular argument: the S/TDM media access control mechanism relies upon 

negotiation between nodes using the exchange of signals, and signalling relies upon the S/TDM 

media access control mechanism. 

This instance of circularity has been resolved by altering the behaviour of the network depending 

on whether it is in the traffic phase or the management phase.  The time-triggered control of the 

S/TDM media access control mechanism is used for the traffic phase, and an ad-hoc media access 

control mechanism is used for the management phase, i.e. signals sent during the management 

phase do not need to conform to TDM timeslots and may be transmitted at any time.  In terms of 

the timing of the phases with respect to an interval, the traffic phase occurs first, with its start 

time coincident with the start time of the interval, and the management phase consumes the 

portion of the interval not devoted to the traffic phase.  Synchronization signals are sent during 

the management phase. 

The S/TDM media access control mechanism of the traffic phase was outlined in section 1.3.  The 

ad-hoc media access control mechanism of the management phase is a data link layer protocol 

that allows signals to be transmitted one hop, from a source node to a destination node.  The 

management network sub-layer, described in Chapter 3, can use the data link layer's ad-hoc 

messaging service during the management phase to communicate with nodes at distances greater 

than one hop by using a store-and-forward approach, similar to that of switched Ethernet [40] or 

IP [41], and described in Appendix D.3.3.  Hence, the VB network architecture utilizes a hybrid 

media access control scheme that includes elements of both space-and-time-division-multiplexing 

 
22 This is not a suggestion that 802.1Q scheduled traffic behaves like FTT in a practical sense.  However, and 
in contrast to VB, neither FTT or TSN places explicit constraints on timeslot start times or durations, e.g. by 
constraining timeslots to be aligned to a uniform grid. 
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and store-and-forward networking, with the boundary between the two signalling modes, the 

traffic and management phases, controlled by another time-division multiplexing scheme. 

2.3.5 Comparison with Existing Networks 

VB's 2Mbps bit rate appears to be relatively low in comparison compared to the multi-gigabit 

heights scaled by Ethernet.  However, it is in the same quantum as CAN's maximum speed of 

1Mbps, and CAN is widely used as a vehicular control network, i.e. a 1Mbps bus has been shown 

over many years to have adequate capacity for the purpose of vehicular control if that capacity is 

used efficiently.  That said, CAN had been superseded by its newer variant, CAN with Flexible Data 

Rate (CAN-FD) [155] as a more cost-effective alternative to the faster but more expensive FlexRay 

[153], before real-time Ethernet and particularly TSN [22] began to take over the vehicular 

networking space. [156]  CAN-FD extends CAN while maintaining backwards compatibility by 

increasing the maximum payload size per message from 8 bytes to 64 bytes, and by allowing 

message payloads to be signalled at a higher bit rate (up to 8Mbps) than the arbitration, control 

and acknowledge components. 

Note that in terms of the overall network, a practical VB network has considerably greater 

potential capacity than any bussed architecture, including CAN-FD and FlexRay, because VB has as 

many signalling channels as it has links, and those signalling channels are isolated in space and 

hence may be used concurrently.  Further, recall that per the Shannon-Hartley theorem, 

transmitting a relatively low data rate proportional to a channel's bandwidth improves 𝐸𝑏 𝑁𝑜⁄  and 

reduces the probability of signalling errors. [157][158]  Consider that VB uses a signalling rate 

(2.5Mbps) that is very low relative to the capabilities of LVDS: 100Mbps for the transceivers 

employed by the research platform, and upwards of 1Gbps for readily available commercial 

devices e.g. the SY87225L part [159]. 

As shown in Table 2-1 below, the parameters selected for the cell format used by the VB research 

platform deliver roughly equivalent efficiency in terms of the ratio of payload to frame size 

compared to Ethernet [40], CAN [49], CAN-FD [155], FlexRay [153] and TTP [160]. 

Topology Type Frame Size (bits) Overhead (bits) Payload (bits) 𝜼 

Multi-hop Ethernet (minimum-size frame) 672 304 368 0.548 

Multi-hop TSN Ethernet (minimum-size frame) 672 336 336 0.500 

Bus CAN base data frame 108 44 64 0.593 

Bus CAN extended data frame 128 64 64 0.500 

Bus CAN-FD base data frame 19+155/8 19+27/8 128/8 0.735 

(0.417) 

Bus CAN-FD extended data frame 38+155/8 38+27/8 128/8 0.663 

(0.279) 

Bus FlexRay 192 64 128 0.667 

Bus TTP (N-frames) 156 28 128 0.821 

Multi-hop VB cell (pre-encoding) 200 72 128 0.640 

Table 2-1 : Comparison of Payload Efficiency 
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In the context of a real-time control network, the minimum 46-octet payload (42 octets if the 

header includes one 802.1Q tag) size of Ethernet seems unnecessarily large [82] and is potentially 

under-utilized network capacity – much of it is effectively overhead, as for many control 

applications it is likely to be unused and presumably zero-stuffed.  Ethernet addresses also seem 

unnecessarily large for vehicular control network purposes – it is improbable that any Ethernet 

control network, not least an internal vehicular control network, would require 248 nodes.  On the 

other hand, with the advent of CAN-FD and its payload size of up to 64 octets and flexible bit rate, 

it is evident that the developers of CAN-FD recognized that increased throughput compared to 

CAN was a necessity due to the increasingly data-heavy requirements of vehicular control 

networks.  VB’s payload size of 16 octets was chosen to be in the same quantum as CAN, but in 

hindsight and giving consideration to the maximum frame size permitted for CAN-FD, it may be a 

little small. 

 

Figure 2-4 : End-to-end utilization efficiency comparison of Ethernet and VB 

 

Figure 2-5 : End-to-end payload efficiency comparison of Ethernet and VB 

Note that the efficiency calculations for CAN-FD are complicated by the change in signalling rate 

for the payload only (Table 2-1 references an 8x speed increase for the data portion of the frame, 

e.g. from 1Mbps to 8Mbps), and variable parameters such as the CRC length (15, 17 or 21-bit).  

Note also that the higher line speed during the data portion of a CAN-FD frame reduces the 

proportion of time spent transmitting the data, which compromises payload efficiency in terms of 
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time to transmit the overhead components versus time to transmit the payload; note the 

parenthesized efficiency figures. 

The reader should also be aware that most of the architectures listed in Table 2-1 are buses rather 

than multi-hop networks, which makes comparisons with VB questionable.  Considering now only 

the comparison between VB and TSN Ethernet, as the most comparable real-time multi-hop store-

and-forward network architecture, we can explore the utilization and payload efficiency of end-

to-end transmission across multiple hops using the parameters for network timing analysis 

specified in section 1.3.3. 

An argument might be made that it is not a fair comparison to calculate Ethernet’s efficiency as if 

the resource utilization of an Ethernet frame that traverses multiple hops via store-and-forward 

is directly comparable to the resource utilization of a VB cell that traverses multiple hops via 

physical layer switching.  Such arguments are flawed: while it is certainly true that the store-and-

forward approach has some advantages over physical-layer switching, e.g. hop-by-hop message 

validation, it also inescapably true that store-and-forward is comparatively inefficient in terms of 

resource utilization. 

In line with the related calculations from sections 1.3.3 and 1.3.4, it is evident that Ethernet’s 

relative end-to-end efficiency decreases with both line speed and hop count, because the 

transmission time of a store-and-forward frame is heavily influenced by the number of times that 

it must be transmitted and received, and the forwarding delay at each hop is 500ns or more [78] 

irrespective of line speed.   In contrast, VB’s efficiency figures are constant because of physical 

layer switching: a message is transmitted only once as it traverses the network, with a per-hop 

forwarding delay certainly less than 20ns and with sub-1ns [69] being demonstrably achievable.  

The prices that VB pays for this constant efficiency are the inability to perform hop-by-hop 

message validation, and a limited end-to-end signalling distance, as discussed below in section 

2.4.4. 

2.4 Physical Layer 

2.4.1 Introduction 

 

Figure 2-6 : Progressive Model of the VB Protocol Layer Stack – Physical Layer 

This section details the physical layer implementation of the Virtual Bus network architecture.  In 

the context of the research goals stated in section 1.2.3, the functions and purpose of the physical 

layer are: 

• Support for multicast real-time data flows. 

• Minimization of end-to-end delay for delivery of real-time data flows.  Ideally, end-to-end 

delay should be a function only of transmission line propagation delay. 

Physical Layer (1) 

Data Link Layer (2) 
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• Extremely low multicast delivery delay skew of real-time data flows from destination to 

destination for each data pulse.  Ideally, zero. 

All of these goals are realized through the physical layer switching mechanism.  Multicasting is 

achieved by constructing branching chains of network resources by permitting an egress port of 

an interface to be electrically connected to any of the possible signal sources, which include local 

transmitters as well as ingress ports that are ultimately connected to some remote transmitter.  

End-to-end delays are minimized because physical layer switching takes place at line speeds, with 

no delays incurred due to partial reception of a signal before it is or can be forwarded and no 

contention for access to the signalling channel at any point.  As a consequence, the end-to-end 

delay of a chain of links at the physical layer is the electrical propagation delay through the cables 

and switching matrices.  For a similar reason, multicast delivery skew is a function of the difference 

in lengths between the branches of a multidrop signalling channel. 

Each Virtual Bus node is equipped with multiple23 network communications interfaces, each of 

which hosts a physical layer endpoint in the form of a full duplex network transceiver.  As a full 

duplex transceiver, each interface has one inbound (ingress) and one outbound (egress) signalling 

port. 

2.4.2 Extending the Physical Layer 

Nodes incorporate a switch matrix that can be used to interconnect inbound signalling ports, 

outbound signalling ports, and transmitters.  Recall Figure 1-22, replicated here: 

 

Observe that each receiver Rx0…Rx3 is always connected directly to the corresponding ingress 

port I0…I3, but that the egress ports are not connected directly to any transmitter.  This ensures 

that inbound signals are always delivered to a receiver, while allowing the signals driving the 

egress ports to be sourced either from any of the transmitters Tx0…Tx3, or from any ingress port 

I0…I3. 

These switch matrices are the means by which signals are relayed from one physical connection 

to another with a delay in the nanosecond range; in effect, a series of physical layer instances or 

links can be joined together through a chain of switch matrices into a single physical layer instance.  

Further, these chains can branch at any node, including the source node; recall that a single signal 

source (Txn or In) can be connected to multiple egress ports (On).  Note also that a switch matrix 

 
23 Certainly at least two network interfaces, in order to function as a network switch.  The formal design 
target was four, and the research platform discussed in section 2.3.1 meets this target. 
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can support any number of simultaneous and orthogonal source-to-output mappings up to its 

capacity. 

Observe also that a chain of links connected through switch matrices temporarily creates a single 

physical signalling medium or space that closely resembles a simplex multi-drop bus – a virtual 

bus.  Recall Figure 1-23, replicated here: 

 

Relaying messages at the physical layer in this way relies upon an S/TDM media access control 

mechanism.  The switch matrices are the physical realization of the space plane (S-plane) of the 

network resource space, i.e. the S in S/TDM.  The timing of manipulation of the switch matrices 

corresponds to timeslots in the time plane (T-plane) of the network resource space, i.e. the switch 

matrices are configured per TDM timeslot.  This fine control of network resources in space and 

time is the means by which signalling paths for hard real-time data flows are isolated from one 

another and hence are collision-free.  These signalling paths behave like multi-drop buses because 

there is a network receiver attached to the inbound port of each switch that a path traverses, and 

every receiver involved in a path as either a terminating node or a switching node receives in full 

every message carried by the path. 

2.4.3 Windowed Transmission across Multiple Hops 

Consider that all of the interval timers of the nodes that make up a VB network are synchronized 

to a single consensus frequency and phase.  This network-wide time synchronization permits every 

node to simultaneously alter its behaviour, including the simultaneous control of switch matrices 

required to permit end-to-end TDM signalling across multiple hops. 

Recall from section 2.3.1 above that time synchronization is imperfect, and as a result there can 

be expected to be a small window around each network phase change, and each TDM timeslot, 

during which network behaviour is not necessarily perfectly synchronized.  The risks posed by 

these errors have been controlled by choosing a synchronization window duration that is half that 

of a physical layer symbol, i.e. the worst-case local time difference between any pair of nodes as 

they change from one phase to another will always be less than or equal to half of a physical layer 

symbol.  If this bound is exceeded then synchronization will fail and no transmission can occur 

from, through or to an unsynchronized node or interface.  Note also from section 2.4.5 below that 

any two cells sent back-to-back are always separated by a guard time made up of at least two 

symbols (post- and pre-amble), including the edge case of each cell being sent in a different phase 

and hence with a different signalling mode.  The guard time ensures that neither cell will be 

corrupted due to a phase change or the operation of an S-plane switch.  This also holds true when 

cells are sent or switched back-to-back in sequential timeslots under the S/TDM signalling mode; 

the time synchronization mechanism cannot guarantee zero timing error between all of the nodes 
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involved in a virtual bus, but it can guarantee that the worst-case timing error between the 

sending node and every other node on the path traversed by an S/TDM signal is no greater than 

the synchronization window, which is also one half of one symbol.  The timing errors result in a 

section of the post- and/or pre-amble of S/TDM cells being slightly early or late from the 

perspective of each of the nodes that make up a virtual bus, but because these small errors are 

expected and understood, the architecture has been designed to ensure that they have no impact 

on its operation. 

 

Figure 2-7 : Guard Times Protecting Multi-Hop S/TDM Signalling 

Timeslot guard times are a key enabler of temporal isolation of time-triggered traffic. [71]  This 

issue was discussed in more detail in section 1.6.2 in the context of VB’s fault hypothesis as a 

potential cause of Slightly-off-Specification timing errors that, if they occur, will be expressed as 

Byzantine errors.  [130]  The Byzantine nature of the error is that if an SoS error of this type causes 

truncation of a cell such that the payload or CRC are compromised, the fault hypothesis presumes 

that the cell will be received correctly by all of the intermediate nodes that are physically located 

in the chain of connected nodes between the transmitter and the intermediate node in which the 

error occurs (the “error node”), and will be received in error by the terminal node/s24 and all of 

the intermediate nodes that are physically located between the error node and the terminal 

node/s. 

2.4.4 Physical Medium Length Constraints 

There are two constraints on the length of any virtual bus: the maximum length of any individual 

point-to-point link between two neighbour nodes, and the maximum end-to-end length of any 

chain of links that forms a virtual bus.  Although the length of virtual buses is affected by both 

these constraints, the underlying cause of each constraint is quite different. 

It should be clearly understood that although the existence of these constraints is a function of 

the architecture, the specifics of the constraints are a function of the implementation.  The 

operating parameters of the implementation can be varied such that the target application is 

unaffected by the constraints.  Varying the operating parameters to fit the application is an 

exercise in engineering, where the price – typically, more postamble and hence longer timeslots, 

 
24 There may be multiple terminal nodes if the virtual bus branches. 
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lower utilization efficiency and lower payload capacity – must be balanced against the gains that 

might be achieved, e.g. longer links and/or longer end-to-end signalling paths. 

The point-to-point link length constraint is caused by the two-way synchronization process 

described in section 2.3.1 above.  Typically, 1.5 exchanges of SYNC cells are required before fine 

synchronization is achieved – two SYNC cells from one node and one SYNC cell from its neighbour.  

[161]  The synchronization algorithm cannot compensate for link propagation delay until fine 

synchronization commences; if the sum of the propagation delay experienced by the two SYNC 

cells from the first node is greater than the synchronization window, then that node can never 

achieve fine synchronization. 

Analysis of the operation of the fine synchronization mechanism, backed by experimental 

observations, has shown that: 

 
𝐿𝑚𝑎𝑥 (𝑃2𝑃) = (

𝑊

2
+ 1) ×

𝑐. 𝑘𝑉𝐹

𝑓𝑂𝑆𝐶
 

(2-1) 

where 𝐿𝑚𝑎𝑥 (𝑃2𝑃) is the maximum allowable length of an individual point-to-point link in metres; 

𝑊 is the synchronization window as an integral count of 𝑓𝑂𝑆𝐶 ticks; 𝑐 is the speed of light in metres 

per second; 𝑘𝑉𝐹 is the velocity factor of the transmission media; and 𝑓𝑂𝑆𝐶  is the frequency of the 

clock oscillator that drives the interval timer.  If two nodes are separated by a link with a length 

greater than 𝐿𝑚𝑎𝑥(𝑃2𝑃) then it is improbable (although not impossible, depending upon initial 

conditions) that synchronization will be achieved between those nodes.  Substituting the 

implementation-specific values of 𝑊 = 50, 𝑓𝑂𝑆𝐶 = 2.5𝐸7 and 𝑐 = 3𝐸8; and assuming 𝑘𝑉𝐹 =

0.67; we arrive at 𝐿𝑚𝑎𝑥(𝑃2𝑃) = 208 𝑚. 

The maximum end-to-end length of a multi-hop chain of links in the time-triggered mode is a 

function of the propagation delay across the extended signalling path, the worst-case timing error 

in terms of NCO ticks between the source and the destination node, and the duration of the guard 

band.  These inputs are known or well-defined, so it is possible to make a reliable estimate of the 

maximum end-to-end link length. 

 
𝐿𝑚𝑎𝑥 (𝐸2𝐸) = (𝐺 − 𝑊) ×

𝑐. 𝑘𝑉𝐹

𝑓𝑂𝑆𝐶
 

(2-2) 

where 𝐿𝑚𝑎𝑥 (𝐸2𝐸) is the maximum allowable length of an end-to-end link in metres; 𝑊 is the 

synchronization window as an integral count of 𝑓𝑂𝑆𝐶  ticks; 𝐺 is the guard time of one post-amble 

symbol in 𝑓𝑂𝑆𝐶  ticks; 𝑐 is the speed of light in metres per second; 𝑘𝑉𝐹 is the velocity factor of the 

transmission media; and 𝑓𝑜𝑠𝑐 is the frequency of the clock oscillator that drives the NCO.  The 

derivation of (2-2) can be seen in Figure 2-7; 𝐺 is the trailing guard time, and 𝐺 − 𝑊 is the worst-

case trailing guard time including synchronization error but excluding propagation delay.  If the 

propagation delay for an end-to-end link exceeds 𝐺 − 𝑊 then it cannot be assumed that every 

S/TDM cell will completely arrive at (or pass through) a particular node before its timeslot expires. 

Substituting the implementation-specific values of 𝑊 = 50, 𝐺 = 100, 𝑓𝑂𝑆𝐶 = 2.5𝐸7 and 𝑐 =

3𝐸8; and assuming 𝑘𝑉𝐹 = 0.67; gives 𝐿𝑚𝑎𝑥 (𝐸2𝐸) = 400 𝑚.  Note however that this is a very 

pessimistic estimate of 𝐿𝑚𝑎𝑥 (𝐸2𝐸) because in practice observations with the research platform 

have shown that in small networks (less than 10 nodes) the stable worst-case timing error that 



Page 73 

 

can be achieved is less than 5 NCO ticks, significantly lower than the synchronization window 𝑊 =

50.  In practice a reliable end-to-end length approaching 800𝑚 should be achievable, although 

this has not been tested. 

In the context of the architecture’s fault hypothesis as discussed in section 1.6, errors caused by a 

virtual bus that exceeds this end-to-end length limit are known as “cut-off” Slightly-off-

Specification timing errors and are regarded as a type of Byzantine error. [73] 

Consider also that the propagation delay through the switch matrix of the research platform's 

media access controller has been measured at approximately 15ns, as shown in section 2.6 below.  

15ns of delay at ~5ns per metre equates to ~3m, i.e. the switch matrix can be modelled as a link 

of approximately 3m in length when calculating the effective end-to-end length of a multi-hop bus 

for evaluation against 𝐿𝑚𝑎𝑥 (𝐸2𝐸). 

Note that given that the VB network architecture is primarily aimed at medium-sized vehicles, 

with most links between any two nodes expected to be 10m or less in length, as noted in section 

1.3.3, length constraints of 200m for one hop or 400-800m end-to-end for any virtual bus branch 

are not expected to place any practical constraints on a network deployment in the target 

operating space.  However, for large cargo or passenger vehicles, including trains, ships or aircraft, 

the end-to-end length constraint in particular might necessitate engineering trade-offs, as 

previously discussed.  Increasing the trailing guard time to increase the maximum end-to-end 

length would be effective; without changing any other system parameters, each additional 

postamble symbol would equate to an increase in the maximum end-to-end-length of 

approximately 800m. 

2.4.5 Physical Layer Cell Construction 

Signals are always sent at the physical layer in the form of small, fixed-length cells.  The 

construction and formatting of these cells is consistent across all signalling modes.  Each cell is 

made up of a number of fields, as shown in Table 2-2 below.  The fields are transmitted in the 

order that they are shown here, least significant octet first. 

Field Name Size (octets) Purpose 

Preamble 1 Guard band 

Start of Frame (SOF) 1 Unique SOF symbol 

Header 4 Refer Table 2-3 and Table 2-4 

Payload 16 Data payload 

CRC 2 CRC-16 of header and payload 

Postamble 1 Guard band 

Table 2-2 : Format and Structure of a Physical Layer Cell 

Different header structures are used for ad-hoc and S/TDM cells, as shown in Table 2-3 and Table 

2-4 below. 
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Field Name Size (bits) Purpose 

Destination Address 6 Address of cell destination node 

Source Address 6 Address of cell source node 

Time To Live 4 Number of hops the cell can propagate 

Cell Type 8 Purpose of cell 

Sequence Number 8 Sequence number of cell 

Table 2-3 : Format and Structure of an Ad-Hoc Cell Header 

Field Name Size (bits) Purpose 

Unused 6  

Source Address 6 Address of cell source node 

Payload Size 4 Number of octets in payload, minus 1 

Unused 16  

Table 2-4 : Format and Structure of an S/TDM Cell Header 

In hindsight, there are at least 21 and arguably 27 bits in the S/TDM cell header that could have 

been utilized for other purposes, e.g. payload data.  This would have improved the payload 

efficiency of S/TDM cells, as discussed above in section 2.3.5, from 0.64 to more than 0.9.  Such a 

strategy would have been quite similar to one employed by TTP [160]: using the timeslot in which 

a message is transmitted to imply information about the message that might otherwise be 

contained in a header. 

All octets are encoded with the 8b10b scheme [2] by the MAC before transmission using Benz's 

Verilog implementation of the 8b10b encoder and decoder [1].  The pre- and post-amble are 

always encoded and transmitted as '1010101010'.  The use of 8b10b encoding and the repetitive 

bit patterns of the pre- and post-amble fields (and the LINK signal) ensure that the DC balance of 

the signalling channel is maintained at an optimal level, and afford reliable clock extraction.  The 

8b10b encoding scheme also guarantees that Start of Frame (SOF) symbols are unique and should 

never appear as data symbols.  The CRC-16 polynomial was chosen as 0xAC9A per the advice of 

Koopman and Chakravarty [162] to be optimal for the size of the protected data. 

2.5 Data Link Layer 

2.5.1 Introduction 

 

Figure 2-8 : Progressive Model of the VB Protocol Layer Stack – Data Link Layer 

Physical Layer (1) 

Data Link Layer (2) 
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This section details the link layer implementation of the Virtual Bus network architecture.  In the 

context of the research goals stated in section 1.2.3, the functions and purpose of the physical link 

are: 

• Minimization of single points of failure, particularly by avoiding any master-slave 

arrangements. 

• A dynamic multi-hop membership service. 

• Self-forming and self-healing data delivery arrangements between active members. 

• Support for multicast real-time data flows. 

• Minimization of end-to-end delay for delivery of real-time data flows.  Ideally, end-to-end 

delay should be a function only of transmission line propagation delay. 

• Extremely low multicast delivery delay skew of real-time data flows from destination to 

destination for each data pulse.  Ideally, zero. 

The data link layer uses the physical layer's ad-hoc signalling mode to transmit ad-hoc messages, 

and the S/TDM signalling mode to transmit time-triggered (TT) messages.  It is also responsible for 

other link management functions, particularly transmitting and detecting the LINK signal; 

transmitting and receiving SYNC cells; and error checking cells using a CRC-16. 

Recall the purpose of the Data Link Layer as described by the OSI reference model: [39] 

7.6.2.1: The Data Link Layer provides functional and procedural means for connectionless 

mode among network entities, and for connection mode for the establishment, 

maintenance and release of data link connections among network entities and for the 

transfer of data link service data units.  A data link connection is built upon one or several 

physical connections. 

7.6.2.2 The Data Link Layer detects and possibly corrects errors which may occur in the 

Physical Layer. 

7.6.2.3 In addition, the Data Link Layer enables the Network Layer to control the 

interconnection of data-circuits within the Physical Layer. 

The Virtual Bus data link layer offers an incomplete mapping to the OSI model's Data Link layer 

specification.  VB's link layer provides both a connectionless mode (ad-hoc messaging) and a 

connected mode (TT messaging).  CRC's are used to detect (but not to correct) physical layer 

errors, and control over the interconnection of physical layer circuits is accomplished by the data 

link layer.  However, VB handles the establishment, maintenance and release of data link 

connections at the network layer using the Distributed Agent Resource Protocol (DARP); refer to 

section 3.5. 

2.5.2 Link State 

At any time that an interface is enabled and idle, i.e. not busy transmitting a cell, it emits the 

"LINK" signal: a continuously repeating '10…10' bitstream.  The LINK signal has two purposes: it 

maintains the DC balance of the signalling channel, and it acts as a training signal to let a connected 

interface know that there is a potential neighbour, or data link layer peer, at the other end of the 

link. 
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Consider the edge cases of the operation of the data link layer in each of a pair of neighbour nodes 

as they establish communications for the first time; and as they partially or completely lose 

communications. 

When an interface is enabled, but before it has received any signals from a connected neighbour, 

it is in the UNLINKED state.  An UNLINKED Interface is constrained from transmitting cells, but 

does emit the LINK signal.  When the LINK signal from a connected neighbour is detected, the 

interface moves to the LINKED state.  In the LINKED state, the interface begins to transmit 

synchronization signals (SYNC cells), once per interval at 휃𝑁𝐶𝑂 = 200,000, but is constrained from 

transmitting any other type of cell.  A neighbouring pair of nodes uses the data contained in the 

SYNC cells that they exchange to adjust the phase and frequency of their NCO's towards a 

consensus.  When an interface receives a SYNC cell that has an absolute error with respect to the 

owner node that is less than or equal to the synchronization window, it moves to the SYNCED 

state.  An interface that has reached the SYNCED state is able to freely transmit and receive cells 

in either signalling mode under the control of, and subject to any constraints applied by, the data 

link layer.  Synchronization is a bidirectional process so it may take several exchanges of SYNC cells 

before a pair of neighbour nodes is synchronized, i.e. both interfaces have reached the SYNCED 

state. 

 

Figure 2-9 : Interface Link State Diagram 

In the event that a link completely fails in both directions, LINK signals and SYNC cells will cease to 

be received by both of the neighbour interfaces and they will both fall back to an UNLINKED state 

within two intervals as timeouts expire.  In effect, the state of the link is monitored by cyclic polling 

[163] with the LINK signal and SYNC cells.  The polling period to detect link failure is no more than 

the duration of a cell, or 100µs, and the polling period to detect synchronization failure is no more 

than two intervals, or 20ms. 

If only one of the two signalling paths fails then a simplex link remains.  The interface at the receive 

end of the failed path will fall back to the UNLINKED state because it is no longer receiving a LINK 

signal, and consequently will cease sending SYNC cells.  As a result, the interface at the transmit 

end of the failed path will fall back to the LINKED state because, although it is receiving the LINK 

signal, it is not receiving SYNC cells.  In the LINKED state, transmission of ad-hoc and S/TDM cells 

is suppressed.  There may be a brief period of no more than two intervals during which the simplex 

path remains viable. 

Note also that, as discussed in the architecture’s fault hypothesis in section 1.6, VB’s link state 

management algorithm represents the boundary of a fault containment region. [130]  It is 

improbable that a faulty network interface that fails in a “babbling idiot” mode might interfere 
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with network operation for more than 1 to 2 intervals: if an interface ceases to regularly transmit 

a LINK signal and/or valid SYNC cells, the partner interface will fall to the UNLINKED or LINKED 

state and hence will cease registering and/or reporting the arrival of any randomly generated 

bitstream as valid cells.  This behaviour is not dissimilar to that of the “bus guardian” proposed for 

use with both TTP and FlexRay [154], but it achieves the same benefits without requiring any 

additional hardware. 

2.5.3 Network Addressing 

Each Node has a simple 6-bit physical address, covering the range 0 to 63.  Address 0 is invalid, 

and address 63 is the broadcast address.  Additionally, each of a node's four interfaces has an 

address in the range 0 to 3.  The combined node (x) and interface (y) identifiers in the form 'x.y' 

uniquely identify every network interface in a VB network. 

A consequence of this small address space is that a VB network can contain at most 62 nodes.  This 

is quite a low number, probably barely adequate for a vehicular control network [156], smaller 

than the address space of CAN25, and far smaller than the address space of Ethernet.  However, 

this implementation of VB is a research exercise and is not intended for industrial deployment in 

its current form.  A limit of 62 nodes has proven to be perfectly adequate for research purposes. 

2.5.4 Structure and Format of a SYNC Cell 

Synchronization (SYNC) cells are structured and formatted much like any other VB cell.  They are 

encapsulated in a single physical layer cell that is formatted as shown in Table 2-5 and Table 2-6 

below.  SYNC cells are differentiated from other network management cells in that they use the 

protected value of 0x01 for the Cell Type field in the header, and they contain a highly time-

sensitive piece of information: the clock-cycle-accurate phase 휃𝑁𝐶𝑂 of the transmitting node at 

the time that the first bit of the cell preamble is driven into the signalling media at the physical 

layer. 

Field Name Size (bits) Purpose 

Destination Address 6 0x3f – broadcast 

Source Address 6 The address of the transmitting node 

Unused 4 Unused 

Cell Type 8 0x01 – SYNC 

Interface ID 2 The index of the transmitting interface 

Unused 6 Unused 

Table 2-5 : Format and Structure of SYNC Header 

Although SYNC cells are transmitted during the management phase and specify the broadcast 

address as their destination, they are never forwarded by the network layer because ad-hoc 

messages with a Cell Type of 0x01 are never forwarded to the network layer; they are handled 

entirely within the data link layer.  Note also that SYNC cells have a secondary function: they are 

the foundation of the Network Mapping Service (NMS) implemented in the network layer and 

discussed in section 3.4.  The Source Address and Interface ID fields in the cell header allow a 

 
25 Noting that CAN doesn’t use device addresses per se, so this is arguable. 
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receiving node to identify which neighbour nodes are directly connected to it, by which remote 

network interfaces, and to which local network interfaces. 

Field Name Size (bits) Purpose 

Transmit Time 18 The transmitting node's 휃𝑁𝐶𝑂  at the time of transmission 

Link State 2 The link state of the transmitting interface 

Network Time 24 The network time (count of intervals) of the transmitting node 

Previous Error 7 The last synchronization error with respect to the linked neighbour, as 
observed by the transmitting interface 

Unused 77 Unused 

Table 2-6 : Format and Structure of SYNC Payload 

2.5.5 Error Handling and Cell Counters 

The MAC performs a CRC calculation on every cell that it transmits or receives, including SYNC 

messages, using a CRC-16 with initial value 0xFFFF and polynomial 0xAC9A.  The polynomial was 

chosen per the advice of Koopmann and Chakravarty [162] as being optimal for protection of a 

160-bit data block.  The MAC calculates a cell’s CRC over a its header and payload prior to 8b10b 

encoding.  The CRC is transmitted as the two trailing octets of the cell, immediately prior to the 

postamble symbol.  The CRC calculation process is mirrored at the receiver, after decoding the 

8b10b bitstream into octets.  If a received cell's CRC validation fails then the cell is discarded. 

The MAC’s cell counters track three classes of transaction: cells transmitted; cells received without 

error; and cells received with an error and discarded.  A separate counter is maintained for each 

class of transaction.  The data link layer does not itself utilize these counters; they are intended 

for the use of the network layer when estimating the reliability of a link, as discussed in section 

3.3.1.2. 

2.5.6 Message Handling 

The data link layer instance in each communications interface controls when the interface is 

permitted to transmit; the mode in which it transmits; and how received cells are handled.  Control 

is a function of timing, as measured by 휃𝑁𝐶𝑂.  Two types of messaging service are available at the 

data link layer: Time-triggered (TT) and ad-hoc.  These data link layer messaging services 

respectively map to the traffic and management phases of an interval, and to the S/TDM and ad-

hoc signalling modes of the physical layer.  The Media Access Controller (MAC) implemented in 

the research platform’s FPGA, as discussed in section 2.3.1 above, incorporates the data link layer 

and some elements of the physical layer, particularly the switch matrices. 

In general, ad-hoc cells are only transmitted by an interface in the SYNCED state.  SYNC cells are a 

special case of an ad-hoc cell for which transmission is permitted when an interface is either 

LINKED or SYNCED, and that are transmitted from all LINKED or SYNCED interfaces at 휃𝑁𝐶𝑂 =

200,000.  Recall that transmission of any cell occupies a window of 2,500 𝑓𝑜𝑠𝑐 ticks.  In order to 

ensure that SYNC cells are always sent at 휃𝑁𝐶𝑂 = 200,000, the transmission of other ad-hoc cells 

is suppressed by a timely block strategy [64][142] when 휃𝑁𝐶𝑂 > 197,500.  The transmission of ad-

hoc cells is also suppressed when 휃𝑁𝐶𝑂 > 247,500 to ensure that transmitters are not busy when 

the change from management phase to traffic phase occurs.  In the absence of the blocking 

strategy, it would not be possible to guarantee transmitter availability during the first timeslot of 
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the traffic phase.  Note that the timely block solution is not free; it has a potential cost of up to 

two cells of ad-hoc signalling capacity at each interface every interval. 

SAF messages are transformed into ad-hoc cells and loaded into an interface's First In, First Out 

(FIFO) transmit queue by the network layer.  While the node is in the management phase 

(125,000 ≤  휃𝑁𝐶𝑂 ≤ 249,999), transmitters that are in the SYNCED state and are not otherwise 

busy or constrained unload messages from their transmit queues and send them back-to-back as 

ad-hoc cells, i.e. with no inter-cell gap other than the pre- and post-amble symbols.  There is no 

prioritization mechanism and a single queue for each transmitter; messages are unloaded from a 

queue in the order in which they were loaded. 

Received ad-hoc cells that pass CRC validation and that are not SYNC cells are passed to the data 

link layer and loaded into the corresponding network interface’s receive FIFO queue for retrieval 

by the network layer as SAF messages.  Validated SYNC cells are forwarded directly to the MAC's 

synchronization processor and are not reported to, or accessible by, higher protocol layers, i.e. 

the firmware stack executing in the host MCU.  Note also that although ad-hoc cells are 

transmitted point-to-point across only a single link under the control of the data link layer, an ad-

hoc message may be forwarded by a receiving node towards its' destination as a SAF message 

under the control of the network layer implemented in the host processor, as discussed in 

Appendix D.3.3.5.2 and Figure D-7. 

During the traffic phase the data link layer constrains the physical layer to transmit cells only at 

particular time boundaries, or timeslots, i.e. all signalling during the traffic phase is time-triggered.  

Each TDM timeslot has the same duration as a cell, including the guard times provided by the pre- 

and post-amble symbols.  The first timeslot begins at 휃𝑁𝐶𝑂 = 0, and the last timeslot ends at  

휃𝑁𝐶𝑂 = 124,999.  50 timeslots of 2,500 𝑓𝑜𝑠𝑐 ticks numbered 0 through 49 are available during the 

125,000 𝑓𝑜𝑠𝑐 ticks that make up each traffic phase. 

The S/TDM signalling mode exhibits substantially different behaviour compared to the ad-hoc 

signalling mode.  During S/TDM signalling the operation of the S- and T-planes of the section of 

the network resource space controlled by each node is synchronized to the node NCO’s phase, 

and this synchronization extends to the wider network through the operation of the network 

synchronization algorithm. 

The data link layer requires two types of data at the start of each traffic phase: the TT messages 

to be sent by each transmitter, per timeslot; and the switch configuration for each network 

interface, per timeslot.  Note the distinction here between transmitters and interfaces; a node's 

switch matrix can be used to connect each interface's egress port to any of its’ transmitters. 

Messages to be transmitted are stored in the TDM cell memory, a memory segment made up of 

one 20-octet element per timeslot per transmitter, or 200 elements in total.  Each element maps 

to a specific timeslot and transmitter. 

Physical layer transmission and switching is controlled by the TDM digest memory, a memory 

segment made up of one 4-bit element per timeslot per interface, or 200 elements in total.  Each 

element maps to a specific timeslot and interface and, as discussed in section 2.4.2 above, 

describes which signal source will be mapped to the corresponding interface's outbound port: no 

source; a transmitter; or an ingress port. 
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At the completion of the traffic phase, the MAC exposes two types of data: the TT messages that 

were received, per timeslot and interface; and an indication as to whether the received data for 

each timeslot and interface is valid.  The TDM cell memory and TDM digest memory are re-used 

for these purposes.  The value written to the digest before the traffic phase commences 

determines the transmit procedure, and the value read after the traffic phase is complete 

indicates the receive outcome. 

Successful execution of the traffic phase necessitates that a higher layer pre-load the data link 

layer with the two groups of related data every interval: the TT messages to be transmitted in 

each timeslot, if any, must be loaded into the TDM cell memory; and the configuration of the 

switch matrix for each timeslot, if any, must be loaded into the TDM digest memory.  The digest 

must be re-written by the higher layer every interval to reconfigure the switching of the S/TDM 

signalling paths through the node per the resourcing schedule.  If the digest is not updated, or not 

updated in time, then the node will neither transmit nor switch S/TDM cells during that interval, 

and hence will not participate fully in that traffic phase.  Meeting TT load/unload timing is a hard 

real-time constraint that is imposed upwards onto the higher protocol layers. 

After a traffic phase has completed, higher layers can inspect the digests and unload any TT 

messages received during that phase. 

 

Figure 2-10 : Time-Triggered Message Unload & Load Cycles 

Note that this approach is consistent with Kopetz' sparse time model [81], but it does have a 

limitation: received TT messages are only forwarded to higher layers once per interval, 

immediately after the phase transition from traffic to management.  There is no means of 

delivering a TT message to higher layers at the time that the message is received, at least within 

the limitations of the research platform.  As discussed in section 2.3.3, this is an implementation 

flaw. 

2.6 Experimentation 

2.6.1 Introduction 

2.6.1.1 Aim 

The following set of experiments: 

• Measures the propagation delays experienced by time-triggered cells as they traverse a 

multi-hop virtual bus, where each node implements network switching at the physical 

layer. 

• Validates the temporal isolation predicted between cells transmitted in the same physical 

space, or signalling channel, at different times. 
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• Validates the temporal and physical isolation predicted between cells transmitted in 

different virtual buses that share some portion of either the space plane or time plane. 

The logic analyser that was used for all experiments was an Intronix LogicPort LA1034. [164] 

2.6.1.2 Hardware Connectivity 

An additional circuit board was designed and constructed to enable network traffic to be directly 

captured for analysis and experimentation.  Network signalling paths can be routed through this 

board and captured with the logic analyser. 

 

Figure 2-11 : Logic analyser adaptor board layout, showing stub traces 

Note the “trigger” header in the bottom left corner.  This header is intended to be connected to 

the Auxiliary I/O port of one of the Node circuit boards; see Figure A-8, component J3.  The 

Auxiliary I/0 port is connected to several GPIO pins of the STM32F407 host microcontroller, which 

have been configured to generate trigger signals when particular events occur.  For the set of 

experiments presented below, a trigger signal is generated at approximately the same time as the 

transmission of the first time-triggered cell in any interval.  The timing of the trigger signal is 

approximate because it is triggered in firmware.  The pre-trigger buffer of the logic analyser is 

relied upon to ensure that the entire time-triggered cell that raised the trigger, and several 

following cells, are captured. 

2.6.1.3 Sources of Error 

1. The logic analyser used to capture the network traffic has an effective maximum sampling 

rate of 200Ms/s, for 5ns resolution.  The accuracy of this clock is unknown.    There is no 

synchronization between the logic analyser’s sampling clock and the MAC clock. 

2. The logic analyser is connected to the network’s signalling channels via an adaptor board 

(see Figure 2-11 above).  The connection afforded by the adaptor board is not optimal: 

a. The connection on the adaptor board from the network port pair to the logic 

analyser is a stub that protrudes from the LVDS signalling path.  This introduces a 

risk of reflections that could cause interference, typically expressed as signalling 

errors or “glitches”, to either or both of the logic analyser and receiving node. 

b. Only the un-inverted signal of the differential pair is connected to the logic 

analyser.  Consequently, any reflections due to the stub will only affect one side 

of the differential signal and are therefore more likely to cause appreciable 

interference. 
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3. The logic analysers’ inputs are not designed to capture the LVDS signalling used by the VB 

network.  The inputs are single-ended; use a configurable data slicer with 50mV threshold 

steps; and have a single global threshold.  According to the manufacturer’s specifications 

for the SN65LVDS050 LVDS transceiver, the transmitted differential voltage is 250-450mV 

(typically 340mV), and the common-mode voltage is 1.125-1.375V (typically 1.2V).  With 

its threshold set to 1.25V-1.35V the logic analyser is able to capture the LVDS signals, but 

the timing of the edges is not perfectly consistent, and glitches are certainly visible in the 

captured data. 

Whilst all of these issues are sub-optimal, none of them invalidates this set of experiments. 

2.6.2 Experiment 1 – Switching and Link Length Propagation Delays 

2.6.2.1 Aim 

1. Show that physical-layer switching of time-triggered traffic contributes a propagation 

delay in the order of tens of nanoseconds per node traversed. 

2. Show that the propagation delay of each hop across a multi-hop virtual bus is a function 

of a constant switching delay plus a propagation delay that is proportional to the length 

of the link. 

3. Determine whether it is possible to model the propagation delay through a node caused 

by physical layer switching as a cable of a particular length; and estimate the equivalent 

cable length. 

2.6.2.2 Method 

2.6.2.2.1 Part 1 

1. Configure the network as shown in Figure 2-12. 

2. Establish a virtual bus from N2 to N6. 

3. Transmit time-triggered cells from N2 to N6.  Use the logic analyser to capture the passage 

of each cell across each of the network links between N2 and N6. 

 

Figure 2-12 : Experiment 1.1 Network Configuration 

The interfaces of every node are configured as shown for N3; IF0 at 3 o’clock, IF3 at 9 o’clock, IF1 

and IF2 not connected.  All network links are routed through a circuit board that allows the 

network signalling to be captured by a logic analyser.  All links between the nodes and the logic 
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analyser interface board are approximately 30cm in length, i.e. each node is separated from the 

next by a distance of approximately 60cm. 

2.6.2.2.2 Part 2 

4. Configure the network as shown in Figure 2-13. 

5. Establish a virtual bus from N2 to N6. 

6. Transmit time-triggered cells from N2 to N6.  Use the logic analyser to capture the passage 

of each cell across each of the network links between N2 and N6. 

 

Figure 2-13 : Experiment 1.2 Network Configuration 

The interfaces of every node are configured as shown for N3; IF0 at 3 o’clock, IF3 at 9 o’clock, IF1 

and IF2 not connected.  All network links are routed through a circuit board that allows the 

network signalling to be captured by a logic analyser.  With the exception of the link from the logic 

analyser interface board to IF3 of N4, all links between the nodes and the interface board are 

approximately 30cm in length, i.e. each node is separated from the next by a distance of 

approximately 60cm.  The exception link is approximately 10m in length, i.e. N3 and N4 are 

separated by a distance of approximately 10.3m. 
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2.6.2.3 Observations 

2.6.2.3.1 Part 1 

 

Figure 2-14 : Overview of time-triggered signal switching 

 

Figure 2-15 : Time-triggered signal switching showing cascaded timing offsets 
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Figure 2-16 : Time-triggered signal switching showing quantum of timing offsets 

2.6.2.3.2 Part 2 

 

Figure 2-17 : Overview of time-triggered signal switching with a 10m link 
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Figure 2-18 : Time-triggered signal switching showing cascaded timing offsets with a 10m link 

 

 

Figure 2-19 : Time-triggered signal switching showing quantum of timing offsets with a 10m link 
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2.6.2.4 Analysis 

Note that the “trigger” pulse highlighted in Figure 2-14 indicates the (approximate) start of TDM 

timeslot 0, as discussed in section 2.6.1.2. 

The per-hop propagation delay is made up of three components: 

1. Signal flight time across the link, of length approximately 0.6m;  

2. LVDS-to-TTL and TTL-to-LVDS propagation delays through the LVDS transceiver devices on the 

node circuit boards; and  

3. Switching through the fabric of the FPGA in which the MAC is implemented. 

We can make the following predictions or estimations of the magnitude of each of these components: 

1. The signal flight time is expected to be approximately 5ns per metre given a velocity factor of 

0.67 for unshielded twisted pair cable and speed of light 𝐶 = 3𝐸8𝑚𝑠−1.  A 60cm signal path 

therefore equates to approximately 3ns of propagation delay. 

2. Per the manufacturer’s data sheet, the SN65LVDS050 LVDS transceiver’s reception 

propagation delay is typically 3.7ns, and its transmission propagation delay is typically 1.7ns. 

3. The FPGA fabric logic-to-I/O pin (transmit) propagation delay is reported by the Xilinx ISE FPGA 

design tools as approximately 11.5ns (reported as 8 to 15ns clock-to-pad delay) and the logic-

to-I/O pin (receive) propagation delay is reported as approximately 1.4ns (reported as -2 to 

4.7ns setup-and-hold delay).  Note that the FPGA delays reported by the Xilinx design tools 

are explicitly for clocked (synchronous) signals, whereas physical layer switching is a 

combinatorial (asynchronous) process.  However, it is also clear that the predicted delays for 

synchronous signals closely match the observed delays for asynchronous signals, so they have 

been accepted as a reasonable approximation. 

The predicted switching delay through each node, including a 0.6m signalling path, is approximately 

21.3ns.  Parsing the captured data using MATLAB, the mean delay over a given hop length can be 

estimated. 

Source Edge N2->N3 (ns) N3->N4 (ns) N4->N5 (ns) 

Part 1 PGE 15.1 19.9 20.0 

Part 1 NGE 19.8 18.9 16.3 

Part 2 PGE 15.3 64.4 20.0 

Part 2 NGE 20.3 65.9 15.1 

Table 2-7 : Experiment 1 – edge propagation delay observed per hop 

The mean of all edge propagation delays across all hops of 0.6m length is 18.1ns, and the mean of all 

edge propagation delays across the hop of 10.3m length is 65.2ns.  Now: 

𝑡𝑝𝑑 𝑚⁄ =
65.2 − 18.1

10.3 − 0.6
= 4.86𝑛𝑠 𝑚⁄  

Observed propagation delay due to link length is approximately 4.86ns per metre of signalling path. 

𝑡𝑝𝑑 ℎ𝑜𝑝⁄ =
100.5 − (11.5 × 4.86)

3
= 14.9𝑛𝑠 ℎ𝑜𝑝⁄  
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The propagation delay due to the physical layer switching through each node is therefore estimated 

as 15ns per hop. 

2.6.2.5 Conclusions 

The predicted link propagation delay of 5ns/m is closely aligned to the observed delay of 4.86ns/m.  

Further, the predicted switching propagation delay through each node of 18.3ns is at least 

approximately aligned to the observed delay of 15ns.  These results suggest that it is reasonable to 

model the node switching delay as equivalent to a signalling channel with a length of 3m. 

2.6.3 Experiment 2 – End-to-End and Differential Delivery Delays 

2.6.3.1 Aim 

Show that the differential delivery delays to multiple destinations that are experienced by branched 

virtual buses are a function only of total link length, noting that, as observed during Experiment 1 

above, the propagation delay through each node can be modelled as a link length of approximately 

3m. 

2.6.3.2 Method 

2.6.3.2.1 Part 1 

1. Configure the network as shown in Figure 2-21. 

2. Use PCP to establish a virtual bus from N2 to N3. 

3. Use PCP to extend the virtual bus to include N5. 

4. Use PCP to extend the virtual bus to include N8. 

5. Transmit time-triggered cells from N2 to the destination nodes: N3, N5 and N8.  Use the logic 

analyser to capture the passage of each cell across the network links between N2 and N3; N4 

and N5; and N7 and N8. 

 

Figure 2-20 : Experiment 2.1 Network Configuration 

The interfaces of every node are configured as shown for N2 and N3; IF0 at 3 o’clock, IF1 at 12 o’clock, 

IF2 at 6 o’clock and IF3 at 9 o’clock, noting that not all interfaces are connected on all nodes.  Although 
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it is not shown in order to minimize diagram complexity, the network links between N2 and N3; N4 

and N5; and N7 and N8; are routed through a circuit board that allows the network signalling to be 

captured by a logic analyser.  All links between the nodes and the logic analyser interface board are 

approximately 30cm in length, i.e. each node is separated from the next by a distance of approximately 

60cm. 

2.6.3.2.2 Part 2 

6. Configure the network as shown in Figure 2-22. 

7. Ensure that the TTL of N2 and N10 is set to at least 7. 

8. Use PCP to establish a virtual bus from N2 to N3. 

9. Use PCP to extend the virtual bus to include N10. 

10. Transmit time-triggered cells from N2 to the destination nodes: N3 and N10.  Use the logic 

analyser to capture the passage of each cell across the network links between N2 and N3; and 

N9 and N10. 

 

Figure 2-21 : Experiment 2.2 Network Configuration 

The interfaces of every node are configured as shown for N2 and N3; IF0 at 3 o’clock, IF1 at 12 o’clock, 

IF2 at 6 o’clock and IF3 at 9 o’clock, noting that not all interfaces are connected on all nodes.  Although 

it is not shown in order to minimize diagram complexity, the network links between N2 and N3; and 

N9 and N10; are routed through a circuit board that allows the network signalling to be captured by a 

logic analyser.  All links between the nodes and the logic analyser interface board are approximately 

30cm in length, i.e. each node is separated from the next by a distance of approximately 60cm. 
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2.6.3.3 Observations 

2.6.3.3.1 Part 1 

 

Figure 2-22 : Overview of time-triggered signal switching of a branched virtual bus with different hop counts per branch 

 

Figure 2-23 : Time-triggered signal switching showing cascaded timing offsets due to a branched virtual bus with different hop counts per branch 
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Figure 2-24 : Time-triggered signal switching showing quantum of timing offsets due to a branched virtual bus with different hop counts per branch 

2.6.3.3.2 Part 2 

 

Figure 2-25 : Overview of time-triggered signal switching of a second branched virtual bus with different hop counts per branch 

 

Figure 2-26 : Time-triggered signal switching showing cascaded timing offsets due to a second branched virtual bus with different hop counts per branch 
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Figure 2-27 : Time-triggered signal switching showing quantum of timing offsets due to a second branched virtual bus with different hop counts per branch 
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2.6.3.4 Analysis 

2.6.3.4.1 Part 1 

Given the results of Experiment 1, we expect to see propagation delays of approximately 15ns per hop 

for each branch, i.e. approximately 15ns to N3; approximately 30ns to N5; and approximately 45ns to 

N8.  If we say that the receive time at N3 is the reference time, then we expect to see a differential 

time from N5 to N3 of approximately 15ns, and from N8 to N3 of approximately 30ns. 

Parsing the captured data with MATLAB, the branch to N5 experiences 15.0ns of delay compared to 

the reference, and the branch to N8 experiences 31.8ns of delay compared to the reference, or 16.8ns 

compared to N5.  The observations are consistent with the conclusions of Experiment 1. 

2.6.3.4.2 Part 2 

Again, we expect to see propagation delays of approximately 15ns per hop on the long branch, from 

N2 to N10.  If we say that the receive time at N3 is the reference time, then we expect to see a 

differential time from N10 to N3 of approximately 15ns per hop for 6 hops, or 90ns. 

Parsing the captured data with MATLAB, the branch to N10 experiences approximately 96.3ns of delay 

compared to the reference.  Again, the observations are consistent with Experiment 1. 

2.6.3.5 Conclusions 

The observations are consistent with the prediction that the differential delay between each 

destination of a branched virtual bus is a function of the link length, where passage through a node’s 

switching matrix results in a propagation delay of approximately 15ns that can be modelled as a link 

length of approximately 3m. 

2.6.4 Experiment 3 – Isolation in the Time Plane 

2.6.4.1 Aim 

1. Explore the guard times between consecutive timeslots, which present as a pair of trailing 

postamble and leading preamble symbols (10101010b). 

2. Observe the behaviour of the signalling channel during an “empty” timeslot, i.e. a timeslot 

that is not transmitted in at all. 

3. Observe the behaviour of the signalling channel during an “idle” timeslot, i.e. a timeslot that 

contains only a continuous stream of “link” symbols due to an allocated but unused virtual 

bus. 

2.6.4.2 Method 

1. Configure the network as shown in Figure 2-28. 

The interfaces of every node are configured as shown for N3; IF0 at 3 o’clock, IF3 at 9 o’clock, IF1 and 

IF2 not connected.  All network links are routed through a circuit board that allows the network 

signalling to be captured by a logic analyser.  All links between the nodes and the interface board are 

approximately 30cm in length, i.e. each node is separated from the next by a distance of approximately 

60cm. 
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Figure 2-28 : Experiment 3 Network Configuration 

2.6.4.2.1 Part 1 

2. Establish a virtual bus from N2 to N6, with a width of 4 timeslots. 

3. Transmit time-triggered traffic from N2 to N6 with a size of at least three cells (48 octets).  Use 

the logic analyser to capture the passage of the resulting consecutive cells across the network 

link between N2 and N3. 

4. Deconstruct the virtual bus. 

2.6.4.2.2 Part 2 

5. Install a static switch in outbound timeslot 1 of N2 IF0, obstructing that timeslot. 

6. Establish a virtual bus from N2 to N6, with a width of 4 timeslots. 

7. Transmit time-triggered traffic from N2 to N6 with a size of at least 3 cells (48 octets).  Use the 

logic analyser to capture the passage of the resulting consecutive cells across the network link 

between N2 and N3. 

8. Deconstruct the virtual bus. 

9. Destroy the static switch. 

2.6.4.2.3 Part 3 

10. Install a static switch in outbound timeslot 0 of N2 IF0, obstructing that timeslot. 

11. Establish a virtual bus from N2 to N6, with a width of 1 timeslot and data type 2. 

12. Destroy the static switch. 

13. Establish a virtual bus from N2 to N6, with a width of 4 timeslots and data type 1. 

14. Transmit time-triggered traffic of data type 1 from N2 to N6 with a size of at least 3 cells (48 

octets).  Use the logic analyser to capture the passage of the resulting consecutive cells across 

the network link between N2 and N3. 

15. Transmit time-triggered traffic from N2 to N6 of data type 2.  Use the logic analyser to capture 

the passage of the resulting cell across the network link between N2 and N3. 
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2.6.4.3 Observations 

2.6.4.3.1 Part 1 

 

Figure 2-29 : Cells transmittted in four consecutive timeslots (0, 1, 2, 3) 

 

Figure 2-30 : Cells transmitted in four consective timeslots, showing bitstream 

2.6.4.3.2 Part 2 

 

Figure 2-31 : Cells transmitted in timeslots 0, 2, 3, 4 with no transmission in timeslot 1 due to static switch 

 

Figure 2-32 : Cells transmitted in timeslots 0, 2, 3, 4 with no transmission in timeslot 1 due to static switch, showing bitstream 
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2.6.4.3.3 Part 3 

 

Figure 2-33 : Cells transmitted in timeslots 0, 2, 3, 4 with no transmission in timeslot 1 due to idle virtual bus 

 

Figure 2-34 : Cell transmitted in timeslot 1 with no transmission in timeslot 0 due to idle virtual bus 
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2.6.4.4 Analysis 

Recall the physical layer switch matrix arrangement from Figure 1-22, replicated here: 

 

2.6.4.4.1 Part 1 

The trailing postamble and leading preamble symbols are clearly visible, particularly in Figure 2-30. 

2.6.4.4.2 Part 2 

An “empty” physical layer timeslot is caused by the influence of a static switch that is configured to 

connect the input port on an unconnected interface to the output port of another interface.  Given 

that there is no channel associated with the unconnected input port, and hence no signal, the LVDS 

receiver idles as a constant logic ‘1’, and that idle state is propagated through the physical layer 

switching in the FPGA fabric to the LVDS transmitter associated with the output port. 

This behaviour is clearly visible in Figure 2-32.  The trailing postamble symbol from timeslot 0 is 

followed immediately by a 100µs period where the bitstream is a continuous ‘1’, i.e. timeslot 1 is 

“empty”.  Immediately timeslot 1 completes and the IF0 transmit module is connected to the IF0 

transmit port by the physical layer switching fabric, the (slightly truncated) preamble symbol for 

timeslot 2 is asserted on the channel. 

2.6.4.4.3 Part 3 

An “idle” physical layer timeslot is caused by an interface’s transmit module having no cell to transmit; 

but nonetheless being connected to its default LVDS transmitter due to a digest value of 0 for that 

interface and timeslot.  Recall that a transmit module that is not transmitting a cell produces a 

continuous “link” signal, i.e. a continuous sequence of preamble symbols “10101010b”. 

This behaviour is clearly visible in Figure 2-33 and Figure 2-34.  When a timeslot is not in use, the 

signalling channel is always occupied by a continuous “10101010b” signal. 

2.6.4.5 Conclusions 

The observed behaviour of the time-triggered transmitters and switching matrix is consistent with the 

expected behaviour. 

2.6.5 Experiment 4 – Isolation in the Space Plane 

2.6.5.1 Aim 

1. Show that the physical layer switching matrix does not suffer leakage, i.e. show that traffic 

that is intended to be forwarded to one interface is not also forwarded to other interfaces. 

2. Show that the physical layer switching matrix is able to switch multiple virtual buses in the 

same timeslot. 
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2.6.5.2 Method 

1. Configure the network as shown in Figure 2-35. 

 

Figure 2-35 : Experiment 4 Network Configuration 

The interfaces of every node are configured as shown for N2 and N3; IF0 at 3 o’clock, IF1 at 12 o’clock, 

IF2 at 6 o’clock and IF3 at 9 o’clock, noting that not all interfaces are connected on all nodes.  Although 

it is not shown in order to minimize diagram complexity, the network links between N2 and N3; N3 

and N4; N3 and N5; and N3 and N6; are routed through a circuit board (see section 2.6.1.2) that allows 

the network signalling to be captured by a logic analyser.  All links between the nodes and the logic 

analyser interface board are approximately 30cm in length, i.e. each node is separated from the next 

by a distance of approximately 60cm. 

2.6.5.2.1 Part 1 

2. Establish a virtual bus from N2 to N4 (red). 

3. Transmit time-triggered traffic from N2 to N4.  Use the logic analyser to monitor signalling 

from N2 to N3, and from N3 to N4, N5 and N6. 

4. Deconstruct the virtual bus. 

2.6.5.2.2 Part 2 

5. Establish a virtual bus from N2 to N4 (red). 

6. Establish a virtual bus from N4 to N2 (green). 

7. Establish a virtual bus from N5 to N6 (blue). 

8. Establish a virtual bus from N6 to N5 (purple). 

9. Transmit time-triggered traffic simultaneously, in the same interval and timeslot, from N2 to 

N4; N4 to N2; N5 to N6; and N6 to N5.  Use the logic analyser to capture the passage of the 

cells across the network links. 
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2.6.5.3 Observations 

2.6.5.3.1 Part 1 

 

Figure 2-36 : Zero leakage from virtual bus between N2 and N4 into the N3->N5 or N3->N6 signalling channels 
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2.6.5.3.2 Part 2 

 

Figure 2-37 : Virtual buses isolated in the space plane in a physical layer switching matrix 
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2.6.5.4 Analysis 

I acknowledge that these observations were carried out with a basic logic analyser rather than a more 

capable piece of test and measurement equipment such as a high-quality oscilloscope.  Given this 

constraint, it is possible that there is some signal leakage that the logic analyser was incapable of 

detecting or identifying.  In the unlikely event that such undetected leakage is occurring, the 

observations show that it has no measurable impact on the operation of the network. 

2.6.5.4.1 Part 1 

There is no indication that the signal transmitted from N2 is leaking through N3’s physical layer switch 

matrix into the signalling paths between N3 and N5, or N3 and N6. 

2.6.5.4.2 Part 2 

The signals that transit through N3’s physical layer switch matrix are passed through as intended and 

replicated in the corresponding signalling channels, i.e. N2 to N4; N4 to N2; N5 to N6; and N6 to N5.  

Further, there are no indications of signal leakage from any one virtual bus corrupting the traffic of 

any other virtual bus. 

2.6.5.5 Conclusions 

The observations demonstrate that the physical layer switch matrix implementation maintains 

effective isolation in the space plane, which is consistent with the expected behaviour. 

2.6.6 Experiment 5 – Isolation in the Space and Time Planes 

2.6.6.1 Aim 

1. Show that it is possible for separate virtual buses to transmit in the same timeslot if they utilize 

different physical links. 

 

Figure 2-38 : Experiment 5 Network Configuration 

The interfaces of every node are configured as shown for N3; IF0 at 3 o’clock, IF3 at 9 o’clock, IF1 and 

IF2 not connected.  All network links are routed through a circuit board that allows the network 

signalling to be captured by a logic analyser.  All links between the nodes and the logic analyser 

interface board are approximately 30cm in length, i.e. each node is separated from the next by a 

distance of approximately 60cm. 
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2.6.6.2 Method 

1. Configure the network as shown in Figure 2-38. 

2. Establish a virtual bus from N2 to N3 in timeslot 0 (green). 

3. Establish a virtual bus from N4 to N5 in timeslot 0 (blue). 

4. Establish a virtual bus from N2 to N6 in timeslot 1 (red). 

5. Transmit time-triggered traffic from N2 to N3 and N4 to N5 in timeslot 0; and from N2 to N6 

in timeslot 1; all in the same interval.  Use the logic analyser to capture the passage of the 

cells across the network links. 
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2.6.6.3 Observations 

 

Figure 2-39 : Isolation of signalling channels in space and time 

 

Figure 2-40 : Minimal time separation between buses within a timeslot due to synchronization errors between transmitting nodes 
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Figure 2-41 : Minimal time separation within one bus across multiple hops due to the effects of propagation delay 
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2.6.6.4 Analysis 

Transmission in the same timeslot on different physical links is viable.  Transmission in different 

timeslots on the same physical link is also viable. 

The observations show that, as predicted, transmissions in the same timeslot by different virtual buses 

are not perfectly synchronized.  Each of the virtual buses is transmitted by a different node, and, while 

the nodes are well-synchronized, they are not perfectly synchronized.  An error of 10ns, as highlighted 

in Figure 2-40, is certainly well within the fine synchronization window of 2µs. 

Similarly, the observations show that the mean propagation delay across any one hop is 18.3ns, 

confirming the conclusions of Experiments 1 and 2 that a virtual bus traversing multiple hops 

experiences a propagation delay per hop of approximately 18ns given signalling channels of 0.6m 

length. 

2.6.6.5 Conclusions 

The observations concur with Experiments 3 and 4; isolation in either or both of the space and time 

planes is demonstrably functional.  Observed behaviour is consistent with expected behaviour. 

2.6.7 Conclusions 

This set of experiments has achieved it’s aims: 

• Propagation delays experienced by time-triggered cells as they traverse multi-hop virtual 

buses have been measured. 

• Virtual buses have been shown to be isolated in space and time with respect to one another. 

Further, the predictions around end-to-end multi-hop timing and collision-free multi-hop transmission 

made in section 1.3.4, and the associated research goals stated in section 1.2.3, have been validated. 

2.7 Scientific Contribution 

The scientific contributions of this chapter include: 

• Design and implementation of a physical layer switching mechanism that enables a time-

triggered message to be transferred across a multi-hop network topology while experiencing: 

o Deterministic end-to-end message propagation delays that closely approximate those 

of a bussed network topology of the same physical length as the sequence of hops, 

and consequently: 

▪ Cycle-by-cycle delivery jitter that is a function only of the precision of time 

synchronization. 

▪ Multicast delivery skew that is a function of the precision of time 

synchronization and the relative physical lengths of the signalling paths from 

the source to each destination. 

o Isolation of time-triggered signalling channels in space and time such that physical 

and/or logical collisions of time-triggered traffic are unable to occur. 

• Design and implementation of a link layer that acts as an integrated “link guardian” [130][132], 

such that a faulty link, particularly a link that fails in a “babbling idiot” mode, has no influence 
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on the operation of the network following the failure, absent a possible brief26 period before 

it is isolated. 

Each of these contributions is built upon a foundation of informal but thorough analysis as detailed in 

sections 2.3 through 2.5.  In addition, a series of formal experiments designed to validate the 

performance of this implementation of the architecture against the architecture’s predictions and 

design goals are presented in section 2.6.  These experiments prove that, for time-triggered (S/TDMA) 

signalling: 

• The propagation delay incurred by a signal traversing a node’s switch matrix is approximately 

15ns.  Given a cable propagation delay of approximately 5ns per metre through UTP (Cat5/6) 

cable, we can model each switch as a section of cable of length 3m when calculating the end 

to-end-length of signalling path. 

• Message delivery timing across a multi-hop signalling path is a function only of the end-to-end 

length of the signalling path and hence is deterministic. 

• Multicast delivery skew is a function of the differential end-to-end lengths of the multicast 

signalling paths, and the relative synchronization error between the transmitting and 

receiving nodes. 

• S/TDMA switching provides effective isolation in space and time, ensuring that collisions 

between time-triggered signals are unable to occur. 

Note that no experimentation has been carried out to validate the claimed link guardian behaviour.  

Rather, the claim is based upon the logic of the interaction between the design of the synchronization 

mechanism, as detailed in Chapter 5, and the link layer, as detailed in section 2.5. 

2.8 Conclusions 

This chapter has presented the mechanisms that the Virtual Bus network architecture uses to provide 

two classes of messaging service at the data link layer: a simple ad-hoc messaging service that offers 

no delivery timing or delivery ordering guarantees; and a time-triggered messaging service that 

delivers a data flow to multiple destinations with nanosecond-scale skew between destinations and 

consistent fragment order, even when the destinations are separated by different numbers of network 

hops. 

The theoretical components of the research are supported by the design and implementation of a 

dedicated research platform in the form of a cluster of custom-built multi-port network nodes that 

have been used to validate the achievement of the theoretical goals through prototyping and 

experimentation. 

Delivery timing is largely a function of propagation delay across the signalling media, with the physical 

layer switching delay measured at approximately 15ns that is incurred by intermediate nodes able to 

be modelled as a short section of signalling medium that equates to approximately 3m of UTP cable.  

The two messaging services share a common physical layer and diverge at the data link layer into two 

logically separate and temporally isolated networks.  Approximately 1% of the ad-hoc signalling 

capacity is also used for network time synchronization signalling. 

 
26 Less than 20ms. 
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Additional material detailing the interfaces and internal operation of the MAC implementation can be 

found in Appendix B, Appendix C and Appendix D.3.2. 

The time-triggered messaging service, and the physical layer switching that it relies upon, are the 

foundations that the Virtual Bus network architecture relies upon to deliver several of the key research 

goals that were identified in section 1.2.3: 

• Support for multicast data flows. 

• Jitter in delivery timing of real-time data flows from period to period to be no greater than 

one bit symbol at the physical layer signalling rate. 

• Extremely low multicast delivery delay skew of real-time data flows from destination to 

destination for each data pulse.  Ideally, zero. 

• No variation in delivery ordering of real-time data flows from destination to destination each 

pulse. 

Note that the delivery timing and skew goals are somewhat compromised by limitations of and faults 

in the implementation, as discussed in sections 1.1.4 and 2.3.3, and Chapter 5. 

In addition, certain minimum performance constraints, also specified in section 1.2.3, are addressed 

within this chapter: 

• The network must support no less than 32 nodes.  See section 2.5.3. 

• The data capacity of any given simplex bus instance should be no less than that of CAN, i.e. a 

payload throughput of not less than 500kbps.  See section 2.3.1. 
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Chapter 3  

 

The Network Layers  

 

 

 

3.1 Introduction 

Recall from section 2.3.3 that the operation of the data link layer is cyclic, and is partitioned into 

management and traffic phases.  Further, recall that link layer messaging during each of these 

phases uses distinct modes: ad-hoc messages are exchanged during the management phase, and 

Time-Triggered (TT) messages are exchanged during the traffic phase. 

 

 

Figure 3-1 : Progressive Model of the VB Protocol Layer Stack – Network Layer 
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VB's network layer is similarly partitioned into two distinct sub-networks that are logically 

separated at the boundary between the traffic and management phases.  The primary purpose of 

the management phase network is to provide a means to manage the network layer of the traffic 

phase network.  The two sub-networks share a number of common concepts, including addresses, 

interfaces, and fixed-length cellular messaging; but their operation is fundamentally different. 

Due to the presence of the two separate networks, the VB architecture implements two distinct 

network sub-layers.  The management phase network sub-layer uses store-and-forward (SAF) 

messaging and network layer routing to implement a multi-hop store-and-forward messaging 

service that makes no timing guarantees of any kind and is very similar to the Internet Protocol 

[41].  The traffic phase network sub-layer uses time-triggered messaging and physical layer 

switching to implement instances of virtual bus networks that make unequivocal delivery timing 

guarantees. 

The chapter begins by introducing related work in section 3.2.  A discussion of the dual network 

layers follows in section 3.3, with the management sub-layer detailed in section 3.3.1 and the 

traffic sub-layer detailed in section 3.3.2.  Detailed discussions of the two signalling protocols that 

form the foundation of the network layers are then presented: the Network Mapping Service 

(NMS) in section 3.4; and the Distributed Agent Resource Protocol (DARP) in section 3.5.  Both 

sections include theoretical use-cases that discuss how the protocols are intended to behave, and 

detailed reports of formal experiments conducted using the research platform to show that the 

implementation aligns with theory.  The scientific contributions made within the chapter are 

declared in section 3.6, and the chapter concludes in section 3.7. 

3.2 Related Work 

Dürkop, in collaboration with a number of other researchers [165][120][166][119], has explored 

several different approaches to automatic configuration of real-time networking.  Their focus in 

[165] was on the use of Profinet IO’s non-real-time channel to configure real-time resources.  In 

[120], they extended this work by exploring this approach as an enabler for OPC UA [16].  In [166], 

they continued to work with Profinet IO, but shifted their focus to service-oriented architectures 

(SOA’s), including web services, and considered how to treat reconfigurable manufacturing system 

(RMS) components as modules that can be dynamically reconfigured through a web services 

interface.  In [165][120][166] they used Profinet IO as their preferred network architecture, but in 

their later work in [119] they considered their previous work in the context of a number of other 

industrial real-time Ethernet architectures, including Profinet RT, Profinet IRT, generic Ethernet/IP 

using the Common Industrial Protocol (CIP), Powerlink and Ethercat, which they identified as “the 

five most common category B and C RTEs in the industrial automation domain”. 

He et al [167] measured control plane latency in several software-defined network switches, 

because “critical SDN applications such as fast failover and fine-grained traffic engineering 

demand fast interaction between switch control and data planes”.  VB can achieve fast routing 

and re-routing of time-triggered signalling27 because the Distributed Agent Resource Protocol 

 
27 On the order of milliseconds per path in an uncongested network, as demonstrated experimentally in 
section 3.5.4. 
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does not attempt to find the optimal solution with regard to all existing and desired routing and 

scheduling resource allocations; rather, it selects the first valid solution using a greedy, depth-first 

search [111] with elements of the Tabu search strategy [168]. 

Ashjaei et al [169] observed that many real-time Ethernet (RTE) [170] protocols “either favour 

static TT (time-triggered) services or adopt pure ET (event-triggered) approaches”, and in the 

former case “the protocols are too rigid, not allowing dynamic adjustments of the communication 

subsystem to the application requirements”.  Their response was to develop a more efficient 

method of forwarding real-time traffic in the Hard Real-Time Ethernet Switching (HaRTES) 

network architecture, achieving reductions of up to 80% in end-to-end delays. 

Chiti et al [141] explored trends in context-aware mobile computing and communications, 

particularly the Internet of Things (IoT), and noted the relevance of Quality-of-Service Optimized 

Link State Routing (QOLSR) [114], or Extended OLSR (EOLSR), in which each node reports 

information about its own capabilities and its dynamic (wireless) connections to immediate 

neighbours, i.e. at a range of one hop only.  The content of the neighbour tables published by VB’s 

Network Mapping Service (NMS) is similar, if in a reduced form, to the neighbour tables published 

by QOLSR/EOLSR; e.g. NMS does not publish information about the computing capabilities of the 

node, it only publishes information gathered by the link layer as a result of synchronizing with 

neighbours.  One of the key benefits recognized by Chiti et al and implemented by VB through 

NMS is a very rapid28 response to changes in link states and network membership. 

Khatib et al [47] considered the problem of self-healing in mobile networks and proposed means 

of classifying self-organizing network behaviours.  In the context of this thesis, VB implements self-

forming and self-healing behaviours at the network layers, principally through the Distributed 

Agent Resource Protocol. 

Kohler et al [171] considered how to achieve consistency in management of multicast data flows 

in a software-defined network (SDN).  They noted that when an active data flow is re-routed, 

necessitating that multiple distributed network elements (switches) be updated to support the 

new configuration, desirable network properties including freedom from packet loss and loops 

[172] might be “transiently violated”.  VB’s virtual bus routing mechanism is loop-free, i.e. it 

constructs only directed acyclic graphs, because it is constrained to enter a node from at most one 

interface.  Further, because virtual buses are temporally and spatially isolated from one another 

during both routing and signalling [71], construction or utilization of a virtual bus can never 

interfere with existing virtual buses.  Even when a branch is added to an existing virtual bus to 

extend it to an additional destination, the extension process has no impact on the operation of 

the existing bus because of the temporal isolation between the data and control planes due to the 

separation afforded by the traffic and management phases. 

Kumar et al [173] proposed an enhancement to software-defined networking to afford it with 

some real-time guarantees: making the SDN controller “delay-aware” and using information about 

propagation delays through switching elements to inform routing and scheduling decisions for 

real-time traffic. 

 
28 Less than 10ms. 
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Halba et al [174] and Hackel et al [175] considered the use of software-defined networking (SDN) 

[176] to enhance the safety of autonomous vehicles by affording dynamic network reconfiguration 

to bypass faults, failures or damage in real time during vehicle operation.  Under VB, this is a role 

assigned to DARP, under the control of higher network layers. 

Nayak [66] presented a detailed discussion around how centralized software-defined networking 

(SDN) can be used to configure IEEE Time-Sensitive Networks (TSN) in his doctoral dissertation, 

with a particular focus on real-time signalling under the control the IEEE802.1Qbv [5] time-aware 

shaper. 

Bello and Steiner [58] presented a comprehensive overview of the outputs and current status of 

the IEEE Time-Sensitive Networking (TSN) group [22], including a list of IEEE sub-standards, many 

of which have since been rolled into the later IEEE802.1Q-2018 [25] standard29, and that can be 

used to realize a sophisticated real-time Ethernet.  Of interest in the context of VB and particularly 

the Distributed Agent Resource Protocol is IEEE802.1Qcc Stream Reservation Protocol (SRP) [9], 

section 46 of which details Time Sensitive Networking configuration via the User-Network 

Interface (UNI) and its three configuration models: fully distributed; centralized network 

distributed user; and fully centralized.  The configuration model that is closest to DARP, and the 

only UNI model that is not master-slave, is the fully distributed model.  However, the fully 

distributed model explicitly does not support time-triggered signalling via the time-aware shaper 

introduced in IEEE802.1Qbv [5]; it is limited to the use of the credit-based shaper, which is not 

hard real-time. 

Zhou and Shou [121] and Gutiérrez et al [31] explored the use of NETCONF/YANG [177] and OPC 

UA [16] to configure IEEE time-sensitive networks via IEEE802.1Qcc and its three configuration 

models.  Gutiérrez et al acknowledged that the fully distributed model was not suitable for use 

with the IEEE802.1Qbv time-aware shaper because it suffers from a lack of “a centralized view 

with complete knowledge of the network”.  Although it has some limitations, DARP shows that this 

is not necessarily the case for time-triggered signalling. 

Yu and Gu [140] explored routing and scheduling in multi-cast time-sensitive networks, and 

observed that “multicast time-sensitive networks that provide deterministic latency and latency 

variance (jitter) are urgently desired in order to ensure real-time control for CPS”.  Deterministic 

and extremely low latency and jitter are of course the primary research goals of the VB 

architecture, and DARP is fundamental to providing automated distributed peer-to-peer network 

configuration in support of those goals. 

Stanton [70] discussed the use of IEEE802.1AS for time synchronization in order to tightly 

coordinate network and software operation.  An element of Stanton’s rationale that particularly 

resonated in the context of VB was: 

“Imagine driving through a tight grid of busy city streets during rush hour without ever 

having to stop your car or slow down. This would be a dream come true for commuters with 

an arrival deadline and ideal for the communication of data with its own deadline. In both 

 
29 Note that the 802.1Q-2014 standard [34] has been replaced by 802.1Q-2018 [25].  This may have been 
somewhat confused by Bello and Steiner – they cite both 802.1Q-2018 and 802.1Qbv-2015, despite the 
appearance that much of 802.1Qbv was incorporated into 802.1Q-2018 when it was updated from 802.1Q-
2014. 
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instances, worst case transit time or latency is a key figure of merit. Obviously, very tight 

timing of stoplights would be required to achieve such a feat, and precise timing of 

transmission is likewise required within a network to consistently achieve the best case 

latency in the worst case.” 

This is precisely the goal of VB, and is realized by the eponymous virtual buses that are constructed 

by DARP.  In particular, the ability of VB to reduce end-to-end delays to a simple function of total 

link length by using tightly coordinated physical layer switching means that it is closer to realizing 

Stanton’s vision than TSN. 

3.3 Dual Network Layers 

The network layer is separated into two sub-layers: management and traffic.  The management 

network is a best-effort non-real-time network that is primarily intended to be used to organize, 

or “manage”, the operation of the traffic network.  The traffic network is a best-effort time-

triggered network that affords hard real-time delivery guarantees.  The two networks are 

temporally isolated by the Management and Traffic phases, as discussed in section 2.3.3. 

It should be acknowledged that there is a close correlation between VB’s dual network layers and 

the control and data planes of the software-defined networking paradigm [62]: VB’s management 

network is conceptually quite similar to SDN’s control plane, and VB’s traffic network is 

conceptually quite similar to SDN’s data plane. 

3.3.1 Management Network Sub-Layer 

3.3.1.1 Network Addressing 

The management network sub-layer shares the hardware address from the data link layer, as 

discussed in section 2.5.3.  For the research platform, this is a 6-bit address to identify the node, 

with a 2-bit extension to identify the interface index when necessary.  An address of 0 is invalid 

and not routable, and an address of 63 is the broadcast address. 

3.3.1.2 Link Quality Measurement 

The data link layer instance in each network interface maintains hardware counters for ad-hoc 

cells: transmitted; received and validated; and received with errors.  The management network 

sub-layer uses the ratio of cells received with errors to cells received and validated by each 

interface to periodically recalculate a link quality metric for each interface.  To avoid divide-by-

zero exceptions, a zero error count corresponds to the best-case link quality metric of zero, i.e. no 

cells received in error.  The worst-case or maximum value for link quality is 63. 

In addition to ad-hoc messages generated at the management network sub-layer, SYNC cells are 

captured by the ad-hoc cell counters.  This ensures that even if no other ad-hoc cells are sent or 

received during a measurement period, a meaningful link quality metric can be calculated from 

SYNC cell counts.  TDM cells are not captured by the counters. 

An exponential (power of two, i.e. binary) decay algorithm is used to recover from error bursts: if 

the measured metric 𝑥[𝑛] for measurement period 𝑛 is less than half of the previous metric 
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𝑚[𝑛 − 1] then the previous metric is halved (rounded down); else the current metric is set to the 

calculated metric: 

 
𝑚[𝑛] = {

𝑥[𝑛] < flr(0.5𝑚[𝑛 − 1]) , flr(0.5𝑚[𝑛 − 1])

𝑥[𝑛] ≥ 𝑚[𝑛 − 1],               𝑥[𝑛]                       
 

(3-1) 

I have made the assumption that link quality issues detected during ad-hoc signalling will have a 

similar effect on S/TDM signalling over the same link, on the basis that both ad-hoc and S/TDM 

signalling share the same physical and link layer infrastructure.  Consequently, measurements of 

ad-hoc link quality impact both management network layer routing and traffic network layer 

resource allocation decisions. 

3.3.2 Traffic Network Sub-Layer 

3.3.2.1 Network Addressing 

In identical fashion to the management network sub-layer, the traffic network sub-layer utilizes 

the link layer's hardware addresses. 

3.3.2.2 Static Time-Triggered Switching 

Static switching of TT messages is both possible and practicable under the Virtual Bus architecture.  

However, static switching falls at a vital hurdle in the design goals of the architecture: it is unable 

to support self-forming, self-healing real-time data flows, because it is static and therefore unable 

to adapt to changes in network topology.  For this reason the use of static switching is out of scope 

for the research project and has not been implemented in the traffic network sub-layer. 

3.3.2.3 Dynamic Time-Triggered Switching 

The Virtual Bus architecture dynamically switches TT messages through the use of a network 

resource allocation protocol and associated distributed algorithm, the Distributed Agent Resource 

Protocol (DARP).  DARP is used to construct, maintain and deconstruct paths through the 

network's overall S/TDM resource space for use by real-time data flows.  The non-hierarchical, 

peer-to-peer philosophy of the VB architecture has been maintained throughout the design of 

DARP: every node has direct control over only its own resources; equal rights to request access to 

the resources of other nodes; and equal priority during all DARP decisions. 

DARP is arguably the most significant point at which the VB network architecture diverges from 

existing real-time network architectures, including TTP [48], AFDX [105] and TTE [3].  Each of these 

architectures statically allocates network capacity or switching resources to real-time data flows 

at design time.  There are also real-time network architectures that allow runtime admittance of 

new data flows, including Flexible Time-Triggered (FTT) [80], Hard Real-Time Ethernet Switching 

(HaRTES) [178], and IEEE Time-Sensitive Networking [22] (TSN).  However, even the architectures 

listed that do permit runtime admittance rely upon a master-slave paradigm: a centralized 

controller that maintains an awareness of the network’s topology and resource utilization; and 

assigns resources to data flows.  Technically, the distributed version of the TSN user-network 

interface (UNI) described in IEEE802.1Qcc [9] does offer a fully distributed resource allocation 

service, but it explicitly does not support scheduled (time-triggered, hard real-time) traffic.   In 

contrast, VB uses a distributed algorithm that dynamically manages the allocation and de-
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allocation of network capacity and switching resources to hard real-time data flows at run-time, 

and can be used to repair or re-route data flow delivery paths in the event of a partial network 

failure.  DARP is the mechanism that VB employs to realize self-forming and self-healing of real-

time data flows. 

In a multi-hop network with no support for multi-hop time-triggered signalling, including generic 

switched Ethernet, contention for access to network resources occurs at every hop through the 

network as multiple frames queue while awaiting access to a shared transmitter and signalling 

channel; every frame in a queue contends with every other frame for access to the transmitter.  

In contrast, under VB, contention for access to network resources occurs only during the resource 

allocation process; no contention at all occurs for traffic network layer data flows, because all the 

network capacity required to deliver a data flow from end to end across multiple hops has been 

scheduled before the first cell of the data flow is transmitted.  Consequently, the linkage between 

network utilization and network performance that plagued classical Ethernet for decades 

[72][179] does not exist under VB; a VB network can operate at 100% utilization of its S/TDM 

capacity with no impact whatsoever on the delivery timing or reliability of time-triggered data 

flows. 

DARP uses the non-real-time SAF messaging service to organise the network's real-time S/TDM 

resources.  As a result, data flows through the traffic network layer are contention-free once 

established but the process of allocating resources to real-time data flows is not [180]; that is, 

constructing, maintaining and deconstructing a traffic network layer data flow incurs a non-

deterministic and potentially unbounded delay.  Contention within DARP has at least three 

sources: SAF messages are queued at transmitters in much the same way as datagrams in an IP 

router; SAF messages are processed in the order in which they are received; and when several 

data flows are being constructed simultaneously through the same region of the network, each 

data flow may have to contend with its peers on a first come, first served basis for control of 

S/TDM network resources as each negotiates a path through the resource space. 

As previously noted, the network resource space is fluid and may change at any time, but it may 

take some time for information about a change to propagate beyond its immediate vicinity.  

Sources of fluidity include the loss (or addition) of links or nodes, affecting both the size and shape 

of the network resource space; and, in the context of DARP, contention between path 

construction processes as each process attempts to claim some portion of network resources.  

Distributing the resource allocation algorithm throughout the network and executing the 

algorithm at the leading edge of a path under construction means that the execution point of the 

algorithm has access to the most up-to-date data that is available at the time that each scheduling 

decision is made. 

3.3.2.4 The S/TDM Network Resource Space 

The S/TDM network resources owned by each node can be viewed as a 2-dimensional virtual 

space.  The y-axis of this space corresponds to the Space domain of S/TDM, is referred to as the S-

plane, and maps to the outbound (transmitting) interfaces of nodes.  The x-axis corresponds to 

the Time domain of S/TDM, is referred to as the T-plane, and maps to TDM timeslots.  Note that 

the scales of both the x- and y-axes are integral because both interfaces and timeslots are 

indivisible units.  Inbound (receiving) interfaces are not considered to be part of the resource 

space because they are a function of the network topology; utilization of an inbound interface is 
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implied by utilization of the outbound interface transmitting to it from the other end of the link.  

The capacity or bandwidth of a path through the resource space is proportional to the number of 

timeslots allocated to the path, noting that even when a path requires multiple timeslots in order 

to provide the required capacity, there is no requirement that the timeslots be contiguous. 

There is a particular property of S/TDM data flows that is illustrated in Figure 3-2, below: the 

delivery order of a fragmented message is always preserved.  That is, when a path carries a 

message made up of 𝑛 fragments sent in the order 1,2,3 … 𝑛, the fragments always arrive in the 

same order 1,2,3 … 𝑛.  This is true because the path is an extension of the physical layer of the 

source node, and this extended physical layer behaves like and has the properties of a simplex 

multi-drop bus.  Furthermore, the allocation of a particular set of timeslots to each path allows 

missing fragments to be detected at a receiver – if a timeslot allocated to a data flow is not 

occupied by a fragment, then the fragment and its position within the data flow will explicitly 

empty and reported upwards as such.  This "preservation of fragment order and position" 

property of the VB traffic network layer underpins the fragment redundancy strategy employed 

by the transport layer, as discussed in section 4.3. 

 

Figure 3-2 : A Simple Example of the Resource Space of a Single Node 

Each node's y-axis maps to a separate region of the larger network resource space in which the 

regions representing nodes are joined to one another through the outbound-to-inbound links 

implicit in the network topology.  Conversely all nodes share the same x-axis because the entire 

network is time-synchronized, i.e. each timeslot occurs simultaneously at every node. 

 

Figure 3-3 : A Simple Example of the Resource Space of a VB Network 

Consider a simple network, such as that presented in Figure 3-3 above.  Although each physical 

layer link is a full duplex channel, each duplex channel can be modelled as a pair of opposing 

simplex channels that are separate entities in the S-plane.  Each simplex channel is represented by 

an arrow, and the length of the arrows corresponds to the capacity of the channels in timeslots.  

In this example there are six timeslots, i.e. the T-plane has a size of six.  The number of simplex 

signalling channels (also six) determines the size of the S-plane so the entire network has a 

Path 0 

Path 1 

Path 2 

Path 3 

T-plane (timeslots) 

S-
p

la
n

e 
(o

u
tb

o
u

n
d

 In
te

rf
ac

es
) 

0 3 6 

0 
1 
2 
3 

1 2 4 5 7 8 

Path 0: {N1→N2→N3→N4},{0} 
Path 1: {N3→N2}{N3→N4},{1,2} 

Path 2: {N4→N3→N2},{0} 
Path 3: {N2→N1},{0} 

N2 N1 N3 N4 



Page 117 

 

capacity of 36 resource units.  Four data flow paths have been resourced in the example network, 

consuming a total of 10 resource units across the six links. 

 

Figure 3-4 : A Simple Example of Data Flows in a VB Network 

Figure 3-4 above is an alternative representation of the information in Figure 3-3 above in which 

colour is used to differentiate data flows, patterning to indicate timing, and the weight of the lines 

to indicate the relative capacity (in terms of timeslots) of each flow.  Figure 3-4 is of particular 

interest because it clarifies that despite paths 0, 2 & 3 all utilizing timeslot 0, and hence their data 

flows are transmitted at the same time, the paths are orthogonal in the S-plane because they do 

not share any simplex links, so there are no resourcing conflicts between the data flows and no 

contention for utilization of S/TDM network resources. 

3.4 Network Mapping Service 

3.4.1 Introduction 

This section details the link state monitoring and publishing service, and the shortest path 

calculation service that draws from and relies upon the link state data.  These services are 

components of the Network Mapping Service (NMS), which is in turn a component of the network 

layer of the Virtual Bus architecture.  In the context of the research goals stated in section 1.2.3, 

the functions and purpose of NMS are: 

• Minimization of single points of failure, particularly by avoiding any master-slave 

arrangements. 

• A dynamic multi-hop membership service. 

• Self-forming and self-healing data delivery arrangements between active members. 

NMS is a self-forming and self-healing membership service [48] as well as a mapping and path 

selection service: when a node publishes how and where it is connected to the network, it is also 

publishing the fact of its connection to the wider network by adding itself to the list of known 

nodes that is maintained by every node.  Similarly, if a node fails or is disconnected, it will quickly 

be removed from membership lists, and if a link fails then it will be removed from shortest-path 

calculations.  Further, NMS does not incorporate any single points of failure because it is entirely 

distributed and peer to peer; every node maintains its own separate knowledge of the network, 

and no one node controls any part of NMS on behalf of the remainder of the network. 
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Figure 3-5 : Progressive Model of the VB Protocol Layer Stack – Network Mapping Service 

VB performs network management functions at the management sub-layer of the network layer 

using the SAF messaging service.  SAF messages are forwarded from node to node at the network 

layer.  Recall the similarity between the management network sub-layer and the Internet Protocol 

[41], and consider that SAF message forwarding under VB closely resembles IP routing.  VB uses 

similar strategies for network mapping to those utilized by IP, including the Routing Information 

Protocol (RIP) [181]; Intermediate Station to Intermediate Station (IS-IS) routing information 

protocol [6]; Quality-of-Service Optimized Link State Routing (QOLSR) [114]; and Open Shortest 

Path First (OSPF) [10].  VB’s Network Mapping Service (NMS) was introduced to provide this 

functionality.  NMS uses a very simple protocol that was developed to allow the exchange of 

information using the link layer’s small fixed-length cells, avoiding the necessity of building a 

transport layer like TCP in order to enable the implementation of protocols designed to work with 

the much larger PDU’s of IP or Ethernet. 

In the context of other widely utilized routing and shortest-path bridging protocols, including 

Spanning Tree Protocol (STP) [182]; Rapid Spanning Tree Protocol (RSTP, originally published as 

IEEE802.1w, and later incorporated into IEEE802.1D [183]); and Shortest Path Bridging [11][12], 

VB does not use NMS or any other means to construct spanning trees or configure nominally static 

paths between nodes for SAF messaging, nor does it disable links to avoid loops.  Rather, like 

Media Redundancy Protocol (MRP) [172], VB treats loops as useful network constructs that may 

afford redundant paths, particularly for time-triggered signalling.  Conversely, VB does construct 

chains of network resources that are analogous to spanning trees for time-triggered signalling 

using the Distributed Agent Resource Protocol (DARP).  Both construction and utilization of DARP’s 

routing trees do exhibit some behaviours that are quite similar to STP/RSTP, e.g. DARP Tokens for 

a particular virtual bus and destination node are always sent and received from the same network 

interface [12] and, once a path to a destination has been established, always follow that path. 
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3.4.1.1 Disclaimer 

In order for the higher layers of the Virtual Bus network architecture to function efficiently, every 

node must have reasonably up-to-date knowledge of the topology of the network.  The 

architecture is designed to be self-forming; consequently, nodes are not configured with any 

knowledge of the network topology at design time but must gather and maintain that knowledge 

at run time. 

Although network mapping is a necessary feature of the VB architecture, I make no pretence that 

the mapping service presented herein is a perfect solution.  It has many flaws, not least the fact 

that it incorporates no security mechanisms whatsoever; a malicious actor could easily interfere 

with and compromise the operation of the mapping service.  Nonetheless, it has proven to be 

adequate for research purposes. 

Note that the network mapping service is a function of and has a direct relationship to the traffic 

carried by the management network sub-layer, but that is not the limit or extent of its applicability.  

The mapping service also impacts the operation of the traffic network sub-layer because, as 

discussed in section 3.3.2, the traffic network sub-layer relies upon the management network to 

build real-time delivery paths (virtual buses) through the network using DARP, and DARP's bus 

construction algorithm is informed by NMS and its shortest-path algorithm. 

3.4.2 Service Operation 

3.4.2.1 Gathering Network Topology Data 

A node learns about its immediate neighbours and its links to those neighbours through the 

operation of the time synchronization mechanism, discussed in Chapter 5, that underpins the VB 

data link layer: the full network address (node address and interface ID) of each interface to which 

it is has a link, if any, and the estimated length of each network link, are obtained from the link 

layer.  The network layer also tracks a link quality metric for each link.  The information that a 

node gathers about any one of its links is referred to as a neighbour report, and the set of 

neighbour reports that describe all of a node's links is referred to as a neighbour table.  Neighbour 

reports are designed to fit into a 32-bit space using bit fields that readily map to C data structures. 

Field Name Size (bits) Purpose 

Remote Address 6 Address of node attached to the transmitter's corresponding 
Interface. 

Remote Interface ID 2 The ID of the Interface by which the remote node is attached to the 
transmitter's corresponding Interface. 

Link State 2 The Link State from the data link layer: 0: Off, 1: Unlinked, 2: Linked, 
3: Synchronized 

Quality 6 The link quality measurement for the transmitter's corresponding 
Interface. 

Length 16 The link length measurement for the transmitter's corresponding 
Interface. 

Table 3-1 : Format of a Neighbour Report 

A neighbour table is simply an array of neighbour reports, one report for each interface that the 

node is equipped with. 
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Field Name 
Size 

(bits) Purpose 

Neighbour Report 0 32 Neighbour report for local interface ID 0 

Neighbour Report 1 32 Neighbour report for local interface ID 1 

Neighbour Report 2 32 Neighbour report for local interface ID 2 

Neighbour Report 3 32 Neighbour report for local interface ID 3 

Table 3-2 : Format of a Typical Neighbour Table 

From the perspective of the node that produces a neighbour table, it is a Local Neighbour Table 

(LNT).  From the perspective of any other node, the same neighbour table is a Remote Neighbour 

Table (RNT).  Note that the research platform implements four network interfaces at each node 

and its LNT's and RNT's contain four neighbour reports, but there is no particular architectural 

requirement that a node must have four network interfaces, or that a neighbour table must 

contain four and only four reports. 

Consider that each neighbour table defines a point on a graph and describes the connections 

between that point and several other points.  The set of neighbour tables for a network forms a 

graph that describes the network topology. 

 

Figure 3-6 : Example of Local Neighbour Tables in a Simple Network 

In the context of the Intermediate Station to Intermediate Station (IS-IS) routing protocol [6], the 

set of neighbour tables known by any node is equivalent to that node’s link state database.  

Similarly, each neighbour table known to a node, including its own LNT, is an entry or row in that 

link state database. 

3.4.2.2 Distributing Network Topology Data 

The efficient delivery of messages across a network necessitates that the signalling process must 

use the least possible amount of network resources during its passage from source to destination.  

Given a multi-hop network, each hop that is traversed consumes a proportion of networks 

resources.  The fewer hops that a message traverses in order to arrive at its destination, the more 

efficient the delivery process. 

If each node through which a message passes has full knowledge of the network topology, and if 

the final destination of the message is also known, then the node can forward the message via the 

"most appropriate" interface, i.e. the interface that appears to represent the shortest path 

N2 N1 N3 
IF0 IF2 IF3 IF1 L=256 L=184 

Q=0 Q=1 Q=0 Q=17 

Node N1 Local Neighbour Table 

Field IF0 IF1 IF2 IF3 

Remote Addr 2 0 0 0 

Remote IF 3 0 0 0 

Link State 3 1 1 1 

Quality 0 0 0 0 

Length 256 0 0 0 

 

Node N2 Local Neighbour Table 

Field IF0 IF1 IF2 IF3 

Remote Addr 0 3 0 1 

Remote IF 0 2 0 0 

Link State 1 3 1 3 

Quality 0 0 0 1 

Length 0 184 0 256 

 

Node N3 Local Neighbour Table 

Field IF0 IF1 IF2 IF3 

Remote Addr 0 0 2 0 

Remote IF 0 0 1 0 

Link State 1 1 3 1 

Quality 0 0 17 0 

Length 0 0 184 0 
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towards the destination.  However, as discussed above, nodes do not have direct or perfectly 

reliable access to any knowledge of the network topology beyond their immediate vicinity, i.e. at 

most one hop. 

In the absence of reliable knowledge of the network topology and if the destination of a SAF 

message is not an immediate neighbour of the transmitting or forwarding node, then that node 

has little choice but to broadcast (or re-broadcast) the message.  However, flooding the network 

by broadcasting every SAF message is evidently inefficient.  Appendix D.3.3.5 specifies that a node 

must forward a broadcast message from every interface other than that through which it received 

the message, and that is not connected to the node that is the source of the message.  In a highly 

interconnected network topology, an unconstrained broadcast can grow very rapidly in terms of 

the number of replicas of the original message that are concurrently alive within the network.  The 

Time-To-Live (TTL) parameter acts to constrain the life of a datagram, broadcast or otherwise, 

under IP, and a similar parameter is incorporated into VB's SAF message header.  A message's TTL 

is decremented as it received at each hop until it reaches 0.  A message with a TTL of 0 is parsed, 

but is not forwarded or re-broadcast. 

 

Figure 3-7 : Simple 4x4 Grid Topology 

Consider the exemplar network in Figure 3-7 above, built on a simple 4x4 grid topology in which 

each node is connected to up to four neighbours.  Now, consider the situation in Figure 3-8 below, 

in which node 12 has broadcast a message to the network with a TTL of 4, and given that receiving 

nodes re-broadcast the message using the rules stated in Appendix D.3.3.5.  Note that a TTL of 4 

was chosen to ensure that it should be possible for the broadcast message to reach every node in 

the network, as the largest number of hops between node 12 and any other node is 4. 

Node 01 02 03 04 11 12 13 14 21 22 23 24 31 32 33 34 Total 

Received 4 3 5 3 3 0 3 7 5 3 7 3 3 7 3 6 64 

Transmitted 2 4 4 3 4 4 7 2 4 7 6 6 3 2 6 0 64 

Table 3-3 : Count of Replica Messages Received for Example Figure 3-8 

01 02 03 04 

11 12 13 14 

21 22 23 24 

31 32 33 34 
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By the time the TTL of the broadcast has expired, the message has been transmitted a total of 64 

times and has been received by every node (other than the source, node 12) at least 3 times, and 

in the worst case up to 7 times. 

It should be clear that this is not a particularly efficient means of broadcasting a message.  By way 

of metrics for comparison purposes, if efficiency is the number of nodes that must receive the 

message divided by the number of replicas of the message actually transmitted, then efficiency 휂 

for this example is given by 휂 = 15 64⁄ = 0.234.  Evidently, messages are being unnecessarily re-

broadcast. 

Consider that each node, at least in the context of the research platform, has at most four active 

interfaces, and that per the general message forwarding rules a node will never re-broadcast a 

message via the interface by which it received that message, i.e. at most three replicas of a 

particular message need be re-broadcast by a node.  Further, once a node has re-broadcast a 

particular message, it need never again re-broadcast that message because (in the absence of 

communication errors), all of its neighbours have already seen the message. 

There are some fairly obvious implementation challenges around causing a node to recognise 

every broadcast message that has ever passed through it: the loads on CPU time (for searching) 

and memory (for storage) would be impractical.  However, the application of some strategic 

constraints can reduce the scale of the problem to make it manageable in limited circumstances.  

Three simple constraints are needed, over and above the basic message re-broadcast rules: 

1. Apply the strategy only to message types that must be stored anyway, e.g. neighbour 

tables. 

2. Store and compare against only the last message of a particular type from a particular 

node. 

3. Limit the rate at which stored messages of the targeted types are produced by each node. 

Consider now Figure 3-9 below; it is identical to Figure 3-8, except that the additional constraints 

proposed above have been applied; the red crosses mark nodes that have already received the 

original message, and that have discarded a replica of the message rather than re-broadcasting it.  

As shown in Table 3-4 below, the total number of replicas transmitted is reduced from 64 to 32, 

causing efficiency 휂 to double from 0.234 to 0.469.  Further, TTL is largely irrelevant for these 

messages because broadcasts only propagate away from the source; any message replicas that 

leak around the broadcast wavefront will penetrate back at most one hop into areas through 

which the broadcast has already passed. 

Node 01 02 03 04 11 12 13 14 21 22 23 24 31 32 33 34 Total 

Received 2 1 2 2 2 0 2 2 2 3 3 2 2 3 2 2 32 

Transmitted 1 2 2 1 2 4 3 2 2 3 3 2 1 2 2 0 32 

Table 3-4 : Count of Replica Messages Received for Example Figure 3-9 

Leakage is caused by the practical reality that, even in the improbable event that several replicas 

of a message arrive truly simultaneously at a node via different interfaces, they are unlikely to be 

able to be handled in parallel by a sequential CPU with responsibility for the network layer and 

forwarding / re-broadcast decisions; it is thus reasonable to assume that replicas will be handled 

sequentially. 
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Figure 3-8 : Message Broadcast Path Tree, 4x4 grid, TTL=4 

 

Figure 3-9 : Constrained Message Broadcast Path Tree, 4x4 grid, TTL=4 
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The first replica parsed at a node is unrecognized, or "new", and will be re-broadcast, but 

additional replicas are "recognized" and hence are not re-broadcast.  Some of the replicas 

generated by the re-broadcast triggered by the "new" replica will be sent to the nodes that sent 

the later, "recognized", replicas but those nodes will also "recognize" the replicas and discard 

them.  This is the source of the "at-most-one-hop" penetration back into areas that have already 

received a replica. 

Consider Figure 3-10 below, in which the limited effect of leakage on constrained broadcasts is 

shown.  The colours indicate the order in which the replicas were originally sent, and in turn the 

order in which they are parsed at the intermediate nodes; replica 1 is first.  The colours of the 

intermediate nodes indicate which of the replicas arrived at a node first.  This is the same 

information, in a somewhat different form, to that presented above in Figure 3-9. 

 

Figure 3-10 : Constrained Broadcast Message Leakage 

As highlighted above, this process of constrained broadcasts can be used to distribute neighbour 

tables relatively efficiently by using a process that that lies conceptually somewhere between the 

converses of a breadth-first search and a Tabu [168] search.  It is also referred to by Cristian et al 

[184] as “information diffusion”.  Nodes store any remote neighbour tables that they receive as a 

matter of course because they need knowledge of the network topology in order to efficiently 

unicast management network messages, e.g. when executing DARP in order to build traffic 

network paths.  If a received neighbour table perfectly matches a stored neighbour table then it 

does not re-broadcast that neighbour table.  The third constraint factor, limiting the rate of 

message broadcasts, is discussed in section 3.4.2.3.1 below. 

3.4.2.3 Updating Network Topology Data to Reflect Changes 

3.4.2.3.1 Periodic Refresh and Disposal 

It is well-understood that networks are imperfect and cannot offer guaranteed delivery of every 

message.  VB is no exception to this, offering only best-effort messaging services at all layers.  

Consider also that knowledge of VB's network topology is distributed by broadcasting neighbour 

tables, and broadcasts are inherently best effort.  Coupled with the inability to guarantee the 
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delivery of any particular neighbour table is the reality that it takes time for neighbour table 

broadcasts to propagate through the network.  It is thus impossible to guarantee that every node 

has perfect and up to date knowledge of the network topology at all times. 

In order to minimise the impact of occasional failures to deliver neighbour tables, nodes are 

obliged to periodically broadcast their neighbour table regardless of any other triggers. [172]  The 

research platform has defined the maximum time between neighbour table broadcasts as 10 

seconds, but I freely acknowledged both that this is a completely arbitrary period, and that no 

attempt has been made to identify an optimum time. 

A related concern is that there is no completely reliable means of identifying when a node that 

was connected to a network, is disconnected from that network.  It is true that if the neighbour 

tables of every other node are distributed without error then it will no longer be possible for any 

other node to find a path to the disconnected node.  However, the uncertainty of message delivery 

means this is not sufficient justification to immediately remove an apparently disconnected node 

from neighbour lists.  As an alternative, neighbour tables are accorded a time-to-live (TTL); a 

measure of the time since the neighbour table was last updated.  When a peer node receives a 

neighbour table broadcast and updates its neighbour list, it also resets the timeout for the TTL of 

the received neighbour table.  If a peer node detects that the TTL of a neighbour table in its 

neighbour list has expired, the neighbour table is discarded; from the perspective of the peer 

node, the expired node is removed from the network topology.  The research platform uses a 

neighbour table TTL default of 22 seconds, slightly more than twice the maximum time between 

neighbour table broadcasts. 

3.4.2.3.2 Triggered Refresh 

There are six broad types of unexpected event that may affect the topology of a network and the 

paths taken by messages: disconnection of links, nodes and network segments; and connection of 

links, nodes and network segments.  More complex events can be modelled as a collection or 

sequence of these event primitives.  For example, replacement of a faulty node can be modelled 

as disconnection of a node, followed by connection of a node.  Note that disconnection or 

connection of a network segment is an extended case of the disconnection or connection of a 

node. 

Disconnections are generally more time-sensitive than connections because disconnections may 

interfere with ongoing communications – see section 3.4.2.4 below for an example of this.  

Consequently, disconnections of either links or nodes are published to the network as soon as 

they are detected. [172]  Publishing simply involves the nodes that are still connected to the 

network and that were involved with any failed links broadcasting their neighbour tables, as 

discussed in section 3.4.2.2 above. 

Where several links or nodes are simultaneously disconnected or connected, the principle of 

superposition can be applied to determine the outcome. 

3.4.2.3.2.1 Disconnection of a Link 

Consider the upper diagram in Figure 3-11 below.  The number on each link is the path metric cost 

to use that link (in either direction); the lower the total metric across several hops, the more 

appealing the path.  If node 01 wishes to communicate with node 04, the lowest possible metric 
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is 30, following the path 01->02->03->04.  However, if the link between node 02 and node 03 is 

broken, this path is no longer available. 

 

Figure 3-11 : Disconnected Link Causes Path Reselection 

The path with the lowest metric is now 01->11->12->13->14->04, with a total metric of 50, but in 

order to use the new path node 01 must transmit messages via node 11 rather than node 02.  For 

the short term, until it learns of the break between node 02 and node 03, node 01 will continue 

to transmit messages to node 04 via node 02; the messages will follow the path 01->02->12->13-

>14->04, with a path metric of 140.  When node 01 learns about the break it will no longer send 

messages via node 02 because the best-case metric to node 04 via node 02 is 140, substantially 

larger than the metric of 50 via node 11. 

3.4.2.3.2.2 Disconnection of a Node 

Disconnection of a node can be modelled as the disconnection of all of the links that the node is 

involved with.  Disconnecting the links triggers neighbour table broadcasts, which in turn trigger 

path recalculation in all of the (previous) peer nodes.  Path recalculation will not be able to resolve 

a path to the disconnected node from any of its (former) peer nodes, so the peers will be aware 

that the disconnected node is not accessible. 

 

Figure 3-12 : Disconnected Node Causes Path Reselection 

For the reasons discussed in section 3.4.2.3.1 above the disconnected node's neighbour table will 

remain in its peer nodes neighbour lists for a short time, until the neighbour tables are discarded 

when their TTL's expire. 

3.4.2.3.2.3 Disconnection of a Network Segment 

If a disconnected link was the sole connection between network segments that are now isolated 

from one another, each isolated segment becomes a separate network.  Consider Figure 3-13 

below: in the left-hand diagram, there is a single network in which each node has 7 peers; in the 

right-hand diagram, following the disconnection of the link between node 02 and node 03, there 

are two networks in which each node has 3 peers. 
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Figure 3-13 : Disconnected Link Isolates Sub-Networks 

When the link between node 02 and node 03 is broken, both nodes will immediately broadcast 

their new neighbour table to their new, smaller, set of peers.  All of the nodes in each sub-network 

will re-calculate paths to all of the entries in their neighbour lists but will not be able to identify a 

path to the nodes in the other sub-network.  As each neighbour table's TTL expires, the 

unreachable nodes will be trimmed from all of the neighbour lists. 

3.4.2.3.2.4 Connection of a Link 

With reference to the disconnection example in Figure 3-11 above, consider the inverse link 

connection example in Figure 3-14 below.  In the left-hand diagram, messages sent from node 01 

to node 04 will follow the path 01->11->12->13->14->04, with metric 50.  When the link between 

node 02 and 03 is connected in the right-hand diagram, and node 01 becomes aware of the new 

link through a triggered or periodic broadcast of node 02's neighbour table, the messages will 

instead begin to follow the path 01->02->03->04, with metric 30. 

 

Figure 3-14 : Connected Link Causes Path Recalculation 

3.4.2.3.2.5 Connection of a Node 

Connection of a new node results in the node's neighbour table being added to the neighbour lists 

of all of the nodes already in the network.  The new node's neighbour list will also be populated 

by the neighbour tables of its new peers. 

 

Figure 3-15 : Connection of a new Node Expands Neighbour Lists 
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3.4.2.3.2.6 Connection of a Network Segment 

 

Figure 3-16 : Connection of a Network Segment Expands Neighbour Lists 

In the left-hand diagram of Figure 3-16, two separate networks are shown, each containing four 

nodes; each node has three entries in its neighbour table.  When a link is introduced between 

node 02 and node 03, as shown in the right-hand diagram, the networks are joined.  As the nodes 

publish their neighbour tables to the wider network, the neighbour lists of all of the nodes will 

grow until every node's neighbour list includes all seven of its peers. 

3.4.2.4 Identifying and Using Optimal Paths 

Nodes store neighbour tables received from their peers in a list of Remote Neighbour Tables 

(RNT's).  The set of neighbour tables known to a node – both its own Local Neighbour Table (LNT) 

and any received RNT's – make up the data points that describe a map or graph of the network.  

Each node explores its' own graph with a shortest path algorithm [185] in order to calculate the 

cumulative link quality metric and link length of the shortest path from each of its own interfaces 

to each remote neighbour.  The metric used to select the preferred outbound interface when 

transmitting or forwarding network layer messages is calculated in (3-2) below as a weighted sum 

of the outputs of the shortest path algorithm – the number of hops; the link quality per hop; and 

the link length per hop – and the current free transmit capacity of the interface, i.e. the number 

of available cell slots in the transmit queue: 

 𝑀𝑆𝐴𝐹[𝐼] = 𝑘𝐻 . 𝐻 + 𝑘𝑄 ∑ 𝑄 + 𝑘𝐿 ∑ 𝐿 − 𝑘𝐹 . 𝐹[𝐼] 
(3-2) 

Where 𝑀𝑆𝐴𝐹[𝐼] is the calculated metric via network interface 𝐼; 𝐻 is the number of hops in the 

path; ∑ 𝑄 is the sum of link qualities for all of the hops in the path; ∑ 𝐿 is the sum of link length 

measurements for all of the hops in the path; 𝐹[𝐼] is the number of free slots in the transmit queue 

for interface 𝐼;  𝑘𝐻, 𝑘𝑄, 𝑘𝐿, 𝑘𝐹 are their respective weightings, all of which are generally positive 

in sign.  Lower values of 𝑀𝑆𝐴𝐹 indicate a more desirable network interface. 

The shortest path algorithm is pre-calculated in preference to executing it on demand because 

the algorithm incurs a significant computational overhead, particularly as the size and complexity 

of the network increases; and the source data is relatively static – substantial changes to the 

network topology can be expected to occur during initial formation, and possibly during runtime 

if nodes or links are connected or disconnected, e.g. due to network faults, but as a rule network 

topology changes are not expected to occur during normal operation. [108]  When a neighbour 

table is added to, changed, or flushed from a node's neighbour list, or the LNT changes, an 

execution pass of the shortest-path algorithm is triggered.  Each execution pass attempts to 

generate a metric for the most efficient path starting from each local network interface to every 

entry in the neighbour table list, recognizing that it is entirely possible that there may not be a 
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path to a particular neighbour from every network interface.  Recalculation is executed for all 

neighbours and interfaces because a change in the network graph may open new paths or close 

existing paths. 

When a unicast message is sent or forwarded towards a destination node, the outbound interface 

with the lowest metric for that destination is selected.  Note that messages are not source-routed.  

A routing decision that identifies the interface with the lowest metric for the destination address 

is made at each intermediate node.  This allows the network to route messages around faults.  If 

there is a failure of a link or node on which an optimal path decision relies during the transit of a 

message, updated neighbour tables will be broadcast by the nodes in proximity to the fault.  

Neighbour table broadcasts can be viewed as a wave of knowledge of the topology change that 

expands away from the failure point.  If a message in transit meets a topology-change wavefront 

caused by a network failure, the network will immediately begin trying to redirect the message 

around the failure because the optimal outbound interfaces for message forwarding, and hence 

the optimal sequence of nodes for it to traverse, may have changed. 

Consider the example presented in Figure 3-17 through Figure 3-19, below.  Figure 3-17 lays out 

the topology of the exemplar network, including the link metrics; note that when the example 

begins at event 1, all of the nodes in Figure 3-19 have full knowledge of the neighbour tables of 

every peer node.  Figure 3-18 is the key for Figure 3-19. 

 

Figure 3-17 : Simple 6x2 Grid Topology with Link Metrics 

 

Figure 3-18 : Key for Figure 3-19 

In Figure 3-19 below, node 01 is sending messages to node 06 when the link between node 05 and 

node 06 fails.  Node 05 and node 06 both immediately broadcast their new neighbour tables.  The 

progress of time (of no particular units) is indicated by the left-hand column of event indices. 

1. Node 01 transmits message 1 towards node 06.  The best metric via node 02 is 150, and the 

best metric via node 11 is 210, so message 1 is routed via node 02. 

2. The link between node 05 and node 06 fails during event 2, but node 02 is unaware of the 

failure.  Node 02 perceives the metric via node 03 as 130 and the metric via node 12 as 160, 

so it forwards message 1 towards node 03.  Simultaneously, nodes 05 and 06 broadcast their 

new neighbour tables; nodes 04 and 15 are now also aware that node 05 no longer has a link 

to node 06, and node 16 is aware that node 06 no longer has a link to node 05. 
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Figure 3-19 :  Dynamic Re-Routing to Bypass Network Failures 

3. At the time that it forwards message 1, node 03 is still unaware of the failed link.  It perceives 

the metric via node 04 as 100 and the metric via node 13 as 110, so it forwards message 1 

towards node 04.  Simultaneously, nodes 03 and 14 receive node 05's new neighbour table, 

and node 15 receives node 06's new neighbour table. 
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4. Node 01 transmits message 2 towards node 06.  Node 01 still has no knowledge of the failed 

link, so the metric via node 02 is still 150 and the metric via node 11 is 210, and message 2 is 

routed via node 02.  Node 04 is aware of the failed link; it calculates the metric via node 05 as 

120 and the metric via node 14 as 110, so it forwards message 1 to node 14.  Simultaneously, 

nodes 02 and 13 receive node 05's new neighbour table, and nodes 05 and 14 receive node 

06's new neighbour table. 

5. Node 14 forwards message 1 towards node 06 via node 15.  Node 02 is forwarding message 

2, and it is by now aware of the failed link; it recalculates the metrics as 190 via node 03 or 

160 via node 12, and forwards via node 12.  Simultaneously, nodes 01 and 12 receive node 

05's new neighbour table, and nodes 04 and 13 receive node 06's new neighbour table. 

6. Node 15 forwards message 1 towards node 06 via node 16, and node 12 forwards message 2 

via node 13.  Node 11 receives node 05's new neighbour table, and node 05's neighbour 

update is complete.  Nodes 03 and 12 receive node 06's new neighbour table. 

Observe that message 1 and message 2 take different paths as the intermediate nodes learn about 

the topology change at different times.  This is due to the wave-like propagation of the neighbour 

table broadcasts (noting that node 06's broadcast actually has no impact on the network's 

behaviour or routing decisions); as the wave front of the node 05 neighbour table broadcast meets 

each message, that message is re-routed to a more optimal path. 

3.4.3 Experimentation 

3.4.3.1 Introduction 

3.4.3.1.1 Aim 

NMS performs two roles: 

1. Distributes and maintains a network-wide link state database by publishing neighbour 

tables both: 

a. Periodically, and 

b. Immediately when any link changes state. 

2. Calculates the optimal outbound network interface for any transmission by executing a 

shortest-path algorithm against the link state database. 

The following set of experiments is designed to explore and validate the operation of NMS as it 

performs these roles; and to quantify measurements for the topology under test, including: 

• Link make and break detection times. 

• Network utilization required to support link state database distribution using the 

constrained broadcast strategy. 

3.4.3.1.2 Sources of Error 

The primary source of error is that the neighbour tables may be updated between their being 

reported and the paths being reported.  This may cause some small variance in metrics (and 

potentially even in paths) because the reported paths may be derived from the new neighbour 

tables. 
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3.4.3.1.3 Network Configuration 

 

Figure 3-20 : Basal Network Configuration 

The interfaces of every node are configured as shown for N6; IF0 at 6 o’clock, IF1 at 12 o’clock, IF2 

at 3 o’clock and IF3 at 9 o’clock.  All links are short (approximately 30cm). 

3.4.3.2 Experiment 1 – Publishing Neighbour Table Changes 

3.4.3.2.1 Aim 

Demonstrate that when a link is broken, or made, the affected nodes publish updated neighbour 

tables. 

3.4.3.2.2 Method 

1. Configure the network as per Figure 3-20 above. 

2. Configure N8, N9 and N10 to produce NMS debugging reports. 

3. Simultaneously break the links between N8 and N9, and N9 and N10, by issuing a multi-

port interface disable command to N9 (“IFE,C,0”). 

4. Simultaneously restore the links between N8 and N9, and N9 and N10, by issuing a multi-

port interface enable command to N9 (“IFE,C,1”). 

5. Repeat steps 3 & 4 at least once. 

3.4.3.2.3 Observations 

Neighbour table transmission events are not highlighted.  Link make/break events are highlighted 

red. 
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Table 3-5 : Signalling of neighbour table changes 

3.4.3.2.4 Analysis 

Inspecting the link break events at t=827,600,112 and t=852,927,304, we can see that all three of 

the nodes involved in the break publish neighbour table updates as soon as they are able, i.e. 

almost immediately if they are in the Management phase at the time, or at the start of the next 

Management phase if they are in the Traffic phase. 

The behaviour during the link make events at t=844,400,109 and t=862,231,317 is slightly 

different.  The nodes that are passive in the break and did not have their interfaces shut down, 

i.e. N8 and N10, respond very quickly and publish neighbour table updates as soon as they are 

able.  The node that was active in the break, i.e. N8, which did have two of its interfaces shut 

down, does not transmit until an interval time of approximately 8.1ms.  The reason for this is that 

the re-started interfaces will enter the LINKED state within a few microseconds, but they will not 

enter the SYNCED state until after their passive partner interfaces transmit SYNC cells at an 

interval time of 8ms, and the SYNC cells are received approximately 100µs later. 
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Note that there is no risk of N9 suffering synchronization drift with respect to the wider network 

that might skew its timestamps.  At least one of N9’s network interfaces is always connected to 

the network, so N9 remains synchronized to the network at all times. 

3.4.3.2.5 Conclusions 

The nodes associated with a link that is affected by a make or break event publish the link state 

information to the network as soon as they are able to do so. 

3.4.3.3 Experiment 2 – Link State Change Detection 

3.4.3.3.1 Aim 

Gather a sufficiently large sample set (circa 200 data points) to establish a typical range of 

response times to link make and link break events. 

3.4.3.3.2 Method 

1. Configure the network as per Figure 3-20 above. 

2. Configure nodes 2, 8, 9 and 10 to produce NMS debugging reports. 

3. Simultaneously break the links between N8 and N9, and N9 and N10, by issuing a multi-

port interface disable command to N9 (IFE,C,0). 

4. Delay 500ms. 

5. Simultaneously make the links between N8 and N9, and N9 and N10, by issuing a multi-

port interface enable command to N9 (IFE,C,1). 

6. Delay 500ms. 

7. Repeat steps 3-6 a total of approximately 200 times. 

 

Minimum (ms) 

117 

Maximum (ms) 

1367 

Mean (ms) 

162 

Std Dev (ms) 

127.24 

Figure 3-21 : N8 link “break” delay histogram (bin size 40ms) 
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Maximum (ms) 

218 

Mean (ms) 

116 

Std Dev (ms) 

9.91 

Figure 3-22 : N8 link “make” delay histogram (bin size 100ms) 
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Minimum (ms) 

83 

Maximum (ms) 

1337 

Mean (ms) 

128 

Std Dev (ms) 

123.22 

Figure 3-23 : N9 link “break” delay histogram (bin size 40ms) 

 

Minimum (ms) 

159 

Maximum (ms) 

3787 

Mean (ms) 

2675 

Std Dev (ms) 

691.26 

Figure 3-24 : N9 link “make” delay histogram (bin size 100ms) 

 

Minimum (ms) 

117 

Maximum (ms) 

1338 

Mean (ms) 

152 

Std Dev (ms) 

105.55 

Figure 3-25 : N10 link “break” delay histogram (bin size 40ms) 

 

Minimum (ms) 

113 

Maximum (ms) 

187 

Mean (ms) 

115 

Std Dev (ms) 

6.09 

Figure 3-26 : N10 link “make” delay histogram (bin size 100ms) 
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3.4.3.3.3 Analysis 

The first “break” sample is an outlier.  The link break occurs at a cycle time of ~3.7ms, i.e. during 

the Traffic phase.  None of the involved nodes are able to publish their neighbour table change 

until the Management phase commences ~1.3ms later. 

There is a “make” low-side outlier at t=669,027,938, where the delay observed for N9 is just 159µs.  

The reason for the anomaly is the sample time, which is slightly less than 8ms into the current 

cycle; recall from section 3.4.3.2.4 above that the active make/break node (N9) can only detect 

the link make at ~8.1ms into the cycle, shortly after the passive node/s emit SYNC cells. 

Link break detection times are ~150µs, with a standard deviation of ~120µs.  Link make detection 

times for passive nodes are typically slightly shorter and far more stable than the link break 

detection times, at ~115µs with a standard deviation of less than 10µs.  Link make detection times 

are substantially higher for the active node, typically 2.7ms with a standard deviation of ~0.7ms. 

3.4.3.3.4 Conclusions 

Although link make detection times when an interface has been shut down, as opposed to the link 

being physically disconnected, are substantially higher than the general make and break detection 

times, that is an event that is unlikely to occur during normal operation.  In any case, and 

irrespective of that specific situation, the link state change detection times overall are less than 

one half of an interval, or 5ms.  In the vast majority of cases, they are less than 1ms. 

3.4.3.4 Experiment 3 – Constrained Broadcast 

3.4.3.4.1 Aim 

Verify that the constrained broadcast implementation is consistent with the intended design.  

Determine the network utilization of NMS given the implementation of the constrained broadcast 

mechanism.  Compare the effectiveness of the constrained and unconstrained broadcast 

strategies in terms of network utilization. 

3.4.3.4.2 Method 

1. Configure the network as per Figure 3-20 above. 

2. Configure all nodes to produce NMS debugging reports for all NMS messages transmitted 

and received, and indicating whether a received message is a replica (issue command 

“DBG,NMS,7”). 

3. Log all traffic for at least 3 minutes. 

3.4.3.4.3 Observations 

The following subset of data points extracted from the captured data set shows the initial 

broadcast of a neighbour table with sequence number 156 from N2, and its propagation through 

the network.  When a receiving node identifies the record as “new”, it is re-broadcast.  When a 

record is identified as “old”, it is not re-broadcast. 
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Table 3-6 : Signalling of neighbour table broadcast for SN2 SEQ156 

3.4.3.4.4 Analysis 

There are some bad data points in the raw data set, principally due to several NMS broadcasts 

being underway when recording commenced, i.e. those particular sequences are incomplete and 

cannot be analysed.  There were also two instances of “late” messages, i.e. messages from the 

previous broadcast with an unexpectedly high timestamp that suggested that it was re-

transmitted approximately 10s later, well after it should have been discarded.  All of these data 

points have been excluded from the analysis set.  Note that the two late messages may be markers 

for an implementation fault, possibly a firmware bug. 

The original neighbour report from N2 was transmitted and received a total of 15 times before it 

was discarded by the network, as shown in Figure 3-27 below. 

 

Figure 3-27 : NMS Constrained Broadcast Propagation Paths 
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The broadcast process took a total of just under 2.2ms from the initial transmission by N2 at the 

start of the interval’s Management phase at t=80,135,000.  The maximum number of hops taken 

by any copy was 4, the network diameter, which is consistent with the design of the constrained 

broadcast mechanism.  All broadcasts from each node are separated by 10.01s, which is almost 

consistent with the intended design of the NMS protocol.30 

Observe that on three occasions, nodes exchange copies.  This is behaviour that was predicted in 

section 3.4.2.2: backwards leakage of the information wavefront, caused by either transmission 

overlap of NMS messages exchanged across a particular link, or the limitations imposed on the 

operation of the protocol stack by the operating system.  Again, as per predictions and consistent 

with the intended behaviour of the protocol, these extraneous copies are discarded by the 

receiving node. 

 

Figure 3-28 : NMS constrained broadcast receive count histogram (bin size 1) 

 

Figure 3-29 : NMS unconstrained broadcast propagation paths (TTL = 4) 

The mean transmission count including leakage is 15.88.  Now, given a transmission count of 

15.88; a period of 10.01s, or 1001 intervals; a simplex link capacity of 50 cells per interval 

(including SYNC cells); and a network with 24 simplex links; we can say that given the network 

topology of Figure 3-20, the network utilization 𝑈 for the NMS protocol by a single node 𝑣 is: 

 
30 The periodicity is intended to be 10.00s.  This error is caused by a minor firmware bug. 
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𝑈𝑣 =
15.88

1001 × 24 × 50
= 1.32 × 10−5 

And for the set of nodes 𝑉, assuming that their 𝑈𝑣’s are uniform, the constrained broadcast 

utilization is given by: 

𝑈 = |𝑉| × 𝑈𝑣 = 9 × 1.32 × 10−5 = 1.19 × 10−4 

As we can see from Figure 3-29, using the unconstrained broadcast strategy with a TTL of 4, every 

NMS message would have been transmitted 28 times, resulting in 𝑈 = 2.10 × 10−4. 

3.4.3.4.5 Conclusions 

In real terms, the constrained broadcast strategy has reduced the network utilization of the 

network mapping service by 43% in comparison to the unconstrained broadcast strategy, from 28 

transmissions per node to 15.88.  This result is of the same scale as the 50% reduction in utilization 

predicted for a 4x4 grid of nodes in section 3.4.2.2. 

3.4.3.5 Experiment 4 – Network Mapping 

3.4.3.5.1 Aim 

Demonstrate that: 

1. Under initial conditions, the network map and shortest path calculations are correct. 

2. Following a change to network connectivity, the network map and shortest path 

calculations are updated to reflect the new topology. 

3.4.3.5.2 Method 

3.4.3.5.2.1 Part 1 

1. Establish the network as shown in Figure 3-20 above. 

2. Retrieve local and remote neighbour tables for N2. 

3. Retrieve the calculated shortest paths for N2. 

3.4.3.5.2.2 Part 2 

4. Disable network interfaces 3.2 and 3.3, so that the only connections that N2, N3 and N4 

have to the network is via their IF0’s. 

5. Retrieve local and remote neighbour tables for N2. 

6. Retrieve the shortest paths for N2. 

3.4.3.5.3 Observations 

3.4.3.5.3.1 Part 1 



Page 140 

 

Table 3-7 : Link state database (Neighbour Tables) before break event 

Table 3-8 : Outbound IF metrics by destination (as output by shortest path algorithm) before break event 
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3.4.3.5.3.2 Part 2 

Table 3-9 : Link state database (Neighbour Tables) after break event 

Table 3-10 : Outbound IF metrics by destination (as output by shortest path algorithm) after break event 
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3.4.3.5.4 Analysis 

We exercise the routing rules to predict the path that the shortest-path algorithm should select, 

then compare the predicted path metric and hop count to the path metric and hop count reported 

by N2. 

Note the highlighted anomalies in the path table. 

The choices at N5 are to follow 5: 0 → 1: 8: 2 → 3: 9, or 5: 2 → 3: 6: 0 → 1: 9.  5.2 has a lower 

metric than 5.0, so 5.2 should be the selected outbound IF, which would cause N9 to be entered 

via 9.1, with a total metric of 82 or 88 respectively.  Conversely, if 5.0 is the selected outbound IF, 

that would cause N9 to be entered via 9.3, with a total metric of 83 or 89 respectively.  The 

reported metrics for these paths are not a perfect match for the reported inbound IF’s. 

3.4.3.5.4.1 Part 1 

2: 0 → 1: 5: 2 → 3: 6: 1 → 0: 5

2: 2 → 3: 3

2: 0 → 1: 5: 2 → 3: 6: 1 → 0: 3: 2 → 3: 4

2: 2 → 3: 3: 2 → 3: 4

2: 0 → 1: 5

2: 2 → 3: 3: 0 → 1: 6: 3 → 2: 5

2: 2 → 3: 3: 0 → 1: 6

2: 0 → 1: 5: 2 → 3: 6

2: 0 → 1: 5: 2 → 3: 6: 2 → 3: 7

2: 2 → 3: 3: 0 → 1: 6: 2 → 3: 7

2: 0 → 1: 5: 0 → 1: 8

2: 2 → 3: 3: 0 → 1: 6: 0 → 1: 9: 3 → 2: 8

2: 2 → 3: 3: 0 → 1: 6: 0 → 1: 9

2: 0 → 1: 5: 0 → 1: 8: 2 → 3: 9

2: 0 → 1: 5: 0 → 1: 8: 2 → 3: 9: 2 → 3: 10

2: 2 → 3: 3: 0 → 1: 6: 0 → 1: 9: 2 → 3: 10

Table 3-11 : Predicted paths from N2 to other nodes before break event 

3.4.3.5.4.2 Part 2 

2: 0 → 1: 5: 2 → 3: 6: 1 → 0: 5

2: 0 → 1: 5: 2 → 3: 6: 2 → 3: 7: 1 → 0: 4

2: 0 → 1: 5
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2: 0 → 1: 5: 2 → 3: 6

2: 0 → 1: 5: 2 → 3: 6: 2 → 3: 7

2: 0 → 1: 5: 0 → 1: 8

2: 0 → 1: 5: 0 → 1: 8: 2 → 3: 9

2: 0 → 1: 5: 0 → 1: 8: 2 → 3: 9: 2 → 3: 10

Table 3-12 : Predicted paths from N2 to other nodes after break event 

3.4.3.5.5 Conclusions 

Bar two small anomalies, highlighted in the tables above, the predicted paths match the reported 

paths exactly. 

The anomalies are puzzling.  Both are for the same inbound and outbound pair of interfaces: 2.0 

to 9.3; and both appear to be very similar in nature.  I am unable to explain not only why any of 

the results are in conflict, but also why it is the same result in both data sets. 

3.4.3.6 Experiment 5 – Shortest Path Calculation Times 

3.4.3.6.1 Aim 

Determine the periodicity of execution of the shortest-path calculation algorithm; and how long 

each execution takes. 

3.4.3.6.2 Method 

1. Configure the network as per Figure 3-20 above. 

2. Issue a OSPF debug enable command to all nodes (“DBG,OSPF,1”). 

3. Record all OSFP messages for a period of approximately 10 minutes. 

3.4.3.6.3 Observations 

 

Figure 3-30 : Shortest-path calculation times histogram (all nodes, bin size 1ms) 
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Figure 3-31 : Shortest-path calculation times by Node 

 
Minimum (µs) Maximum (µs) Mean (µs) Std Dev (µs) 

All 7110 28281 16950 4421 

N2 10237 23812 13401 1541 

N3 13841 22070 18285 1929 

N4 10207 23928 12478 1704 

N5 14782 22161 18760 1797 

N6 19762 28281 25852 1561 

N7 7110 23026 18723 2004 

N8 10926 23729 13045 1033 

N9 15146 23324 19336 1856 

N10 10323 25852 13379 1845 

Table 3-13 : Shortest path calculation times by node 

 

Mean (µs) IF Count 

Mean /  

IF Count (µs) 

N2 13401 2 6701 

N3 18285 3 6095 

N4 12478 2 6239 

N5 18760 3 6253 

N6 25852 4 6463 

N7 18723 3 6241 

N8 13045 2 6523 

N9 19336 3 6445 

N10 13379 2 6690 

Mean   6405 

Table 3-14 : Shortest path calculation times by node and scaled by IF count 
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Node Count Period (ms) 

N2 236 2527 

N3 277 2153 

N4 261 2285 

N5 269 2217 

N6 239 2495 

N7 217 2748 

N8 239 2495 

N9 267 2234 

N10 299 1995 

Mean   2350 

Table 3-15 : Average time between shortest path algorithm executions by node 

3.4.3.6.4 Analysis 

The observations presented in Figure 3-31 and Table 3-13 expose three clear groups of nodes: 

• N2, N4, N8 and N10 average ~13.1ms. 

• N3, N5, N7 and N9 average ~18.8ms. 

• N6 is ~25.8ms. 

Comparing Figure 3-20 above to these groups, the correlation is most likely the number of linked 

network interfaces at each node.  The reason for this is that a node executes the shortest-path 

algorithm against the link state database to discover the metric from each interface to each 

destination.  That is, the algorithm is executed 16 times by each member of the first group; 24 

times by each member of the second group; and 32 times by the sole member of the third group.  

Table 3-14 tends to confirm this, with execution times per node scaled by the count of connected 

interfaces converging to ~6.4ms for all nodes. 

The outliers visible in Figure 3-31 are presumably due to the shared execution environment – the 

shortest-path algorithm is being executed on a single-core CPU that is also running an RTOS and 

the balance of the VB stack.  This situation readily explains the small subset of values that are 

higher than the primary grouping for each node, i.e. execution for those outliers has been 

interrupted by higher-priority processes that claimed the CPU.  There is also one low value for N7 

of 7.1ms.  It is likely that this is the least-interrupted sample, i.e. 7.1ms is the best approximation 

of the actual execution time of the algorithm for a node with 3 linked interfaces, 8 destinations, a 

network diameter of 4 hops and a maximum hop count between any two nodes of 8. 

The mean time between executions of the algorithm is 2.35s, and the worst-case execution time 

is 28.3ms, worst-case CPU utilization is in the region of 1.2%, and may be less than 0.5%. 

3.4.3.6.5 Conclusions 

It is evident that the shortest path algorithm is not imposing any performance limits on a network 

of the size and topology explored here. 
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3.4.3.7 Conclusions 

The Network Mapping Service appears to function as intended. 

Experiment 1 showed that link state information, in the form of neighbour tables, is published 

both periodically and when link state changes are detected, and Experiments 1 and 2 

demonstrated that, in the absence of congestion, both link break and link make detection and 

publishing is certainly not greater than 5ms after any link make or break event, although it is 

typically substantially lower.  The 5ms upper bound is due to the network being unable to transmit 

neighbour tables while in the Traffic phase. 

Network utilization of the link state publishing mechanism has also been successfully minimized 

through the use of the constrained broadcast strategy.  Experiment 3 demonstrated that the 

behaviour of the constrained broadcast implementation in a 3x3 grid topology matched the 

predicted behaviour and achieved a 43% reduction in network utilization compared to the 

predicted behaviour of an unconstrained broadcast.  Note that no attempt has been made to 

propose a generalized theory for predicting the relative utilization of the two approaches, 

although it may be possible to do so using e.g. Laplacian matrices. 

Experiment 4 showed that the shortest-path algorithm successfully identifies the most suitable 

network interface for transmission to a particular destination node; and Experiment 5 quantified 

indicative calculation times per network interface for the shortest path algorithm given a 3x3 grid 

topology. 

3.5 Distributed Agent Resource Protocol 

3.5.1 Introduction 

This section details the real-time, or “traffic”, network layer service specified for the Virtual Bus 

network architecture: the Distributed Agent Resource Protocol (DARP).  In the context of the 

research goals stated in section 1.2.3, the functions and purpose of DARP are: 

• Minimization of single points of failure, particularly by avoiding any master-slave 

arrangements. 

• Self-forming and self-healing data delivery arrangements between active members. 

• Support for multicast real-time data flows. 

• Minimization of end-to-end delay for delivery of real-time data flows.  Ideally, end-to-end 

delay should be a function only of transmission line propagation delay. 

• Extremely low multicast delivery delay skew of real-time data flows from destination to 

destination for each data pulse.  Ideally, zero. 

• Jitter in delivery timing of real-time data flows from period to period to be no greater than 

one bit symbol at the physical layer signalling rate. 

• No variation in delivery ordering of real-time data flows from destination to destination 

each pulse. 
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Figure 3-32 : Progressive Model of the VB Protocol Layer Stack – Distributed Agent Resource Protocol 

DARP’s signalling path routing and scheduling algorithm is both entirely distributed and peer-to-

peer.  By not centralizing its route-and-schedule algorithm, DARP ensures that there is no single 

node that, if compromised, would cause the cessation of path management.  Further, while path 

construction processes must compete with one another for access to resources, paths are self-

forming: each independently routes itself through the network, contending for resources at each 

hop.  Whilst DARP does not support the repair of existing paths, if a connection to a destination 

fails then it can be directed to construct the path again.  Further, multicasting is supported, and 

resource re-use for multicast signalling paths is encouraged by making existing resource 

allocations very appealing during the routing process. 

While DARP is part of the set of tools that VB uses to minimize end-to-end delay and multicast 

skew, in that it routes and schedules the link layer resources that actually achieve these outcomes, 

it must be acknowledged that DARP is involved only at the periphery of these goals.  In contrast 

however, DARP is fundamental to achieving low period-to-period jitter and constant delivery 

ordering because it commits network resources to data flows in terms of an underlying grid [38] 

of uniform timeslots, where each timeslot is offset from the start of each network period by a 

fixed amount and is committed to the same virtual bus every network period. 

DARP is the means by which the traffic network sub-layer of the Virtual Bus network architecture 

is realized.  Network resources are routed and scheduled in the S- and T-planes to form chains of 

connected elements in order to realize physical signalling channels that can span multiple network 

hops, and that can branch at any node to afford multicast delivery paths.  Each chain of network 

resources is a distinct instance of the VB traffic network sub-layer, or Virtual Bus: a simplex point-

to-multipoint signalling channel that can transport a time-triggered data flow across multiple 

network hops with minimum delay, nanosecond-scale differential delivery delay (skew) to 

multiple destinations.  The virtual buses routed and scheduled by DARP are the source of the name 

of the VB network architecture. 
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3.5.1.1 Relationship to the OSI Reference Model 

DARP is positioned as a layer 3 service under VB.  By comparison, under the OSI reference model 

[39], the equivalent to DARP's functionality is situated at layer 2 (data link layer).  Consider the 

purpose statement from page 46 of the OSI reference model, particularly the underlined sections: 

7.6.2.1: The Data Link Layer provides functional and procedural means for connectionless 

mode among network entities, and for connection mode for the establishment, 

maintenance and release of data link connections among network entities and for the 

transfer of data link service data units.  A data link connection is built upon one or several 

physical connections. 

The OSI model's data link layer specification necessitates that messages (data-link-protocol-units) 

be able to be transferred across multiple hops at the data link layer.  While VB does transfer TDM 

cells at the link layer, the VB link layer is not equipped to organise or coordinate such transfers.  

DARP is implemented as a network layer protocol that coordinates and schedules network 

resources in order to facilitate contention-free multi-hop link layer data transfers.  Consequently, 

DARP has a closer relationship to the “fully distributed” autoconfiguration option of the 

IEEE802.1Qcc Stream Reservation Protocol [9], or the Internet Control Message Protocol (ICMP) 

[186] than it does to the OSI reference model. 

3.5.1.2 Protocol Overview 

DARP utilizes two types of protocol data unit (PDU), or signal: Messages and Tokens.  Both types 

of PDU are exchanged using the management network sub-layer's SAF messaging service.  The 

format and structure of DARP's communication protocol, detailed in Appendix D.3.5, was designed 

to ensure that all DARP signals are encapsulated in a single SAF message (and hence, a single ad-

hoc cell at the link layer) in order to avoid the fragmentation and reconstruction that would be 

required for larger PDU's.  Note also that DARP is a resource routing and scheduling protocol, not 

a data transport protocol.  The contents of the DARP signals used to manage the construction and 

maintenance of the virtual buses that implement transport traffic network sub-layer instances and 

carry real-time data flows are entirely separate from the contents of those data flows.  This is not 

dissimilar to the separation between the control and data planes of OpenFlow [62] software-

defined networking (SDN). 

DARP Messages are used to advise that a particular resource management event has occurred, or 

to request that it occur.  They are generic SAF messages, sent from a source to a destination that 

may be several hops away.  At each hop, the decision tree at Figure D-7 is executed and the 

message is forwarded until it arrives at its destination.  DARP Messages do not follow a prescribed 

path, and intermediate nodes pay no attention to their contents. 

DARP Tokens are used to trigger the execution of the distributed resource management algorithm.  

The destination address in the header of the SAF message that encapsulates a DARP Token is not 

that of the final destination node; from the perspective of the network and link layers, a Token is 

addressed to the immediate neighbour node that represents the next hop towards its ultimate 

destination.  When a node receives a DARP Token, it executes the resource management sub-

algorithm specified by the Token.  It draws upon its own knowledge of the network topology 

afforded by the Network Mapping Service; the S/TDM network resources that it has available 

and/or has previously allocated to the virtual bus identified within the Token; and the type and 
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contents of the Token; in order to select and configure the sub-algorithm that it executes.  The 

node uses the output of the sub-algorithm to update its own records of allocated resources; to 

update the Token, possibly altering its type and hence the sub-algorithm to be executed by the 

next node; and (if appropriate) to forward the updated Token to the immediate neighbour or 

neighbours identified by the sub-algorithm.  If the Token is constructing a new virtual bus, i.e. 

allocating network resources to it, then the series of resource allocation decisions made as the 

Token hops from node to node implicitly determines the physical path taken through the network, 

and through the network resource space's S-plane, by the virtual bus.  If the Token is managing an 

existing virtual bus then it follows the trail of network resources that define the virtual bus.  Tokens 

may be propagated upstream, towards the source of the virtual bus; or downstream, towards one 

or more of the destinations of the virtual bus. 

 

Figure 3-33 : Node Roles in Virtual Buses 

As shown in Figure 3-33 above, DARP recognises three roles for nodes involved in virtual buses: 

Source Nodes (SN), Agent Nodes (AN) and Destination Nodes (DN).  The function of SN's and DN's 

should be clear.  AN's are the intermediate nodes that are co-opted by an otherwise unrelated 

virtual bus as switching points – they act as an agent for the bus.  Nodes that are not otherwise 

involved with a particular virtual bus can be treated as AN's for the purposes of interaction with 

that virtual bus because they are potential agents.  A complete virtual bus incorporates one and 

only one SN, one or more DN's, and zero or more AN's.  Note that a node may take on the roles of 

both AN and DN for a virtual bus where it is both receiving the data carried by the bus and 

switching the bus to one or more additional DN's. 

Every virtual bus is uniquely identified by three fields: the address of the SN; the Data Type of the 

data transported by the bus; and a Bus ID (BID).  The data type is a 16-bit unsigned integer (noting 

that 0 and 65535 are invalid data types) that is used by higher network layers to identify the 

content carried by the virtual bus; it is analogous to the Identifier field in a CAN header [49], or a 

TCP port [42].  DARP itself makes no use of the data type field other than to differentiate virtual 

buses that originate in the same SN but are of different data types.  The BID is an 8-bit unsigned 

integer (noting that 0 and 255 are invalid BID's) that is allocated by each SN for each virtual bus 

and that must be unique for each bus of each data type that is produced by a particular SN.  The 

concatenation of 'SN.Type.BID' is referred to as the Unique Bus Identifier (UBI). 

A single virtual bus can deliver its' data flow to an arbitrary number of DN's.  This is accomplished 

by allowing a virtual bus to branch at any of its involved nodes, including the SN.  In order to 

maximise resource re-use and hence resource allocation efficiency, the outbound interface 

selection process executed by the resource allocation algorithm views any existing resource 

allocation for a particular virtual bus as being very appealing for re-use by branches of that bus to 

new DN's; consider equation (3-4) below.  Note that a virtual bus that branches to multiple DN's 
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is a single entity in the resource space; all of the branches share the same UBI and must use the 

same T-plane resources at each hop.  A consequence of this is that the TDM timeslots used by a 

virtual bus are fixed when the first DN commits to them, and all additional DN's for that UBI must 

use the same timeslots. 

No node has or requires complete knowledge of the resources allocated to any of the virtual buses 

that it is involved with, even buses for which it is an SN.  An SN has knowledge of the UBI, the 

outbound interface/s, and the DN's.  AN's and DN's have knowledge of the UBI, the inbound 

interface and, if an AN, the outbound interface/s.  Any node involved with a virtual bus can 

determine the directionality of the bus by inspecting its own resource allocation tables, and the 

immediate neighbours on which the bus depends by inspecting its own local neighbour table, but 

has no visibility of the route taken by the bus beyond the previous outbound interface and the 

next inbound interface. 

Conversely, each node has complete knowledge of the resources that it has allocated to all virtual 

buses with which it is involved – those that originate from it; those that terminate at it; and those 

that pass through it.  This local knowledge is fundamental both to the execution of the resource 

allocation algorithm, and to the operation of the link layer's S/TDM signalling mode.  Prior to the 

commencement of every traffic phase, the DARP resource commitments that each node has made 

are used to configure the link layer's TDM digests and memories for S/TDM transmission (SN's); 

S/TDM switching (AN's); and S/TDM reception (DN's).  It is through this mechanism that the 

network resource allocations made by DARP are transformed each interval into literal virtual 

buses. 

3.5.2 Protocol Operation 

VB's network resource utilization strategy dictates that virtual buses are constructed when they 

are required; deconstructed when they are no longer required; and monitored and managed 

throughout their lifetime to ensure that any network resources that are longer required to support 

a bus are released as quickly as possible.  The latter management requirement exists principally 

because each node involved in a virtual bus has visibility only of its own segment of that bus.  If a 

virtual bus was to fail in the absence of such a management mechanism then only the involved 

nodes in immediate proximity to the break would be aware of the fault.  SN's and DN's must be 

kept apprised of the end-to-end viability of all virtual buses that they are involved with in order to 

maintain the bus, and to keep higher network layers informed as to the availability of the set of 

end-to-end network connections that the bus represents. 

3.5.2.1 Construction 

3.5.2.1.1 Process 

If 𝑇 is the set of timeslots committed to a virtual bus then a path through the network resource 

space is only valid and complete if 𝑇 ≠ ∅.  Further, a virtual bus must occupy the same set of T-

plane resources at each involved node; that is: 

 𝑇𝑆 = 𝑇𝐴0 = 𝑇𝐴1 = ⋯ = 𝑇𝐷𝑛−1 = 𝑇𝐷𝑛 (3-3) 

where 𝑇𝑆 is the set of timeslots allocated in the SN; 𝑇𝐴𝑛 is the set of timeslots allocated in each AN 

and 𝑇𝐷𝑛 is the set of timeslots allocated in each DN. 
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In the S-plane, the nature of the resource allocation depends upon the Node's involvement.  If 𝑆𝑖 

is defined as the set of inbound S-plane resources, 𝑆𝑜 as the set of outbound S-plane resources, 

and 𝐼 is a network interface identifier, then we can say: 

Role S-Plane Constraints  

SN 𝑆𝑖 = ∅; 𝑆𝑜 ≠ ∅ (3-4) 

AN, AN+DN 𝑆𝑖 = {∃! 𝐼}; 𝑆𝑜 ≠ ∅; 𝑆𝑜 ∩ 𝑆𝑖 = ∅  (3-5) 

DN 𝑆𝑖 = {∃! 𝐼}; 𝑆𝑜 = ∅ (3-6) 

Table 3-16 : S-Plane Constraints by Role 

Consider a simple virtual bus construction process in which an SN constructs a bus through the 

resource space to a DN through some indeterminate number of AN's.  Knowing the capacity of a 

TDM timeslot in terms of payload bits, and assuming that the SN knows the expected data rate 

across the virtual bus in terms of the number of bits per interval, we can identify the minimum 

size of 𝑇 as 𝑊𝐵, where 𝑊𝐵 is the width of the bus in terms of TDM timeslots, and say that: 

 |𝑇| ≥ 𝑊𝐵 (3-7) 

However, each involved node has knowledge only of the section of the network resource space 

that it owns; consequently, the SN should avoid specifying which 𝑇 will be allocated to a virtual 

bus because it has no knowledge of the availability of resources at potential intermediate AN's.  

This is resolved with a two-stage resource allocation process: reservation and commitment.  

Reservations represent temporary resource allocations for a virtual bus under construction, and 

commitments represent finalised resource allocations.  (3-7) is true only for commitment; it must 

be merged with (3-3) for reservations, as shown in (3-8): 

 |𝑇𝑆 ∩ 𝑇𝐴0 ∩ 𝑇𝐴1 … ∩ 𝑇𝐷𝑛−1 ∩ 𝑇𝐷𝑛| ≥ 𝑊𝐵 (3-8) 

The virtual bus construction process "feels" its way through the S-plane from an SN to a DN via 

some indefinite number of AN's using a RESERVE Token, reserving a region of the network 

resource space at each hop.  The reservation process is a distributed version of the routing phase 

in a schedule-and-route task that employs a greedy depth-first search strategy.  The process has 

some alignment with the Tabu search concept [168], in that when a particular search path is 

attempted and fails that path is flagged as non-viable, i.e. it is tabu.  The T-plane resources 

reserved at each hop must be a subset of the T-plane resources allocated at the previous hop; the 

number of elements in 𝑇 at each hop must be no less than 𝑊𝐵; and as shown in (3-5) above, the 

set of outbound network interfaces allocated at an AN, or AN+DN, must not include the inbound 

network interface in order to prevent buses from looping back on themselves.  Another 

consequence of (3-5) is that any given bus may enter a node through one and only one inbound 

interface. 

It is possible that an AN may be unable to offer compatible resources to a virtual bus that is being 

constructed.  In the worst case the network may have physically changed since the construction 

process commenced, and the AN has been unable to identify a new physical path to the DN.  More 

probably the required resources have been reserved by or committed to another virtual bus 
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construction process and are not available.  In order to manage this risk, the reservation process 

can gracefully step back to the previous node and try to redirect itself through an alternate AN.  

Stepping backwards is accomplished by discarding the RESERVE Token and instead sending a 

REDIRECT Token to the previous node.  There is no explicit upper bound on the number of 

backwards steps and REDIRECT Tokens that may be utilized; it is logically sound to push the 

execution point of the reservation process back to the SN, which is the implicit bound on 

redirection.  The RESERVE process is stateful, in that AN’s that currently have resources allocated 

to a RESERVE attempt maintain knowledge of the state of that attempt, but the knowledge of that 

state is transitory: when an AN no longer has resources allocated to a particular RESERVE process, 

it immediately discards all knowledge of that process.  In certain circumstances, this can be 

problematic; see section 3.5.2.1.3. 

If the virtual bus construction execution point is redirected back to the SN, it can try to use a 

different outbound interface, or accept failure and terminate the construction process.  A practical 

trigger for terminating a RESERVE process at this point and accepting that the necessary network 

resources are not available at this time would be an attempt having been made to RESERVE 

through each the source node’s outbound network interfaces a set number of times, and all the 

RESERVE attempts having failed, i.e. they were REDIRECTed back to the source node. 

Virtual bus reservation is complete once the RESERVE Token arrives at, and is accepted by, the 

DN.  If the DN is not prepared to accept the incoming bus, it can reject it and deconstruct the 

reservation process by replying with a REJECT Token that retraces the trail of reserved resources 

through each AN, releasing the reservations and ultimately notifying the SN that the DN does not 

require the virtual bus.  If the DN does accept the bus, it selects some set of timeslots 𝑇𝐶
31 where 

𝑇𝐶 ⊆ 𝑇𝐷 and |𝑇𝐶| = 𝑊𝐵 and initiates the second stage of the resource allocation process, 

commitment, by sending a COMMIT Token back to the SN.  The COMMIT Token retraces the trail 

of reserved resources until it reaches the SN.  At each AN it updates the resource allocation to 

"committed" and releases any unneeded T-plane resources such that 𝑇𝐴𝑛 = 𝑇𝐶.  When the 

resource allocation process has returned to the SN as a COMMIT Token, the virtual bus that it 

established is ready to transport data to the DN.  The commit process is a distributed version of 

the scheduling phase in a schedule-and-route task. 

 

Figure 3-34 : Simple Virtual Bus Construction Example 

 
31 Noting that there is no particular reason that the members of 𝑇𝐶  must be contiguous in time, e.g. 𝑇𝐶 =
{0,1} is no more (or less) valid than 𝑇𝐶 = {0,49} 
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Consider Figure 3-34, above.  N1 sends a RESERVE Token with a DN of N5, 𝑇𝑅 = {0,1,2,3,4} and 

𝑊𝐵 = 1 to N2.  N2 determines that the next hop should be to N3, but can only offer 𝑇𝑅 = {1,2,3} 

because slots 0 and 4 are in use by other virtual buses (not shown).  N3 forwards the Token to N5, 

but can only offer 𝑇𝑅 = {2,3}.  N5 accepts the reservation, selects 𝑇𝐶 = {3} and responds with a 

COMMIT Token with a DN of N1 and 𝑇𝐶 = {3}.  The COMMIT Token retraces the trail of reserved 

resources via N3 and N2 to N1.  At no time is N4 involved in or aware of the construction process. 

Consider also Figure 3-35, below.  N1 sends a RESERVE Token with a DN of N5, 𝑇𝑅 = {0,1,2,3,4} 

and 𝑊𝐵 = 1 to N2.  N2 determines that the next hop should be to N3, but can only offer 𝑇𝑅 =

{1,2,3}.  N3 is unable to allocate any of these timeslots, so it replies to N2 with a REDIRECT Token.  

N2 takes the only remaining option and forwards the RESERVE Token to N4 with 𝑇𝑅 = {3}, and N4 

forwards the RESERVE Token unmodified to N5.  N5 accepts the reservation and responds with a 

COMMIT Token with a DN of N1 and 𝑇𝐶 = {3}.  The COMMIT Token retraces the trail of reserved 

resources via N4 and N2 to N1. 

 

Figure 3-35 : Simple Virtual Bus Redirection Example 

In the event that construction of a virtual bus is halted by the loss of either a RESERVE or COMMIT 

Token, the SN can restart the construction process by resending the original RESERVE Token with 

the same UBI.  The outbound interface selection algorithm ensures that the new RESERVE Token 

will follow the same physical path as the original RESERVE Token.  If a construction process is 

halted by the loss of the COMMIT Token, the DN will respond to the re-sent RESERVE Token with 

a new COMMIT Token. 

The process of selecting an outbound network interface through which to forward a RESERVE 

Token is a simple comparison of metrics calculated for each candidate interface; the highest 

metric is selected as the optimum interface.  In the first instance, interface candidacy considers 

viability in terms of presenting a viable physical path to a particular DN as determined by the 

Network Mapping Service's shortest-path algorithm.  Interfaces that have received a REDIRECT 

Token for the virtual bus are then trimmed from the set of candidates.  The final metric 𝑀𝐷𝐴𝑅𝑃 for 

each potential outbound interface 𝐼 is calculated as: 

 𝑀𝐷𝐴𝑅𝑃 = 𝑘𝑠. |𝑇𝑠| + 𝑘𝑢. |𝑇𝑢| + 𝑘𝑣 . 𝑉 + 𝑘𝑑 . |𝑇𝑑| + 𝑘𝑓 . |𝑇𝑓| + 𝑘𝑛. 𝑁 + 𝑘𝑚. 𝑀𝑆𝑃 (3-9) 

Where |𝑇𝑠| is the number of slots already committed to the same virtual bus UBI (e.g. if that bus 

is branching to a new DN); |𝑇𝑢| is the number of slots already committed to “related” UBI’s, i.e. 

virtual bus instances that have the same SN and Type but a different BusID; 𝑉 is a "related UBI" 
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true (1) / false (0) indicator; |𝑇𝑑| is the number of slots already committed to different virtual bus 

UBI's; |𝑇𝑓| is the number of free or uncommitted TDM slots; 𝑁 is a "next hop" true (1) / false (0) 

indicator for the next hop being the target DN; 𝑀𝑆𝑃 is the shortest-path metric to the DN as 

calculated by NMS; and 𝑘𝑠, 𝑘𝑢, 𝑘𝑣 , 𝑘𝑑 , 𝑘𝑓 , 𝑘𝑛, 𝑘𝑚  are the respective weightings of each term.  Note 

that 𝑘𝑢, 𝑘𝑣, 𝑘𝑑 and 𝑘𝑚 are generally negative in sign. 

A virtual bus that is connected to more than one DN is branching.  Branching may be logical, 

physical, or both.  A physical branch is created when the SN or an AN has more than one outbound 

interface allocated to the bus.  A logical branch occurs at nodes that are both an AN and a DN for 

the bus; the branch is logical because it occurs within the node and consumes no additional 

network resources, but it is nonetheless a branch.  Branching of virtual buses allows DARP to 

leverage resource re-use to improve resource allocation efficiency; a single bus can deliver its data 

flow to multiple destinations.  Branching may also affect real-time data delivery requirements 

because data is delivered with nanosecond-scale differential delay to all of the branch 

destinations.  However, there is a price to be paid in allowing virtual buses to branch.  In the 

context of virtual bus construction, the key issue is that constructing a bus to one DN locks the T-

plane resources for that bus.  If the bus branches to additional DN's, they must be accessible 

through the same T-plane resources – recall (3-3), above. 

3.5.2.1.2 Performance 

The purpose of DARP is not to resolve the most optimal resource allocation solution, which, as 

noted in section 1.4.3, is well-known to be an NP-complete problem.  Rather, it is to find a solution, 

any solution at all, and to do so as quickly as possible.  This approach aligns well with a point made 

by Garey and Johnson [111] in the context of techniques with which to attack NP-complete 

problems: “you might even relax the problem somewhat, looking for a fast algorithm that merely 

finds designs that meet most of the component specifications”.  Whether DARP can or does 

achieve its’ aims is dependent on circumstances, not least the need for each resource allocation 

process to compete for access to resources. 

In a network that is not otherwise “busy”, DARP may be very effective.  RESERVE Tokens will take 

the shortest possible path to their destination32, unimpeded by other construction processes, 

existing resource allocations, or delays in forwarding; and COMMIT Tokens will suffer no 

forwarding delays.  Consequently, the construction process will consume the lowest possible 

quantity of network resources, both temporarily and over the longer term, and will do so for the 

shortest possible time. 

In this context, a “busy” network is one that a) does not have sufficient management network 

capacity to perform timely DARP signalling; or b) is engaged in more than one DARP construction 

process.  Both of these qualities are relevant only within the section of the resource space that 

the construction process in question is traversing.  In a large and extensively interconnected 

network, and even in the presence of load balancing, it is improbable that management network 

utilization will be truly uniform in either time or space; it is reasonable to expect that in practice 

there will be peaks and troughs in network utilization in both planes.  Similarly, there will be peaks 

 
32 Within the constraints imposed by the need to weight towards resource re-use; and to maximize 
“disjointness” between redundant bus replicas. 
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and troughs in resource utilization in the traffic network.  The tendency for RESERVE Tokens to 

leave a temporary trail of heavy resource utilization is in itself a cause of such peaks.  A topology 

that tends to direct signalling through a particular node or link, or chain of nodes and links, may 

cause a long-term peak in that vicinity in space.  The designs of both the management network 

and DARP were informed by these issues, as discussed below.  If a bus construction process 

encounters a peak in either or both of these qualities then DARP’s performance, in terms of the 

time taken to construct buses, and/or the ability to construct buses at all, can be expected to 

degrade.  Peaks in management network utilization may cause delays in the forwarding of Tokens, 

or may cause them to be forwarded by nominally less appealing paths.  Peaks in resource usage, 

even temporary peaks caused by the passage of a RESERVE Token, may also cause Tokens to be 

forwarded by less appealing paths.  “Less appealing” generally means “with a higher metric” per 

(3-2), which typically equates to “longer”, i.e. made up of more hops and/or greater end-to-end 

length.  However, although a longer path may be less efficient in the sense that it consumes more 

network resources than a shorter path to the same destination, recall that as a consequence of 

physical layer switching the impact of longer paths on the key real-time qualities of end-to-end 

delay, multicast delivery skew and delivery jitter is trivial.  A path that would be sub-optimal for a 

real-time multicast destination in a store-and-forward network architecture like Ethernet may well 

be perfectly suitable in a Virtual Bus network. 

In the management network, when a node receives a cell that is to be forwarded, the shortest 

path algorithm is used to identify all outbound interfaces that present a path towards a 

destination node, assigns a metric to each, and invalidates unviable interfaces.  As presented in 

(3-2), the path metric for each potentially viable interface is weighted by the current transmission 

load of the interface before a decision is made about which interface to use to forward a cell.  

Heavily loaded network interfaces are less likely to be selected for forwarding, and an interface 

with no spare capacity in its transmit queue will not be considered at all. 

Similarly, under DARP, when a node is determining which interface to use to forward a Token, the 

shortest path algorithm identifies all outbound interfaces that present a potential path towards a 

destination node, that have not been excluded by reception or transmission33 of a RESERVE Token, 

and that per (3-3) through (3-8) have sufficient free matching timeslots to support the virtual bus.  

Metrics are then assigned to each potentially viable interface, as presented in (3-9).  The 

components of the metric are: 

• The shortest-path metric, calculated as per (3-2).  Negative factor.  Promotes using the 

shortest path, and load balancing of management network traffic. 

• Whether the destination is the next hop.  Positive factor. 

• The number of timeslots allocated to the same UBI.  Positive factor.  Promotes re-use for 

multicasting. 

• The number of timeslots allocated to related UBI’s, i.e. that originate from the same SN 

and have the same Type, but different BusID’s.  Negative factor.  Promotes disjoint paths 

for redundant virtual buses. 

• The number of timeslots allocated to other UBI’s.  Negative factor.  Promotes load 

balancing. 

 
33 See section 3.5.2.1.3.  
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• The number of free timeslots.  Positive factor.  Promotes load balancing. 

Note that there is no consideration given to the fact that each full-duplex link is made up of two 

spatially separated simplex signalling channels; from the perspective of (3-9) the two channels are 

separate segments of the space plane.  This is not ideal because it means that DARP makes no 

attempt to prevent two related buses sharing the same physical link, but with different 

directionality. 

The RESERVE Token is forwarded via the interface with the most appealing, i.e. numerically 

greatest, metric.  Any potentially viable interface, even an interface with a very low metric but 

that otherwise satisfies all viability criteria, will be attempted.  This ensures that a RESERVE Token 

will try to tunnel its way through even a congested network using its depth-first search strategy 

and resorting to turning back and seeking an alternate route only when it is absolutely impossible 

to progress.  An unfortunate consequence of redirection being the last resort is that it is possible 

for a construction process to choose to send two or more redundant virtual buses across the same 

link and hence compromise their spatial disjointness, even when there are longer alternate paths 

that could have been taken to retain that quality.  On the other hand, the same set of constraints 

ensures that if a spatially non-disjoint path is the only available option for redundancy then it will 

be accepted. 

If DARP encounters congestion for any reason then it will respond by trying to find a way around 

the blockage, probing each interface in turn in order to advance into new regions of the network 

and/or using REDIRECT Tokens to step back along its path.  As it explores, and particularly as it 

steps backwards due to redirection, previously unviable interfaces may open up if desirable 

resources become available, e.g. if an existing bus has been deconstructed, or because a 

competing construction process has completed.  DARP is free to consider those new paths because 

redirection blocks individual interfaces, not entire nodes.  

Some consideration was given to allowing DARP to wait at intermediate nodes that had resources 

reserved, but not committed, on an otherwise viable interface.  The rationale for doing so was 

that, knowing that the resources are reserved, we also know that they will soon be released in 

part or in whole.  However, the design decision was made that the potential delay was unlikely to 

be conducive to maximally rapid path routing.  Consequently, rather than waiting for the resources 

to be released, DARP temporarily discounts the blocked interface and continues to probe for other 

options. 

In the event that a construction attempt is redirected back to the source node, DARP will try each 

potential interface in turn.  The source node’s behaviour when considering the viability and 

relative appeal of each interface is identical to that of agent nodes: if an interface was temporarily 

blocked by e.g. its use as an agent for another virtual bus that was being reserved, that interface 

may be considered again if the bus that this node is constructing is redirected back to it after the 

other construction process has completed. 

It is of course possible that in spite of the best efforts of DARP there simply may not be a path 

through the network resource space to the destination node at that time due to the construction 

attempt coinciding with one or more peaks in network or resource utilization.  If DARP is unable 

to find a path, it reports that failure upwards to the Redundant Dataflow Model (RDM) detailed in 

section 4.3.  It is outside the scope of this chapter to discuss this point further, but the reader 
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should be aware that nothing prevents RDM from repeatedly asking DARP to attempt to construct 

the requested virtual bus; as noted in section 1.6, “never give up” is a maxim of VB’s fault 

hypothesis.  It may take some time, possibly some tens of seconds in the worst case given a heavily 

congested network34,  but because DARP tries every interface that, at the time of execution, has 

sufficient network capacity and has been identified by NMS as having potential connectivity to the 

DN, it will be able to locate and claim that path eventually. 

3.5.2.1.3 Flaws 

The RESERVE process has a flaw that can arise under certain circumstances and cause potentially 

large, or even exponential, growth in the number of Tokens passed.  The following use-case 

illustrates one such possible circumstance. 

 

Figure 3-36 : Example network for exploring exponential growth in RESERVE process 

N1 is to build a virtual bus to N8.  However, all of the links between N8 and the remainder of the 

network via N5, N6 and N7 are unavailable due to existing resource allocations. 

A full exploration of the sequence of events, e.g. as presented in the formal use-cases in section 

3.5.3, would be quite lengthy, so the events are presented in summary form: a simple list of the 

nodes at which the algorithm is executed.  Whether the execution point is passed by a RESERVE 

or a REDIRECT Token is implied rather than stated.  Each arrow represents the passage of a Token. 

𝑁1 → 𝑁2 → 𝑁5 → 𝑁6 → 𝑁7 → 𝑁4 → 𝑁3 → 𝑁6 → 𝑁3 → 𝑁2 → 𝑁3 → 𝑁4 → 𝑁7 → 𝑁6 → 𝑁3

→ 𝑁2 → 𝑁3 → 𝑁4 → 𝑁7 → 𝑁6 → 𝑁7 → 𝑁4 → 𝑁3 → 𝑁6 → 𝑁5 → 𝑁2 → 𝑁3

→ 𝑁6 → 𝑁5 → 𝑁2 → 𝑁5 → 𝑁6 → 𝑁7 → 𝑁4 → 𝑁3 → 𝑁4 → 𝑁7 → 𝑁6 → 𝑁3

→ 𝑁4 → 𝑁7 → 𝑁6 → 𝑁5 → 𝑁2 → 𝑁5 → 𝑁6 → 𝑁3 → 𝑁6 → 𝑁7 → 𝑁4 → 𝑁3

→ 𝑁2 → 𝑁1 

At this point in the execution, after the transmission of 52 Tokens, the execution point has 

returned to the SN after probing just one of the three network interfaces that join N1 to the 

remainder of the network, at N2.  It is not difficult to show experimentally35 that a total of 148 

Tokens must be transferred in order to probe all three of N1’s connected interfaces.  In contrast, 

 
34 Maximum congestion can be expected to occur during system startup, when many virtual buses are being 
established.  A congestion spike may occur during operation if a network link or node that is being utilized 
by a number of virtual bus instances fails, necessitating their simultaneous repair/reconstruction. 
35 See Experiment 10 – Unreachable Destination Causing Redirection “Storm”. 
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under the best-case scenario given the same topology but with no conflicting resource allocations, 

just three Tokens would be required, e.g. 𝑁1 → 𝑁2 → 𝑁5 → 𝑁8.  More interconnection, e.g. links 

between N2 and N4, and N5 and N7, would likely make the problem worse due to the need to 

repeatedly probe paths. 

The flaw has at least two root causes: the neighbour table records shared by the Network Mapping 

Service do not contain any information about the S/TDMA resource utilization of the links, making 

it impossible for the shortest-path algorithm to eliminate paths to DN’s that would be impossible 

due to lack of S/TDMA resources; and state information about recent RESERVE processes is 

discarded immediately a node is no longer directly involved, i.e. immediately it responds with a 

REDIRECT Token. This allows a RESERVE process to repeatedly enter a non-viable node from 

different interfaces, and hence repeatedly try to probe the outbound interfaces of that node.  If 

either (or both) of these root causes can be addressed, the flaw may be able to be resolved, or at 

least mitigated. 

Expanding the information transferred in link state records presents scalability challenges.  Nodes 

would need to re-publish their neighbour table more often, potentially every time they allocate 

resources to a data flow.  Further, shortest-path calculations would become significantly more 

complex; the set of shortest paths for a 1-wide virtual bus may not be the same as the shortest 

paths for an 𝑛-wide virtual bus.  As 𝑛 grows, the set of possible paths can be expected to shrink. 

Retaining knowledge of recent bus allocation attempts is more practicable.  In order to realize this 

solution, each node would maintain a list of recently attempted RESERVE processes, with each 

record containing the UBI; the destination node; the list of outbound interfaces for which a 

REDIRECT has been sent or received; and a timestamp.  After a modest36 expiration period, the 

RESERVE attempt record could be dropped from the list.  Repeating the above exercise with this 

constraint in place, and assuming no timeouts, the path followed by a complete probe of all three 

connected interfaces of N1 becomes: 

𝑁1 → 𝑁2 → 𝑁5 → 𝑁6 → 𝑁7 → 𝑁4 → 𝑁3 → 𝑁6 → 𝑁3 → 𝑁2 → 𝑁3 → 𝑁4 → 𝑁7 → 𝑁6 → 𝑁3

→ 𝑁6 → 𝑁5 → 𝑁2 → 𝑁1 → 𝑁3 → 𝑁1 → 𝑁4 → 𝑁1 

In addition to the reduced spread of the construction attempt through N2, note that N3 and N4 

both immediately REDIRECT the RESERVE attempt sent directly from N1 because they have 

already sent or received a REDIRECT Token from all of their other connected interfaces. 

In this particular circumstance, a count of 148 Tokens to complete a (failed) RESERVE attempt has 

been reduced to 22 Tokens.  This is still larger than ideal – the longest loop-free path between N1 

and N8 is 7 hops, and identifying a routing algorithm that reliably achieves this would be optimal.  

However, given that a count of 22 Tokens compared to 148 Tokens represents an 85% reduction 

in the number of Tokens and hence distributed processing resource utilization, ad-hoc messaging 

utilization and time taken, it is certainly a significant improvement.  Of course, this solution is not 

“free”: it does delay Token forwarding, create CPU load, and consume RAM, at a scale that is a 

function of the number of virtual buses under construction at any given time.  However, the RAM 

 
36 A timeout in the order of between 1 and 5 seconds should be suitable for most cases.  An alternative 
could be to use a timeout that is a function of the number of nodes and/or links in the network.  These 
quantities can be quickly extracted from the link state database held by NMS, and the time that DARP takes 
to explore a network is likely to be related to them.  In hindsight, this may hold true for other timeout values. 
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required in each node for each record is trivial (perhaps eight bytes, plus list overheads) and is 

required for only a short time given the expected timeout duration; and the forwarding delay and 

CPU load are expected to be very small and similarly transitory. 

The knowledge retention solution would be more scalable than modifying NMS because it would 

reduce network signalling rather than increasing it, and while it would impose more delay, CPU 

and RAM load, it would not require more, or more complex, executions of an already 

computationally expensive algorithm like shortest-path.  The consumption of resources that 

would be incurred by simple searches of well-constructed lists under the knowledge retention 

solution can be expected to be trivial in comparison.  It is also conceptually quite similar to the 

tracking of node and sequence number used by the constrained broadcast solution employed by 

NMS. 

Note that at the time of writing neither of the proposed solutions has been prototyped or 

implemented.  However, it is likely that the knowledge retention solution will be explored in the 

future. 

3.5.2.2 Deconstruction 

Disconnecting a virtual bus branch from an individual DN is referred to as trimming.  Only the 

resources between the trimmed DN and the closest branch point need to be trimmed, or released.  

The first branch point is identified by tracing from the target DN backwards towards the SN, 

checking at each AN for a branch.  Note that the first branch point may be either physical or logical.  

If a node filling both AN and DN roles is trimmed, the trim process takes place entirely within that 

node; the DN role is terminated, while the AN role is unaffected.  It is also possible for the first 

branch point to be the SN if the DN to be trimmed was the only DN on the virtual bus segment 

that is attached to a particular outbound interface on the SN. 

More generally, gracefully trimming a DN from a virtual bus is a four-step process.  In the first step 

the SN advises a DN that it is to be trimmed by sending it a TRIM Message.  In steps two and three 

the DN sends a TRIM Token and receives in return a TRIMMED Token from the first branch point.  

For the final step, the DN sends a TRIMMED Message to the SN to advise that it has been 

successfully removed from the virtual bus.  This relatively complex process mitigates the risk of 

wasting resources that would be caused if an unnecessary trailing segment of a virtual bus was 

not formally deconstructed. 

A TRIM Token travels upstream along the virtual bus's chain of network resources to the first 

branch point (physical or logical), flagging at each AN that the resources are to be trimmed shortly 

but to not release them yet.  When the TRIM Token reaches the branch point, it is reflected back 

to the DN as a TRIMMED Token.  As the TRIMMED Token passes along the chain of intermediate 

AN's, the resources committed at each AN are released.  Just as with the reservation and 

commitment stages of virtual bus construction, bus trimming is a restartable process; if the 

TRIMMED Token is not received by the DN, or the TRIMMED Message is not received by the SN, 

the original Token or Message can be resent, causing the process to restart from wherever it had 

halted. 

Virtual bus release may be initiated by the SN in order to quickly drop an entire bus's resource 

allocation in a single operation.  The SN sends a RELEASE Token out of each of the bus's outbound 

interfaces.  The RELEASE Token instructs involved AN's to forward the Token out of all of their 
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outbound interfaces that are involved with the bus, then drop all of their local resource allocations 

relating to the bus.  DN's simply drop their resource allocation.  The virtual bus release process is 

not restartable because it erases the trail of resource allocations behind it and leaves no trail for 

a restart to follow.  In the event that a RELEASE Token is dropped and one or more orphaned 

segments of a bus are not gracefully deconstructed, DARP falls back to its virtual bus maintenance 

processes to deallocate the orphan segments after a timeout. 

3.5.2.3 Maintenance 

Every resource allocation at an AN or DN is tagged with a timer.  DARP assumes that if a timeout 

occurs then the resource allocation is no longer required and can be released.  In order to reset 

the resource timers in the AN's and DN's that are involved in a virtual bus, an SN must periodically 

send a REFRESH Token down the bus. 

The handling of REFRESH Tokens is dependent on the role of the receiving node in the virtual bus.  

AN's forward REFRESH Tokens downstream out of all of the bus's outbound interfaces, but do not 

reset the resource allocation timer.  AN+DN's reset the virtual bus's resource allocation timers, 

forward the Token downstream out of all of the bus's outbound interfaces, and reflect a 

REFRESHED Token upstream.  DN's reset the virtual bus's resource allocation timer and reflect a 

REFRESHED Token upstream. 

Similarly, the handling of REFRESHED Tokens is dependent on the role of the receiving node in the 

virtual bus.  AN's reset their resource allocation timer and forward the Token upstream.  AN+DN's 

discard the Token, and DN's should never receive them (but will discard them if they do). 

This behaviour is designed to ensure that any unused trailing sections of a virtual bus that are the 

result of a series of AN's that do not terminate with a DN will decay and the network resources 

that they are utilizing unnecessarily will be released.  It also verifies that each DN is still connected 

to the bus. 

In addition to bus refresh processes, DARP is able to identify and respond to physical network 

failures that affect virtual buses as the failures occur.  As discussed in section 3.5.1.2 above, a node 

has complete knowledge of the network resources that it has allocated to each virtual bus, 

including the inbound and outbound interfaces used by the bus and, by inference, the bus's 

directionality.  Additionally, as discussed in section 2.5.1 and section 3.3, a node is aware of the 

condition of its network links to its immediate neighbours.  This combination of factors allows 

involved nodes that are on either side of a network fault that compromises a bus to detect the 

fault and report it both upstream towards the SN using a BREAK Token; and downstream towards 

any DN's by sending one RELEASE Token per involved network interface. 

There is a minor design flaw inherent in the REFRESH signalling implementation: if the 

management network is very busy, it is possible for REFRESH and/or REFRESHED tokens to be 

dropped due to congestion.  If this occurs repeatedly, to the point that a refresh timeout of a bus 

occurs, then some subset of the involved nodes may reasonably decide that the bus has failed and 

deallocate its resources.  In my opinion this is an acceptable risk: it is very unlikely to occur; and, 

in the absence of some other clean-up mechanism, the refresh strategy ensures that orphaned 

resources are released automatically, and reasonably promptly. 
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DARP does not itself attempt to re-route failed virtual buses, but it does report them upwards.  A 

higher network layer may instruct DARP to rebuild a bus or a segment of a bus; refer to the 

Redundant Dataflow Model in section 4.3. 

3.5.2.4 Mapping 

The DARP instance in each node only has knowledge of the resources allocated within that node; 

for example, although it knows the T-plane usage, after the first hop a DARP SN has no knowledge 

of the S-plane usage of any virtual bus that originates from it.  SN's do not even retain knowledge 

about which DN's they are attached to, or via which outbound interfaces. 

In order to retrieve this knowledge from the network, an SN may send a TRACE Token downstream 

via any (or all) of a bus's outbound network interfaces.  The TRACE token is forwarded along the 

resource allocation chain of the virtual bus until it reaches the terminating DN's, replicating at 

each physically branching AN as necessary.  As each AN or DN receives a TRACE Token, it sends an 

ALLOC Message back to the SN that describes the resources that it has allocated to the virtual bus 

specified in the TRACE Token (role, inbound interface, outbound interfaces, reserved/committed).  

The set of ALLOC messages received in response to a TRACE Token describes the graph or map of 

a virtual bus through the network resource space. 

Resource allocations at individual nodes can be requested by sending a QUERY Message to a 

particular AN or DN; the node responds with an ALLOC Message. 

3.5.2.5 Signalling 

As discussed in section 3.5.1.2, DARP utilizes two types of signals: Tokens and Messages.  Detailed 

information about the structure and format of DARP signals can be found in Appendix D.3.5.4. 

3.5.2.5.1 Tokens 

A Token is unicast towards a specific destination.  The SAF message that encapsulates a Token is 

addressed to the next node in the sequence of hops taken by the message; consequently, the SAF 

destination address is equal to the Token destination address only for the final hop.  Tokens are 

parsed by each intermediate node before being forwarded, and their contents, most particularly 

the destination address in the SAF header, are altered by the intermediate nodes. 

Token Type Description 

RESERVE Travels downstream, towards a (prospective) virtual bus DN.  Requests that a receiving node 
reserve resources for a virtual bus connection from an SN towards a DN.  The Token may be 
forwarded by AN’s towards the DN, possibly after manipulation.  REDIRECT Tokens may be 
transformed into RESERVE Tokens under certain circumstances. 

REDIRECT Travels upstream, towards the virtual bus SN.  Advises the receiving node that an existing resource 
reservation (a Switch) for the indicated virtual bus has not been able to reach the destination.  May 
be transformed into a RESERVE Token under certain circumstances.  A REDIRECT Token is created 
by an AN or DN in response to a RESERVE Token. 

REJECT Travels upstream, towards the virtual bus SN.  Advises the receiving node that the indicated DN 
does not require that a particular virtual bus be connected to it, and that any resources reserved 
for the connection of the virtual bus to that DN should be released.  A REJECT Token is created by 
the DN of a virtual bus in response to a RESERVE Token. 
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Token Type Description 

COMMIT Travels upstream, towards the virtual bus SN.  Advises the receiving node that a construction 
process for the Token's virtual bus has been successful, and the resource object's state should be 
upgraded to reflect commitment for a subset of the reserved resources.  A COMMIT Token is 
created by the DN of a virtual bus in response to a RESERVE Token. 

TRIM Travels upstream, towards the virtual bus SN.  Advises the receiving node that an existing resource 
reservation or commitment to the particular destination for the Token's virtual bus is being 
released.  TRIM Tokens must be generated by the trimming DN (normally in response to a TRIM 
Message). 

TRIMMED Travels downstream, towards a virtual bus DN.  Advises the receiving node that an existing resource 
reservation or commitment that delivered a virtual bus to the DN has been released.  A TRIMMED 
Token is generated by a branch point, or the bus SN, in response to a TRIM Token. 

RELEASE Travels downstream, towards the virtual bus DN's.  Advises the receiving node that any existing 
resource reservation or commitment for the Token's virtual bus is to be destroyed (Switches) or 
released (Terminuses) immediately.  RELEASE Tokens may be generated by the SN, or by a node 
immediately downstream of a network fault.  They are replicated as necessary in order to allow 
them to be forwarded along every branch of their bus. 

BREAK Travels upstream, away from a network fault towards the virtual bus SN.  Advises AN's in any trailing 
segment caused by the network fault that their resource reservation or commitment for the 
Token's virtual bus is to be destroyed.  Advises the SN that a break has occurred.  Note that the SN 
does not learn which nodes have been disconnected by the event that triggered the construction 
of the BREAK Token. 

REFRESH Travels downstream, towards the virtual bus DN's.  Advises the receiving node that the timeout for 
any existing Terminus for the Token's virtual bus should be restarted; Switches are not affected.   
REFRESH Tokens must be generated by their bus's SN and are replicated as necessary in order to 
allow them to be forwarded along every branch of their bus. 

REFRESHED Travels upstream, towards the virtual bus SN.  Advises the SN that the Token's originating DN is 
(still) attached to the Token's virtual bus via the interface through which the Token was received.  
Also advises receiving AN's and AN+DN's that the timeout for an existing Switch for the Token's 
virtual bus should be restarted; Terminuses are not affected. 

TRACE Travels downstream, towards the virtual bus DN's.  Represents a request that the receiving node 
send one or more ALLOCATION Message back to the SN for the Token's virtual bus.  TRACE Tokens 
must be generated by their bus's SN and are replicated as necessary in order to allow them to be 
forwarded along every branch of their bus. 

Table 3-17 : DARP Token Types 

3.5.2.5.2 Messages 

A Message is unicast to a particular destination.  It is not parsed or modified by intermediate 

nodes; it is delivered from source to destination using SAF's message forwarding mechanism. 

Message Type Description 

TRIM Transmitted by the virtual bus SN, to a virtual bus DN.  Represents a request that the DN disconnect 
itself from the specified virtual bus and gracefully release the network resources relied upon for 
the connection. 

TRIMMED Transmitted by a virtual bus DN, to the virtual bus SN.  Advises the SN that the transmitting DN is 
not, or is no longer, involved with the specified virtual bus.  Usually sent in response to a TRIM 
Message, a TRIMMED Token or a RELEASE Token. 

QUERY Transmitted by the virtual bus SN to a virtual bus AN or DN.  Represents a request to a node for a 
report on the network resource allocations that it has made for the specified virtual bus.  The 
receiving node responds with one or more ALLOCATION Messages.  If no matching network 
resource allocation exists then an ALLOCATION message indicating "no resources" will still be sent. 



Page 163 

 

Message Type Description 

ALLOCATION Transmitted by a virtual bus AN or DN, to the virtual bus SN.  Represents a report on a network 
resource allocation for the specified virtual bus.  Sent in response to a TRACE Token or QUERY 
Message. 

Table 3-18 : DARP Message Types 

3.5.3 Use-Cases 

The following use-cases illustrate several simple virtual bus construction, deconstruction and 

maintenance operations.  They are intended to be representative, not exhaustive.  The details of 

more complex interactions can be readily inferred from these examples by applying the principle 

of superposition. 

Note that documentation for the use-cases is not thorough.  For example, they do not show the 

signalling to higher layers (events) discussed in Appendix D.3.5. 

3.5.3.1 Virtual Bus Construction 

3.5.3.1.1 Single-Hop Virtual Bus 

N1 is constructing a virtual bus of Type T, Width W and BusID B to N2. 

 

Figure 3-37 : Single-Hop Virtual Bus Construction Topology Diagram 

The following series of events maps to the sequence diagram shown at Figure 3-52 on page 173. 

1. N1 creates Origin DORG0: { Type = T, BusID = B, OutIFs = 0b0000, Slots = 0, State = IDLE }. 

2. N2 creates Terminus DT0: { Src = 1, BusID = 0, Slots = 0, InIF = -1, State = IDLE }. 

3. N1 updates Origin DORG0: { Dest = 2, OutIFs = 0b0001, Slots = 0x3ffffffffffff, State = 

RESERVING }. 

4. N1 sends a RESERVE Token to N2 via IF0: { Src = 1, Dest = 2, Type = T, BusID = B, MinWidth 

= W, Slots = 0x3ffffffffffff }. 

5. N2 updates Terminus DT0: { BusID = B, Slots = S where n(S) = W, InIF = 1, State = 

COMMITTED }. 

6. N2 sends a COMMIT Token to N1 via IF1: { Src = 2, Dest = 1, Slots = S, Type = T, BusID = B 

}. 

7. N1 updates Origin DORG0: { Dest = 0, Slots = S, State = COMMITTED }. 

3.5.3.1.2 Two-Hop Virtual Bus 

N1 is constructing a virtual bus of Type T, Width W and BusID B to N3, and co-opting N2's resources 

in the process. 

 

Figure 3-38 : Two-Hop Virtual Bus Construction Topology Diagram 
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The following series of events maps to the sequence diagram shown at Figure 3-53 on page 174. 

1. N1 creates Origin DORG0: { Type = T, BusID = B, OutIFs = 0b0000, Slots = 0, State = IDLE }. 

2. N3 creates Terminus DT0: { Src = 1, Type = T, BusID = 0, Slots = 0, InIF = -1, State = IDLE }. 

3. N1 updates Origin DORG0: { Dest = 3, OutIFs = 0b0001, Slots = 0x3ffffffffffff, State = 

RESERVING }. 

4. N1 sends a RESERVE Token to N2 via IF0: { Src = 1, Dest = 3, Type = T, BusID = B, MinWidth 

= W, Slots = 0x3ffffffffffff }. 

5. N2 creates Switch DS0: { Src = 1, Type = T, BusID = B, Slots = 0, InIF = 1, OutIFs = 0b0000, 

IFMask = 0b0010, State[3..0] = IDLE }. 

6. N2 updates Switch DS0: { Slots = 0x3ffffffffffff, OutIFs = 0b0001, State[0] = RESERVING }. 

7. N2 forwards the RESERVE Token to N3 via IF0. 

8. N3 updates Terminus DT0: { BusID = B, Slots = S where n(S) = W, InIF = 1, State = 

COMMITTED }. 

9. N3 sends a COMMIT Token to N2 via IF1: { Src = 2, Dest = 1, Type = T, BusID = B, Slots = S 

}. 

10. N2 updates Switch DS0: { Slots = S, State[1] = COMMITTED }. 

11. N2 forwards the COMMIT Token to N1 via IF1. 

12. N1 updates Origin DORG0: { Dest = 0, Slots = S, State = COMMITTED }. 

3.5.3.1.3 Multi-Drop Virtual Bus 

N1 is constructing a virtual bus of Type T, Width W and BusID B to N3, then extending the bus by 

connecting it to N4.  Steps 1 through 12 of the construction process are identical to section 

3.5.3.1.2 above. 

 

Figure 3-39 : Multidrop Virtual Bus Construction Topology Diagram 

The following series of events maps to the sequence diagram shown at Figure 3-54 on page 174. 

13. N4 creates Terminus DT1: { Src = 1, BusID = 0, Slots = 0, InIF = -1, State = IDLE }. 

14. N2 updates Origin DORG0: { Addr = 4, State = RESERVING }. 

15. N1 sends a RESERVE Token to N2 via IF0: { Src = 1, Dest = 4, Type = T, BusID = B, MinWidth 

= n(S), Slots = S }. 

16. N2 forwards the RESERVE Token to N3 via IF0. 

17. N3 creates Switch DS1 with { Src = 1, Type = T, BusID = B, Slots = 0, InIF = 1, OutIFs = 

0b0000, IFMask = 0b0010, State[3..0] = IDLE }. 

18. N3 updates Switch DS1: { Slots = S, OutIFs = 0b0001, State[0] = RESERVING }. 

19. N3 forwards the RESERVE Token to N4 via IF0. 

20. N4 updates Terminus DT1: { BusID = B, Slots = S, State = COMMITTED }. 

21. N4 sends a COMMIT Token to N3 via IF1: { Src = 4, Dest = 1, Type = T, BusID = B, Slots = S 

}. 

22. N3 updates Switch DS1: { State[0] = COMMITTED }. 

23. N3 forwards the COMMIT Token to N2 via IF1. 
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24. N2 forwards the COMMIT Token to N1 via IF1. 

25. N1 updates Origin DORG0: { Dest = 0 }. 

3.5.3.1.4 Branched Virtual Bus 

N1 has already constructed a virtual bus of Type T, Width W and BusID B to N3.  It is going to 

extend the bus by connecting it to N4, which requires creation of a branch point at N2.  At the 

time the branching process begins, the bus is in an identical state to the end state shown for 

section 3.5.3.1.2 above. 

  

Figure 3-40 : Branched Virtual Bus Construction Topology Diagram 

The following series of events maps to the sequence diagram shown at Figure 3-55 on page 175. 

13. N4 creates Terminus DT1: { Src = 1, BusID = 0, Slots = 0, InIF = -1, State = IDLE }. 

14. N1 updates Origin DORG0: { Addr = 4, State = RESERVING }. 

15. N1 sends a RESERVE Token to N2 via IF0: { Src = 1, Dest = 4, Type = T, BusID = B, MinWidth 

= n(S), Slots = S }. 

16. N2 updates Switch DS0: { OutIFs = 0b0101, State[2] = RESERVING }. 

17. N2 forwards the RESERVE Token to N4 via IF2. 

18. N4 updates Terminus DT1: { BusID = B, Slots = S, State = COMMITTED }. 

19. N4 sends a COMMIT Token to N2 via IF1: { Src = 4, Dest = 1, Type = T, BusID = B, Slots = S 

}. 

20. N2 updates Switch DS0: { State[2] = COMMITTED }. 

21. N2 forwards the COMMIT Token to N1 via IF1. 

22. N1 updates Origin DORG0: { Dest = 0 }. 

3.5.3.1.5 Source-Branching Virtual Bus 

N1 is constructing a 1-hop virtual bus of Type T, Width W and BusID B to N1, then extending the 

bus by also connecting it to N3.  This requires the creation of a branch point at N2, i.e. the bus is 

source-branched. 

 

Figure 3-41 : Source-Branched Virtual Bus Construction Topology Diagram 

The following series of events maps to the sequence diagram shown at Figure 3-56 on page 175. 
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1. N2 creates Origin DORG0: { Type = T, BusID = B, OutIFs = 0b0000, Slots = 0, State = IDLE }. 

2. N1 creates Terminus DT0: { Src = 2, BusID = 0, Slots = 0, InIF = -1, State = IDLE }. 

3. N2 updates Origin DORG0: { Dest = 1, OutIFs = 0b0010, Slots = 0x3ffffffffffff, State = 

RESERVING }. 

4. N2 sends a RESERVE Token to N1 via IF1: { Src = 2, Dest = 1, Type = T, BusID = B, MinWidth 

= W, Slots = 0x3ffffffffffff }. 

5. N1 updates Terminus DT0: { BusID = B, Slots = S where n(S) = W, InIF = 0, State = 

COMMITTED }. 

6. N1 sends a COMMIT Token to N2 via IF0: { Src = 1, Dest = 2, Slots = S, Type = T, BusID = B 

}. 

7. N2 updates Origin DORG0: { Dest = 0, Slots = S, State = COMMITTED }. 

8. N3 creates Terminus DT1: { Src = 2, BusID = 0, Slots = 0, InIF = -1, State = IDLE }. 

9. N2 updates Origin DORG0: { Dest = 3, OutIFs = 0b0011, State = RESERVING }. 

10. N2 sends a RESERVE Token to N3 via IF0: { Src = 2, Dest = 3, Type = T, BusID = B, MinWidth 

= n(S), Slots = S }. 

11. N3 updates Terminus DT1: { BusID = B, Slots = S, InIF = 1, State = COMMITTED }. 

12. N3 sends a COMMIT Token to N2 via IF1: { Src = 3, Dest = 2, Slots = S, Type = T, BusID = B 

}. 

13. N2 updates Origin DORG0: { Dest = 0, Slots = S, State = COMMITTED }. 

3.5.3.1.6 Virtual Bus Redirection 

N1 is constructing a virtual bus of Type T, Width W and BusID B to N4.  In the first instance, due to 

the lower index of the outbound interface from N2 to N3 compared to N2 to N5, N2 attempts to 

send the construction process through N3.  All of N3's outbound timeslots on IF0 are already 

allocated to other virtual buses, so N3 redirects the construction process back to N2.  N2 then 

attempts to send the construction process through N5, which is successful. 

 

Figure 3-42 : Virtual Bus Construction Redirection Topology Diagram 

The following series of events maps to the sequence diagram shown at Figure 3-57 on page 176. 

1. N1 creates Origin DORG0: { Type = T, BusID = B, OutIFs = 0b0000, Slots = 0, State = IDLE }. 

2. N4 creates Terminus DT0: { Src = 1, Type = T, BusID = 0, Slots = 0, InIF = -1, State = IDLE }. 

3. N1 updates Origin DORG0: { Dest = 4, OutIFs = 0b0001, Slots = 0x3ffffffffffff, State = 

RESERVING, }. 

4. N1 sends a RESERVE Token to N2 via IF0: { Src = 1, Dest = 4, Type = T, BusID = B, MinWidth 

= W, Slots = 0x3ffffffffffff }. 
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5. N2 creates Switch DS0: { Src = 1, Type = T, BusID = B, Slots = 0, InIF = 1, OutIFs = 0b0000, 

IFMask = 0b0010, State[3..0] = IDLE }. 

6. N2 updates Switch DS0: { Slots = 0x3ffffffffffff, OutIFs = 0b0001, State[0] = RESERVING }. 

7. N2 forwards the RESERVE Token to N3 via IF0. 

8. N3 is unable to offer the RESERVE process any resources, so it does not create a Switch.  

Instead, it transforms the RESERVE Token into a REDIRECT Token and sends it to N2 via 

IF1: { Src = 1, Dest = 4, Type = T, BusID = B }. 

9. N2 updates Switch DS0: { OutIFs = 0b0000, State[0] = IDLE, IFMask = 0b00011 }. 

10. N2 identifies a possible path to N4 via IF2, so it updates DS0: { OutIFs = 0b0100, State[2] = 

RESERVING }. 

11. N2 transforms the REDIRECT Token (back) into a RESERVE Token and forwards it to N5 via 

IF2: { Src = 1, Dest = 4, Type = T, BusID = B, MinWidth = W, Slots = 0x3ffffffffffff }. 

12. N5 creates Switch DS1 with { Src = 1, Type = T, BusID = B, Slots = 0, InIF = 1, OutIFs = 

0b0000, IFMask = 0b0001, State[3..0] = IDLE }. 

13. N5 updates Switch DS1: { Slots = 0x3ffffffffffff, OutIFs = 0b0010, State[1] = RESERVING }. 

14. N5 forwards the RESERVE Token to N4 via IF1. 

15. N4 updates Terminus DT1: { BusID = B, Slots = S where n(S) = W, InIF = 0, State = 

COMMITTED }. 

16. N4 sends a COMMIT Token to N5 via IF0: { Src = 4, Dest = 1, Type = T, BusID = B, Slots = S 

}. 

17. N5 updates Switch DS1: { Slots = S, State[1] = COMMITTED }. 

18. N5 forwards the COMMIT Token to N2 via IF0. 

19. N2 updates Switch DS0: { Slots = S, State[2] = COMMITTED }. 

20. N2 forwards the COMMIT Token to N1 via IF1. 

21. N1 updates Origin DORG0: { Dest = 0, Slots = S, State = COMMITED }. 

3.5.3.1.7 Virtual Bus Rejection 

N1 is constructing a virtual bus of Type T, Width W and BusID B to N3, and co-opting N2's resources 

in the process.  N3 is not prepared to accept the incoming virtual bus, so REJECTs it. 

 

Figure 3-43 : Virtual Bus Construction Rejection Topology Diagram 

The following series of events maps to the sequence diagram shown at Figure 3-58 on page 177. 

1. N1 creates Origin DORG0: { Type = T, BusID = B, OutIFs = 0b0000, Slots = 0, State = IDLE }. 

2. N1 updates DORG0: { OutIFs = 0b0001, Slots = 0x3ffffffffffff, State = RESERVING }. 

3. N1 sends a RESERVE Token to N2 via IF0: { Src = 1, Dest = 3, Type = T, BusID = B, MinWidth 

= W, Slots = 0x3ffffffffffff }. 

4. N2 creates Switch DS0: { SrcAddr = 1, Type = T, BusID = B, Slots = 0, InIF = 1, OutIFs = 

0b0000, IFMask = 0b0010, State[3..0] = IDLE }. 

5. N2 updates Switch DS0: { Slots = 0x3ffffffffffff, OutIFs = 0b0001, State[0] = RESERVING }. 

6. N2 forwards the RESERVE Token to N3 via IF0. 
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7. N3 has no matching Terminus object, so it cannot accept the incoming virtual bus from 

N1.  It sends a REJECT Token to N2 via IF1: { Src = 3, Dest = 1, Type = T, BusID = B }. 

8. N2 forwards the REJECT Token to N1 via IF0. 

9. N2 updates Switch DS0: { Slots = 0, OutIFs = 0b0000, State[0] = IDLE }.  N2 then destroys 

Switch DS0 because it is no longer required (all outbound Interfaces are IDLE). 

10. N1 updates DORG0: { OutIFs = 0b0000, Slots = 0, State = IDLE }. 

3.5.3.1.8 Virtual Bus Rejection through a Branch 

N1 has already constructed a virtual bus of Type T, Width W, BusID B using Timeslots S to N3, using 

N2 to host a Switch to support the bus.  N1 attempts to extend the bus to N4 by adding a branch 

to the Switch in N2.  However, N4 is not prepared to accept the incoming virtual bus, so REJECTs 

it. 

 

Figure 3-44 : Virtual Bus Construction Rejection through a Branch Topology Diagram 

The following series of events maps to the sequence diagram shown at Figure 3-59 on page 177. 

1. N1 updates Origin DORG0: { State = RESERVING }. 

2. N1 sends a RESERVE Token to N2 via IF0: { Src = 1, Dest = 4, Type = T, BusID = B, MinWidth 

= W, Slots = S }. 

3. N2 updates Switch DS0: { OutIFs = 0b0101, State[2] = RESERVING }. 

4. N2 forwards the RESERVE Token to N4 via IF2. 

5. N4 has no matching Terminus object, so it cannot accept the incoming virtual bus from 

N1.  It sends a REJECT Token to N2 via IF1: { Src = 4, Dest = 1, Type = T, BusID = B, DNT = 0 

}. 

6. N2 updates Switch DS0: { OutIFs = 0b0001, State[2] = IDLE }. 

7. N2 updates the REJECT Token: { DNT = 1 }, because N2 was a branch point, then forwards 

it to N1 via IF0. 

8. N1 updates DORG0: { State = IDLE }. 

3.5.3.2 Virtual Bus Deconstruction 

3.5.3.2.1 Single-Hop Virtual Bus 

Node N1 hosts an Origin, DORG0, that is the source for a virtual bus of Type T, Width W and BusID 

B.  Node N2 hosts a Terminus, DT0, that is connected to the bus.  N1 is trimming Terminus DT0 

from the bus. 
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Figure 3-45 : Single-Hop Virtual Bus Deconstruction Topology Diagram 

The following series of events maps to the sequence diagram shown at Figure 3-60 on page 178. 

1. N1 updates Origin DORG0: { Addr = 2, State = TRIMMING }. 

2. N1 sends a TRIM Message to N2: { Src = 1, Dest = 2, Type = T, BusID = B }. 

3. N2 updates Terminus DT0: { State = TRIMMING }. 

4. N2 sends a TRIM Token to N1 via IF1: { Src = 2, Dest = 1, Type = T, BusID = B }. 

5. N1 sends a TRIMMED Token to N2 via IF0. 

6. N1 updates Origin DORG0: { Dest = 0, OutIFs = 0b0000, Slots = 0, State = IDLE }. 

7. N2 updates Terminus DT0: { InIF = -1, Slots = 0, BusID = 0, State = IDLE }. 

8. N2 sends a TRIMMED Message to N1: { Src = 2, Dest = 1, Type = T, BusID = B }. 

3.5.3.2.2 Two-Hop Virtual Bus 

Node N1 hosts an Origin, DORG0, that is the source for a virtual bus of Type T, Width W and BusID 

B.  Node N2 hosts a Switch for the bus, DS0.  Node N3 hosts a Terminus, DT0, that is connected to 

the bus.  N1 is trimming Terminus DT0 from the bus. 

 

Figure 3-46 : Two-Hop Virtual Bus Deconstruction Topology Diagram 

The following series of events maps to the sequence diagram shown at Figure 3-61 on page 178. 

1. N1 updates Origin DORG0: { Addr = 3, State = TRIMMING }. 

2. N1 sends a TRIM Message to N3: { Src = 1, Dest = 3, Type = T, BusID = B }. 

3. N3 updates Terminus DT0: { State = TRIMMING }. 

4. N3 sends a TRIM Token to N2 via IF1: { Src = 3, Dest = 1, Type = T, BusID = B }. 

5. N2 updates Switch DS0: { State[0] = TRIMMING }. 

6. N2 forwards the TRIM Token to N1 via IF1. 

7. N1 sends a TRIMMED Token to N2 via IF0: { Src = 1, Dest = 3, Type = T, BusID = B }. 

8. N1 updates Origin DORG0: { Dest = 0, OutIFs = 0b0000, Slots = 0, State = IDLE }. 

9. N2 forwards the TRIMMED Token to N3 via IF0. 

10. N2 updates Switch DS0: { OutIFs = 0b0000, Slots = 0, State[0] = IDLE }.  N2 then destroys 

Switch DS0 because it is no longer required (all outbound Interfaces are IDLE). 

11. N3 updates Terminus DT0: { InIF = -1, Slots = 0, BusID = 0, State = IDLE }. 

12. N3 sends a TRIMMED Message to N1: { Src = 3, Dest = 1, Type = T, BusID = B }. 

3.5.3.2.3 Multi-Drop Virtual Bus End Trim 

Node N1 hosts an Origin, DORG0, that is the source for a virtual bus of Type T, Width W and BusID 

B.  Node N2 hosts a Switch for the bus, DS0; and a Terminus, DT0, that is connected to the bus.  
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Node N3 hosts a Switch for the bus, DS1.  Node N4 hosts a Terminus, DT1, that is connected to 

the bus.  N1 is trimming Terminus DT1 from the bus. 

 

Figure 3-47 : Multi-Drop Virtual Bus End Trim Deconstruction Topology Diagram 

The following series of events maps to the sequence diagram shown at Figure 3-62 on page 179. 

1. N1 updates Origin DORG0: { Addr = 4, State = TRIMMING }. 

2. N1 sends a TRIM Message to N4: { Src = 1, Dest = 4, Type = T, BusID = B }. 

3. N4 updates Terminus DT0: { State = TRIMMING }. 

4. N4 sends a TRIM Token to N3 via IF1: { Src = 4, Dest = 1, Type = T, BusID = B }. 

5. N3 updates Switch DS0: { State[0] = TRIMMING }. 

6. N3 forwards the TRIM Token to N2 via IF1. 

7. N2 is a virtual branch point for the bus as it hosts both a Switch and a Terminus.  It sends 

a TRIMMED Token to N3 via IF0: { Src = 1, Dest = 4, Type = T, BusID = B }. 

8. N2 updates Switch DS0: { OutIFs = 0b0000, Slots = 0, State[0] = IDLE }.  N2 then destroys 

Switch DS0 because it is no longer required (all outbound Interfaces are IDLE). 

9. N3 forwards the TRIMMED Token to N4 via IF0. 

10. N3 updates Switch DS1: { OutIFs = 0b0000, Slots = 0, State[0] = IDLE }.  N3 then destroys 

Switch DS1 because it is no longer required (all outbound Interfaces are IDLE). 

11. N4 updates Terminus DT0: { InIF = -1, Slots = 0, BusID = 0, State = IDLE }. 

12. N4 sends a TRIMMED Message to N1: { Src = 4, Dest = 1, Type = T, BusID = B }. 

13. N1 updates Origin DORG0: { Dest = 0, OutIFs = 0b0000, Slots = 0, State = IDLE }. 

3.5.3.2.4 Branched Virtual Bus Release 

Node N1 hosts an Origin, DORG0, that is the source for a virtual bus of Type T, Width W and BusID 

B.  Node N2 hosts a Switch for the bus, DS0.  Node N3 hosts a Terminus, DT0, that is connected to 

the bus.  Node N4 hosts a Terminus, DT1, that is connected to the bus.  N1 is releasing all of the 

network resources allocated to the bus. 

 

Figure 3-48 : Branched Virtual Bus Release Deconstruction Topology Diagram 

The following series of events maps to the sequence diagram shown at Figure 3-63 on page 179. 

1. N1 sends a RELEASE Token to N2 via IF0: { Src = 1, Type = T, BusID = B }. 
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2. N1 updates Origin DORG0: { Addr = 0, OutIFs = 0b0000, Slots = 0, State = IDLE }. 

3. N2 forwards the RELEASE Token to N3 via IF0. 

4. N2 forwards the RELEASE Token to N4 via IF2. 

5. N2 destroys Switch DS0. 

6. N3 updates Terminus DT0: { InIF = -1, Slots = 0, BusID = 0, State = IDLE }. 

7. N4 updates Terminus DT1: { InIF = -1, Slots = 0, BusID = 0, State = IDLE }. 

3.5.3.3 Virtual Bus Maintenance 

3.5.3.3.1 Branched Virtual Bus Refresh 

Node N1 hosts an Origin, DORG0, that is the source for a virtual bus of Type T, Width W and BusID 

B.  Node N2 hosts a Switch for the bus, DS0.  Node N3 hosts a Terminus, DT0, that is connected to 

the bus.  Node N4 hosts a Terminus, DT1, that is connected to the bus. 

 

Figure 3-49 : Branched Virtual Bus Refresh Maintenance Topology Diagram 

The following series of events maps to the sequence diagram shown at Figure 3-64 on page 180. 

1. N1 sends a REFRESH Token to N2 via IF0: { Src = 1, Type = T, BusID = B }. 

2. N2 forwards the REFRESH Token to N3 via IF0. 

3. N2 forwards the REFRESH Token to N4 via IF2. 

4. N3 updates Terminus DT0: { Reset refresh timer }. 

5. N4 updates Terminus DT1: { Reset refresh timer }. 

6. N3 sends a REFRESHED Token to N2 via IF1: { Src = 3, Dest = 1, Type = T, BusID = B }. 

7. N2 forwards the REFRESHED Token to N1 via IF0. 

8. N2 updates Switch DS0: { Reset refresh timer }. 

9. N4 sends a REFRESHED Token to N2 via IF1: { Src = 4, Dest = 1, Type = T, BusID = B }. 

10. N2 forwards the REFRESHED Token to N1 via IF0. 

11. N2 updates Switch DS0: { Reset refresh timer }. 

3.5.3.3.2 Single-Hop Break Management 

Node N1 hosts an Origin, DORG0, that is the source for a virtual bus of Type T, Width W and BusID 

B.  Node N2 hosts a Terminus, DT0, that is connected to the bus.  N1 is trimming Terminus DT0 

from the bus.  The link between N1 and N2 fails. 
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Figure 3-50 : Single-Hop Virtual Bus Break Maintenance Topology Diagram 

The following series of events maps to the sequence diagram shown at Figure 3-65 on page 180. 

1. N1 updates Origin DORG0: { Addr = 0, OutIFs = 0b0000, Slots = 0, State = IDLE }. 

2. N2 updates Terminus DT0: { InIF = -1, Slots = 0, State = IDLE }. 

3. N2 attempts to send a TRIMMED Message to N1, but fails because there is no physical 

path. 

3.5.3.3.3 Multi-Hop Break Management 

Node N1 hosts an Origin, DORG0, that is the source for a virtual bus of Type T, Width W and BusID 

B.  Node N2 hosts a Switch for the bus, DS0; and a Terminus, DT0, that is connected to the bus.  

Node N3 hosts a Switch for the bus, DS1.  Node N4 hosts a Terminus, DT1, that is connected to 

the bus.    The link between N3 and N4 fails. 

 

Figure 3-51 : Multi-Hop Virtual Bus Break Maintenance Topology Diagram 

The following series of events maps to the sequence diagram shown at Figure 3-66 on page 180. 

1. N4 updates Terminus DT1: { InIF = -1, Slots = 0, State = IDLE }. 

2. N4 attempts to send a TRIMMED Message to N1, but fails. 

3. N3 updates Switch DS1: { OutIFs = 0b0000, Slots = 0, State[0] = IDLE }. 

4. N3 destroys Switch DS1 because it is no longer required (all outbound Interfaces are IDLE). 

5. N3 sends a BREAK Token upstream: { Src = 3, Dest = 1, Type = T, BusID = B, DNT = 0 }. 

6. N2 updates Switch DS0: { OutIFs = 0b0000, Slots = 0, State[0] = IDLE }. 

7. N2 destroys Switch DS0 because it is no longer required (all outbound Interfaces are IDLE). 

8. N2 updates the BREAK Token: { DNT = 1 }, because it is an AN+DN branch point, then 

forwards it to N1. 

 

IF0 
N1 N2 

IF1 

IF0 
N1 N2 

IF1 
IF0 

N3 
IF1 

IF0 
N4 

IF1 
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3.5.3.4 Sequence Diagrams 

 

 

Figure 3-52 : Single-Hop Virtual Bus Construction Sequence Diagram 

 

N1 : DARP.Node

N1.DORG0 : Origin

N2 : DARP.Node

N2.DT0 : Terminus1: Create 2: Create

3: Reserving

5: Committed

6: Tok.COMMIT

4: Tok.RESERVE

7: Committed

Reservation 
to N2 begins

VBus to N2 
complete
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Figure 3-53 : Two-Hop Virtual Bus Construction Sequence Diagram 

 

 

Figure 3-54 : Multidrop Virtual Bus Construction Sequence Diagram 

N1 : DARP.Node

N1.DORG0 : Origin

N2 : DARP.Node

N2.DS0 : Switch

1: Create

5: Create

3: Reserving

8: Committed

9: Tok.COMMIT

4: Tok.RESERVE

12: Committed

N3 : DARP.Node

N3.DT0 : Terminus2: Create

6: Reserving

7: Tok.RESERVE

10: Committed11: Tok.COMMIT

Reservation 
to N3 begins

VBus to N3 
complete

N1 : DARP.Node N1.DORG0 : Origin N2 : DARP.Node N2.DS0 : Switch N4 : DARP.Node

N4.DT1 : Terminus13: CreateReservation 
to N4 begins

VBus to N4 
complete

N3.DT0 : TerminusN3 : DARP.Node

N3.DS1 : Switch

14: Reserving

15: Tok.RESERVE 16: Tok.RESERVE
17: Create

18: Reserving

19: Tok.RESERVE 20: Committed
21: Tok.COMMIT

22: Committed23: Tok.COMMIT24: Tok.COMMIT

25: Committed
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Figure 3-55 : Branched Virtual Bus Construction Sequence Diagram 

 

 

Figure 3-56 : Source-Branching Virtual Bus Construction Sequence Diagram 

 

N1 : DARP.Node N1.DORG0 : Origin N2 : DARP.Node N2.DS0 : Switch

2: Reserving

6: Committed

7: Tok.COMMIT

3: Tok.RESERVE

10: Committed

N4 : DARP.Node

N4.DT1 : Terminus1: Create

4: Reserving

5: Tok.RESERVE

8: Committed9: Tok.COMMIT

Branch to N4 
begins

Branch to N4 
is complete

N1 : DARP.Node

N2.DORG0 : Origin

N2 : DARP.Node N3 : DARP.Node

N3.DT1 : Terminus

N1.DT0 : Terminus 1: Create

4: Tok.RESERVE
3: Reserving

5: Committed

6: Tok.COMMIT 7: Committed

9: Reserving

10: Tok.RESERVE 11: Committed

12: Tok.COMMIT

13: Committed

2: Create

8: Create
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Figure 3-57 : Virtual Bus Construction Redirection Sequence Diagram 

 

N1 : DARP.Node

N2.DS0 : Switch

N2 : DARP.Node N3 : DARP.Node

N4.DT0 : Terminus
N1.DORG0 : Origin

21: Committed

Reservation 
to N4 begins

VBus to N4 is 
complete

N5 : DARP.Node N5 : DARP.Node

N5.DS1 : Switch

1: Create

3: Reserving

4: Tok.RESERVE 5: Create

6: Reserving

7: Tok.RESERVE

8: Tok.REDIRECT

9: None

10: Reserving

11: Tok.RESERVE 12: Create

13: Reserving

14: Tok.RESERVE

16: Tok.COMMIT

15: Committed

17: Committed
18: Tok.COMMIT

19: Committed
20: Tok.COMMIT

Reserve 
via N3

Reserve 
via N5

N3 has no 
free resources 
so REDIRECT's

2: Create
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Figure 3-58 : Virtual Bus Construction Rejection Sequence Diagram 

 

 

Figure 3-59 : Virtual Bus Construction Rejection through a Branch Sequence Diagram 

N1 : DARP.Node

N1.DORG0 : Origin

N2 : DARP.Node

N2.DS0 : Switch

1: Create

4: Create

2: Reserving

7: Tok.REJECT(DNT=0)

3: Tok.RESERVE

10: Idle

N3 : DARP.Node

5: Reserving

6: Tok.RESERVE

8: Destroy
9: Tok.REJECT(DNT=0)

Reservation 
to N3 begins

VBus to N3 
failed

N3 has no 
matching 
Terminus so it 
rejects the 
VBus from N1

N1 : DARP.Node N1.DORG0 : Origin N2 : DARP.Node N2.DS0 : Switch

1: Reserving

5: Tok.REJECT(DNT=0)

2: Tok.RESERVE

8: Idle

N4 : DARP.Node

3: Reserving

4: Tok.RESERVE

7: Tok.REJECT(DNT=1)

Reservation 
to N4 begins

VBus to N4 
failed

N4 is not a 
branch point 
so Tok.REJECT 
is sent with 
DNT clear

N2 is (was) a 
branch point so 
Tok.REJECT is 
forwarded with 
DNT set

6: None
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Figure 3-60 : Single-Hop Virtual Bus Deconstruction Sequence Diagram 

 

 

Figure 3-61 : Two-Hop Virtual Bus Deconstruction Sequence Diagram 

 

N1 : DARP.Node N1.DORG0 : Origin N2 : DARP.Node N2.DT0 : Terminus

Deconstruction 
of VBus to N2 
begins

1: Trimming

3: Trimming

4: Tok.TRIM

2: Msg.TRIM

5: Tok.TRIMMED

6: Idle 7: Idle

8: Msg.TRIMMED
VBus to N2 
deconstructed

N1 : DARP.Node N1.DORG0 : Origin N2 : DARP.Node N2.DS0 : Switch N3 : DARP.Node N3.DT0 : Terminus

1: Trimming

2: Msg.TRIM 3: Trimming

4: Tok.TRIM

5: Trimming
6: Tok.TRIM

7: Tok.TRIMMED

8: Idle 9: Tok.TRIMMED

10: Destroy 11: Idle

12: Msg.TRIMMED

Deconstruction 
of VBus to N3 
begins

VBus to N3 
deconstructed
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Figure 3-62 : Multi-Drop Virtual Bus End Trim Deconstruction Sequence Diagram 

 

 

Figure 3-63 : Branched Virtual Bus Release Deconstruction Sequence Diagram 

 

N1 : DARP.Node N1.DORG0 : Origin N2 : DARP.Node N2.DS0 : Switch N4 : DARP.Node N4.DT1 : TerminusN2.DT0 : Terminus N3 : DARP.Node N3.DS1 : Switch

1: Trimming

2: Msg.TRIM

Deconstruction 
of VBus to N4 
begins

VBus to N4 
deconstructed

3: Trimming4: Tok.TRIM

5: Trimming6: Tok.TRIM

7: Tok.TRIMMED

8: Destroy 9: Tok.TRIMMED

10: Destroy

12: Msg.TRIMMED
11: Idle

13: Idle

N3 : DARP.NodeN1 : DARP.Node N1.DORG0 : Origin N2 : DARP.Node N2.DS0 : Switch N4 : DARP.Node N4.DT1 : TerminusN3.DT0 : Terminus

1: Tok.RELEASE

2: Idle
3: Tok.RELEASE

4: Tok.RELEASE

5: Destroy
6: Idle

7: Idle
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Figure 3-64 : Branched Virtual Bus Refresh Maintenance Sequence Diagram 

 

 

Figure 3-65 : Single-Hop Virtual Bus Break Maintenance Sequence Diagram 

 

 

Figure 3-66 : Multi-Hop Virtual Bus Break Maintenance Sequence Diagram 

N1 : DARP.Node N1.DORG0 : Origin N2 : DARP.Node N2.DS0 : Switch N4 : DARP.Node N4.DT1 : TerminusN3.DT0 : TerminusN3 : DARP.Node

1: Tok.REFRESH 2: Tok.REFRESH

3: Tok.REFRESH

4: Refresh5: Tok.REFRESHED 6: Refresh

8: Refresh

7: Tok.REFRESHED

9: Tok.REFRESHED

11: Refresh

10: Tok.REFRESHED

N1 : DARP.Node N1.DORG0 : Origin N2 : DARP.Node N2.DT0 : Terminus

1: Idle

2: Idle
3: Msg.TRIMMED

N1 : DARP.Node N1.DORG0 : Origin N2 : DARP.Node N2.DS0 : Switch N4 : DARP.Node N4.DT1 : TerminusN2.DT0 : Terminus N3 : DARP.Node N3.DS1 : Switch

1: Idle
2: Msg.TRIMMED

3: Idle

4: Destroy

5: Tok.BREAK (DNT=0)

6: Idle

7: Destroy

8: Tok.BREAK (DNT=1)
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3.5.4 Experimentation 

3.5.4.1 Introduction 

3.5.4.1.1 Aim 

The following series of experiments is designed to demonstrate that DARP supports self-forming and 

self-healing of real-time signalling paths by: 

• Gracefully handling construction, deconstruction and maintenance of virtual buses. 

• Supports multicasting by enabling virtual buses to be connected to multiple destinations by 

physical and/or logical branching. 

Experiments 1 through 6 experimentally replicate several of the simple DARP use-case analyses 

presented in section 3.5.3.  Experiments 7 through 10 explore more complex and challenging use-

cases that were not analysed in section 3.5.3, but that are pertinent to understanding how DARP 

responds to situations that are likely to occur in practice. 

3.5.4.1.2 Sources of Error 

The microsecond resolution timestamp of each event is given, generally in the third column of the 

message logs.  This timestamp is not perfectly accurate for a variety of reasons, not least the 

limitations of a preemptable RTOS, but it is approximately consistent across all nodes (to within a few 

ppm) as it is synthesized from a) the network time as agreed by the network time synchronization 

mechanism (10ms resolution) and b) the host MCU’s hardware tick counter (microsecond resolution). 

Note that the NX3225GD crystal [187] used as the base clock for the STM32F407IG microcontroller 

[188] has only modest frequency tolerance at ±50ppm and is upscaled from 8MHz to 168MHz by an 

internal PLL that can experience up to ±200ps of period jitter at 120MHz, but is unspecified at 168MHz. 

Recall that network time is broken into 10ms periods, or intervals, which are further split into a 5ms 

Traffic phase followed by a 5ms Management phase.  The boundary between the phases occurs at 

5ms intervals that can be identified by inspecting the event timestamps.  Network management 

messages, including all DARP and PCP messaging, is transmitted only in the Management phase. 

However, DARP and PCP messages and tokens may be loaded into the MAC during the Traffic phase 

for later transmission during the Management phase.  Similarly, if the Traffic phase commences whilst 

there are DARP or PCP messages or tokens in the MAC’s ad-hoc receive buffer, then those cells may 

be extracted, parsed and timestamped during the Traffic phase.  In either case, the timestamps in the 

message logs may not reflect the actual time that the cell was injected into, or received from, the 

physical layer; the only cells that are timestamped by the MAC with single-clock-cycle accuracy are 

SYNC cells. 

3.5.4.2 Experiment 1 – Construction of a Multi-Drop Virtual Bus 

3.5.4.2.1 Aim 

Realize in practice the theoretical use-case presented in section 3.5.3.1.3. 

3.5.4.2.2 Method 

1. Configure the network as shown in Figure 3-67 below. 

2. Create an Origin of data type 0x1234 and BID 55 in N2. 
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3. Create a Terminus of data type 0x1234 in N4. 

4. Use DARP to construct a virtual bus that connects N2 to N4. 

5. Create a Terminus of data type 0x1234 in N5. 

6. Use DARP to construct a virtual bus that connects N2 to N5. 

7. Record all DARP traffic and objects. 

 

Figure 3-67 : Multidrop virtual bus construction network configuration 

All links are short (approximately 30cm). 

3.5.4.2.3 Observations 

Table 3-19 : Signalling during construction of a multi-drop virtual bus 

Node Layer Class Properties 

N2 DARP Origin 

N3 DARP Switch 

0 
N2 N3 

1 
0 

N4 
1 

0 
N5 

1 
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Node Layer Class Properties 

N4 DARP Switch 

N4 DARP Terminus 

N5 DARP Terminus 

Table 3-20 : VB objects following construction of a multi-drop virtual bus 

3.5.4.2.4 Analysis 

Tokens were transmitted and received as expected, indicating that the desired virtual bus was 

successfully constructed, first from N2 to N4, then extended, or branched, from N4 to N5.  In addition, 

the nodes reported the construction of corresponding DARP objects. 

Construction time for the bus from N2 to N4 was 4.503ms.  Construction time for the branch to N5 

was 8.515ms.  However, ~1.7ms of the construction process and 5ms of the branching process 

overlapped with traffic phases and should be discounted, i.e. actual construction times were ~2.8ms 

and ~3.5ms respectively. 

3.5.4.2.5 Conclusions 

DARP successfully used the management network to communicate between network nodes in order 

to first establish a virtual bus from N2 to N4, then branch or extend the virtual bus from N4 to N5. 

3.5.4.3 Experiment 2 – Construction of a Branching Virtual Bus 

3.5.4.3.1 Aim 

Realize in practice the theoretical use-case presented in section 3.5.3.1.4. 

3.5.4.3.2 Method 

1. Configure the network as shown in Figure 3-68 below. 

2. Create an Origin of data type 0x1234 and BID 66 in N2. 

3. Create a Terminus of data type 0x1234 in N4. 

4. Use DARP to construct a virtual bus that connects N2 to N4. 

5. Create a Terminus of data type 0x1234 in N5. 

6. Use DARP to construct a virtual bus that connects N2 to N5. 

7. Record all DARP traffic and objects. 

 

Figure 3-68 : Branched virtual bus construction network configuration 

0 
N2 N3 

1 

0 

N4 

1 

2 

N5 
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All links are short (approximately 30cm). 

3.5.4.3.3 Observations 

Table 3-21 : Signalling during construction of a branching virtual bus 

Node Layer Class Properties 

N2 DARP Origin 

N3 DARP Switch 

N4 DARP Terminus 

N5 DARP Terminus 

Table 3-22 : VB objects following construction of a branching virtual bus 

3.5.4.3.4 Analysis 

Tokens were transmitted and received as expected, indicating that the desired virtual bus was 

successfully constructed, first from N2 to N4, then branched at N3 to N5.  In addition, the nodes 

reported the construction of corresponding DARP objects. 

Construction time for the bus from N2 to N4 was 1.867ms.  Construction time for the branch to N5 

was 2.871ms.  There was very little overlap with traffic phases for either process, just 55µs for the 

branch, so these construction times are reflective of the actual time taken. 
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3.5.4.3.5 Conclusions 

DARP successfully used the management network to communicate between network nodes in order 

to first establish a virtual bus from N2 to N4, then branch the virtual bus through N3 to N5. 

3.5.4.4 Experiment 3 – Redirection of a Virtual Bus Construction Process 

3.5.4.4.1 Aim 

Realize in practice the theoretical use-case presented in section 3.5.3.1.6. 

3.5.4.4.2 Method 

1. Configure the network as shown in Figure 3-69 below. 

2. Create a static switch of width 50 between IF2 and IF0 of N4. 

3. Create an Origin of data type 0x1234 and BID 77 in N2. 

4. Create a Terminus of data type 0x1234 in N6. 

5. Use DARP to construct a virtual bus that connects N2 to N6. 

6. Record all DARP traffic and objects. 

 

Figure 3-69 : Virtual bus construction redirection network configuration 

All links are short (approximately 30cm). 

3.5.4.4.3 Observations 

0 
N2 N3 

1 

0 

N4 
1 

2 

N5 
0 

N6 

0 1 

0 
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Table 3-23 : Signalling during redirection of a virtual bus 

Node Layer Class Properties 

N2 DARP Origin 

N3 DARP Switch 

N4 DARP Switch 

N5 DARP Switch 

N6 DARP Terminus 

Table 3-24 : VB objects following redirection of a multi-drop virtual bus 

3.5.4.4.4 Analysis 

Tokens were transmitted and received as expected, indicating that the desired virtual bus was 

successfully constructed from N2 to N6, including successful redirection around an obstruction 

between N5 and N6.  In addition, the involved nodes reported the construction of corresponding DARP 

objects. 

Construction time was 9.533ms, including 5ms of overlap with an entire traffic phase, and the 

redirection, which took 0.969ms.  Actual construction time (including redirection) was ~4.5ms. 

3.5.4.4.5 Conclusions 

DARP successfully used the management network to communicate between network nodes in order 

to establish a virtual bus from N2 to N6, including finding an alternative route around an obstruction 

in the default path through the resource space. 

3.5.4.5 Experiment 4 – Multi-Drop Virtual Bus End Trim 

3.5.4.5.1 Aim 

Realize in practice the theoretical use-case presented in section 3.5.3.2.3. 

3.5.4.5.2 Method 

1. Configure the network as shown in Figure 3-70 below. 

2. Create an Origin of data type 0x1234 and BID 55 in N2. 

3. Create a Terminus of data type 0x1234 in N5. 

4. Use DARP to construct a virtual bus that connects N2 to N5. 
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5. Create a Terminus of data type 0x1234 in N4. 

6. Use DARP to construct a virtual bus that connects N2 to N4. 

7. Use DARP to trim N5 from the virtual bus. 

8. Record all DARP traffic and objects. 

 

Figure 3-70 : Multidrop virtual bus construction network configuration 

All links are short (approximately 30cm). 

3.5.4.5.3 Observations 

Table 3-25 : Signalling During End Trimming of a Multi-Drop Virtual Bus 

Node Layer Class Properties 

N2 DARP Origin 

N3 DARP Switch 

N4 DARP Terminus 

N5 DARP Terminus 

Table 3-26 : VB objects following end-trimming of a multi-drop virtual bus 

3.5.4.5.4 Analysis 

Tokens and messages were transmitted and received as expected, indicating that the target virtual 

bus originating at N2 and terminating at N4 and N5 was successfully trimmed from N5.  All of the 

network resources allocated to connect the bus from N4 to N5 were released without interfering with 

the bus origin at N2 or termination at N4; and N2 was advised of the successful completion of the trim 

process. 

0 
N2 N3 

1 
0 

N4 
1 

0 
N5 

1 
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The time taken to request the bus trim and report its success was 7.082ms, noting that the period is 

entirely overlapped by a traffic phase, i.e. actual trim time was ~2.0ms.  The time taken to actually 

perform the trim operation, excluding message passing between N2 and N5 and allowing for the 

overlap with the traffic phase, was ~400µs. 

3.5.4.5.5 Conclusions 

DARP successfully used the management network to communicate between network nodes in order 

to trim a node from the trailing end of a multi-drop virtual bus. 

3.5.4.6 Experiment 5 – Branched Virtual Bus Release 

3.5.4.6.1 Aim 

Realize in practice the theoretical use-case presented in section 3.5.3.2.4. 

3.5.4.6.2 Method 

1. Configure the network as shown in Figure 3-71 below. 

2. Create an Origin of data type 0x1234 and BID 66 in N2. 

3. Create a Terminus of data type 0x1234 in N4. 

4. Use DARP to construct a virtual bus that connects N2 to N4. 

5. Create a Terminus of data type 0x1234 in N5. 

6. Use DARP to construct a virtual bus that connects N2 to N5. 

7. Destroy the Origin at N2, causing a RELEASE Token to be emitted. 

8. Record all DARP traffic and objects. 

 

Figure 3-71 : Branched virtual bus construction network configuration 

All links are short (approximately 30cm). 

3.5.4.6.3 Observations 
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Table 3-27 : Signalling during release of a branching virtual bus 

Node Layer Class Properties 

N4 DARP Terminus 

N5 DARP Terminus 

Table 3-28 : VB objects following release of a branching virtual bus 

3.5.4.6.4 Analysis 

Tokens and messages were transmitted and received as expected, indicating that the target virtual 

bus originating at N2 was successfully destroyed, and all of the network resources allocated to the bus 

were released, and N2 was advised of the successful completion of the release process.  The only 

remaining DARP objects were the disconnected Terminus objects in N4 and N5. 

The time taken to release the bus was 6.547ms, noting that the period is entirely overlapped by a 

traffic phase, i.e. actual release time was ~1.5ms.  However, we can also see that there is 1.034ms 

between N3 reporting forwarding the RELEASE Token to N4, and reporting forwarding it to N5.  This 

(relatively) large delay suggests that another process interrupted DARP in N3 whilst it was executing 

forwarding.  It appears that the interruption occurred between the report of the RELEASE Token being 

forwarded, and the forwarded cell actually being loaded into the MAC’s FIFO for transmission; note 

N4 and N5 receiving their copies of the Token separated by just 67µs, despite the supposed 1.034ms 

between the transmission of the cells. 

3.5.4.6.5 Conclusions 

DARP successfully used the management network to communicate between network nodes in order 

to establish a virtual bus from N2 to N6, including finding an alternative route around an obstruction 

in the default path through the resource space. 

3.5.4.7 Experiment 6 – Multi-Hop Network Fault Management 

3.5.4.7.1 Aim 

Realize in practice the theoretical use-case presented in section 3.5.3.3.3. 

3.5.4.7.2 Method 

1. Configure the network as shown in Figure 3-72 below. 

2. Create an Origin of data type 0x1234 and BID 55 in N2. 

3. Create a Terminus of data type 0x1234 in N5. 

4. Use DARP to construct a virtual bus that connects N2 to N3. 

5. Create a Terminus of data type 0x1234 in N4. 
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6. Use DARP to construct a virtual bus that connects N2 to N5. 

7. Break the connection between N4 and N5 using an “IFE,1,0” command. 

8. Record all DARP traffic and objects. 

 

Figure 3-72 : Multi-hop virtual bus network fault management network configuration 

All links are short (approximately 30cm). 

3.5.4.7.3 Observations 

The breakage of the link between N5 and N4 was reported by N5 at 𝑡 = 213,185,959: 

Table 3-29 : Signalling during multi-hop virtual bus network fault management 

Node Layer Class Properties 

N2 DARP Origin 

N3 DARP Terminus 

N5 DARP Terminus 

Table 3-30 : VB objects following network fault management of a multi-drop virtual bus 

3.5.4.7.4 Analysis 

Tokens and messages were transmitted and received as expected, indicating that the target virtual 

bus originating at N2 and terminating at N3 and N5 was successfully trimmed from N5 when a break 

of the link between N4 and N5 was detected by N4.  All of the network resources allocated to connect 

the bus from N3 to N5 were released without interfering with the bus origin at N2 or termination at 

N3; and N2 was advised of the successful completion of the trim process. 
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N4 detected the break 897µs after N5 reported that the link had been disabled.  Although the MAC 

would have detected the broken link within approximately 10µs37, the remainder of the time can be 

attributed to processing in N4: generating a “link state change” interrupt in the MAC; the host 

controller CPU detecting and handling the interrupt; and the DARP thread in the protocol stack being 

given CPU time, receiving notification of the interrupt, and constructing the report. 

N2 received the BREAK Token 1.771ms after N5 reported that its link to N4 was disabled.  However, 

the time taken to trim the broken branch was 0.874ms. 

3.5.4.7.5 Conclusions 

The link layer successfully detected the broken link and reported it to DARP.  DARP then successfully 

used the management network to communicate between network nodes in order to trim the broken 

branch from the virtual bus, without disrupting the components of the virtual bus that were 

unaffected by the break. 

3.5.4.8 Experiment 7 – Measuring the Construction Time of a Multi-Hop Virtual Bus 

3.5.4.8.1 Aim 

Verify that DARP can construct a virtual bus from one corner of a 3x3 grid to the diagonally opposite 

corner, and vice versa.  Gather sufficient statistical data to form conclusions about the amount of time 

taken to route and schedule these virtual buses. 

Note that there are many possible paths that might be followed by the construction process.  We are 

not concerned with precisely which path the process takes, only with the time taken to complete each 

phase of the construction process. 

3.5.4.8.2 Method 

 

Figure 3-73 : Measuring the construction time of a multi-hop virtual bus network configuration 

The interfaces of every node are configured as shown for N6; IF0 at 6 o’clock, IF1 at 12 o’clock, IF2 at 

3 o’clock and IF3 at 9 o’clock.  All links are short (approximately 30cm). 

 
37 Technically, 252 ticks of the FPGA clock at 25𝑀𝐻𝑧, or 10.08µ𝑠. 
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1. Use the Producer-Consumer protocol to coordinate the construction of a single virtual bus 

instance from N10 to N2.  Repeat this process approximately 200 times, recording the time 

taken for each iteration. 

2. Use the Producer-Consumer protocol to coordinate the construction of a single virtual bus 

instance from N2 to N10.  Repeat this process approximately 200 times, recording the time 

taken for each iteration. 

3.5.4.8.3 Observations 

3.5.4.8.3.1 Signalling 

The following set of signalling data is for one of 200 transactions that were captured for the purposes 

of statistical analysis. 

Table 3-31 : Signalling during construction of a multi-hop virtual bus 
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3.5.4.8.3.2 Statistical 

Note that one sample was discarded from each data set due to out-of-order timestamps, as discussed 

in section 2.6.1.2. 

 

Minimum (ms) 

1.607 

Maximum (ms) 

8.642 

Mean (ms) 

5.096 

Std Dev (ms) 

1.984 

Figure 3-74 : 4-Hop bus reserve times (bin size 0.5ms) 

 

Minimum (ms) 

1.594 

Maximum (ms) 

9.771 

Mean (ms) 

6.170 

Std Dev (ms) 

2.472 

Figure 3-75 : 4-Hop bus commit times (bin size 0.5ms) 

 

Minimum (ms) 

3.639 

Maximum (ms) 

17.063 

Mean (ms) 

11.266 

Std Dev (ms) 

2.823 

Figure 3-76 : 4-Hop bus construction times (bin size 0.5ms) 
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Minimum (ms) 

1.703 

Maximum (ms) 

8.753 

Mean (ms) 

5.780 

Std Dev (ms) 

1.965 

Figure 3-77 : 4-Hop reverse bus reserve times (bin size 0.5ms) 

 

Minimum (ms) 

1.587 

Maximum (ms) 

9.079 

Mean (ms) 

6.460 

Std Dev (ms) 

2.355 

Figure 3-78 : 4-Hop reverse bus commit times (bin size 0.5ms) 

 

Minimum (ms) 

4.584 

Maximum (ms) 

17.083 

Mean (ms) 

12.239 

Std Dev (ms) 

2.508 

Figure 3-79 : 4-Hop reverse bus construction times (bin size 0.5ms) 

3.5.4.8.4 Analysis 

Isolating the RESERVE and COMMIT Tokens exchanged between N10 and N2, we can see: 

Table 3-32 : DARP Tokens exchanged between SN and DN during construction of a multi-hop virtual bus 
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The Reserve phase lasted 3.661ms, the Commit phase lasted 7.185ms, and the construction process 

took 10.846ms in total.  The statistical data shows that this is a very typical outcome; the individual 

phases and the total construction time all fall within one standard deviation of the mean. 

3.5.4.8.5 Conclusions 

Path construction for the network model and parameters explored is typically in the region of 12ms.  

There is no significant variation in any part of the construction process that can be associated with 

directionality. 

3.5.4.9 Experiment 8 – Routing and Scheduling in a Congested Resource Space 

3.5.4.9.1 Aim 

Verify that DARP can find a path through a congested network, with all but one route obstructed in 

either or both of the S- and T-planes. 

3.5.4.9.2 Method 

3.5.4.9.2.1 Part 1 

1. Configure the network as shown in Figure 3-80 below, including adding static routes to the 

traffic network in order to consume all the outbound timeslots of 2.0, 3.0, 6.0 and 7.0 and 

hence obstruct the space plane of those interfaces. 

 

Figure 3-80 : Routing and Scheduling with S-Plane Constraints Network Configuration 

2. Use DARP to manage the construction of a single virtual bus instance from N2 to N10 given a 

network resource space that has been deliberately constricted such that there is only one 

possible route through the S-plane of the resource space, as shown in Figure 3-80 above. 

3. Use the DARP “trace allocation” command to determine the route taken through the space 

and time planes. 

There should be only one physical route available from N2 to N10: 

2.2 →  3.3.2 →  3.4.0 →  1.7.3 →  2.6.3 →  2.5.0 →  1.8.2 →  3.9.2 → 3.10 

This is the route through the S-plane that we expect will be discovered, reserved and committed by 

DARP. 

N2 N3 N4 

N5 N6 N7 

N8 N9 N1
0 

3 

2 

1 

0 
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3.5.4.9.2.2 Part 2 

 

Figure 3-81 : Routing and Scheduling with S- and T-Plane Constraints Network Configuration 

4. Configure the network as shown in Figure 3-81 above, including: 

a. Adding static routes to the traffic network in order to consume all the outbound 

timeslots of interfaces 2.0, 3.0, 6.0 and 7.0 and hence obstruct the S-plane of those 

interfaces. 

b. Adding static routes to the traffic network in order to consume a well-defined set of 

T-plane resources and hence partially obstruct the T-plane along the only available 

path in the S-plane. 

i. Timeslots 0 through 9 will be blocked on IF3.2. 

ii. Timeslots 10 through 19 will be blocked on IF6.3. 

iii. Timeslots 21 through 49 will be blocked on IF8.2. 

5. Use DARP to manage the construction of a single virtual bus instance from N2 to N10 given a 

network resource space that has been deliberately constricted such that there is only one 

possible route through both the S- and T-planes of the resource space, as shown in Figure 3-81 

above. 

6. Use the DARP “trace allocation” command to determine the route taken through the space 

and time planes. 

There should be only one physical route available from N2 to N10: 

2.2 →  3.3.2 →  3.4.0 →  1.7.3 →  2.6.3 →  2.5.0 →  1.8.2 →  3.9.2 → 3.10 

This is the route through the S-plane that we expect will be discovered, reserved and committed by 

DARP. 

The obstructed timeslots, represented as a 13-digit hexadecimal number with a bit set to ‘1’ if the 

corresponding timeslot is blocked, are shown above in Figure 3-81 next to the link that they apply to, 

with an arrow indicating their directionality.  The only T-plane resource that is available at every hop 

is timeslot 20, or 0x0000000100000.  This is the timeslot that we expect will be discovered and 

committed by DARP. 

N2 N3 N4 

N5 N6 N7 

N8 N9 N10 
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0000000000000 00000000003ff 

0000000000000 00000000ffc00 

3ffffffefffff 0000000000000 



Page 197 

 

3.5.4.9.3 Observations 

3.5.4.9.3.1 Part 1 

Table 3-33 : DARP signalling during routing and scheduling with S-plane constraints 
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Table 3-34 : Resource allocations following routing and scheduling with S-plane constraints 

3.5.4.9.3.2 Part 2 
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Table 3-35 : DARP signalling during routing and scheduling with S- and T-plane constraints 

Table 3-36 : Resource allocations following routing and scheduling with S- and T-plane constraints 

3.5.4.9.4 Analysis 

3.5.4.9.4.1 Part 1 

The Reservation phase lasted 10.277ms, the Commit phase lasted 9.796ms and the total construction 

time was 20.073ms.  This is significantly higher than, and outside of the range of, the statistical 

outcomes determined in Experiment 7.  The increased time is likely to be due to the path being 8 hops 

in length rather than 4.  If we posit that the duration of each construction has a linear relationship 

with hop count, then this outcome is consistent with the statistical outcomes. 

 

Figure 3-82 : Reservation (RSV) and Commit (CMT) Paths 

The Allocation Trace command revealed that the selected route exactly matched the predicted route, 

as shown in Figure 3-82. 

RSV 

CMT 

N2 N3 N4 

N5 N6 N7 

N8 N9 N10 
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3.5.4.9.4.2 Part 2 

During the Reservation phase, a route redirection event occurred at t=354,936,410, when N6 

attempted to loop the path back on itself through N3.  This may appear to be anomalous – there is 

only one viable path, and the route selection process should follow that path – but it is in fact 

consistent with the design of the routing algorithm. 

Recall that DARP makes a routing decision at each hop by calculating a metric for each potential 

outbound interface.  The process is load balancing; the metric is affected negatively by the count of 

outbound timeslots already allocated on an interface.  In this case, no timeslots are allocated on IF1, 

towards N3; but 10 timeslots are allocated on IF3, towards N5.  Apart from the source and destination 

nodes, N6 knows only the node that forwarded the RESERVE token to it, so when the IF1 metric is 

calculated to be higher than the IF3 metric, N6 attempts to forward the token via IF1 to N3.  N3 

redirects the token back to N6, because N3 knows that the route already passes through it.  When N6 

receives the redirected token, it is left with only one possible outbound interface, IF3. 

It would be reasonable to assume that a similar redirection might take place at N9.  However, when 

an outbound interface is connected directly to the route’s destination node, a heavy weight is placed 

on using that interface.  That additional weight is more than sufficient to overcome the load balancing 

effect in this case. 

The Reservation phase lasted 16.413ms, the Commit phase lasted 13.126ms and the total construction 

time was 29.539ms.  Again, this is significantly higher than the baseline measurements obtained in 

Experiment 7.  Using the same assumption that construction time has a linear relationship with hop 

count, we can say that while the observed time is slightly greater than one SD from the mean for 

Reservation and total times, it is well within the measured range. 

Again, the Allocation Trace command revealed that the selected route matched the predicted route, 

as shown in Figure 3-82; and that the selected timeslot, 20, matched the predicted timeslot. 

3.5.4.9.5 Conclusions 

DARP was able to quickly identify and resource the only available paths through the S-plane in Part 1 

of the experiment, and the S- and T-planes in Part 2 of the experiment.  There was no appreciable 

degradation in performance compared to the baseline measurements gathered during Experiment 7.  

However, it must be acknowledged that the exercise was run only once, and the network configuration 

is relatively simple.  It is possible that a larger sample set and/or a more complex network 

configuration could expose performance degradation. 

3.5.4.10 Experiment 9 – Contention During Simultaneous Construction of Virtual Buses 

3.5.4.10.1 Aim 

Explore the behaviour of DARP when several virtual bus construction processes simultaneously 

attempt to utilize the same segment of the resource space, causing contention in resource allocation. 

3.5.4.10.2 Method 

1. Configure the network as shown in Figure 3-83 below. 

2. Create a DARP Origin of Type=0x1234, BID=55 and Width=1 in N2. 

3. Create a DARP Origin of Type=0x1234, BID=66 and Width=1 in N3. 
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4. Create a DARP Origin of Type=0x1234, BID=77 and Width=1 in N4. 

5. Create a DARP Terminus of Source=N2, Type=0x1234, BID=55 and Width=1 in N6. 

6. Create a DARP Terminus of Source=N3, Type=0x1234, BID=66 and Width=1 in N6. 

7. Create a DARP Terminus of Source=N4, Type=0x1234, BID=77 and Width=1 in N6. 

8. Trigger simultaneously, in as much as it is possible to do so, the construction of the virtual 

buses from N2->N6, N3->N6 and N4->N6. 

9. Record all DARP reports, traffic and objects. 

 

Figure 3-83 : Contention during simultaneous construction of virtual buses network configuration 

3.5.4.10.3 Observations 

Table 3-37 : DARP signalling showing contention during simultaneous construction of virtual buses 
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Node Layer Class Properties 

N2 DARP Origin 

N3 DARP Origin 

N4 DARP Origin 

N5 DARP Switch 

N6 DARP Terminus 

Table 3-38 : VB objects following simultaneous construction of virtual buses 

3.5.4.10.4 Analysis 

The only virtual bus instance that was successfully created was that from N4 to N6. 

All of the RESERVE Tokens were loaded into the transmit FIFO’s of N2, N3 and N4 approximately 

simultaneously: all Tokens were reported as being transmitted within a window of ~0.9ms.  The 

difference in reported transmission times is presumably due to a cascade of delays at each node, 

where each stage of the cascade is not equal at each node.  The delays would have included a 

combination of multiple serial terminal instances running in a single control PC communicating via 

USB CDC to each node’s commandline interface to trigger bus construction; and the local timing of 

the RTOS in each node as to when the commandline processing timeslice occurred.  Note also that we 

have no knowledge about other SAF traffic that may have already been in the egress buffers of N2, N3 

and N4, which could have introduced additional unreported delays. 

Conversely, from the perspective of N5 as it received the RESERVE Tokens, arrival and handling of the 

Tokens does appear to have been near-simultaneous: reported receive times are separated by 28µs 

and 37µs respectively, far less than the transmission time of a cell and so presumably the time required 

to unload and parse the received Tokens.  However, the order in which cells are parsed when they are 

simultaneously received at multiple network interfaces is governed by the index of the receiving 

interface: the Token from N4, which arrived at IF0, was processed before the Token from N2, which 

arrived at IF1, which was processed before the Token from N3, which arrived at IF2.  Consequently, 

the Token from N4 was handed to DARP first, which temporarily assigned it all of the S/TDM resources 

on the only outbound interface connected to the destination N6.  When the Tokens from N2 and N3 

were handed to DARP it had no resources for them and so responded with REDIRECT Tokens.  When 

the REDIRECT Tokens arrived at the SN’s for their respective buses there were no other outbound 

interfaces with potential connections to the DN for DARP to probe so they terminated the bus 

construction attempts and reported failure. 
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3.5.4.10.5 Conclusions 

DARP has behaved precisely as intended in the presence of contention for access to network 

resources.  Only one of the three buses could be constructed; the other two buses failed. 

DARP employs a “try once for each interface and give up” strategy, so no further attempts were made 

to construct the two failed buses.  This would generally be the responsibility of higher network layers: 

in the first instance, RDM, which employs a “try 𝑛 times and give up” strategy for bus construction; 

and, if RDM fails, PCP, which employs a “never give up” strategy to find an alternate data source. 

3.5.4.11 Experiment 10 – Unreachable Destination Causing Redirection “Storm” 

3.5.4.11.1 Aim 

Explore whether the redirection flaw discussed in section 3.5.2.1.3, where DARP attempts to establish 

a connection to a destination that is unreachable due to a lack of available network resources, does 

result in a redirection storm as predicted. 

3.5.4.11.2 Method 

1. Configure the network as shown in Figure 3-84 below. 

2. Construct a DARP Origin of Type=0x1234, BID=55 and Width=1 in N2. 

3. Construct DARP Switches with InIF=3, OutIF=2, Slots=0x00-0x31 in N6, N7 and N8. 

4. Construct a DARP Terminus of SN=2, Type=0x1234 and Width=1 in N9. 

5. Attempt to connect the Origin in N2 to the Terminus in N9. 

6. Record all receptions of DARP RESERVE and REDIRECT Tokens. 

Note that we are recording only receptions of RESERVE and REDIRECT Tokens, rather than all DARP 

signalling and objects, in order to a) restrain the data set to a reasonable size and b) show the path 

of the reservation algorithm as it moves through the network. 

 

Figure 3-84 : Unreachable destination causing redirection “storm” network configuration 

The interfaces of every node are configured as shown for N4; IF0 at 6 o’clock, IF1 at 12 o’clock, IF2 at 

3 o’clock and IF3 at 9 o’clock.  All links are short (approximately 30cm). 
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3.5.4.11.3 Observations 



Page 205 

 



Page 206 

 



Page 207 

 

Table 3-39 : DARP signalling showing redirection “storm” 

3.5.4.11.4 Analysis 

The attempt to reserve a path from N2 to N9 resulted in the DARP resource reservation algorithm 

traversing the following sequences of nodes, with the initial RESERVE Token being transmitted from 

IF2, IF1 and IF0 respectively: 

𝑁2 → 𝑁4 → 𝑁7 → 𝑁6 → 𝑁3 → 𝑁4 → 𝑁3 → 𝑁6 → 𝑁7 → 𝑁8 → 𝑁5 → 𝑁4 → 𝑁5 → 𝑁8 → 𝑁7

→ 𝑁4 → 𝑁3 → 𝑁6 → 𝑁7 → 𝑁8 → 𝑁5 → 𝑁4 → 𝑁5 → 𝑁8 → 𝑁7 → 𝑁4 → 𝑁7

→ 𝑁6 → 𝑁3 → 𝑁4 → 𝑁5 → 𝑁8 → 𝑁7 → 𝑁6 → 𝑁3 → 𝑁4 → 𝑁3 → 𝑁6 → 𝑁7

→ 𝑁4 → 𝑁7 → 𝑁8 → 𝑁5 → 𝑁4 → 𝑁2 

𝑁2 → 𝑁3 → 𝑁6 → 𝑁7 → 𝑁8 → 𝑁5 → 𝑁4 → 𝑁7 → 𝑁4 → 𝑁3 → 𝑁4 → 𝑁5 → 𝑁8 → 𝑁7 → 𝑁4

→ 𝑁3 → 𝑁4 → 𝑁5 → 𝑁8 → 𝑁7 → 𝑁8 → 𝑁5 → 𝑁4 → 𝑁7 → 𝑁6 → 𝑁3 → 𝑁4

→ 𝑁7 → 𝑁6 → 𝑁3 → 𝑁6 → 𝑁7 → 𝑁8 → 𝑁5 → 𝑁4 → 𝑁5 → 𝑁8 → 𝑁7 → 𝑁4

→ 𝑁5 → 𝑁8 → 𝑁7 → 𝑁6 → 𝑁3 → 𝑁6 → 𝑁7 → 𝑁4 → 𝑁7 → 𝑁8 → 𝑁5 → 𝑁4

→ 𝑁3 → 𝑁2 

𝑁2 → 𝑁5 → 𝑁8 → 𝑁7 → 𝑁6 → 𝑁3 → 𝑁4 → 𝑁7 → 𝑁4 → 𝑁5 → 𝑁4 → 𝑁3 → 𝑁6 → 𝑁7 → 𝑁4

→ 𝑁3 → 𝑁6 → 𝑁7 → 𝑁6 → 𝑁3 → 𝑁4 → 𝑁5 → 𝑁4 → 𝑁7 → 𝑁8 → 𝑁5 → 𝑁4

→ 𝑁7 → 𝑁6 → 𝑁3 → 𝑁4 → 𝑁3 → 𝑁6 → 𝑁7 → 𝑁8 → 𝑁5 → 𝑁8 → 𝑁7 → 𝑁4

→ 𝑁3 → 𝑁6 → 𝑁7 → 𝑁8 → 𝑁5 → 𝑁8 → 𝑁7 → 𝑁4 → 𝑁7 → 𝑁6 → 𝑁3 → 𝑁4

→ 𝑁5 → 𝑁2 

Note that this behaviour perfectly matches that predicted at section 3.5.2.1.3, allowing for a node ID 

offset by 1.  The specific path predictions were for a set of nodes N1 to N8, as repeated below, whereas 
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the observations above are for a set of nodes N2 to N9 that otherwise correspond in terms of their 

position and connectivity in the network topology. 

𝑁1 → 𝑁2 → 𝑁5 → 𝑁6 → 𝑁7 → 𝑁4 → 𝑁3 → 𝑁6 → 𝑁3 → 𝑁2 → 𝑁3 → 𝑁4 → 𝑁7 → 𝑁6 → 𝑁3

→ 𝑁2 → 𝑁3 → 𝑁4 → 𝑁7 → 𝑁6 → 𝑁7 → 𝑁4 → 𝑁3 → 𝑁6 → 𝑁5 → 𝑁2 → 𝑁3

→ 𝑁6 → 𝑁5 → 𝑁2 → 𝑁5 → 𝑁6 → 𝑁7 → 𝑁4 → 𝑁3 → 𝑁4 → 𝑁7 → 𝑁6 → 𝑁3

→ 𝑁4 → 𝑁7 → 𝑁6 → 𝑁5 → 𝑁2 → 𝑁5 → 𝑁6 → 𝑁3 → 𝑁6 → 𝑁7 → 𝑁4 → 𝑁3

→ 𝑁2 → 𝑁1 

The (failed) construction attempt, including all 148 Token transmissions, took ~225ms. 

3.5.4.11.5 Conclusions 

There is no doubt that DARP’s current redirection mechanism is problematic under some 

circumstances. 

3.5.4.12 Conclusions 

This series of experiments has demonstrated that the Distributed Agent Resource Protocol functions 

as intended, for the most part.  It has also confirmed the existence of a non-fatal design flaw that may 

be triggered if there is a physical path to the destination that is obstructed in the resource space. 

Virtual buses are constructed and deconstructed reliably and quickly given viable paths through the 

resource space, even in the presence of congestion in the S/TDM resource space.  If contention with 

another bus construction process occurs, DARP gracefully handles the situation, affording a higher 

network layer the opportunity to re-start failed construction attempts.  Multicasting is supported 

through branching of virtual buses, including logical branches where a node performs dual roles as 

AN+DN.  Failures of links and nodes are detected promptly and trigger the graceful deconstruction of 

affected segments of buses. 

3.6 Scientific Contribution 

This chapter makes two scientific contributions.  

The “constrained broadcast” strategy presented in section 3.4.2.2 reduces the network load induced 

by message broadcasts in topologies with a high degree of interconnection.  Constrained broadcast 

was originally developed to improve the performance of the Network Mapping Service (NMS), but it 

has also proven to be useful elsewhere in the architecture. 

The utility of this strategy was first assessed through pencil-and-paper simulation, validated through 

prototyping and usage, and confirmed by experimentation.  The simulation presented in section 

3.4.2.2 is not particularly thorough as it considers only a single use-case.  However, the output of the 

prototyping process has been used extensively and successfully throughout the development of all of 

the higher network layers, i.e. it has been exposed to at least several hundred hours of informal 

verification (bench testing) in small networks (up to nine nodes).  Further, the experimental results 

presented in section 3.4.3.4 concur with the initial analysis in terms of both the functionality of the 

implementation and the magnitude of the reduction in network utilization that the strategy affords. 

The Distributed Agent Resource Protocol (DARP) affords VB with dynamic construction, maintenance 

and deconstruction of multi-hop multicast signalling paths.  DARP is the means by which VB realizes 



Page 209 

 

the self-forming and self-healing requirements for real-time data flows that were identified in section 

1.2.3.  It is a distributed algorithm that passes tokens towards the desired destination of a 

communication in order to trigger the execution of the algorithm at the next hop and hence allocate 

or de-allocate network resources.  The distributed nature of the algorithm and the fact that decisions 

about resource allocations are made only at the node that controls those resources ensures that 

routing decisions are made with the best possible knowledge of the state of the network at the 

location of the resources.  The downside is that routing decisions are made with limited knowledge of 

the availability of the network resources between the current location and the destination, and each 

resource allocation process must compete with all other processes on an FCFS basis. 

DARP was designed using a combination of semi-formal and informal analysis and design methods: 

classical object modelling including class diagrams, state diagrams, sequence diagrams and use-cases, 

as presented in sections 3.5.2.5 through 3.5.3; as informed and guided by prototyping using the 

research platform to design, implement and refine the object model.  The outputs of these design 

processes have been subject to several hundred hours of informal validation (bench testing) in small 

networks.  Formal experimentation for several use-cases that demonstrate the operation of the 

protocol in the research platform is presented in section 3.5.4. 

DARP, as it is described and implemented here, imposes a strict constraint on the alignment of 

network intervals to the cycle rate of individual data flows.  That is, DARP assumes that each data flow 

transmits one data pulse per interval.  The pulses may be of different sizes, or widths, and may be 

transmitted in non-contiguous timeslots, but the underlying assumption that there is one pulse per 

interval is locked into the implementation.  This is in quite significant contrast to more flexible 

architectures such as FTT [80], which permits a data flow to transmit multiple data pulses in a single 

elementary cycle, or to transmit no data pulse at all for many cycles; or IEEE TSN [22], which places 

almost no constraints on the timing of data pulses, within the limits of network capacity. 

It must be acknowledged that this limitation of DARP has a significant impact on the utility of VB as a 

practically deployable network architecture, as there will likely be a relatively limited subset of 

applications that can tolerate such a constraint.  However, it should also be understood that this is a 

limitation imposed by the implementation of DARP presented here and not by the other protocol stack 

layers or the overall architecture.  It should be possible to design a distributed resource allocation 

protocol based upon DARP that draws upon the lessons learnt herein and that does not suffer from 

this limitation. 

3.7 Conclusions 

The chapter began by explaining the underpinnings of the Virtual Bus architecture's management 

network sub-layer.  The management network sub-layer is in turn the foundation on which VB’s real-

time signalling capabilities rely: the traffic network sub-layer.  The traffic network sub-layer provides 

support for self-forming data flows that meet hard real-time delivery constraints using a distributed 

resource allocation algorithm.  Additional material detailing the interfaces and internal operation of 

the management sub-network’s Store-and-Forward (SAF) messaging service implementation can be 

found in Appendix D.3.3. 

Following the introduction of the two network layers, the Network Mapping Service (NMS) was 

presented.  NMS is a simple neighbour reporting protocol, arguably most closely related to the IS-IS 
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routing protocol [6], that distributes the link state database.  The link state database implements a 

network membership service by identifying the set of nodes that are accessible, and informs a 

shortest-path network mapping algorithm.  NMS employs a “constrained broadcast” strategy to 

reduce the load that it imposes on the management network.  Analysis of a simple 4x4 grid topology 

predicts a 50% reduction in network load compared to a generic broadcast, while experimentation 

with a 3x3 grid topology demonstrated a 43% reduction in network load and confirmed the predicted 

message-passing and “information wavefront” behaviour.  Additional material detailing the interfaces 

and internal operation of the NMS implementation can be found in Appendix D.3.4. 

The Distributed Agent Resource Protocol (DARP) is the means by which the traffic network sub-layer 

is implemented; it supports multicasting, has peripheral involvement in constraining end-to-end 

delays and multicast delivery skew, and is responsible for minimizing the period-by-period jitter of all 

data flows and consistent delivery ordering for multicast data flows.  Like NMS, it is distributed and 

peer-to-peer, with no centralized service point that might pose a risk as a single point of failure. 

DARP uses the management network sub-layer to build paths through the S/TDM network resource 

space.  Each path through the network resource space that is created by DARP can be viewed as a 

separate instance of the traffic network sub-layer: a simplex multi-drop signalling channel that 

leverages the physical layer switching discussed in Chapter 2 to extend the physical layer of the 

transmitting node from one hop to many hops as an instance of the eponymous Virtual Bus concept.  

Each virtual bus is a separate traffic network layer instance because, although all virtual bus instances 

co-exist in the same resource space, the resources allocated to any one virtual bus are always 

orthogonal to every other bus: there is no possibility that data transmitted over one virtual bus will 

delay or interfere with data transmitted over any other bus, as they are spatially and temporally 

isolated from one another at the physical layer and hence operate without contention or collisions of 

any kind.  This isolation is the mechanism that decouples utilization from performance in the VB 

architecture.  Both the operation of DARP and the isolation afforded between virtual bus instances 

has been demonstrated experimentally.  Additional material detailing the interfaces and internal 

operation of the DARP implementation can be found in Appendix D.3.5.  Note that DARP does suffer 

from a design flaw, as discussed in section 3.5.2.1.3 and demonstrated experimentally in section 

3.5.4.11. 

NMS and DARP are fundamental to VB meeting several of its design goals, as stated in sections 1.2.3: 

• Minimization of single points of failure, particularly by avoiding any master-slave 

arrangements. 

• A dynamic multi-hop membership service. 

• Self-forming and self-healing data delivery arrangements between active members. 

• Minimization of end-to-end delay for delivery of real-time data flows.  Ideally, end-to-end 

delay should be a function only of transmission line propagation delay. 

• Extremely low multicast delivery delay skew of real-time data flows from destination to 

destination for each data pulse.  Ideally, zero. 

• Jitter in delivery timing of real-time data flows from period to period to be no greater than 

one bit symbol at the physical layer signalling rate. 

• No variation in delivery ordering of real-time data flows from destination to destination each 

pulse. 
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Chapter 4  

 

The Transport & Session Layers  

 

 

 

4.1 Introduction 

This chapter introduces the real-time transport and session layers of the virtual bus network 

architecture. 

Following a discussion of related work with reference to its relationships to VB in section 4.2, 

discussions of VB’s transport layer implementation, the Redundant Dataflow Model (RDM), and 

session layer implementation, the Producer-Consumer Protocol (PCP), are presented.  The 

scientific contributions made by the chapter are discussed in section 4.5 and the chapter 

concludes in section 4.6. 

RDM is presented in section 4.3.  RDM is an exception to network protocol layer stack design in 

that it is not a protocol per se; rather, it is a conceptual model that enhances the reliability and 

availability of real-time data flows by providing a framework with which to manage modular-

redundant delivery of those flows.  RDM supports two layers of redundancy: flow redundancy, in 

which a data flow is delivered from a source to a destination via several, preferably disjoint,38 

paths through the network resource space to leverage spatial and/or temporal diversity [61][135]; 

and fragment redundancy, in which a data flow that utilizes flow redundancy can potentially 

reconstruct the original data pulse from several incomplete replicas that were delivered over 

separate paths. 

PCP is presented in section 4.4.  PCP is a simple communication protocol that is used to establish 

and manage producer-consumer39 relationships between nodes that are able to supply a 

 
38 Spatial disjointness or orthogonality of related paths is preferred and promoted by the Distributed Agent 
Resource Protocol (DARP, see section 3.5), but such spatial orthogonality is not strictly enforced, nor is it 
necessarily always enforceable. 
39 Also referred to as “publish-subscribe”, e.g. in the context of OPC UA [16]. 
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particular type of data, and nodes that wish to consume that data.  In addition to its roles as a 

communication protocol and as an enhanced membership service [48], PCP provides a further 

layer of redundancy through data source diversity.  Source diversity enhances the reliability and 

availability of critical control system functions or components that are dependent upon data flows 

from other control system components by providing a framework with which to organize delivery 

relationships with several similar but ideally spatially disparate sources of a particular “type” of 

data. 

4.2 Related Work 

Gavrilut et al [64] considered how the topology of TTE [3] networks might be optimized at design 

time to be fault-tolerant at run time.  They sought both to avoid potential physical single points of 

failure by providing multiple paths between data producers and consumers; and to ensure that 

there is sufficient network capacity available through those paths to support the required data 

flows.  In later work [37] Gavrilut et al explored similar considerations for IEEE Time-Sensitive 

Networking [22] (TSN) Ethernet.  VB aims to minimize both risks by using a highly interconnected 

partial mesh to maximize both overall network capacity and the number of redundant physical 

paths between any two nodes, and using the Redundant Dataflow Model (RDM) to provide a 

framework with which those resources can be utilized to support data flow redundancy; and by 

spatially distributing replica data sources and using the Producer-Consumer Protocol (PCP) to 

provide a framework with which those resources can utilized to support data source redundancy. 

Nayak [66] noted work by Reitblatt et al [113] in which they considered how to safely achieve 

dynamic updates to switch configurations in an OpenFlow software-defined network (SDN) [62].  

Nayak leveraged the work of Reitblatt et al to dynamically configure time-triggered data streams 

in time-sensitive software defined networks (TSSDN).  Häckel et al [175] later contributed a case 

study of a TSSDN simulation and came to similar conclusions.  A concern raised by Serna Oliver 

[189] is that dynamically modifying switch configurations “may lead to a temporary violation of 

bounds on the delays or the jitter with undesirable consequences”, although Herlich et al [116] did 

not report observing this in their case study.  VB aims to address these concerns for critical data 

flows through RDM, by providing delivery path diversity; and through PCP, by providing data 

source diversity.  The delivery of a particular replica of a data flow, or a particular data source, 

may be compromised by dynamic resource allocation, but given sufficient redundancy it is 

improbable that the network will be unable to service the delay and/or jitter requirements of 

every replica or source. 

Monostori et al [190] explored cyber-physical production systems (CPPS) in the context of Industry 

4.0, including the use of “agent-based approaches” to realize “plug-and-produce” production 

systems “where various elements are joined to a complete production system without manual 

configuration efforts”.  This is one of the original goals of the VB architecture, as noted in section 

1.1.3, and the Producer-Consumer Protocol is one of the components with which VB realizes that 

goal. 

The IEEE802.1CB Frame Replication and Elimination for Reliability [13] (FRER) standard affords 

broadly similar functionality to RDM.  Bello and Steiner [58] discussed FRER in some detail, 

including some weaknesses and limitations, particularly the risk of unexpected consequences 
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when used with end-to-end (E2E) protocols [43] that are unaware of FRER and/or are not designed 

to interoperate with it.  FRER and RDM are logically differentiated by the locations at which they 

duplicate and de-duplicate frames or cells: RDM always duplicates at the sending node and de-

duplicates at each receiving node; whereas FRER may perform these functions at intermediate 

switches as well as at end stations.  FRER is arguably more flexible and hence potentially more 

resource-efficient than RDM, e.g. it is able to duplicate and de-duplicate several times in disjoint 

sections of a delivery path, whereas RDM always performs deduplication across each end-to-end 

link. 

He et al [167] noted in the context of SDN’s that “fast failover and fine-grained traffic engineering 

demand fast interaction between switch control and data planes”.  RDM affords real-time data 

flows with zero-wait failover using a technique proposed by Grover et al [108]: pre-configured 

redundant signalling paths.  Where a data flow is being delivered to a destination by several 

redundant paths, the data flow is available as long as at least one member of the set of redundant 

paths is able to reliably deliver each data pulse; or, given fragment redundancy, as long as the set 

of distinct fragments successfully delivered by the set of the redundant paths is equal to the set 

of transmitted fragments. 

Kirrmann et al reported on the Parallel Redundancy Protocol [106] (PRP) and High Availability 

Seamless Redundancy [109] (HSR) following their publication as IEC62439-3.  PRP relies upon each 

node that requires redundancy being connected to (at least) two physically distinct networks and 

communicating with partner nodes via both networks, in a not dissimilar fashion to the parallel 

network concept employed by both AFDX [105] and TTE [3].  In contrast, HSR utilizes a single 

network configured as a ring or interconnected rings-of-rings [191], in which each node is 

equipped with two network interfaces (via an interface module if needs be) that are connected to 

the previous and next nodes in the ring, and transmits messages in both directions around the 

ring.  Another ring-based redundancy protocol is proposed by Huynh et al [192], Rapid Ring 

Recovery (RRR); RRR employs a ring-of-stars topology, in which several Ethernet switches are 

organised in a ring, with multiple end stations connected to each switch as a star.  In comparison, 

VB’s redundancy strategy equips each node with a switch; promotes the interconnection of all 

nodes in a partial mesh topology40; and monitors and quickly (within milliseconds) publishes 

connectivity changes.  VB’s strategy contains elements of all of the three published approaches; 

the key differentiator is that while each VB node has multiple network interfaces, all VB nodes and 

network interfaces are connected to the same network.  For this reason, VB more closely 

resembles HSR or RRR than it does the “separate networks” strategy of PRP, AFDX or TTE. 

Avni et al [61] explored the synthesis of time-triggered schedules in networks with faulty 

communication links, and agreed with Bauer and Kopetz [193] that implementing temporal and/or 

spatial redundancy is an effective strategy.  They observed that temporal redundancy “provides 

good tolerance to transient faults of the links, but it does not provide tolerance to permanent 

crashes”, whilst spatial redundancy is necessary “to achieve tolerance to link crashes” and, in the 

context of spatial redundancy, that “a message should be scheduled over at least two different 

paths, and the defined paths should be as disjoint as possible, in order to prevent common-mode 

failures”.  RDM is the mechanism that VB uses to implement both spatial and temporal 

 
40 Noting that this is an implementation choice. 
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redundancy, whilst acknowledging, as also observed by Avni et al, that such an implementation is 

not cost-neutral: it increases the complexity of schedule synthesis, and it consumes additional 

network resources. 

De Andrade et al [156] evaluated the performance of the CAN-FD [155] bus both analytically and 

experimentally, working with a case study of a passenger vehicle, the Volkswagen Polo™.  They 

reverse-engineered the vehicle’s normal CAN-FD bus traffic, then introduced high-priority 

messages to the network as “noise” to interfere with the normal operation of the bus in order to 

subject it to stress testing.  They concluded that CAN-FD (and, by inference, CAN) were inherently 

unpredictable above a certain level of utilization and concurrent congestion.  Examining the 

vehicular control message set that was obtained by reverse engineering, it is evident that a small 

VB network could replace the CAN-FD bus in the vehicle and easily meet the signalling 

requirements (capacity and timing) under the specified stress conditions whilst protecting the 

reliability and availability of the control system data flows with spatial and temporal redundancy 

using RDM and data source diversity using PCP. 

Zunino et al [194] explored the convergence of information and operation technologies (IT and 

OT) in the context of smart factories in Industry 4.0, or “the fourth industrial revolution”, and the 

transition away from a pyramidal hierarchy and towards a cloud hierarchy, which can achieve 

much closer interconnection between decision-making elements and operating elements but 

necessitates that components be designed for interoperability.  They note that a subset of the 

challenges for Industry 4.0 have an emphasis on network self-awareness, self-management and 

self-healing.  As discussed in sections 1.1 and 1.2, meeting these challenges is part of the design 

philosophy underlying VB; PCP in particular forms part of the framework with which it addresses 

them. 

Du and Herlich [83] explored the use of OpenFlow [62] SDN as a control plane for real-time 

Ethernets (RTE), including Powerlink [195], Profinet [196], VARAN [197]  and TSN [22].  They 

acknowledged that the principal weakness of SDN’s is that they require a central controller, which 

introduces a single point of failure, but caveated this by noting that a faulty controller would 

compromise only network reconfiguration.  Further, they described a set of advantages related to 

switching, routing or path selection that were afforded by an integration of SDN and RTE, 

including: 

• “Central addition and removal of network nodes” allowing for [nodes] to be “dynamically 

recombined to fulfil different tasks”, which is an explicit purpose to the design of PCP. 

• SDN support for “arbitrary topology”, e.g. allowing network loops to be “actively 

exploited”, which is designed into VB and exploited by RDM for path redundancy. 

• “Fast reroute and failover”, where “additional links in the network can be used as backup 

routes in case of failures in the network” and “for zero-loss/zero-time failover, flows can 

be duplicated on the network layer and delivered via two distinct paths”.  Again, these 

behaviours were explicitly designed into RDM. [108] 

• “Multiple simultaneous communication paths” being available not only as backups, a 

feature designed into RDM, but also to increase bandwidth or afford multipath routing 

by “splitting up and delivering flows via multiple paths”, as discussed in section 4.3.1.2. 

Herlich et al [116] presented a use-case of an implementation of OpenFlow [62] SDN as a control 

plane for Powerlink [195] real-time Ethernet, with an emphasis on the use of OpenFlow to 
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dynamically reconfigure the network.  They demonstrated that the implementation could be used 

to admit (and remove) network nodes and data flows at runtime, and that they could use 

redundancy to physically replace (hot-swap) a network switch without compromising existing data 

flows, i.e. with zero packet loss.  Similar behaviours have been implemented in VB through PCP 

and RDM. 

Pahlevan and Obermaisser [136] presented a case study of a simulation of IEEE802.1CB Frame 

Replication and Elimination for Reliability [13] (FRER), a component of TSN that performs a very 

similar role to RDM in VB, as discussed above re the work of Bello and Steiner [58].  They concluded 

that FRER provides effective protection of time-triggered data flows against a number of classes 

of network error, including both transient errors such as resequencing and permanent errors such 

as link or node failures. 

Chiti et al [141] explored trends in “context-aware computing”.  Their focus was on wireless and 

mobile computing, but their findings are relevant to any networked system.  Directly quoting a 

short passage from their work: 

“Context-aware computing [198][199], a paradigm where any device or object, either 

physical or logical, which is relevant to a given task is considered as part of the context. The 

main challenge of context-aware computing is the definition of a new class of applications 

that are aware of the context in which they run. In particular, such types of applications 

must be able to adapt to devices’ locations and capabilities, and react to any changes over 

time by modifying the quality/quantity of results or the way in which computations are 

performed. 

At the device level, context can bring the required knowledge to a mobile communication 

device, for example, to select the best device that can be linked to execute a computation or 

simply to send some data. In the case of context-aware communications, situational 

contexts permit efficiency to be improved [200]: specifically, context information indices can 

be constituted by, for example, battery level, processing capabilities, and link conditions. In 

general, exploitation of context awareness permits communication and processing 

capabilities to adapt to changes in the environment, as well as in the user/application needs, 

according to specific objectives. 

Context awareness can enable a system to drive an autonomic behaviour (i.e., to manage 

itself). For example, an autonomic system can maintain its performance within desired limits 

by dynamically reconfiguring itself on the basis of context information such as location and 

availability of the computing nodes, cost of the communication links, and criticality of 

specific activities.” 

These factors are some of the drivers behind why PCP was included in VB, and indeed in the 

broader context of more complete and thorough producer-consumer implementations such as 

OPC UA [16].  Producers and Consumers are (to some limited extent) self-aware, in the sense that 

they know what types of data they can produce or consume; and consumers know how many 

redundant copies of that data that they require in order to achieve optimal protection of their 

availability.  Consumers also know how to attract producers using PCP’s advertising mechanism, 

and producers know how to resource relationships with consumers to some agreed level of 

availability and reliability by exercising RDM.  Further, each consumer autonomously monitors and 
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controls which producer resources it is utilizing and can adjust that resourcing pattern if the 

situation demands, e.g. if a relationship to one producer fails due to a network fault then the 

consumer can self-heal by establishing a relationship with a new producer in order to meet its 

resourcing targets. 

Khatib et al [47] considered the problem of self-healing in mobile networks and proposed means 

of classifying self-organizing network behaviours, including where they sit in the protocol stack.  

VB realizes some of its self-forming and self-healing behaviours at the transport layer (RDM) and 

session layer (PCP). 

Farzaneh and Knoll [201] considered an ontology-based approach for plug-and-play operation of 

TSN, particularly in the context of vehicular networks.  They noted that, based upon their literature 

review, a particular set of network services must be available to support plug-and-play: device 

discovery, including registration of device profiles; and application management, including per-

device definitions of the quality-of-service (QoS) requirements that must be met in order to 

service that device, specifically: “Deadline, Durability, Destination Order, Reliability, Transport 

Priority”.  PCP is responsible for some components of VB device discovery (registration of profiles, 

i.e. consumers advertising their requirements), and RDM under the control of PCP (and DARP 

under the control of RDM), is responsible for the majority of the QoS requirements.  The only 

requirement of this set that VB does not explicitly support is transport priority, although there is 

an argument that VB’s separation between time-triggered (real-time) and ad-hoc (non-real-time) 

signalling is itself a type of prioritization. 

Halba et al [174] explored the use of reconfigurable networks to enhance the operational safety 

of autonomous vehicles.  They compared a TTE [3] network under the control of an OpenFlow [62] 

SDN to CAN [49] and showed that their simulated SDN implementation is at least equivalent to 

CAN under normal operating conditions and outperforms CAN under network failure conditions, 

principally because a software-defined network is able to self-heal, i.e. re-route critical signalling 

in the event of link or node failures.  PCP and RDM are the means by which VB affords similar self-

healing behaviour. 

Yu and Gu [140] explored routing and scheduling in multi-cast time-sensitive networks.  They 

observed that the dynamic admission of new data flows requires a “novel scheduling approach” 

to avoid disturbing existing flows.  This was a key element of the design of VB: the ability to add a 

new node to the network and have the node cooperate with the network to establish itself as a 

data producer and/or consumer (PCP), form relationships with complementary producer and/or 

consumer nodes (PCP), and establish data flows to service those relationships (RDM and DARP), 

without causing any interference to existing relationships and data flows (DARP). 

Bhowmik et al [15] considered how content-based publish/subscribe middleware might leverage 

the packet-filtering capabilities of software-defined networks (SDN’s) to control forwarding of 

frames.  Publishers report their capabilities to the SDN controller; subscribers report their 

requirements to the controller; and the controller establishes and resources pub/sub relationships 

by installing packet-filtering rules in SDN switches.  They presented their PLEROMA middleware 

that realizes this functionality and evaluated its performance.  Aside from the central-vs-

distributed paradigm differentiation, the reported behaviour is very similar to that of PCP.  

Further, PLEROMA supports multicasting, sharing resources where possible to deliver a data flow 

to multiple subscribers, behaviour that is very similar to that of RDM and DARP. 
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Dürkop et al [120] have considered how OPC UA [16] might be used as configuration middleware 

for several flavours of real-time Ethernet, including Profinet IO, Ethernet/IP using the Common 

Industrial Protocol (CIP), Ethernet Powerlink and Ethercat.  In later work, Dürkop et al [119] 

undertook a high-level analysis of the requirements that would need to be met in order to achieve 

automatic configuration in a similar set of RTE’s. 

Pfrommer et al [202] investigated whether it would be possible to integrate OPC UA41 with IEEE 

TSN, i.e. could a non-real-time-aware publish/subscribe middleware be used successfully to 

organise real-time data flows.  They concluded that modifications were required for the OPC UA 

best-effort components to be able to meet the more prescriptive timing requirements of TSN’s 

traffic scheduling. 

Bruckner et al [60] presented the latest version of OPC UA, OPC UA TSN, explained how the new 

OPC version integrates with IEEE TSN, and estimated performance and scalability figures.  Zhou 

and Shu [121] later reported positively on their experimental results with the implementation of 

a TSN network using OPC UA TSN, in which network configuration (allocation of resources to data 

flows) was controlled by either of the centralized TSN models (user-central or network-central), 

and OPC UA TSN acted as publish/subscribe middleware to determine which data flows should be 

established. 

4.3 Redundant Dataflow Model 

4.3.1 Introduction 

This section details the transport layer service that has been implemented for real-time data flows 

across the Virtual Bus network architecture: the Redundant Dataflow Model (RDM).  In the context 

of the research goals stated in section 1.2.3, the functions and purpose of RDM are: 

• Minimization of single points of failure, particularly by avoiding any master-slave 

arrangements. 

• Support for multicast data flows. 

• Maximization of the reliability and availability of data flows at destinations, particularly 

through the provision of multiple layers of individually scalable redundancy. 

RDM achieves these aims by employing the services of the Distributed Agent Resource Protocol 

(DARP, section 3.5) to construct, maintain and deconstruct sets of replica virtual buses, with each 

virtual bus providing a multicast delivery path from a source node to a set of destination nodes in 

order to service a data flow with an agreed level of reliability and availability.  The data flow is 

replicated at the source and delivered to the set of destinations via every bus replica, affording 

the data flow with redundancy and so increasing the probability that the flow will be delivered 

correctly and completely, i.e. enhancing its reliability.  Further, whilst a data flow is available at 

each destination that has been resourced with at least one replica virtual bus, where a destination 

has been resourced with a set of replicated buses that contains more than one element then the 

availability of the data flow to that destination is enhanced in comparison to a destination serviced 

by a single bus: more than one bus in the set of replicas must fail, e.g. due to a faulty link or node, 

 
41 In its original form, not the more recent OPC UA TSN 
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for the availability of the data flow at that destination to be compromised.  Finally, by supporting 

sets of redundant virtual buses for delivery of a single data flow rather than relying exclusively 

upon a single bus instance, a potential single point of failure is removed. 

 

Figure 4-1 : Progressive Model of the VB Protocol Layer Stack – Transport Layer 

As discussed in section 4.3.1.2 below, this research has made no attempt to replicate existing non-

real-time transport layer protocols.  In particular, although the management network sub-layer 

has a number of similarities to the Internet Protocol [41], and there is no doubt that variations of 

UDP/IP [203] and TCP/IP [42] could be implemented upon it, no work has been undertaken 

towards this end. 

Following this introduction, we begin in section 4.3.2 by reviewing the data flow modular 

redundancy concepts that underpin RDM, and some of RDM’s key concepts are outlined in section 

4.3.3.  The internal operation of RDM, including its interfaces, object model and behavioural 

model, are discussed in Appendix D.3.6.  Section 4.3.4 presents use-cases for a number of common 

connection management scenarios, and section 4.3.5 presents experimentation that explores the 

use-cases as well as some more complex scenarios. 

4.3.1.1 Relationship to the OSI Reference Model 

Recall the purpose of the transport layer as described on page 37 of the OSI reference model: [39] 

7.4.2.1 The transport-service provides transparent transfer of data between session-entities and 

relieves them from any concern with the detailed way in which reliable and cost-effective transfer 

of data is achieved. 

7.4.2.2 The Transport Layer optimizes the use of the available network-service to provide the 

performance required by each session-entity at minimum cost.  This optimization is achieved within 

the constraints imposed by the overall demands of all concurrent session-entities and the overall 

quality and capacity of the network-service available to the Transport Layer. 

7.4.2.3 All protocols defined in the Transport Layer have end-to-end significance, where the ends 

are defined as transport entities having transparent associations.  Therefore, the Transport Layer 

is OSI end open system oriented and transport-protocols operate only between OSI end open 

systems. 

7.4.2.4 The Transport Layer is relieved of any concern with routing and relaying since the network-

service provides data transfer from any transport-entity to any other, including the case of tandem 

subnetworks. 

Physical Layer (1) 

Link Layer (2) 

Network Layer (3) 

Transport Layer (4) 
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7.4.2.5 The transport functions invoked in the Transport Layer to provide a requested service 

quality depend on the quality of the network-service.  The quality of the network-service depends 

on the way the network-service is achieved. 

RDM is a near-verbatim implementation of this description. 

• All interactions with RDM are endpoint-centric.  Higher layers that wish to use the 

services of RDM are presented with a transparent interface that they can use to reliably 

transport data from source endpoints to destination endpoints. 

• RDM no detailed knowledge about the physical routes taken by the virtual buses that it 

uses to transport data; it relies upon the network service of DARP to manage those 

buses. 

• The quality of service provided by RDM can be scaled to suit network capacity 

constraints and the requirements of the requestor. 

4.3.1.2 Extended Transport Layer Protocols 

Note that the protocols mentioned below are conceptual only and are outside the scope of the 

research. 

Transport layer protocols resembling UDP/IP, TCP/IP or the OSI transport protocols could be 

implemented using the management network layer.  These implementations might not be 

particularly efficient due to the small, fixed size of SAF messages. 

An efficient and reliable streaming protocol could be readily implemented using the RDM 

interfaces presented in Appendix D.3.6.  Consider a high-volume unidirectional data transfer 

between a pair of nodes 𝑁𝑎 and 𝑁𝑏, e.g. transfer of a large file, or a high bit-rate but possibly non-

real-time data flow such as a video stream.  If two RDM connections are constructed, the primary 

from 𝑁𝑎 to 𝑁𝑏 with a large capacity and the secondary from 𝑁𝑏 to 𝑁𝑎 with a small capacity, the 

secondary connection can be used for flow control of the primary connection. 

If a large capacity link is required, more than is able to be provided via a single path, then multiple 

disjoint virtual buses could be constructed to the destination. [83]  The capacity of the link is then 

the combined capacity of the disjoint buses, or “multibus”.  There are no constraints besides 

available network capacity that would prevent such a multibus from also being multicast, i.e. 

delivered to several destinations, or affording redundancy.  This concept could also be expanded 

to any situation where there is no single path from source to destination with sufficient capacity, 

e.g. due to existing network utilizations.  That is, the multibus approach could be used to spread 

a virtual bus across several disjoint paths to take advantage of a porous schedule that would 

otherwise be unable to deliver a data flow. 

4.3.2 Modular Redundant Data Flows 

The hard real-time delivery requirement inherent to the problem space of hard real-time 

distributed control systems makes the use of a "reliable" transport layer that is dependent upon 

resending failed messages, like TCP, problematic for any network architecture, and VB is no 

exception.  Even if a traffic network layer return path was to be established from each destination 

to the source for retransmission of missing data fragments, the cyclic operation of the network 

architecture, coupled with the presumption that a dependent control system has a requirement 

to deliver control signals at a particular time and in a particular order, precludes resending faulty 
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fragments of data flows at a later time.  In any case, in order to resend a faulty data fragment via 

the traffic network sub-layer, the delivery path would need to have been resourced with sufficient 

capacity to carry the current interval's data pulse; any faulty fragments from previous interval/s; 

and a description of the relationship of the re-transmitted data fragments to the overall data flow.  

Utilizing the management network sub-layer for either or both ACK/NAK and retransmission is 

also unappealing because it is a store-and-forward network and hence is subject to unpredictable 

and potentially unbounded delays: it cannot meet hard real-time delivery constraints. 

In the absence of a retransmission mechanism, some other means of enhancing the delivery 

reliability of real-time data flows under the VB architecture is desirable.  To this end, VB's 

Redundant Dataflow Model (RDM) transport layer service employs two strategies: flow 

redundancy, and fragment redundancy.  Flow redundancy is the process of sending multiple 

replicas of each data pulse, with each replica traversing a different virtual bus instance; successful 

delivery of any of the set of replica data pulses corresponds to successful (and timely) delivery of 

the data pulse.  Fragment redundancy leverages the fact that each replica of a data pulse is 

constructed from a set of identical fragments, and that any of the replicas of a particular fragment 

are interchangeable at the receiver; the original data pulse can be reconstructed as long as at least 

one replica of each fragment is received. 

4.3.2.1 Flow Redundancy 

Flow redundancy simply involves creating some number of redundant virtual buses and 

transmitting a replica of the data flow over each replica virtual bus.  There is no limit defined for 

the number of redundant buses that may be committed to a particular data flow, but consider 

that each virtual bus instance may consume a proportion of the limited set of network resources.  

In order to constrain resource utilization, higher redundancy counts should be reserved for data 

flows that require greater reliability and/or availability.  Note that there are no implied 

relationships between the network resources committed to each virtual bus replica other than 

the general requirement for all traffic network sub-layer instances: they must be orthogonal in 

one or both of the S- and T-planes.  It is certainly true that it is desirable for all replicas to be 

perfectly disjoint in the S-plane, and the route selection metrics employed by DARP and discussed 

in section 3.5.2 reflect this, but whether it is achievable in practice is a function of network 

topology and resource utilization.  As an implementation issue, it is therefore outside the scope 

of the research. 

 

Figure 4-2 : Configurable Data Flow Redundancy per Destination using Partial Replica Buses 
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It should be noted that the criticality of a data flow may be configured per destination node (DN); 

that is, the level of bus redundancy for each element in the set of DN's receiving a data flow need 

not be identical.  This leads us to the concept of partial replica or incomplete replica buses: 

redundant virtual bus instances that are connected only to a subset of the data flow's destinations.  

Consider Figure 4-2 above in which a data flow 𝐹 is delivered from 𝑁1 to DN's 𝑑(𝐹) = {𝑁3, 𝑁5}, 

where the priority of delivery to 𝑁5 is higher than the priority of delivery to 𝑁3.  Two buses {𝑏1, 𝑏2} 

are created for this data flow; 𝑏(𝑁5) = {𝑏1, 𝑏2} and 𝑏(𝑁3) = {𝑏1}, that is, 𝑏1 connects to both 

destinations, but 𝑏2 connects only to 𝑁5.  𝑏2 is therefore a partial replica of 𝑏1 that is used to 

afford higher reliability and availability to the data flow for 𝑁5, suggesting that the dataflow is 

more critical to 𝑁5. 

The concept of partial replicas is also useful when a DN cannot be added to an existing virtual bus 

due to the requisite network resources being unavailable.  Consider the example in Figure 4-3 

below in which a data flow 𝐹 is delivered from 𝑁1 to DN's 𝑑(𝐹) = {𝑁3, 𝑁5}.  A virtual bus 𝑏1 has 

been constructed to 𝑁3, but due to resourcing conflicts it is not possible to add 𝑁5 to 𝑏1.  Instead, 

an independent virtual bus 𝑏2 is constructed to 𝑁5.  Both 𝑁3 and 𝑁5 receive 𝐹 via virtual buses 

that are partial replicas with respect to one another because 𝑏(𝑁3) ≠ 𝑏(𝑁5). 

 

Figure 4-3 : Data Flow Delivery via Partial Replica Paths 

Data flow redundancy protects availability as well as reliability.  If each replica virtual bus that 

sustains a data flow is perfectly orthogonal in the S-plane of the resource space, i.e. traverses an 

entirely different physical route through the network, then a single physical network break or fault 

will not disrupt the data flow.  RDM leverages virtual bus replication to enhance data flow 

availability by allowing multiple buses, with each ideally following a disjoint sequence of hops 

between nodes, to be constructed to each destination. [108]  Note that bus replicas may follow 

some or all of the same sequence of S-plane hops without compromising the improvements to 

reliability offered by virtual bus replication, and even imperfect S-plane orthogonality across a set 

of replica buses affords enhanced availability in comparison to no replication. 

4.3.2.2 Fragment Redundancy 

Fragment redundancy arises because larger data pulses may need to be fragmented into some 

number of fixed-length time-triggered (TT) messages at the traffic network sub-layer.  When a 

data flow is replicated in order to transmit it via several redundant buses, both the content and 

the delivery order of the fragments that make up each data pulse replica are identical across all 

replicas.  Consequently, the equivalent elements of each set of fragments are interchangeable.  
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The original data pulse can thus be reconstructed at each destination from several damaged 

replica pulses as long as at least one replica of each fragment is received. 

There is an additional requirement for fragment redundancy that has not previously been 

mentioned: the transport layer at the receiver must have knowledge of missing fragments.  For 

example, if a data pulse is transmitted as three fragments {𝑚1, 𝑚2, 𝑚3}, but only two fragments 

{𝑚2, 𝑚3} are delivered to a destination via a particular virtual bus, that destination's transport 

layer must be aware that the fragment 𝑚1 is explicitly missing.  This requirement is satisfied by 

VB because the traffic network sub-layer's use of TDM timeslots allows RDM to track the relative 

positions of fragments within a data pulse.  Consequently, if a data pulse is transmitted as 

{𝑚1, 𝑚2, 𝑚3} but fragment 𝑚1 is missing at the receiver, the traffic network sub-layer reports 

reception of {𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑚2, 𝑚3}, not {𝑚2, 𝑚3}. 

An example of message reconstruction due to fragment redundancy, including an explanatory 

diagram, can be found in section 4.3.4.6 below.  See also section 1.4.5. 

4.3.3 Model Overview 

VB's Redundant Dataflow Model (RDM) is an implementation of a simplex point-to-multipoint 

transport layer that utilizes the modular redundancy strategies discussed in section 4.3.1.2, above, 

in order to improve the availability and reliability of the transport layer connections that it offers 

to higher layers. 

In the context of a transport layer, a Source Node (SN) is an RDM transmission endpoint, and a 

Destination Node (DN) is an RDM reception endpoint.  RDM endpoints are simplex and multicast: 

SN's only transmit data; DN's only receive data; and data injected into a transmission endpoint 

may be delivered to multiple receive endpoints.  Note that, unlike DARP, RDM considers only 

Source and Destination Nodes; the concept of Agent Nodes is not carried over from DARP because, 

as a transport layer implementation, RDM is concerned only with end-to-end connections. 

Another important distinction between RDM and DARP is that RDM endpoints engage in direct 

communication only through the delivery of data flows from SN to DN's using the traffic network 

sub-layer's TT messaging service.  No connection management signalling is exchanged between 

RDM instances; rather, RDM makes use of, and monitors, the traffic network sub-layer's 

construction, maintenance and deconstruction services implemented by DARP, as described in 

section 3.5.2. 

4.3.4 Use-Cases 

The following use-cases illustrate several simple examples of RDM connection manipulation.  They 

are intended to be representative, not exhaustive.  The details of more complex interactions can 

be readily inferred from these examples by applying the principle of superposition. 

4.3.4.1 Opening a Connection 

An RDM connection is to be established from node Na to node Nb with data type = X and 

redundancy count 𝑅𝑐 = 1.  Node Na has already created Distributor D for data type X. 

The following sequence of events maps to Figure 4-4 on page 226. 
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1. Node Nb executes RDM.CreateCollator(), creating Collator C: { Src = Na, Type = X, 𝑅𝑐 = 1 

}. 

2. Collator C creates an array of RxBus of size 1, RXB[]. 

3. RxBus RXB[0] executes DARP.CreateTerminus(), creating Terminus DT: { Src = Na, Type = 

X, BID = 0 }. 

4. Terminus DT fires Collator C's Terminus.Created() event. 

5. Collator C fires Node Nb's Collator.Created() event. 

6. Node Na executes RDM.OpenClient(). 

7. Distributor D creates a Client CL of Distributor D: { Dest = Nb, 𝑅𝑐 = 1 }. 

8. Client CL creates a TxBus, TXB { BusID B }. 

9. Client CL creates a BusClient, BC { Client = CL, Bus = TXB } 

10. TxBus TXB executes DARP.CreateOrigin() and creates Origin DORG: { Type = X, BID = B}. 

11. Origin DORG fires Distributor D's Origin.Created() event. 

12. Distributor D updates BusClient BC: { State = Reserving }. 

13. BusClient BC executes DARP.ConnectTerminus(). 

14. Origin DORG signals to Terminus DT using DARP, and reserves a virtual bus { UBI = Src = 

Na, Type = X, BID = B }. 

15. Terminus DT fires Collator C's Terminus.Connected() event. 

16. Collator C updates RxBus RXB[0]: { BusID = B }. 

17. Collator C fires Node Nb's Collator.Opened() event. 

18. Terminus DT signals to Origin DORG using DARP, reporting that it has accepted a 

connection from virtual bus { UBI = Na, X, B }. 

19. Origin DORG fires Distributor D's Origin.Connected() event. 

20. Distributor D updates BusClient BC { State = Committed }. 

21. Distributor D fires Node Na's Distributor.Opened() event. 

4.3.4.2 Closing a Connection from the Distributor 

The RDM connection example presented in section 4.3.4.1 above is to be gracefully disconnected 

from the Distributor. 

The following sequence of events maps to Figure 4-5 on page 227. 

1. Node Na executes RDM.CloseClient(). 

2. Distributor D updates BusClient BC: { State = Trimming }. 

3. BusClient BC executes DARP.DisconnectTerminus() against Terminus DT. 

4. Origin DORG signals to Terminus DT using DARP, trimming the Terminus from the bus.  

Terminus DT is updated: { BID = 0, State = Idle }. 

5. Terminus DT fires Collator C's Terminus.Disconnected() event. 

6. Collator C updates RxBus RXB[0]: { BusID = 0 }. 

7. Collator C fires Node Nb's Collator.Closed() event. 

8. Terminus DT signals to Origin DORG using DARP, reporting that Node Nb has been 

disconnected from the bus. 

9. Origin DORG fires Distributor D's Origin.Disconnected() event. 

10. Distributor D destroys BusClient BC. 

11. BusClient BC's destruction triggers the destruction of Client CL, because it has no 

BusClients. 
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12. BusClient BC's destruction triggers the destruction of TxBus TXB, because it has no 

BusClients. 

13. TxBus TXB's destruction executes DARP.DestroyOrigin(). 

14. Distributor D fires Node Na's Distributor.Closed() event. 

15. Origin DORG's destruction fires Distributor D's Origin.Destroyed() event. 

4.3.4.3 Closing a Connection from the Collator 

The RDM connection example presented in section 4.3.4.1 above is to be gracefully disconnected 

by destroying its Collator. 

The following sequence of events maps to Figure 4-6 on page 227.  

1. Node Nb executes RDM.DestroyCollator(). 

2. Collator C executes DARP.DestroyTerminus() against Terminus DT. 

3. Collator C destroys RxBus RXB[0]. 

4. Collator C fires Node Nb's Collator.Destroyed() event, then destroys itself. 

5. Terminus DT signals to Origin DORG using DARP, reporting that Node Nb has been 

disconnected from the bus. 

6. Terminus DT fires Collator C's Terminus.Destroyed() event, then destroys itself.  Collator 

C has already been destroyed, so the event has no effect. 

7. Origin DORG fires Distributor D's Origin.Disconnected(). 

8. Distributor D destroys BusClient BC. 

9. BusClient BC's destruction triggers the destruction of Client CL, because it has no 

BusClients. 

10. BusClient BC's destruction triggers the destruction of TxBus TXB, because it has no 

BusClients. 

11. TxBus TXB's destruction executes DARP.DestroyOrigin(). 

12. Distributor D fires Node Na's Distributor.Closed() event. 

13. Origin DORG's destruction fires Distributor D's Origin.Destroyed() event. 

4.3.4.4 Connection Failure 

The RDM connection example presented in section 4.3.4.1 above is unexpectedly disconnected 

due to an unrecoverable network fault. 

The following sequence of events refers to Figure 4-7 on page 228. 

1. Terminus DT detects the network fault that has invalidated its incoming connection from 

virtual bus { Na, X, B }. 

2. Terminus DT attempts to signal to Origin DORG using DARP to report that Node Nb has 

been disconnected from the bus, but is unable to do so due to the network fault. 

3. Terminus DT fires Collator C's Terminus.Disconnected() event. 

4. Collator C updates RxBus RXB[0]: { BusID = 0 }. 

5. Collator C fires Node Nb's Collator.Closed() event. 

6. Origin DORG detects the network fault that has invalidated its only outbound 

connection.  It does NOT know which nodes have been disconnected. 

7. Origin DORG fires Distributor D's Origin.Disconnected(). 

8. Distributor D destroys BusClient BC. 
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9. BusClient BC's destruction triggers the destruction of Client CL, because it has no 

BusClients. 

10. BusClient BC's destruction triggers the destruction of TxBus TXB, because it has no 

BusClients. 

11. TxBus TXB's destruction executes DARP.DestroyOrigin(). 

12. Distributor D fires Node Na's Distributor.Closed() event. 

13. Origin DORG's destruction fires Distributor D's Origin.Destroyed() event. 
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4.3.4.5 Sequence Diagrams 

 

 

Figure 4-4 : Opening an RDM Connection Sequence Diagram 

 

Na: RDM.Node D[X]: Distributor Nb: RDM.Node

C[Na,X,1]: Collator

CL[Nb,1]: Client

TXB[B}: TxBus

BC[Nb,B]: 
BusClient

DORG[X,B]: Origin

RXB[0,?]: RxBus

DT[Na,X,?]: Terminus

1: CreateCollator(Na)

2:Create

3: CreateTerminus(Na,X)

4: Created(1)
5: Created

6: OpenClient(Nb,X,1)
7:Create(Nb,1)

8:Create(B)

9:Create(Nb,B)

10: CreateOrigin(B)

11: Created(B)

13: ConnectTerminus(Nb)

15: Connected(B)

17: Opened(Na,X,B)

18: Connected(Nb,X,B)
19: Connected(Nb,B)

21: Opened(Nb,X)
20: Committed

The Collator must be 
created and resourced 

(with a DARP Terminus) 
before the Distributor 

attempts to open a 
connection.

14: Connect(Nb,X,B)

16: Connected(B)

12: Reserving
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Figure 4-5 : Closing an RDM Connection from the Distributor Sequence Diagram 

 

 

Figure 4-6 : Closing an RDM Connection from the Collator Sequence Diagram 

DORG[X,B]: OriginBC[Nb,B]: BusClientTXB[B]: TxBusNa: RDM.Node D[X]: Distributor Nb: RDM.Node C[Na,X,1]: CollatorCL[Nb,1]: Client RXB[0][B]: RxBus DT[Na,X,B]: Terminus

1: CloseClient(Nb,X)

3: DisconnectTerminus(Nb)

2: Trimming

4: DARP.Msg.TRIM(Nb)

5: Terminus.Disconnected(B)

7: Collator.Closed(Na,X)

8: DARP.Tok.TRIMMED(Nb)

6: Disconnected(B)

9: Origin.Disconnected(Nb,B)

14: Distributor.Closed(Nb,X)

10: Destroy

11: Destroy

12: Destroy

13: DestroyOrigin(X,B)

15: Origin.Destroyed(B)

DT[Na,X,B]: TerminusNb: RDM.Node C[Na,X,1]: Collator RXB[0][B]: RxBus

1: DestroyCollator(Na,X)
2: DestroyTerminus(Na,X,B)

3: Destroy
4: Collator.Destroyed(Na,X)

5: DARP.Tok.TRIMMED(Nb)

6: Terminus.Destroyed(Na,X,1)

DORG[X,B]: OriginBC[Nb,B]: BusClientTXB[B]: TxBusNa: RDM.Node D[X]: Distributor CL[Nb,1]: Client

6: Origin.Disconnected(Nb,B)

12: Distributor.Closed(Nb,X)

7: Destroy

8: Destroy

9: Destroy

10: DestroyOrigin(X,B)

11: Origin.Destroyed(B)
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Figure 4-7 : RDM Connection Failure Sequence Diagram 

 

 

Na: RDM.Node D[X]: Distributor Nb: RDM.Node C[Na,X,1]: CollatorCL[Nb,1]: Client TXB[B}: TxBus BC[Nb,B]: BusClient DORG[X,B]: Origin RXB[0,B]: RxBus DT[Na,X,B]: Terminus

1: DARP.Tok.RELEASE

2: DARP.Msg.TRIMMED(Nb,X,B)

3: Terminus.Disconnected(B)

4: Disconnected(B)
5: Collator.Closed(Na,X,B)

6: DARP.Tok.BREAK

7: Origin.Failed(B)

14: Distributor.Closed(Nb,X)

9: Destroy

10: Destroy

11: Destroy

12: DestroyOrigin(X,B)

13: Origin.Destroyed(B)

8: Distributor.Failed(B)
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4.3.4.6 Fragment Redundancy 

 

Figure 4-8 : Data Flow Example 

In Figure 4-8 above, nodes 𝑁𝑎 and 𝑁𝑏 are both connected to a VB network.  A transport layer 

connection has been opened between them; 𝑁𝑎 delivers a data flow 𝐹 of type 𝑋, 𝑊 = 3, and 

𝑅𝑐 = 2 to 𝑁𝑏.  DARP has been used to create two virtual buses between the nodes, 𝑏0 and 𝑏1.  𝑏0 

leaves 𝑁𝑎 via IF0 using timeslots 𝑇0 = {0,1,2} and arrives at 𝑁𝑏 via IF1.  𝑏1 departs 𝑁𝑎 via IF1 using 

timeslots 𝑇1 = {2,3,4} and arrives at 𝑁𝑏 via IF2. 

 

Figure 4-9 : SN Object Diagram for Figure 4-8 

 

Figure 4-10 : DN Object Diagram for Figure 4-8 
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Figure 4-11 : Distribution of Message Replicas to Several Paths 

Figure 4-11 above shows the operation of the connection as data is transmitted by the distributor. 

During the traffic phase of each interval, the Distributor in 𝑁𝑎 transmits a data flow 𝐹 to the 

collator in 𝑁𝑏.  The contents of the Distributor's transmit buffer is fragmented into three TT 

messages, such that 𝐹 = {𝑚0, 𝑚1, 𝑚2} and the set of messages is replicated such that 𝐹0 = 𝐹1 =

𝐹.  𝐹0 is transmitted over virtual bus 𝑏0, so 𝐹0. 𝑚0 is transmitted in timeslot 0 from IF0; 𝐹0. 𝑚1 is 

transmitted in timeslot 1 from IF0; and 𝐹0. 𝑚2 is transmitted in timeslot 2 from IF0.  Similarly, 𝐹1 

is transmitted over virtual bus 𝑏1, so 𝐹1. 𝑚0 is transmitted in timeslot 2 from IF1; 𝐹1. 𝑚1 is 

transmitted in timeslot 3 from IF1; and 𝐹1. 𝑚2 is transmitted in timeslot 4 from IF1. 

 

Figure 4-12 : Collation of Message Replicas from Several Paths 

Figure 4-12 above shows the operation of the connection as data is delivered to the collator. 

When the traffic phase has completed, the Collator in 𝑁𝑏 unloads the messages from the 

terminuses for virtual buses 𝑏0 and 𝑏1.  All of the messages for 𝐹1 arrive intact, but 𝐹0. 𝑚1 has 

been corrupted due to a signalling error.  Fortunately, 𝐹 can be reconstructed by using message 

𝐹1. 𝑚1 to replace the missing fragment 𝐹0. 𝑚1; the payloads from fragments 

{𝐹0. 𝑚0, 𝐹1. 𝑚1, 𝐹0. 𝑚2} are transferred to the Collator's receive buffer.  The data pulse has been 

successfully transported from 𝑁𝑎 to 𝑁𝑏. 

𝐹 

𝑚0 𝑚1 𝑚2   

0 1 2 3 4 5 

0 

1 

2 

3 

𝑚0 𝑚1 𝑚2 

𝑚0 𝑚1 𝑚2 In
te

rf
ac

es
 (

S)
 

Timeslots (T) 

𝐹0 
  

𝐹1 
  

𝐹 

𝐹0. 𝑚0 𝐹1. 𝑚1 𝐹0. 𝑚2   

0 1 2 3 4 5 

0 

1 

2 

3 

𝑚0 𝑒𝑟𝑟 𝑚2 

𝑚0 𝑚1 𝑚2 

In
te

rf
ac

es
 (

S)
 

Timeslots (T) 

𝐹0 
  

𝐹1 
  



Page 231 

 

4.3.5 Experimentation 

4.3.5.1 Introduction 

4.3.5.1.1 Aim 

The following series of experiments is designed to demonstrate that RDM: 

• Gracefully handles construction, maintenance and deconstruction of redundant data 

flows. 

• Supports redundant multicast data flows, including multicast data flows for which 

destinations have different levels of redundancy. 

• Maximizes reliability and availability of data flows by providing multiple layers of 

individually scalable redundancy. 

Experiments 1 through 4 experimentally replicate several of the simple RDM use-case analyses 

presented in section 4.3.4.  Experiments 5 and 6 explore more complex and challenging use-cases 

that were not discussed in section 4.3.4, but that are pertinent to understanding how RDM 

responds to situations that are likely to occur in practice. 

4.3.5.1.2 Sources of Error 

Refer to section 3.5.4.1.2 for a discussion of the sources of error that typically affect VB’s signalling 

protocols and protocol reporting at layer 3 and up. 

Note also that due to the order in which events and behaviour are reported, lower-level (in terms 

of protocol stack layers) activity may be timestamped before the higher-level activity that triggers 

it.  For example, when RDM takes control of DARP in order to construct a virtual bus, the RDM 

event that signals that bus construction is about to commence is generally reported after DARP 

transmits the RESERVE Token that corresponds to that RDM event. 

4.3.5.2 Experiment 1 – Opening a Redundant Connection 

4.3.5.2.1 Aim 

Realize in practice the theoretical use-case presented in section 4.3.4.1, extended to support a 

replica count 𝑅𝑐 = 3.  Explore the optimality of the path selection algorithm term weights, per 

section 3.5.2.1.1 and (3-9). 

4.3.5.2.2 Method 

 

Figure 4-13 : RDM experimentation network configuration for Experiments 1 – 4 
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The interfaces of every node are configured as shown for N4; IF0 at 6 o’clock, IF1 at 12 o’clock, IF2 

at 3 o’clock and IF3 at 9 o’clock.  All links are short (approximately 30cm). 

4.3.5.2.2.1 Part 1 

1. Configure the network as shown in Figure 4-13 above. 

2. Create a Distributor in N2 with Type=0x1234, Width=1. 

3. Create a Collator in N6 with Type=0x1234, 𝑅𝑐 = 3, Width=1. 

4. Connect the Distributor to the Collator by creating an RDM Client. 

5. Record all RDM and DARP reports, traffic and objects. 

4.3.5.2.2.2 Part 2 

6. Repeat steps 1 through 4 of Method Part 1 several times, incrementing Width by 1 each 

time, until a different outbound interface is consistently selected for each of the replica 

paths. 

7. Record all RDM and DARP reports, traffic and objects. 

4.3.5.2.3 Observations 

4.3.5.2.3.1 Part 1 
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Table 4-1 : Signalling and reporting during construction of a 1-wide redundant dataflow 

Node Layer Class Properties 

N2 RDM Distributor 

N2 DARP Origin 

N5 DARP Switch 

N6 RDM Collator 

N6 DARP Terminus 

Table 4-2 : VB objects supporting construction of a 1-wide redundant dataflow 

4.3.5.2.3.2 Part 2 
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Table 4-3 : Signalling and reporting during construction of a 5-wide redundant dataflow 

Node Layer Class Properties 

N2 RDM Distributor 

N2 DARP Origin 

N3 DARP Switch 

N4 DARP Switch 

N5 DARP Switch 

N6 RDM Collator 

N6 DARP Terminus 

Table 4-4 : VB objects supporting construction of a 5-wide redundant dataflow 
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4.3.5.2.4 Analysis 

The layered and sequential process of redundant virtual bus construction is quite evident.  Each 

replica is constructed independently and finalized before the next replica is constructed.  All of 

the signalling and events for each bus replica, as reflected by its Bus ID, are grouped together 

chronologically and with no overlaps between replicas.  Each replica follows a disjoint path with 

respect to the other replicas. 

Average replica creation time over two hops was 4.058ms with a standard deviation of 0.663ms.  

However, total creation times for each Part were 527ms and 659ms respectively.  This is due to 

the insertion of a random delay between replica construction attempts of between 

RDM_CLIENT_BACKOFF_MIN_PERIOD = 100ms and RDM_CLIENT_BACKOFF_MAX_PERIOD = 

500ms.  The purpose of these randomized delays is to reduce the risk that one redundant bus 

construction process might be able to monopolize signalling capacity and singlehandedly consume 

an excessive share of resources. 

Part BID Measured (µs) 
Traffic 

Overlap (µs) Actual (µs) 
Inter-Replica 

Delay (µs) 

1 139 7,001 2,281 4,720 N/A 

1 140 3,999 0 3,999 105,999 

1 141 8,000 3,285 4,715 401,997 

2 59 8,000 5,000 3,000 N/A 

2 60 7,000 2,486 4,514 404,998 

2 61 3,397 0 3,397 235,602 

Table 4-5 : Replica bus construction times 

4.3.5.2.5 Conclusions 

RDM successfully used DARP to establish three related redundant virtual bus instances.  However, 

the performance of the DARP RESERVE forwarding algorithm proved to be weaker at finding 

disjoint paths for replica buses than is desirable.  The problem may be able to be corrected with 

better selection of term weights for the DARP path selection algorithm at (3-9). 

4.3.5.3 Experiment 2 – Closing a Redundant Connection from the Distributor 

4.3.5.3.1 Aim 

Realize in practice the theoretical use-case presented in section 4.3.4.2, extended to support a 

redundancy count 𝑅𝑐 = 3. 

4.3.5.3.2 Method 

1. Prepare the system as described above in section 4.3.5.2.2. 

2. Destroy the Distributor in N2. 

3. Record all RDM and DARP reports, traffic and objects. 
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4.3.5.3.3 Observations 

Table 4-6 : Signalling and reporting during Distributor-triggered deconstruction of a redundant dataflow 

Node Layer Class Properties 

N6 RDM Collator 

N6 DARP Terminus 

Table 4-7 : VB objects following deconstruction of a redundant dataflow 

4.3.5.3.4 Analysis 

Note that, because Bus ID’s are assigned randomly, the Bus ID range for the redundant bus 

constructed for this experiment is 93-95.  This range equates to and has a 1-to-1 correlation with 

the Bus ID’s 123-125 that were observed in Experiment 1. 

When the RDM Distributor is destroyed, the dependent DARP Origins are also destroyed, causing 

the network resources allocated to the three redundant virtual bus instances to be deallocated 

with RELEASE Tokens. 

4.3.5.3.5 Conclusions 

RDM successfully used DARP and the source termination method of emitting RELEASE Tokens to 

destroy three related redundant virtual bus instances. 
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4.3.5.4 Experiment 3 – Closing a Redundant Connection from the Collator 

4.3.5.4.1 Aim 

Realize in practice the theoretical use-case presented in section 4.3.4.3, extended to support a 

redundancy count 𝑅𝑐 = 3. 

4.3.5.4.2 Method 

1. Prepare the system as described above in section 4.3.5.2.2. 

2. Destroy the Collator in N6. 

3. Record all RDM and DARP reports, traffic and objects. 

4.3.5.4.3 Observations 

Table 4-8 : Signalling and reporting during Collator-triggered deconstruction of a redundant dataflow 
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Node Layer Class Properties 

N2 RDM Distributor 

Table 4-9 : VB objects following Collator-triggered deconstruction of a redundant dataflow 

4.3.5.4.4 Analysis 

Note that, because Bus ID’s are assigned randomly, the Bus ID range for the redundant bus 

constructed for this experiment is 103-105.  This range equates to and has a 1-to-1 correlation 

with the Bus ID’s 123-125 that were observed in Experiment 1. 

When the RDM Collator is destroyed, the dependent DARP Terminuses are also destroyed, causing 

the network resources allocated to the three redundant virtual bus instances to be deallocated 

with TRIM Tokens. 

4.3.5.4.5 Conclusions 

RDM successfully used DARP and the destination termination method of emitting TRIM Tokens to 

destroy three related redundant virtual bus instances. 

4.3.5.5 Experiment 4 – Repairing a Redundant Connection 

4.3.5.5.1 Aim 

Realize in practice the theoretical use-case presented in section 4.3.4.4, extended to support a 

redundancy count 𝑅𝑐 = 3. 

4.3.5.5.2 Method 

1. Prepare the system as described above in section 4.3.5.2.2. 

2. Disable the network link between 4.2 and 6.3 at N4. 

3. Record all RDM and DARP reports, traffic and objects. 

4.3.5.5.3 Observations 

Table 4-10 : Signalling and reporting during repair of a redundant dataflow 
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Node Layer Class Properties 

N2 RDM Distributor 

N2 DARP Origin 

N3 DARP Switch 

N5 DARP Switch 

N6 RDM Collator 

N6 DARP Terminus 

Table 4-11 : VB objects following repair of a redundant dataflow 

4.3.5.5.4 Analysis 

Note that, because Bus ID’s are assigned randomly, the Bus ID range for the redundant bus 

constructed for this experiment is 106-108.  This range equates to and has a 1-to-1 correlation 

with the Bus ID’s 123-125 that were observed in Experiment 1. 

The DARP instance in N4 responded in 0.914ms to the failure of the link to N6 and the resulting 

failure of BID108 by emitting a BREAK Token upstream.  N6 detected the link failure in 0.630ms 

and responded with a TRIMMED Message to N2 that evidently was able to find its way around the 

failed link. 

5.079s after the BREAK Token arrived at N2, BID109 was created, replacing BID108, and a RESERVE 

Token for it was emitted.  Note that the ~5s RDM rebuild delay was randomly selected in the range 

RDM_CLIENT_REBUILD_MIN_PERIOD = 5000ms to RDM_CLIENT_REBUILD_MAX_PERIOD = 

10000ms. A further 8.810ms later, RDM had finalized its repairs. 

4.3.5.5.5 Conclusions 

RDM successfully detected and acted upon DARP signalling that one of a set of redundant virtual 

bus instances had been “broken” by a network fault, restoring the contracted levels of reliability 

and availability by instructing DARP to create a replacement replica of the virtual bus. 
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However, it should be noted that while the replacement redundant bus instance is temporally 

disjoint, it is not spatially disjoint: it traverses exactly the same path through the S-plane as one of 

the other replicas. 

4.3.5.6 Experiment 5 – Opening a Multi-Drop Redundant Data Flow with Partial 

Replicas 

4.3.5.6.1 Aim 

Review the ability of RDM to manage a redundant virtual bus that delivers different replica counts 

to several destinations. 

4.3.5.6.2 Method 

1. Configure the network as shown in Figure 4-14 below. 

2. Create a Distributor in N2 with Type=0x1234, Width=1. 

3. Create a Collator in N3 with SN=2, Type=0x1234, Width=1, 𝑅𝑐 = 2. 

4. Create a Collator in N4 with SN=2, Type=0x1234, Width=1, 𝑅𝑐 = 3. 

5. Create a Collator in N5 with SN=2, Type=0x1234, Width=1, 𝑅𝑐 = 1. 

6. Connect the Distributor to the Collators, in the order N3, N4, N5, by creating RDM 

Clients. 

7. Record all RDM and DARP reports, traffic and objects. 

 

Figure 4-14 : RDM experimentation network configuration for Experiment 5 

The interfaces of every node are configured as shown for N3; IF2 at 3 o’clock and IF3 at 9 o’clock.  

All links are short (approximately 30cm). 

4.3.5.6.3 Observations 

N2 N3 N5 N4 
3 

2 
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Table 4-12 : Signalling and reporting when opening a multi-drop redundant data flow with partial replicas 

Node Layer Class Properties 

N2 RDM Distributor 

N2 DARP Origin 
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Node Layer Class Properties 

N3 RDM Collator 

N3 DARP Terminus 

N3 DARP Switch 

N4 RDM Collator 

N4 DARP Terminus 

N4 DARP Switch 

N5 RDM Collator 

N5 DARP Terminus 

Table 4-13 : VB objects following opening a multi-drop redundant data flow with partial replicas 

4.3.5.6.4 Analysis 

Virtual buses with BID21 and 22 were constructed from N2 to N3.  BID21 and 22 were then 

extended to N4, and an additional virtual bus BID23 was also constructed to N4.  Finally, BID21 

was extended to N5.  All of this behaviour is consistent with expectations. 

Note that at t=432,830,105, N2 begins the process of branching both BID21 and 22 to N4, and 

Tokens for both branches are live in the network at the same time.  As discussed in Appendix 

D.3.5.7.2, this behaviour is permitted because the timeslots assigned to each bus were 

determined when the bus was committed to N3. 

4.3.5.6.5 Conclusions 

RDM and DARP behaved as expected.  Redundant data flows with different redundancy counts 

were successfully opened to several destinations.  Network resources were re-used efficiently 

where possible by branching existing virtual buses rather than constructing new replicas. 
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4.3.5.7 Experiment 6 – Independent Repair of Replica Virtual Buses 

4.3.5.7.1 Aim 

Given a redundant data flow to multiple destinations that is serviced by two virtual buses, review 

the ability of RDM to detect a network fault that partially compromises one replica bus and control 

DARP so as to repair only the damaged section of the compromised replica. 

4.3.5.7.2 Method 

4.3.5.7.2.1 Part 1 

1. Configure the network as shown in Figure 4-15 below. 

2. Create a Distributor in N2 with Type=0x1234, Width=1. 

3. Create a Collator in N3 with SN=2, Type=0x1234, Width=1, 𝑅𝑐 = 2. 

4. Create a Collator in N5 with SN=2, Type=0x1234, Width=1, 𝑅𝑐 = 1. 

5. Connect the Distributor to the Collators by creating RDM Clients. 

4.3.5.7.2.2 Part 2 

6. Disable the network link between 3.2 and 5.3 at N5. 

7. Record all RDM and DARP reports, traffic and objects. 

 

Figure 4-15 : RDM experimentation network configuration for Experiment 6 

The interfaces of every node are configured as shown for N3; IF0 at 6 o’clock, IF1 at 12 o’clock, IF2 

at 3 o’clock and IF3 at 9 o’clock.  All links are short (approximately 30cm). 

4.3.5.7.3 Observations 

4.3.5.7.3.1 Part 1 

N2 N3 

N4 

N5 

N6 

3 

2 
1 

0 
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Table 4-14 : Signalling and reporting when constructing partial replica virtual buses 

Node Layer Class Properties 

N2 RDM Distributor 

N2 DARP Origin 

 

N3 RDM Collator 

 

N3 DARP Terminus 

 

N3 DARP Switch 

 

N5 RDM Collator 

 

N5 DARP Terminus 

 

Table 4-15 : VB objects supporting partial replica virtual buses 
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4.3.5.7.3.2 Part 2 

Table 4-16 : Signalling and reporting when repairing partial replica virtual buses 

Node Layer Class Properties 

N2 RDM Distributor 

N2 DARP Origin 

N3 RDM Collator 

N3 RDM Terminus 

N4 DARP Switch 
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Node Layer Class Properties 

N5 RDM Collator 

N5 DARP Terminus 

N6 DARP Switch 

Table 4-17 : VB objects following repair of partial replica virtual buses 

4.3.5.7.4 Analysis 

The data flows opened as expected in Part 1: replica virtual buses with BID 134 and 135 were 

connected to N3, and BID 134 was also connected to N5 by branching through a switch at N3. 

When the network link between 3.2 and 5.3 was broken at the start of Part 2, N3 sent a BREAK 

Token for BID 134 to N2, and N5 sent a TRIMMED message.  In spite of the BREAK Token, N2 was 

aware that at least one RDM Client remained connected via IF2 so it did not destroy BID 134.  N2 

did not receive the TRIMMED message, apparently because of an implementation fault in the SAF 

forwarding algorithm that did not correctly handle the previously optimal SAF transmission 

interface being unavailable (due to it having been disabled).  This fault has since been corrected. 

~10s after the simulated network fault, corresponding to five failures on the part of N5 to respond 

to a REFRESH Token from N2, N2 dropped N5 from BID 134.  RDM then instructed DARP to connect 

BID 134 to N5, and DARP successfully identified the alternate path via N4 and N6 and branched 

BID 134 at the SN. 

4.3.5.7.5 Conclusions 

Absent the fault in the SAF forwarding algorithm, RDM behaved as expected. 

4.3.5.8 Conclusions 

This set of experiments has demonstrated that the implementation of RDM behaves as intended, 

for the most part, although Experiment 6 highlighted an implementation fault that has since been 

corrected.  RDM takes effective control of DARP, such that: 

• Redundant data flows can be opened on demand. 

• Redundant multicast data flows can employ different redundancy counts to different 

destinations, i.e. partial replicas are supported. 

• Redundant data flows can be gracefully closed on demand from either the source 

(Distributor) or destination (Collator). 

• If a virtual bus under the control of RDM is compromised by a network fault, RDM will 

attempt to repair the fault by instructing DARP to re-route the bus. 
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4.4 Producer-Consumer Protocol 

4.4.1 Introduction 

This section details the session layer service specified for the Virtual Bus network architecture: the 

Producer-Consumer Protocol (PCP).  The functions and purposes of PCP are:  

• Minimization of single points of failure, particularly by avoiding any master-slave 

arrangements. 

• A dynamic multi-hop membership service. 

• Self-forming and self-healing data delivery arrangements between active members. 

• Support for multicast data flows. 

• Maximization of the reliability and availability of data flows at destinations, particularly 

through the provision of multiple layers of individually scalable redundancy. 

 

Figure 4-16 : Progressive Model of the VB Protocol Layer Stack – Session Layer 

An enhanced dynamic multi-hop membership service [48], over and above that provided by the 

Network Mapping Service (NMS, section 3.4), is afforded by the ability of each node to publish its 

availability as a member of the sets of potential producers and consumers of data flows of a 

particular type.  Multicast data flows are also supported by PCP: a producer may establish 

relationships with a set of consumers of any size and deliver data flows to all of the members of 

that set using the multicasting services of RDM and DARP. 

Relationships between producers and consumers are self-forming, requiring only that a producer 

and consumer be connected to the same network in order to locate one another, negotiate a 

relationship and resource the data flows required to service that relationship.  Similarly, they are 

self-healing: if some or all of the network resources have been committed to servicing a 

relationship are compromised, the failure will be detected and either new resources committed 

or a new relationship with a different producer will be established. 

Reliability, availability, and the removal of potential single points of failure are afforded by source 

diversity, i.e. allowing a consumer to establish relationships with a set of replica producers rather 

than being limited to a single producer.  If a member of the set of producers becomes faulty and 

begins to produce bad data, or loses connectivity to the consumer, the consumer can hope to rely 

on the viable replicas whilst it self-heals by searching for an alternative producer to append to the 

set of replicas.  As long as at least one member of the set of producers is viable, the required data 

is available to the consumer. 

Physical Layer (1) 

Data Link Layer (2) 

Network Layer (3) 

Transport Layer (4) 

Session Layer (5) 
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Following this introduction, we begin in section 4.4.2 by reviewing some of the key concepts 

underpinning VB’s rationale for incorporating a producer-consumer model, and section 4.4.3 

presents a simple overview of PCP.  The internal operation of PCP, including its interfaces, object 

model and behavioural model, are discussed in Appendix D.3.7.  Section 4.4.4 presents use-cases 

for a number of common relationship management scenarios, and section 4.4.5 presents 

experimentation that explores the use-cases as well as some more complex scenarios. 

4.4.1.1 Relationship to the OSI Reference Model 

Recall the purpose of the Session Layer as described on page 35 of the OSI reference model: [2] 

7.3.2.1: The purpose of the Session Layer is to provide the means necessary for cooperating 

presentation-entities to organise and to synchronize their dialogue and to manage their data 

exchange.  To do this, the Session Layer provides services to establish a session-connection 

between two presentation-entities, to support orderly data exchange interactions, and to release 

the connection in an orderly manner. 

VB's producer-consumer model approach to session management maps well to the OSI model's 

session layer concept because of the nature of the services that it provides: establishment and 

management of data flow relationships between data producers and data consumers that are 

"cooperating presentation-entities".  Note that unlike the OSI reference model, the producer-

consumer model implemented by VB provides only simplex point-to-multipoint connections; half- 

or full-duplex connections are not supported, and connectionless mode is not supported. 

Consider the services provided by the OSI session layer to the presentation layer (or, higher 

network layers) in connection mode: 

7.3.3.1.1: In connection-mode, the services provided by the Session Layer are described below: 

a) session-connection establishment 

b) session-connection release 

c) normal data transfer 

d) expedited data transfer 

e) token management 

f) session-connection synchronization 

g) exception reporting 

h) activity management 

j) typed data transfer 

k) resynchronization 

PCP supports services a), b), d), g) and j).  Normal data transfer c) is out of scope for this research 

because the VB transport layer and traffic network sub-layer implementations explicitly provide 

only an expedited data service.  Token management e) is not required because of the simplex 

nature of VB real-time traffic.  Synchronization f) and k), and activity management h) are also out 

of scope for this research.  All of the out of scope services – c), f), k) and h) – could be implemented 

under VB in the future. 



Page 249 

 

4.4.2 The Producer-Consumer Model 

In a distributed control system, the components of the system are not closely coupled either 

physically or logically. Vehicular control systems generally fit this description; although all of the 

control system components are likely contained within the vehicle, they are generally in separate 

locations and, depending on the size of the vehicle, may be many tens of meters apart.  For 

example, in a simple model of an aircraft equipped with a fly-by-wire control system, the pilot or 

autopilot provides input at one location; that input is sent to a flight computer, validated, and 

translated into instructions to servo motors; the instructions are sent to servo motors controllers; 

and the controllers and motors transform the control signals into movement of control surfaces.  

Simultaneously, sensors throughout the airframe continuously send reports to the flight computer 

of the aircraft's altitude, orientation and velocity and the positions of control surfaces, engine 

speed, etc. [104] 

At a minimum, a vehicle control system (autonomous or otherwise) can be expected to include at 

least the following module types: 

• Sensors to detect current movement and/or position state; 

• An operator agent of some kind, either external or internal, that determines when a new 

movement or position state is required and what the new state will be; 

• One or more intermediate controllers that determine how to transition from the current 

state to the required state; and  

• Actuators to alter the current state towards the required state. 

Recall Figure 1-25, replicated here: 

 

Within the context of the control system, these modules produce data; consume data; or both 

produce and consume data.  In each case, the type of data that is produced or consumed is defined 

by the type of module - sensors produce sensor readings; operator agents produce state change 

commands; controller modules consume sensor readings and state change commands, and 

produce actuator commands; and actuators consume actuator commands. 

Control data is not produced once by a module, it is produced continuously and, ideally, with a 

well-defined periodicity. [36][81]  This implies that the producer-consumer relationships between 

control system modules must be maintained over the longer term in order to maintain effective 

control.  Producer-consumer relationships are thus sessions within the meaning of the OSI 
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Controller Actuators 

Implied feedback 
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reference model, hence the positioning of the producer-consumer model, including its' attendant 

signalling protocol and underlying data, interface and behavioural models, at the session layer in 

the VB architecture's protocol stack. 

A modular redundant distributed control system extends the model shown in Figure 1-25 into that 

of Figure 1-28, replicated here, by adding redundancy: each module, and the data flows between 

modules, is, or may be, replicated, with the replica modules and data flows protecting control 

system reliability and availability through redundancy. 

 

The VB architecture abstracts the concept of data producers and consumers into a model that 

enables a distributed real-time control system to establish relationships between nodes that are 

able to produce data with particular characteristics, and nodes that wish to consume data with 

matching characteristics.  By way of example, a 6-axis accelerometer, an altimeter and an air speed 

sensor are all sensors that produce data, as discussed in section 4.4.1.1 above, but the data that 

each type of sensor produces has a distinct meaning and purpose.  Each type of sensor produces 

"sensor data", but their products are not interchangeable. 

VB's producer-consumer model abstracts data producers and consumers into a simple 

description: the data type and data rate produced or consumed.  Modular redundancy is 

abstracted by allowing a data consumer to build relationships with a number of data producers.  

Within each consumer of a particular data type, each relationship that it forms with a 

corresponding data producer is treated as an independent but equivalent, and hence 

interchangeable, module.  A consumer thus requires an additional descriptor: the producer 

redundancy count, or 𝑃𝑐.  A consumer's 𝑃𝑐 is the number of matching producers with which it will 

try to build and maintain relationships. 

Although this producer-consumer model allows for and expects relationship redundancy, it does 

not specify any particular redundancy implementation.  No voting, averaging or filtering algorithm 

is used to synthesize a single harmonized data flow from the producer-consumer model's set of 

redundant data flows; that would be a function of the Presentation layer, and hence is outside of 

the scope of this research.  Instead, all of the members of the set of redundant data flows received 

by a consumer are forwarded unaltered to the requesting process, which is responsible for 

implementing its own presentation layer. 
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4.4.3 Protocol Operation 

The Virtual Bus Producer-Consumer Protocol (PCP) is responsible for constructing, maintaining 

and deconstructing long-term producer-consumer relationships between network nodes.  In this 

context, a producer produces and transmits data flows of a particular type and volume; and a 

consumer receives and makes use of suitable data flows from one or more producers.  The data 

flows are implemented at the transport layer; that is, the session layer instructs the transport layer 

to construct, manage and deconstruct data flows.  The transport layer is in turn responsible for 

reporting any changes in the status of those data flows to the session layer, and transporting data 

flows between session layer endpoints. 

The VB network architecture assumes that each network node's session layer instance represents 

a point of presence in a network for a control system module.  This control system module is 

further assumed to have definite responsibilities in the control system as a data producer, a data 

consumer, or both.  If a node wishes to consume a particular type of data, it must locate a partner 

node that is able to produce the required type of data, and negotiate a delivery contract.  

Negotiation of data delivery contracts is the responsibility of PCP. 

PCP incorporates redundancy by allowing a consumer to negotiate with multiple producers to 

deliver a number of independent flows of the same type of data.  The session layer does not make 

any determination about the value of the data flow delivered by each producer; each producer's 

data is simply passed up the protocol stack. 

Data consumers drive the operation of PCP.  Producers do not push offers of their service to 

consumers; rather, consumers pull offers of service from producers.  That is, Producers push data 

flows [82] while consumers pull producer-consumer relationships.  When a consumer has 

successfully negotiated 𝑃𝑐 relationships with matching producers, it ceases to publish 

advertisements for more producers. 

PCP relies upon the transport layer, RDM, for its connection management and data flow transport 

services.  In the course of providing connection management, RDM "reports the condition of its 

data flows upwards to the requesting process".  PCP monitors RDM's status reports in order to 

inform its behavioural decisions. 

4.4.4 Use Cases 

The following use-cases illustrate several simple examples of PCP relationship manipulation.  They 

are intended to be representative, not exhaustive.  The details of more complex interactions can 

be readily inferred from these examples. 

4.4.4.1 Establishing a Relationship 

Node Na produces data type X.  Node Nb determines that it wishes to consume data type X with 

𝑃𝑐 = 1 and 𝑅𝑐 = 1, and advertises to that effect.  Node Na has already created a Producer P for 

data type X, and a Distributor D for data type X.  When Node Na receives the advertisement from 

Node Nb, it responds by offering its services. 

The following sequence of events maps to Figure 4-4 on page 226. 

1. Node Nb executes PCP.CreateConsumer(), creating Consumer CN: { Type = X, 𝑃𝑐 = 1, 

𝑅𝑐 = 1}. 
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2. Consumer CN broadcasts a Cons.ADVERT signal that is received by Producer P. 

3. Producer P sends a Prod.ADVERT signal to Consumer CN. 

4. Consumer CN accepts the advertisement from Producer P and creates ConsReln CR: { Src 

= Na, 𝑅𝑐 = 1}. 

5. Consumer CN executes RDM.CreateCollator() in order to resource ConsReln CR, creating 

Collator C: { Src = Na, Type = X, 𝑅𝑐 = 1, BusID = ? }. 

6. Collator C sends the Collator.Created() event to ConsReln CR. 

7. ConsReln CR sends a Cons.ACCEPT signal to Producer P. 

8. Producer P creates ProdReln PR: { Src = Nb, 𝑅𝑐 = 1 }. 

9. ProdReln PR executes RDM.OpenClient(). 

10. Distributor D executes DARP.ConnectTerminus(), causing a DARP virtual bus to be 

constructed to Collator C: { Src = Na, Type = X, BusID = B }. 

11. Collator C sends the Collator.Opened() event to ConsReln CR. 

12. ConsReln CR sends the Consumer.Opened() event to Node Nb. 

13. DARP sends the DARP.Origin.Connected() event to Distributor D. 

14. Distributor D sends the Distributor.Opened() event to ProdReln PR. 

15. ProdReln PR sends the Producer.Opened() event to Node Na. 

4.4.4.2 Ending a Relationship by Destroying the Producer 

The relationship constructed in section 4.4.4.1 above is in place.  Node Na determines that it can 

no longer produce data type X, so it destroys its Producer. 

The following sequence of events maps to Figure 4-18 on page 256. 

1. Node Na executes PCP.DestroyProducer(). 

2. Producer P executes RDM.DestroyDistributor(). 

3. Distributor D executes DARP.DestroyOrigin(), causing the virtual bus to be released. 

4. DARP sends the DARP.Origin.Disconnected() event to Distributor D. 

5. Distributor D sends the Distributor.Closed() event to ProdReln PR. 

6. ProdReln PR sends the Producer.Closed() event to Node Na, then self-destructs. 

7. Distributor D sends the Distributor.Destroyed() event to Producer P, then self-destructs. 

8. Producer P sends the Producer.Destroyed() event to Node Na, then self-destructs. 

9. Collator C sends the Collator.Closed() event to ConsReln CR. 

10. ConsReln CR executes RDM.DestroyCollator(). 

11. Collator C sends the Collator.Destroyed() event to ConsReln CR, then self-destructs. 

12. ConsReln CR sends the Consumer.Closed() event to Node Nb, then self-destructs. 

4.4.4.3 Ending a Relationship by Destroying the Consumer 

The relationship constructed in section 4.4.4.1 above is in place.  Node Nb determines that it no 

longer needs to consume data type X, so it destroys its Consumer. 

The following sequence of events maps to Figure 4-19 on page 256. 

1. Node Nb executes PCP.DestroyConsumer(). 

2. Consumer CN triggers the destruction of ConsReln CR. 

3. ConsReln CR executes RDM.DestroyCollator(). 

4. Collator C executes DARP.DestroyTerminus, resulting in the virtual bus being released. 
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5. Collator C sends the Collator.Destroyed() event to ConsReln CR, then self-destructs. 

6. ConsReln CR sends the Consumer.Closed() event to Node Nb. 

7. ConsReln CR reports its own destruction to Consumer CN, then self-destructs. 

8. Consumer CN sends the Consumer.Destroyed() event to Node Nb, then self-destructs. 

9. Distributor D sends the Distributor.Closed() event to ProdReln PR. 

10. ProdReln PR sends the Producer.Closed() event to Node Na. 

4.4.4.4 Ending a Relationship due to a Network Fault 

The relationship constructed in section 4.4.4.1 above is in place.  A break has occurred in the 

network, disconnecting the virtual bus { Na, X, B } from Node Nb. 

The following sequence of events maps to Figure 4-20 on page 256. 

1. DARP detects a network fault and sends the DARP.Origin.Failed() event to Distributor D. 

2. Distributor D sends the Distributor.Failed() event to ProdReln PR. 

3. ProdReln PR sends the Producer.Failed() event to Node Na. 

4. DARP detects a network fault and sends the DARP.Terminus.Failed() event to Collator C. 

5. Collator C sends the Collator.Failed() event to ConsReln CR. 

6. ConsReln CR executes RDM.DestroyCollator(). 

7. Collator C sends the Collator.Destroyed() event to ConsReln CR, then self-destructs. 

8. ConsReln CR sends the Consumer.Failed() event to Node Nb, then self-destructs. 

4.4.4.5 Failing to Establish a Relationship 

Node Na produces data type X.  Node Nb determines that it wishes to consume data type X with 

𝑃𝑐 = 1 and 𝑅𝑐 = 1, and advertises to that effect.  Node Na has already created a Producer P for 

data type X, and a Distributor D for data type X.  When Node Na receives the advertisement from 

Node Nb, it responds by offering its services.  RDM is unable to open a connection to Nb because 

the required network resources are in use by other virtual buses, so relationship negotiation fails. 

The following sequence of events maps to Figure 4-21 on page 256. 

1. Node Nb executes PCP.CreateConsumer(), creating Consumer CN: { Type = X, 𝑃𝑐 = 1, 

𝑅𝑐 = 1 }. 

2. Consumer CN broadcasts a Cons.ADVERT signal that is received by Producer P. 

3. Producer P sends a Prod.ADVERT signal to Consumer CN. 

4. Consumer CN accepts the advertisement from Producer P and creates ConsReln CR: { Src 

= Na, 𝑅𝑐 = 1 }. 

5. Consumer CN executes RDM.CreateCollator() in order to resource ConsReln CR, creating 

Collator C: { Src = Na, Type = X, 𝑅𝑐 = 1, BusID = ? }. 

6. Collator C sends the Collator.Created() event to ConsReln CR. 

7. ConsReln CR sends a Cons.ACCEPT signal to Producer P. 

8. Producer P creates ProdReln PR: { Src = Nb, 𝑅𝑐 = 1 }. 

9. ProdReln PR executes RDM.OpenClient(). 

10. Distributor D executes DARP.ConnectTerminus(). 

11. DARP responds by sending the DARP.ConnectFailed() event to Distributor D, because it 

was unable to establish a virtual bus connection to Nb. 

12. Distributor D sends the Distributor.Closed() event to ProdReln PR. 
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13. ProdReln PR sends the Producer.Closed() event to Node Na. 

14. ProdReln PR sends a Prod.DEAD signal to ConsReln CR. 

15. ConsReln CR executes RDM.DestroyCollator(). 

16. Collator C sends the Collator.Destroyed() event to ConsReln CR, then self-destructs. 

17. ConsReln CR sends the Consumer.Closed() event to Node Nb, then self-destructs. 

Note that in practice events 10 and 11 above will be repeated several times before event 12 occurs 

as DARP retries the connection; these retries are not shown for the sake of simplicity. 

4.4.4.6 Establishing a Flow-Redundant Relationship 

Node Na produces data type X.  Node Nb determines that it wishes to consume data type X with 

𝑃𝑐 = 1 and 𝑅𝑐 = 3.  Node Na has already created a Producer P for data type X, and a Distributor 

D for data type X. 

The following sequence of events maps to Figure 4-22 on page 257. 

1. Node Nb executes PCP.CreateConsumer(), creating Consumer CN: { Type = X, 𝑃𝑐 = 1, 

𝑅𝑐 = 3 }. 

2. Consumer CN broadcasts a Cons.ADVERT signal that is received by Producer P. 

3. Producer P sends a Prod.ADVERT signal to Consumer CN. 

4. Consumer CN accepts the advertisement from Producer P and creates ConsReln CR: { Src 

= Na, 𝑅𝑐 = 3 }. 

5. Consumer CN executes RDM.CreateCollator() in order to resource ConsReln CR, creating 

Collator C: { Src = Na, Type = X, 𝑅𝑐 = 3, BusID = [ ?, ?, ? ] }. 

6. Collator C sends the Collator.Created() event to ConsReln CR. 

7. ConsReln CR sends a Cons.ACCEPT signal to Producer P with 𝑅𝑐 = 3. 

8. Producer P creates ProdReln PR: { Src = Nb, 𝑅𝑐 = 3 }. 

9. ProdReln PR executes RDM.OpenClient(). 

10. Distributor D executes DARP.ConnectTerminus(), causing a DARP virtual bus to be 

constructed to Collator C: { Src = Na, Type = X, BusID = B0 }. 

11. Collator C sends the Collator.Opened() event to ConsReln CR. 

12. ConsReln CR sends the Consumer.Opened() event to Node Nb. 

13. DARP sends the DARP.Origin.Connected() event to Distributor D. 

14. Distributor D sends the Distributor.Opened() event to ProdReln PR for virtual bus B0. 

15. ProdReln PR sends the Producer.Opened() event to Node Na. 

16. Distributor D executes DARP.ConnectTerminus(), causing a second DARP virtual bus to 

be constructed to Collator C: { Src = Na, Type = X, BusID = B1 }. 

17. Distributor D sends the Distributor.Opened() event to ProdReln PR for virtual bus B1. 

18. Distributor D executes DARP.ConnectTerminus(), causing a third DARP virtual bus to be 

constructed to Collator C: { Src = Na, Type = X, BusID = B2 }. 

19. Distributor D sends the Distributor.Opened() event to ProdReln PR for virtual bus B2. 

Note that, as discussed in Appendix D.3.7 and, if the 𝑅𝑐 of the RDM connection is greater than one 

then the Consumer.Opened() and Producer.Opened events (shown at 12 and 14 above, 

respectively) are sent as soon as the first virtual bus has been constructed from source to 

destination.  While additional buses over the minimum of one do enhance the availability and 

redundancy of the RDM connection, they are not necessary for the connection to be open. 
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4.4.4.7 Ending a Flow-Redundant Relationship due to a Network Fault 

The relationship constructed in section 4.4.4.6 above is in place.  A number of breaks have 

occurred in the network, disconnecting the virtual buses { Na, X, [ B0, B1, B2] } from Node Nb. 

The following sequence of events maps to Figure 4-23 on page 258. 

1. DARP detects a network fault and sends the DARP.Origin.Failed() event to Distributor D 

for virtual bus B0. 

2. DARP detects a network fault and sends the DARP.Origin.Failed() event to Distributor D 

for virtual bus B1. 

3. DARP detects a network fault and sends the DARP.Origin.Failed() event to Distributor D 

for virtual bus B2. 

4. Distributor D sends the Distributor.Failed() event to ProdReln PR. 

5. ProdReln PR sends the Producer.Failed() event to Node Na, then self-destructs. 

6. DARP detects a network fault and sends the DARP.Terminus.Failed() event to Collator C 

for virtual bus B0. 

7. DARP detects a network fault and sends the DARP.Terminus.Failed() event to Collator C 

for virtual bus B1. 

8. DARP detects a network fault and sends the DARP.Terminus.Failed() event to Collator C 

for virtual bus B2. 

9. Collator C sends the Collator.Failed() event to ConsReln CR. 

10. ConsReln CR executes RDM.DestroyCollator(). 

11. Collator C sends the Collator.Destroyed() event to ConsReln CR, then self-destructs. 

12. ConsReln CR sends the Consumer.Failed() event to Node Nb, then self-destructs. 

Note that, as discussed in Appendix D.3.7, if the 𝑅𝑐 of the failed RDM connection is greater than 

one then Producer.Failed() and Consumer.Failed() events (shown at 4 and 9 above, respectively) 

are not sent until the last of the set of redundant virtual buses that resources the RDM connection 

has failed. 

4.4.4.8 Sequence Diagrams 

 

 

Figure 4-17 : Establishing a  Relationship Sequence Diagram 

 

Na: PCP.Node D[X]: Distributor Nb: PCP.Node

C[Na,X,1,[?]]: Collator

P[X]: Producer

CN[X,1,1]: Consumer

PR[Nb,1]: ProdReln

CR[Na,1]: ConsReln

1: CreateConsumer(X)

2: Cons.ADVERT(X)

3: Prod.ADVERT(X)

4: Create(Na,1)

7: Cons.ACCEPT(X,1)

5: CreateCollator(Na,X,1)

6: Collator.Created()

8: Create(Nb,1)

9: OpenClient(Nb,1)

10: DARP.ConnectTerminus(Nb,X,B)

13: DARP.Origin.Connected(Nb,X,B)

14: Distributor.Opened(Nb)

11: Collator.Opened()

12: Consumer.Opened(Na,X)

15: Producer.Opened(Nb,X)
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Figure 4-18 : Ending a Relationship by Destroying the Producer Sequence Diagram 

 

 

Figure 4-19 : Ending a Relationship by Destroying the Consumer Sequence Diagram 

 

 

Figure 4-20 : Ending a Relationship due to a Network Fault Sequence Diagram 

 

 

Figure 4-21 : Failing to Establish a Relationship Sequence Diagram 

Na: PCP.Node D[X]: Distributor Nb: PCP.Node C[Na,X,1,[B]]: CollatorP[X]: Producer CN[X,1,1]: Consumer CR[Na,1]: ConsReln

1: DestroyProducer(X)

PR[Nb,1]: ProdReln

2: DestroyDistributor(X)

3: DARP.DestroyOrigin(Na,X,B)

9: Collator.Closed()

4: DARP.Origin.Disconnected(Nb,X,B)

10: DestroyCollator()

11: Collator.Destroyed()

12: Consumer.Closed(Na,X)

5: Distributor.Closed(Nb)

6: Producer.Closed(Nb,X)

7: Distributor.Destroyed()

8: Producer.Destroyed(X)

Na: PCP.Node D[X]: Distributor Nb: PCP.Node C[Na,X,1,[B]]: CollatorP[X]: Producer CN[X,1,1]: Consumer CR[Na,1]: ConsRelnPR[Nb,1]: ProdReln

1: DestroyConsumer(X)

2: Destroy

3: DestroyCollator()

5: Collator.Destroyed()

6: Consumer.Closed(Na,X)

4: DARP.DestroyTerminus(Nb,X,B)

7: Destroyed

8: Consumer.Destroyed(Na,X)

9: Distributor.Closed(Nb)

10: Producer.Closed(Nb,X)

Na: PCP.Node D[X]: Distributor Nb: PCP.Node C[Na,X,1,[B]]: CollatorP[X]: Producer CN[X,1,1]: Consumer CR[Na,1]: ConsRelnPR[Nb,1]: ProdReln

1: DARP.Origin.Failed(Nb,X,B)

2: Distributor.Failed(Nb)

3: Producer.Failed(Nb,X)
4: DARP.Terminus.Failed(Na,X,B)

5: Collator.Failed()

6: DestroyCollator()

7: Collator.Destroyed()

8: Consumer.Failed(Na,X)

Na: PCP.Node D[X]: Distributor Nb: PCP.Node

C[Na,X,1,[?]]: Collator

P[X]: Producer

CN[X,1,1]: Consumer

PR[Nb,1]: ProdReln

CR[Na,1]: ConsReln

1: CreateConsumer(X)

2: Cons.ADVERT(X)

3: Prod.ADVERT(X)

4: Create(Na,1)

7: Cons.ACCEPT(X,1)

5: CreateCollator(Na,X,1)

6: Collator.Created()

8: Create(Nb,1)

9: OpenClient(Nb,1)

10: DARP.ConnectTerminus(Nb,X,B)

11: DARP.ConnectFailed(Nb,X,B)

12: Distributor.Closed(Nb)

13: Producer.Closed(Nb)
14: Prod.DEAD(Na,X)

15: DestroyCollator()

16: Collator.Destroyed()

17: Consumer.Closed(Na,X)
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Figure 4-22 : Establishing a Flow-Redundant  Relationship Sequence Diagram 

 

Na: PCP.Node D[X]: Distributor Nb: PCP.Node

C[Na,X,1,[?,?,?]]: Collator

P[X]: Producer

CN[X,1,3]: Consumer

PR[Nb,1]: ProdReln

CR[Na,3]: ConsReln

1: CreateConsumer(X)

2: Cons.ADVERT(X)

3: Prod.ADVERT(X)

4: Create(Na,3)

7: Cons.ACCEPT(X,3)

5: CreateCollator(Na,X,1)

6: Collator.Created()

8: Create(Nb,3)

9: OpenClient(Nb,3)

10: DARP.ConnectTerminus(Nb,X,B0)

13: DARP.Origin.Connected(Nb,X,B0)

14: Distributor.Opened(Nb)

11: Collator.Opened()

12: Consumer.Opened(Na,X)

15: Producer.Opened(Nb,X)

16: DARP.ConnectTerminus(Nb,X,B1)

17: DARP.Origin.Connected(Nb,X,B1)

18: DARP.ConnectTerminus(Nb,X,B2)

19: DARP.Origin.Connected(Nb,X,B3)
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Figure 4-23 : Ending a Flow-Redundant Relationship due to a Network Fault Sequence Diagram 

 

 

Na: PCP.Node D[X]: Distributor Nb: PCP.Node C[Na,X,1,[B0,B1,B2]]: CollatorP[X]: Producer CN[X,1,3]: Consumer CR[Na,3]: ConsRelnPR[Nb,3]: ProdReln

1: DARP.Origin.Failed(Nb,X,B0)

4: Distributor.Failed(Nb)

5: Producer.Failed(Nb,X)

6: DARP.Terminus.Failed(Na,X,B0)

9: Collator.Failed()

10: DestroyCollator()

11: Collator.Destroyed()

12: Consumer.Closed(Na,X)

2: DARP.Origin.Failed(Nb,X,B1)

3: DARP.Origin.Failed(Nb,X,B2)

7: DARP.Terminus.Failed(Na,X,B1)

8: DARP.Terminus.Failed(Na,X,B2)
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4.4.5 Experimentation 

4.4.5.1 Introduction 

4.4.5.1.1 Aim 

The following set of experiments is designed to demonstrate that PCP: 

• Gracefully handles establishment and termination of relationships between compatible 

members of groups of nodes that self-identify as producers and consumers of real-time 

data. 

• Controls RDM to allocate network resources to service relationships, and de-allocate 

network resources when relationships are terminated. 

• Maximizes the reliability and availability of a dependent control system by providing a 

scalable layer of data source redundancy. 

Experiments 1 through 4 experimentally replicate several of the simple PCP use-case analyses 

presented in section 4.4.4.  Experiment 5 explores a more complex and challenging use-case that were 

not discussed in section 4.4.4, but that are pertinent to understanding how PCP responds to situations 

that are likely to occur in practice. 

4.4.5.1.2 Sources of Error 

Refer section 3.5.4.1.2 for a discussion of the sources of error that typically affect VB’s signalling 

protocols and protocol reporting at layer 3 and up. 

Note also that due to the order in which events and behaviour are reported, lower-level (in terms of 

protocol stack layers) activity may be timestamped as occurring before the higher-level activity that 

triggers it.  PCP takes control of RDM, which in turn takes control of DARP in order to construct virtual 

buses.  When PCP relationship resourcing states change and PCP reporting is triggered, the reporting 

order will generally be DARP, then RDM, then PCP. 

4.4.5.2 Experiment 1 – Establishing a relationship 

4.4.5.2.1 Aim 

Realize in practice the theoretical use-case presented in section 4.4.4.1. 

4.4.5.2.2 Method 

1. Configure the network as shown in Figure 4-24 below. 

2. Create a Producer in N2 with Type=0x1234, Width=1. 

3. Create a Consumer in N5 with Type=0x1234, Width=1, 𝑅𝑐 = 1, 𝑃𝑐 = 1. 

4. Record all PCP, RDM and DARP reports, traffic and objects. 

 

Figure 4-24 : PCP establishing a Relationship network configuration 

N2 N3 N4 
3 

2 
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The interfaces of every node are configured as shown for N3; IF2 at 3 o’clock and IF3 at 9 o’clock.  All 

links are short (approximately 30cm). 

4.4.5.2.3 Observations 
Proto Node Timestamp Dir T/M Purpose IF SN AN DN Type BID Slots Wd 

PROD N2 3497664403 RSC  CREATE     T1234    

CONS N4 3503070787 SND MSG ADVERT    P63 T1234 S51   

PROD N63 3503075301 RCV MSG ADVERT X->X C4   T1234 S51   

PROD N2 3503076316 SND MSG ADVERT  C4   T1234 S110   

CONS N4 3503076620 RCV MSG ADVERT  P2   T1234 S110   

RDM N4 3503077705 RX  CREATE  SN2   T1234    

CONS N4 3503078655 SND MSG ACCEPT  P2   T1234    

CONS N4 3503078724 RSC  CREATE  P2   T1234    

PROD N2 3503078947 RCV MSG ACCEPT 0->0 C4   T1234    

PROD N2 3503079326 SND MSG ACCEPT  C4   T1234    

CONS N4 3503079630 RCV MSG ACCEPT 1 P2   T1234    

DARP N2 3503258413 SND TOK RESERVE IF2 SN2 AN3 DN4 T1234 BID205 S3ffffffffffff W1 

RDM N2 3503258522 TX  CREATE     T1234 BID205   

DARP N3 3503258605 RCV TOK RESERVE IF3 SN2 AN2 DN4 T1234 BID205 S3ffffffffffff W1 

DARP N3 3503259308 FWD TOK RESERVE IF2 SN2 AN4 DN4 T1234 BID205 S3ffffffffffff W1 

DARP N4 3503259500 RCV TOK RESERVE IF3 SN2 AN3 DN4 T1234 BID205 S3ffffffffffff W1 

DARP N4 3503259690 SND TOK COMMIT IF3 SN4 AN3 DN2 T1234 BID205 S0000000000001  

RDM N4 3503259859 RX  CONNECT IF3 SN2   T1234 BID205 S0000000000001  

DARP N3 3503259870 RCV TOK COMMIT IF2 SN4 AN4 DN2 T1234 BID205 S0000000000001  

DARP N3 3503260048 FWD TOK COMMIT IF3 SN4 AN2 DN2 T1234 BID205 S0000000000001  

CONS N4 3503260088 FLOW  OPENED  P2   T1234    

DARP N2 3503265147 RCV TOK COMMIT IF2 SN4 AN3 DN2 T1234 BID205 S0000000000001  

RDM N2 3503265447 TX  CONNECT IF2   DN4 T1234 BID205 S0000000000001  

PROD N2 3503266360 FLOW  OPENED  C4   T1234    

Table 4-18 : Signalling and reporting when establishing a PCP Relationship 

 

Node Layer Class Properties 

N2 PCP Producer 

N2 RDM Distributor 

N2 DARP Origin 

N3 DARP Switch 

N4 PCP Consumer 

N4 RDM Collator 
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Node Layer Class Properties 

N4 DARP Terminus 

Table 4-19 : VB objects supporting establishment of a PCP Relationship 

4.4.5.2.4 Analysis 

The Consumer initiates relationship establishment by publishing an Advertisement, and the Producer 

responds by offering to service the relationship.  This initial exchange takes 8.843ms, of which 4.213ms 

overlaps with a Traffic phase, i.e. preliminary negotiation takes ~4.6ms. 

PCP then takes control of RDM and hence DARP in order to resource the relationship, a process which 

takes a further 7.947ms including 5ms of overlap with a Traffic phase, i.e. resourcing takes ~3ms.  

There is a pause of ~178.9ms between PCP requesting resourcing of the relationship, and RDM 

instructing DARP to do so, due to the random backoff delay inserted by RDM. 

Overall, relationship negotiation and resourcing was successful, taking ~195.6ms from the initial 

advertisement by the Consumer. 

4.4.5.2.5 Conclusions 

PCP behaved as expected. 

Consumers advertise for Producers that may assist them to meet their resourcing goals.  Upon 

negotiating a relationship, Producers and Consumers then resource that relationship using the 

services of RDM. 

4.4.5.3 Experiment 2 – Ending a Relationship by Destroying the Producer 

4.4.5.3.1 Aim 

Realize in practice the theoretical use-case presented in section 4.4.4.2. 

4.4.5.3.2 Method 

1. Establish a Producer-Consumer relationship as described in section 4.4.5.2.2. 

2. Destroy the Producer in N2. 

3. Record all PCP, RDM and DARP reports, traffic and objects. 

4.4.5.3.3 Observations 
Proto Node Timestamp Dir T/M Purpose IF SN AN DN Type BID Rpt 

DARP N2 1038815119 SND TOK RELEASE IF2 SN2 AN3  T1234 BID205 RPT0 

DARP N3 1038815271 RCV TOK RELEASE IF3 SN2 AN2  T1234 BID205 RPT0 

PROD N2 1038815365 SND MSG DEAD  C4   T1234   

PROD N2 1038815443 RSC  DESTROY     T1234   

RDM N2 1038815508 TX  DESTROY     T1234 BID205  

CONS N4 1038815668 RCV MSG DEAD 2->5 P2   T1234   

DARP N3 1038815947 FWD TOK RELEASE IF2 SN2 AN4  T1234 BID205 RPT0 

DARP N4 1038816127 RCV TOK RELEASE IF3 SN2 AN3  T1234 BID205 RPT0 

DARP N4 1038816999 SND TOK TRIM IF3 SN2 AN3 DN4 T1234 BID205  

DARP N3 1038817172 RCV TOK TRIM IF2 SN2 AN4 DN4 T1234 BID205  

RDM N4 1038817935 RX  DESTROY  SN2   T1234 BID205  
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Proto Node Timestamp Dir T/M Purpose IF SN AN DN Type BID Rpt 

DARP N3 1038817937 SND TOK TRIMMED IF2 SN2 AN4 DN4 T1234 BID205  

CONS N4 1038818085 SND MSG DEAD  P2   T1234   

CONS N4 1038818158 RSC  DESTROY  P2   T1234   

DARP N4 1038818267 RCV TOK TRIMMED IF3 SN2 AN3 DN4 T1234 BID205  

DARP N4 1038818970 SND MSG TRIMMED  SN2   T1234 BID205  

DARP N2 1038819286 RCV MSG TRIMMED  SN4   T1234 BID205  

CONS N4 1041316950 SND MSG ADVERT    P63 T1234 S54  

CONS N4 1043816948 SND MSG ADVERT    P63 T1234 S55  

CONS N4 1046316946 SND MSG ADVERT    P63 T1234 S56  

CONS N4 1048816944 SND MSG ADVERT    P63 T1234 S57  

Table 4-20 : Signalling and reporting when ending a PCP Relationship by destroying the Producer 

4.4.5.3.4 Analysis 

The exact timing of the command to trigger destruction of the Producer is not known. 

Following the initial reporting that destruction has commenced, the relationship is wound up and all 

network resources employed to service that relationship are released after 4.167ms. 

The Consumer begins advertising for a new Producer with which to form a relationship at ~2.5s 

intervals after it receives notification of the termination of the relationship. 

4.4.5.3.5 Conclusions 

PCP behaved as expected. 

When a Producer is destroyed gracefully, any relationships that it is involved in are also gracefully 

terminated and the network resources that were allocated to service those relationships are released 

promptly. 

When a Consumer’s active relationship count drops below its resourcing goal, it begins searching for 

new relationships in order to meet that goal. 

4.4.5.4 Experiment 3 – Ending a Relationship by Destroying the Consumer 

4.4.5.4.1 Aim 

Realize in practice the theoretical use-case presented in section 4.4.4.3. 

4.4.5.4.2 Method 

1. Establish a Producer-Consumer relationship as described in section 4.4.5.2.2. 

2. Destroy the Consumer in N4. 

3. Record all PCP, RDM and DARP reports, traffic and objects. 

4.4.5.4.3 Observations 
Proto Node Timestamp Dir T/M Purpose IF SN AN DN Type BID 

CONS N4 3251647146 SND MSG KILL  P2   T1234  

PROD N2 3251647524 RCV MSG KILL 1->3 C4   T1234  

PROD N2 3251648413 SND MSG KILL  C4   T1234  

CONS N4 3251648717 RCV MSG KILL 4->5 P2   T1234  

DARP N4 3251650048 SND TOK TRIM IF3 SN2 AN3 DN4 T1234 BID156 

RDM N4 3251650128 RX  DESTROY  SN2   T1234 BID156 
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Proto Node Timestamp Dir T/M Purpose IF SN AN DN Type BID 

CONS N4 3251651183 SND MSG DEAD  P2   T1234  

CONS N4 3251651257 RSC  DESTROY  P2   T1234  

DARP N3 3251655145 RCV TOK TRIM IF2 SN2 AN4 DN4 T1234 BID156 

PROD N2 3251655381 RCV MSG DEAD 3->4 C4   T1234  

PROD N2 3251655411 SND MSG DEAD  C4   T1234  

DARP N3 3251655803 FWD TOK TRIM IF3 SN4 AN2 DN2 T1234 BID156 

DARP N2 3251655980 RCV TOK TRIM IF2 SN2 AN3 DN4 T1234 BID156 

DARP N2 3251656431 SND MSG TRIM  SN2  DN4 T1234 BID156 

DARP N2 3251656527 SND TOK TRIMMED IF2 SN2 AN3 DN4 T1234 BID156 

RDM N2 3251656670 TX  DISCONNECT    DN4 T1234 BID156 

DARP N3 3251656706 RCV TOK TRIMMED IF3 SN2 AN2 DN4 T1234 BID156 

DARP N4 3251656733 RCV MSG TRIM  SN2   T1234 BID156 

DARP N3 3251656810 FWD TOK TRIMMED IF2 SN2 AN4 DN4 T1234 BID156 

DARP N4 3251656993 RCV TOK TRIMMED IF3 SN2 AN3 DN4 T1234 BID156 

DARP N4 3251657145 SND MSG TRIMMED  SN2   T1234 BID156 

DARP N4 3251657267 SND MSG TRIMMED  SN2   T1234 BID156 

PROD N2 3251657456 SND MSG DEAD  C4   T1234  

PROD N2 3251657530 FLOW  CLOSED  C4   T1234  

RDM N2 3251657634 TX  DESTROY     T1234 BID156 

DARP N2 3251657730 RCV MSG TRIMMED  SN4   T1234 BID156 

DARP N2 3251657775 RCV MSG TRIMMED  SN4   T1234 BID156 

Table 4-21 : Signalling and reporting when ending a PCP Relationship by destroying the Consumer 

4.4.5.4.4 Analysis 

The exact timing of the command to trigger destruction of the Consumer is not known. 

Following the initial reporting that destruction has commenced, the relationship is wound up and all 

network resources employed to service that relationship are released after 10.629ms.  This includes a 

5ms period of overlap with a Traffic phase, i.e. actual destruction time is ~5.6ms. 

Following the destruction of the Consumer, the Producer is silent, i.e. it does not advertise. 

4.4.5.4.5 Conclusions 

PCP behaved as intended. 

When a Consumer is destroyed gracefully, any relationships that it is involved in are also gracefully 

terminated and the network resources that were allocated to service those relationships are released 

promptly. 

Producers respond to advertisements from matching Consumers, but do not proactively advertise. 

4.4.5.5 Experiment 4 – Ending a Relationship due to a Network Fault 

4.4.5.5.1 Aim 

Realize in practice the theoretical use-case presented in section 4.4.4.4. 

4.4.5.5.2 Method 

1. Establish a Producer-Consumer relationship as described in section 4.4.5.2.2. 

2. Break the link between 3.2 and 4.3 at N3. 
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3. Record all PCP, RDM and DARP reports, traffic and objects. 

4.4.5.5.3 Observations 
Proto Node Timestamp Dir T/M Purpose IF SN AN DN Type BID Trim 

MAC N3 295140757 IFE 4 0        

DARP N4 295145071 SND MSG TRIMMED  SN2   T1234 BID237  

DARP N3 295145074 SND TOK BREAK IF3 SN3 AN2 DN2 T1234 BID237 DNT0 

RDM N4 295145160 RX  FAIL  SN2   T1234 BID237  

DARP N2 295145221 RCV TOK BREAK IF2 SN3 AN3 DN2 T1234 BID237 DNT0 

CONS N4 295145464 FLOW  FAILED  P2   T1234   

RDM N2 295146168 TX  FAIL IF0100    T1234 BID237  

RDM N4 295146434 RX  DESTROY  SN2   T1234 BID0  

PROD N2 295147190 FLOW  FAILED  C4   T1234   

RDM N2 295147293 TX  DESTROY     T1234 BID237  

CONS N4 295147432 SND MSG DEAD  P2   T1234   

CONS N4 295147506 RSC  DESTROY  P2   T1234   

CONS N4 297646380 SND MSG ADVERT    P63 T1234 S197  

CONS N4 300146379 SND MSG ADVERT    P63 T1234 S198  

CONS N4 302646379 SND MSG ADVERT    P63 T1234 S199  

Table 4-22 : Signalling and reporting when ending a PCP Relationship due to a network fault 

4.4.5.5.4 Analysis 

The break between N3 and N4 is responded to by both nodes within ~0.3ms.  The relationship is 

wound up and all network resources employed to service that relationship are released after 6.536ms.  

This includes a 5ms period of overlap with a Traffic phase, i.e. actual destruction time is ~1.6ms. 

Following the failure of the relationship, the Producer is silent, i.e. it does not advertise.  The Consumer 

begins advertising for a new Producer at ~2.5s intervals after it destroys the relationship. 

4.4.5.5.5 Conclusions 

PCP behaved as intended. 

When a Consumer loses network connectivity to a Producer with which it has a relationship, that 

relationship is gracefully terminated and the network resources that were allocated to service those 

relationships are released promptly. 

Producers respond to advertisements from matching Consumers, but do not proactively advertise. 

4.4.5.6 Experiment 5 - Establishing and Maintaining Source-Redundant Relationships 

4.4.5.6.1 Aim 

Demonstrate that a Consumer will establish, and try to maintain, relationships with 𝑃𝑐 Producers. 

4.4.5.6.2 Method 

4.4.5.6.2.1 Part 1 

1. Configure the network as shown in Figure 4-25 below. 

2. Construct Producers of Type=0x1234 and Width=1 in N2, N3 and N5. 

3. Construct a Consumer of Type=0x1234, Width=1, 𝑅𝑐 = 1 and 𝑃𝑐 = 2 in N9. 

4. Record all PCP, RDM and DARP reports, traffic and objects. 
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Figure 4-25 : Establishing and Maintaining Source-Redundant Relationships Network Configuration 

The interfaces of every node are configured as shown for N4; IF0 at 6 o’clock, IF1 at 12 o’clock, IF2 at 

3 o’clock and IF3 at 9 o’clock.  All links are short (approximately 30cm). 

4.4.5.6.2.2 Part 2 

5. Destroy one of the Producers with which N9 has established a relationship. 

6. Record all PCP, RDM and DARP reports, traffic and objects. 

4.4.5.6.2.3 Part 3 

7. Re-create whichever Producer was destroyed in step 5. 

8. Disconnect one of the Producers with which N9 has established a relationship from the 

network. 

9. Record all PCP, RDM and DARP reports, traffic and objects. 

4.4.5.6.3 Observations 

4.4.5.6.3.1 Part 1 
Proto Node Timestamp Dir T/M Purpose IF SN AN DN Type BID Slots Wd 

PROD N2 782733814 RSC  CREATE     T1234    

PROD N3 788246048 RSC  CREATE     T1234    

PROD N5 793837690 RSC  CREATE     T1234    

CONS N9 812668208 SND MSG ADVERT    P63 T1234 S21   

PROD N63 812668507 RCV MSG ADVERT X->X C9   T1234 S21   

PROD N63 812668509 RCV MSG ADVERT X->X C9   T1234 S21   

PROD N5 812668621 SND MSG ADVERT  C9   T1234 S56   

PROD N63 812668653 RCV MSG ADVERT X->X C9   T1234 S21   

PROD N63 812668702 RCV MSG ADVERT X->X C9   T1234 S21   

PROD N63 812668751 RCV MSG ADVERT X->X C9   T1234 S21   

PROD N63 812668785 RCV MSG ADVERT X->X C9   T1234 S21   

PROD N63 812668814 RCV MSG ADVERT X->X C9   T1234 S21   

PROD N63 812668862 RCV MSG ADVERT X->X C9   T1234 S21   

PROD N3 812668894 SND MSG ADVERT  C9   T1234 S155   

CONS N9 812668975 RCV MSG ADVERT  P5   T1234 S56   

PROD N3 812669014 SND MSG ADVERT  C9   T1234 S156   

PROD N3 812669134 SND MSG ADVERT  C9   T1234 S157   

CONS N9 812669241 RCV MSG ADVERT  P3   T1234 S155   

PROD N5 812669621 SND MSG ADVERT  C9   T1234 S57   

N2 

N3 

N4 

N5 

N9 
3 

2 
1 

0 

N6 

N7 

N8 
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Proto Node Timestamp Dir T/M Purpose IF SN AN DN Type BID Slots Wd 

PROD N2 812669650 SND MSG ADVERT  C9   T1234 S226   

PROD N2 812669770 SND MSG ADVERT  C9   T1234 S227   

PROD N2 812669891 SND MSG ADVERT  C9   T1234 S228   

RDM N9 812670118 RX  CREATE  SN5   T1234    

CONS N9 812671157 SND MSG ACCEPT  P5   T1234    

CONS N9 812671228 RSC  CREATE  P5   T1234    

RDM N9 812672141 RX  CREATE  SN3   T1234    

CONS N9 812673090 SND MSG ACCEPT  P3   T1234    

CONS N9 812673160 RSC  CREATE  P3   T1234    

PROD N3 812675282 RCV MSG ACCEPT 0->0 C9   T1234    

PROD N5 812675282 RCV MSG ACCEPT 0->0 C9   T1234    

PROD N5 812675632 SND MSG ACCEPT  C9   T1234    

PROD N3 812675905 SND MSG ACCEPT  C9   T1234    

CONS N9 812675977 RCV MSG ACCEPT 1 P5   T1234    

CONS N9 812676216 RCV MSG ACCEPT 1 P3   T1234    

DARP N5 812776759 SND TOK RESERVE IF2 SN5 AN8 DN9 T1234 BID184 S3ffffffffffff W1 

RDM N5 812776867 TX  CREATE     T1234 BID184   

DARP N8 812776950 RCV TOK RESERVE IF3 SN5 AN5 DN9 T1234 BID184 S3ffffffffffff W1 

DARP N8 812777891 FWD TOK RESERVE IF2 SN5 AN9 DN9 T1234 BID184 S3ffffffffffff W1 

DARP N9 812778065 RCV TOK RESERVE IF0 SN5 AN8 DN9 T1234 BID184 S3ffffffffffff W1 

DARP N9 812779127 SND TOK COMMIT IF0 SN9 AN8 DN5 T1234 BID184 S0000000000001  

RDM N9 812779295 RX  CONNECT IF0 SN5   T1234 BID184 S0000000000001  

DARP N8 812779307 RCV TOK COMMIT IF2 SN9 AN9 DN5 T1234 BID184 S0000000000001  

DARP N8 812779808 FWD TOK COMMIT IF3 SN9 AN5 DN5 T1234 BID184 S0000000000001  

DARP N5 812779988 RCV TOK COMMIT IF2 SN9 AN8 DN5 T1234 BID184 S0000000000001  

RDM N5 812780157 TX  CONNECT IF2   DN9 T1234 BID184 S0000000000001  

PROD N5 812780665 FLOW  OPENED  C9   T1234    

CONS N9 812781116 FLOW  OPENED  P5   T1234    

DARP N3 812794031 SND TOK RESERVE IF2 SN3 AN6 DN9 T1234 BID74 S3ffffffffffff W1 

RDM N3 812794139 TX  CREATE     T1234 BID74   

DARP N6 812795151 RCV TOK RESERVE IF3 SN3 AN3 DN9 T1234 BID74 S3ffffffffffff W1 

DARP N6 812795354 FWD TOK RESERVE IF2 SN3 AN9 DN9 T1234 BID74 S3ffffffffffff W1 

DARP N9 812795533 RCV TOK RESERVE IF1 SN3 AN6 DN9 T1234 BID74 S3ffffffffffff W1 

DARP N9 812796125 SND TOK COMMIT IF1 SN9 AN6 DN3 T1234 BID74 S0000000000001  

RDM N9 812796296 RX  CONNECT IF1 SN3   T1234 BID74 S0000000000001  

DARP N6 812796325 RCV TOK COMMIT IF2 SN9 AN9 DN3 T1234 BID74 S0000000000001  

CONS N9 812797150 FLOW  OPENED  P3   T1234    

DARP N6 812797272 FWD TOK COMMIT IF3 SN9 AN3 DN3 T1234 BID74 S0000000000001  

DARP N3 812797455 RCV TOK COMMIT IF2 SN9 AN6 DN3 T1234 BID74 S0000000000001  

RDM N3 812798024 TX  CONNECT IF2   DN9 T1234 BID74 S0000000000001  

PROD N3 812798938 FLOW  OPENED  C9   T1234    

Table 4-23 : Signalling and reporting when establishing source-redundant PCP Relationships 

Node Layer Class Properties 

N3 PCP Producer 

N3 RDM Distributor 

N3 DARP Origin 
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Node Layer Class Properties 

N5 PCP Producer 

N5 RDM Distributor 

N5 DARP Origin 

N6 DARP Switch 

N8 DARP Switch 

N9 PCP Consumer 

N9 RDM Collator 

N9 DARP Terminus 

Table 4-24 : VB objects supporting establishment of source-redundant PCP Relationships 

4.4.5.6.3.2 Part 2 
Proto Node Timestamp Dir T/M Purpose IF SN AN DN Type BID Slots Wd 

PROD N5 1162615157 SND MSG DEAD  C9   T1234    

PROD N5 1162615238 RSC  DESTROY     T1234    

DARP N5 1162615314 SND TOK RELEASE IF2 SN5 AN8  T1234 BID184 RPT0  

RDM N5 1162615439 TX  DESTROY     T1234 BID184   

DARP N8 1162615463 RCV TOK RELEASE IF3 SN5 AN5  T1234 BID184 RPT0  

CONS N9 1162615506 RCV MSG DEAD 2->5 P5   T1234    

DARP N9 1162615896 SND TOK TRIM IF0 SN5 AN8 DN9 T1234 BID184   

DARP N8 1162616070 RCV TOK TRIM IF2 SN5 AN9 DN9 T1234 BID184   

DARP N8 1162616352 FWD TOK RELEASE IF2 SN5 AN9  T1234 BID184 RPT0  

DARP N8 1162616486 SND TOK TRIMMED IF2 SN5 AN9 DN9 T1234 BID184   

DARP N9 1162616515 RCV TOK RELEASE IF0 SN5 AN8  T1234 BID184 RPT0  

DARP N9 1162616649 RCV TOK TRIMMED IF0 SN5 AN8 DN9 T1234 BID184   

RDM N9 1162616777 RX  DESTROY  SN5   T1234 BID184   

DARP N9 1162616929 SND MSG TRIMMED  SN5   T1234 BID184   

DARP N5 1162617248 RCV MSG TRIMMED  SN9   T1234 BID184   

CONS N9 1162617821 SND MSG DEAD  P5   T1234    

CONS N9 1162617897 RSC  DESTROY  P5   T1234    

CONS N9 1165116778 SND MSG ADVERT    P63 T1234 S25   

PROD N63 1165117221 RCV MSG ADVERT X->X C9   T1234 S25   

PROD N63 1165117270 RCV MSG ADVERT X->X C9   T1234 S25   

PROD N63 1165117304 RCV MSG ADVERT X->X C9   T1234 S25   
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Proto Node Timestamp Dir T/M Purpose IF SN AN DN Type BID Slots Wd 

PROD N2 1165117680 SND MSG ADVERT  C9   T1234 S229   

PROD N2 1165117806 SND MSG ADVERT  C9   T1234 S230   

PROD N2 1165117928 SND MSG ADVERT  C9   T1234 S231   

CONS N9 1165118213 RCV MSG ADVERT  P2   T1234 S229   

RDM N9 1165119789 RX  CREATE  SN2   T1234    

CONS N9 1165120041 SND MSG ACCEPT  P2   T1234    

CONS N9 1165120112 RSC  CREATE  P2   T1234    

PROD N2 1165125412 RCV MSG ACCEPT 0->0 C9   T1234    

PROD N2 1165125691 SND MSG ACCEPT  C9   T1234    

CONS N9 1165126131 RCV MSG ACCEPT 1 P2   T1234    

DARP N2 1165352820 SND TOK RESERVE IF0 SN2 AN5 DN9 T1234 BID178 S3ffffffffffff W1 

RDM N2 1165352929 TX  CREATE     T1234 BID178   

DARP N5 1165355151 RCV TOK RESERVE IF3 SN2 AN2 DN9 T1234 BID178 S3ffffffffffff W1 

DARP N5 1165355897 FWD TOK RESERVE IF2 SN2 AN8 DN9 T1234 BID178 S3ffffffffffff W1 

DARP N8 1165356089 RCV TOK RESERVE IF3 SN2 AN5 DN9 T1234 BID178 S3ffffffffffff W1 

DARP N8 1165356442 FWD TOK RESERVE IF2 SN2 AN9 DN9 T1234 BID178 S3ffffffffffff W1 

DARP N9 1165356617 RCV TOK RESERVE IF0 SN2 AN8 DN9 T1234 BID178 S3ffffffffffff W1 

DARP N9 1165356835 SND TOK COMMIT IF0 SN9 AN8 DN2 T1234 BID178 S0000000000001  

DARP N8 1165357015 RCV TOK COMMIT IF2 SN9 AN9 DN2 T1234 BID178 S0000000000001  

DARP N8 1165357359 FWD TOK COMMIT IF3 SN9 AN5 DN2 T1234 BID178 S0000000000001  

DARP N5 1165357540 RCV TOK COMMIT IF2 SN9 AN8 DN2 T1234 BID178 S0000000000001  

RDM N9 1165357810 RX  CONNECT IF0 SN2   T1234 BID178 S0000000000001  

DARP N5 1165357815 FWD TOK COMMIT IF3 SN9 AN2 DN2 T1234 BID178 S0000000000001  

DARP N2 1165357984 RCV TOK COMMIT IF0 SN9 AN5 DN2 T1234 BID178 S0000000000001  

RDM N2 1165358815 TX  CONNECT IF0   DN9 T1234 BID178 S0000000000001  

CONS N9 1165358841 FLOW  OPENED  P2   T1234    

PROD N2 1165359724 FLOW  OPENED  C9   T1234    

Table 4-25 : Signalling and reporting when maintaining source-redundant Relationships after Producer destroyed 

Node Layer Class Properties 

N2 PCP Producer 

N2 RDM Distributor 

N2 DARP Origin 

N3 PCP Producer 

N3 RDM Distributor 

N3 DARP Origin 

N6 DARP Switch 
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Node Layer Class Properties 

N8 DARP Switch 

N9 PCP Consumer 

N9 RDM Collator 

N9 DARP Terminus 

Table 4-26 : VB objects when maintaining source-redundant PCP Relationships after Producer destroyed 

4.4.5.6.3.3 Part 3 
Proto Node Timestamp Dir T/M Purpose IF SN AN DN Type BID Slots Wd Rpt 

PROD N5 1382234043 RSC  CREATE     T1234     

MAC N2 1420175153 IFE f 0          

DARP N5 1420176071 SND TOK RELEASE IF2 SN5 AN8  T1234 BID178   RPT1 

DARP N8 1420176826 RCV TOK RELEASE IF3 SN2 AN5  T1234 BID178   RPT1 

RDM N2 1420177139 TX  FAIL IF0001    T1234 BID178    

DARP N8 1420177866 FWD TOK RELEASE IF2 SN2 AN9  T1234 BID178   RPT1 

DARP N9 1420178029 RCV TOK RELEASE IF0 SN2 AN8  T1234 BID178   RPT1 

PROD N2 1420178085 SND MSG DEAD  C9   T1234     

DARP N9 1420178108 SND MSG TRIMMED  SN2   T1234 BID178    

PROD N2 1420178240 SND MSG DEAD  C9   T1234     

RDM N9 1420178287 RX  FAIL  SN2   T1234 BID178    

PROD N2 1420178316 FLOW  FAILED  C9   T1234     

RDM N2 1420178425 TX  DESTROY     T1234 BID178    

CONS N9 1420182163 FLOW  FAILED  P2   T1234     

RDM N9 1420184166 RX  DESTROY  SN2   T1234 BID0    

CONS N9 1420185177 SND MSG DEAD  P2   T1234     

CONS N9 1420185251 RSC  DESTROY  P2   T1234     

CONS N9 1422684133 SND MSG ADVERT    P63 T1234 S28    

PROD N63 1422685301 RCV MSG ADVERT X->X C9   T1234 S28    

PROD N63 1422685450 RCV MSG ADVERT X->X C9   T1234 S28    

PROD N5 1422686029 SND MSG ADVERT  C9   T1234 S101    

PROD N5 1422686150 SND MSG ADVERT  C9   T1234 S102    

CONS N9 1422686319 RCV MSG ADVERT  P5   T1234 S101    

RDM N9 1422688179 RX  CREATE  SN5   T1234     

CONS N9 1422689136 SND MSG ACCEPT  P5   T1234     

CONS N9 1422689233 RSC  CREATE  P5   T1234     

PROD N5 1422689456 RCV MSG ACCEPT 0->0 C9   T1234     

PROD N5 1422691039 SND MSG ACCEPT  C9   T1234     

CONS N9 1422695277 RCV MSG ACCEPT 1 P5   T1234     

DARP N5 1422896208 SND TOK RESERVE IF2 SN5 AN8 DN9 T1234 BID94 S3ffffffffffff W1  

DARP N8 1422896399 RCV TOK RESERVE IF3 SN5 AN5 DN9 T1234 BID94 S3ffffffffffff W1  

DARP N8 1422896957 FWD TOK RESERVE IF2 SN5 AN9 DN9 T1234 BID94 S3ffffffffffff W1  

RDM N5 1422897060 TX  CREATE     T1234 BID94    

DARP N9 1422897190 RCV TOK RESERVE IF0 SN5 AN8 DN9 T1234 BID94 S3ffffffffffff W1  

DARP N9 1422898136 SND TOK COMMIT IF0 SN9 AN8 DN5 T1234 BID94 S0000000000001   



Page 270 

 

Proto Node Timestamp Dir T/M Purpose IF SN AN DN Type BID Slots Wd Rpt 

DARP N8 1422898316 RCV TOK COMMIT IF2 SN9 AN9 DN5 T1234 BID94 S0000000000001   

RDM N9 1422898334 RX  CONNECT IF0 SN5   T1234 BID94 S0000000000001   

DARP N8 1422898874 FWD TOK COMMIT IF3 SN9 AN5 DN5 T1234 BID94 S0000000000001   

DARP N5 1422899124 RCV TOK COMMIT IF2 SN9 AN8 DN5 T1234 BID94 S0000000000001   

CONS N9 1422899201 FLOW  OPENED  P5   T1234     

RDM N5 1422901061 TX  CONNECT IF2   DN9 T1234 BID94 S0000000000001   

PROD N5 1422902074 FLOW  OPENED  C9   T1234     

MAC N2 1429976126 IFE f 1          

Table 4-27 : Signalling and reporting when maintaining source-redundant Relationships after Producer disconnected by 
network fault 

Node Layer Class Properties 

N3 PCP Producer 

N3 RDM Distributor 

N3 DARP Origin 

N5 PCP Producer 

N5 RDM Distributor 

N5 DARP Origin 

N6 DARP Switch 

N8 DARP Switch 

N9 PCP Consumer 

N9 RDM Collator 

N9 DARP Terminus 

Table 4-28 : VB objects when maintaining source-redundant PCP Relationships after Producer disconnected by network 
fault 
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4.4.5.6.4 Analysis 

4.4.5.6.4.1 Part 1 

Note the shaded cells in Table 4-23; these flag a minor firmware fault, where the address of the node 

reporting reception of a PCP ADVERT message is reported as the broadcast address contained in the 

cell.  This fault has since been corrected. 

We can see that N2, N3 and N5 only report reception of the advertisements from the Consumer in N9, 

because only these Nodes possess a matching Producer.  All three Producers report transmission of a 

corresponding advertisement offer back to N9. 

N9 receives the offers from N3 and N5, but not from N2.  It is not clear whether this is because N9 did 

not receive the offer, or because the existence of a minor firmware bug prevented the Consumer from 

reporting reception of ADVERT messages after it had accepted 𝑃𝑐 relationships.  The latter is more 

likely; this bug has been corrected. 

After the Producers in N3 and N5 have completed their negotiations with the Consumer in N9, the 

relationships are successfully resourced.  Negotiation took 8.008ms, including 5ms of overlap with a 

Traffic phase, i.e. ~3ms. 

Resourcing of the relationship with N5 took 3.229ms, with no overlap with a Traffic phase, i.e. ~3.2ms.  

Resourcing of the relationship with N3 took 3.424ms, including 0.969ms of overlap with a traffic phase, 

i.e. ~2.4ms. 

In each of N5 and N3, RDM introduced random backoff delays of 101.1ms and 118.1ms respectively 

between PCP requesting resourcing of the relationship and the local DARP instance transmitting the 

RESERVE Token.  These disparate delays prevented any risk of resourcing conflicts between the virtual 

buses constructed by N3 and N5. 

4.4.5.6.4.2 Part 2 

Again, note the shaded cells in Table 4-25, for the same reason as described above in Part 1. 

Deallocation of network resources and winding up of the relationship between N5 and N9 was 

completed 2.74ms after the Producer in N5 was destroyed. 

~2.5s after N9 reported that the relationship with N5 was dead, it advertised for a new relationship in 

order to meet and maintain its target of 𝑃𝑐 = 2.  The Producer in N2 responded and negotiated a 

relationship in 9.353ms, including 5ms of overlap with a Traffic phase, i.e. ~4.4ms. 

RDM introduced a random backoff delay of 227.1ms before directing DARP to resource the 

relationship.  Resourcing took 5.164ms, including 2.28ms of overlap with a Traffic phase, i.e. ~2.9ms. 

The relationship between N3 and N9 was not disturbed in any way by either the destruction of the 

Producer in N5, or the establishment of the new relationship with the Producer in N2.  In particular, 

the virtual bus (BID74) from N3 to N9 was not disrupted. 

4.4.5.6.4.3 Part 3 

Again, note the shaded cells in Table 4-27, for the same reason as described above in Part 1. 
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10.098ms after N2 was disconnected from the network by disabling all of its network interfaces, the 

Producer in N2’s relationship with the Consumer in N9 was wound up and all network resources 

allocated to servicing it had been released. 

~2.5s after N9 reported that the relationship with N2 was dead, it advertised for a new relationship in 

order to meet and maintain its target of 𝑃𝑐 = 2.  The Producer in N5 responded and negotiated a 

relationship in 11.144ms, including a total of 6.144ms of overlap with two Traffic phases, i.e. ~5ms. 

RDM introduced a random backoff delay of 205.2ms before directing DARP to resource the 

relationship.  Resourcing took 2.916ms, with no overlap with Traffic phases, i.e. ~2.9ms. 

The relationship between N3 and N9 was not disturbed in any way by either the disconnected of the 

Producer in N2, or the establishment of the new relationship with the Producer in N5.  In particular, 

the virtual bus (BID74) from N3 to N9 was not disrupted. 

4.4.5.6.5 Conclusions 

PCP behaved as expected. 

When a Consumer with a 𝑃𝑐 > 1 has an existing its relationship disrupted, it will act to establish a new 

relationship.  If a matching Producer is available, the Consumer will establish a new relationship 

without disrupting existing relationships. 

4.4.5.7 Conclusions 

This set of experiments has demonstrated that the implementation of PCP behaves as intended. 

Consumers attempt to establish relationships with a sufficient number of matching Producers to meet 

their source redundancy goal.  They maintain compliance with that goal by seeking to establish new 

relationships if existing relationships fail, employing a “never give up” strategy.  When a relationship 

has been negotiated between a Producer and a Consumer, the Producer employs RDM to resource 

the relationship. 

Several minor firmware faults were identified and corrected during the course of these experiments. 

4.5 Scientific Contribution 

This chapter makes no claims of any particular scientific contribution. 

RDM and PCP were designed and implemented principally to provide a relatively simple framework 

with which to configure the lower network layers (DARP, in particular) during prototyping and 

experimentation.  While the implementations of these layers were designed with very little attention 

to existing or proposed approaches, the Related Work section above shows that similar decisions were 

made and similar conclusions were reached by other researchers. 

As a consequence of this, much of sections 4.3 and 4.4 is more a mechanistic description of the 

behaviour of the layer stack implementations than a discussion of the reasoning behind the 

architectural design.  However, because the services afforded by RDM and PCP are key design goals 

of VB, as stated in section 1.2.3; and because the fundamental concepts that underpin how RDM and 

PCP function, and why they are necessary, are clearly of interest to the computer science research 
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community, as evidenced by the extensive and recent work noted in section 4.2; they have been 

afforded a position in this dissertation as a chapter rather than being relegated to an appendix. 

4.6 Conclusions 

This chapter details the operation of the Virtual Bus network architecture’s transport layer, the 

Redundant Dataflow Model (RDM); and its session layer, the Producer-Consumer Protocol (PCP). 

RDM is a transport layer implementation that employs two layers of redundancy, flow and fragment 

redundancy, and the services of the Distributed Agent Routing Protocol at the network layer, to afford 

a higher network layer with a simplex, point-to-multipoint, real-time data transport service with 

availability and reliability characteristics that are scalable per destination. 

Coupled with the redundancy measures that it uses to maximise reliability and availability, RDM 

incorporates self-forming and self-healing behaviours into the transport layer.  If the number of 

members in a set of redundant virtual buses that services an RDM data flow falls below a target level, 

e.g. due to a network fault, RDM will attempt to use DARP to re-establish existing and/or create new 

virtual buses in order to provide the required level of redundancy.  The operation of RDM has been 

analysed using several use-cases, and demonstrated through formal experimentation.  Additional 

material detailing the interfaces and internal operation of the RDM implementation can be found in 

Appendix D.3.6. 

PCP provides the VB architecture's final layer of redundancy, and hence reliability and availability: 

source redundancy.  Once configured, PCP autonomously initiates and/or terminates relationships 

between data producers and consumers in order to achieve its data source redundancy targets.  In 

similar fashion to RDM, if the number of members in a set of redundant data producers that service a 

particular data consumer is, or falls, below a target level, PCP will try to locate new producers, 

negotiate new delivery relationships, and resource them with RDM.  The operation of PCP has been 

analysed using several use-cases, and demonstrated through formal experimentation.  Additional 

material detailing the interfaces and internal operation of the PCP implementation can be found in 

Appendix D.3.7. 

Both RDM and PCP minimize single points of failure by using diversity to spread risk and hence 

minimize the possibility that a single delivery path or data producer may fail: RDM spreads the delivery 

of each data pulse across a set of redundant virtual buses; and PCP spreads data production to a set 

of redundant producers.  Spatial diversity, both in the form of disjoint redundant paths and by spatially 

distributing redundant producers, is preferred and recommended but is not enforced. 

RDM and PCP are part of the means by which VB achieves several of its design goals, as stated in 

section 1.2.3: 

• Minimization of single points of failure, particularly by avoiding any master-slave 

arrangements. 

• Support for multicast data flows. 

• Maximization of the reliability and availability of data flows at destinations, particularly 

through the provision of multiple layers of individually scalable redundancy. 

• A dynamic multi-hop membership service. 

• Self-forming and self-healing data delivery arrangements between active members. 



Page 274 

 

 

 

 



Page 275 

 

Chapter 5  

 

Network Time Synchronization 

 

 

 

5.1 Introduction 

This section details the time synchronization mechanism that has been implemented for the 

Virtual Bus network architecture.  In the context of the research goals stated in section 1.2.3, the 

functions and purpose of this time synchronization mechanism are: 

• Minimization of single points of failure, particularly by avoiding any master-slave 

arrangements. 

• Jitter in delivery timing of real-time data flows from period to period to be no greater than 

one bit symbol at the physical layer signalling rate. 

• The network must support a diameter of no less than 9 nodes, i.e. 8 hops. 

VB’s time synchronization mechanism removes a potential single point of failure by avoiding the 

use of a master-slave paradigm.  In order to meet this requirement it was necessary to explicitly 

exclude the IEEE1588 [23] network time synchronization standard, also known as Precision Time 

Protocol (PTP), or any of its derivatives, as it is explicitly master-slave.  Regarding period-to-period 

jitter, per section 2.3.1 the signalling rate of the physical layer medium is 2.5Mbps, which 

corresponds to a bit symbol duration of 400ns.  Experimental data presented in section 5.9 shows 

that this target has been reliably achieved out to distances of 5 hops given a simple linear topology, 

somewhat less than the target of 8 hops.  However, it must also be acknowledged that more than 

99.95% of samples at a distance of between 6 and 8 hops exhibited jitter no greater than 400ns. 

The peer-to-peer time synchronization mechanism discussed herein was originally informed by a 

paper from Maggs et al [17], in which the authors discussed the concept of “consensus clock 

synchronization”, where network nodes synchronize to one another in a peer-to-peer 

arrangement rather than to some external timebase in a master-slave arrangement.  The 

consensus frequency is achieved by each network node periodically making small adjustments to 
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its frequency such that it is more aligned to its neighbours.  To summarize, if a node is slower than 

its neighbours then it speeds up slightly, and if it is faster it slows down slightly. 

It is certainly true that Maggs et al, and much of the research on network synchronization that is 

referenced in this chapter, is targeted at wireless networks, not wired networks.  This may appear 

to be incongruous to the casual reader in the context of a body of work directed at a wired network 

architecture.  However, the reasoning behind the decision was that the principal time 

synchronization effort in wired networks has focussed upon master-slave solutions that are based 

upon IEEE1588 [23], including the closely related IEEE802.1AS [24].  While the approach embodied 

in these IEEE standards achieves high-quality time synchronization, a master-slave solution was 

antithetical to the design philosophy of the Virtual Bus architecture. 

The wireless networking research space proved to be a more fruitful field for existing work on 

peer-to-peer time synchronization solutions.  Many published wireless networking time 

synchronization mechanisms are intended to cope with factors such as physically mobile nodes, 

and the vagaries of an unreliable communication medium. [100][204][205]  The resulting 

transience of both nodes and links causes some interesting behaviour, such as a tendency for 

nodes to intermittently group together into isolated, or largely isolated, sub-networks [206][207] 

– rather like fireflies. [101]  It also means that wireless networks are generally unable to make 

guarantees about network topology stability, and hence they are not particularly well suited to 

master-slave time synchronization mechanisms.  Consequently, the wireless networking field has 

for the most part focussed upon peer-to-peer time synchronization solutions. 

Finally, I believe that it is important that I clarify from the outset that this chapter is neither 

proposing a new time synchronization mechanism, nor seeking to prove that diffusion time 

synchronization in general is stable when appropriately configured.  I have nothing to add in terms 

of the theory of diffusion synchronization to the work of Simeone et al [18], Wu et al [89], Solis et 

al [97], Giridhar and Kumar [93] and Koskin et al [95][96][208], amongst many others.  Rather, 

what is presented here is an explanation of the internal workings of the diffusion time 

synchronization mechanism that I have developed to support the Virtual Bus network architecture 

and that relies upon and was informed by the existing body of work; and a set of experimental 

observations that demonstrate the operation of my implementation. 

5.2 Related Work 

It seems probable that the first recorded research into phase-coupled oscillators is the work of 

Huygens in the 17th century, who observed that weakly coupled oscillators – two pendulums 

attached to the same bar, and hence able to influence one another by exchanging energy in the 

form of vibrations transmitted through that bar – would mutually synchronize.   Huygens’ 

observations were revisited and validated in 2015 by Oliveira and Mielo [209].  The popular 

culture/science television program Mythbusters© has also publicly demonstrated the principle, 

with partial success, using metronomes on a floating platform. [210] 
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The concept of phase-coupled oscillators is discussed in detail by Simeone et al [18] and Bojic and 

Nimoen [19], in conjunction with the related concept of pulse-coupled oscillators.42  Both groups 

of researchers draw from a large body of scientific research into time synchronization that 

includes biologically inspired oscillators.  Some relevant examples include the work of Abbott and 

van Vreeswijk [211][212], Mathar and Mattfeldt [213], Peskin [214], Acebrón et al [102] and 

Strogatz [103], but there are many others.  Bojic and Nimoen surveyed a body of related research 

that reaches at least as far back as 1915, when Blair [101] reported the tendency of large groups 

of fireflies in close proximity to synchronize their flashes.  Quoting Blair directly: 

“It has been noticed in various parts of the world that these flashing males tend to 

congregate in large companies, and that all the individuals of one of these gatherings will 

flash in concert. All the fireflies around one tree or group of trees, for instance, will flash 

together, while those around a neighbouring tree will be pulsating to a different time.” 

And 

“It is then conceivable that the flash of a leader might act as a stimulus to the discharge of 

their flashes by the other members of the group, and so bring about the flashing concert by 

the whole company.” 

For this reason, pulse-coupled oscillators are sometimes referred to as firefly oscillators. 

I highly recommend the work of both Simeone et al [18] and Bojic and Nimoen [19] for further 

reading.  Contrasting these papers, the former focuses principally on the more formal details and 

mathematics of the mechanisms by which phase- and pulse-coupled synchronization function, 

whereas the latter undertook a less formal but quite extensive survey of a range of research from 

many fields that relates to distributed time synchronization.  Regardless of the variance between 

their approaches, both groups of researchers were broadly in agreement: the principle of 

distributed network-wide synchronization diffusion using pulse-coupled oscillators is 

fundamentally sound; and implementations of such, when configured appropriately, are stable 

and reliable. 

Linsenmayer et al [38] make the assumption that the operation of a networked control system is 

closely coupled to the operation of the network that it relies upon, to the point that the control 

system plant will have a sampling period that is an integral multiple of the network’s fundamental 

cycle period.  Such a network cycle period is analogous to the virtual bus’s concept of an “interval”. 

Puttnies et al [215] explored the use of an application layer broadcast protocol to synchronize a 

1Gbit Ethernet network to a randomly selected reference node by determining the hardware and 

software delays in the network and compensating for clock drift.  They claimed scalability, 

precision and platform independence.  Their evaluation platform was small (just 3 nodes) and their 

synchronization performance was poor (123µs) compared to synchronization at e.g. the link layer, 

although not surprising for an application layer protocol.  Platform independence is reasonable 

given their Java implementation. 

IEEE802.1AS [24] (and 802.1ASrev [216] for ongoing revision of the standard) is the IEEE’s Ethernet 

time synchronization standard.  802.1AS is closely related to IEEE1588 [23] Precision Time Protocol 

 
42 Recognizing that phase coupling is a continuous-time process, pulse coupling can be seen as a discrete-
time version of the same process. 
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(PTP), being sometimes referred to as gPTP [58] (generalized PTP), and like IEEE1588 is a master-

slave protocol in which the flow of time synchronization is simplex, from a grand master through 

a hierarchy of synchronizing nodes to a fleet of slaves; c.f. Figure 1-15 (and compare and contrast 

with Figure 1-16).  In that context, there is some evidence [217] that the potential for symmetry 

of influence afforded by duplex synchronization signalling is beneficial for synchronization 

stability.  In any case, the reliance of IEEE1588 and its descendants on the master-slave paradigm 

is precisely why they were not considered for VB’s time synchronization mechanism: master-slave 

systems are a single point of failure.  Further, it is acknowledged [58] that 802.1AS does not 

support fault-tolerant startup or restart.  Note that, as might be expected of any networked 

system that uses message passing to exchange information about synchronization state between 

nodes, PTP is fundamentally a pulse-coupled time synchronization mechanism. 

Xu et al [218] proposed a synchronization mechanism based upon IEEE1588 in which they used a 

“clock servo” based upon a PI controller that is in fact a phase-locked loop with a PI controller as 

the loop filter.  As their solution is based on IEEE1588 the flow of synchronization is simplex, but 

in many other respects their clock correction mechanism is almost identical to that of VB, including 

implementing their MAC in an FPGA in order to realize precise message timestamping at the link 

layer. 

Khatib et al [47] explored self-healing, and more generally self-organization, in mobile networks.  

They identified several key categories into which self-organizing networks can be grouped, 

including self-optimization, i.e. “functionalities that keep the configuration parameters always 

working at the optimal level to offer the best QoS”.  VB is an exemplar of a self-organizing network 

in the context of time synchronization because it achieves and maintains tight time 

synchronization at the link layer, transparently to and without the involvement of any higher layer; 

and because its time synchronization performance is fundamental to its ability to deliver on its 

quality of service guarantees that rely on time-triggered signalling and switching to achieve 

isolation of real-time data flows in time and space. 

Wu et al [89] reviewed clock synchronization in wireless networks, particularly message exchange 

mechanisms and the exchange of timestamps between sensor nodes to perform pairwise 

synchronization, i.e. pulse or packet coupling as discussed in detail by Simeone et al [18].  They 

discussed a number of possible approaches before arriving at network-wide synchronization 

through diffusion. 

Solis et al [97] explored least-square spatial smoothing, in which an array containing the relative 

clock offsets of each node with respect to the other nodes can be transformed into an absolute 

offset vector using least-squares spatial smoothing, and hence used to steer the clocks of each 

node.  However, this approach is generally not practical because it relies upon timely global 

knowledge of the offsets.  Solis et al also explored a distributed algorithm based on coordinate 

descent, which requires only local pairwise offset information, i.e. “each node computes its update 

by averaging all its neighbours’ absolute nodal offset estimates and relative offset estimates”, 

which is very similar to the approach taken by VB.  Convergence and error variance analysis of this 

approach are reported by Giridhar and Kumar [93], and Wu et al [89] acknowledged that this work 

is closely related both to that of Li and Rus [219], and to that of Simeone et al [18], which includes 

a discussion of the use of a phase-locked loop (PLL) at each node as a clock servo in order to 
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perform clock steering and hence network-wide convergence to a state of consensus in frequency 

and phase, i.e. synchronized and syntonized. 

Giridhar and Kumar [93] proposed the use of “Distributed Asynchronous Time Averaging” to 

determine a target frequency towards which the local clock at each node should be steered.  In 

order to implement this technique, nodes perform bidirectional exchanges of timestamps with 

their immediate neighbours, measure and adjust for propagation delay, and average the 

differences between their local time and the times of their neighbours.  VB’s approach is almost 

identical. 

Bojic and Kusek [220] presented a dynamic frequency adjustment mechanism for heterogeneous 

networked systems and showed that time synchronization can be achieved by cycle-by-cycle 

adjustments to the duration of each node’s synchronization period, as characterized by the 

transmission of a synchronization message.  Their synchronization method is very similar to VB’s, 

and their results, while coarse-grained due to the limitations of their research platform, coincide 

with the substantial body of work on diffusion time synchronization mechanisms. 

Mathar and Mattfeldt [213] proposed a modified version of the mathematical model developed 

by Mirollo and Strogatz [221] for synchronous firing of biological oscillators, with the aim of 

achieving “decentral synchronization in time-division multiple access systems”. 

Kirk and Stone [222] explored the effects of a refractory period on the synchronization or 

entrainment of pulse-coupled oscillators.  A refractory period is a delay between a pulse arriving 

at an oscillator, and the information contained in that pulse being used to update, or steer, the 

oscillator towards synchronization with the transmitter of the pulse.  Werner-Allen et al [204] 

proposed the “Reachback Firefly Algorithm”, in which a fixed refractory period is replaced by 

waiting until the end of the synchronization cycle before applying the clock steering effort.  This is 

precisely the technique employed by VB. 

Lenzen et al [92] compared their proposed “PulseSync” protocol to the “de-facto state-of-the-art” 

wireless networking time synchronization protocol, Flooding Time Synchronization Protocol [223] 

(FTSP) and showed through mathematical analysis, simulations and experimentation that relative 

skew between nodes in a network synchronized with PulseSync is largely decoupled from network 

diameter.  PulseSync’s signalling mechanism is quite different to VB; under PulseSync, 

synchronization state is propagated quickly through nodes in a wave of “pulses” that follow a 

breadth-first search pattern, in contrast to VB’s relatively slow diffusion mechanism.  However, 

their construction of a steerable clock model is closely related to VB’s. 

Freris et al [161] explored and analysed the limits of clock synchronization in networks.  They 

observed that networked control applications typically require the strongest possible clock 

synchronization, which they characterized as absolute synchronization.  They also concluded that 

in order to determine both the relative skew and offset between two clocks, it is necessary to 

assume that two-way communication delays between the two clocks are symmetric.  VB does 

indeed rely upon this assumption; in order to do so, clock synchronization takes place at the link 

layer to ensure that timestamping of transmitted and received synchronization messages takes 

place as a message enters and leaves the physical layer, i.e. timestamping is as deterministic as 

possible within the limits of the granularity of the local clocks of the nodes.  Further, they proved 

that a network topology that is a partially connected graph, i.e. a partial mesh, is no worse in terms 
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of potential synchronization performance than a star topology.  This finding is absolutely 

fundamental to explaining the performance of VB’s synchronization mechanism. 

Koskin et al [95][96][208] have reported their analyses and findings around the synchronization of 

arrays or networks of all-digital phase-locked loops, with a particular focus on defining and 

reducing the jitter experienced by the elements of the array with respect to one node that is 

nominated as the system reference.  They constrained their reporting to uniform grid topologies 

in which the PLL’s are not separated by great distances and communicate only with their 

immediate neighbours, and confirmed their analyses with prototyping using FPGA’s.  They agreed 

with Simeone et al [18] that duplex coupling of the PLL’s through a weak feedback loop achieves 

better performance than simplex coupling such as that employed by IEEE1588, and observed that 

jitter with respect to the reference PLL saturates as a function of hop distance.  While the design 

of their PLL’s is very different to VB’s, there are many aspects of their work that are very similar 

to VB’s approach. 

5.3 System Models 

The set of models described herein are the tools used to explain and understand the operation of 

the Virtual Bus network architecture’s time synchronization mechanism. 

5.3.1 Network Model 

Consider an arrangement of homogenous oscillators in a network, such that the network graph 

𝐺 = (𝑉, 𝐸) where 𝑉 is the set of vertices (where each vertex is an oscillator 𝑣) and the edges 𝐸 ⊆

𝑉 × 𝑉 represent the network links.  Note that we assume that the network is not fully connected, 

i.e. each oscillator 𝑣 ∈ 𝑉 is directly connected only to a subset of the other oscillators 𝒩𝑣 ∈ 𝑉, 𝑣 ∉

𝒩𝑣 through a subset of the links 𝑒𝑣 ∈ 𝐸, i.e. 𝒩𝑣 is the set of neighbours to 𝑣. 

The edges 𝐸 in 𝐺 are undirected; that is, 𝑖, 𝑗 ∈ 𝑉, ∀𝑒 ∈ 𝐸, 𝑒𝑖,𝑗 = 𝑒𝑗,𝑖 = {𝑒𝑖𝑗, 𝑒𝑗𝑖}.  Further, we 

assume that the propagation delay 𝑡𝑝𝑑 experienced by 𝑒𝑖𝑗, 𝑒𝑗𝑖 ∈ 𝑒𝑖,𝑗  is equal, i.e. that: 

 𝑡𝑝𝑑(𝑒𝑖𝑗) = 𝑡𝑝𝑑(𝑒𝑗𝑖) = 𝑡𝑝𝑑(𝑒𝑖,𝑗) (5-1) 

However, the network has no a priori knowledge of 𝑡𝑝𝑑(𝑒𝑖,𝑗). 

The goal of VB’s synchronization mechanism is to both syntonize and synchronize all of the 

oscillators in 𝑉 such that they all share a common start time for every cycle or interval, and 

consequently, that they then also share a common period. 

5.3.2 Simple Oscillator Model 

Each oscillator 𝑣 = (휃, 𝛿, 𝐶), is a discrete-time oscillator, where 휃 is the instantaneous phase of 

the oscillator; 𝛿 is the oscillator increment; and 𝐶 is a clock function that generates oscillator 

increment events 𝑐 with a well-defined periodicity. 

Consider first the clock function 𝐶, which is defined as 𝐶 = (𝑡(0), 𝑇𝑐 , 𝜐(𝑡)).  𝑡(0) ∈ ℝ is the time 

at which the clock first generates an event 𝑐; each (𝑐 + 1)th future event is separated in time 

from the 𝑐th event by the period 𝑇𝑐 ∈ ℝ+; and 𝜐(𝑡) ∈ ℝ is a nuisance term that e.g. includes the 

phase noise of the clock. [18]  𝐶 can thus be said to evolve as: 
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 𝑡(𝑐) = 𝑡(0) + 𝑐𝑇𝑐 + 𝜐(𝑡) (5-2) 

We will assume that 𝑇𝑐 is constant, although in practice this is unlikely to be true; 𝑇𝑐 can be 

expected to vary very slightly over time as a result of environmental influences, e.g. changes in 

temperature and/or air pressure. [149]  However, such variations can be expected to be very small 

and to take place very slowly relative to 𝑇𝑐, so it is reasonable to treat 𝑇𝑐 as a constant and assign 

any variations that might occur to the nuisance term 𝜐(𝑡). 

Consider next the oscillator function 휃, which we will first define as 휃 = (휃(0), 𝛿).  휃(0) ∈ ℝ+ is 

the initial phase of the oscillator; and 𝛿 ∈ ℝ+ is the rate at which the oscillator’s phase 

accumulates for each clock event 𝑐 emitted by 𝐶: 

 휃(𝑐) = 휃(0) + 𝑐 ∙ 𝛿 (5-3) 

We know that clock events are separated by 𝑡 = 𝑇𝑐, so we can also say: 

 
휃(𝑡) = 휃(0) +

𝑡

𝑇𝑐
∙ 𝛿 

(5-4) 

Another perspective upon (5-3) and (5-4) is that: 

 
𝛿 =

𝑑휃

𝑑𝑐
  →   

𝑑휃

𝑑𝑡
=

𝛿

𝑇𝑐
  

(5-5) 

Oscillators are periodic in nature, so 휃 is a periodic function with a constant slope 𝛿, per (5-5), i.e. 

it is a sawtooth function that has an initial value of 휃(0) at 𝑡 = 0 that increases linearly with time 

at a rate of 
𝛿

𝑇𝑐
 until it reaches a value of 2𝜋 at 𝑡 = 𝑇𝑣 and is reset to a new 휃(0).   Each delta of 

time 𝑇𝑣 during which the oscillator evolves from 휃(0) towards 2𝜋 and is then reset to some 

remainder that is the new value of 휃(0), is a cycle of the oscillator: 

 
휃[𝑐] = {

휃[𝑐 − 1] + 𝛿 − 2𝜋,
휃[𝑐 − 1] + 𝛿,

휃[𝑐 − 1] + 𝛿 ≥ 2𝜋
휃[𝑐 − 1] + 𝛿 < 2𝜋

 
(5-6) 

To constrain the rate of evolution of the oscillator such that 𝑇𝑣 ≫ 𝑇𝑐, we will say that 𝛿 ≪  2𝜋.  

The period 𝑇𝑣 of the oscillator is then in the general case given by: 

 
𝑇𝑣 =

2𝜋

𝛿
𝑇𝑐 

(5-7) 

Due to the remainder 휃(0) that may be in the accumulator at the start of an oscillator cycle, the 

period for any particular cycle 𝛼 is: 

 
𝑇𝑣[𝛼] =

2𝜋 − 휃(0, 𝛼)

𝛿
∙ 𝑇𝑐 

(5-8) 

This linear evolution implies that the oscillator is a sawtooth rather than a more conventional 

sinusoid.  However, observe that the evolution of the phase of a sinusoid is identical to the 

evolution of the phase of our oscillator model, i.e. a sawtooth; it is the amplitude of a sine or 

cosine signal that is sinusoidal.  Given that we are saying nothing about the amplitude of the 
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oscillator, i.e. it is unobserved, we can choose to treat it as any convenient periodic function, 

including a sinusoid, or even ignore it completely. 

 

Figure 5-1 : Relationship Between Amplitude and Phase of a Sine Function 

Oscillators of the type described here are generally referred to as either Numerically Controlled 

Oscillators (NCO’s) or Digitally Controlled Oscillators (DCO’s).  My preference is for the former 

term.  The control afforded thus far is limited, in that 
𝑑𝜃

𝑑𝑐
= 𝛿 and 𝛿 is constant so the oscillator as 

described thus far can only be “controlled” at design time, but the principle is consistent. 

5.3.3 Steerable Oscillator Model 

The preliminary model of the oscillator, above, was adequate for introductory purposes, but it is 

limited in that it is not possible to steer the oscillator at runtime.  The oscillator 𝑣’s period 𝑇𝑣 =
2𝜋

𝛿
𝑇𝑐, in which 𝛿 and 𝑇𝑐 are constants, i.e. 𝑇𝑣 is constant.  As will become evident, it is desirable 

that we be able to “steer” the oscillator by dynamically varying its period, 𝑇𝑣.  Steering of the 

oscillator has been implemented by introducing a means of adjusting the amount by which 휃 

evolves for each 𝑐; that is, make 𝛿 dynamically adjustable by some small value 𝜎 ∈ ℝ such that: 

 𝑑휃

𝑑𝑡
=

𝛿 + 𝜎

𝑇𝑐
,    |𝜎| ≪ 𝛿 

(5-9) 

Now: 

 
휃[𝑐] = {

휃[𝑐 − 1] + 𝛿 + 𝜎 − 2𝜋,
휃[𝑐 − 1] + 𝛿 + 𝜎,

휃[𝑐 − 1] + 𝛿 + 𝜎 ≥ 2𝜋
휃[𝑐 − 1] + 𝛿 + 𝜎 < 2𝜋

 
(5-10) 

Varying 𝜎 alters the number of 𝑐 events that must occur in any given cycle before 휃 = 2𝜋 is 

reached, and hence alters the period of the oscillator 𝑇𝑣.  Small adjustments can thus be made to 

𝑇𝑣 by varying 𝜎, as shown in Figure 5-2 below, where the blue traces denotes 𝜎 = 0, the red trace 

denotes 𝜎 < 0 and the green trace denotes 𝜎 > 0.  Varying 𝑇𝑣 of course also varies 𝑓𝑣. 
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Figure 5-2 : Phase of Steerable Sawtooth Oscillator  

Note also that for most analytical purposes we will treat 휃(0) = 0, hence: 

 
𝑇𝑣 =

2𝜋

𝛿 + 𝜎
𝑇𝑐 

(5-11) 

Given that 𝑓𝑣 =
1

𝑇𝑣
= 2π

𝛿+𝜎

𝑇𝑐
, we can see that the frequency of the steerable oscillator can be 

resolved into two components: the natural or free-running frequency 2𝜋
𝛿

𝑇𝑐
, plus the forcing or 

control term 2𝜋
𝜎

𝑇𝑐
.  This is analogous to the response of a voltage-controlled oscillator (VCO) to its 

control voltage. 

The steerable oscillator model is evidently more closely aligned to the concept of an NCO than the 

simple oscillator model because it affords dynamic control over the oscillator’s 
𝑑𝜃

𝑑𝑡
 through the 

application of the control term 𝜎, such that 
𝑑𝜃

𝑑𝑡
∝ 𝛿 + 𝜎. 

5.3.4 Messaging Model 

One of the properties of the network is that the oscillators 𝑣 ∈ 𝑉 are permitted to transmit 

messages to other oscillators in their respective 𝒩𝑣 over links 𝐸𝑣 ∈ 𝐸{𝑒𝑣𝑥|𝑥 ∈ 𝒩𝑣} for the 

purposes of time synchronization.  We will assume, unless otherwise stated, that messages are 

always transferred successfully, i.e. when a transmitter injects a particular sequence of bits into 

the physical layer, the corresponding receiver always perceives the entire sequence of bits as 

being identical to that injected by the transmitter. 

While it would be convenient to pretend that a message can be transferred instantaneously from 

transmitter to receiver, in practice this is not the case; rather, it takes a well-defined amount of 

time to transfer a message.  We define three conditions that control message transfer delay 

[161],43  all of which are achievable in practice: 44 

• There is zero time between an oscillator determining that it wishes to send a message, 

and the message being transmitted. 

 
43 The first two conditions are met by having oscillators exchange messages only at the link layer (layer 2), 
allowing the lack of determinism associated with higher network layers implemented in software in a shared 
processing environment to be avoided. 
44 This does require hardware designed specifically to meet the conditions, but it is achievable in practice, 
as discussed in Ch2 and Apx B. 
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• There is at most 𝑡 = 휀𝜃𝑖,𝜃𝑗  delay45 between an oscillator receiving a message, and the 

oscillator being aware that it has received the message. 

• Messages exchanged by oscillators are always of a fixed size, hence their transmission 

always takes the same amount of time.46 

These conditions simplify the message transfer delay model considerably.  Now, we need consider 

only: 

• Transmission time – the time required to modulate the physical layer in order to transfer 

the message. 

• Oscillator clock skew – the difference in frequency between the clocks 𝐶 of the oscillators. 

• Propagation delay – the time between a change in the physical layer at the message 

transmitter, and that change propagating across the signalling channel such that it arrives 

at and can be detected by the receiver’s physical layer. 

The transmission time is a function of some number of ticks 𝑐 of the oscillator’s clock 𝐶, 𝑛𝑐 = 𝑚 ∈

ℕ+, required to transmit the message.  If all messages are always the same length 𝑚47 then we 

can say that the message transmission time 𝑇𝑚𝑠𝑔 is uniformly: 

 𝑇𝑚𝑠𝑔 = 𝑇𝑐 ∙ 𝑚 (5-12) 

We know that the quantities upon which 𝑇𝑚𝑠𝑔 depends are constants, at least within the context 

of any particular oscillator 𝑣, so we can say that 𝑇𝑚𝑠𝑔 is also a constant. 

Another perspective upon message transmission time is the change in phase of the oscillator 

during the time that it is transmitting the message, 휃𝑚𝑠𝑔, which is given by: 

 
휃𝑚𝑠𝑔 = 𝛿 ∙

𝑇𝑚𝑠𝑔

𝑇𝑐
= 𝛿 ∙ 𝑚 

(5-13) 

Of course, 𝑇𝑐 is only constant in the context of any particular oscillator 𝑣; it will vary slightly 

between oscillators, and this frequency differential will introduce a small amount of noise into any 

relative timing measurements between oscillators 𝑖, 𝑗.  If we say that 𝑖 is transmitting to 𝑗, then 

the error relative clock error 휀𝑐𝑖,𝑐𝑗 (in terms of time 𝑡) is given by: 

 휀𝑐𝑖,𝑐𝑗(𝑡) = (𝑇𝑐
𝑖 − 𝑇𝑐

𝑗
) ∙ 𝑚 (5-14) 

Given that 𝐶𝑖, 𝐶𝑗 are affine and can be expected to have a frequency differential that is at worst in 

the low 10’s of parts per million, the magnitude of 휀𝑐𝑖,𝑐𝑗 for a single message will be very small, 

typically several orders of magnitude smaller than 𝑇𝑐.48 

 
45 See (5-15). 
46 Additional discussion and clarification of the small timing errors caused by frequency mismatches 
between the two clocks can be found below. 
47 Indicatively, and as discussed in Ch2, 𝑚 = 2,417 for the research platform. 
48 Indicatively, frequency error for any given 𝐶 is reported by the manufacturer as ±4.3𝑝𝑝𝑚 for the clock 
oscillator used in the research platform. 
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Another source of timing noise is the reality that, even if 𝑓𝑐
𝑖 ≡ 𝑓𝑐

𝑗
, it is highly improbable that 휃𝑐

𝑖 ≡

휃𝑐
𝑗
, i.e. there can be expected to be a phase offset 휀𝜃𝑖,𝜃𝑗 between 𝐶𝑖, 𝐶𝑗 at the time that 𝑗 becomes 

aware that it has received a message from 𝑖.  The worst-case magnitude of that phase offset is 

given by: 

 휀𝜃𝑖,𝜃𝑗(t) = 𝑚𝑖𝑛(𝑇𝑐
𝑖, 𝑇𝑐

𝑗
) (5-15) 

Certainly, we can say that 휀𝜃𝑖,𝜃𝑗 ≫ 휀𝑐𝑖,𝑐𝑗, and 휀𝜃𝑖,𝜃𝑗 dominates as a source of noise.  Even so, if we 

assume that messages take several thousand 𝑐 events to be transferred49, the magnitude of 휀𝜃𝑖,𝜃𝑗 

relative to 𝑇𝑚𝑠𝑔 is very small indeed.  We therefore take the position that both 휀𝜃𝑖,𝜃𝑗 and 휀𝑐𝑖,𝑐𝑗 fall 

into the same nuisance term space as the 𝜐(𝑡) term from (5-2) and the accumulated remainder 

term 휃(0) from (5-8), and can in practice be treated as noise, not least because both variables can 

be expected to have a random distribution for large sample sets. 

Finally, we must consider the propagation delay, which we will define as 𝑡(𝑒𝑖,𝑗) = 휁 ∈ ℝ+.  In any 

practical network in which signalling is carried out by modulating an electrical signal over a wire 

(noting and acknowledging that there are other signalling media and techniques that may be used, 

e.g. optical fibre or radio waves, while explicitly restricting this work to the electrical signalling 

case), propagation delay is a function of three parameters: 

• Transmission delay through the modulating or transmitting electronics to the physical 

layer media. 

• Relativistic delay through the physical layer media from the transmitter to the receiver. 

• Reception delay through the demodulating or receiving electronics from the physical layer 

media. 

Transmission and reception delays are a function of the hardware implementation and 

manufacturing tolerances and can be expected to vary slightly between any two oscillators, and 

even between the different transmit and receive ports of a single oscillator. 

Relativistic delay is a function of the speed of light 𝐶 = 3 × 108𝑚𝑠−1, the length of the physical 

layer media, and its velocity factor, often given as 𝑉𝐹.50  Indicatively, the 𝑉𝐹 for unshielded twisted 

pair cable, such as might be expected to be used for a hardwired network at the time of writing, 

is typically assumed to be in the region of 0.67, i.e. the propagation speed through such cable is 

approximately 2 × 108𝑚𝑠−1. 

In practice, we can expect some small variance between the complementary signalling paths 𝑒𝑖𝑗  

and 𝑒𝑗𝑖; they are likely to be of slightly different physical lengths, even if the difference can be 

measured in millimetres over tens of metres; and they certainly traverse different sets of 

electronic components that are similar but not identical.  However, to simplify analysis, we will 

presume that the directional variance is zero, i.e. 𝑡(𝑒𝑖𝑗) = 𝑡(𝑒𝑗𝑖) = 𝜉. 

We need to understand the implications of 𝜉 in terms of the amount that the phase 휃 will evolve 

given 𝑑𝑡 = 𝜉.  Drawing upon (5-5), we can say that: 

 
49 See 47. 
50 Noting that an oscillator’s clock 𝐶 and the speed of light 𝐶 are entirely different and unrelated. 
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𝑑휃(휁) =

𝜉

𝑇𝑐
∙ 𝛿 

(5-16) 

It has been shown [18][224], and was confirmed during prototyping with the research system, 

that even small propagation delays of 𝜉 ≪ 𝑇𝑐 can have a deleterious effect, tending to result in 

the steady accumulation of error in oscillator phase measurements and consequent instability.  

VB’s technique for measuring and compensating for propagation delays, irrespective of their 

source, is explained below in section 5.5.2. 

5.4 Synchronization Tools 

5.4.1 A Simple Network for Analysis Purposes 

In the first instance, we will work with the simplest possible network: 

𝑉 = {𝑖, 𝑗}, 𝐸 = {𝑒𝑖,𝑗, 𝑒𝑗,𝑖}, 𝒩𝑖 = {𝑗}, 𝒩𝑗 = {𝑖} 

 

Figure 5-3 : Simple 2-Oscillator Network Graph 

Unless otherwise specified, we will assume that 𝑇𝑐
𝑖 and 𝑇𝑐

𝑗
 are affine, but not perfectly equal; 𝑖 is 

slightly faster than 𝑗, i.e. 𝑇𝑐
𝑖 < 𝑇𝑐

𝑗
 by a small margin.  Consequently, we can also say that there is 

no constant relationship whatsoever between the phases of 𝐶𝑖 and 𝐶𝑗. 

5.4.2 Synchronization and Syntonization 

Synchronization occurs when the phases of oscillators are aligned, such that every synchronized 

oscillator’s cycle commences simultaneously.  Note that in the context of even systems of trivial 

complexity, such as that presented in section 5.4.1 above, synchronization will always be 

transitory if the two oscillators are not also syntonized. 

Syntonization occurs when oscillators have precisely the same frequency.  It is not necessarily true 

that if oscillators are syntonized, they are also synchronized – their phases may be different.  Note 

however that syntonization is a necessary condition for synchronization to occur over an extended 

period. 

Both synchronization and syntonization can be visualized if we represent the start of each 

oscillator cycle (and hence, the end of the previous cycle) with a short pulse on the timeline. 

𝑖 𝑗 

𝑒𝑖,𝑗  

𝑒𝑗,𝑖 
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Figure 5-4 : Unsyntonized and Transitorily Synchronized Oscillators 

In Figure 5-4 above, the pulse trains are not syntonized; they have slightly different frequencies.  

This will periodically cause them to become briefly synchronized, when the start of a cycle of 𝑖 

aligns51 with the start of a cycle of 𝑗, then the two oscillators will be briefly synchronized, but 

synchronization will exist only whilst the difference in the cycle start times remains within a tight 

range.  As the cycle start times of the two oscillators drift apart, which will surely happen due to 

their different frequencies, they will cease to be synchronized. [225] 

 

Figure 5-5 : Syntonized and Unsynchronized Oscillators 

In Figure 5-5 above, the pulse trains are syntonized but not synchronized, and they will never 

become synchronized; there is no frequency differential between 𝑖 and 𝑗, so the start times of the 

cycles do not drift out of alignment over time. 

 
51 To some acceptable level of precision. 
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Figure 5-6 : Syntonized and Synchronized Oscillators 

In Figure 5-6 above, the pulse trains are both syntonized and synchronized.  In the absence of any 

disturbance that either causes their frequency to drift, or delays a cycle, they will remain in this 

state.  This is the desired state if we are to achieve synchronization over the longer term. 

5.4.3 Achieving Syntonization 

The mechanism discussed in section 5.3.3 above can be used to frequency-match (syntonize) two 

oscillators 𝑖, 𝑗 driven by affine clocks 𝐶𝑖, 𝐶𝑗 by “steering” the periods 𝑇𝑖, 𝑇𝑗 of both oscillators to 

some common or consensus value 𝑇𝑣 by varying 𝜎𝑖, 𝜎𝑗 such that 
𝑑𝜃𝑖

𝑑𝑡
=

𝑑𝜃𝑗

𝑑𝑡
, despite 𝑇𝑐

𝑖 ≠ 𝑇𝑐
𝑗
. 

We know nothing about the relationship between the clocks that drive 𝑖, 𝑗 other than that they 

are affine, i.e. 𝑇𝑐
𝑖 ≅ 𝑇𝑐

𝑗
.  We also know from (5-11) that in our system of clocks and oscillators, for 

any arbitrary oscillator 𝑣, 𝑇𝑣 =
1

𝛿+𝜎𝑣
∙ 𝑇𝑐

𝑣.  The natural consensus 𝑇𝑣 period for 𝑖, 𝑗 is the geometric 

mean of 𝑇𝑖, 𝑇𝑗 such that 𝑇𝑣 = √𝑇𝑖 ∙ 𝑇𝑗.  Now, we define a “virtual” oscillator 𝑣 that shares the 

consensus period of 𝑖, 𝑗; and we set 𝜎𝑣 = 0, because 𝑣 does not need to be steered – it exemplifies 

the consensus.  Now: 

 
𝑇𝑣 = √𝑇𝑖 ∙ 𝑇𝑗 =

1

𝛿 + 0
∙ 𝑇𝑐

𝑣 

𝑇𝑐
𝑣 = √𝑇𝑐

𝑖 ∙ 𝑇𝑐
𝑗

 →    (𝑇𝑐
𝑣)2 = 𝑇𝑐

𝑖 ∙ 𝑇𝑐
𝑗
 

1

𝛿 + 𝜎𝑖
∙ 𝑇𝑐

𝑖 =
1

𝛿 + 𝜎𝑗
∙ 𝑇𝑐

𝑗
=

1

𝛿
∙ 𝑇𝑐

𝑣 
 

 
𝑇𝑐

𝑖 =
𝛿 + 𝜎𝑖

𝛿
∙ 𝑇𝑐

𝑣 ,    𝑇𝑐
𝑗

=
𝛿 + 𝜎𝑗

𝛿
∙ 𝑇𝑐

𝑣 
(5-17) 

Therefore: 

Time (t) 

Time (t) 

𝑖 

𝑗 
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(𝑇𝑐

𝑣)2 =
𝛿 + 𝜎𝑖

𝛿
∙ 𝑇𝑐

𝑣 ∙
𝛿 + 𝜎𝑗

𝛿
∙ 𝑇𝑐

𝑣 

𝛿 + 𝜎𝑖

𝛿
∙

𝛿 + 𝜎𝑗

𝛿
= 1 

𝜎𝑗 = −𝜎𝑖 (5-18) 

That is, a pair of oscillators 𝑖, 𝑗 with affine respective periods 𝑇𝑖, 𝑇𝑗 can be steered to a consensus 

frequency such that 𝑇𝑣 = √𝑇𝑖 ∙ 𝑇𝑗 if the steering terms 𝜎𝑖, 𝜎𝑗 are selected such that 𝜎𝑖 = −𝜎𝑗. 

Knowing that consensus can be achieved with 𝜎𝑗 = −𝜎𝑖, we can find 𝜎𝑖, and hence 𝜎𝑗, as a function 

of the base oscillator step 𝛿 and the periods of the clocks 𝑇𝑐
𝑖, 𝑇𝑐

𝑗
: 

 1

𝛿 + 𝜎𝑖
∙ 𝑇𝑐

𝑖 =
1

𝛿 + 𝜎𝑗
∙ 𝑇𝑐

𝑗
=

1

𝛿 − 𝜎𝑖
∙ 𝑇𝑐

𝑗
 

(5-19) 

And hence: 

 𝜎𝑖

𝛿
=

𝑇𝑐
𝑖 − 𝑇𝑐

𝑗

𝑇𝑐
𝑖 + 𝑇𝑐

𝑗
 

(5-20) 

Alternatively: 

 𝑇𝑐
𝑖

𝑇𝑐
𝑗

=
𝛿 + 𝜎𝑖

𝛿 − 𝜎𝑖
 

(5-21) 

Note that it is perfectly possible to vary 𝜎𝑖, 𝜎𝑗 to set a consensus period other than the natural 

period or geometric mean of 𝑇𝑖, 𝑇𝑗, but having 𝜎𝑗 = −𝜎𝑖 is convenient for analysis purposes, and 

consistent with research, e.g. by Zeitler et al [217], that suggests that symmetry of synchronization 

influence is desirable, if not a prerequisite, when aiming to achieve stable synchronization.  

5.4.4 Characterizing Oscillator Phase Differentials 

Consider our simple network model from 5.3.1 and our steerable oscillator model discussed in 

section 5.3.3: two oscillators 𝑖, 𝑗 equipped with affine clocks 𝐶𝑖, 𝐶𝑗 that evolve by 𝛿 + 𝜎 at each 

clock event 𝑐.  If we know 𝜎𝑖, 𝜎𝑗 then we can determine the difference in the magnitude of the 

evolution of 휃𝑖 and 휃𝑗, 𝑑휃𝑖𝑗 = 𝑑휃𝑖 − 𝑑휃𝑗, in terms of 𝑇𝑐, 𝛿 and 𝜎 for any given time difference 𝑑𝑡.  

Further, knowing 
𝑑𝜃𝑗

𝑑𝑡
 and 

𝑑𝜃𝑖

𝑑𝑡
, we can calculate 

𝑑𝜃𝑗

𝑑𝜃𝑖
 and 

𝑑𝜃𝑖

𝑑𝜃𝑗
. 

The following proof relies upon re-imagining (5-17) from the perspective that in fact the consensus 

clock period 𝑇𝑣 is for a real clock 𝐶𝑣 that is identical to both 𝐶𝑖 and 𝐶𝑗, such that 𝑇𝑖 = 𝑇𝑗 = 𝑇𝑣, but 

that 𝑖 and 𝑗 have been steered away from their natural period 𝑇𝑣 by the application of a control 

influence 𝜎𝑣 = −𝜎𝑖 = 𝜎𝑗.52  Now, from (5-17) we get: 

 
52 Note the flip of the sign from 𝜎𝑖  to 𝜎𝑣. 𝜎𝑖  is negative (wrt 𝜎𝑣) because 𝑖 is faster than 𝑣, so must be slowed 
down to match it. 
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𝑇𝑐

𝑣 = 𝑇𝑐
𝑖 ∙

𝛿

𝛿 − 𝜎𝑣
= 𝑇𝑐

𝑗
∙

𝛿

𝛿 + 𝜎𝑣
 

(5-22) 

We know from (5-9) that 
𝑑𝜃𝑣

𝑑𝑡
=

𝛿+𝜎𝑣

𝑇𝑐
𝑣 , so: 

 𝑑휃𝑖

𝑑𝑡
=

𝛿 − 𝜎𝑣

𝑇𝑐
𝑣 ,

𝑑휃𝑗

𝑑𝑡
=

𝛿 + 𝜎𝑣

𝑇𝑐
𝑣  

(5-23) 

And: 

 𝑑휃𝑖𝑗

𝑑𝑡
=

𝛿 − 𝜎𝑣

𝑇𝑐
𝑣 −

𝛿 + 𝜎𝑣

𝑇𝑐
𝑣 =

−2𝜎𝑣

𝑇𝑐
𝑣  

(5-24) 

Hence: 

 𝑑휃𝑖𝑗

𝑑𝑡
=

−2𝜎𝑣

𝑇𝑐
𝑖 ∙

𝛿
𝛿 − 𝜎𝑣

=
−2𝜎𝑣 ∙ (𝛿 − 𝜎𝑣)

𝑇𝑐
𝑖 ∙ 𝛿

 

= −2𝜎𝑣 ∙
1

𝑇𝑐
𝑖

∙ (1 −
𝜎𝑣

𝛿
) 

(5-25) 

And similarly: 

 𝑑휃𝑗𝑖

𝑑𝑡
= −2𝜎𝑣 ∙

1

𝑇𝑐
𝑗

∙ (1 +
𝜎𝑣

𝛿
) 

(5-26) 
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Now: 

 
𝑑휃𝑗

𝑑휃𝑖
  =   

𝑑휃𝑖
𝑑𝑡

𝑑휃𝑗

𝑑𝑡

  =   

𝛿 − 𝜎𝑣

𝑇𝑐
𝑣

𝛿 + 𝜎𝑣

𝑇𝑐
𝑣

  =     
𝛿 − 𝜎𝑣

𝛿 + 𝜎𝑣
 

(5-27) 

And similarly (and noting (5-21)): 

 𝑑휃𝑖

𝑑휃𝑗
=

𝛿 + 𝜎𝑣

𝛿 − 𝜎𝑣
 

(5-28) 

5.4.5 Achieving Synchronization by Varying Oscillator Frequencies 

Providing a means of steering an oscillator by varying its 
𝑑𝜃

𝑑𝑡
 can be used for several purposes, 

including setting a consensus frequency, as discussed above; or to adjust the relative cycle start 

times of two oscillators. 

We begin with the simple network model detailed in section 5.3.1 and the steerable oscillator 

model discussed in section 5.3.3: two oscillators 𝑖, 𝑗 driven by clocks 𝐶𝑖, 𝐶𝑗 with periods 𝑇𝑐
𝑖, 𝑇𝑐

𝑗
.  We 

know from (5-10) that the phase 휃 of each oscillator evolves by some amount 𝛿 + 𝜎 each tick 𝑐 of 

the local clock.  We also know from (5-11) that the total amount of time taken to complete one 

cycle of an oscillator is 
𝑇𝑐

𝛿+𝜎
, given 휃(0) = 0.  Consequently, we can vary how long it takes in terms 

of time 𝑡 to complete any given cycle by varying 𝜎. [226] 

 

Figure 5-7 : Initial Conditions: 𝒋 lags 𝒊 by 𝝉 

Now, say that 𝑖 commences a new cycle at 𝑡 = 0, and 𝑗 commences its next cycle at 𝑡 = 𝜏 where 

𝜏 ∈ ℝ+, as shown in Figure 5-7 above.  For simplicity in the first instance, we will assume that 𝑇𝑐
𝑖 =

𝑇𝑐
𝑗
 and 𝜎𝑖 = 𝜎𝑗 = 0, i.e. the oscillators are naturally syntonized as they have precisely the same 

clock frequency.  One mechanism by which the oscillators might then be synchronized is to 

temporarily reduce 𝑇𝑗 and increase 𝑇𝑖 by varying 𝜎𝑗 and 𝜎𝑖.  Depending on the range over which 𝜎 

can be varied relative to 𝛿 and the magnitude of 𝜏, the process might take a (potentially quite 

large) number of cycles.  When 𝜏 = 0, i.e. 𝑖 and 𝑗 commence at precisely the same time, 

synchronization has been achieved.  𝜎𝑗 and 𝜎𝑖 can be immediately relaxed back to 0, at which 

point syntonization will also be restored. 

Time (t) 

Time (t) 

𝑖 

𝑗 

𝜏 
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If we now consider a situation where 𝑖, 𝑗 are not syntonized, i.e. 𝑇𝑐
𝑖 ≅ 𝑇𝑐

𝑗
, it should be clear that 

the process is similar.  Again, 𝜎𝑖 and 𝜎𝑗 are varied such that, after some number of cycles, 𝜏 = 0 

and synchronization is achieved.  Now, rather than simply restoring 𝜎𝑖 = 𝜎𝑗 = 0, we can use (5-18) 

and (5-20) to select values for 𝜎𝑖, 𝜎𝑗 such that syntonization is also achieved. 

It should be clearly understood that it is improbable that synchronization might be encompassed 

with a single event; rather, the synchronization state must be continuously monitored and 

adjusted, preferably as a closed-loop control process. [70]  We refer to this continuous control 

approach as “fine synchronization” and discuss it in detail from section 5.7 below. 

5.4.6 Achieving Synchronization with a Step Change to Oscillator Phase 

The synchronization process detailed above is pleasing in that it is continuous, in as much as any 

discrete-time system can be said to be continuous.  However, it is not necessarily convenient in 

practice.  𝜎 can be expected to be constrained to a very small range in comparison to 𝛿 given that 

it is intended to correct for clock errors in the range of at most a few tens of parts per million.  

Consequently, it may take many thousands of cycles to correct for an initial synchronization error 

that is a significant portion of a cycle. 

An alternative approach is to simply advance, or “jump”, the phase of the lagging oscillator such 

that it is synchronized to the next cycle of the leading oscillator. [18][227]  This does not break 

causality, because time is never reversed for any oscillator [227], but it does cause a phase 

discontinuity for the lagging oscillator.  If that discontinuity can be tolerated, then synchronization 

can be achieved almost instantaneously with this approach, as shown in Figure 5-8 below.  Note 

that, again, we must use (5-18) and (5-20) to select values for 𝜎𝑖, 𝜎𝑗 such that syntonization is also 

achieved. 

 

Figure 5-8 : Instantaneous Synchronization via Discontinuity 

We will refer to this step change approach as “coarse synchronization” and discuss it in detail in 

section 5.6 below. 

5.5 Pulse-Coupling Oscillators 

In order to steer oscillators using the techniques discussed in section 5.4 above, it is necessary for 

the oscillators to exchange information about their state.  That is, the oscillators must be coupled.  

Time (t) 

Time (t) 

𝑖 

𝑗 Jump 
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Pulse coupling is a process whereby an oscillator periodically shares a snapshot of its 

instantaneous state (a pulse) with any other oscillators in the network that might wish to steer 

themselves to match that state. [18] 

5.5.1 Network Messages as Data Pulses 

At some point in time during each cycle, an oscillator 𝑖 emits a set of pulses 𝑃𝑖 =

{𝑗 ∈ 𝒩𝑖|𝑃𝑖,0, … , 𝑃𝑖,|𝒩𝑖|−1} that transfer information about its state to its neighbours, i.e. the 

directly connected subset of oscillators, 𝒩𝑖.  One pulse 𝑃𝑖,𝑗 is sent to each neighbour 𝑗 ∈ 𝒩𝑖.  

Similarly, each 𝑗 sends a pulse 𝑃𝑗,𝑖 to 𝑖.  A pulse is simply a network message, transmitted over the 

network’s signalling paths, as discussed in section 5.3.4 

We know from (5-9) that 휃 evolves by 𝛿 + 𝜎 at each clock event 𝑐 of 𝐶𝑖.  If we say that 𝜌 is the 

threshold of 휃 at which 𝑖 emits 𝑃𝑖, then for any given cycle, at the first clock event 𝑐𝑖 for which 

휃𝑖 ≥ 𝜌, 𝑖 emits 𝑃𝑖. 

We now define: 

 𝑃𝑖,𝑗 = [𝛼[𝑛] 휃𝑆[𝑛] 휀𝜃
𝑆[𝑛 − 1]] (5-29) 

Where: 

• 𝛼 is the count of cycles that the oscillator has completed.  The utility of this property will 

be explored below in section 5.5.3. 

• 휃𝑆 is the phase 휃 of the sender 𝑖 at the time that it transmitted 𝑃𝑖,𝑗, or the send timestamp.  

In general, we assume that 휃𝑆 = 𝜌. 

• 휀𝜃
𝑆[𝑛 − 1] is the receiver’s phase error measured in the previous oscillator cycle 𝛼 by the 

sender: 

 
휀𝜃

𝑆[𝑛] = {
0,
휃𝑅[𝑛 − 1] − 휃𝑆[𝑛 − 1],

𝑛 ≤ 0
𝑛 > 0

 
(5-30) 

Further, when 𝑗 receives 𝑃𝑖,𝑗, it appends an additional term 휃𝑅 to 𝑃𝑖,𝑗 such that: 

 𝑃𝑖,𝑗 = [𝛼[𝑛] 휃𝑆[𝑛] 휀𝜃
𝑆[𝑛 − 1] 휃𝑅[𝑛]] (5-31) 

Where: 

• 휃𝑅 is the phase of the receiver 𝑗 at the time that the message has entirely traversed the 

physical layer. [225][226] 

We know from section 5.4.4 above that 
𝑑𝜃𝑗

𝑑𝜃𝑖
=

𝛿−𝜎𝑣

𝛿+𝜎𝑣
, 

𝑑𝜃𝑖

𝑑𝜃𝑗
=

𝛿+𝜎𝑣

𝛿−𝜎𝑣
 and 𝜎𝑣 = −𝜎𝑖 = 𝜎𝑗.  We assume 

an initial difference in phase between 𝑖 and 𝑗 such that at 휃𝑖 = 0, 휃𝑗 = 𝜏. 

Note that we assume that neither oscillator has been steered through the application of a non-

zero 𝜎, i.e. 𝜎𝑗 = −𝜎𝑖 = 0, so, for example, 𝜎 is 0 when calculating 휃𝑚𝑠𝑔.  The utility of 𝜎𝑣 in the 

following set of equations is that it affords insight into the relative rate of phase evolution of 𝑖 
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with respect to 𝑗, and vice versa, such that given some virtual oscillator 𝑣 with period 𝑇𝑣 = √𝑇𝑖 ∙ 𝑇𝑗,  

𝑑𝜃𝑣

𝑑𝑐𝑣
= 𝛿 + 0, 

𝑑𝜃𝑖

𝑑𝑐𝑣
= 𝛿 − 𝜎𝑣 and 

𝑑𝜃𝑗

𝑑𝑐𝑣
= 𝛿 + 𝜎𝑣. 

Now, 𝑖 commences transmission to 𝑗 when 휃𝑖 = 𝜌, at which time 휃𝑗 = 𝜌
𝛿−𝜎𝑣

𝛿+𝜎𝑣
+ 𝜏.  𝑃𝑖,𝑗 is then 

injected into the physical layer over the course of 𝑚 events of 𝑐𝑖.  Propagation across the physical 

layer causes a delay of duration 𝑡 = 𝜉 and hence a change in phase 𝑑휃 =
𝜉

𝑇𝑐
𝛿 of both the receiver 

and transmitter, such that 𝑗 receives 𝑃𝑖,𝑗 in terms of 휃𝑖 when: 

 
휃𝑖 = 𝜌 + 𝑚(𝛿 + 𝜎𝑖) +

𝜉

𝑇𝑐
𝑖

𝛿 = 𝜌 + 𝑚(𝛿 + 053) +
𝜉

𝑇𝑐
𝑖

𝛿 
(5-32) 

And, per (5-28), and noting the simplification of the 
𝜉

𝑇𝑐
 term by translating its frame of reference to 

the clock period 𝑇𝑐
𝑗
 of the receiver rather than the clock period 𝑇𝑐

𝑖 of the transmitter: 

 
휃𝑗 = 휃𝑅 = 휃𝑖

𝑑휃𝑗

𝑑휃𝑖
+ 𝜏 = (𝜌 + 𝑚𝛿)

𝛿 − 𝜎𝑣

𝛿 + 𝜎𝑣
+

𝜉

𝑇𝑐
𝑖

𝛿
𝛿 − 𝜎𝑣

𝛿 + 𝜎𝑣
+ 𝜏

= (𝜌 + 𝑚𝛿)
𝛿 − 𝜎𝑣

𝛿 + 𝜎𝑣
+

𝜉

𝑇𝑐
𝑗

𝛿 + 𝜏 
(5-33) 

Now, 𝑗 expects to receive 𝑃𝑖,𝑗 when 𝜙𝑗 = 𝜌 + 𝑚𝛿.  The difference 휀𝜃
𝑗𝑖

 between the expected and 

actual values of 휃𝑗 at the time of reception of 𝑃𝑖,𝑗 is: 

 
휀𝜃

𝑗𝑖
= (𝜌 + 𝑚𝛿) − 휃𝑅 = (𝜌 + 𝑚𝛿) − [(𝜌 + 𝑚𝛿)

𝛿 − 𝜎𝑣

𝛿 + 𝜎𝑣
+

𝜉

𝑇𝑐
𝑗

𝛿 + 𝜏]

= (𝜌 + 𝑚𝛿) (1 −
𝛿 − 𝜎𝑣

𝛿 + 𝜎𝑣
) −

𝜉

𝑇𝑐
𝑗

𝛿 − 𝜏

= (𝜌 + 𝑚𝛿)
2𝜎𝑣

𝛿 + 𝜎𝑣
− (

𝜉

𝑇𝑐
𝑗

𝛿 + 𝜏) 
(5-34) 

Similarly, when 𝑗 transmits 𝑃𝑗,𝑖  to 𝑖, we can say that 𝑖 receives 𝑃𝑗,𝑖 when: 

 
휃𝑗 = 𝜌 + 𝑚𝛿 +

𝜉

𝑇𝑐
𝑗

𝛿 
(5-35) 

And: 

 
휃𝑖 = 휃𝑅 = 휃𝑗

𝑑휃𝑖

𝑑휃𝑗
− 𝜏 = (𝜌 + 𝑚𝛿)

𝛿 + 𝜎𝑣

𝛿 − 𝜎𝑣
+

𝜉

𝑇𝑐
𝑗

𝛿
𝛿 + 𝜎𝑣

𝛿 − 𝜎𝑣
− 𝜏

= (𝜌 + 𝑚𝛿)
𝛿 + 𝜎𝑣

𝛿 − 𝜎𝑣
+

𝜉

𝑇𝑐
𝑖

𝛿 − 𝜏 
(5-36) 

  

 
53 𝜎𝑖  can be dropped because 𝜎𝑗 = −𝜎𝑖 = 0 
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So: 

 
휀𝜃

𝑖𝑗
= (𝜌 + 𝑚𝛿) − 휃𝑅 = (𝜌 + 𝑚𝛿) − [(𝜌 + 𝑚𝛿)

𝛿 + 𝜎𝑣

𝛿 − 𝜎𝑣
+

𝜉

𝑇𝑐
𝑖

𝛿 − 𝜏]

= (𝜌 + 𝑚𝛿) (1 −
𝛿 + 𝜎𝑣

𝛿 − 𝜎𝑣
) −

𝜉

𝑇𝑐
𝑖

𝛿 + 𝜏

= (𝜌 + 𝑚𝛿)
−2𝜎𝑣

𝛿 + 𝜎𝑣
− (

𝜉

𝑇𝑐
𝑖

𝛿 − 𝜏) 
(5-37) 

The series of equations (5-32) through (5-37) above are reasonably complex.  While it is no doubt 

true that grasping this complexity is necessary if we are to fully understand the behaviour of the 

oscillators, there is an opportunity for simplification when this system of equations is applied in 

practice.  Recall that from (5-9) that |𝜎| ≪ 𝛿 and 𝑇𝑐
𝑖, 𝑇𝑐

𝑗
 are affine.  (5-34) can thus be approximated 

to: 

 
휀𝜃

𝑗𝑖
≅ − (

𝜉

𝑇𝑐
𝛿 + 𝜏) 

(5-38) 

Similarly, (5-37) can be approximated to: 

 
휀𝜃

𝑖𝑗
≅ − (

𝜉

𝑇𝑐
𝛿 − 𝜏) 

(5-39) 

5.5.2 Separating Message Propagation Delays from Oscillator Phase Differentials 

The error term 휀𝜃
𝑖𝑗

 is the last phase error observed by 𝑖 with respect to 𝑗, reflected back to 𝑗.  

Conversely, 휀𝜃
𝑗𝑖

 is the last phase error observed by 𝑗 with respect to 𝑖.  These measurements are 

shared through the medium of the exchange of pulses 𝑃𝑖,𝑗  and 𝑃𝑗,𝑖, following which both 𝑖 and 𝑗 

have imperfect but nonetheless valid knowledge of 휀𝜃
𝑖𝑗

 and 휀𝜃
𝑗𝑖

.   Now, the oscillators can use their 

knowledge of both error terms to separate those terms into distinct sub-terms: the difference 𝜏 =

휃𝑗 − 휃𝑖 at 휃𝑖 = 0; and the propagation delay 
𝜉

𝑇𝑐
𝛿 of the link in terms of oscillator phase change.  

This is precisely the method proposed by Giridhar and Kumar [93]. 

Recall (5-38) and (5-39) above.  To resolve an approximate value for 
𝜉

𝑇𝑐
𝛿: 

 
휀𝜃

𝑗𝑖
+ 휀𝜃

𝑖𝑗
≅ − (

𝜉

𝑇𝑐
𝛿 + 𝜏) − (

𝜉

𝑇𝑐
𝛿 − 𝜏) = −2

𝜉

𝑇𝑐
𝛿 

𝜉

𝑇𝑐
𝛿 ≅ −

휀𝜃
𝑗𝑖

+ 휀𝜃
𝑖𝑗

2
 

(5-40) 

Conversely, to resolve an approximate value for 𝜏: 

 
휀𝜃

𝑗𝑖
− 휀𝜃

𝑖𝑗
≅ − (

𝜉

𝑇𝑐
𝛿 + 𝜏) + (

𝜉

𝑇𝑐
𝛿 − 𝜏) = −2𝜏 

𝜏 ≅ −
휀𝜃

𝑗𝑖
− 휀𝜃

𝑖𝑗

2
=

휀𝜃
𝑖𝑗

− 휀𝜃
𝑗𝑖

2
 

(5-41) 



Page 296 

 

(5-40) is useful and interesting because, knowing approximate values for the speed of light 𝐶; the 

velocity factor of the physical layer 𝑘𝑉𝐹; and their local 
𝑑𝜙

𝑑𝑡
;  both oscillators can calculate an 

approximate value for 𝜉 and hence the approximate length 𝐿 of the physical layer link: 

 

𝑑𝑡 =
𝑑휃

𝑑휃
𝑑𝑡

→ 𝜉 =

𝜉
𝑇𝑐

𝛿

𝛿
𝑇𝑐

 

𝐿 ≅ 𝜉 ∙ 𝐶 ∙  𝑘𝑉𝐹 (5-42) 

Note also that simple arithmetic relationships between 휃𝑗 and 휃𝑖 at the times that the pulses 

𝑃𝑖,𝑗, 𝑃𝑗,𝑖 are received can be resolved as 휃𝑖
𝑗
, 𝑖’s estimate of 𝑗’s phase; and 휃𝑗

𝑖, 𝑗’s estimate of 𝑖’s 

phase: 

 
휃𝑖

𝑗
≅ 휃𝑅 − (

𝜉

𝑇𝑐
+ 𝜏) ≅ 휃𝑗 + 휀𝜃

𝑗𝑖
 

휃𝑗
𝑖 ≅ 휃𝑅 − (

𝜉

𝑇𝑐
− 𝜏) ≅ 휃𝑖 + 휀𝜃

𝑖𝑗
 

(5-43) 

5.5.3 Measuring Phase Difference 

The phase difference measurement system described above can also be viewed as a black box in 

a control system, as shown in Figure 5-9 below.  The inputs of the black box are the oscillator 

phases, and the outputs are the relative phase differences. 

 

Figure 5-9 : Model of Phase Difference Measurement System 

There is a point to be made here about treating the oscillator as a sine function, as noted in section 

5.3.2.  In an analogue phase detector circuit that measures the phase differential between two 

휃𝑅
𝑖  

휃𝑖 휃𝑗 

휀𝜃
𝑖𝑗 

- 

+ 
𝐷𝑃 

𝐷  

- 

+ 

2𝜏  

𝐷𝑃 
- 

+ 

𝐷  

+ 

- 

−𝜏  

  

𝑖 𝑗 

휀𝜃
𝑗𝑖 
  

𝑃𝑗,𝑖  

𝑃𝑖,𝑗   

휃𝑅
𝑗  

0.5 
−2𝜏  

0.5 
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sinusoids, the detector must infer the phases of the input signals by transforming their amplitudes, 

and their rates of change of amplitude, into their phases, i.e. 휃 = sin−1(𝐴).  In a digital system 

where the sinusoids are produced by NCO’s, or are otherwise virtualized, this amplitude-to-phase 

transformation is unnecessary.  The phases of the signals can be read and compared directly, e.g. 

by transmitting the phase as a numeric value in a timestamped data pulse, rather than by 

measuring the amplitude of a sinusoid signal at a particular point in time. 

The 𝐷  blocks in Figure 5-9 above represent a delay of one cycle, and hence one sampling period, 

such that 𝐷 = 1.  This delay is due to the error observed by 𝑖 with respect to 𝑗 being reflected 

back to 𝑗 one cycle later, and vice versa. The 𝐷𝑃 blocks represent the pulse transmission delay, 

such that 𝐷𝑃 = 𝑚(𝛿 + 𝜎) + 𝜉.  However, given that |𝜎| ≪ 𝛿, we can simplify to 𝐷𝑃 ≅ 𝑚𝛿 + 𝜉. 

While 𝐷𝑃 does represent a delay between 휃𝑖 being sampled and that sample being compared to 

휃𝑗 (and vice versa), the rate of advancement of 휃 during that delay is constant.  If we know 𝐷𝑃 as 

a time, and we know the rate of advancement 
𝑑𝜃

𝑑𝑡
, then we can easily determine the change in 휃 

during 𝐷𝑃 and hence can treat 𝐷𝑃 as a simple offset.  Further, because we assume that the time 

delay of the link is symmetric, we assume that both 𝑖 and 𝑗 perceive 𝐷𝑃 as equal.  We cannot treat 

𝐷  in the same way because 𝐷  represents a delay of one complete cycle, and the rate of 

advancement of 휃 may have changed compared to the previous cycle. 

Now: 

 휀𝜃
𝑗𝑖[𝑛] = (휃𝑗[𝑛] + 𝐷𝑃) − 휃𝑖[𝑛] 

휀𝜃
𝑖𝑗[𝑛] = (휃𝑖[𝑛] + 𝐷𝑃) − 휃𝑗[𝑛] 

2𝜏[𝑛] = 휀𝜃
𝑖𝑗[𝑛] − 휀𝜃

𝑗𝑖[𝑛 − 𝐷 ]

= (휃𝑖[𝑛] + 𝐷𝑃) − 휃𝑗[𝑛]

− ((휃𝑗[𝑛 − 1] + 𝐷𝑃) − 휃𝑖[𝑛 − 1])

= 휃𝑖[𝑛] + 휃𝑖[𝑛 − 1] − 휃𝑗[𝑛] − 휃𝑗[𝑛 − 1] 

−2𝜏[𝑛] = 휀𝜃
𝑗𝑖[𝑛] − 휀𝜃

𝑖𝑗[𝑛 − 𝐷 ]

= (휃𝑗[𝑛] + 𝐷𝑃) − 휃𝑖[𝑛]

− ((휃𝑖[𝑛 − 1] + 𝐷𝑃) − 휃𝑗[𝑛 − 1])

= 휃𝑗[𝑛] + 휃𝑗[𝑛 − 1] − 휃𝑖[𝑛] − 휃𝑖[𝑛 − 1] (5-44) 

5.6 Coarse Synchronization 

Coarse synchronization is the process of aligning the cycle start times of two oscillators 𝑖, 𝑗 by 

instantaneously advancing the phase of the lagging oscillator such that it matches the phase of 

the leading oscillator.  The pulse-coupling mechanism discussed above in section 5.5 affords a 

means of determining the relative phase of the oscillators while accounting for clock frequency 

differentials and signalling propagation delays. 

Coarse synchronization is a useful mechanism with which we can quickly achieve transitory 

synchronization rather than having synchronization converge over time.  However, as shown in 

section 5.6.3 below, coarse synchronization is not sufficient to reliably synchronize a network of 

more than two oscillators for any length of time. 
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5.6.1 Synchronization Mechanism 

Consider the case of the simple network model from section 5.4.1.  When 𝑗 receives a 

synchronization pulse 𝑃𝑖,𝑗, it calculates the current value of 휃𝑖 and updates its own phase 휃𝑗 and/or 

its own count of oscillator cycles 𝛼𝑗 as follows: 

 
휃𝑗[𝑛] = {

휃𝑖[𝑛 − 1],

휃𝑖
𝑗[𝑛 − 1],

𝛼𝑖[𝑛 − 1] > 𝛼𝑗[𝑛 − 1] ∨ 휃𝑖
𝑗[𝑛 − 1] ≥ 휃𝑗[𝑛 − 1]

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(5-45) 

And: 

 
𝛼𝑗[𝑛] = {

𝛼𝑖[𝑛 − 1],

𝛼𝑗[𝑛 − 1],

𝛼𝑖[𝑛 − 1] > 𝛼𝑗[𝑛 − 1]

𝛼𝑖[𝑛 − 1] ≤ 𝛼𝑗[𝑛 − 1]
 

(5-46) 

No calculation is required by 𝑗 to determine 𝛼𝑖 as it is contained within 𝑃𝑖,𝑗.  (5-43) is used to 

calculate 휃𝑖
𝑗
 from 𝑃𝑖,𝑗. 

The coarse synchronization mechanism can also be viewed as a relatively simple closed-loop 

controller: 

 

Figure 5-10 : Closed-Loop Controller Model for Coarse Synchronization 

The controller block implements (5-37), (5-43), (5-45) and (5-46).  In simple terms, if 𝑖 is more advanced 

than 𝑗 when 𝑗 receives 𝑃𝑖,𝑗, 𝑗 updates its own 휃 and 𝛼 to match those of 𝑖.  Conversely, if 𝑖 is equal 

to or less advanced than 𝑗 when 𝑗 receives 𝑃𝑖,𝑗, 𝑗 does not alter its state.  The process is symmetric, 

so 𝑗 will update 𝑖 if 𝑗 is the more advanced. 

5.6.2 Synchronization of a Simple Network 

Consider the simple network model from section 5.4.1, modified such that when the network is 

initialized, there is no communication link between 𝑖 and 𝑗, i.e. 𝐸 = ∅.  At some time 𝑡 = 𝛾, an 

undirected communication link 𝑒𝑖,𝑗 is established between 𝑖 and 𝑗, such that 𝐸 = {𝑒𝑖,𝑗} = {𝑒𝑖𝑗, 𝑒𝑗𝑖}.  

Shortly thereafter, 𝑖 and 𝑗 begin to transmit synchronization pulses 𝑃 to one another. 

As Freris et al [161] have previously shown, in the worst case and assuming no message loss, up 

to three 𝑃 may be transmitted (one by one oscillator and two by the other) before the oscillators 

are synchronized.  Which of the oscillators first transmits 𝑃 is dependent on the initial conditions: 

the values of 휃𝑖 and 휃𝑗 with respect to one another at 𝑡 = 𝛾, and 𝜌.  If 𝑗 transmits first then it is 

possible, per (5-45) and (5-46), that 𝑗 will in the first instance update 𝛼𝑖 and 휃𝑖.  Regardless of which 

oscillator transmits first, after a 𝑃 that causes the more advanced (in terms of both 𝛼 and 휃) 

Controller 

휃𝑅[𝑛] 

휃𝑗[𝑛], 

𝛼𝑗[𝑛] 

𝑐𝑗 휀𝜃
𝑗𝑖[𝑛 − 1] 

𝑓𝑗 
𝜎𝑗[𝑛], 

𝛼𝑗[𝑛] 

𝛼𝑖[𝑛] 

𝑃𝑖,𝑗 

휀𝜃
𝑖𝑗[𝑛] 

𝑗 

𝐶𝑗 



Page 299 

 

oscillator to update the less advanced oscillator, the faster (i.e. that with a lower 𝑇𝑐, not the more 

advanced) oscillator will become dominant, i.e. it will control the synchronization process, 

because it almost always54 reaches the threshold 𝜌 first in every cycle. 

The dominant oscillator (which we assume is 𝑖) controls the synchronization process because 𝑇𝑖 <

𝑇𝑗, so 𝑡(휃𝑖, 𝜌) < 𝑡(휃𝑗, 𝜌) and hence 𝑡(𝑃𝑖,𝑗) < 𝑡(𝑃𝑗,𝑖).  When 𝑗 receives 𝑃𝑖,𝑗 it learns that 휃𝑖 > 휃𝑗 

and responds by advancing 휃𝑗 such that 휃𝑗 = 휃𝑖, effectively shortening its period 𝑇𝑗 to more closely 

match 𝑖’s period 𝑇𝑖. 

It should be clear that both the synchronization and syntonization achieved by this coarse 

synchronization mechanism are imperfect.  Alignment of oscillator phases is not continuous in a 

pulse-coupled system; it occurs once each cycle when 휃𝑖 = 𝜌 + 𝛿 ∙ 𝑚, not at 휃𝑖 = 2𝜋 = 0 (with 

the caveat that 𝜌 + 𝛿 ∙ 𝑚 could be chosen to be as close as possible to 2𝜋).  Although we can say 

that 휃𝑖 and 휃𝑗 are well-aligned immediately after 𝑗 receives 𝑃𝑖,𝑗, that alignment is transitory.  휃𝑖 

and 휃𝑗 will begin to diverge immediately because, in the absence of any steering effort, 
𝑑𝜃𝑖

𝑑𝑡
≠

𝑑𝜃𝑗

𝑑𝑡
, 

until the error is again corrected by a step adjustment to 휃𝑗 in a future cycle. 

5.6.3 Coarse Synchronization Limitations 

Thus far the application of coarse synchronization to a simple 2-oscillator network, as presented 

in section 5.4.1 above, has been considered.  Under certain conditions that can easily occur in a 

real system made up of more than two oscillators, coarse synchronization cannot be assured to 

be effective.  Consequently, although VB’s coarse synchronization mechanism is a useful tool, it is 

not sufficient to maintain synchronization under all conditions. 

Consider the simplest possible network that can be constructed from more than two oscillators: 

𝑉 = {𝑖, 𝑗, 𝑘}, 𝐸 = {𝑒𝑖,𝑗, 𝑒𝑗,𝑖 , 𝑒𝑗,𝑘 , 𝑒𝑘,𝑗}, 𝒩𝑖 = {𝑗}, 𝒩𝑗 = {𝑖, 𝑘}, 𝒩𝑘 = {𝑗} 

 

Figure 5-11 : 3-Oscillator Network Graph 

Initial conditions are: 

• 𝜎𝑖 = 𝜎𝑗 = 𝜎𝑘 = 0 ∀ 𝑡, i.e. no oscillator steering occurs at any time. 

• 𝐶𝑖 ≈ 𝐶𝑗 ≈ 𝐶𝑘, i.e. the clocks of all three oscillators are affine. 

We have seen above in section 5.6.2 that under these conditions, coarse synchronization can be 

used to synchronize 𝑖 to 𝑗, or 𝑗 to 𝑘. 

First, consider the arrangement shown in Figure 5-12 below, where 𝑇𝑐
𝑖 < 𝑇𝑐

𝑗
< 𝑇𝑐

𝑘.  If we first 

examine each neighbour relationship individually, we can see that that 𝑖 is dominant to 𝑗; and 𝑗 is 

 
54 This is not necessarily true for every cycle if the error in the clocks is very small.  The accumulation of small 
errors embodied in 𝜐(𝑡) from (5-2) and 𝜙(0) from (5-3) will, from time to time, cause 𝑗 to dominate 𝑖 by a 
small margin (less than 𝑇𝑐) for a single cycle.  However, it is certainly true that 𝑖 will be dominant to 𝑗 in the 
general case. 

𝑖 𝑗 𝑘 
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dominant to 𝑘.  Thus, there is a clear dominance hierarchy such that we can say that if 𝑘 is 

synchronized to 𝑗 and 𝑗 is synchronized to 𝑖, then 𝑘 must also be synchronized to 𝑖. 

Now, consider the arrangement shown in Figure 5-13 below, where 𝑇𝑐
𝑖 < 𝑇𝑐

𝑗
> 𝑇𝑐

𝑘.  Again, we 

begin by examining each neighbour relationship individually: 𝑖 is dominant to 𝑗; and 𝑘 is dominant 

to 𝑗, but the relationship between 𝑖 and 𝑘 cannot be determined.  With no clear dominance 

hierarchy in which all three oscillators can be placed sequentially, we cannot say that 𝑘 is 

synchronized to 𝑖, or that 𝑖 is synchronized to 𝑘. 

 

Figure 5-12 : 𝑻𝒄
𝒊 < 𝑻𝒄

𝒋
< 𝑻𝒄

𝒌 

 

Figure 5-13 : 𝑻𝒄
𝒊 < 𝑻𝒄

𝒋
> 𝑻𝒄

𝒌 

As stated earlier, this limitation ensures that any network where |𝑉| > 2 and 𝑇𝑐
𝑣 is randomly 

assigned over a small range such that the oscillator periods are affine but unequal cannot be 

assured to synchronize using only the coarse synchronization mechanism. 

5.7 Fine Synchronization 

Fine synchronization is the process of varying the 
𝑑𝜃

𝑑𝑡
’s of several NCO’s such that, irrespective of 

the oscillators being driven by affine but unequal clocks, lim
𝑛→∞

∑ 𝜏[𝑛] = 0.  That is, some variation 

in 𝜏 is both expected and acceptable, but the sum of the errors over time must tend towards zero. 

A convenient (but not strictly necessary) pre-condition for fine synchronization is that the 

oscillators be at least approximately synchronized in terms of start time when the fine 

synchronization process begins.  VB employs the coarse synchronization process discussed in 

section 5.5.3 above to this end.  This pre-condition avoids excessive convergence times for the 

oscillators to reach a consensus frequency, as discussed in section 5.4.6.  Note also that in the 

absence of any exchanges of information in the form of synchronization pulses, 𝜏 is undefined and 

can be treated as zero as it does not cause any steering influence.  Consequently, if we say that 

𝑛 = 0 is the cycle at which a node first receives a synchronization pulse from its neighbour then 

we can also say that 𝜏[𝑛] = 0 ∀ 𝑛 < 0, which is convenient for analytical purposes. 

There are two distinct differences between fine and coarse synchronization: 

1. Coarse synchronization utilizes the simple oscillator model discussed in section 5.3.2; 

whereas fine synchronization utilizes the steerable oscillator model discussed in section 

5.3.3. 

𝑖 

𝑗 

𝑘 
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2. Coarse synchronization relies upon a dominance hierarchy, in which passive oscillators 

track their dominant partner in master-slave relationships; whereas in fine 

synchronization, linked oscillators track one another in peer-to-peer relationships. 

Note that the fact of switching between the coarse synchronization and fine synchronization 

control mechanisms, and the distinct behavioural differences between the mechanisms, does 

technically make VB’s synchronization mechanism a “switched system” in the context of [228].  

However, this distinction is not considered here, principally because VB does not switch 

repeatedly between the control mechanisms.  Rather, coarse synchronization is a transition state 

for a node that is converging to the fine synchronization state.  Under normal operation of a well-

configured network with a constant topology, once a node has achieved fine synchronization it 

will never switch back to the coarse synchronization state. 

5.7.1 Control of Oscillator Phase Evolution 

In order for an oscillator 𝑖 to track the phase 휃𝑗 of its neighbour 𝑗, and vice versa, the fine 

synchronization model requires some means of dynamically adjusting 𝜎𝑖 and 𝜎𝑗, and hence 
𝑑𝜃𝑖

𝑑𝑡
 and 

𝑑𝜃𝑗

𝑑𝑡
, in order to minimize the difference between the interval finish times of 𝑖 and 𝑗 for cycle 𝑛 −

1, and hence between their start times for cycle 𝑛.  In order to track the 휃 of a neighbour well, i.e. 

for lim
𝑛→∞

∑ 𝜏[𝑛] = 0, closed-loop control of 
𝑑𝜃

𝑑𝑡
 is desirable, [149] as shown at Figure 5-14 below: 

 

Figure 5-14 : Closed-Loop Controller Model for Fine Synchronization 

The differences in comparison to the coarse synchronization model of Figure 5-10 are that we are 

no longer concerned about 𝛼; the simple controller of Figure 5-10 is replaced with a more complex 

(but as yet unspecified) controller in Figure 5-14; and the controller now outputs 𝜎 and hence 

steers the NCO. 

In terms of a high-level description of system behaviour, if the phase error 𝜏 is negative then the 

local NCO is running too fast and will finish its current cycle before the remote oscillator, whereas 

if 𝜏 is positive then the local oscillator is running too slow and will finish its current cycle after the 

remote oscillator.  To compensate, the local oscillator must either slow down (𝜎 < 0, reducing 
𝑑𝜃

𝑑𝑡
) 

or speed up (𝜎 > 0, increasing 
𝑑𝜃

𝑑𝑡
) respectively.  Varying 𝜎 also varies the rate of evolution of 휃 

and hence the period of cycle 𝑛55, which in turn varies the finish time of cycle 𝑛 and hence the 

 
55 This is not strictly true.  The adjustment to 𝜎 can be sufficiently small that the accumulated variance in 휃 
may cause an adjustment to interval period only every few cycles, rather than every cycle.  However, taken 
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start time of cycle 𝑛 + 1.  As discussed in section 5.4.2, if the start times and periods of two 

oscillators can be aligned over time then the oscillators are both synchronized and syntonized. 

Recalling section 5.5, it should be noted that 𝜏 is not measured at the start or finish of a cycle 

when 휃 = 2𝜋 = 0, it is measured at some point in the cycle 휃 = 𝜌, where 0 < 𝜌 < 2𝜋.  However, 

𝜌 is constant, and 
𝑑𝜃

𝑑𝑡
 is constant for any given cycle, i.e. oscillator phase evolution is always linear 

with time during each interval, so if the start times of interval 𝑛 of the oscillators are synchronized 

and the phase error is measured at 휃 = 𝜌 as 𝜏 then at 휃 = 2𝜋 the error will be 
2𝜋

𝜌
𝜏. 

The controller block of Figure 5-14 has been implemented as a Proportional-Integral-Derivative 

(PID) controller.  The controller setpoint is 0, and the error input is 𝜏, which can be readily 

calculated from 휃𝑅, 휀𝜃
𝑗𝑖

 and 휃𝑗 using (5-34), (5-37) and (5-41).  The PID controller calculates a control 

term 𝜎 that is applied to the oscillator, causing it to vary (steer) the rate of evolution of 휃, as 

discussed in section 5.3.3. 

5.7.2 Similarities to a Phase-Locked Loop 

In a phase-locked loop (PLL) model, as shown in Figure 5-15 below, a phase detector compares a 

reference signal to the output signal of a steerable oscillator; and the phase error is filtered and 

used to modify the control signal applied to the oscillator and hence steer the oscillator, with the 

goal of reducing the phase error between the input and reference signals to zero.  It should be 

clear that this is precisely the situation discussed in the previous section, i.e. the fine 

synchronization mechanism closely resembles a PLL.  Further, as a component of a pulse-coupled 

oscillator [18], it is an instance of the discrete digital PLL class [229], for which sampling of the 

phase and hence calculation of the phase error and corresponding control signal occurs only once 

per oscillator cycle.  It is apparent, particularly in the context of [18], that the discrete digital PLL 

model relates well to the concept of pulse-coupled oscillators, whereas the more general class of 

PLL’s is more closely related to the concept of phase-coupled oscillators.  Further, because the 

design and implementation of VB’s PLL is discrete and truly all-digital, with no components or 

signals in the analog domain, it is also an all-digital PLL (ADPLL). [230] 

 

Figure 5-15 : Phase-Locked Loop (PLL) Model 

 
over a number of cycles, it is strictly true that the average period will be varied proportional to the steering 
influence of 𝜎. 
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The fine synchronization control system for each link is in effect a pair of cross-linked PLL’s, i.e. 

the PLL’s track each other, as both act to drive their relative phase difference to zero.  The phase 

detector shown in Figure 5-16 is a black box of the model shown in Figure 5-9. 

 

Figure 5-16 : Link synchronization control system 

Figure 5-16 can be further simplified into Figure 5-17 to show how its structure is related to that 

of a pair of cross-linked PLL’s. 

 

Figure 5-17 : Link synchronization control system – Simplified view of cross-linked PLL’s 

5.7.3 Differences to a Phase-Locked Loop 

While the fine synchronization mechanism certainly has many of the characteristics of a discrete 

digital PLL, its behaviour deviates from common PLL implementation approaches in two 

fundamental ways. 

1. The input and reference signals are numeric values that are produced by the NCO’s and, 

in the case of the input signal, transmitted across the network.  This contrasts with more 

classical PLL designs in which the input and reference signals are e.g. sinusoidal or 

rectangular waveforms because there is no translation from amplitude to phase/time and 

hence no ambiguity or non-linearity: each PLL directly measures the phase error of the 

input signal with respect to the reference signal. 

2. The PLL sampling rate has the same periodicity as the NCO.  That is, the PLL varies its own 

frequency and phase by varying its NCO’s rate of phase evolution, and in doing so varies 
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its own sampling rate.  Note that the range of control over the NCO is extremely narrow, 

on the order of less than ±10ppm, and hence any variation has only trivial impact on the 

operation of the system in practice, but it does vary. 

The first difference in particular is key to understanding the operation of the crosslinked PLL’s as 

a relatively simple control system. 

The phase of each node, i.e. the value of the NCO, evolves linearly56 for any given sampling period.  

If the NCO’s are allowed to free-run, i.e. 𝜎 = 0, given the slightly different node clock frequencies 

𝑓𝐶, an external observer with access to “actual” time is able to detect that the nodes have slightly 

different rates of phase evolution, as shown at Figure 5-30 and particularly for 𝑡 < 0, but has no 

means of communicating that information to the nodes.  Instead, the nodes determine their 

relative rate of phase evolution by comparing the phase at which they receive a synchronization 

pulse from their neighbour with the phase at which they expected to receive that pulse; the 

difference between the expected and actual phases at the time of reception is their relative phase 

error, 𝜏.  Phase-locking is achieved when both nodes have adjusted their own rate of phase 

evolution 𝛿 + 𝜎 such that lim
𝑛→∞

τ(𝑛) = 0.  This is a classical control problem that has been 

addressed here with a PID controller.  From the perspective of the synchronization mechanism as 

a PLL the PID controller fills the role of the loop filter, but from a control system perspective it is 

simply a PID controller that calculates and applies an effort to tracking a moving set point. 

There are a number of sources of error that are perceived as disturbances by the PID controller.  

The principal error source, in the sense that it is responsible for the overwhelming majority of 

small variances in timing error visible in e.g. Experiment 2 is the different clock frequencies 𝑓𝐶, 

which guarantees that there is no constant phase relationship between 𝑓𝐶
𝑖, 𝑓𝐶

𝑗
, i.e. 휃𝐶

𝑖 ≠ 휃𝐶
𝑗
.  

Consequently, even when the NCO’s would otherwise agree that 휃𝑖 = 휃𝑗 at the sampling point, if 

(5-47) is true then 𝑖 will perceive its own phase 휃𝑖 as having evolved to be one tick of 𝐶, or 𝛿 + 𝜎, 

greater than 휃𝑗, and/or vice versa. 

 
|𝑡𝐶

𝑖 − 𝑡𝐶
𝑗

| ≥
𝑇𝐶

𝑖

2
 (5-47) 

Even in the absence of an NCO phase error that is large enough for either or both of the nodes to 

measure and respond to, the lack of relationship between 휃𝐶
𝑖 , 휃𝐶

𝑗
 means that it is improbable that 

significant instants [231], e.g. the start of an interval, are ever precisely the same at both nodes.  

In fact, given the difference in 𝑓𝐶, the start times of the intervals can be expected to evolve with 

respect to one another at a rate proportional to 𝑇𝐶
𝑖 − 𝑇𝐶

𝑗
 until the accumulated time difference 

overflows the boundary defined by (5-47) and causes either or both nodes to perceive a small 

synchronization error and respond by adjusting their NCO’s.  This is particularly visible in Figure 

5-29. 

 
56 Assuming that the node clock has a constant frequency, which is only approximately true in practice. 
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5.7.4 Diffusion of Synchronization State in a Network 

One of the most fundamental premises of firefly synchronization [17][18][19][89][93][97] is that 

synchronization diffuses through a network by propagating across multiple hops, despite explicit 

network signalling in the form of synchronization pulses being limited to a single hop. 

Diffusion is a process whereby some property that is added to a system becomes uniformly 

distributed across the space occupied by that system.  For example, a quantity of fluid that is 

added to an existing quantity of a different, but miscible, fluid will, given time, diffuse uniformly 

throughout the larger volume, even in the absence of any external influence such as mechanical 

stirring.  The diffusion is not instantaneous, and in the first instance it is uneven: a large initial 

increase in the density of the property occurs in the vicinity that it is added to the system, but as 

the property spreads through the system and increases its volume of influence, the density 

decreases relative to that volume.  Given sufficient time and an otherwise stable system, the 

average change in density of the property across the system can be expected to stabilize to match 

the change in density at any point in the system, i.e. a uniform distribution.  

Formal proofs of this behaviour in the context of properties of distributed computer networks are 

presented in the literature, e.g. by Moreau in [232][233], and these proofs are in turn relied upon 

by the other researchers noted above to validate their approaches to distributed time 

synchronization.  Note that the formal proofs are not specific to time synchronization, but they 

certainly (and explicitly) apply to time synchronization, including time synchronization in networks 

with varying topologies.  In the same vein, Giridhar and Kumar [93] propose that the ability for 

synchronization state to diffuse from one node to another across multiple hops is a function of 

the “resistance” between the nodes, where more paths between the nodes represent lower 

“resistance” to the flow of synchronization state.  The concept is closely related to the property 

of resistance in electronics, where multiple paths between two nodes in an electrical circuit act to 

reduce the equivalent resistance between the nodes.  However, given the potential for higher-

order behaviour due to the integral and differential terms of the PID controller used as the PLL 

loop filter, it may be more apt to consider the behaviour of multiple paths as being akin to 

impedance rather than simple resistance. 

 

Figure 5-18 : Multiple oscillators coupled through single loop filter 
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In the context of synchronization in a virtual bus network, the property that is being diffused is 

synchronization state, which has components 𝛼, 
𝑑𝜃

𝑑𝑡
 and 휃(𝑡).  Each network communications link 

that joins a pair of oscillators can be viewed as a pathway that facilitates diffusion of 

synchronization state between those oscillators.  Similarly, each oscillator can be viewed as a 

junction point that facilitates diffusion between the network links that connect that oscillator to 

other oscillators. 

Simeone et al [18] and Koskin et al [95] discussed and analysed networked synchronization 

diffusion approaches whereby each oscillator is equipped with a phase-locked loop (or similar 

closed-loop control system) and networked to several neighbours via communication links.  Each 

oscillator’s PLL has multiple inputs that are compared to the NCO/VCO reference signal; their 

differences are summed; and the combined error signal is fed to the loop filter and hence to the 

NCO/VCO control input.  Simple averaging approaches are typically proposed in the literature, 

particularly in wireless networks, although many of these approaches also propose weighting the 

contribution of each neighbour depending on the relative reliability of its connection as measured 

by e.g. signal strength or range.  For a hardwired network such as VB, with presumed consistent 

reliability for all network links, applying an equal weighting of ‘1’ to all links is reasonable. 

 
𝜎𝑖 = 𝐹 (∑ 휃𝑛 − 휃𝑖

𝑚

𝑛=0

) 
(5-48) 

In general terms, we can say that when the error summation 𝜏 is zero then the change in NCO 

control input 𝜎𝑖 will also be zero; that is, the frequency and phase of 𝑖 matches the local consensus 

frequency 𝑓𝑣 and phase 휃𝑣 of the cluster of nodes {𝑖, 𝑗, 𝑘, 𝑙} and no steering effort is required. 

Diffusion is a consequence of at least one of the neighbouring oscillators having a frequency or 

phase that is not equal to the local consensus frequency and phase.  For example, if we say that 

𝑓𝑖 = 𝑓𝑗 = 𝑓𝑘, but 𝑓𝑙 > 𝑓𝑖, then 𝑓𝑣 > 𝑓𝑖 so 𝑓𝑖 will increase.  When 𝑓𝑖 increases it will also increase 

the local consensus frequencies perceived by 𝑗 and 𝑘, so 𝑓𝑗 and 𝑓𝑘 will also increase.  This is the 

mechanism by which a change in 𝑓𝑙 diffuses through 𝑓𝑖 and into 𝑓𝑗 and 𝑓𝑘.  We say that 𝑙 is coupled 

to 𝑗 and 𝑘 through 𝑖. 

 

Figure 5-19 : Multiple oscillators coupled through multiple loop filters 
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In contrast to the single loop filter approach discussed by Simeone et al and Koskin et al, VB 

implements a separate loop filter for each communications link.  However, in terms of control 

theory and as is clear from (5-48) and (5-49), the difference is superficial: it amounts to no more 

than that we can in theory individually configure the loop filter for each neighbour, although in 

practice this has not been implemented at this time; all of the loop filters in a VB MAC are assigned 

the same PID coefficients. 

 
𝜎𝑖 = ∑ 𝐹𝑛(휃𝑛 − 휃𝑖)

𝑚

𝑛=0

 
(5-49) 

If we apply the constraint 𝐹𝑛 = 𝐹 then (5-48) and (5-49) are equivalent and the multiple loop filter 

design’s control loop behaviour is identical to that of the single loop filter design. 

5.7.5 Jitter 

VB leverages the definition of jitter proposed by ITU-T G.810 [231]: 

“The short-term variations of the significant instants of a timing signal from their ideal 

positions in time (where short-term implies that these variations are of frequency 

greater than or equal to 10 Hz)”. 

In this context, VB’s significant instants are: 

• The start time of each interval, which also corresponds to the start time of the traffic 

phase and the start time of S/TDM slot 0. 

• The start time of each S/TDM slot 𝑠. 

• The start time of the management phase, which also corresponds to the finish time of the 

final S/TDM slot. 

• The time at which the synchronization pulse 𝑃 is transmitted. 

The first significant instant of an interval dominates the timing of all of the other significant 

instants of that interval because all of the secondary instants are offset from the first by a constant 

proportion of the period of the interval; and the potential range of variation in the interval period 

is very small in proportion to its magnitude. 

Note that we are considering only the jitter experienced by each node with respect to the 

consensus NCO period.  There are many other points in VB’s timing that may experience jitter, e.g. 

the relative jitter between two nodes for a particular significant instant, such as the start time of 

an S/TDM slot.  However, given that the reference timebase for VB is the consensus period of the 

NCO’s, which corresponds to the period of the network intervals, by defining the bounds of the 

interval start time jitter experienced by each node with respect to the consensus period we also 

define the bounds of the jitter experienced by all of the other significant instants at each node. 

The reference period of every interval 𝑛 for every node 𝑣, against which jitter in the interval start 

times must be measured, is the NCO consensus period.  Per section 5.4.3, the consensus period is 

the geometric mean of the undriven NCO periods of all of the nodes in the network. 

If we say that an interval 𝑛 commences at 𝑡(𝑛) and the next interval 𝑛 + 1 commences at 

𝑡(𝑛 + 1), we can see that the period 𝑇[𝑛] of interval 𝑛 is given by: 
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 𝑇[𝑛] = 𝑡(𝑛 + 1) − 𝑡(𝑛) (5-50) 

In the absence of any jitter 𝑗[𝑛] , 𝑗[𝑛 + 1] in the start times of intervals 𝑛, 𝑛 + 1, such that: 

 𝑡(𝑛) = 𝑛𝑇𝑣 + 𝑗[𝑛] + 𝑡(0) (5-51) 

We can see that: 

 𝑇[𝑛] = 𝑇𝑣 (5-52) 

Alternatively, we can say: 

 𝑗[𝑛] = 𝑇𝑣 − 𝑡(𝑛 + 1) + 𝑡(𝑛) (5-53) 

If we say that the magnitude of the worst-case jitter is given by 𝐽 ∈ ℝ+, such that: 

 −𝐽 ≤ 𝑗[𝑛] ≤ 𝐽∀𝑛 (5-54) 

Then we can also say: 

 (𝑇𝑣 − 2𝐽) ≤ 𝑇[𝑛] ≤ (𝑇𝑣 + 2𝐽)∀𝑛 (5-55) 

Knowing 𝑇𝑣 and 𝑗𝑣[𝑛] , 𝑗𝑣[𝑛 + 1] with respect to the consensus interval start time for each 𝑣, or 

being able to derive them, and knowing the constant proportion of 𝑇𝑣 by which each of the 

secondary significant instants is offset from the interval start time, we can also determine the 

jitter experienced by each of the secondary significant instants within any 𝑣 ∈ 𝑉, and 

consequently we can determine the relative jitter between any two elements of 𝑉 for each 

significant instant.  Certainly, the magnitude of that relative jitter must be less than 2𝐽. 

5.8 Implementation in Practice 

The oscillator clock 𝐶 that provides the timebase of each node in the research system has a 

frequency of 𝑓𝑜𝑠𝑐 = 25𝑀𝐻𝑧, nominally with a tolerance of ±4.3ppm.  The clock drives a 

numerically controlled oscillator (NCO) that divides 𝑓𝑜𝑠𝑐  by a configurable non-integral value.  The 

output of the NCO is the timebase for the intervals into which VB organises time. 

The NCO is implemented in FPGA fabric as an 18.25-bit fixed-point counter that evolves by 1.0 bits 

plus the steering offset 𝜎 at each clock event 𝑐, where the steering offset is in the range ±255 

counts of the 25-bit portion of the counter to the right of the binary point, i.e. the value of the 

steering offset with respect to the NCO’s counter can be varied over the range ±255 × 2−25, or 

~ ± 2−17, which equates to ~±7.60ppm, i.e. sufficient to overcome the specified worst-case 

potential error of the oscillator clock 𝐶.  The NCO wraps the 18 bits to the left of the binary point 

to zero when they are about to increment from 249,999 to 250,000, without altering the 25 bits 

to the right of the binary point.  An NCO wrap also triggers an increment of the “system time” 𝛼, 

or count of completed intervals. 

An alternative view is that the NCO is a 43-bit integral counter that increases each clock tick 𝑐 by 

226 plus a value in the range ±29, but with only the 18 most significant bits of the counter 

exposed. 
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In the context of the “physics” of fine synchronization as discussed thus far, the 18.25-bit value of 

the NCO counter equates to 휃, scaled by 
250000

2𝜋
; 𝛿 =

2𝜋

250000
; −

255𝛿

225 ≤ 𝜎 ≤
255𝛿

225 ; and the counter 

wrapping from 250,000 to 0 equates to 휃 wrapping from 2𝜋 to 0.  In effect, the NCO divides 𝑓𝑜𝑠𝑐 

by an integral value in the range 250,000±~2 in order to derive 𝑓𝑣 and control the duration of each 

interval.  The NCO counter is implemented in FPGA fabric and its exposed value can be read 

directly and employed anywhere within the MAC logic design for purposes such as timestamping 

the transmission and reception of synchronization data pulses. 

Of course, the figures for frequency and period stated here are mean values; the system is clocked 

by a nominally 25MHz oscillator with a constant period of 40ns; and the period of any given 

interval can be varied only in atomic steps of clock ticks.  However, given a sufficiently large 

number of intervals, the mean period of the intervals measured converges to that set by the 

steering offset and the actual clock frequency. 

Ignoring the nominal ±4.3ppm error of the TCXO, we can therefore say that: 

99.999237 ≤̃ 𝑓𝑣 ≤̃ 100.000763𝐻𝑧 

9,999,923.7 ≤̃ 𝑇𝑣 ≤̃ 10,000,076.3𝑛𝑠 

If we account for the ±4.3ppm TCXO error, these ranges are adjusted to: 

99.998810 ≤̃ 𝑓𝑣 ≤̃ 100.001190𝐻𝑧 

9,999,881.0 ≤̃ 𝑇𝑣 ≤̃ 10,000,119.0𝑛𝑠 

We can also say that: 

𝛿 ≅ 2.51327 × 10−5 

−1.90999 × 10−10 ≤̃ 𝜎 ≤̃ 1.90999 × 10−10 

And the quantum (step size) of 𝜎, 𝑞𝜎, is: 

𝑞𝜎 ≅ 7.49014 × 10−13 

That is, 𝜎 is an integral multiple of 𝑞𝜎. 

Further, the synchronization window 𝑊 is defined as 50 events 𝑐 of the node clock 𝐶, which in 

terms of phase 휃 equates to 𝑊 = 50𝛿. 

Whilst it is true that in order to simplify system analysis all of these values must be treated as real 

numbers such that 0 ≤ 휃 < 2𝜋, at an implementation level they are all either integers or fixed-

point numbers.  The quantization boundary for measurements of phase in terms of time is one 

tick 𝑐 of the clock 𝐶, which corresponds to 휃 evolving by 𝛿 + 𝜎 in terms of phase as a real number. 

The phase error 𝜏 measured between the two nodes 𝑖, 𝑗 is expressed internally as a signed 7-bit 

integer with units of 𝛿, i.e. it can hold a (scaled) value in the range −64𝛿 ≤ 𝜏 < 63𝛿.  This range 

was chosen to suit 𝑊 = 50𝛿.  Note that the phase error is typically calculated 202,241 ticks of 𝐶 

after the start of the interval.  The count of clock ticks is only approximate because it could vary 

depending on the current NCO adjustment 𝜎 and the link propagation delay.  The range of 

variation is on the order of ±
𝑊

2
± 2 ticks, so the variance in terms of phase 휃 is quite small at 

~±0.01% of full scale. 
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The PID controller coefficients are 16-bit signed integers.  The output of each loop filter is a 9-bit 

signed integer that is constrained to ±255 to ensure that it remains within bounds.  Each PID 

controller’s output is fed to the NCO and summed immediately that it is calculated, but the 

summation is not used to steer the NCO until the end of the interval in which it is calculated, i.e. 

as phase 휃 wraps from 2𝜋 → 0.  That is, if 𝜏 = 0 with respect to a particular link, then there will 

be a delay of 47,759 ticks of 𝐶 between that link’s PID controller calculating its output and the 

NCO applying the new 𝜎.  From Figure 5-16 this delay is the block 𝐷𝑈, so we can say that 𝐷𝑈(𝑧) ≅

𝑧−0.191.  The delay 𝐷𝑈 is equivalent to the refractory period discussed by Kirk and Stone [222] and 

also implemented by Werner-Allen et al [204]. 

5.9 Experimentation 

5.9.1 Introduction 

5.9.1.1 Aim 

The following set of experiments is designed to demonstrate that the time synchronization 

achieved by the diffusion synchronization mechanism discussed herein, executing on the research 

platform and with PID controller coefficients tuned as discussed in Experiment 1, is effective at 

achieving stable time synchronization, given a network diameter of up to 8 hops, with: 

• Peak node-to-node error of less than W, or 2µs. 

• Peak node-to-node jitter of less than one physical bit layer symbol, or 400ns. 

The logic analyser that was used for all experiments was an Intronix LogicPort LA1034. [164] 

Note that the captured datasets are far too large to present in tabular form.  Consequently, they 

are generally presented in more compact and/or processed forms, including histograms, time 

domain charts and tables of summarized data.  However, the raw captured data, and the 

processed data used to derive the charts and summaries, has been retained. 

5.9.1.2 Observing and Measuring Synchronization Behaviour 

The research platform affords two means of observing the operation of the link PLL’s: 

• The nodes gather relevant data during normal operation, including the error 𝜏 from which 

is derived the NCO adjustment 𝜎, and can be configured to report that data once per 

interval.  This was the method used to gather the data presented in Experiments 1 and 2. 

• The nodes can be configured to report the start time of every interval by asserting a digital 

logic signal on an exposed test point, and a logic analyser or similar test instrument used 

to capture those times, as discussed in section 5.9.1.3. 

There are advantages and disadvantages to both of these approaches.  Having the nodes gather 

data themselves is convenient and relatively simple because no additional test and measurement 

equipment is required, but all measurements are referenced to the timebase of the node that 

reports them so comparisons between nodes are not ideal; and the timing resolution is only 40ns.  

On the other hand, the use of a logic analyser allowed comparisons between nodes to be made 

against an external reference, but the data was captured in an inconvenient format that required 

considerable post-processing; an effectively random error of up to 17ns was introduced into each 
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sample; and some data was inevitably lost due to the limitations of the logic analyser, as discussed 

in section 5.9.1.5. 

It should be clearly understood that the data gathered by each method is different: the reported 

data affords a deeper understanding of the operation of the control system, whereas the 

measured data provides empirical proof as to whether the diffusion synchronization mechanism 

is actually achieving synchronization and syntonization between nodes that are separated by 

multiple hops by allowing the period and relative phase of each node’s NCO to be directly 

measured. 

Ideally, both datasets should be captured for a period of interest and aligned.  This proved to be 

challenging but not impossible, as shown at Experiment 2.  The two measurement methods have 

no common reference that can be used to automate alignment of the data sets, and the limitations 

of the logic analyser used to capture the measured data set results in the periodic loss of small 

blocks of samples of unknown size.  A means of manually aligning the measured and reported 

datasets at a particular point was identified and the difficulty with the lack of continuity of the 

logic analyser output was able to be overcome, but this technique is impractical at any scale and 

introduces some uncertainty into the results. 

5.9.1.3 Design Modifications to Permit Direct Measurement of Synchronization Error 

Each of the nodes that makes up the research platform exposes an Auxiliary I/O port57 that is 

connected to several of the GPIO pins of the STM32F407 [188] host microcontroller (MCU).  These 

GPIO pins have been configured to generate trigger signals when particular events occur. 

Some of these trigger signals, such as that used to flag the start of the Traffic phase for the 

experiments carried out in section 2.6, are generated in firmware running on the host MCU and 

hence have relatively poor precision.  This was not sufficiently precise for measuring time 

synchronization as software timing in multi-threaded environments tends to introduce 

unpredictable delays. 

The MCU peripheral workaround that was identified and implemented was in several steps.  The 

first part of the solution is to generate a pulse on the Auxiliary I/O port that is as closely aligned as 

possible to the MAC_IRQ signal, per Fan and Lynch [94]: 

1. Configure TIM3 to operate at its maximum possible frequency of 84MHz (APB1 clock @ 

42MHz x2). 

2. Configure TIM9 to operate at its maximum possible frequency of 168MHz (APB2 clock @ 

84MHz x2). 

3. Assign the MAC_IRQ signal on GPIO.B0 as an input capture trigger for TIM3.58 

4. Slave TIM9.CH1 to TIM3 and configure it to generate a single pulse in output compare 

mode when triggered. 

5. Map TIM9.CH1 to GPIO.A2 and hence to Auxiliary I/O port pin 2 on connector J3, as shown 

in Figure A-2, Figure A-3 and Figure A-8. 

 
57 See component J3 in Figure A-2 and Figure A-8. 
58 Noting that GPIO.B0 is also assigned to EXTI0 to raise an interrupt in the MCU when the MAC IRQ is 
asserted. 
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The result is that when the MAC asserts its’ interrupt output, a pulse is generated on GPIO.A1 a 

very short period of time afterwards.  The exact period of time between the interrupt and the 

pulse is not deterministic, but is constrained to lie within a very narrow and well-defined range. 

 

Figure 5-20 : Timing error between MAC IRQ and time synchronization reporting 

The MAC interrupt is generated on the MAC’s 25MHz clock, which has no phase or frequency 

alignment with any of the MCU’s clocks.  The MCU registers the interrupt when it arrives and 

triggers TIM3 on its 84MHz clock, which then triggers slaved TIM9 on its 168MHz clock.  We 

presume that the 84MHz clock is perfectly phase-aligned with the 168MHz clock, although it is not 

absolutely clear from the microcontroller reference manuals that this is the case.  The effect is 

that the rising edge of the output pulse on GPIO.A2 occurs no more than 1 tick at 84MHz after the 

rising edge of the MAC_IRQ signal on GPIO.B0.  This equates to an unknown delay of up to ~11.9ns 

between the rising edge of the MAC_IRQ signal and the GPIO.A2 pulse that signals its detection. 

It is certainly true that a rising edge of the MAC_IRQ line flags the start of each traffic phase and 

hence each interval, but MAC interrupts are also used to signal other events, including the start 

of the management phase and reception of SAF cells.  A means of discriminating only traffic phase 

MAC interrupts was required, but no means of doing this in the research platform or its MCU using 

hardware, logic or peripherals could be identified; the only option was firmware.  Consequently, 

its timing performance is relatively poor, but this is not important: synchronization timing 

measurements are made from the MAC IRQ pulses that the late trigger flags as being relevant, not 

from the late trigger itself. 

6. Configure TIM5.CH2 in one-shot output compare mode to generate a single pulse when 

triggered. 

7. Map TIM5.CH2 to GPIO.A1 and hence to Auxiliary I/O port pin 5 on connector J3, as shown 

in Figure A-2, Figure A-3 and Figure A-8. 

84MHz 

MAC IRQ 

GPIO.A2 

Time 

𝜏𝑐 ≅ 11.9𝑛𝑠 

𝜏𝐼𝑅𝑄 < 𝜏𝑐 

168MHz 
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8. In the EXTI0 handler, when the IRQ flags have been read from the MAC and they indicate 

that a Traffic phase has commenced, i.e. the IFSTW flag is set, trigger TIM5.CH2. 

Now, a short time, typically ~1µs after the pulse is generated on Auxiliary I/O port pin 2, another 

pulse is generated on pin 5 of the port.  This “late trigger” signal is used to discriminate the MAC 

IRQ pulse that flags the start of each interval. 

 

Figure 5-21 : Logic analyser capture showing node MAC IRQ (S2-S10) and N2 Late Trigger (LT) pulse trains 

 

Figure 5-22 : Logic analyser capture showing node MAC IRQ (S2-S10) and N2 Late Trigger (LT) pulse timing 
relationship 

The captured data is post-processed to determine which MAC IRQ pulses flag the start of traffic 

phases and intervals and hence measure synchronization timing. 

5.9.1.4 Understanding the Logic Analyser Data 

The LA1034 logic analyser outputs data as comma-separated text (CSV) files.  The following sample 

is extracted from the data gathered for Experiment 3. 

98000000 118000000 Time (ns)

LT

S2

S3

S4

S5

S6

S7

S8

S9

S10

Late Trigger flags start of 

Traffic phase and interval

Missing Late Trigger flags 

start of Management phase

194993000 194993500 194994000 194994500 194995000Time (ns)

LT

S2

S3

S4

S5

S6

S7

S8

S9

S10

~1µ𝑠

Interval start times e.g. for N8
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The first column is the sample number, referenced to the individual capture file and not to the 

overall multi-file capture.  The sampling rate is 200Msps unless otherwise specified; consequently, 

the “SampleNumber” column must be multiplied by 5 × 10−9 to calculate the relative time of the 

sample in seconds.  A new row is created only when any of the “data” columns changes.  The 

“data” columns are grouped into pairs for each node, where the first element in the pair is the 

“late trigger” signal, and the second element is the “MAC IRQ” signal.  Note that this is slightly 

different to Figure 5-21 and Figure 5-22 above, where a single “late trigger” signal is displayed 

(drawn only from the first node), but the principle is the same. 

The capture data cannot be directly used in this format; it must first be parsed, e.g. using a 

MATLAB script, to produce another CSV file.  Many, potentially hundreds, of capture files may be 

parsed into a single output file, or capture dataset, a small example of which is shown below: 

The first column indicates the numeric index of the file from which the row was produced. Each 

of the other columns relates to one node and indicates the logic analyser sample number (not the 

time in nanoseconds) at which a “start of interval” signal was detected for that node.  This can be 

used to calculate various values of interest, e.g.: 

• The duration of each interval at each node, by using backwards or forwards differences. 

• The consensus period of the network, by taking the mean duration of all intervals of all 

nodes in a capture dataset. 

• The mean relative start time of each interval across the set of captured nodes, i.e. per 

row. 

• The synchronization error of any node with respect to e.g. the mean interval start time, 

or the start time of any other node. 

• The interval period jitter for any node with respect to the network consensus period. 

• The mean interval period jitter across the set of captured nodes. 

There are some data processing challenges at the transition from one capture source file to the 

next.  A capture may end abruptly at any time, including in the worst case where the system is in 

the middle of a synchronization event, and only a subset of the observed nodes has asserted their 

MAC IRQ signal; such incomplete events must be discarded.  Further, the sample number column 

recorded within each capture file is referenced to the start of the capture file, not to some global 
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count.  In order to construct a continuous view from the set of capture files, a sample count offset 

is calculated for each capture file after the first.  The offset is calculated only from the data for the 

first node, as the sample count differential of the file transition is unrelated to the node.  If we say 

that 𝑛 is the file index, 𝑘 is the index of the last sample in the previous file, and 𝑘 + 1 is the index 

of the first sample in the next file, then: 

𝑜𝑓𝑓𝑠𝑒𝑡[𝑛] = 𝑜𝑓𝑓𝑠𝑒𝑡[𝑛 − 1] + 2 𝑐𝑜𝑢𝑛𝑡[𝑘] − 2 𝑐𝑜𝑢𝑛𝑡[𝑘 + 1] 

5.9.1.5 Sources of Error 

Overall, we can say that the timing of the start of each node’s Traffic phase as reported by the 

logic analyser may vary in an effectively random manner by up to ~17ns from the actual timing. 

1. The logic analyser used to capture the network traffic has an effective maximum sampling 

rate of 200Ms/s, for a 5ns resolution.  The precision of this clock is unknown.  There is no 

synchronization between the logic analyser’s sampling clock and the MCU or MAC clock. 

2. As discussed in section 5.9.1.3, each node’s IRQ is signalled to the logic analyser up to 1 

tick of an 84MHz clock after it actually occurs, and the delay is different for every node. 

3. As discussed in section 3.5.4.1.2, knowledge of the precision of the MCU’s clock is poor.  

The PLL used to generate the primary 168MHz clock59 from an 8MHz crystal is specified 

at up to ±200ps of period jitter at 120MHz, but is unspecified at 168MHz. 

4. The LA1034 has a limited amount of capture memory and can capture a limited number 

of logic level transitions across all of its sampled inputs in any one transaction before it 

must pause capturing, transfer its data to the control PC, and re-start capturing.  In order 

to gather a sufficiently large sample set to reach statistical conclusions, a number of 

such transactions must be captured.  No reliable means of determining how much time 

occurs between transactions and how many samples are lost as a result was identified, 

although Experiment 1 suggests that it typically 4 to 6 network intervals, or 40 to 60ms. 

5.9.2 Experiment 1 – Link PID Controller Tuning 

5.9.2.1 Aim 

Use a simple 2-node system to select suitable PID controller coefficients for the PLL’s loop filter 

component.  The selected coefficients will be used for the other synchronization experiments, 

below. 

5.9.2.2 Method 

1. Configure the network topology as shown at Figure 5-23.  All links are short 

(approximately 30cm). 

 

Figure 5-23 : Experiment 1 network topology 

 
59 Divided by 4 to derive the 42MHz APB1 clock that drives TIM3, which multiplies the APB1 clock by 2 to 
arrive at 84MHz. 

2 
N2 N3 

3 
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2. Initialize PID coefficients to [0 0 0] 

3. Tune 𝐾𝑃 to identify a value at which the system reaches steady-state, but may exhibit a 

non-zero steady-state error.  First non-zero 𝐾𝑃 = 500 and each 𝐾𝑃[𝑛 + 1] = 2 𝐾𝑃[𝑛]. 

a. Disconnect the link. 

b. Set the new 𝐾𝑃. 

c. Re-establish the link. 

d. Wait for steady-state to be reached, if possible. 

e. Use the internally referenced reporting system to record N2.2 error and NCO 

effort for ~10s. 

4. Using the 𝐾𝑃 identified above, tune 𝐾𝐼 to identify a value at which steady-state error is 

approximately zero.  Initial 𝐾𝐼 = 1000 and 𝐾𝐼[𝑛 + 1] = 2 𝐾𝐼[𝑛]. 

a. Disconnect the link. 

b. Set the new 𝐾𝐼. 

c. Re-establish the link. 

d. Wait for steady-state to be reached, if possible. 

e. Use the internally referenced reporting system to record N2.2 error and NCO 

effort for ~10s. 

5. Refine the 𝐾𝑃 and 𝐾𝐼 identified above by injecting a series of large step disturbances in 휃 

and tuning 𝐾𝑃 and 𝐾𝐼 to minimize overshoot without compromising stability or response 

time. 

5.9.2.3 Observations 
Loop Filter PID 

Coefficients Steady-State Behaviour of N2 

 [0 0 0] 

 

 [500 0 0] 

 

 [1000 0 0] 
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Loop Filter PID 
Coefficients Steady-State Behaviour of N2 

 [2000 0 0] 

 

 [4000 0 0] 

 

 [8000 0 0] 

 

 [16000 0 0] 

 

Table 5-1 : Experiment 1 - PLL Loop Filter Tuning 𝑲𝑷 for Stability 
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Coefficients Steady-State Behaviour of N2 
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Loop Filter PID 
Coefficients Steady-State Behaviour of N2 

 [4000 4000 0] 

 

 [4000 8000 0] 

 

 [4000 16000 0] 

 

 [4000 32000 0] 

 

 [4000 64000 0] 

 

 [4000 128000 0] 

 

Table 5-2 : Experiment 1 - PLL Loop Filter Tuning 𝑲𝑰 for Stability 
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Loop Filter PID 
Coefficients Step Response of N2 

 [4000 32000 0] 

 

 [4000 16000 0] 

 

 [8000 16000 0] 

 

 [16000 16000 0] 

 

 [16000 4000 0] 

 

 [16000 1000 0] 

 

Table 5-3 : Experiment 1 - PLL Loop Filter Tuning 𝑲𝑷 and 𝑲𝑰 for Step Response 

5.9.2.4 Analysis 

During the initial tuning phase, when searching for a stable start point, while there were some 

indications of partial control for 𝐾𝑃 < 2000, i.e. the rate at which the nodes drifted apart reduced 

for 𝐾𝑃 > 0 compared to 𝐾𝑃 = 0, 𝐾𝑃 < 2000 proved to be insufficient to control the drift between 

the nodes under test. 
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𝑲𝑷 Drift Slope (ticks/interval) 

0 0.0291 

500 0.0166 

1000 0.0167 

Table 5-4 : Experiment 1 – Relationship between drift slope and 𝑲𝑷 

With 𝐾𝑃 ≥ 2000, the drift was controlled and the system was able to settle to relative stability.  

As Table 5-5 shows, steady-state error was inversely proportional to 𝐾𝑃. 

 𝑲𝑷 Error (ticks) 

2000 17 

4000 8 

8000 4 

16000 2 

Table 5-5 : Experiment 1 – Relationship between steady-state error and 𝑲𝑷 

Although it did not have the lowest steady-state error, the most well-controlled of the 𝐾𝑃 

testpoints was 𝐾𝑃 = 4000.  In comparison to the other testpoints with 𝐾𝑃 ≥ 2000, it exhibited 

the smallest and most consistent deviations in both error and NCO effort. 

Using 𝐾𝑃 = 4000 and tuning 𝐾𝐼 for stable operation while removing steady-state error, there was 

minimal behaviour change observed for 0 < 𝐾𝐼 < 32000; 𝐾𝐼 = 32000 exhibited a very stable 

response that was very similar to 𝐾𝐼 = 0 but with no steady-state error; and while 𝐾𝐼 > 32000 

exhibited minimal steady-state error, it also became increasingly unstable. 

Refining the coefficients to respond to a step disturbance in 휃, it was apparent that 𝐾𝑃 was too 

low, and 𝐾𝐼 too high, to achieve even an approximation of critical damping.  Even very low 𝐾𝐼 

caused overshoot.  Coefficients of 𝐾𝑃 = 16000 and 𝐾𝐼 = 4000 were identified as a good 

compromise of fast response and minimal overshoot. 

The change in behaviour is very evident when we directly compare the outcome of each tuning 

phase and focus on just one of the disturbances, as shown below in Table 5-6. 

Loop Filter PID 
Coefficients Step Response of N2 

 [4000 32000 0] 
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Loop Filter PID 
Coefficients Step Response of N2 

 [16000 4000 0] 

 

Table 5-6 : Experiment 1 - PLL Loop Filter Tuning for Step Response 

5.9.2.5 Conclusions 

The coefficient testpoint that was identified as most stable in terms of steady-state behaviour was 

[4000 32000 0].  However, these coefficients did not perform well when controlling a step 

disturbance to 휃.  Increasing 𝐾𝑃 and decreasing 𝐾𝐼, with coefficients of [16000 4000 0], resulted 

in a slightly underdamped response to a step disturbance, and relatively stable steady-state 

behaviour. 

Although the identified coefficients were suitable for the specific system and conditions under 

test, it was also clear that the coefficients can be varied over a wide range and still achieve 

effective control.  It is therefore reasonable to suppose that the reverse is also true, i.e. that a 

static set of coefficients that are suitable for one network topology can achieve some measure of 

control when applied to a wide range of network topologies and without requiring further fine-

tuning.  This flexibility is fundamental to the utility of VB’s synchronization mechanism, or indeed 

any practically useful diffusion time synchronization mechanism. 

5.9.3 Experiment 2 – Transitioning from Unlinked to Fine Synchronization 

5.9.3.1 Aim 

Observe the synchronization behaviour of a simple 2-node system as it transitions from unlinked, 

through coarse synchronization, to fine synchronization, and stable operation.  Monitor system 

behaviour both before and after the link is established.  Show that: 

• Given suitable loop filter PID coefficients, the system is stable and converges toward zero 

mean synchronization error. 

• The internally and externally referenced systems of measurement, as discussed at section 

5.9.1.2, are equivalent. 

5.9.3.2 Method 

1. Configure the network topology as shown at Figure 5-24.  All links are short 

(approximately 30cm). 

2. Disable the link between the nodes. 
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3. Configure the nodes with the PID coefficients [16000 4000 0] identified during 

Experiment 1. 

4. Attach the logic analyser to the auxiliary ports of the nodes. 

5. Establish a worst-case phase differential between the nodes, i.e. ~5ms, or half an interval. 

6. Begin capturing measurement data with the logic analyser. 

7. Begin capturing reporting data. 

8. After ~15s of pre-join data capture, enable the link between the nodes. 

9. Capture data for a further ~25s. 

10. Manually align the measurement dataset to the reported dataset. 

 

Figure 5-24 : Experiment 2 network topology 

5.9.3.3 Observations 

 

Figure 5-25 : Experiment 2 – Interval timing differential prior to join 

 

Figure 5-26 : Experiment 2 – Synchronization of N3 from join to steady-state 
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Figure 5-27 : Experiment 2 – Synchronization in steady state 

5.9.3.4 Analysis 

In the absence of any synchronization effort, at 𝑡 < 0 the node phases are separated by 5.019ms 

and are diverging at a rate of 210ns/s.  When the link is established at 𝑡 = 0, coarse 

synchronization immediately aligns the phases of the nodes.  For 𝑡 > 0, the fine synchronization 

mechanism takes over and the NCO’s steer themselves into alignment consensus, driving the 

mean and moving averages of the error to zero, as shown in Figure 5-28.  The system reaches 

steady state after approximately 600 intervals (6s). 

 

Figure 5-28 : Experiment 2 – Mean and moving average error 

Using the 1,800 measurement data samples immediately prior to the join, we can make good-

quality estimates of the unsteered NCO periods and frequencies and, consequently, the TCXO 

frequencies, because the TCXO-to-NCO divider is a constant 250,000. 

Node N2 N3 Units 

Mean Unsteered NCO Period 9999929.55 9999931.66 ns 

Mean Unsteered NCO Frequency 100.000705 100.000683 Hz 

Mean TCXO Frequency 25.000176 25.000171 MHz 

Table 5-7 : Experiment 2 – Pre-join NCO and TCXO timing estimates 
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As expected, manual alignment of the post-join datasets was necessary.  An example of a few 

instances is shown in Figure 5-29.  Green circles highlight the points in the sample shown at which 

blank rows were inserted into the measurement data in order to align it in time with the reported 

data, compensating for the limitations of the available test equipment.  The correlation between 

the aligned datasets is very clear. 

 

Figure 5-29 : Experiment 2 – Manual alignment of datasets 

Note that the slope of the descending sections of the sawtooth of the blue trace in Figure 5-29 is 

in the region of 200 to 250ns/second, which correlates well with the 210ns/second divergence 

rate observed between the nodes when they are unsteered.  This is entirely consistent with the 

TCXO frequencies being unaffected by NCO steering, as per the discussion around Figure 5-30 and 

Figure 5-31, below. 

 

Figure 5-30 : Experiment 2 – Moving averages of NCO periods and steering terms σ 

It is tempting to expect that there should be a direct correlation between NCO frequency and the 

steering adjustment 𝜎.  However, while the link PLL’s do influence NCO frequency, that influence 

is a side-effect of their controlling NCO phase.  Varying 𝜎 causes the NCO to occasionally vary the 

number of TCXO ticks that make up an interval and hence maintain phase alignment between the 

NCO’s.  This is most evident when we consider that the moving averages of the N2 and N3 steering 

are about ±40, which at first glance might be expected to adjust NCO periods by about ±12ns.  

However, Figure 5-30 shows that the average influence on NCO periods is an order of magnitude 
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lower at about ±1ns.  Figure 5-30 also shows that, while the phase realignment mechanism 

introduces a considerable amount of noise, relatively speaking, into the NCO periods, it also 

achieves its aim of causing the PLL’s to track one another. 

With reference to Figure 5-31, the natural periods of the NCO’s are the noisy red and blue signals 

near the vertical centre of the chart, sitting for the most part in the range 9999920-9999940ns for 

both NCO’s, with the noise due at least in part to the issues discussed in section 5.9.1.  The natural 

NCO period is linearly proportional to the TCXO frequency and unaffected by NCO steering, hence 

is independent of whether the link is joined.  The positive and negative spikes in the NCO period 

that extend out of the noise floor, above 9999950ns or below 9999910ns, flag the temporary 

increase or decrease of the period of the corresponding NCO by some integral count of TCXO ticks.  

These impulse changes to the NCO period are the means by which the PLL’s realign their phases 

in order to counteract the drift or timing divergence caused by the affine TCXO’s. 

 

Figure 5-31 : Experiment 2 – Discontinuous effects of NCO steering 

Incidentally, earlier claims around an expectation of (approximate) symmetry in both 

synchronization error and corresponding NCO effort across a network link are strongly supported 

by the data, e.g. as shown at Figure 5-32. 

 

Figure 5-32 : Experiment 2 – Symmetry of error and steering effort 
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5.9.3.5 Conclusions 

The system converges from the initiation of fine synchronization to steady-state and stability in 

approximately 6 seconds.  The mean synchronization error across the entire dataset converges 

asymptotically to ~7ns, significantly less than the 40ns measurement quantum of which the nodes 

are capable.  The moving average of the synchronization error also converges to approximately 

zero. 

While manual alignment of the measured and reported datasets is impractical at any scale, it does 

demonstrate that the two data capture techniques are very well correlated.  More sophisticated 

test and measurement equipment would have made the manual alignment process unnecessary, 

but the manual workaround proved to be adequate for this experiment. 

5.9.4 Experiment 3 – Relationship between Synchronization Quality and Network 

Topology 

5.9.4.1 Aim 

Observe the statistical performance of fine synchronization in a range of network topologies that 

are characterized by their count of nodes, count of links and diameter.  Attempt to identify any 

relationships between network topology parameters and distribution of synchronization error and 

jitter. 

  Parameters  

ID Description Nodes (𝑵) Links (𝑳) Diameter (𝑫) Topology Diagram 

1 1-hop linear 2 1 1 Figure 5-33 

2 2-hop linear 3 2 2 Figure 5-34 

3 4-hop linear 5 4 4 Figure 5-35 

4 8-hop linear 9 8 8 Figure 5-36 

5 3x3 grid 9 12 4 Figure 5-37 

6 2x2x2 cube 8 12 3 Figure 5-38 

7 3x3 wrapped grid (sphere) 9 18 2 Figure 5-39 

Table 5-8 : Experiment 3 – Network topologies 

5.9.4.2 Method 

For each network topology listed in Table 5-8: 

1. Configure the network topology as per the indicated diagram.  All links are short 

(approximately 30cm). 

2. Configure all nodes with the PID coefficients [16000 4000 0] identified during 

Experiment 1. 

3. Attach the logic analyser to the auxiliary ports of two nodes separated by the network 

diameter. 

4. Wait a minimum of 5m to ensure that the network has settled. 

5. Use the logic analyser to capture synchronization data for at least 10,000 intervals (100s). 
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Figure 5-33 : Experiment 3 network topology 1 

 
Figure 5-34 : Experiment 3 network topology 2 

 
Figure 5-35 : Experiment 3 network topology 3 

 
Figure 5-36 : Experiment 3 network topology 4 

 
Figure 5-37 : Experiment 3 network topology 5 

 
Figure 5-38 : Experiment 3 network topology 6 
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Figure 5-39 : Experiment 3 network topology 7 

5.9.4.3 Observations 

Node A and Node B are the addresses of the observed nodes. 

Topology ID 1 2 3 4 5 6 7 

Node A 2 2 2 2 2 2 2 

Node B 3 4 6 10 10 9 10 

Table 5-9 : Experiment 3 – Observed nodes 

Each dataset contains approximately 11,000±500 rows, but only the first 10,000 rows for each 

dataset are considered. 

The synchronization error is calculated for each row (interval) in a dataset as the difference 

between the interval start time of node B, and the arithmetic mean of the interval start times of 

both nodes.  The synchronization error of node A is therefore of the same magnitude and reversed 

sign. 

The consensus period is calculated as the arithmetic mean of the periods of both nodes over the 

first 10,000 rows in the dataset. 

The interval period jitter is calculated for each row in a dataset as the arithmetic mean of the 

difference between the period of each node and the consensus period. 

The bin size for all histograms is 5ns. 
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ID Synchronization Error and Period Jitter 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

Table 5-10 : Experiment 3 – Trellis of synchronization error and period jitter distributions for topology 1 - 7 
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ID Max (ns) Mean (ns) Std Dev (ns) ≤10ns (%) ≤40ns (%) ≤80ns (%) 

1 32.50 -0.30 9.43 76.41 100.00 100.00 

2 52.50 -2.30 15.06 60.51 98.45 100.00 

3 65.00 -2.17 19.63 34.60 96.85 100.00 

4 105.00 -3.08 25.26 30.82 87.76 99.76 

5 57.50 -0.65 14.17 51.26 99.47 100.00 

6 42.50 -0.70 10.67 61.89 99.99 100.00 

7 35.00 -0.33 8.85 72.80 100.00 100.00 

Table 5-11 : Experiment 3 – Synchronization error summary for topology 1 – 7 

ID Max (ns) Mean60 (ns) Std Dev (ns) ≤10ns (%) ≤40ns (%) ≤80ns (%) 

1 48.37 0.00 11.28 70.19 99.70 100.00 

2 55.00 0.00 15.47 57.70 98.63 100.00 

3 73.82 0.00 20.29 35.68 95.85 100.00 

4 117.33 0.00 26.73 29.88 86.61 99.67 

5 63.59 0.00 15.81 49.13 98.29 100.00 

6 57.57 0.00 12.74 58.89 99.38 100.00 

7 57.16 0.00 12.22 65.71 99.43 100.00 

Table 5-12 : Experiment 3 – Interval period mean jitter summary for topology 1 – 7 

5.9.4.4 Analysis 

Comparing the histograms of Table 5-10, it is apparent that the distribution of the error and jitter 

are very closely aligned in both amplitude and shape.  This is not unexpected, as the two properties 

are closely linked.  There is a tendency for the distributions to skew to the left, the reasons for 

which were initially unclear.61  The general shape of all of the distributions, with a central peak 

protruding above the primary curve, could be explained as being the sum of two (or more) uniform 

distributions with different coefficients.  Overall, there does appear to be a correlation between 

network interconnectivity, the amplitude of the peak, and the width of the distribution: increased 

connectivity is associated with a larger peak and narrower distribution. 

The summaries of error and jitter at Table 5-11 and Table 5-12 respectively show that both 

properties were constrained to fit almost entirely within a ±80ns (±2 TCXO ticks) window, with the 

exception being the worst-case example of topology 4, the 8-hop linear chain.  Even topology 4 

has only ~0.3% of its samples outside of this window, and the outliers are constrained to ±3 TCXO 

ticks.  It is also of note that topology 7, the wrapped 3x3 grid, has roughly the same synchronization 

properties as the simple 2-node reference of topology 1. 

  

 
60 Note that the mean of the mean jitters is uniformly zero due to the factors used to calculate it cancelling 
out. 
61 See the analysis of Experiment 4 for a discussion of the reasons for this skew. 
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ID 𝑵 𝑳 𝑫 
𝑫𝑵

𝑳
 Max (ns) Mean (ns) Std Dev (ns) ≤10ns (%) ≤40ns (%) ≤80ns (%) 

7 9 18 2 1.00 35.00 -0.33 8.85 72.80 100.00 100.00 

1 2 1 1 2.00 32.50 -0.30 9.43 76.41 100.00 100.00 

6 8 12 3 2.00 42.50 -0.70 10.67 61.89 99.99 100.00 

5 9 12 4 3.00 57.50 -0.65 14.17 51.26 99.47 100.00 

2 3 2 2 3.00 52.50 -2.30 15.06 60.51 98.45 100.00 

3 5 4 4 5.00 65.00 -2.17 19.63 34.60 96.85 100.00 

4 9 8 8 9.00 105.00 -3.08 25.26 30.82 87.76 99.76 

Table 5-13 : Experiment 3 – Correlation between topology parameters and error performance 

ID 𝑵 𝑳 𝑫 
𝑫𝑵

𝑳
 Max (ns) Std Dev ≤10ns (%) ≤40ns (%) ≤80ns (%) 

1 2 1 1 2.00 48.37 11.28 70.19 99.70 100.00 

7 9 18 2 1.00 57.16 12.22 65.71 99.43 100.00 

6 8 12 3 2.00 57.57 12.74 58.89 99.38 100.00 

2 3 2 2 3.00 55.00 15.47 57.70 98.63 100.00 

5 9 12 4 3.00 63.59 15.81 49.13 98.29 100.00 

3 5 4 4 5.00 73.82 20.29 35.68 95.85 100.00 

4 9 8 8 9.00 117.33 26.73 29.88 86.61 99.67 

Table 5-14 : Experiment 3 – Correlation between topology parameters and jitter performance 

Table 5-11 and Table 5-12 also suggest a relationship between the 𝐷, 𝐿 and 𝑁 topology 

parameters and the standard deviations of both error and jitter.  Re-ordering these tables by their 

standard deviation to produce Table 5-13 and Table 5-14 respectively, there is some evidence that 

the synthesized network descriptor 
𝐷𝑁

𝐿
 is correlated with the standard deviation of both error and 

jitter.  There is evidence of other correlations with 
𝐷𝑁

𝐿
, including the mean and maxima, and the 

proportion of samples ≤10ns, but this is not surprising given that all of these properties would 

influence the standard deviation, and vice versa. 

 

Figure 5-40 : Experiment 3 – Standard deviation of synchronization error versus 
𝑫𝑵

𝑳
 for topologies 1-7 
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Figure 5-41 : Experiment 3 – Standard deviation of mean jitter versus 
𝑫𝑵

𝑳
 for topologies 1-7 

Figure 5-40 charts standard deviation of error against 
𝐷𝑁

𝐿
 and shows a good approximation of a 

linear relationship, with 𝑅2 > 0.94.  Similarly, Figure 5-41 charts standard deviation of jitter 

against 
𝐷𝑁

𝐿
 and again shows a good approximation of a linear relationship, with 𝑅2 > 0.96. 

Hypothesis: A relationship exists between the standard deviations of both error and jitter, and 
𝑫𝑵

𝑳
, that can be approximated as a linear function of the form 𝒚 = 𝑨𝒙 + 𝑩. 

It is desirable to determine whether network topologies with intermediate values of 
𝐷𝑁

𝐿
 support 

the possibility of the linear relationship suggested by Figure 5-40 and Figure 5-41 in order to 

support or undermine the above hypothesis.  To that end, eight additional topologies were 

designed, as described at Table 5-15; and an additional round of data has been captured using 

those topologies. 

ID Description Node A Node B 𝑵 𝑳 𝑫 
𝑫𝑵

𝑳
 

8 3-hop linear 2 5 4 3 3 4.00 

9 5-hop linear 2 7 6 5 5 6.00 

10 6-hop linear 2 8 7 6 6 7.00 

11 7-hop linear 2 9 8 7 7 8.00 

12 4x2 grid 2 9 8 10 4 3.20 

13 4x2 wrapped grid (ring)62 2 8 8 12 3 2.00 

14 Triangular prism 2 7 6 9 2 1.33 

15 Double triangular prism 2 10 9 15 3 1.80 

Table 5-15 : Experiment 3 – Properties of topologies 8 – 15 

 
62 The 4x2 grid is only wrapped horizontally.  Vertical wrapping would mean that each pair of nodes (N2-N6, 
N3-N7, etc) is connected by two links.  Although this arrangement may synchronize, it is problematic 
because the NCO steering is influenced by both links. 
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5.9.4.5 Observations Part 2 

ID Synchronization Error and Period Jitter 
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Table 5-16 : Experiment 3 – Trellis of synchronization error and period jitter distributions for topology 8 - 15 

ID Max (ns) Mean (ns) Std Dev (ns) ≤10ns (%) ≤40ns (%) ≤80ns (%) 

8 57.50 -1.31 15.34 50.03 97.94 100.00 

9 80.00 -2.06 18.57 42.44 95.85 100.00 

10 80.00 -2.95 22.64 32.99 91.28 99.99 

11 102.50 -3.24 24.74 30.33 88.52 99.86 

12 55.00 -1.56 16.09 43.66 98.65 100.00 

13 40.00 -0.18 10.45 63.72 100.00 100.00 

14 30.00 -0.42 8.69 72.58 100.00 100.00 

15 52.50 0.07 12.03 57.58 99.86 100.00 

Table 5-17 : Experiment 3 – Synchronization error summary for topology 8 - 15 

ID Max (ns) Std Dev (ns) ≤10ns (%) ≤40ns (%) ≤80ns (%) 

8 74.95 16.04 47.88 98.15 100.00 

9 87.40 19.68 43.25 95.08 99.90 

10 90.04 23.29 33.21 90.85 99.97 

11 96.33 25.68 30.18 88.07 99.80 

12 75.70 17.79 42.13 97.00 100.00 

13 61.18 12.76 58.68 99.50 100.00 

14 47.79 10.88 66.37 99.93 100.00 

15 63.50 14.56 52.72 98.96 100.00 

Table 5-18 : Experiment 3 – Interval period mean jitter summary for topology 8 – 15 
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5.9.4.6 Analysis Part 2 

ID 𝑵 𝑳 𝑫 
𝑫𝑵

𝑳
 Max (ns) Mean (ns) Std Dev (ns) ≤10ns (%) ≤40ns (%) ≤80ns (%) 

14 6 9 2 1.33 30.00 -0.42 8.69 72.58 100.00 100.00 

7 9 18 2 1.00 35.00 -0.33 8.85 72.80 100.00 100.00 

1 2 1 1 2.00 32.50 -0.30 9.43 76.41 100.00 100.00 

13 8 12 3 2.00 40.00 -0.18 10.45 63.72 100.00 100.00 

6 8 12 3 2.00 42.50 -0.70 10.67 61.89 99.99 100.00 

15 9 15 3 1.80 52.50 0.07 12.03 57.58 99.86 100.00 

5 9 12 4 3.00 57.50 -0.65 14.17 51.26 99.47 100.00 

2 3 2 2 3.00 52.50 -2.30 15.06 60.51 98.45 100.00 

8 4 3 3 4.00 57.50 -1.31 15.34 50.03 97.94 100.00 

12 8 10 4 3.20 55.00 -1.56 16.09 43.66 98.65 100.00 

9 6 5 5 6.00 80.00 -2.06 18.57 42.44 95.85 100.00 

3 5 4 4 5.00 65.00 -2.17 19.63 34.60 96.85 100.00 

10 7 6 6 7.00 80.00 -2.95 22.64 32.99 91.28 99.99 

11 8 7 7 8.00 102.50 -3.24 24.74 30.33 88.52 99.86 

4 9 8 8 9.00 105.00 -3.08 25.26 30.82 87.76 99.76 

Table 5-19 : Experiment 3 – Comparison of topology parameters and error performance of topologies 1 - 15 

ID 𝑵 𝑳 𝑫 
𝑫𝑵

𝑳
 Max (ns) Std Dev ≤10ns (%) ≤40ns (%) ≤80ns (%) 

14 6 9 2 1.33 47.79 10.88 66.37 99.93 100.00 

1 2 1 1 2.00 48.37 11.28 70.19 99.70 100.00 

7 9 18 2 1.00 57.16 12.22 65.71 99.43 100.00 

6 8 12 3 2.00 57.57 12.74 58.89 99.38 100.00 

13 8 12 3 2.00 61.18 12.76 58.68 99.50 100.00 

15 9 15 3 1.80 63.50 14.56 52.72 98.96 100.00 

2 3 2 2 3.00 55.00 15.47 57.70 98.63 100.00 

5 9 12 4 3.00 63.59 15.81 49.13 98.29 100.00 

8 4 3 3 4.00 74.95 16.04 47.88 98.15 100.00 

12 8 10 4 3.20 75.70 17.79 42.13 97.00 100.00 

9 6 5 5 6.00 87.40 19.68 43.25 95.08 99.90 

3 5 4 4 5.00 73.82 20.29 35.68 95.85 100.00 

10 7 6 6 7.00 90.04 23.29 33.21 90.85 99.97 

11 8 7 7 8.00 96.33 25.68 30.18 88.07 99.80 

4 9 8 8 9.00 117.33 26.73 29.88 86.61 99.67 

Table 5-20 : Experiment 3 – Comparison of topology parameters and jitter performance of topologies 1 – 15 
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Figure 5-42 : Experiment 3 – Standard deviation of synchronization error versus 
𝑫𝑵

𝑳
 comparing prediction and 

observation 

 

Figure 5-43 : Experiment 3 – Standard Deviation of mean jitter versus 
𝑫𝑵

𝑳
 comparing prediction and observation 

Combining the summaries from parts 1 and 2 of the experiment into Table 5-19 and Table 5-20 

and ordering by standard deviation, the correlation between 
𝐷𝑁

𝐿
 and standard deviation is less 

clear, although by no means disproven.  However, Figure 5-42 and Figure 5-43 suggest that Table 

5-19 and Table 5-20 are misleading, as they show that the data for topologies 8 – 15 is almost 

perfectly aligned with that of topologies 1 – 7.  Measurement variations may explain the apparent 

discrepancy. 

It is rather obvious by inspection that the linear function is not the only possible fit for the data; 

polynomial and power functions, for example, are also strong candidates.  However, given the 

high 𝑅2 values of the linear functions and the absence of any evidence to suggest otherwise, the 

simplest option of linear fit functions is an adequate approximation in the first instance. 

Separating out the summary data for simple linear chain topologies into Table 5-21 and Table 5-22, 

the shape of the relationship between the distance 𝑑 (in hops) between the test points, and every 

performance parameter considered is rather evident: absent some outliers, synchronization 

quality in terms of error and jitter is inversely related to the distance 𝑑 between the test points.  

This is consistent with the work of Koskin et al [95] and Gutiérrez et al [88]. 
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ID 𝒅 Max (ns) Mean (ns) Std Dev (ns) ≤10ns (%) ≤40ns (%) ≤80ns (%) 

1 1 32.50 -0.30 9.43 76.41 100.00 100.00 

2 2 52.50 -2.30 15.06 60.51 98.45 100.00 

8 3 57.50 -1.31 15.34 50.03 97.94 100.00 

3 4 65.00 -2.17 19.63 34.60 96.85 100.00 

9 5 80.00 -2.06 18.57 42.44 95.85 100.00 

10 6 80.00 -2.95 22.64 32.99 91.28 99.99 

11 7 102.50 -3.24 24.74 30.33 88.52 99.86 

4 8 105.00 -3.08 25.26 30.82 87.76 99.76 

Table 5-21 : Experiment 3 – Comparison of network diameter and synchronization error for linear topologies 

ID 𝒅 Max (ns) Std Dev ≤10ns (%) ≤40ns (%) ≤80ns (%) 

1 1 48.37 11.28 70.19 99.70 100.00 

2 2 55.00 15.47 57.70 98.63 100.00 

8 3 74.95 16.04 47.88 98.15 100.00 

3 4 73.82 20.29 35.68 95.85 100.00 

9 5 87.40 19.68 43.25 95.08 99.90 

10 6 90.04 23.29 33.21 90.85 99.97 

11 7 96.33 25.68 30.18 88.07 99.80 

4 8 117.33 26.73 29.88 86.61 99.67 

Table 5-22 : Experiment 3 – Comparison of network diameter and interval period jitter for linear topologies 

Similarly, separating out the data for the more interconnected topologies into Table 5-23 and 

Table 5-24, the shape of the relationships is again quite visible, and (somewhat surprisingly, given 

the apparent relationship to 
𝐷𝑁

𝐿
 previously identified) again appears to be between the distance 𝑑 

between the test points and, absent a few outliers, every performance parameter considered 

except the mean error.  It is also evident that interconnected topologies at a given distance afford 

higher quality synchronization than linear topologies at the same distance.  Both of these findings 

are consistent with the work of Solis et al [97] and Giridhar and Kumar [93]. 

ID 𝒅 Max (ns) Mean (ns) Std Dev (ns) ≤10ns (%) ≤40ns (%) ≤80ns (%) 

14 2 30.00 -0.42 8.69 72.58 100.00 100.00 

7 2 35.00 -0.33 8.85 72.80 100.00 100.00 

13 3 40.00 -0.18 10.45 63.72 100.00 100.00 

6 3 42.50 -0.70 10.67 61.89 99.99 100.00 

15 3 52.50 0.07 12.03 57.58 99.86 100.00 

5 4 57.50 -0.65 14.17 51.26 99.47 100.00 

12 4 55.00 -1.56 16.09 43.66 98.65 100.00 

Table 5-23 : Experiment 3 – Comparison of network diameter and synchronization error for interconnected 
topologies 
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ID 𝒅 Max (ns) Std Dev ≤10ns (%) ≤40ns (%) ≤80ns (%) 

14 2 47.79 10.88 66.37 99.93 100.00 

7 2 57.16 12.22 65.71 99.43 100.00 

6 3 57.57 12.74 58.89 99.38 100.00 

13 3 61.18 12.76 58.68 99.50 100.00 

15 3 63.50 14.56 52.72 98.96 100.00 

5 4 63.59 15.81 49.13 98.29 100.00 

12 4 75.70 17.79 42.13 97.00 100.00 

Table 5-24 : Experiment 3 – Comparison of network diameter and interval period jitter for interconnected 
topologies 

5.9.4.7 Conclusions 

Every topology considered exhibited mean synchronization error magnitude of less than 5ns.  This 

was true even for the worst-performing example of topology 4, a simple linear chain of 9 nodes, 

with a diameter of 8 hops.  The worst-case synchronization error observed was ±105ns for 

topology 4, equating to a worst-case node-to-node synchronization error of ±210ns, almost an 

order of magnitude lower than the target of 2µs at 8 hops. 

The highest observed jitter of ±117ns, again for the relatively poorly performing topology 4 and 

equating to a worst-case interval-to-interval jitter of ±234ns at 8 hops, was well below the target 

of 400ns specified in section 1.2.3. 

Overall, the data supported the hypothesis that the proposed synthesis of network size and 

interconnection parameters, 
𝐷𝑁

𝐿
, is strongly correlated with the synchronization performance 

indicators of error and jitter distribution between maximally distant nodes in a range of network 

topologies.  In particular, it was shown that standard deviations of the synchronization error and 

jitter can be approximated by simple linear functions of the form 𝑦 = 𝐴𝑥 + 𝐵 with 𝑅2 ≥ 0.94 

given loop filter PID coefficients of [16000 4000 0] and uniform topologies where network 

diameter 𝐷 ≤ 8 and node count 𝑁 ≤ 9. 

While the data is supportive of the hypothesis, it must be acknowledged that this experiment was 

too limited in scope to categorically define the parameters of the relationship or even to remove 

all doubt that the relationship exists: data was captured at only two nodes in networks constructed 

from up to nine nodes; only a single set of PID coefficients was considered; and the subset of 

explored network topologies compared to the set of possible topologies that could be constructed 

from up to nine nodes that are each equipped with four network interfaces was far from 

exhaustive. 

That said, the data showed that the performance of the linear topologies was inversely correlated 

with the distance between the test points, supporting the related work of Koskin et al [95] and 

Gutiérrez et al [88].  Further, the more interconnected topologies exhibited superior performance 

when compared to linear topologies of the same diameter, supporting the related work of Solis et 

al [97] and Giridhar and Kumar [93]. 
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5.9.5 Experiment 4 – Relationship between Synchronization Quality and Distance in 

a Linear Topology 

5.9.5.1 Aim 

Confirm that VB’s synchronization mechanism’s performance for a linear topology has a 

relationship between distance (in hops) and synchronization quality similar to that observed by 

Koskin et al [95] and Gutiérrez et al [88]. 

5.9.5.2 Method 

1. Configure the network topology as per Figure 5-44.  All links are short (approximately 

30cm). 

2. Configure all nodes with the PID coefficients [16000 4000 0] identified during 

Experiment 1. 

3. Attach the logic analyser to the auxiliary ports of every node. 

4. Wait a minimum of 5m to ensure that the network has settled. 

5. Capture at least 10,000 samples using the logic analyser. 

 

Figure 5-44 : Experiment 4 network topology 

5.9.5.3 Observations 

N2 is the reference node for all measurements. 

Only the first 10,000 rows from the dataset are considered. 

The synchronization error for each row and node is calculated as the interval start time for the 

node, minus the reference node interval start time. 

The jitter for each row and node is calculated as the interval period for the node, minus the mean 

interval period of the reference node across the dataset. 

The bin size for all histograms is 5ns. 
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Node Synchronization Error and Jitter Distributions 
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Table 5-25 : Experiment 4 – Synchronization error and jitter distributions with respect to the reference node 
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Hops Max (ns) Mean (ns) Std Dev (ns) ≤10ns (%) ≤40ns (%) ≤80ns (%) 

1 95.00 -1.01 20.18 42.71 92.83 99.92 

2 115.00 -2.28 29.20 29.71 83.30 99.22 

3 140.00 -3.92 38.28 21.58 71.62 96.02 

4 170.00 -5.14 43.50 18.45 64.62 93.03 

5 175.00 -5.55 44.74 18.32 63.58 92.64 

6 175.00 -6.63 48.58 16.25 59.46 90.17 

7 190.00 -7.76 49.82 15.64 57.92 89.41 

8 180.00 -7.43 49.35 15.60 58.37 89.73 

Table 5-26 : Experiment 4 – Synchronization error summary with respect to the reference node 

Hops Max (ns) Mean (ns) Std Dev (ns) ≤10ns (%) ≤40ns (%) ≤80ns (%) 

1 97.79 -1.01 20.39 42.26 92.69 99.89 

2 117.21 -2.28 28.89 29.70 83.48 99.37 

3 142.79 -3.92 37.99 21.87 71.66 96.04 

4 162.79 -5.14 43.50 18.20 64.31 92.96 

5 182.21 -5.55 44.84 18.20 63.14 92.48 

6 177.79 -6.63 48.71 16.04 59.36 89.77 

7 192.21 -7.77 49.88 15.49 57.78 89.29 

8 177.79 -7.43 49.36 15.39 58.31 89.80 

Table 5-27 : Experiment 4 – Jitter summary with respect to the reference node 

5.9.5.4 Analysis 

Two points are immediately apparent from the observations: 

1. The synchronization error and jitter are almost identical by every statistical measure 

considered, despite the individual readings being quite different. 

2. The relationship between the hop count and the synchronization quality is very evident. 

We can formalize point 2 by charting the summary data for synchronization error and calculating 

lines of fit.  Note that the jitter is not similarly formalized because of point 1 – the chart would be 

similarly identical and therefore superfluous. 
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Figure 5-45 : Experiment 4 – Mean and standard deviation of synchronization error by hop count 

The response is slightly different to that observed for the linear topologies during Experiment 3, 

but that is not unexpected; the design of the experiments is subtly different.  Comparing 

Experiment 3 to Experiment 4, recall that Experiment 3: 

1. Observed only a pair of maximally distant nodes and did not consider or observe the 

intermediate nodes; 

2. Referenced its measurements against the mean interval start time and period of the 

observed nodes, rather than those of a reference node; and  

3. Considered the mean of the jitter of both terminal nodes, rather than treating each 

observed node’s jitter measurements separately. 

A range of fit curves can be found for both the mean and standard deviation with 𝑅2 ≥ 0.95.  A 

linear fit works well with the mean, although less well with the standard deviation; and second-

order polynomials and natural logarithms fit very well to both.  The fit curves shown in Figure 5-45 

afford a reasonable compromise that is consistent with Koskin et al [95] and Gutiérrez et al [88], 

both of whom concluded that there was a linear relationship between mean error and hop count.  

However, it should also be noted that the range and domain covered by the observations here are 

quite small, with concomitant analysis risks. 

During the analysis process for this experiment, it was noted that N2’s jitter with respect to the 

mean interval period had some odd characteristics compared to the jitter observed for every other 

node. 

 

Figure 5-46 : Experiment 4 – Unexpected jitter distribution of N2 
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Back-checking the captured data for Experiment 3, very similar behaviour was observed for N2’s 

jitter (with respect to the mean of NA and NB) across all fifteen topologies.  Note that only jitter 

displayed this unexpected behaviour; the synchronization error behaviour of N2 was consistent 

with the other nodes.  The large peaks sometimes merged together into a single wide peak, but 

the small disturbance to the left in the region of -40 to -20ns was visible in the data for every 

topology.  No evidence of this behaviour was found for any other node, suggesting a slightly-off-

specification error with the N2 hardware.  A clock source, such as the TCXO or the FPGA’s digital 

clock manager, is an obvious candidate. 

ID Origin Description 

1 Experiment 3 Topology 4 N10 wrt mean of N2 and N10 

2 Experiment 4 N10 wrt mean of N2 and N10 

3 Experiment 4 N10 wrt mean of N2 

4 Experiment 4 N10 wrt mean of N2:N10 

Table 5-28 : Experiment 3 – Observed nodes 

Back-checking the Experiment 4 observations against the observations made for the same 8-node 

linear topology (topology 4) for Experiment 3 and comparing, Table 5-30 through Table 5-31 show 

no significant difference between the equivalent observations of rows 1 and 2.  When the error 

and jitter are considered against the mean of N2 in row 3, both distributions are more widely 

spread, reflecting the impact of multiple hops on synchronization quality.  However, when the 

error and jitter are considered against the mean of all nodes (N2 through N10) in row 4, the error 

distribution is similar to that of rows 1 and 2, while the jitter distribution is similar to that of row 

3. 
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ID Synchronization Error and Period Jitter 

4 

 

Table 5-29 : Experiment 4 – Comparison of synchronization error observations with Experiment 3 Topology 4 

ID Max (ns) Mean (ns) Std Dev (ns) ≤10ns (%) ≤40ns (%) ≤80ns (%) 

1 105.00 -3.08 25.26 30.82 87.76 99.76 

2 90.00 -3.72 24.68 31.53 89.73 99.77 

3 180.00 -7.43 49.35 15.60 58.37 89.73 

4 86.67 -3.02 23.47 33.62 90.95 99.92 

Table 5-30 : Experiment 4 – Comparison of synchronization error observations 

ID Max (ns) Std Dev (ns) ≤10ns (%) ≤40ns (%) ≤80ns (%) 

1 117.33 26.73 29.88 86.61 99.67 

2 104.07 26.20 30.65 88.22 99.57 

3 177.79 49.36 15.39 58.31 89.80 

4 176.62 49.36 16.10 58.80 90.11 

Table 5-31 : Experiment 4 – Comparison of jitter observations 

The relatively large variation in the jitter, but not the error, when all of the network nodes are 

considered shows that in spite of the relatively wide range of variation of the interval periods of 

all of the nodes in the network, the interval start times of the terminal nodes N2 and N10 are 

consistently well-aligned to the mean or consensus interval start time.  That is, the synchronization 

mechanism is effective at achieving its aim of aligning the phases of the nodes and hence 

minimizing the synchronization error, but it does so at the price of increased interval period jitter.  

Despite this, the worst-case jitter still meets the target of 400ns at 8 hops: 𝐽𝑚𝑎𝑥 = 176.62𝑛𝑠 and 

hence 2𝐽 < 400𝑛𝑠. 

5.9.5.5 Conclusions 

Figure 5-45 in particular represents strong evidence that there is a linear relationship between 

hop count and the synchronization quality measures of error and jitter for a simple linear topology 

of up to 8 hops in length.  There is a small deviation with regard to the observations of Gutiérrez 

et al [88] in that the mean error observed for VB is proportional to hop count, whereas Gutiérrez 

concluded that mean error was proportional to hop count + 2.  VB’s performance is more 

consistent with the observations of Koskin et al [95].  The difference may be due to Gutiérrez’ 

observations being for IEEE802.1AS [24], employing unidirectional synchronization influence, 

while both Koskin’s synchronization system and VB employ bidirectional synchronization 

influence. 
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5.9.6 Experiment 5 – Relationship between Synchronization Quality and Distance in 

a Meshed Topology 

5.9.6.1 Aim 

Confirm that VB’s synchronization mechanism’s performance for a mesh topology has a 

relationship between distance (in hops) and synchronization quality similar to that observed by 

Koskin et al [95]. 

5.9.6.2 Method 

1. Configure the network topology as per Figure 5-47.  All links are short (approximately 

30cm). 

2. Configure all nodes with the PID coefficients [16000 4000 0] identified during 

Experiment 1. 

3. Attach the logic analyser to the auxiliary ports of every node. 

4. Wait a minimum of 5m to ensure that the network has settled. 

5. Capture at least 10,000 samples using the logic analyser. 

 

Figure 5-47 : Experiment 5 network topology 

5.9.6.3 Observations 

N2 is the reference node for all measurements. 

Only the first 10,000 rows from the dataset are considered. 

The synchronization error for each row and node is calculated as the interval start time for the 

node, minus the reference node interval start time. 

The jitter for each row and node is calculated as the interval period for the node, minus the mean 

interval period of the reference node across the dataset. 

The bin size for all histograms is 5ns. 
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Node Synchronization Error and Jitter Distributions 

N3 

 

N4 
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Table 5-32 : Experiment 5 – Synchronization error and jitter distributions with respect to the reference node 
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Node Hops Max (ns) Mean (ns) Std Dev (ns) ≤10ns (%) ≤40ns (%) ≤80ns (%) 

N2 0 0.00 0.00 0.00 100.00 100.00 100.00 

N3 1 70.00 -0.26 17.04 44.79 97.99 100.00 

N4 2 85.00 -0.69 16.91 44.48 98.55 99.99 

N5 1 65.00 -1.74 17.38 44.83 97.20 100.00 

N6 1 65.00 -0.69 15.80 47.23 98.10 100.00 

N7 2 75.00 -1.62 17.03 43.53 98.79 100.00 

N8 3 85.00 -1.19 20.41 37.86 95.29 99.98 

N9 2 90.00 -1.43 20.70 37.82 94.95 99.94 

Table 5-33 : Experiment 5 – Synchronization error summary with respect to the reference node 

Node Hops Max (ns) Mean (ns) Std Dev (ns) ≤10ns (%) ≤40ns (%) ≤80ns (%) 

N2 0 48.30 0.00 8.89 92.48 98.14 100.00 

N3 1 66.70 -0.26 17.30 44.30 97.88 100.00 

N4 2 81.70 -0.69 17.06 43.91 98.50 99.99 

N5 1 58.30 -1.74 17.18 43.53 97.95 100.00 

N6 1 63.30 -0.69 15.80 46.63 98.57 100.00 

N7 2 76.70 -1.62 17.06 42.95 98.63 100.00 

N8 3 83.30 -1.19 20.49 36.64 95.21 99.99 

N9 2 93.30 -1.43 20.85 35.76 94.54 99.96 

Table 5-34 : Experiment 5 – Jitter summary with respect to the reference node 

5.9.6.4 Analysis 

Examining the charts in Table 5-32, it is striking how little variation there is between the 

distributions for each node: both their shapes and their peaks are almost identical.  This initial 

impression is confirmed by Table 5-33 and Table 5-34. 

Sorting of Table 5-33 and Table 5-34 by the usual parameters – hop count, maximum, mean, 

standard deviation – is not particularly helpful, and plotting the data is similarly unhelpful; the 

range is too small to reach any meaningful conclusions.  Taking the mean of the standard deviation 

for a given hop count is more helpful, although the small range is still problematic.   

Hops Error Mean (ns) Error Std Dev (ns) Jitter Mean (ns) Jitter Std Dev (ns) 

1 -0.90 16.74 -0.90 16.76 

2 -1.24 18.21 -1.24 18.32 

3 -1.19 20.41 -1.19 20.49 

Table 5-35 : Experiment 5 – Mean synchronization performance, by hop count 
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Figure 5-48 : Experiment 5 - Mean synchronization performance, by hop count 

Note that the jitter data has not been plotted in Figure 5-48 because, as Table 5-35 shows, it is 

almost identical to the synchronization error data. 

The available data does not rule out the possibility of a linear relationship between the hop count 

and the standard deviations of synchronization error and jitter, although the situation with the 

error is less clear-cut.  A much larger test system and correspondingly increased range of hop 

counts would be helpful in supporting a firm conclusion. 

Backchecking the observations for Experiment 5 against the observations for topology 6 in 

Experiment 3, in similar fashion to the backchecking for Experiment 4, the data proved to be 

almost identical. 

Backchecking the observations for Experiment 5 against the observations for a linear topology at 

a range of 3 hops for Experiment 4, Table 5-36 and Figure 5-49 show that the performance of the 

mesh topology is far superior to the linear topology at the same distance, with the standard 

deviation of the mesh growing with distance at approximately one fifth of the rate of the linear 

topology.  Given the respective topology 
𝐷𝑁

𝐿
 values of 2 and 9, this aligns well with the results of 

Experiment 3. 

Source Hops Error Mean (ns) Error Std Dev (ns) Jitter Mean (ns) Jitter Std Dev (ns) 

Experiment 4 1 -1.01 20.18 -1.01 20.39 

Experiment 4 2 -2.28 29.20 -2.28 28.89 

Experiment 4 3 -3.92 38.28 -3.92 37.99 

Experiment 5 1 -0.90 16.74 -0.90 16.76 

Experiment 5 2 -1.24 18.21 -1.24 18.32 

Experiment 5 3 -1.19 20.41 -1.19 20.49 

Table 5-36 : Experiment 5 – Comparison of linear and mesh synchronization performance by hop count 
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Figure 5-49 : Experiment 5 – Comparison of linear and mesh error standard deviations by hop count 

5.9.6.5 Conclusions 

The data is supportive of Koskin’s observations, but not conclusively so; the range of hop counts 

is too small to reach a reliable conclusion.  That said, the synchronization performance of the mesh 

topology of Experiment 5 is manifestly superior to that of the linear topology of Experiment 4 at 

the same distance.  More generally, the results Experiments 4 and 5 are in agreement with the 

work of both Giridhar and Kumar [93] and Freris et al [161] around the performance of time 

synchronization in mesh topologies in comparison with star and linear topologies. 

5.9.7 Experiment 6 – Impact of Management Network Load 

5.9.7.1 Aim 

Observe the synchronization behaviour of a network with a non-trivial management network load.  

Determine whether there is any relationship between the management network load and 

synchronization performance. 

5.9.7.2 Method 

1. Configure the network topology as per Figure 5-50.  All links are short (approximately 

30cm). 

2. Configure all nodes with the PID coefficients [16000 4000 0] identified during 

Experiment 1. 

3. Attach the logic analyser to the auxiliary ports of nodes N2, N6 and N10. 

4. Wait a minimum of 5m to ensure that the network has settled. 

5. Capture 10,000 samples using the logic analyser to establish the baseline. 

6. Begin continuously transmitting management traffic at approximately 25% of network 

capacity from N2 to N10, then capture 10,000 samples using the logic analyser. 

7. Begin continuously transmitting management traffic at approximately 50% of network 

capacity from N2 to N10, then capture 10,000 samples using the logic analyser. 

8. Begin continuously transmitting management traffic at approximately 100% of network 

capacity from N2 to N10, then capture 10,000 samples using the logic analyser. 
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Figure 5-50 : Experiment 6 network topology 

5.9.7.3 Observations 

N2 is the reference node for all measurements. 

Only the first 10,000 rows from the dataset are considered. 

The synchronization error for each row and node is calculated as the interval start time for the 

node, minus the reference node interval start time. 

The jitter for each row and node is calculated as the interval period for the node, minus the mean 

interval period of the reference node across the dataset. 

The bin size for all histograms is 5ns. 
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Node Load 0% Load 25% Load 50% Load 100% 
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Table 5-37 : Experiment 6 – Synchronization error and jitter distributions by load and with respect to the reference node 
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  Load 0%   Load 25%   Load 50%   Load 100%  

Node Max (ns) Mean (ns) Std Dev (ns) Max (ns) Mean (ns) Std Dev (ns) Max (ns) Mean (ns) Std Dev (ns) Max (ns) Mean (ns) Std Dev (ns) 

N3 95.00 -1.55 19.88 85.00 -1.39 20.51 100.00 -1.25 20.52 85.00 -1.29 20.73 

N4 105.00 -2.38 27.59 110.00 -2.17 28.84 115.00 -2.30 28.51 100.00 -2.29 28.61 

N5 135.00 -4.29 35.47 120.00 -3.42 35.17 130.00 -4.01 34.87 135.00 -4.09 34.13 

N6 155.00 -5.04 39.79 150.00 -4.27 38.76 135.00 -4.98 38.28 150.00 -4.91 37.38 

N7 155.00 -5.86 41.96 135.00 -4.85 43.31 155.00 -6.36 43.28 175.00 -6.26 42.96 

N8 180.00 -6.45 46.99 175.00 -5.43 48.18 175.00 -6.81 47.99 210.00 -6.70 49.13 

N9 195.00 -7.17 50.77 175.00 -6.15 51.48 200.00 -7.65 51.80 230.00 -7.53 54.58 

N10 195.00 -7.33 51.49 170.00 -6.13 53.23 195.00 -7.89 54.75 215.00 -7.88 57.51 

Table 5-38 : Experiment 6 – Synchronization error summary by load and with respect to the reference node 

  Load 0%   Load 25%   Load 50%   Load 100%  

Node Max (ns) Mean (ns) Std Dev (ns) Max (ns) Mean (ns) Std Dev (ns) Max (ns) Mean (ns) Std Dev (ns) Max (ns) Mean (ns) Std Dev (ns) 

N3 96.84 -1.55 19.86 86.21 -1.39 20.58 95.95 -1.25 20.47 95.74 -1.29 20.64 

N4 108.16 -2.38 27.43 108.79 -2.17 28.80 114.05 -2.30 28.48 104.26 -2.29 28.47 

N5 138.16 -4.29 35.30 118.79 -3.42 35.23 130.95 -4.01 34.88 139.26 -4.09 34.13 

N6 153.16 -5.04 39.82 143.79 -4.27 38.87 140.95 -4.98 38.24 154.26 -4.91 37.39 

N7 156.84 -5.86 42.01 136.21 -4.84 43.40 155.95 -6.36 43.31 170.74 -6.26 43.00 

N8 176.84 -6.45 46.97 168.79 -5.42 48.22 184.05 -6.82 48.08 205.74 -6.71 49.13 

N9 196.84 -7.17 50.86 173.79 -6.14 51.52 190.95 -7.65 51.91 214.26 -7.53 54.62 

N10 196.84 -7.33 51.64 171.21 -6.13 53.37 190.95 -7.89 54.81 219.26 -7.88 57.63 

Table 5-39 : Experiment 6 – Jitter summary by load and with respect to the reference node 
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During this experiment in particular, there was a noticeable tendency for MAC interrupts to be lost as 

load increased.  This behaviour, and the suspected reasons for it, is discussed in Appendix D.4.2.  In 

terms of experimental observations, it resulted in missing pulses, as highlighted below in Figure 5-51 

with a red circle. 

 

Figure 5-51 : Experiment 6 – missing pulses 

In order to mitigate the problems caused by these missing pulses, the MATLAB script written to parse 

the logic analysers output into a useful form was modified to detect the presence of the missing pulses 

and insert replacements, equi-spaced between the pulses bracketing any missing pulses in order to 

minimize any processing error.  Both the original and processed data have been retained for 

verification purposes. 

5.9.7.4 Analysis 

Inspecting Table 5-37 through Table 5-39, it is apparent that management network load has no impact 

on synchronization performance.  There is normal experimental variation between the data sets, but 

Figure 5-52 through Figure 5-54 confirm that variation is not correlated with load. 

 

Figure 5-52 : Experiment 6 –error mean by network load and hop count 
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Figure 5-53 : Experiment 6 –error standard deviation by network load and hop count 

 

Figure 5-54 : Experiment 6 –means by network load of error mean and standard deviation by hop count 

Note that the maximum observed jitter for 100% load does exceed the target of 𝐽 ≤ 200𝑛𝑠 set in 

section 1.2.3 for distances greater than 5 hops.  The jitter observed for 0% and 50% load is also 

borderline.  However, there is no correlation between maximum jitter and load; the difference can be 

attributed to experimental variation.  Further, while the maximum observed jitter does approach and 

even exceed the target in some cases, it should be understood that these observations are outliers: 

just 17 samples of 40,000, or 0.0425% were observed with 𝐽 ≥ 200𝑛𝑠, and a further 75 samples, or 

0.1875%, were in the borderline range of 180𝑛𝑠 ≤ 𝐽 < 200𝑛𝑠. 

5.9.7.5 Conclusions 

No relationship could be detected between management network load and synchronization 

performance. 
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5.9.8 Experiment 7 – System Behaviour with a Synchronization Master 

5.9.8.1 Aim 

Show that when a single node in the network has its link PID controllers disabled, the other nodes will 

track it as the network synchronization master. 

Compare and contrast the tracking behaviour between a simple linear topology and a mesh network 

in order to inform analysis of the “resistance” hypothesis of Giridhar and Kumar [93]. 

5.9.8.2 Method 

5.9.8.2.1 Part 1 

1. Configure the network topology as per Figure 5-55.  All links are short (approximately 30cm). 

2. Configure all nodes with the PID coefficients [16000 4000 0] identified during Experiment 1. 

3. Wait a minimum of 5m to ensure that the network has settled. 

4. Activate the integrated reporting mechanism and commence recording. 

5. After 10s, set the PID coefficients of one node to [0 0 0], effectively disabling the link PID 

controllers for that node. 

6. After 20s, restore the target node’s PID coefficients to [16000 4000 0]. 

7. Record for a further 10s, or until the system has stabilized. 

 

Figure 5-55 : Experiment 7 network topology 1 

5.9.8.2.2 Part 2 

8. Configure the network topology as per Figure 5-56.  All links are short (approximately 30cm). 

9. Configure all nodes with the PID coefficients [16000 4000 0] identified during Experiment 1. 

10. Wait a minimum of 5m to ensure that the network has settled. 

11. Activate the integrated reporting mechanism and commence recording. 

12. After 10s, set the PID coefficients of one node to [0 0 0], effectively disabling the link PID 

controllers for that node. 

13. After 20s, restore the target node’s PID coefficients to [16000 4000 0]. 

14. Record for a further 10s, or until the system has stabilized. 
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Figure 5-56 : Experiment 7 network topology 2 

5.9.8.3 Observations 

5.9.8.3.1 Part 1 

System behaviour proved to be inconsistent.  On system startup, sometimes the remainder of the 

network would be able to track a fixed node, and at other times it would not.  For the particular 

instance presented here, the system would track any fixed node except N8 or N9.  In this case, N8 was 

fixed as the master. 

Table 5-40 presents data from all nodes with consistent vertical scaling.  N7 and N8 exhibited large 

swings that caused clipping of the displayed data for the synchronization error.  Table 5-41 presents 

the same dataset for N7 and N8 with the vertical scaling of the synchronization error adjusted to allow 

the full scale to be displayed. 
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Node Behaviour of linear topology with N8’s NCO fixed 

N4 
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Table 5-40 : Experiment 7 – Trellis of linear topology behaviour with N8’s NCO fixed 

-384

-320

-256

-192

-128

-64

0

64

128

-5

0

5

10

15

20

25

202470 203470 204470 205470 206470 207470

N
C

O
 A

d
ju

st
m

en
t

Sy
n

c 
Er

ro
r 

(t
ic

ks
)

Time (intervals)Err2 Err3 NCO

-384

-320

-256

-192

-128

-64

0

64

128

-5

0

5

10

15

20

25

202470 203470 204470 205470 206470 207470

N
C

O
 A

d
ju

st
m

en
t

Sy
n

c 
Er

ro
r 

(t
ic

ks
)

Time (intervals)Err2 Err3 NCO

-384

-320

-256

-192

-128

-64

0

64

128

-5

0

5

10

15

20

25

202470 203470 204470 205470 206470 207470

N
C

O
 A

d
ju

st
m

en
t

Sy
n

c 
Er

ro
r 

(t
ic

ks
)

Time (intervals)Err2 Err3 NCO

-384

-320

-256

-192

-128

-64

0

64

128

-5

0

5

10

15

20

25

202470 203470 204470 205470 206470 207470

N
C

O
 A

d
ju

st
m

en
t

Sy
n

c 
Er

ro
r 

(t
ic

ks
)

Time (intervals)Err2 Err3 NCO

-384

-320

-256

-192

-128

-64

0

64

128

-5

0

5

10

15

20

25

202470 203470 204470 205470 206470 207470

N
C

O
 A

d
ju

st
m

en
t

Sy
n

c 
Er

ro
r 

(t
ic

ks
)

Time (intervals)Err2 Err3 NCO

-384

-320

-256

-192

-128

-64

0

64

128

-5

0

5

10

15

20

25

202470 203470 204470 205470 206470 207470

N
C

O
 A

d
ju

st
m

en
t

Sy
n

c 
Er

ro
r 

(t
ic

ks
)

Time (intervals)Err2 Err3 NCO

-384

-320

-256

-192

-128

-64

0

64

128

-5

0

5

10

15

20

25

202470 203470 204470 205470 206470 207470

N
C

O
 A

d
ju

st
m

en
t

Sy
n

c 
Er

ro
r 

(t
ic

ks
)

Time (intervals)Err3 NCO



Page 360 

 

Node Behaviour of linear topology with N8’s NCO fixed (clipped nodes only) 

N7 

 

N8 

 

Table 5-41 : Experiment 7 – Trellis of linear topology behaviour with N8’s NCO fixed (clipped nodes only) 

5.9.8.3.2 Part 2 

Vertical scaling is set to be identical to that of Table 5-40 to afford easier comparison between the two 

datasets. 

Node Behaviour of mesh topology with N8’s NCO fixed 
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Node Behaviour of mesh topology with N8’s NCO fixed 

N6 

 

N7 

 

N8 

 

N9 

 

Table 5-42 : Experiment 7 – Trellis of mesh topology behaviour with N8’s NCO fixed 

5.9.8.4 Analysis 

5.9.8.4.1 Part 1 

Inspecting Table 5-40 and Table 5-41, it is evident that N7 was unable to track N8 for the period that 

N8’s link PID controllers were disabled.  That is, the influence of N6 (and N2 through N5) applied 

through the single link between N6 and N7, was insufficient to overcome the combination of the 

synchronization drift induced by the TCXO frequency differential between N7 and N8, and the 

influence of N9 (and N10).  Conversely, the influence of N9 (and N10) was sufficient to overcome the 

synchronization drift of N9 with respect to N8. 

This behaviour is a limitation of the implementation more than the system of synchronization itself.  

It is a consequence of there being an upper bound on the amount of influence that any one link can 

apply to an NCO.  It would be possible to increase the upper bound, but it should be understood that 

increasing the upper bound on link influence risks compromising system stability. 

5.9.8.4.2 Part 2 

Inspecting Table 5-42, it is evident that the network had no difficulty tracking the fixed NCO of N8 for 

the period that its link PID controllers were disabled.  The worst-case error observed by any node was 
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±3 ticks; while this equates to ±120ns, which is sub-optimal in the context of e.g. Experiment 3, it 

should be noted that the peak error was a) transient and b) associated only with changes in PID 

coefficients.  The steady-state behaviour of all nodes showed little or no variation between N8’s link 

PID controllers being enabled or disabled. 

Comparing the observed error and changes in NCO behaviour of all nodes, at distances of 1 hop (N4, 

N7 and N9) the change in error was noticeable, but at distances greater than 1 hop (2 hops to N3, N5 

and N6 and 3 hops to N2) the error was almost undetectable.  Conversely, all node NCO’s exhibited 

clear signs of a change in behaviour as N8’s link PID controllers were disabled and enabled. 

5.9.8.5 Conclusions 

Part 1 showed that the synchronization implementation is imperfect, in that synchronization is not 

guaranteed to be stable and effective when a synchronization master is defined in a linear topology.  

However, the data does support the “resistance” hypothesis of Giridhar and Kumar [93], given that 

the mesh topology of Part 2 was able to maintain tight synchronization when a synchronization 

master was defined. 

5.10 Scientific Contribution 

This chapter has presented an implementation of a pulse-coupled peer-to-peer network time 

synchronization mechanism. 

Note that the approach taken by VB is in contrast to the IEEE’s network time synchronization standard, 

IEEE1588 [23], or Precision Time Protocol (PTP).  This is not intended as criticism of PTP.  Rather, it 

reflects the fact that a fundamental characteristic of PTP conflicted with the research goals as stated 

in section 1.2.3, and a decision had to be made: either discard a key research goal, or find an alternate 

solution to PTP.  The latter path was chosen. 

A VB network is intended to be deployed in a partial mesh topology.  Each network node incorporates 

an all-digital phase-locked loop (PLL, or ADPLL), based around a steerable numerically controlled 

oscillator (NCO), that is directly coupled to a subset of the other nodes, its “neighbours”, in the 

network by a physical communication link and hence indirectly coupled to every node in the network 

through a chain of such links.  Every node periodically publishes its synchronization state, including its 

local NCO phase, to its immediate neighbours as a “pulse” in the form of a network message.  The 

node PLL’s periodically compare the synchronization states of each neighbour with their own and steer 

their local NCO towards a consensus frequency and phase in order to achieve internal synchronization. 

Although the time synchronization state of each node is exchanged only with its immediate 

neighbours, that information diffuses through the network and influences the behaviour of every 

other node.  Influence is coupled strongly through the links from each node to its immediate 

neighbours, but it is also coupled weakly through nodes themselves: each link to another node 

disturbs the PLL control loops with respect to the links to other attached nodes, and hence influences 

the synchronization states of the local NCO’s of those nodes. 

The material in this chapter was inspired by a similar time synchronization diffusion mechanism for 

wireless networks, “consensus time synchronization”, reported by Maggs et al [17].  As discussed in 

the Related Work section above, and as recently as 2021, Koskin et al [96][208][95] have presented 

their work on diffusion synchronization using all-digital phase-locked loops to steer to consensus 
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partial mesh networks of oscillators organized into uniform grid topologies; and other authors in the 

computer science field, including Simeone et al [18], Solis et al [97], Giridhar and Kumar [93] and Freris 

et al [161] have proven analytically that the diffusion approach relied upon herein is sound and, given 

appropriate parameter selection, will converge to a stable consensus.  However, it must also be 

acknowledged that the diffusion synchronization mechanism is derived from observations of 

biological systems, possibly originating with “firefly synchronization” by Blair [101] in 1915; and with 

observations of phase-coupled oscillators in physics, particularly but not exclusively the seminal work 

of Kuramoto [234]. 

The validity of the diffusion time synchronization implementation presented here has been evaluated 

through informal prototyping and formal experimentation.  A small cluster of compliant network 

nodes, the “research platform” as described in section 2.3.1, was designed, manufactured and 

programmed in the course of the research effort.  The design of the research platform hardware is 

documented in Appendix A, and the design of the programmable logic that implements the time 

synchronization mechanism is documented in Appendix B. 

Given the volume of related research and analytical proofs, it was expected from the outset that it 

would be possible to achieve stable time synchronization using the diffusion mechanism.  The 

experimentation documented in section 5.9 has confirmed this expectation. 

5.11 Conclusions 

This chapter has detailed and discussed the mechanism that the Virtual Bus network architecture uses 

to achieve internal synchronization by diffusing synchronization state through the periodic exchange 

of precisely timestamped data pulses between immediate neighbours only.  A series of formal 

experiments has been undertaken to demonstrate the operation of the synchronization system; to 

quantify synchronization in terms of error, jitter, network topology and distance; to illustrate the 

conditions under which the system of synchronization is stable and meets the target behaviours and 

performance identified in section 1.2.3; and to identify situations the system cannot guaranteed to 

meet those targets. 

VB’s diffusion synchronization system is by default entirely peer-to-peer, with no reference timebase 

and no master-slave relationships.  Experiment 7 has shown that it is possible to define a node as a 

reference under certain circumstances, although this is not recommended. 

Mean synchronization error between any two nodes separated by a number of hops 𝑑 was observed 

to be approximately equal to 𝑑ns for the simple linear topology given 𝑑 ≤ 8, and somewhat less for 

mesh topologies.  This aligns well with the findings of both Koskin et al [95] and Gutiérrez et al [88].  

Note that the synchronization error target of 2µs was easily achieved, by almost an order of 

magnitude, even at 𝑑 = 8 with the worst-case simple linear topology.  The standard deviation of the 

synchronization error was observed to be in the region of 15 ln(𝑑) + 20 for linear topologies given 

𝑑 ≤ 8, and somewhat better for mesh topologies, although due to the constraints of a finite-sized 

research platform, observations were confined to 𝑑 ≤ 3 in the latter case. 

Mean jitter, and the standard deviation of jitter, was observed to be approximately equal to that of 

synchronization error.  However, the worst-case jitter target of 1 bit period (400ns) was not able to be 

guaranteed to be met for the simple linear topology with 𝑑 > 5.  A small number of outliers (<0.05%) 

were observed during Experiment 6 that exceeded the jitter target, by the most pessimistic analysis. 
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Chapter 6  

 

Conclusion 

 

 

 

6.1 Introduction 

This dissertation has presented the rationale for a network architecture that is designed to address 

some of the requirements of a communications platform for modular-redundant distributed periodic 

real-time control systems: the Virtual Bus network architecture; and presented and discussed the 

design of a real implementation of the network architecture using purpose-built hardware, 

programmable logic and firmware. 

The conclusion begins in section 6.2 by reviewing each of the requirements or goals identified for the 

research and explaining whether and how each of the requirements was achieved.  The 

implementation of the protocol stack that addresses these requirements in the hardware, logic and 

firmware of the research platform is discussed in section 6.3.  The main scientific contributions of the 

overall research are re-stated in section 6.4, before the dissertation closes with some final words in 

section 6.5. 

6.2 Requirements Review 

6.2.1 Formal Requirements 

Requirement Met PHY Link NMS DARP RDM PCP Sync 

Minimization of single points of failure, 
particularly by avoiding any master-slave 
arrangements. 

Y X X X X X X X 

A dynamic multi-hop membership service. Y   X   X  

Self-forming and self-healing data delivery 
arrangements between active members. 

Y X X X X X X  

Support for multicast real-time data flows. Y X   X    
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Requirement Met PHY Link NMS DARP RDM PCP Sync 

Maximization of the reliability and availability of 
real-time data flows at destinations, particularly 
through the provision of multiple layers of 
individually scalable redundancy. 

Y  X  X X X  

Minimization of end-to-end delay for delivery of 
real-time data flows.  Ideally, end-to-end delay 
should be a function only of transmission line 
propagation delay. 

Y X   X   X 

Extremely low multicast delivery delay skew of 
real-time data flows from destination to 
destination for each data pulse.  Ideally, zero. 

Y X X  X   X 

Jitter in delivery timing of real-time data flows 
from period to period to be no greater than one 
bit symbol at the physical layer signalling rate. 

Partial X X     X 

No variation in delivery ordering of real-time 
data flows from destination to destination each 
period. 

Y X X  X    

Table 6-1 : Delivery of formal research goals and their relationships to protocol layers and/or network services 

In a well-designed implementation of a VB network, i.e. a topology with as much interconnection as 

possible, there are no fixed master-slave relationships for any function, including for time 

synchronization, and hence single points of failure have been avoided at the architectural level.  As 

discussed in the fault hypothesis in section 1.6, faults in nodes and links are detected; the faulty 

elements are isolated; and new real-time signalling paths are resourced by DARP under the control of 

RDM.  In the event that a particular producer-consumer relationship cannot be resourced following a 

fault, PCP in the starved consumer will seek out and resource a new relationship with a different 

producer. 

The network membership service is principally a function of NMS, and arguably a function of PCP.  

NMS is responsible for publishing link state information, in the form of neighbour tables; maintaining 

a link state database at each node; and parsing the link state database in order to make optimal 

routing and switching decisions.  A node is recognized as having full membership of a network when 

it is recorded in the link state database of all other nodes.  PCP services more specific memberships, 

allowing nodes to become members of the set of producers, or the set of consumers, of particular 

types of real-time data. 

Self-forming and self-healing of data flows, and the arrangement of network resources to support and 

maintain those data flows, is a responsibility shared across the entire protocol stack, including: 

• Detection of link state, and changes to link state, at the physical and link layers, allowing 

data flows to be constructed and maintained; 

• NMS publishing, recording and processing link state data, enabling ad-hoc messages to be 

reliably forwarded to their destinations, and enabling DARP. 

• DARP constructing and maintaining real-time signalling paths through the S/TDMA resource 

space. 

• RDM maintaining the required level of flow redundancy by directing DARP to build and, 

where necessary, rebuild signalling paths for real-time data flows. 

• PCP maintaining the required level of data source redundancy. 
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Support for multicast real-time data flows is provided by DARP and its ability to construct paths 

through the S/TDMA resource space that can be branched and/or extended from a single source node 

to multiple destination nodes and that behave as simplex multi-drop signalling channels. 

DARP, RDM and PCP maximize the reliability and availability of real-time data flows with three layers 

of redundancy: 

• Data source redundancy allows a consumer of a particular type of real-time data to form 

relationships with multiple producers of that type of data, and hence receive redundant 

(although not necessarily identical) data flows from the entire set of producers.  Redundancy 

is scalable because the consumer determines how many relationships it desires. 

• Data flow redundancy allows a real-time data flow to be delivered by several paths through 

the S/TDMA resource space.  Ideally, all redundant paths should be disjoint in both space 

and time, although this is not rigorously enforced.  Every redundant path delivers an 

identical copy of each data pulse.  The number of redundant paths used to deliver a data 

flow to any particular destination is scalable per destination. 

• Data fragment redundancy leverages the necessity of fragmenting larger data pulses into 

several smaller units, and data flow redundancy, to potentially allow a complete data pulse 

for a redundant data flow that is partially damaged or lost on every member of the set of 

redundant paths to be reconstructed at the destination from the disparate fragments. 

The end-to-end propagation delay for real-time signalling is reduced to the transmission line 

propagation delay, plus a small offset63 for each switching node, through the use of precisely timed 

physical layer switching under the control of the link layer and time synchronization at each involved 

node.  Scheduling and routing of physical layer switching is coordinated by DARP to allow a real-time 

signal to traverse multiple hops through the space plane from end to end in a single TDMA timeslot. 

Multicast delivery skew, i.e. the difference in delivery timing between destinations for a multicast real-

time signal, is a function of the difference in the end-to-end propagation delays to each destination.  

Although the skew cannot be reduced to zero, it is deterministic; constant for any given data flow and 

pair of nodes; and can be expected to be at most tens of nanoseconds for the target application. 

Jitter in the timing of the delivery of consecutive data pulses for a particular data flow is a function of 

the accuracy of time synchronization between nodes.  VB utilizes a diffusion time synchronization 

mechanism at the link layer, with synchronization signalling timestamped at the physical layer.  

Accuracy is largely a function of network topology and the distance (in hops) between the transmitter 

and receiver.  Simple linear topologies, i.e. chains of nodes with no loops, afford the worst time 

synchronization performance, whereas tightly interconnected meshed topologies afford the best time 

synchronization performance as synchronization state diffuses more effectively through multiple 

paths.  The jitter achieved is low, but could not be guaranteed to meet the target of one physical layer 

bit period under all conditions. 

Delivery order for real-time data flows is guaranteed to be identical at all destinations.  A data pulse 

is transmitted only once for each simplex multi-drop signalling path; the signalling path is constrained 

by DARP to enter each node by a single network interface; and the signalling path is physically 

organized as a bus for the duration of the timeslot/s committed to the data flow.  This combination of 

 
63 15ns for the research platform, but <1ns should be achievable, as discussed in section 1.3.4. 
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factors ensures that it is not possible for the network to re-order real-time data pulses in transit, and 

hence the architecture guarantees that all destination nodes receive the fragments that make up a 

data pulse in the same order. 

6.2.2 Additional Requirements 

Requirement Met 

The network must support no less than 32 nodes. Y 

The network must support a diameter of no less than 9 nodes, i.e. 8 hops. Partially 

The maximum data capacity of any real-time signalling path must be no less than that of CAN, i.e. a payload 
throughput of not less than 500kbps. 

Y 

Each node must have at least four network interfaces. Y 

Table 6-2 : Delivery of additional research goals 

The network implementation supports a 6-bit address space, for 62 valid addresses.  It is 

acknowledged that this is too low for a practically deployable network, but it was adequate for 

research purposes. 

A network diameter of up to eight hops is supported, with the caveat that, by the most pessimistic 

analysis, the time synchronization mechanism could not be guaranteed to achieve jitter of less than 

one bit period given a simple linear network topology with a diameter greater than 5 hops. 

The maximum payload capacity of any real-time signalling path is 640kbps, exceeding the target of 

500kbps. 

Each node that makes up the research platform is equipped with four network interfaces. 

6.3 Realization of the Virtual Bus Network Protocol Stack 

6.3.1 Physical Layer 

VB’s physical layer implementation is detailed in Chapter 2.  The physical layer has been implemented 

using Low-Voltage Differential Signalling (LVDS) to transmit small, fixed-size frames, or cells, encoded 

with the 8b10b scheme [2].  Line-speed switching of time-triggered cells takes place at the physical 

layer, under the control of the link layer. 

Line-speed switching is the key contribution of VB at the physical layer.  Experimentation presented 

in section 2.6 demonstrates that VB, as implemented in the research platform, is able to achieve 

switching delays of approximately 15ns for time-triggered traffic while maintaining isolation in space 

and time between network interfaces.  Note that commercially available switching devices such as the 

SY89545L part from Micrel™ [69] offer the potential for line-speed switching with sub-nanosecond 

delays, although this has not been realized by this research. 

The logic components of the physical layer have been implemented in a Xilinx Spartan-6™ FPGA [145] 

(Appendix A and Appendix B), and external Texas Instruments LVDS transceivers [148] were used for 

the transmission and reception of physical layer signals.  Physical layer switching takes in FPGA fabric. 
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6.3.2 Link Layer 

VB’s link layer implementation is detailed in Chapter 2.  The link layer performs a number of critical 

functions: 

1. Detection of link establishment and link failure events (section 2.5.2) 

2. Network time synchronization (Chapter 5) 

3. Detection and handling of signalling errors using a CRC-16 

4. Different handling for different traffic classes (section 2.5.6): 

a. SYNC cell handling for network time synchronization 

b. Ad-hoc cell handling for network management and other non-real-time traffic 

c. S/TDM cell handling for real-time traffic 

Note that the network protocol stack diverges above the link layer into two distinct stacks, one for 

each of the ad-hoc and S/TDM traffic classes. 

The link layer is largely realized in the logic fabric of the same Xilinx Spartan-6™ FPGA FPGA [145] 

(Appendix A and Appendix B) as the physical layer.  With a suitable configuration loaded, the logic 

components of the link layer act independently of any host controller to manage link detection and 

network time synchronization.  The firmware in the host controller, a ST Microelectronics 

STM32F407™ ARM Cortex-M4™ microcontroller [146], also incorporates a Media Access Controller 

(MAC, Appendix C) module that mediates access to the link layer by the higher layers of the protocol 

stack (Appendix D). 

6.3.3 Network Layer 

The network layer implementation for non-real-time traffic, or the management network sub-layer, is 

realized in the SAF and NMS firmware modules, as detailed in Chapter 3 and Appendix D. 

SAF is broadly similar to IP or Ethernet in that messages are sent towards but not necessarily directly 

to their destination, traversing one network link or hop at a time until they either arrive at their final 

destination or are discarded.  The information propagated and gathered by NMS is used at each hop 

to determine the most suitable direction of transmission.  Intermediate nodes act as routers, 

determining whether to discard or forward messages that are not directed to them. 

Although NMS is a novel solution, it is certainly similar to the IS-IS [6], RIP [181] and QOLSR [114] 

routing protocols in terms of how and which link state data it shares, and it makes use of Dijkstra’s 

shortest-path algorithm [185] to perform SAF message routing in similar fashion to OSPF [10].  NMS 

uses SAF messaging to publish, receive and organize information about the state of each node's 

network interfaces into a link state database, then uses its shortest-path algorithm to assign a metric 

from each interface to each potential destination. 

The key contribution of NMS is that it uses a “constrained broadcast” scheme to minimize unnecessary 

re-transmission of link state broadcasts in a mesh network.  Constrained broadcast has been shown 

both analytically and experimentally to reduce network utilization of link state broadcasts by up to 

50% in 3x3 and 4x4 grid topologies when compared to a simple “time-to-live” constraint. 

The network layer implementation for real-time traffic, or the traffic network sub-layer, is realized in 

the DARP firmware module.  Note that DARP does not signal on real-time networks, it constructs and 

maintains real-time network instances, or virtual buses.  As a simplex bus, a real-time network instance 
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does not require an explicit network layer; the link layer is sufficient.  Construction and maintenance 

of virtual buses relies upon the exchange of SAF messages, which in turn relies upon NMS. 

The network layer, and all higher protocol layers, have been realized as firmware (Appendix D) in the 

host controller. 

6.3.4 Transport Layer 

The transport layer is realized by the RDM firmware module, as detailed in Chapter 4 and Appendix D.  

RDM uses DARP to construct and maintain related sets of virtual buses.  RDM is also responsible for 

transmission, reception and switching of real-time traffic by directly accessing the link layer.  RDM is 

responsible for implementing both data flow and fragment redundancy. 

There is no transport layer implementation for non-real-time traffic. 

6.3.5 Session Layer 

The session layer is realized by the PCP firmware module, as detailed in Chapter 4 and Appendix D.  

PCP uses SAF messaging to negotiate the establishment of sessions - relationships between producers 

of real-time data, and consumers of that data.  PCP then uses RDM to resource and maintain each 

session with some desired number of redundant virtual bus instances, and to transmit and receive 

real-time data flows.  PCP is responsible for implementing data source redundancy. 

There is no session layer implementation for non-real-time traffic. 

6.4 Scientific Contributions 

The principal scientific contributions of the research described in this dissertation are: 

1. A hybrid physical and link layer model in which discrete multi-drop segments of a packet-

switched partial mesh network are cyclically configured to operate in a circuit-switched mode, 

allowing time-sensitive traffic to be switched at line speed at the physical layer, and thus 

enhancing network performance in terms of message timing by: 

a. Constraining the end-to-end delivery delay across a multi-hop network to the line 

propagation delay, plus a small offset for each switching point. 

b. Constraining the propagation delay contribution to destination-to-destination 

multicast skew such that it is proportional to the differential link lengths to each 

destination. 

c. Entirely avoiding delays introduced by contention for network resources by pre-

allocating network resources in space and time to particular traffic flows. 

2. The Distributed Agent Resource Protocol (DARP); a distributed peer-to-peer resource 

allocation protocol for routing and scheduling real-time signalling paths. 

3. An implementation of peer-to-peer time synchronization by diffusion in a partial mesh 

network. 

4. A “constrained broadcast” mechanism that was originally designed to reduce the network 

load imposed by link state broadcasting for the Network Mapping Service, and redeployed to 

meet several other peer-to-peer broadcasting requirements within the architecture. 



Page 371 

 

6.5 Final Words 

The research detailed herein was undertaken initially with minimal reference to the state-of-the-art 

of real-time networking and without maintaining any awareness of ongoing research efforts by the 

wider academic community to progress that state-of-the-art.  This was a conscious decision, 

recommended and supported by the chair of my supervisory panel, and made in an effort to meet a 

fundamental aim of the doctoral thesis: truly original work. 

Looking back at the work that was undertaken in parallel by the research community, particularly 

around real-time Ethernets and TSN, it is satisfying to recognize that many of the limitations with the 

state-of-the-art that I could see when I began the research had also been recognized by that 

community, and who successfully addressed many of those limitations over the intervening 10 or so 

years.  While it is true that I followed many of the same paths as the wider community as I attacked 

the same problems, it is also true that two of my solutions stand out as being in advance of the pack: 

line-speed switching for time-triggered signalling; and a distributed resource allocation mechanism 

for time-triggered signalling.  I suspect that part of the reason that I was able to deliver on these two 

areas is that I was supported and encouraged to begin almost from first principles, designing my own 

protocol stack from the physical layer upwards.  This allowed me to focus on achieving my research 

goals rather than struggling with the conflicts between existing architectures and the research paths 

that I was exploring. 

I am hopeful that it will be possible to take the results of my research and feed those two outcomes 

in particular back into existing architectures, particularly TSN Ethernet.  It seems to me to be credible 

that their inclusion into TSN would have the potential to trigger another step change in its 

performance, reliability and availability, particularly in the context of real-time networking in small to 

medium-sized vehicles. 
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Appendix A  

 

The Design of the Research Platform 

Hardware 

 

 

 

A.1 Introduction 

Appendix A presents the hardware design of a single network node.  The research platform was 

assembled from nine identical network nodes. 

After this introduction in section A.1, section A.2 gives a brief history of the hardware design.  Section 

A.3 describes the functional blocks that make up the design, with schematics for each block, and 

includes a brief analysis to demonstrate that the power supply is of adequate capacity.  The parts used 

in the design are listed in section A.4, and the PCB layout including all layers is presented in section 

A.5.  There is no conclusion. 

A.2 Design History 

The hardware design presented herein is the third iteration or evolution of the node design. 

Iteration 1 utilized a Microchip PIC24EP512 microcontroller and a Xilinx XC6SLX9 FPGA.  The LVDS 

transceivers were on a separate board, to allow experimentation with alternative physical layer 

technologies.  The hardware was designed to allow hand assembly, e.g. no ball-grid array (BGA) parts 

were utilized.  Both the microcontroller and FPGA proved to be incapable of meeting the requirements 

of the research, triggering the second design iteration. 

Iteration 2 utilized an STMicroelectronics STM32F407 microcontroller and a Xilinx XC6SLX25, both in 

BGA packages, like iteration 3, but placed the LVDS transceivers on an external board, like iteration 1.  

There were some faults with iteration 2, in particular a problem with the power supply connections 
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to the microcontroller, but it demonstrated that the more powerful STM32F4 and the larger LX25 

FPGA were adequate for the purposes of the research. 

Iteration 3 is the design presented herein. 

A.3 Hardware Block Descriptions 

A node is composed of four hardware blocks: 

1. The power supply; three voltage rails are provided: 3.3V, 1.8V and 1.2V. 

2. The host CPU, an ARM Cortex-M4 microcontroller, and supporting components. 

3. The Virtual Bus media access controller; implemented in a Xilinx Field-Programmable Gate Array 

(FPGA), and supporting components. 

4. The Virtual Bus network links; four full-duplex Low-Voltage Differential Signalling (LVDS) 

transceivers, supporting components, and RJ45 jacks. 

The hardware design of all three iterations was undertaken using an Altium Designer student license. 

A.3.1 Power Supplies 

The core of the power supply block is an L5973D regulated step-down (buck) DC-DC converter, 

designated U1.  The L5973D is capable of supplying up to 2.5A of current at 3.3V at up to 92% efficiency 

from a 5V input, and can provide a 3.3V output given an input voltage in the range 4V to 36V.  

However, the support components, particularly D1, limit the output current to 1A.  Two step-down 

regulators are powered from the 3.3V rail output by U1: U2, an MCP1700T1802 low-dropout linear 

regulator with a fixed 1.8V output; and U3, a TPS62260 buck regulator configured for 1.2V output. 

 

Figure A-1  : Power Supply Schematics 

A.3.1.1 A Brief Analysis of Power Supply Capabilities 

U1 can be powered either by an external voltage in the range 4V to 36V via J1, or by the USB port.  

The USB port is rated at 2.5W (500mA at 5V) by the USB1.1 specification, and the protection diode D2 

has a forward voltage drop of 0.4V at 500mA and 25C.  As shown in (2-2) above, the current gain and 
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efficiency of the buck converter result in an upper limit to the current that can be supplied by the 3.3V 

rail when powered by the USB port of 634mA: 

 
𝐼𝑚𝑎𝑥 =

5 − 0.4

3.3
× 0.91 × 0.5 = 0.634𝐴 

(A-1) 

Note that (A-1) is not relevant if a node is powered via J1 by a higher-wattage supply than a USB1.1 

port. 

U2 can supply up to 200mA at 1.8V.  However, it powers only the FPGA's non-volatile configuration 

memory U5, an XCF08P Platform Flash device.  The maximal ICCINT of the XCF08P during operation is 

10mA.  U2 is a linear regulator, so realises no efficiency gains due to the voltage lost across it; it 

accounts for (up to) 10mA of current from the 3.3V rail. 

U3 is a high-efficiency (90%) buck regulator than can supply up to 600mA of output current at 1.2V.  

Its output to input current transform from a 3.3V supply is given by: 

 𝐼𝑜𝑢𝑡

𝐼𝑖𝑛
=

3.3

1.2
× 0.90 = 2.475 (A-2) 

That is, for every 1mA of input current at 3.3V, U3 can supply 2.475mA at 1.2V. 

U3 powers only the FPGA core, ICCINT.  The exact current consumption of an FPGA is difficult to 

estimate, because it is highly dependent on the design loaded into the FPGA and the speed/s at which 

the design is clocked.  Xilinx's design tools include a power consumption estimator, which reports 

estimated consumption for the design of ICCINT=77.4mA.  Given (A-2) above, U3 is estimated to 

consume 31.3mA of current from the 3.3V rail. 

The power consumption of most of the other parts that draw their power from the 3.3V rail has been 

characterized by their manufacturers.  The exception is the SD card; it is not possible to give a solid 

figure for this, as it varies by card make and model.  An indicative figure of 200mA has been used, 

which should be at the high end of SD card consumption.  In any case, an SD card is not required for 

the operation of the research platform. 

The consumers of current on the 3.3V rail are thus: 

Consumer Qty mA ea mA total 

STM32F407 1 87 87 

CAT25512 SPI EEPROM 1 3 3 

SD card 1 200 200 

XCF08P VCCINT  1 10 10 

XCF08P VCCIO  1 40 40 

XC6SLX25 VCCINT  1 31.3 31.3 

XC6SLX25 VCCAUX + VCCIO  1 43.3 43.3 

LVDS transceivers 4 25.8 103.2 

Total   517.8 

Table A-1 : Worst-Case Estimated Current Consumption from 3.3V Rail 
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The worst-case estimated current consumption of 517.8mA from the 3.3V rail represents 81.6% of the 

634mA available to the 3.3V rail.  Note that if the SD card is not considered, the estimated current 

consumption is 317.8mA, representing 50.1% of the current capacity of the 3.3V rail. 

The power supply is operating well inside its design envelope. 

A.3.2 Host CPU 

The host CPU, designated as Z1, is an ST Microelectronics STM32F407IGH6.  Z1 is a single-chip 

microcontroller in a 10mm-square 176+25-pin UFBGA package.  The STM32F407 incorporates an ARM 

Cortex-M4F 32-bit CPU operating at up to 168MHz, 1MB of flash memory, 196kB of SRAM, and a large 

number of on-board peripherals including a Full Speed (FS) USB PHY, UART's, CAN interfaces, an SDIO 

interface, SPI interfaces and an external memory port.  The device can be programmed and debugged 

via either a Single Wire Debug (SWD) port, or a JTAG port; the research platform uses the SWD port 

due to the lower pin count.  Z1 utilizes a single power supply, the 3.3V rail provided by U1.  The power 

supply is decoupled with a large number of low-inductance ceramic chip capacitors in close proximity 

to the part's power supply pins, per ST's advice in their design notes.  Z1 is clocked with an 8MHz 

crystal oscillator designated X2.  An internal PLL transforms the 8MHz clock input from X2 into the 

various internal clocks of Z1, including the 168MHz CPU clock. 

Two external non-volatile storage devices are attached to Z1: a CAT25512 SPI EEPROM with a capacity 

of 32KB, designed U4, is mapped to the SPI2 port, and an SD card socket, designated J4, is mapped to 

the SDIO port.  Other communication peripherals used by the design include the FS-USB port, attached 

to a micro-B USB header designated J2, and several CAN and UART interfaces are multiplexed onto 

the auxiliary I/O header J3.  Four indicator LED's (LED0..3) are driven by GPIO pins.  Z1's external 

memory port, or Flexible Static Memory Controller, is mapped to FPGA GPIO, and several of Z1's GPIO's 

are also mapped to the FPGA and/or it's GPIO for other control functions – /IRQ and /RST signals to 

GPIO, and the PROG_B, INIT_B and DONE signals to the FPGA's configuration module. 

Refer to Figure A-2 and Figure A-3, below, for schematic diagrams of the host CPU block. 

A.3.3 Media Access Controller 

The media access controller (MAC) is implemented in a Xilinx XC6SLX25-2FTG256C Field-

Programmable Gate Array (FPGA) in a 17mm square fine-pitch BGA package, designated FPGA1.  A 

Xilinx XCF08PFSG48C Platform Flash non-volatile memory storage device in an 8x9mm fine-pitch BGA 

chip-scale package, designated U5, holds FPGA1's configuration; the configuration is parallel-loaded 

to reduce the FPGA's initialization time, and series damping resistors are inserted into the data traces 

between U5 and FPGA1 to protect the load process from signal reflections.  Both FPGA1 and U5 are 

members of a single JTAG chain, allowing either device to be programmed via J5.  The FPGA 

configuration load process is controlled and monitored by Z1 via FPGA1's PROG_B, INIT_B and DONE 

signals.  Z1 interacts with the configuration loaded into FPGA1 through a half-duplex memory bus: 16 

simplex address lines from Z1 to FPGA1; 16 half-duplex data lines; and various memory bus control 

signals.  The FPGA's configuration interacts with the network block through four full-duplex serial 

ports; GPIO pins are dedicated to each of the eight network transmit and receive signals, and to the 

eight LED's on the network jacks.  The FPGA is clocked via a clock-input-capable I/O pin by a 25MHz 

Temperature-Compensated Crystal Oscillator (TCXO) module designated X1, its I/O and auxiliary 

voltages are supplied from the 3.3V rail, and its core voltage is supplied from the 1.2V rail.  U5's I/O 

voltage is supplied from the 3.3V rail, and its core voltage is supplied from the 1.8V rail.  All of the 
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power supplies of both FPGA1 and U5 are decoupled with a large number of low-inductance ceramic 

chip capacitors in close proximity to power supply pins, per Xilinx's advice in their design notes. 

Refer to Figure A-4, Figure A-5, and Figure A-6 below for schematic diagrams of the media access 

controller block. 

A.3.4 Network Links 

The research platform incorporates four network communications interfaces, or link endpoints.  Each 

endpoint is an LVDS transceiver, and an RJ45 jack.  Two SN65LVDS051 dual full-duplex LVDS 

transceiver devices, designated U6 and U7, provide LVDS-to-LVTTL (and vice-versa) translation, and a 

4-port RJ45 jack with integrated LED's, designated J6, provides the network interface connectors.  

Serpentine traces are used to match the trace lengths of the differential pairs between the 

transceivers and the RJ45 jacks, and the LVDS differential traces are sandwiched between the ground 

and power planes for additional protection.  Pair 1 of each connector is mapped to transmit (pin1 Tx+, 

pin 2 Tx-), and pair 2 is mapped to receive (pin 3 Rx+, pin 6 Rx-); pairs 3 and 4 are open-circuit.  The 

LVDS transceivers are powered from the 3.3V rail.  The LVTTL transmit and receive serial bitstreams, 

and the RJ45 integrated LED's, are mapped to FPGA GPIO pins.  Refer to Figure A-7 below for schematic 

diagrams of the network link block. 
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Figure A-2 : Host CPU Schematic Diagram – Part 1 
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Figure A-3 : Host CPU Schematic Diagram – Part 2 
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Figure A-4 : FPGA / MAC Schematic Diagram – Part 1 
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Figure A-5 : FPGA / MAC Schematic Diagram – Part 2 



Page 400 

 

 

Figure A-6 : FPGA / MAC Schematic Diagram – Part 3 
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Figure A-7 : Network Link Schematic Diagram 
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A.4 Parts Listing 

All parts were specified to the PCB assembler, Entech Electronics 

http://www.entechelectronics.com.au/, using part numbers for Digikey 

(https://www.digikey.com.au), a large electronics part vendor.  However, it is possible that, per their 

terms of service, Entech used equivalent parts from an alternate source. 

Designator Qty Comment Description Vendor ID 

C2, C3, C49, C59 4 1uF Capacitor 490-10018-1-ND 

R6, R8, R9, R10 4 2K2 Resistor RMCF0402FT2K20CT-ND 

C63, C64 2 2u2F Capacitor 490-10451-1-ND 

L2 1 2u2H Inductor 445-6468-1-ND 

R4 1 3K3 Resistor 541-3.30KLCT-ND 

R5, R21, R23 3 4K7 Resistor 541-4.70KLCT-ND 

C7, C10, C13, C16, C19, 
C24, C27, C30, C34, C36, 
C38, C48 12 4u7F Capacitor 311-1734-1-ND 

R1 1 5K6 Resistor 541-5.60KLCT-ND 

X2 1 8MHz Crystal 644-1178-1-ND 

C60, C61 2 8pF Capacitor 490-8230-1-ND 

R7, R12, R14, R15, R17, 
R40, R43, R44 8 10K Resistor RMCF0402FT10K0CT-ND 

C5 1 10uF Capacitor 1276-1451-1-ND 

C6 1 10uF 35V Cer Capacitor 587-2484-1-ND 

L1 1 15uH Inductor SDR0703-150KLCT-ND 

C9 1 22nF Capacitor 1276-1537-1-ND 

C4 1 22pF Capacitor 1276-1116-1-ND 

R18 1 22R 8-element isolated resistor array CAY16-220J8LFCT-ND 

R13, R16, R41 3 22R Resistor 541-22.0LCT-ND 

X1 1 25MHz FOX924 HCMOS oscillator module 631-1074-1-ND 

R11, R42 2 68R Resistor 541-68.0LCT-ND 

C11, C14, C37, C39, C40, 
C41, C42, C43, C44, C45, 
C46, C47, C50, C51, C52, 
C53, C54, C55, C56, C57, 
C58, C65 22 100nF Capacitor 445-6902-1-ND 

C12, C62 2 100pF Capacitor 490-6113-1-ND 

R19, R20, R26, R27, 
R30, R31 6 100R Resistor 541-100LCT-ND 

C17, C18, C25, C26, C31, 
C35 6 100uF Capacitor 490-3390-1-ND 

C8 1 220pF Capacitor 1276-1531-1-ND 

R22 1 330R Resistor RMCF0402FT330RCT-ND 

C1 1 330uF 6.3V Tant Polarised Capacitor 478-4773-1-ND 
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Designator Qty Comment Description Vendor ID 

R2, R3 2 360K Resistor 541-360KLCT-ND 

C15, C20, C21, C22, C23, 
C28, C29, C32, C33 9 470nF Capacitor 445-4976-1-ND 

R32, R33, R34, R35 4 470R 4-element isolated resistor array CAY16-471J4LFCT-ND 

J1 1 76382-302LF 2-pin connector 609-1278-ND 

J3, J7 2 76382-306 6-pin connector 609-1282-ND 

J6 1 A20-432-262-903 Quad RJ45 jack 151-1126-ND 

U4 1 CAT25512 8-pin SPI memory device CAT25512YI-GT3OSCT-ND 

D1, D2, D3 3 DB2X41100 Schottky Diode DB2X41100LCT-ND 

J4 1 DM1AA-SF-PEJ(21) Hirose SD card socket HR845CT-ND 

R24, R25, R28, R29 4 DNL Resistor DO NOT LOAD 

L3 1 Ferrite Bead Inductor 445-1558-1-ND 

J5 1 HS2 JTAG header HS2 JTAG header 609-1282-ND 

SW1 1 KMR2 SPST 450-1129-ND 

U1 1 L5973D SMPS controller 497-4566-1-ND 

U2 1 MCP1700T1802 3-terminal LDO regulator MCP1700T1802ETTCT-ND 

LED1, LED2, LED3, LED4 4 Red LED Light-Emitting Diode 160-1830-1-ND 

U6, U7 2 SN65LVDS051 LVDS 2+2 transceiver 296-12052-5-ND 

Z1 1 STM32F407IGH6 

ARM Cortex-M4 32-bit MCU+FPU, 210 
DMIPS, 1024 kB Flash, 192 kB Internal RAM, 
140 I/Os, 176-pin BGA, -40 to 85 degC, Tray 497-11765-ND 

J2 1 TE-2013499-1 USB micro-B socket A107962CT-ND 

U3 1 TPS62260 SMPS controller 296-22469-1-ND 

FPGA1 1 
XC6SLX25-
2FTG256C 

Spartan-6 LX 1.2V FPGA, 186 User I/Os, 256-
Ball Fine-Pitch Thin BGA (1.0mm Pitch), 
Speed Grade 2, Commercial Grade, Pb-Free 122-1753-ND 

U5 1 XCF08PFSG48C 

XCF00P Series, Platform Flash In-System 
Programmable Configuration 1.8V PROM, 
48 Ball BGA, 8-Megabit, Commercial Grade, 
Pb-Free 122-1453-ND 

Table A-2 : Parts Listing 
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A.5 Hardware Layout 

Each research platform node is implemented as a single 6-layer printed circuit board, 58.5x80mm. 

 

Figure A-8 : Overview of PCB Layout 

The research platform as a whole is an array of ten nodes (nine functional; one manufacturing failure), 

assembled into a "stack" using intermediate mounting plates, as shown in the image below. 

 

Figure A-9 : Research Platform Node Array 
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Figure A-10 : PCB Top Overlay 
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Figure A-11 : PCB Top Layer 
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Figure A-12 : PCB Ground Plane 
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Figure A-13 : PCB MidLayer2 
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Figure A-14 : PCB MidLayer1 
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Figure A-15 : PCB Power (3.3V) Plane 
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Figure A-16 : PCB Bottom Layer 
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Appendix B  

 

The Design of the Media Access Controller 

Logic 

 

 

 

B.1 Introduction 

Appendix B presents the design of the Virtual Bus Media Access Controller (MAC) implemented for 

the research platform.  The MAC is implemented in a Xilinx Spartan-6 Field-Programmable Gate Array 

(FPGA) and realizes the physical and data link layers of the VB network architecture. 

After this introduction in section B.1, section B.2 gives a brief history of the hardware design.  Section 

B.3 describes the overall design and its decomposition into logical blocks, including overview and/or 

schematic diagrams for each block.  The Core block in section B.3.3 and the Network Interface block 

in section B.3.4 are sufficiently complex that they are decomposed further into additional layers of 

logic blocks.  Simulation outputs for some of the more time-critical behaviours discussed in section 

B.3  are presented in section B.4.  There is no conclusion. 

B.2 Design History 

All logic design was undertaken using Xilinx's free ISE Webpack design suite.  Logic simulation during 

the design process, including that presented in section B.4 below, was accomplished with Xilinx's free 

ISim simulator.  All logic coding was carried out in Verilog. 

Three free Xilinx Spartan-6 IP blocks were used in the design: 

• Clocking Wizard 

• Distributed Memory Generator 

• Block Memory Generator 
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As discussed in Appendix A, the first stages of prototyping were undertaken in the first generation of 

research platform hardware using a Xilinx Spartan-6 XC6SLX9 FPGA.  The LX9 ultimately proved to be 

too resource-constrained, but it provided a useful starting point that informed the development and 

testing of much of the final design.  The more complex behaviours, particularly fine synchronization, 

required the larger capacity of the XC6SLX25 FPGA used for the second and third generations of the 

research platform hardware. 

It should be stated that the logic design output for this research is fundamentally a prototype, at least 

in terms of how it is implemented.  It would be fair to describe the design process as being more 

bottom up, top down than top down, bottom up.  This is most evident in the lack of interface 

standardization between modules.  A redesign from first principles, using the research prototype as a 

baseline, would in all likelihood realise substantial gains in efficiency. 

B.3 Logical Block Descriptions 

The MAC is constructed from a number of distinct blocks or modules: 

1. Bus Slave Interface 

2. Clock Generator 

3. Core 

4. Network Interfaces (4 instances) 

5. Switch Matrix 

 

Figure B-1 : High-Level View of MAC Logic Design 

The Core and Network Interface (IF) blocks in particular are complex modules in their own right; their 

internal complexities are discussed below in sections B.3.3 and B.3.4 respectively. 
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B.3.1 Bus Slave Interface 

The bus slave interface presents a classical shared memory bus to the host CPU, exposing separate 

address lines, bidirectional data lines, and a number of enable signals. The use of separate Read and 

Write signals groups the bus design into the 8086 style.  The bus signals and their functions are detailed 

in Appendix C, the MAC Interface Specification. 

Spartan-6 FPGA's do not deal well internally with multi-drop half-duplex buses that use high-

impedance output drivers for sharing.  They are able to configure their I/O pins for high-impedance 

drive, but they are unable to configure their internal logic similarly.  This limitation necessitated 

converting the half-duplex data lines of the external memory bus to full-duplex pairs of inbound and 

outbound data lines.  The read-enable signal of the external bus was dispensed with internally because 

multiplexers driven by address decode logic are used to determine which internal memory block drives 

the outbound data lines.  Finally, there was a need to limit the duration of the internal write-enable 

signal to avoid the accidental assertion of the write-enables of multiple internal memory blocks.  A 

simple pulse generator, triggered by the external bus asserting its write-enable signal, is used to drive 

the internal write-enable signal for a single cycle of the MAC's low-speed clock.  Note also that the 

external bus uses negative logic for enable signals, whereas the FPGA generally uses positive logic 

internally, including the internal bus and all of the memory blocks that it accesses. 

 

Figure B-2 : External-to-Internal Bus Conversion Logic 

Refer to B.4.1 below for a simulation of several bus transactions. 

B.3.2 Clock Generator 

The clock generator is simply a Xilinx Digital Clock Manager (DCM) IP block, driven from the 25MHz 

clock signal applied to the GCLK0 pin of the FPGA.  It is configured to generate two clocks signals for 

the internal use of the MAC: 

1. A low-speed 25MHz clock. 
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2. A high-speed 100MHz clock. 

The DCM is also configured to expose a RESET input, and a number of status signals: 

 

Figure B-3 : Clock Generator Block Diagram 

Note that in practice, only the CLK_VALID status signal is actually used by the logic design.  CLK_VALID 

is mapped directly to the RDY signal that is output to the host controller, as shown in Figure B-3 above. 

B.3.3 Core 

The Core module encapsulates the behavioural logic of the node as an integrated unit.  This logical 

separation is necessary because the network interfaces also have a span of control, and decision logic 

with a node-wide span of control is required to manage the occasions that the control decisions of 

several network interfaces conflict.  The principal area of conflict is time synchronization.  Each 

network interface separately adjusts the node's timing relationship with a single connected peer 

interface in a neighbour node, and the time synchronization control signals produced by each network 

interface can be in conflict; those conflicts must be resolved safely and gracefully. 

 

Figure B-4 : High-Level View of Core Module 
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This reasoning is part of the background behind the design decision to partition all of system memories 

in the core, rather than distributing them amongst the network interfaces.  This was a painful decision, 

particularly for the communication buffers: the ad-hoc FIFO's and the TDM cell and digest memories.  

My instinct was to locate the memories within the network interfaces, but I ultimately came to the 

decision that it was more practical to group all of the memories in proximity to the bus slave interface 

and distribute a minimal inter-module interface to each of the network interfaces. 

B.3.3.1 Interfaces to Other Modules 

The Core module interacts with the other modules, principally the network interface modules, 

through a number of buses.  While this collection of buses could be treated as a single bus, each 

element of the collection has distinct functions that make separating them reasonable. 

• The Configuration & Command bus delivers three types of information to each network 

interface: the node's timing state from the NCO, 휃𝑁𝐶𝑂 and 𝛼; the node and interface 

addresses; the PID coefficients; and commands from the CCU to the ICU. 

• The status of each network interface is reported back to the CCU via the status bus. 

• The TDM cell and digest memories are accessed by the network interface modules through 

the TDM memory bus. 

• The transmit and receive FIFO's (for ad-hoc cells) are accessed by the network interfaces 

through the FIFO bus. 

B.3.3.2 Core Control Unit 

The Core Control Unit or CCU is responsible for: 

• Sequencing the transference of cells from the FIFO register to the transmit FIFO's, and from 

the receive FIFO's to the FIFO register. 

• Monitoring the operating mode or state of each network interface, which in turn controls 

whether transmission is suppressed or permitted from an interface. 

• Actioning commands written to the command register, then clearing the register.  CCU 

commands may trigger commands to one or more ICU's, or other CCU behaviour including a 

FIFO transfer or a modification of NCO behaviour. 

• Updating the network time 𝛼, either due to a wrap of the system time 휃𝑁𝐶𝑂 or if a SYNC 

cell's network time is more advanced the local network time. 

B.3.3.3 Memory Space 

The memory space module is not particularly complex, but it does contain a number of distinct sub-

modules.  These modules are grouped into the memory space because they are all directly accessible 

from the bus slave interface, i.e. they are memory-mapped into the host controller's memory space. 

Not shown in Figure B-5 below is the encode and decode logic required to connect thirteen modules 

(noting that there are four instances of each of the TDM cell and digest memories) to the full-duplex 

memory bus that is the inside of the bus slave interface, as discussed in section B.3.1 above.  A lookup 

into a static map of the memory space driven by the target address from the bus slave interface is 

used to decode the targeted memory module, and the target address within the context of that 

module.  The outputs of the lookup are then used to generate a write enable signal if required, and to 

multiplex the 16-bit contents of the targeted memory onto the data output branch of the bus. 
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Figure B-5 : Memory Space 

The configuration register holds the most basic global configuration settings of the MAC: its network 

address, and the coefficients used by its link PID controllers.  It exposes Read and Write functionality 

to the bus slave interface, and can be read (but not written) by the MAC logic; the configuration 

settings in this register are exposed to the entire logic design, e.g. it can be read directly by the network 

interface modules when assembling cells for transmission. 

The status register holds the current status of the network interfaces, and of the node itself.  Much of 

its contents are not actually registered into flip-flops within a status register memory; rather, signal 

lines are taken directly from their source, e.g. the count of cells in a FIFO, stored in a register in the 

FIFO, and mapped to the output bus of the memory space via multiplexers.  The exception to this is 

status variables that are larger than 16 bits and hence cannot be read in a single bus transaction.  In 

order to ensure atomic reads of large variables, the status register does contain a block of flip-flops 

that are used to store the variables on command.  The status register is read-only from the bus slave 

interface, and write-only from the MAC logic. 

The command register is used to issue commands to the CCU.  The command register is write-only 

from the bus slave interface, and read-only from the CCU, with the caveat that the CCU clears the 

command register after executing a command. 

The interrupt or IRQ register both configures which interrupt sources will generate interrupts, and 

monitors the state of the interrupt sources and triggers interrupts when required.  The register 

exposes both Read and Write functionality to the bus slave interface, and is write-only from the MAC 

logic.  The MAC signals are connected directly from their sources to the IRQ register and, where 

necessary, are registered in flip-flops within the IRQ register. 
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The FIFO register buffers data transfers between the bus slave interface and the ad-hoc cell FIFO's to 

ensure the atomicity of each transfer: the FIFO register and cell FIFO memory locations are 160 bits 

wide, the cell FIFO interface is 32 bits wide, and the bus slave interface is 16 bits wide.  For further 

protection, the FIFO register is partitioned into separate memories for Read and Write operations.  

The FIFO register exposes both Read and Write functionality to the bus slave interface, Write 

functionality from the Write FIFO register to the receive FIFO's, and Read functionality from the 

transmit FIFO's to the Read FIFO register.  During a FIFO write, the bus slave interface is used to load 

the Write FIFO register in ten 16-bit transactions.  Following a command issued to the CCU via the 

command register, the CCU copies the contents of the register to the targeted transmit FIFO in five 

32-bit transactions then triggers a Push into the FIFO proper.  Conversely, a FIFO read command 

transfers the targeted receive FIFO to the Read FIFO register, where it can be read via the bus slave 

interface. 

The four TDM cell memories are implemented in Xilinx Block RAM (BRAM) IP Cores.  Each memory is 

a dual-port RAM, exposing one port to the bus slave interface and the other port to the corresponding 

network interface.  The bus slave interface port is relatively conventional, exposing the entire BRAM 

to the host controller, but the network interface port exposes only a single TDM cell at a time; the cell 

that is exposed to the network interface is a function of the current TDM timeslot.  Read and Write 

functionality is exposed to both BRAM ports, allowing a single memory to be utilized for both 

transmission and reception of TDM cells from each Interface. 

The four TDM digest memories are implemented in Xilinx Distributed RAM IP Cores, i.e. they are block 

of flip-flops.  Apart from their primitive type (flip-flops rather than BRAM) and size (four bits per cell 

rather than 160), the behaviour and interfaces of the TDM digests are identical to the TDM cell 

memories. 

B.3.3.4 FIFO Space 

The FIFO space is separated from the memory space because, although FIFO's are memories, they 

cannot be directly accessed from the bus slave interface.  The host controller accesses the FIFO's 

indirectly, through the FIFO and Command registers in the memory space. 

There are eight FIFO's, two for each network interface module: one transmit FIFO and one receive 

FIFO.  Each FIFO is a Xilinx Block RAM (BRAM) IP core, wrapped with Push and Pop interfaces to enforce 

simplex traffic through the FIFO.  The interfaces expose a small memory space of five 32-bit memory 

locations, a Push or Pop control signal depending on the side of the FIFO, and status signals.  A small 

section of the BRAM is exposed via each of the memory interfaces, and the internal pointers that 

control which BRAM section is exposed are updated by asserting a Push or Pop signal. 

B.3.3.5 Numerically Controlled Oscillator 

The Numerically Controlled Oscillator (NCO) manages the node's network timing.  It is a loadable fixed-

point counter with an adjustable step size that is used to track the local time, or  휃𝑁𝐶𝑂.  Additionally, 

and derived from  휃𝑁𝐶𝑂, the NCO outputs signals to indicate the current TDM timeslot index and the 

current phase (traffic or management). 

B.3.3.6 Synchronization Calculator 

The synchronization calculator assesses whether a received SYNC cell should update  휃𝑁𝐶𝑂.  This is 

done sequentially for each received SYNC cell in conjunction with the synchronization recorder 
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module because if two (or more – potentially, all four) SYNC cells arrive in the same CLK_LO cycle, a 

decision must be made for each cell as to whether it will update 휃𝑁𝐶𝑂.  The decision tree is greatly 

simplified by considering each SYNC cell individually, and multiple cells sequentially. 

B.3.3.7 Synchronization Recorder 

The synchronization recorder registers the time at which each network interface last received a SYNC 

cell, the contents of the cell, and whether the cell has been processed by the synchronization 

calculator.  Because the calculator parses the SYNC cells sequentially, a time offset may be introduced 

between a cell being received and being parsed.  The synchronization recorder tracks this time offset 

to ensure that it is compensated for. 

B.3.4 Network Interfaces 

The four network interface modules are internally identical.  The modules are internally complex, with 

a number of sub-modules.  The operation of each of the sub-modules is discussed separately. 

 

Figure B-6 : High-Level View of Network Interface Module 

B.3.4.1 Interfaces to Other Modules 

The Interface Control Unit (ICU) interacts with the other modules in the design through a number of 

buses that are connected through the Core module.  While this collection of buses could be treated 

as a single bus, each bus in the collection has distinct functions that make separating them reasonable. 

• The Configuration & Command bus delivers four types of information to the ICU: the node's 

timing state from the NCO, 휃𝑁𝐶𝑂 and 𝛼; the node and interface addresses; the link PID 

controller coefficients; and commands from the CCU to the ICU. 
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• The status of the interface module is reported back to the CCU via the Status bus.  The status 

bus contains a large number of fields. 

• The TDM cell and digest memories are accessed by the ICU through the TDM memory bus. 

• The transmit and receive FIFO's, for ad-hoc cells, are accessed by the ICU through the FIFO 

bus. 

B.3.4.2 Interface Control Unit 

The ICU is the heart of the network interface module.  It parses commands from the CCU; loads and 

unloads the transmit and receive cell buffers through the TDM and FIFO buses and constructs SYNC 

cells; triggers the transmission of cells and reports the reception of cells; controls the switch matrix 

through the SEL_OUT signal; maintains counters for cells transmitted, received OK and received in 

error; manages the link state by monitoring detection and timeouts of the link signal and SYNC cells; 

and calculates synchronization error and link length estimates. 

SYNC cells are constructed on the fly, as the ICU has direct access to all of the information contained 

in a SYNC cell.  When SYNC transmission is requested by the CCU, within a single clock cycle a SYNC 

cell is constructed, inserted into the transmit cell buffer, and the interface transmitter is triggered.  

The immediacy of transmission ensures the validity of the value of 휃𝑁𝐶𝑂 that is encapsulated in the 

SYNC cell.  Refer to section B.4.7 for a simulation of the construction and transmission of a SYNC cell. 

State machines are used to transfer data between the TDM and FIFO buses and the cell buffers.  The 

state machines are required because the cell buffers are 160 bits wide whereas the buses (and the 

memories that they access) are 32 bits wide.  Due to the discrepancy in memory sizes, each transfer 

takes five cycles of the interface's input clock.  This slight delay is not problematic because of the 

relatively low speed of the network interfaces compared to the interface clock. 

Consider the use-case of TDM cell transmission by way of example.  The first 32-bit block of the TDM 

memory is transferred to the transmit cell buffer simultaneously with cell transmission being 

triggered.  The first two symbols transmitted are a preamble or guard symbol and a start-of-frame 

symbol, both of which are generated internally and do not need to be retrieved from the cell buffer.  

Transmission of these symbols takes 200 clock cycles, far more than the 5 clock cycles required to 

transfer the cell from TDM cell memory to the transmit cell buffer.  By the time the first byte is read 

from the cell buffer, the entire cell has been loaded into it. 

The receive use-case is similar.  Cell reception is effectively complete after 2,419 clock ticks, leaving 

the ICU's receive state machine 81 clock ticks to transfer a TDM cell from the receive cell buffer into 

TDM cell memory.  Again, only 5 clock ticks are required. 

Refer to sections B.4.5 and B.4.6 below for simulations that demonstrate the processes of transferring 

cells between the cell transmit and receive buffers, and FIFO's and TDM memories respectively. 

B.3.4.3 Link PID Controller 

The link PID controller is a simple state machine that executes a PID algorithm.  It accepts new error 

values; records the previous error value in order to calculate the differential component; and records 

a running sum of errors over time in order to calculate the integral component.  The integrator is 

designed to saturate rather than wrap. 
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B.3.4.4 Link Length Integrator 

The link length integrator is a simple state machine that sums link length measurement estimates 

generated by the ICU.  It is a boxcar integrator that records and sums the last 128 measurements. 

While the count of measurements is less than the number of positions in the integrator, as new 

measurements are appended they are added to the running sum.  Once the integrator reaches 

capacity, the oldest measurement is discarded as each new measurement is appended.  The 

measurement that is discarded is subtracted from the running sum, while the measurement that is 

appended is added to the running sum. 

In hindsight a digital filter, probably implemented as a Xilinx IIR filter IP block, would have been a 

better choice, but the boxcar integrator was sufficient for the purposes of the research. 

B.3.4.5 Transmit and Receive Cell Buffers 

The cell buffers are simply 160-bit dual-port RAM's that provide a temporary storage location for cells 

that are being transmitted and received.  The memory ports facing the ICU are 160 and 176 bits wide 

respectively, allowing an entire cell to be read or written in a single operation; and the memory ports 

facing the ITX and IRX modules are 8 bits wide with a 5-bit address bus, allowing individual octets to 

be read or written. 

B.3.4.6 Interface Transmitter 

The Interface Transmitter (ITX) module is a small collection of relatively simple state machines. 

 

Figure B-7 : Interface Transmitter Module 

The ITX module is responsible for: 

• Transmitting the LINK signal when otherwise idle. 

• Transmitting the cell stored in the Transmit Cell Buffer when triggered to do so by the ICU. 

• Generating the bit clock. 

Cell transmission is managed by the Transmit Controller and is an atomic process that cannot be 

interrupted once commenced.  Note that although transmission of a cell cannot be interrupted, 

transmission of a cell does interrupt transmission of the LINK signal. 

1. Insert the preamble and Start-of-Frame symbols into the SER_OUT bitstream. 

2. Initialize the CRC engine. 

3. Encode each cell header and payload octet with the 8b10b scheme  

a. Copy each unencoded octet to the CRC engine. 

b. Insert the encoded symbols into the SER_OUT bitstream. 

4. Encode each CRC octet with the 8b10b scheme. 
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a. Insert the encoded symbols into the SER_OUT bitstream. 

5. Insert the postamble symbol into the SER_OUT bitstream. 

The 8b10b encoder is Benz's Verilog implementation [1] of the original 8b10b patent [2], contained in 

a simple wrapper for integration purposes.  The Start-of-Frame symbol is an 8b10b COMMA symbol, 

K.28.5.  The preamble and postamble symbols and the LINK signal are all referred to as the NULL 

symbol, a '1010101010' bitstream (repeated indefinitely in the case of the LINK signal), noting that 

NULL symbols are generated by passing the 8b10b encoder a D.21.5 symbol, which is guaranteed to 

encode to the NULL symbol's bitstream. 

The CRC engine serializes each octet as it is about to be encoded and transmitted and passes the 

resulting bitstream through a linear feedback shift register (LFSR) [74] using an initial value of 0xffff 

and the polynomial 0xAC9A.  The polynomial was selected on the advice of Koopman and Chakravarty 

as being optimal for protecting a frame of 160 bits. [162]  The serialization process takes one clock 

cycle per bit, for eight clock cycles in total; observe that the CRC calculation for each octet is complete 

before the first bit of the corresponding symbol (10 clock cycles) has been transmitted. 

Frames are sent most-significant-octet first; note that this means that the cell header is sent first, as 

it is contained in the four most-significant-octets.  The CRC is also sent most-significant-octet first.  

Conversely, all encoded symbols are sent least-significant-bit first. 

Refer to section B.4.7 below for a simulation output that demonstrates the construction and 

transmission of a SYNC cell. 

B.3.4.7 Interface Receiver 

The Interface Receiver (IRX) module is a small collection of tightly coordinated but individually 

relatively simple state machines.  The IRX module is responsible for: 

• Clock domain matching of the SER_IN signal to the local CLK_LO using an arbiter, a chain of D 

flipflops. 

• Using the periodic transitions of the SER_IN signal to synthesize a bit clock and identify 

individual bits in the received bitstream. 

• Search the bitstream for 8b10b K.28.5 comma symbols, indicating Start-of-Frame, and NULL 

symbols.  Restart the respective timer when either type of symbol is detected. 

• When a Start-of-Frame symbol is detected, commence frame reception. 

During frame reception: 

• Flag to the Receive Controller that a frame is being received. 

• Deserialize the bitstream into 8b10b symbols. 

• Decode the 8b10b symbols into octets. 

• Pass the decoded octets to the Receive Controller. 
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Figure B-8 : Interface Receiver Module 

Frame reception is managed by the Receive Controller.  If the 8b10b decoder detects an invalid symbol 

during frame reception, then reception is terminated immediately and a cell received in error is 

reported to the ICU.  If no invalid symbols are detected then the receive process will complete when 

the last symbol has been received and the CRC is calculated.  If the message was received correctly 

then the CRC engine output will be 0x0000.  If the CRC engine does not output 0x0000 then a CRC 

error will be reported.  The ICU will be notified of either result. 

Refer to section B.4.8 below for a simulation that details the reception and validation of a SYNC cell. 

B.3.5 Switch Matrix 

The switch matrix is simply a set of four multiplexers.  All of the multiplexers have the same eight 

inputs – the four SER_INx lines shown in Figure B- above, and the four outputs of the network interface 

modules; and each multiplexer's output is mapped to one of the SER_OUTx lines.  The multiplexer 

input select signals are generated by the corresponding network interface module. 

Observe that although the multiplexers in Figure B-9 below all share the same inputs, the order of 

each block of four inputs is rotated one step from one multiplexer to the next.  Rotation of the inputs 

means that the ordering of input selection for each multiplexer always begins with the network 

interface signals that correspond to that multiplexer, as shown in Table B-1 below. 
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Figure B-9 : Switch Matrix Logic 

 0 1 2 3 4 5 6 7 

SER_OUT0 TX0 TX1 TX2 TX3 SER_IN0 SER_IN1 SER_IN2 SER_IN3 

SER_OUT1 TX1 TX2 TX3 TX0 SER_IN1 SER_IN2 SER_IN3 SER_IN0 

SER_OUT2 TX2 TX3 TX0 TX1 SER_IN2 SER_IN3 SER_IN0 SER_IN1 

SET_OUT3 TX3 TX0 TX1 TX2 SER_IN3 SER_IN0 SER_IN1 SER_IN2 

Table B-1 : Switch Matrix Multiplexer Mapping 

B.4 Simulation Outputs 

B.4.1 Bus Slave Interface Read and Write 

Figure B-10 below presents behavioural simulations of the logic of the bus slave interface as it 

transforms the half-duplex external memory bus to a full-duplex internal memory bus. 
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Figure B-10 : External-to-Internal Bus Conversion Simulation Output 

In event A, 0xabcd is written to location 0x1234; in event B, location 0x2345 is read and return 0x0000; 

and in event C, location 0x2345 is read again and return 0x9876. 

B.4.2 Execution of FIFO Read and Write Commands in the Core Control Unit 

Figure B-11 and Figure B-12 below depicts the process of writing an ad-hoc cell to the FIFO register, 

then issuing a CCU command to transfer the contents of the FIFO register to the transmit FIFO of 

interface 0.  A behavioural simulation of the CCU logic responsible for the transfer process is shown. 

 

Figure B-11 : Loading of the FIFO Register 

A B C 

A B 



Page 427 

 

Figure B-13 and Figure B-14 below depict the reverse process, of issuing a CCU command to transfer 

the contents of network interface 0's receive FIFO to the FIFO register, then reading the ad-hoc cell 

from the FIFO register.  Again, behaviour simulation of the CCU logic responsible for the transfer 

process is shown. 

The first 10 transitions of the <bus_we> signal mark the bus write operations that load an ad-hoc cell 

into the FIFO register.  The final two transitions of the <bus_we> signal mark the bus write operations 

that load a command (0x09, CCUCMD_LOAD_FIFO) into the command register, then execute it.  

Observe that event A corresponds to the assertion of the <cmd_valid> signal, indicating to the CCU 

that the command in the command register should be executed.  In the following clock cycle, event B 

commences; the FIFO register is transferred to the transmit FIFO, as shown in more detail in Figure 

B-12 below. 

 

Figure B-12 : Transfer of the FIFO Register to a Transmit FIFO 

 

Figure B-13 : Transfer of a Receive FIFO to the FIFO Register 
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Event B in Figure B-12 is identical to event B in Figure B-11, but zoomed in for clarity.  The <wdv> signal 

of the transmit FIFO is held asserted for five clock cycles, with a 32-bit DWORD transferred from the 

FIFO register to the FIFO memory proper at each clock cycle.  In the 6th clock cycle, the FIFO's <push> 

signal is asserted, after which the <be> signal (buffer empty) is de-asserted and the <used> and <free> 

count of FIFO cell slots are adjusted. 

Event D in Figure B-13 is identical to event D in Figure B-14, but zoomed in for clarity.  The <raddr> 

signal of the receive FIFO is incremented over five clock cycles, with a 32-bit DWORD transferred from 

the FIFO memory proper to the FIFO register at each clock cycle.  In the 6th clock cycle, the FIFO's 

<pop> signal is asserted, after which the <be> signal (buffer empty) is asserted and the <used> and 

<free> count of FIFO cell slots are adjusted. 

 

Figure B-14 : Unloading the FIFO Register 

At event C, network interface 0 has pushed a received ad-hoc cell into its receive FIFO, which responds 

by de-asserting its <be> signal and adjusting its <used> and <free> counts.  Shortly afterwards, 

command 0x0a (CCUCMD_UNLOAD_FIFO) is written to the command register; event D shows the CCU 

responding to the command by unloading receive FIFO 0 into the FIFO register and popping the FIFO 

to update its pointers, which in turn de-asserts its <be> flag and again adjusts its <used> and <free> 

counts.  Note that event D is shown in more detail at Figure B-14 above. 

B.4.3 Triggering and Clearing an Interrupt Following Ad-Hoc Cell Reception 

Figure B-15 and Figure B-16 below depict the reporting of an interrupt condition following reception 

of an ad-hoc cell, and the interrupt being cleared by writing to the Clear interface of the interrupt 

register. 

The contents of the interrupt enable (IRQEnable) and interrupt flags (IRQFlags) sections of the 

interrupt register are shown in Figure B-15 below.  At event A, the <ifrxc[0]> flag, corresponding to 

0x00000010 in the flags section, asserts, in conjunction with the <rxnd> signal asserting due to 

reception of an ad-hoc cell.  As the GIE flag (enable 0x80000000) and the corresponding ierxc[0] flag 

(enable 0x0000010) are also set, the <xint> signal is asserted to the host controller.  Some time later, 

at event B, the <ifrxc[0]> flag and hence the <xint> signal are cleared by writing to the Clear interface 

of the flags section of the interrupt register.  Event B is also depicted in Figure B-16 below, zoomed in 

for clarity. 

C D 
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Figure B-15 : Overview of Received Cell Interrupt Trigger and Clear 

 

Figure B-16 : Clearing a Received Cell Interrupt 

Event B in Figure B-16 above shows a write to the Clear interface of the interrupt register, clearing 

only the bits set on the bus.  In this case, 0x0010 is written, so bit 0x0010 is cleared; observe that the 

<bus_din> signal, which is the output of the memory object multiplexed onto the inside input to the 

bus slave interface, changes from 0xf011 to 0xf001 as the <bus_we> signal takes effect.  Observe also 

that the <xint> signal is cleared as the <ifrxc[0]> flag is cleared. 

B.4.4 Execution of a Transmit SYNC Command 

Figure B-17 below depicts the triggering of immediate transmission of a SYNC cell from network 

interface 0 by writing 0x86000001 to the command register. 

Event A shows the CCU command 0x06 (CCUCMD_TXSYNC) with argument 0x01 (interface 0 only), in 

the third block of signals, triggering an ICU command of 0x05 (ICUCMD_TXSYNC) in interface 0, which 

in turn asserts the <txinit> signal indicating that cell transmission has been triggered.  Within 2 clock 

cycles of the bus slave interface completing the write to the command register, transmission of a SYNC 

cell has commenced. 
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Figure B-17 : Execution of a Transmit SYNC Command 

B.4.5 Ad-Hoc Cell FIFO Access During Transmit and Receive 

Figure B-18 and Figure B-19 below present behavioural simulations of the logic responsible for 

popping an ad-hoc cell from a transmit FIFO into the cell transmit buffer and transmitting it.  Figure 

B-20 and Figure B-21 below present the reception and storage process for the same ad-hoc cell at the 

receiver. 

 

Figure B-18 : Transfer of an Ad-Hoc Cell from the Transmit FIFO to the Cell Transmit Buffer 

At event A, an ad-hoc cell was written to the transmit FIFO by the host controller, and the <FIFO 

empty> signal was de-asserted.  As ad-hoc cell transmission is not suppressed (the link is synchronized, 

and the node is in the management phase), transmission commences immediately a cell is available 

in the FIFO, as shown by the assertion of <tx init>.  The cell is read from the FIFO over five clock cycles, 

and the FIFO is popped at event B to release the storage; observe that <FIFO empty> is re-asserted 

after the pop. 

Event C in Figure B-19 encapsulates events A and B from Figure B-18 above, and is followed by 

transmission of the entire ad-hoc cell.  Observe that the cell is transmitted most-significant-octet first, 

i.e. octet 19 of the cell contents in the FIFO corresponds to octet 0 of the transmitted cell, and FIFO 

octet 0 corresponds to transmitted octet 19. 
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Figure B-19 : Transmission of Ad-Hoc Cell 

 

Figure B-20 : Reception of Ad-Hoc Cell 

Figure B-20 shows the reception of the ad-hoc cell transmitted in Figure B-19 above, as seen at the 

neighbour node.  Event D encapsulates the process of pushing the received cell into the receive FIFO 

shown in Figure B-21 below. 

 

Figure B-21 : Transfer of an Ad-Hoc Cell from the Receive Cell Buffer to the Receive FIFO 

Event E in Figure B-21 shows assertion of the <rxok> signal, indicating that a cell has been received 

and validated and is available in the receive cell buffer.  This triggers the process of transferring the 

cell from the receive buffer to the receive FIFO.  Event E in Figure B-21 is the mirror of event A in Figure 

B-18. 

Event F shows assertion of the <rxpush> signal, indicating that the data that was written to the FIFO 

starting from event E should be pushed, i.e. the FIFO's internal address will be incremented.  Event F 

is the mirror of event B in Figure B-18. 
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B.4.6 TDM Cell and Digest Memory Access During Transmit and Receive 

Figure B-22 and Figure B-23 below present behavioural simulations of the logic responsible for 

retrieving a TDM cell from TDM memory, transferring it to the cell transmit buffer, and transmitting 

it.  Figure B-24 and Figure B-25 below present the reception and storage process for the same TDM 

cell at the receiver. 

 

Figure B-22 : Transfer of a TDM Cell from the TDM Memory to the Transmit Cell Buffer 

Figure B-22 above shows the retrieval of a TDM cell and its associated digest from the TDM memories.  

Note that there are two clock signals shown in Figure B-22, <clk_lo> and <clk_hi>.  <clk_hi> is four 

times the speed of <clk_lo> and is used only for block RAM's (BRAM's), because there is a one-clock-

cycle delay between presenting a read address to a Spartan-6 BRAM and the BRAM returning the 

contents of that memory location.  TDM cell memory uses a BRAM, but a delay of 1 tick of <clk_lo> 

was unacceptable; however, the delay of ¼ tick due to the use of <clk_hi> for BRAM's is viable. 

As the <timeslot> changes from 0x02 to 0x03 at event G, <tx init> is asserted, starting cell transmission 

in the form of a preamble symbol, and the digest is read.  At the next rising edge of <clk_lo>, event H, 

the digest is cleared.  Note that the digest uses distributed RAM, not BRAM, so there is no read delay. 

Event G also signals the start of the cell memory read, reported on <TDM dout> and delayed by ¼ tick 

of <clk_lo> as discussed above.  Similarly to popping an ad-hoc cell from a transmit FIFO, the TDM cell 

is transferred from the cell memory to the transmit cell buffer in five 32-bit operations. 

Event I in Figure B-23 encapsulates events G and H from Figure B-22 above, and is followed by 

transmission of the entire TDM cell. 

Figure B-24 shows the reception of the TDM cell transmitted in Figure B-23 below, as seen at the 

neighbour node.  Event J encapsulates the process of transferring the received cell into the TDM cell 

memory shown in Figure B-25 below. 

Event K in Figure B-25 shows assertion of the <rxok> signal, indicating that a cell has been received 

and validated and is available in the receive cell buffer.  This triggers the processes of transferring the 

cell from the receive buffer to the TDM cell memory, and updating the TDM digest to 0xf 

(TDMADIG_RXCELL) to reflect that a cell was received.  Event K in Figure B-21 is the mirror of event H 

in Figure B-22. 
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Figure B-23 : Transmission of TDM Cell 

 

Figure B-24 : Reception of TDM Cell 

 

Figure B-25 : Transfer of a TDM Cell from the Receive Cell Buffer to TDM Memory 

B.4.7 Encoding and Transmission of a SYNC Cell 

The following sequence of simulation outputs shows the operation of the ITX module in detail as a 

SYNC cell is retrieved from the transmit cell buffer.  Note that the ITX module is decoupled from the 

ICU module by the transmit cell buffer; its behaviour is identical for SYNC, ad-hoc and TDM cells. 
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Figure B-26 : Commencement of Cell Transmission 

Four events are shown in Figure B-26.  Event A is the trailing edge of the preceding NULL symbol.  

Event B is the point at which the <txinit> signal is asserted, and transmission of a cell commences; the 

first symbol is the preamble, another NULL symbol.  Event C is the border between the preamble and 

Start-of-Frame symbols; the pulse of the <symbol complete> signal triggers transmission of the SOF 

symbol.  The <symbol complete> pulse is repeated during Event D, as the first octet of the cell content 

is loaded.  Note the CRC engine commences processing concurrent with the loading of the content 

octet. 

 

Figure B-27 : Single Clock Cycle Precision of SYNC Cell Time 

Examining Event B in more detail in Figure B-27, 휃𝑁𝐶𝑂, shown as the <systime> signal, and 𝑡𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 

shown as the <nettime> signal, are 0x2F9F5 (0b101111100111110101) and 0x123456 respectively at 

the time of the rising edge of <txinit>.  These values are loaded directly into the SYNC cell in the 

transmit cell buffer with the rising edge of <txinit>.  The 18 bits of 휃𝑁𝐶𝑂 are located in octets 4 through 

6 of the cell, left-shifted by 6 bits to 0xBE7D40 (0b101111100111110101000000), and the 24 bits of 

𝑡𝑛𝑒𝑡𝑤𝑜𝑟𝑘 are located in octets 6 through 9, left-shifted by 4 bits to 0x0124560.  See also Figure B-28 

below. 
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Figure B-28 : Construction and Transmission of a Complete SYNC Cell 

Observe that the <raw octets> signal is shown as nine bits, not eight as you would expect for an octet.  

The ninth bit is a control flag for the 8b10b encoder; if it is clear then the encoder constructs a data 

symbol, but if it is set then the encoder constructs a control symbol.  This is shown at event E, where 

construction of the Start-of-Frame symbol, an 8b10b K.28.5 COMMA, is requested.  Note also that the 

<raw octets> signal is right-shifted one octet compared to the <txbuff data>; the 8b10b encoder (or, 

more correctly, the wrapper that I use to isolate the 8b10b encoder IP authored by Benz) registers the 

<txbuff data> on the rising edge of the <symbol complete> signal. 

Event F shows that SYNC cell octets 4 through 6 have a value of 0xBE7D61.  Recall from above that this 

is the cell's 휃𝑁𝐶𝑂, left-shifted by 6 bits, and observe that 0𝑥𝐵𝐸7𝐷61 ≫ 6 =  0𝑥2𝐹9𝐹5.  Similarly, 

event G shows that SYNC cell octets 6 through 9 have a value of 0x61234560.  Recall from above that 

this is the cell's 𝑡𝑛𝑒𝑡𝑤𝑜𝑟𝑘, left-shifted by 4 bits, and observe that (0𝑥61234560 ≫ 4) & 0𝑥𝐹𝐹𝐹𝐹𝐹𝐹 =

123456. 

Event H shows the final value calculated for the cell CRC before it is inserted directly into octets 20 

and 21. 

B.4.8 Decoding and Reception of a SYNC Cell 

The following sequence of simulation outputs shows the operation of the IRX module in detail as a 

SYNC cell is received, validated and pushed into the received cell buffer. 

Event A in Figure B-29 below captures the operation of the arbiter as it protects the receiver from 

potential metastability by passing the SER_IN signal through a chain of D flipflops. Event B shows an 

instance of bit clock recovery. 

Events C and D in Figure B-30 capture the operation of the Serial Aligner module.  A NULL symbol is 

detected at event C, triggering the NULL symbol timer.  A COMMA symbol is then detected at event 

D, triggering the COMMA symbol timer and starting the frame reception process.  Note that the first 

<celld> value of 0x54 is a false decode that is not written to the received cell buffer; writes to the 

received cell buffer occur only when the <cellwe> signal is asserted, as shown at event E. 

Figure B-31 shows the leading edge of the process of decoding and storing a cell in the received cell 

buffer.  Note event F, an instance of serialized CRC calculation as each octet is decoded and written to 

the buffer.  As discussed above, this is caused by the CRC engine operating sequentially on the octet, 

one bit per clock cycle. 

F G H E 
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Figure B-29 : Operation of the Arbiter and Clock Recovery modules 

 

Figure B-30 : Operation of the Serial Aligner, NULL Symbol Timer and COMMA Symbol Timer modules 

 

Figure B-31 : Decode and Capture of Received Cell 
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C D E 
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Figure B-32 : Operation of the Serial Aligner, NULL Symbol Timer and COMMA Symbol Timer modules 

Figure B-32 shows the trailing edge of the decode process, including CRC validation.  Event G shows 

the CRC being calculated as 0x0000, i.e. valid, immediately before the COMMA timer expires 

(signalling the end of frame capture) and the <rxok> signal is asserted by the receive controller during 

event H.  
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Appendix C  

 

Media Access Controller to Host Controller 

Interface Specification 

 

 

 

C.1 Introduction 

This appendix describes the physical and logical interfaces between the Virtual Bus Media Access 

Controller (MAC) and the host controller that configures and interacts with the MAC. 

After this introduction, section C.2 continues by detailing the simple electrical interface between the 

host controller and the FPGA that implements that MAC, and in section C.3 the electrical interface 

between the host controller and the MAC itself is described.  Section C.4 details the memory map that 

is used to access the MAC, including the locations and sizes of all of the MAC registers and memories, 

and the interfaces to those memories, and section C.5 revisits the structure of cells.  Section C.6 details 

the structure of every register, as listed in the memory map, and sections C.7 and C.8 describe and 

explain the TDM and FIFO memories respectively.  The MAC's simple command set is enumerated in 

section C.9.  There is no conclusion. 

C.2 FPGA Interface 

The MAC is implemented in a Xilinx XC6SLX25 Spartan-6 Field-Programmable Gate Array (FPGA).  [145] 

The FPGA's configuration, i.e. the MAC logic design, is volatile, as it is stored in static RAM cells in the 

FPGA.  A non-volatile copy of the FPGA configuration is stored in a Xilinx XCF08P platform flash device 

that is attached to the FPGA by a dedicated configuration interface. [235]  The FPGA self-loads from 

this non-volatile memory using the Master SelectMAP configuration mode and interface when 

instructed to do so by the host controller. [236] 

The FPGA exposes a simple signalling interface to the host controller to allow it to manage the 

configuration load process: 
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Figure C-1 : FPGA Configuration Management Interface Signals 

Pin/s Direct Assert Description 

DONE Out High Assertion indicates that FPGA configuration load has completed successfully. 

#INIT_B Bi Low While #PROG_B is asserted, #INIT_B is an active-low input that can be asserted to prevent 
reload after #PROG_B is de-asserted. 

After reload has commenced, #INIT_B is an open-drain active-low output that indicates 
whether a configuration CRC error occurred, i.e. if any failure to load was caused by a 
communications error between the FPGA and the platform flash.  #INIT_B ='1' indicates 
that an error occurred. 

#PROG_B In Low Active-low asynchronous full-chip reset. 

Asserting #PROG_B drops the FPGA's volatile configuration. 

De-asserting #PROG_B reloads the volatile configuration from non-volatile storage. 

Table C-1 : FPGA Configuration Management Interface Signal Descriptions 

Note that the FPGA's #PROG_B signal is entirely distinct from the MAC's RST signal, as discussed in 

section C.3 below.  #PROG_B resets the FPGA's hardware and causes it to reload its configuration from 

non-volatile storage.  In contrast, RST has no effect on the FPGA hardware at all; it synchronously 

resets the logic of the MAC that is described in the FPGA configuration. 

Similarly, the FPGA's DONE signal is entirely distinct from the MAC's RDY signal.  DONE indicates that 

the configuration has been loaded into the FPGA, but does not indicate that the MAC is ready to be 

interacted with.  In contrast, RDY indicates that the MAC has started and, in particular, that the FPGA 

clock management component utilized by the MAC has initialized successfully. [237] 

C.3 Host Controller Interface 

The host controller interface (HCI) is the means by which another processing device, typically a 

microcontroller or microprocessor, can access the functionality of the MAC.  It is an 8086-style half-

duplex memory bus with 16-bit address, 16-bit bidirectional data, and a number of control and enable 

signals. 

All HCI pins are configured to use Xilinx's 3.3V Low-Voltage CMOS (LVCMOS33) logic standard as 

specified for the Spartan-6 FPGA family. [238] 
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Figure C-2 : Host Controller Interface Signals 

 

Pin/s Direct Assert Slew Description 

RST In High N/A Global reset for the MAC logic.  All internal storage of any kind, including state 
machines, will be reset to its startup value if the RST pin is asserted for at least 
one cycle of the MAC clock. 

RDY Out High QUIETIO Asserted by the MAC logic after its internal startup process is complete.  It is 
recommended that all signals into the MAC be held unasserted while the RDY 
signal is not asserted. 

INT Out High QUIETIO Interrupt request (IRQ) output.  Asserted by the MAC when it detects an interrupt 
condition.  Will remain asserted until the condition is cleared. 

D[15..0] Bi High FAST Bidirectional data bus.  Defaults to an undriven, or high impedance (Hi-Z) state. 

A[15..0] In High N/A Address bus.  Note that the address on A[15..0] is the word address, not the byte 
address. 

#OE In Low N/A Active low Output Enable.  Indicates to the MAC that a read of the data bus is to 
take place, and that the MAC should drive the D[15..0] signals.  Assertion of #OE 
is mutually exclusive with assertion of #WE. 

#WE In Low N/A Active low Write Enable.  Indicates to the MAC that a write to the data bus is to 
take place, and that the MAC should not drive the D[15..0] signals.  Assertion of 
#WE is mutually exclusive with assertion of #OE. 

#E1 In Low N/A Global data bus enable signal.  The MAC will ignore all other activity on the data 
bus unless the #E1 signal is asserted. 

#BL[1..0] In Low N/A Byte Lane enable signals.  BL0 applies to D[7..0] and BL1 applies to D[15..8].  16-
bit access requires that both BL signals be asserted; if only one of the BL signals 
is asserted then an 8-bit access (to the upper or lower byte respectively) is 
indicated; and if neither BL signal is asserted then the data bus access will fail. 

Table C-2 : Host Controller Interface Signal Descriptions 

C.4 Memory Map 

The memory space is 128 kilobytes in size.  Accesses can be 8- or 16-bit. 

Many of the internal operations of the MAC require data transfers in block sizes larger than 16 bits.  

These operations can be executed with sequential or random reads or writes. 

If an attempt is made to read a memory address that does not exist, or that does not have a read 

interface, e.g. the command register, a value of 0 will be returned. 
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If an attempt is made to write a memory address that does not exist, or that does not have a write 

interface, e.g. the status register, the attempt will fail silently with no side-effects. 

Address Range (hex) Block Name Action Description 

0x00000-0x0000f CFGREG R/W Read/Write interface for the configuration register. 

Writes to this interface overwrite the contents of the memory. 

Refer to section C.6.1 below for a detailed description of the fields in 
the configuration register. 

0x00010-0x0001f CFGSET W Write/Set interface for the configuration register. 

Writes to this interface set the '1' bits in the written data, and ignore 
the '0' bits in the written data.  This equates to a bitwise OR of the 
register contents with the written data. 

 

0x00020-0x0002f CFGCLR W Write/Clear interface for the configuration register. 

Writes to this interface clear the '1' bits in the written data, and 
ignore the '0' bits in the written data.  This equates to a bitwise AND 
of the register contents with the inverse of the written data. 

 

0x00040-0x00090 STATREG R Read interface for the status register. 

Refer to section C.6.2 below for a detailed description of the fields in 
the status register. 

0x000A0-0x000A3 CMDREG W Write interface for the command register. 

Refer to section C.6.3 below for a detailed description of the fields in 
the command register, and to section C.8 below for a detailed 
description of the MAC command set. 

0x000C0-0x000C7 IRQREG R/W Read/Write interface for the interrupt register. 

Writes to this interface overwrite the contents of the memory. 

Refer to section C.6.4 below for a detailed description of the fields in 
the interrupt register. 

0x000C8-0x000CF IRQSET W Write/Set interface for the interrupt register. 

Writes to this interface set the '1' bits in the written data, and ignore 
the '0' bits in the written data.  This equates to a bitwise OR of the 
register contents with the written data. 

 

0x000D0-0x000D7 IRQCLR W Write/Clear interface for the interrupt register. 

Writes to this interface clear the '1' bits in the written data, and 
ignore the '0' bits in the written data.  This equates to a bitwise AND 
of the register contents with the inverse of the written data. 

 

0x000E0-0x000F3 FIFOREG R/W Read/Write interface for the FIFO register. 

Refer to section C.6.5 below for a description of the FIFO register. 

0x10000-0x1003F TDMDIG[0] R/W Read/Write interface for TDM Digest memory 0. 

0x10040-0x1007F TDMDIG[1] R/W Read/Write interface for TDM Digest memory 1. 
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Address Range (hex) Block Name Action Description 

0x10080-0x100BF TDMDIG[2] R/W Read/Write interface for TDM Digest memory 2. 

0x100C0-0x100FF TDMDIG[3] R/W Read/Write interface for TDM Digest memory 3. 

Refer to section C.7.1 below for a detailed description of the TDM 
Digest memories. 

0x12000-0x123FF TDMMEM[0] R/W Read/Write interface for TDM Cell memory 0. 

0x12400-0x127FF TDMMEM[1] R/W Read/Write interface for TDM Cell memory 1. 

0x12800-0x12BFF TDMMEM[2] R/W Read/Write interface for TDM Cell memory 2. 

0x12C00-0x12FFF TDMMEM[3] R/W Read/Write interface for TDM Cell memory 3. 

Refer to section C.7.2 below for a detailed description of the TDM 
Cell memories. 

Table C-3 : Memory Map 

C.5 Cell Construction 

All physical layer cells, both ad-hoc and TDM, are largely identical in construction: both are 20 bytes 

in size, and contain a 4-byte header and a 16-byte payload. 

Field Name Size (octets) Purpose 

Header 4 Refer Table 2-3 and Table 2-4 

Payload 16 Data payload 

Table C-4 : Structure of a Physical Layer Cell 

The cells vary in the format of the header, as shown in Table C-3 and Table C-4 above: 

Field Name Size (bits) Purpose 

Destination Address 6 Address of cell destination node 

Source Address 6 Address of cell source node 

Time To Live 4 Number of hops the cell can propagate 

Cell Type 8 Purpose of cell 

Sequence Number 8 Sequence number of cell 

Table C-5 : Format of an Ad-Hoc Cell Header 

Field Name Size (bits) Purpose 

Unused 6  

Source Address 6 Address of cell source node 

Payload Size 4 Number of octets in payload, minus 1 

Unused 16  

Table C-6 : Format of a TDM Cell Header 

  



Page 444 

 

C.6 Register Descriptions 

C.6.1 Configuration Register 

The configuration register stores the global configuration settings for the MAC.  It is 128 bits (8 words 

or 16 bytes) in size and exposes Read/Write/Set/Clear functionality.  There are no constraints on the 

order or pattern in which it can be accessed. 

Bits Field Name Default Description 

127..126 Unused 0 N/A 

125..120 Address 0 The local address of the MAC, in the range 1-62.  0 and 63 are not valid. 

119..48 Unused 0 N/A 

47..32 kD 0 The Differential coefficient of the link synchronization PID controllers. 

31..16 kI 0 The Integral coefficient of the link synchronization PID controllers. 

15..0 kP 0 The Proportional coefficient of the link synchronization PID controllers. 

The PID coefficients in the configuration register apply to all of the network 
interfaces, i.e. they are global. 

Table C-7 : Structure of the Configuration Register 

C.6.2 Status Register 

The status register reports the status of the MAC.  It is 640 bits (40 words or 80 bytes) in size and 

exposes only Read functionality.  There are no constraints on the order or pattern in which it can be 

accessed. 

The status register can be treated as five distinct blocks.  Four blocks correspond to the status for 

individual network interfaces, and the fifth block is the global status of the node. 

Bits Sub-Register 

639..512 Node Status 

511..384 IF3 Status 

383..256 IF2 Status 

255..128 IF1 Status 

127..0 IF0 Status 

Table C-8 : Structure of the Status Register 

C.6.2.1 Node Status Register 

The node status register describes the global status of the node. 

With the exception of the NCO Step and Network Time fields, the node status register is updated by 

the MAC in real time.  The behaviour of the NCO Step and Network Time fields is different because it 

is not possible to read these fields in a single memory operation (they are more than 16 bits wide, but 

the bus is only 16 bits wide); and because it would be possible for the overall field to change in value 

between consecutive reads.  In order to avoid problems with their atomicity, these fields are updated 

only when a LOAD_STATUS command is executed; see sections C.6.3 and C.8, below. 
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Bits Field Name Description 

127..64 Version 8-char string specifying the MAC build version. 

63..58 Unused Always reads 0. 

57..32 NCO Step Size of the NCO step in fractions of a clock tick.  The default value is 0x200000. 

31..24 Unused Always reads 0. 

23..0 Network Time Network time; the count of intervals (100/s) since the network first booted. 

Table C-9 : Structure of the Node Status Register 

C.6.2.2 Interface Status Register 

Each interface status register describes the status of one of the network interfaces. 

Interface status registers are updated in real time.  The register structure is designed specifically to 

ensure that no bit field crosses a 16-bit boundary; consequently, all reads of any particular bit field 

are guaranteed to be atomic. 

Bits Field Name Description 

127 Link Length Valid Flag indicating that sufficient link length measurements have been taken for the Link 
Length field (below) to be acceptably accurate. 

126..112 Link Length Estimated length of the link.  Each count of 256 equates to approximately 10 metres. 

111..96 Sync Error The (signed) synchronization error, in clock ticks, observed with respect to the neighbour 
node indicated in the Sync Address field, below. 

95..80 Sync PID The (signed) output of the link synchronization PID controller. 

79..72 Tx Free The number of cell slots free in the interfaces' transmit FIFO buffer. 

71..64 Rx Used The number of cell slots used in the interfaces' receive FIFO buffer. 

63 Tx Buffer Full Flag indicating that the interfaces' transmit FIFO is full. 

62 Rx Buffer Empty Flag indicating that the interfaces' receive FIFO is empty. 

61..58 Unused Always reads as 0. 

57..56 Link State The state of the network link to the neighbour node: 

0 : Off; the transmit and/or receive capability of the interface is suppressed. 

1 : Unlinked; no LINK signal received. 

2 : Linked; LINK signal received, but synchronization not yet complete. 

3 : Synced; synchronization with neighbour node complete. 

55..50 Sync Address The address of the neighbour node that is linked to this interface. 

49..48 Sync Interface The ID of the interface of the neighbour node that is linked to this interface. 

47..32 Rx Good Count The number of ad-hoc cells received without error. 

31..16 Rx Bad Count The number of ad-hoc cells received, but discarded due to errors. 

15..0 Tx Count The number of ad-hoc cells transmitted. 

Table C-10 : Structure of the Interface Status Register 

C.6.3 Command Register 

The command register is used to issue various commands to the MAC.  It is 32 bits (2 words or 4 bytes) 

in size and exposes only Write functionality. 
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The low word of the command should be written first, then the high word.  The reason for this is that 

the command register is only parsed when the most significant bit (bit 31) is set during a write.  A 

detailed description of the command set can be found in section C.8 below. 

Bits Field Name Description 

31 Execute Execution flag  

30..24 Command Command ID 

23..0 Argument Command argument 

Table C-11 : Structure of the Command Register 

C.6.4 Interrupt Register 

The interrupt register is used to control the signalling of the various interrupt sources, and to report 

the states of the interrupt sources.  It is 64 bits (4 words or 8 bytes) in size and exposes 

Read/Write/Set/Clear functionality.  There are no constraints on the order or pattern in which it can 

be accessed.  It contains two sub-registers: a Flags register, and an Enable register. 

Bits Sub-Register 

63..32 Interrupt Enable 

31..0 Interrupt Flags 

Table C-12 : Structure of the Interrupt Register 

In order for an interrupt to fire, and cause the MAC's IRQ signal to assert, three interrupt flags must 

be set in the two registers: 

1. The GIE flag in the interrupt enable register 

2. Any of the other enable flags in the interrupt enable register 

3. A corresponding interrupt flag in the interrupt flag register 

So, for example, if the GIE, IESTW and IFSTW flags are all set then the MAC's IRQ signal will be asserted, 

because the IFSTW flag corresponds to the IESTW flag. 

Note that the (enabled) events in the flags register must be cleared in order to acknowledge the 

interrupt; the MAC IRQ signal will not be de-asserted until this is done.  It is recommended to use a 

memory Clear operation, writing to the IRQCLR memory range rather than the IRQREG memory range, 

because Clear operations directly access individual bits and hence they do not risk interrupt flags being 

lost if a Read-Modify-Write to the IRQREG occurs simultaneously with a flag being set due to network 

activity. 

C.6.4.1 Interrupt Enable Register 

The interrupt enable register contains both the enable flags for individual interrupt sources, and the 

global interrupt enable flag. 
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Bits Mnemonic Description 

31 GIE Global interrupt enable.  If the GIE flag is clear, no interrupt will ever fire. 

30..26 Unused Always reads 0. 

25 IESTW Enable for the System Time Wrap event interrupt. 

24 IEPHC Enable for the Phase Change event interrupt. 

23..20 Unused Always reads 0. 

19..16 IERXBF[3..0] Enables for each interface's receive FIFO full interrupt. 

15..12 IETXBE[3..0] Enables for each interface's transmit FIFO empty interrupt. 

11..8 IECNT[3..0] Enables for each interface's cell counter overflow interrupt. 

7..4 IERXC[3..0] Enables for each interface's cell received interrupt. 

3..0 IFLSC3[3..0] Enables for each interface's link state changed interrupt. 

Table C-13 : Structure of the Interrupt Enable Register 

C.6.4.2 Interrupt Flags Register 

The interrupt flags register indicates whether a particular event that could, if enabled, constitute an 

interrupt source has occurred. 

Bits Mnemonic Description 

31..26 Unused Always reads 0. 

25 IFSTW Flag for the System Time Wrap event, i.e. the start of a new network time interval. 

24 IFPHC Flag for the Phase Change event, i.e. a transition from the traffic phase to the management phase 

23..20 Unused Always reads 0. 

19..16 IFRXBF[3..0] Flags for each interface's receive FIFO becoming full, indicating that it must be emptied 
immediately to avoid data loss. 

15..12 IFTXBE[3..0] Flags for each interface's transmit FIFO becoming empty, i.e. it is ready to be reloaded. 

11..8 IFCNT[3..0] Flags for each interface's cell counters; an interface's counter flag will be set when any of its cell 
counters reaches its maximum value (65535). 

7..4 IFRXC[3..0] Flags for each interface's receiver to indicate that it has received a cell and pushed it into the 
receive FIFO. 

3..0 IFLSC3[3..0] Flags for each interface's link state to indicate that it has changed. 

Table C-14 : Structure of the Interrupt Flags Register 

C.6.5 FIFO Register 

The FIFO register is used to as an intermediate location for ad-hoc cells as they are read from or written 

to individual interface FIFO's.  It is the size of one cell, i.e. 10 words or 20 bytes, and exposes 

Read/Write functionality.  There are no constraints on the order or pattern in which it can be accessed.  

Unlike other registers, the FIFO register does not itself contain specific bit fields; however, it is used 

to transfer ad-hoc cells, so its structure can be inferred from section C.5. 

In order to read a cell from an interface's receive FIFO, an UNLOAD_FIFO command must be executed 

against the target interface.  After the command has executed, a process that takes five MAC clock 

cycles, the count of cells in the transmit FIFO will be decremented by 1 and the FIFO register will 

contain the unloaded cell.  The host controller can now read the cell from the FIFO register. 
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In order to write a cell to an interface's transmit FIFO, the host controller must first write the cell 

contents to the FIFO register, then execute a LOAD_FIFO command against the target interface.  After 

the command has executed, a process that takes 5 MAC clock cycles, the count of cells in the transmit 

FIFO will be incremented by 1.  Note that the contents of the FIFO register are not changed as a result 

of the LOAD_FIFO command, they are simply copied to the transmit FIFO. 

C.7 TDM Memories 

Each network interface is equipped with a separate TDM memory space that contains both a digest 

memory and a cell memory. 

Recall the structure of the network interface, and the presence of a switch matrix that can be used to 

forward cells received at one inbound port directly to one or more outbound ports.  Recall Figure 1-22, 

replicated here: 

 

Observe that apart from its inbound and outbound signalling ports, each interface contains three 

logical blocks of interest: a receive module, a transmit module and a multiplexer.  The inbound 

signalling port always drives the corresponding receive module, and the outbound signalling port is 

always driven by the output of the multiplexer.  The inputs to every multiplexer are all of the nodes 

inbound signalling ports, and all of the node's transmit modules.  A multiplexer connects any one of 

its inputs to the interface's outbound signalling port.  The switch matrix shown on the left in Figure 

1-22 is the aggregation of the multiplexers of all four of the node's network interfaces. 

The digest and cell memories are read by the MAC at the start of each timeslot, and written by the 

MAC at the end of each timeslot.  As a consequence, the digest in particular must be reloaded before 

each traffic phase commences, i.e. no later than at the end of a management phase.  This periodic 

reload is required to ensure that switching or forwarding of TDM cells occurs.  If the digests are not 

reloaded then the node will not switch S/TDM network traffic during the next traffic phase.  Further, 

both the digest and cell memories must be unloaded before the end of the management phase, 

because they will both by necessity be overwritten prior to and during the next traffic phase.  Recall 

Figure 2-10, replicated here: 

 

Note that it is not necessary to unload the entire TDM cell memory.  The digests can be unloaded and 

inspected to identify the cell memory locations that contain received cells.  Then, only the cell memory 
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locations that contain cells need be read by the host controller.  Conversely, during a load operation, 

it is recommended to write all unused digest locations to 0 (TDMADIG_IDLE). 

C.7.1 TDM Digest Memory 

Each TDM digest memory is made up of 50 contiguous blocks of 1 byte, although only the four least 

significant bits of each byte are used; the four MSB's always read as 0.  Block 0 corresponds to TDM 

timeslot 0 and block 49 corresponds to timeslot 49. 

A TDM digest memory is used to store the per-timeslot configuration of the corresponding 

multiplexer.  The control input applied to a multiplexer is determined by the contents of the memory 

location in the TDM digest that corresponds to the current timeslot.  The TDM digests can thus be 

used to select a different signal source for each outbound port, for every timeslot in the traffic phase.  

If no cell will be transmitted, and no switching is required, then the digest entry for that timeslot 

should be set to 0 (TDMADIG_IDLE). 

TDM digests are also used to record whether a cell was received at an inbound port during a particular 

timeslot.  At the end of a timeslot, during the trailing guard time and hence after all transmissions for 

the current timeslot have completed, the MAC writes a value to the TDM digest that indicates whether 

a cell was received (TDMADIG_RXCELL) or not received (TDMADIG_IDLE) during that timeslot. 

Mnemonic Value Description 

TDMADIG_IDLE 0 No cell to be transmitted this timeslot, or no cell received. 

TDMADIG_TX0 1 Map the Tx module with offset 0 to the outbound signalling port. 

TDMADIG_TX1 2 Map the Tx module with offset 1 to the outbound signalling port. 

TDMADIG_TX2 3 Map the Tx module with offset 2 to the outbound signalling port. 

TDMADIG_TX3 4 Map the Tx module with offset 3 to the outbound signalling port. 

TDMADIG_RX0 8 Map the inbound signalling port with offset 0 to the outbound signalling port. 

TDMADIG_RX1 9 Map the inbound signalling port with offset 1 to the outbound signalling port. 

TDMADIG_RX2 10 Map the inbound signalling port with offset 2 to the outbound signalling port. 

TDMADIG_RX3 11 Map the inbound signalling port with offset 3 to the outbound signalling port. 

TDMADIG_RXCELL 15 Cell received. 

Table C-15 : TDM Digest Enumeration 

Digest values of TDMADIG_TXn are used to indicate that a cell will be transmitted by the local node 

via the corresponding outbound signalling port during that timeslot; 'n' is the offset from the digest 

interfaces' transmit module.  For example, if interface 1's outbound signalling port is to be mapped to 

interface 3's transmit module for timeslot 5, byte 5 in digest 1 must be set to TDMADIG_TX2.  If 

interface 3's outbound signalling port is also mapped to interface 3's transmit module for timeslot 5, 

byte 5 in digest 3 must also be set, but to TDMADIG_TX0. 

Digest values of TDMADIG_RXn are used to indicate that an inbound signalling port is to be connected 

directly to an outbound signalling port for the duration of that timeslot.  'n' is the offset from digest 

interface's inbound signalling port.  For example, if interface 1's outbound signalling port is to be 

mapped to interface 3's inbound signalling port for timeslot 5, byte 5 in digest 1 must be set to 

TDMADIG_RX2.  If interface 2's outbound signalling port is also mapped to interface 3's inbound 

signalling port for timeslot 5, byte 5 in digest 2 must also be set, but to TDMADIG_RX1. 
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Note that for both transmit and receive use-cases the interface that will be selected due to an offset 

'n' is the result of modulo 4 division of the sum of the current interface ID and 'n'. 

If the host controller sets a digest location to a value other than those enumerated in Table C-15 

above, the MAC will treat that location as TDMADIG_IDLE during the traffic phase. 

C.7.2 TDM Cell Memory 

The TDM cell memory is made up of 50 contiguous locations the size of one TDM cell (refer section 

C.5 above), i.e. 20 bytes.  Each location corresponds to a TDM timeslot; cell 0 is transmitted in timeslot 

0 and cell 49 is transmitted in timeslot 49. 

At the start of a timeslot, if the corresponding digest location indicates that the interface's transmit 

module will active during this timeslot, i.e. the digest value is in the range TDMADIG_TX0..3, a cell is 

transferred from the corresponding cell memory location to the transmit module. 

At the end of a timeslot, during the trailing guard time and hence after all transmissions for the current 

timeslot have completed, if a cell was received then it is transferred from the receive module to the 

corresponding cell memory location. 

C.8 FIFO Memories 

Each interface is equipped with two First-In, First-Out (FIFO) buffers; one for transmit and one for 

receive.  Each FIFO can store up to 51 cells as described in section C.5, above.  Access to the FIFO's is 

unidirectional, i.e. the MAC can read cells from the transmit FIFO's and write cells to the receive FIFO's, 

and the host controller can write cells to the transmit FIFO's and read cells from the receive FIFO's, 

but there is no means for the MAC to write cells to the transmit FIFO's or for the host controller to 

read cells from the transmit FIFO's. 

FIFO's expose their status through the interface status registers, as described in section C.6.2.2 above, 

and the interrupt registers, as described in section C.6.4 above. 

Receive FIFO's report the number of cells that they contain in the Rx Used fields, report that they are 

empty with the Rx Buffer Empty flags, and the IFRXBFn flags can be used to trigger interrupts if any of 

the FIFO's are about to overflow. 

Transmit FIFO's report the number of free cell slots in the Tx Free fields, report that they are full with 

the Tx Buffer Full flags, and the IFTXBEn flags can be used to trigger interrupts if any of the FIFO's are 

empty and ready to be reloaded. 

C.9 Command Set 

The following commands can be issued to the MAC via the command register to trigger particular 

behaviours.  Refer to section C.6.3 above for an explanation of the command register.  If a command 

with a value not specified in the table below is executed, it is treated as a NOP.  Note that a number 

of these commands are for testing and research purposes, and are not expected to be used in normal 

operation. 

Arguments of "IF ID flags" can be executed against several interfaces simultaneously.  The four least 

significant bits of the argument field in the command are treated as individual command enable flags 
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for the corresponding interfaces, i.e. 0x1 corresponds to interface 0 and 0x8 corresponds to interface 

3. 

Note that the struck-out rows were originally implemented but have been disabled as at the time of 

writing in order to reduce the size of the FPGA build. 

Mnemonic Value Argument Description 

NOP 0 N/A No operation 

LOAD_STATUS 1 IF ID flags Store snapshots of the NCO Step and Network Time in the Node Status Register; 
refer to section C.6.2.1 above. 

ENABLE_IFTX 2 IF ID flags Enable transmission for the indicated interfaces. 

ENABLE_IFRX 3 IF ID flags Enable reception for the indicated interfaces. 

DISABLE_IFTX 4 IF ID flags Disable transmission for the indicated interfaces. 

DISABLE_IFRX 5 IF ID flags Disable reception for the indicated interfaces. 

TXSYNC 6 IF ID flags Transmit a SYNC cell from the indicated interfaces immediately it is possible to do 
so. 

CLEAR_IFCNTS 7 IF ID flags Clear the cell counters for the indicated interfaces. 

SET_SYSTIME 8 휃𝑁𝐶𝑂  Set the nodes NCO phase. 

LOAD_FIFO 9 IF number Load an ad-hoc cell into the indicated transmit FIFO from the FIFO register; refer 
to section C.6.5 above. 

UNLOAD_FIFO 10 IF number Unload an ad-hoc cell from the indicated receive FIFO into the FIFO register; refer 
to section C.6.5 above. 

NCO_CLEAR 11 N/A Clear the NCO's adjustment, i.e. set the NCO step size to the default of 0x200000. 

NCO_ADJUST 12 Adjustment Adjust the NCO's step size by the 9-bit signed argument, in the range -256 to +255. 

CLEAR_PID 13 IF ID flags Clear the stored data in the link PID controllers for the indicated interfaces, i.e. 
the previous reading for the Differential component and the error sum for the 
Integral component. 

SET_NETTIME 14 𝛼 Set the node’s network time 

ADJ_SYSTIME 15 휃𝑁𝐶𝑂  offset Offset the node’s NCO phase by the (signed, 2’s complement) argument 

Table C-16 : MAC Command Set Enumeration 
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Appendix D  

 

The Design of the Host Controller's 

Firmware 

 

 

 

D.1 Introduction 

This appendix presents an overview of the design and operation of firmware that I have written as a 

demonstration implementation of and proof of concept for the network, transport and session layers 

of the virtual bus. 

Following this introduction, section D.2 begins by discussing the history and philosophy of the 

processes that led to and drove the firmware design.  Section D.3 follows with an examination of each 

of the modules that make up or support the VB protocol stack, including module and state diagrams, 

and the C function and data prototypes for the Application Programming Interface (API) of each 

module.  Section D.4 raises some related issues, including implementation tips and a discussion 

around some of the limitations of the implementation.  Finally, conclusions are presented in section 

D.5. 

D.2 Design Considerations 

D.2.1 History 

The microprocessor used to develop the firmware presented herein was an ST Microelectronics 

STM32F407IGH6 ARM Cortex-M4 32-bit microcontroller. [146]  This device is equipped with 1MB of 

non-volatile "Flash" memory, 192kB of RAM, an external memory bus that maps directly into the 

Cortex-M4 CPU's memory space, and a wide variety of peripherals including an integrated USB Full 

Speed PHY, multi-channel DMA, UART's and timers.  The maximum CPU core clock frequency, and the 

frequency used by the research platform, is 168MHz. 
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While not the most powerful single-chip microcontroller that was commercially available at the time 

of writing, the STM32F407 is nonetheless an impressively blunt object for a microcontroller; it packs 

a considerable amount of processing power into a small space. 

The earliest version of the hardware utilized a Microchip PIC24EP512GP806 [239] as the host 

controller, and MPLABX [240] as the development environment, but the PIC24 proved to have 

inadequate RAM and CPU power. 

The development environment used for the firmware version presented herein is Atollic Truestudio, 

version 9.0.1.  Since the time of writing, Atollic has been taken over by ST Microelectronics and 

appears to have become STM32CubeIDE [241]; the Truestudio product is no longer supported or 

available for download. The development process with the STM32F407 utilized several previous 

versions of Truestudio, and the first iterations utilized the CooCox development environment and 

CoOS RTOS, which is also no longer supported or available for download. 

The firmware for the host controller, and the implementation of the layers of the VB network 

architecture's protocol stack that it hosts, are compiled with the gnu11 C compiler provided with 

Truestudio.  All development was carried out in C. 

The firmware is built upon the foundation of the FreeRTOS real-time operating system port for the 

STM32F4. [242]  The FreeRTOS version used herein is 9.0.0.  No modifications whatsoever have been 

made to FreeRTOS – it is perfect just as it is.  The VB protocol stack and its supporting code libraries 

make extensive use of FreeRTOS's API – threads, semaphores/mutexes, direct-to-task signalling, and 

message queues are all utilized. 

Other code libraries that are included in the firmware, but that were not written by myself, include 

ST's USB stack with its CDC implementation; and Chan's FATFS filesystem version R0.10b. [243]  Note 

that no real use is made of FATFS, hence there is no further reference to it in this document.  I originally 

planned to use it for logging with an SD card, but never found it necessary to do so. 

Apart from their USB stack and low-level CMSIS libraries and startup code, I have made no use of ST's 

library code, and I have studiously avoided STM32CubeMX [244] in particular.  Where it has proven to 

be necessary, I have written fit-for-purpose drivers for the STM32F4's peripherals. 

ST's USB CDC implementation, including the Windows virtual COM port driver, is used to control and 

monitor the research platform through USB serial ports, one per network node.  I have written a 

wrapper for the CDC implementation that exposes FreeRTOS-friendly read-only and write-only stream 

buffers for receive and transmit, and to which I have attached a command line interface of my own 

design, but this was for my own convenience.  Neither is documented further herein because they are 

not components of the VB protocol stack.  Further to that, there are a number of reporting functions 

associated with the modules that are accessed through the command line interface.  These reporting 

functions are not documented herein because they also are not part of the VB protocol stack; rather, 

they are components of the toolset that I have built in order to develop and test the stack. 

The only modules that have changed substantially from their original design concept are RDM (refer 

section 4.3) and DARP (refer section 3.5).  Until the final major revision of the firmware, these two 

layers were combined into a single monolithic module.  While there were some advantages to this (in 

particular, no need for asynchronous signalling between their objects), it did not meet the design 

philosophy, below: the coupling between the network and transport layers was unacceptable.  

Nonetheless, it was a useful iteration of the design process. 
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The DARP implementation presented herein is actually my second attempt at a resource allocation 

mechanism.  My first attempt could be described as source-routed, compared to DARP's agent-based 

approach.  The source node controlled all routing decisions at each intermediate node, and knew and 

recorded each hop taken by the virtual bus.  This required substantially more signalling than DARP, 

and made describing branched buses clumsy.  The agent-based solution of DARP is far superior. 

D.2.2 Approach & Philosophy 

Firmware development followed a top-down, bottom-up approach.  With the firmware architecture 

loosely defined, the modules were drafted from the bottom up, then filled out in more detail over 

time.  This was an iterative process; for example, I was still tinkering with some of the internal 

behaviour of several modules whilst authoring this document, even correcting firmware faults 

uncovered during the formal experiments in Chapter 2 through Chapter 5. 

My design philosophy had the concept of "maximum cohesion, minimum coupling" firmly in mind.  

There are no extern statements anywhere in the protocol stack, and each of the layers, or layer 

components, making up the stack is enclosed within its own module that is encapsulated within its 

own C source file.  Modules expose a relatively simple public API through a C header file.  All code and 

data enclosed within each module is private, i.e. declared static.  Where it has been necessary or 

desirable to make a module's execution autonomous, its initialization function launches a service 

thread. 

The firmware is about as object-oriented as is possible with raw C.  Objects are allocated on the heap 

when required, inserted into doubly linked lists to keep track of them, and removed from their list and 

deallocated when destroyed.  This did require a good deal of care to avoid memory leaks due to "lost" 

object references, but I believe that the approach has paid off; the design is understandable. 

The firmware architecture exhibits downwards dependency; that is, each stack layer's implementation 

has full knowledge of the public interface exposed by the lower layer implementations upon which it 

relies, but the lower layers have no knowledge whatsoever of the higher layers that make use of their 

services.  For example, RDM directly accesses DARP's public interface, but DARP never directly 

accesses RDM. 

In order for lower layers to signal upwards, e.g. to report the success or failure of an attempt to 

establish a connection to the requesting process, the requesting process must supply a set of callback 

function pointers, or events, to the lower layer.  These events are generally associated with an instance 

of the lower layer's private object collection, e.g. each DARP Origin object is associated with its own 

set of OriginEvents.  There is no requirement that two object instances, e.g. two Origin objects, must 

use the same set of events.  If the set of events, or any individual event in the set, is not provided, e.g. 

by supplying a null pointer, then the lower layer and object will behave as expected but will not be 

able to report upwards. 

The modules with asynchronous API's (DARP, RDM and PCP, in particular) return a bool to indicate 

success or failure of the API function call.  However, this return value indicates only that the message 

has been accepted and queued, it does not indicated when the message is or will be actioned.  The 

argument list for these asynchronous API functions includes two additional parameters: a callback 

function of form void (*fn)(void*) that is executed when the message has been popped from the 

queue and actioned by the module, and a value (a void pointer) that is passed to the callback function. 
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D.2.3 Asynchronous Inter-Module Signalling 

The three most complex modules, DARP, RDM and PCP, make extensive use of FreeRTOS's 

asynchronous signalling capabilities: commands are sent downwards to the receiver's message queue; 

and events are sent upwards to the receiver's message queue.  Both the commands and events sent 

to a layer share the same message queue. 

FreeRTOS message queues have a finite integral capacity.   If a new message is successfully appended 

to a queue then the queue returns true; but if the queue is full then it rejects the new message and 

returns false.  If an append operation returns true then it is reasonable to assume that the queue's 

owner will receive the message, but if an append operation returns false then it can be assumed that 

the queues owner will not receive the message and, if the message is critical (which all inter-module 

messages are), then the message must be resent until the queue returns true. 

It would have been possible to simply ignore this and make the message queue capacity very high in 

order to minimise the risk of message loss.  While this approach would work for most instances, it 

would also pose an avoidable risk.  The alternative was more complex state machines for the objects 

that pay attention to whether a message has been successfully queued and, if necessary, retry the 

queueing operation until it succeeds. 

D.3 Module Descriptions 

D.3.1 FPGA 

The FPGA module is concerned solely with managing the state of the FPGA that hosts the MAC design.  

Note that the module manages the FPGA itself, not the MAC.  That is, it determines when (and 

whether) the FPGA should load itself from its private non-volatile storage, and it monitors the state of 

the FPGA's load. 

The module uses a state machine running in a service thread to manage the FPGA, and a message 

queue to signal commands and state changes to the service thread.  A callback function, or event, 

specified when the module is initialized, is used to report the status of the FPGA.  When the internal 

state machine enters particular states, the event is fired. 

The module monitors the FPGA's /DONE signal using an STM32F4 external interrupt (EXTI), configured 

to trigger on both rising and falling edges.  When an edge is detected, a message corresponding to the 

edge type is pushed into the message queue.  Commands issued through the API are pushed into the 

same message queue.  Queries issued through the API read the module's internal state directly. 

The service thread sleeps, waiting for a message to be pushed into the queue.  It executes the message 

then sleeps again until the next message.  Under normal conditions, the thread is almost unused. 

Note that the message queue has a finite capacity.  If an attempt to write a message to the queue via 

the Reload() or Unload() API functions fails, the function will return false. 
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D.3.1.1 Diagrams 

 

Figure D-1 : FPGA Module Implementation Diagram 
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Figure D-2 : FPGA Service Thread State Diagram 

D.3.1.2 Interface Description 

Command Name Command Description 

Init Initializes the FPGA module, including starting the service thread and creating the message queue. 

DeInit Gracefully shuts down the FPGA module, destroys the message queue and terminates the service 
thread. 

Reload Causes the FPGA to reload its configuration.  If the configuration is presently not loaded, then it will 
be loaded; if the configuration is presently loaded then it will be reloaded. 

Unload Causes the FPGA to unload its configuration and remain in a blank or idle state. 

IsReady Tests whether the FPGA configuration has been successfully loaded.  Returns True if the module state 
is Ready, False otherwise. 

IsUnloaded Tests whether the FPGA configuration is unloaded.  Returns True if the module configuration is 
Unloaded, False otherwise. 

Table D-1 : FPGA Module Commands 
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Event Name Event Description 

Ready The Ready() event is fired when the FPGA's state changes to anything other than Init.  If the state is 
Ready then the event's argument is True; otherwise, the event's argument is False. 

Table D-2 : FPGA Module Events 

D.3.1.3 Interface Prototypes 
Returns Name Argument List 

bool FPGA_Init void (*hwready)(bool), 

bool load 

bool FPGA_DeInit void 

bool FPGA_Reload void 

void FPGA_Unload void 

bool FPGA_IsReady void 

bool FPGA_IsUnloaded void 

Table D-3 : FPGA Module Public Function Prototypes 

D.3.2 MAC 

The MAC module implements the interface to the data link and physical layers that are embedded in 

the logic executing in the FPGA.  The module itself is reasonably simple, but its' API does expose a 

large number of public functions. 

The primary cause of complexity in the MAC module is that it contains two service threads: 

• The MAC service thread is of default (low) priority.  It is responsible for configuring and then 

maintaining the MAC logic design implemented in the FPGA, and starting and maintaining 

the second thread, the TDM service thread. 

• The TDM service thread is of maximum priority.  It is held Blocked the majority of the time, 

in order to allow the lower-priority threads to execute.  However, when a MAC hardware 

interrupt fires, the interrupt's handler sends a direct-to-task notification to the TDM service 

thread, moving the thread to the Ready state.  The TDM service thread is the highest priority 

thread in the firmware, so it immediately pre-empts all non-kernel activity and executes a 

single pass of its state machine.  After the state machine has executed, it blocks again, 

waiting for another interrupt. 

If the MAC logic design, or the FPGA that hosts it, unexpectedly ceases to operate then the MAC 

service thread will terminate the TDM service thread and try to reload the FPGA. 

There are a small number of constraints on interacting with the MAC logic that must be observed by 

the MAC module. 

• Writes to the Command register must be carried out in the order of lowest word (or byte) to 

highest, because when the most significant bit of the command DWORD is set, the 

command is executed. 

• Writes to the Command register must be atomic in order to avoid the risk of two (or more) 

threads overwriting one another's commands.  For this reason, command register access 

must be protected with a mutex. 

• Writes to the FIFO register must be atomic in order to avoid the risk of two (or more) 

threads overwriting one another's cells.  For this reason, FIFO register access must be 

protected with a mutex. 
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Note that because of the interaction between the FIFO and Command registers (refer to section C.6.5), 

it is logical to use the same mutex to protect both FIFO and Command register accesses. 

D.3.2.1 Diagrams 

 

Figure D-3 : MAC Module Implementation Diagram 
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Figure D-4 : MAC Service Thread State Diagram Figure D-5 : TDM Service Thread Task Flowchart 
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Command Name Command Description 

DeInit Gracefully shuts down the MAC module.  Terminates the TDM service thread and the MAC service 
thread, and destroys the Command and FIFO register mutex. 

Reset Pulses the MAC reset signal.  Note that this resets the MAC, not the FPGA – the logic design is not 
reloaded, it is reset. 

Command Executes a MAC Core Control Unit (CCU) command.  Refer to Appendix C. 

SetLocAddress Sets the local node's network address.  The local address is persistent. 

GetLocAddress Gets the local node's network address. 

SetTTL Sets the time-to-live that will be used for all ad-hoc cells.  The TTL is persistent. 

GetTTL Gets the time-to-live for all ad-hoc cells. 

EnableIF Enables or disables network interfaces.  The condition (enabled or disabled) of network interfaces 
is persistent. 

SetPIDCoeffs Sets the synchronization PID coefficients.  The coefficients are persistent. 

GetPIDCoeffs Retrieves the synchronization PID coefficients. 

GetVersion Retrieves the version of the FPGA logic design from the MAC and formats it for presentation. 

GetNetTime Retrieves the VB network time, in interval counts. 

GetNetus Retrieves the VB network time, in microseconds. 

GetNeighbours Retrieves the local neighbour table, i.e. the status of all of the local node's network links. 

RdFIFO Reads an ad-hoc cell from one of the MAC's network interface FIFO's. 

WrFIFO Writes an ad-hoc cell to one of the MAC's network interface FIFO's. 

BroadcastFIFO Broadcasts an ad-hoc cell from all of the MAC's network interface FIFO's. 

RebroadcastFIFO Re-broadcasts an ad-hoc cell, i.e. forwards a received broadcast cell.  The cell will not be re-
broadcast through the interface that received it, nor will it be re-broadcast through an interface 
that is linked to the cell's source address. 

TDM_UnloadCells Unload a set of TDM cells from the TDM memory and digest. 

TDM_LoadSwitches Load a TDM switching configuration into the TDM digest. 

TDM_LoadCells Load a set of TDM cells into the TDM memory and digest. 

Table D-4 : MAC Module Commands 

Event Name Event Description 

PhaseManagement Sent when the MAC signals that the VB network phase changes from traffic to management. 

PhaseTraffic Sent when the MAC signals that the VB network phase changes from management to traffic. 

CellRx Sent when the MAC signals that there are ad-hoc cells in one or more of its receive FIFO's. 

LinkStateChange Sent when the MAC signals that the state of one of its network links has changed. 

Table D-5 : MAC Module Events 

D.3.2.3 Interface Prototypes 

Prototype 

typedef struct __attribute__((__packed__)) _MAC_PIDCfg { 

 int16_t kP; 

 int16_t kI; 

 int16_t kD; 

 } MAC_PIDCfg; 
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Prototype 

typedef enum _MAC_LinkState { 

 LS_OFF = 0, 

 LS_UNLINKED = 1, 

 LS_LINKED = 2, 

 LS_SYNCED = 3 

 } MAC_LinkState; 

typedef enum _MAC_CmdType { 

 MAC_NO_OPERATION = 0, 

 MAC_LOAD_STATUS  = 1, 

 MAC_ENABLE_IFTX  = 2, 

 MAC_ENABLE_IFRX  = 3, 

 MAC_DISABLE_IFTX = 4, 

 MAC_DISABLE_IFRX = 5, 

 MAC_TXSYNC    = 6, 

 MAC_CLEAR_IFCNTS = 7, 

 MAC_SET_SYSTIME  = 8, 

 MAC_LOAD_FIFO   = 9, 

 MAC_UNLOAD_FIFO  = 10, 

 MAC_NCO_CLEAR   = 11, 

 MAC_NCO_ADJUST  = 12, 

 MAC_CLEAR_PID   = 13, 

 } MAC_CmdType; 

typedef union _MAC_Cell { 

 uint32_t Ints[(4+MAC_PAYLOAD_SZ+3)/4]; 

 uint16_t Shorts[(4+MAC_PAYLOAD_SZ+1)/2]; 

 uint8_t Data[4+MAC_PAYLOAD_SZ]; 

 struct __attribute__((__packed__)) { 

  uint8_t Payload[MAC_PAYLOAD_SZ]; 

  union { 

   uint32_t Val; 

   struct __attribute__((__packed__)) { 

    uint8_t Seq; 

    uint8_t Type; 

    unsigned TTL : 4; 

    unsigned Src : 6; 

    unsigned Dest : 6; 

    }; 

   } Header; 

  }; 

 } MAC_Cell; 

typedef struct _MAC_Events { 

 void (*PhaseManagement)(uint32_t t); 

 void (*PhaseTraffic)(void); 

 void (*CellRx)(void); 

 void (*LinkStateChange)(void); 

 } MAC_Events; 

Table D-6 : MAC Module Public Data Prototypes 

Returns Name Argument List 

void MAC_Init BUFF *rpt, 

const MAC_Events *events 

void MAC_DeInit void 

void MAC_Reset void 

bool MAC_Command MAC_CmdType cmd, 

uint32_t args 

bool MAC_SetAddress int8_t addr 

uint8_t MAC_GetAddress void 

bool MAC_SetTTL uint8_t ttl 

uint8_t MAC_GetTTL void 

void MAC_EnableIF uint8_t IFmask, 

bool en 

void MAC_SetPIDCoeffs int16_t kP, 

int16_t kI, 

int16_t kD 

MAC_PIDCfg MAC_GetPIDCoeffs void 

int32_t MAC_GetVersion char *dest 

uint32_t MAC_GetNetTime void 

uint32_t MAC_GetNetus void 

Neighbour* MAC_GetNeighbours void 

bool MAC_RdFIFO int8_t ifid, 

MAC_Cell *dest 
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Returns Name Argument List 

bool MAC_WrFIFO int8_t ifid, 

MAC_Cell *src 

bool MAC_BroadcastFIFO MAC_Cell *src 

bool MAC_RebroadcastFIFO int8_t srcif, 

MAC_Cell *cell 

int8_t MAC_TDM_UnloadCells int8_t rxif, 

Timeslots slots, 

MAC_Cell *dest 

bool MAC_TDM_LoadSwitches int8_t inif, 

uint8_t outifs, 

Timeslots slots 

bool MAC_TDM_LoadCells uint8_t outifs, 

Timeslots slots, 

MAC_Cell *src 

Table D-7 : MAC Module Public Function Prototypes 

D.3.2.4 Behavioural Model 

It is advisable to lock access to the TDM cell and digest memories during the traffic phase to prevent 

corruption.  Cell memories are implemented using Xilinx™ dual-port block RAM’s, and digest 

memories are implemented using distributed RAM configured for dual-port operation.  Xilinx advises 

[245] that simultaneous W/W or R/W accesses to the same dual-port block RAM memory location via 

both ports may cause inconsistencies in the data read or written.  The TDM memories can be freely 

accessed at any time during the management phase; however, it is recommended that all TDM 

memory accesses for an interval are grouped into a single operation that should occur at the start of 

the management phase to reduce (and hopefully remove) the risk of breaching the constraint that the 

TDM memories must be ready before the start of the next traffic phase. 

TDM memory accesses should follow a well-defined pattern.  Any received TT messages must be 

unloaded first because the TDM memory spaces are used for several purposes; if data was written 

first, it would risk overwriting received data.  After received TT messages have been unloaded, the TT 

switching configuration can be loaded into the digests.  Finally, TT messages for transmission are 

loaded.  The corresponding TDM cells will be transmitted, in their allocated timeslots, during the next 

traffic phase. 

D.3.3 SAF 

The Store-and-Forward (SAF) module implements a portion of the management network sub-layer.  

Its responsibilities include: 

• Constructing SAF messages and passing them to the MAC for transmission. 

• Receiving SAF messages from the MAC, and the first layer of parsing: 

o Messages unicast to the receiving node are forwarded to the correct local process 

via a registered handler. 

o Messages unicast to a node other than the receiving node are forwarded towards 

the destination.  The forwarding interface is selected by NMS. 

o Broadcast messages are forwarded to the correct local process via a registered 

handler and, if so directed by the handler, re-broadcast. 

Local processes can register a cell type handler with the SAF module.  Any received messages with a 

cell type field that matches a handler's cell type will be passed to the corresponding handler function.  

For broadcast messages, if the handler returns true, then the message will be re-broadcast.  A mutex 

is used to protect the list of handlers when it is being searched and/or manipulated. 



Page 465 

 

D.3.3.1 Diagrams 

 

Figure D-6 : SAF Module Implementation Diagram 

D.3.3.2 Interface Description 

There is a one-to-one relationship between Store-and-Forward (SAF) messages at layer 3 and ad-hoc 

messages at layer 2: a SAF message is identical to and interchangeable with an ad-hoc message. [82]  

When the management network sub-layer transmits a SAF message via a particular network interface, 

it simply writes the message into the link layer's ad-hoc message transmit buffer for that interface.  

Similarly, when an ad-hoc message is received at a particular network interface, the management 

network sub-layer simply reads the message from the ad-hoc message receive buffer for that interface 

and treats it as a SAF message. 

Network management processes, e.g. higher network layers and other network services, rely upon 

the exchange of SAF messages between nodes.  SAF has no knowledge of these management 

functions.  Each process must register with SAF as a handler for a particular type of ad-hoc message, 

per the cell header Cell Type field.  The relationships that are registered between cell types and 

processes are used to direct received cells to the correct handler. 

Command Name Command Description 

Init Initializes the SAF module.  Creates the mutex used to lock the list of handlers. 

DeInit Gracefully shuts down the SAF module and destroys the mutex. 

RegisterHandler Registers a handler function against a particular cell type.  The handler is stored in a list structure 
that is private to the SAF module; access is protected with a semaphore. 
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Command Name Command Description 

DeregisterHandler Deregisters the handler function recorded against a particular cell type. 

ReceiveAll Retrieves all ad-hoc cells from the MAC, parsing each in turn.  Cells are processed as described in 
chapter 4, Figure 4-2. 

Transmit Unicasts a SAF message towards the specified destination.  The outbound interface is selected 
using NMS. 

TransmitViaIF Unicasts a SAF message towards a specified destination, using a specified interface. 

Broadcast Broadcasts a SAF message via all connected interfaces. 

Table D-8 : SAF Module Commands 

Event Name Event Description 

Handler Handler functions are registered for the cell types that the local node is listening for.  If a cell of 
that type is received, it is passed to the handler function. 

Table D-9 : SAF Module Events 

D.3.3.3 Interface Prototypes 
Prototype 

typedef bool SAFHandlerInterface (int8_t ifid, MAC_Cell *cell); 

Table D-10 : SAF Module Public Data Prototypes 

Returns Name Argument List 

void SAF_Init BUFF *rpt 

void SAF_DeInit void 

bool SAF_RegisterHandler CellType type, 

SAFHandlerInterface *handler 

bool SAF_DeregisterHandler CellType type 

void SAF_ReceiveAll void 

bool SAF_Transmit int8_t destaddr, 

CellType type, 

uint8_t seq, 

void *pay, 

uint8_t ifmask 

bool SAF_TransmitViaIF int8_t destaddr, 

CellType type, 

uint8_t seq, 

void *pay, 

int8_t txif 

void SAF_Broadcast CellType type, 

uint8_t seq, 

void *pay 

Table D-11 : SAF Module Public Function Prototypes 

D.3.3.4 Signal Format and Structure 

SAF messages are encapsulated in a single physical layer cell, and are structured as shown in Table 

D-12 below: 
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Field Name Size (bits) Purpose 

Destination Address 6 Address of cell destination node 

Source Address 6 Address of cell source node 

Time To Live 4 Number of hops the cell can propagate 

Cell Type 8 Purpose of cell 

Sequence Number 8 Sequence number of cell 

Payload 128 Cell payload 

Table D-12 : Format of a SAF Message 

D.3.3.5 Behavioural Model 

D.3.3.5.1 Transmit 

During the management phase, if the ad-hoc transmit FIFO of the network interface is empty when a 

SAF message is written to it, the cell will be transmitted immediately.  If a transmit FIFO is not empty, 

e.g. if several SAF messages are written in quick succession, the cells will be sent back to back from 

the FIFO in the order in which they were written.  If a transmit FIFO is full when an attempt is made to 

write to it, the write attempt will fail. 

If there are cells remaining in a transmit FIFO when a traffic phase commences, those cells will be 

stored in the FIFO until the next management phase.  Similarly, if cells are written to a transmit FIFO 

during a traffic phase, they are stored until the start of the next management phase.  In either case, 

when the next management phase commences, any cells in the transmit FIFO are immediately 

transmitted back to back until ad-hoc transmission is blocked, e.g. by the FIFO being emptied or by 

the next traffic phase commencing. 

D.3.3.5.2 Receive 

As ad-hoc cells are received at a network interface, they are pushed into the interface's ad-hoc receive 

FIFO.  The network layer retrieves the cells from the FIFO in the order in which they were received and 

transforms them into SAF messages.  Receive FIFO's may be read at any time with no risk of corruption, 

including during the traffic phase.  If a FIFO overflow occurs, the most recently received message will 

be discarded. 

As shown in Table 2-4 and Figure D-7 below, received SAF messages are directed to destination 

processes based upon the Cell Type field in the ad-hoc cell header.  Some Cell Types are already 

committed to particular functions, e.g. DARP and NMS, but the majority of Types in the range are 

available for use by an application.  Messages may be directed to customized handlers at run-time as 

MessageReceived() events.  If no other handler is specified for a message's Type, the message will be 

discarded by the default handler. 

The VB architecture is intended to be implemented on a partial mesh topology in which direct 

connectivity for each node is limited to a small subset of the network's set of nodes.  Where a SAF 

message is to be sent to a specific destination that is outside this subset of directly connected nodes, 

the network must transport the message via the most efficient path or route, i.e. VB nodes forward 

SAF messages in much the same way that an IP router forwards datagrams [41], or an Ethernet switch 

forwards frames [183]. 
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Figure D-7 : Received Cell Handling Decision Tree 
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Recall the structure of the ad-hoc cell header from Table 2-3, replicated here: 

Field Name Size (bits) Purpose 

Destination Address 6 Address of cell destination node 

Source Address 6 Address of cell source node 

Time To Live 4 Number of hops the cell can propagate 

Cell Type 8 Purpose of cell 

Sequence Number 8 Sequence number of cell in a fragmented message 

and consider the default decision tree executed by the first layer of the SAF message handler on 

receipt of a message in Figure D-7 above. 

D.3.4 NMS 

The Network Mapping Service (NMS) module implements a portion of the management network sub-

layer.  Its responsibilities include: 

• Broadcasting the local neighbour table to the network when triggered to do so by timeouts 

or network changes. 

• Storing, and sharing with other local modules, the Remote Neighbour Tables (RNT's) sent by 

the NMS modules in other nodes as the master list of neighbour tables. 

o If the source node was not previously known, store the RNT. 

o If the source node was previously known, and the new RNT is different to the stored 

RNT, update the stored RNT and re-broadcast it. 

o If the source node was previously known, and the new RNT is the same as the stored 

RNT, update the timestamp of the stored RNT and discard the new RNT. 

• Disposing of stale RNT entries 

o If an RNT is stale (as measured by the current time compared to the RNT 

timestamp), discard the RNT. 

• Executing the OSPF algorithm 

o When a new RNT is received, or a stale RNT is discarded, trigger an execution pass of 

the OSPF algorithm. 

• Storing, and sharing with other local modules, the master list of shortest paths produced by 

the OSPF module. 

• Exchanging network Echo messages with NMS modules in other nodes. 

NMS registers two cell type handlers with the SAF module, one for network Echo messages and one 

for RNT messages.  These handlers are executed when messages of the corresponding type are 

received, and the corresponding behaviours noted above are triggered by the handlers, so there is no 

need for a service thread for either purpose. 

The MAC module exposes two events that are used to inform the operation of NMS, helping to avoid 

the need for an NMS service thread: at the start of each management phase, the 

MAC.PhaseManagement() event is sent, and when the state of a network link changes, or when a pass 

of the link layer quality estimation algorithm is complete, the MAC.LinkStateChange() event is sent.  

The MAC.PhaseManagement() event is used to trigger the disposal of stale RNT entries (and, 

consequently, trigger an execution pass of the OSPF algorithm) by executing 
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NMS.TrimExpiredNeighbours(), and the MAC.LinkStateChange() event is used to trigger the broadcast 

of the local neighbour table. 

The Open Shortest Path First (OSPF) algorithm transforms a set of neighbour tables (remote and local) 

into a set of shortest paths using my implementation of Dijkstra's method. [185]  Given a network with 

even a modest amount of size and interconnection, this is not a computationally trivial exercise; it 

takes time.  On the other hand, it is not necessarily disastrous if a node's understanding of the network 

graph is not always perfectly accurate and up-to-date. 

In order to work around these challenges, the OSPF algorithm executes in its own default-priority 

thread; this provides it with a guarantee of a reasonable share of CPU time.  The thread spends most 

of its time in the Blocked state, waiting for a direct-to-task signal to start execution.  When the signal 

is sent and the thread is moved into the Ready state, it executes one pass of its task: 

1. Take a snapshot of the master set of neighbour tables;  

2. Transform the neighbour tables into a new set of shortest paths using Djikstra's method;  

3. Overwrite the master set of shortest paths with a snapshot of the new set. 

When the task sequence is complete, the thread is Blocked again, waiting for another start signal.  If 

the start signal is sent while the task is executing, it will immediately execute another pass.  If multiple 

start signals are sent during a particular iteration, only the first will be effective. 

All accesses to the neighbour and path master lists, including the snapshots noted above, are 

protected with mutexes. 
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D.3.4.1 Diagrams 

 

Figure D-8 : NMS Module Implementation Diagram 
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Figure D-9 : NMS Service Thread Task Flowchart 

D.3.4.2 Interface Description 

Command Name Command Description 

Init Initializes the NMS module.  Creates and initializes the master lists of neighbours and paths. 

DeInit Gracefully shuts down the SAF module and flushes then destroys the master lists of neighbours 
and paths. 

SendEchoRequest Transmits a network Echo message to a specified destination node.  There must be a valid path 
to the destination, or the command will be ignored. 

SendNeighbourTable Broadcasts the local neighbour table. 

TrimExpiredNeighbours Scans the master neighbours list and discards any entries that have exceeded their time-to-
live.  If any entries are discarded, triggers an execution of the OSPF algorithm. 

FindShortestPath Searches the master paths list for the specified destination and reports information about the 
path (start interface, number of hops, link length, etc). 

PathMetricViaIF Searches the master paths list for the specified destination and interface and reports the path 
metric.  Returns -1 if no path exists or has been calculated. 

Table D-13 : NMS Module Commands 

D.3.4.3 Interface Prototypes 
Returns Name Argument List 

void NMS_Init BUFF *rpt 

void NMS_DeInit void 

bool NMS_SendEchoRequest int8_t dest 

void NMS_SendNeighbourTable void 

void NMS_TrimExpiredNeighbours uint32_t t 

bool NMS_FindShortestPath int8_t dest, 

uint8_t ifmask, 

OSPFPath *path 

int16_t NMS_PathMetricViaIF int8_t dest, 

int8_t stif 

Table D-14 : NMS Module Public Function Prototypes 
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D.3.5 DARP 

The Distributed Agent Resource Protocol (DARP) module implements the traffic network sub-layer, as 

described in Chapter 6. 

Internally, and absent considerations of the objects that it manages, DARP is reasonably 

straightforward: a default priority service thread monitors two message queues and the collection of 

DARP objects.  The use of message queues and a separate thread allows much of DARP's behaviour to 

be asynchronous to the rest of the stack. 

The IMsg queue is used for internal messages, i.e. messages sent to the DARP module by the other 

components and layers of the local VB protocol stack.  Calling the majority of DARP's interface API 

functions (the exception being ServiceTDM(), see below) sends a message to the IMsg queue. 

The XMsg queue is used for external messages, i.e. messages sent to the local DARP module by DARP 

modules in other nodes.  The XMsg queue is written to by the cell type handler function that DARP 

registers with SAF. 

The DARP service thread retrieves and processes messages from both message queues, and processes 

DARP's object collection: executing state machines and checking for timeouts, broken links, etc. and 

responding appropriately. 

There is one unfortunate but necessary exception to DARP's asynchronicity: DARP curates the node's 

TDM switching configuration, and that configuration must be accessible to the protocol stack on 

demand, and as rapidly as possible.  The ServiceTDM() function exposed by DARP's API bypasses the 

asynchronous access mechanisms and directly accesses the switching configuration.  A mutex is used 

to lock the switching configuration to prevent modifications during ServiceTDM() calls. 

DARP's message queues each present a set of risks that needed to be managed carefully. 

Messages are pushed into the IMsg queue by calls to the DARP API.  The queue cannot overflow; if an 

API call fails to push a message into the queue for any reason, the function will return false.  Given 

the rate at which API calls could be made, it is conceivable that IMsg queue will from time to time 

reject API calls.  The depth of the IMsg queue could be increased if message loss proved to be 

problematic. 

Messages are pushed into the XMsg queue by the SAF module as it receives DARP network messages.  

Each DARP network message is transformed into an XMsg.  The queue cannot overflow; if SAF is unable 

to push a message into the queue, the message is discarded.  The DARP module is designed to deal 

with lost or discarded network messages by retrying periodically.  In any case, the rate at which 

network messages can arrive is limited by the network's capacity per link, and the number of links or 

network interfaces that are active.  Note also that, due to the network alternating between the TDM 

and signalling modes, the SAF module periodically experiences intervals of silence.  Given four network 

interfaces and a 100 µs message duration the worst case peak rate is 40 messages per millisecond, 

but the combination of intervals of network silence and the small loss of capacity to time 

synchronization means that the average worst case rate is only 19.6 messages per millisecond.  Given 

a 168MHz CPU clock, there are 168,000 CPU clock cycles in a millisecond.  Recognizing that DARP must 

share CPU time with other threads of equal priority, and accepting that there may be occasional 

message loss during DARP utilization peaks, the default message queue depth of 64 entries should be 

adequate. 
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D.3.5.1 Diagrams 

 

Figure D-10 : DARP Module Implementation Diagram 
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Figure D-11 : DARP Service Thread Task Flowchart 

D.3.5.2 Interface Description 

DARP's interfaces are exposed to the higher network layers and provide a means by which those layers 

can interact with DARP in order to trigger certain behaviours via commands, and optionally to report 

events.  Note that reporting of events is optional in the sense that it may be optionally requested by 

the higher protocol layer when commands are issued; it is not optional for DARP to implement event 

reporting. 

Note also that there are no intra-nodal mechanisms to manipulate dynamic Switch instances, so DARP 

does not expose an interface for Switches.  Switch objects are only created and destroyed in response 

to extra-nodal activity, i.e. the construction and deconstruction of virtual buses that pass through an 

AN. 

Command Name Command Description 

Init Initializes the DARP module, including registering a SAF handler, creating the message queues 
and the mutex used to lock records around ServiceTDM() calls, and creating the DARP service 
thread. 

DeInit Gracefully shuts down the DARP module.  Deregisters the SAF handler, destroys all objects 
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Command Name Command Description 

DestroyOrigin Request the graceful destruction of an existing local Origin object. 

ConnectTerminus Request that the virtual bus associated with an existing local Origin object be connected to a 
remote Terminus object. 

DisconnectTerminus Request that the virtual bus associated with an existing local Origin object be disconnected 
from a remote Terminus object. 

QueryAllocation Query the network resources allocated to a locally originating virtual bus by a remote node. 

TraceAllocation Query the network resources allocated to a locally originating virtual bus by all of the remote 
nodes involved with the bus. 

CreateTerminus Request creation of a new local Terminus object. 

CreateTerminuses Request creation of a number of new local Terminus objects. 

CloseTerminus Request that an existing local Terminus object be disconnected from a virtual bus. 

CloseTerminuses Request that a number of existing local Terminus objects be disconnected from their virtual 
buses. 

DestroyTerminus Request the graceful destruction of an existing local Terminus object. 

DestroyTerminuses Request the graceful destruction of a number of existing local Terminus objects. 

Table D-15 : DARP Module Commands 

Event Name Event Description 

Origin.Created A new local Origin object was successfully created. 

Origin.CreateFailed A new local Origin object could not be created. 

Origin.Destroyed An existing local Origin object has been (or, is about to be) destroyed. 

Origin.Connected An existing local Origin object has successfully connected its virtual bus to the indicated remote 
Terminus object. 

Origin.ConnectFailed An existing local Origin object has attempted to connect its virtual bus to the indicated remote 
Terminus object, but has failed. 

Origin.Disconnected An existing local Origin object's virtual bus has been gracefully disconnected from the indicated 
remote Terminus object. 

Origin.Refreshed The indicated remote Terminus object has verified that it is still connected to a local Origin 
object's virtual bus. 

Origin.Failed The indicated remote Terminus object has unexpectedly been disconnected from a local Origin 
object's virtual bus. 

Terminus.Created A new local Terminus object was successfully created. 

Terminus.CreateFailed A new local Terminus object could not be created. 

Terminus.Destroyed An existing local Terminus object has been (or, is about to be) destroyed. 

Terminus.Connected The indicated remote Origin object has successfully connected its virtual bus to a local Terminus 
object. 

Terminus.Disconnected A local Terminus object has been gracefully disconnected from the indicated remote Origin 
object's virtual bus. 

Terminus.Failed A local Terminus object has unexpectedly been disconnected from the indicated remote Origin 
object's virtual bus. 

Table D-16 : DARP Module Events 
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D.3.5.3 Interface Prototypes 

Prototype 

typedef struct _DARP_OriginEvents { 

 bool (*Created)(uint16_t type, uint8_t busid); 

 bool (*CreateFailed)(uint16_t type, uint8_t busid); 

 bool (*Destroyed)(uint16_t type, uint8_t busid); 

 bool (*Connected) 

  (int8_t daddr, uint16_t type, uint8_t busid, int8_t outif,  

  Timeslots slots); 

 bool (*ConnectFailed) 

   (int8_t daddr, uint16_t type, uint8_t busid, int8_t outif); 

 bool (*Refreshed)(int8_t addr, uint16_t type, uint8_t busid); 

 bool (*Disconnected)(int8_t daddr, uint16_t type, uint8_t busid); 

 bool (*Failed)(uint16_t type, uint8_t busid, uint8_t outifs); 

 } DARP_OriginEvents; 

typedef struct _DARP_TerminusEvents { 

 bool (*Created)(int8_t saddr, uint16_t type, int8_t cnt); 

 bool (*CreateFailed)(int8_t saddr, uint16_t type, int8_t cnt); 

 bool (*Destroyed)(int8_t saddr, uint16_t type, uint8_t busid); 

 bool (*Connected) 

   (int8_t saddr, uint16_t type, uint8_t busid, int8_t inif, Timeslots slots); 

 bool (*Disconnected)(int8_t saddr, uint16_t type, uint8_t busid); 

 bool (*Failed)(int8_t saddr, uint16_t type, uint8_t busid); 

 } DARP_TerminusEvents; 

Table D-17 : DARP Module Public Data Prototypes 

Returns Name Argument List 

void DARP_Init BUFF *rpt 

void DARP_DeInit void 

void DARP_ServiceTDM uint32_t t 

bool DARP_CreateOrigin uint16_t type, 

uint8_t busid, 

int8_t width, 

DARP_OriginEvents *events, 

void (*cb)(void*), 

void *cbarg 

bool DARP_DestroyOrigin uint16_t type, 

uint8_t busid, 

bool alert, 

void (*cb)(void*), 

void *cbarg 

bool DARP_ConnectTerminus int8_t addr, 

uint16_t type, 

uint8_t busid, 

uint8_t ifmask, 

void (*cb)(void*), 

void *cbarg 

bool DARP_DisconnectTerminus int8_t addr, 

uint16_t type, 

uint8_t busid, 

void (*cb)(void*), 

void *cbarg 

bool DARP_QueryAllocation int8_t addr, 

uint16_t type, 

uint8_t busid, 

void (*cb)(void*), 

void *cbarg 

bool DARP_TraceAllocation uint16_t type, 

uint8_t busid, 

void (*cb)(void*), 

void *cbarg 

bool DARP_CreateTerminus int8_t addr, 

uint16_t type, 

int8_t width, 

DARP_TerminusEvents *events, 

void (*cb)(void*), 

void *cbarg 
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Returns Name Argument List 

bool DARP_CreateTerminuses int8_t addr, 

uint16_t type, 

int8_t width, 

int8_t num, 

DARP_TerminusEvents *events, 

void (*cb)(void*), 

void *cbarg 

bool DARP_CloseTerminus int8_t addr, 

uint16_t type, 

uint8_t busid, 

bool alert, 

bool release, 

void (*cb)(void*), 

void *cbarg 

bool DARP_CloseTerminuses int8_t addr, 

uint16_t type, 

bool alert, 

bool release, 

void (*cb)(void*), 

void *cbarg 

bool DARP_DestroyTerminus int8_t addr, 

uint16_t type, 

uint8_t busid, 

bool alert, 

bool release, 

void (*cb)(void*), 

void *cbarg 

bool DARP_DestroyTerminuses int8_t addr, 

uint16_t type, 

bool alert, 

bool release, 

void (*cb)(void*), 

void *cbarg 

Table D-18 : DARP Module Public Function Prototypes 

D.3.5.4 Signal Format & Structure 

All DARP signals, both Messages and Tokens, are carried by a single VB data link layer ad-hoc message, 

corresponding to a single management network sub-layer Store-and-Forward (SAF) message.  The 

message header and payload are both utilized.  Recall first the format of an ad-hoc cell and hence SAF 

message's header from Table 2-3, replicated here: 

Field Name Size (bits) Purpose 

Destination Address 6 Address of cell destination node 

Source Address 6 Address of cell source node 

Time To Live 4 Number of hops the cell can propagate 

Cell Type 8 Purpose of cell 

Sequence Number 8 Sequence number of cell 

For DARP Messages, the Destination Address and Source Address in the SAF header correspond to the 

addresses of the DN (or AN) and SN, because the communication is taking place between that pair of 

nodes. 

For DARP Tokens, the Destination Address and Source Address in the SAF header correspond to the 

address of the node that is receiving the Token, and the node that is sending the Token, again because 

the communication is taking place between that pair of nodes.  Consequently, the source and 

destination addresses in the SAF header of a DARP Token change with every hop that the token 

progresses through the network.  The source and destination addresses of the virtual bus that is being 

managed by a DARP Token are recorded separately, in the Token's payload. 
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The Cell Type field of the SAF header is set to 0x88 for both Messages and Tokens, indicating to the 

SAF message handler that the message is of type CellType_DARP.  The Sequence Number field in the 

SAF header is not used and is set to 0. 

The least significant octet of the message payload contains the Signal Type of the DARP signal, and 

indicates which sub-algorithm of the resource management algorithm should be executed by the 

receiving node. 

Messages  Tokens 

Name Value  Name Value 

TRIM 0x40  RESERVE 0x80 

TRIMMED 0x41  REDIRECT 0x81 

QUERY 0x61  REJECT 0x82 

ALLOC 0x62  COMMIT 0x88 

   TRIM 0x90 

   TRIMMED 0x91 

   RELEASE 0x92 

   BREAK 0x98 

   REFRESH 0xa0 

   REFRESHED 0xa1 

   TRACE 0xa2 

Table D-19 : DARP Signal Type Values 

The remaining 15 octets of the payload are taken up by the fields that are specific to each type of 

DARP signal, as explained below. 

D.3.5.4.1 RESERVE Token 

Field Purpose Location Size (bits) 

Inbound Interface InIF for resource allocation. Implied 2 

Signal Type 0x80 Payload 6 

Source Address Source of virtual bus (SN). Payload 6 

Destination Address Destination of virtual bus (DN). Payload 6 

Unused  Payload 3 

Minimum Width Minimum number of timeslots to be reserved; if this number can’t be 
met then REDIRECT. 

Payload 6 

Unused  Payload 3 

Type The data Type of the virtual bus. Payload 16 

Bus ID The “unique” ID of this particular instance of virtual bus. Payload 8 

Unused  Payload 8 

Slots Bitmap of timeslots to try to reserve. Payload 64 

Table D-20 : Format of a RESERVE Token 
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D.3.5.4.2 REDIRECT Token 

Field Purpose Location Size (bits) 

Masked Interface Inbound interface that should not be used on the next RESERVE 
attempt. 

Implied 2 

Signal Type 0x81 Payload 8 

Source Address Source of virtual bus (SN). Payload 6 

Destination Address Destination of virtual bus (DN). Payload 6 

Unused  Payload 3 

Minimum Width Minimum number of timeslots to be reserved; if this number can’t be 
met then REDIRECT. 

Payload 6 

Unused  Payload 3 

Type The data Type of the virtual bus. Payload 16 

Bus ID The “unique” ID of this particular instance of virtual bus. Payload 8 

Unused  Payload 8 

Do Not Trim Flag indicating to any AN's that have a Committed Switch for this 
virtual bus that they should not trim the interface on which this Token 
was received. 

Payload 1 

Unused  Payload 63 

Table D-21 : Format of a REDIRECT Token 

D.3.5.4.3 REJECT Token 

Field Purpose Location Size (bits) 

Signal Type 0x82 Payload 8 

Source Address Source of virtual bus (SN). Payload 6 

Destination Address Destination of virtual bus (DN). Payload 6 

Unused  Payload 12 

Type The data Type of the virtual bus. Payload 16 

Bus ID The “unique” ID of this particular instance of virtual bus. Payload 8 

Unused  Payload 8 

Do Not Trim Flag indicating to any AN's that have a Committed Switch for this 
virtual bus that they should not trim the interface on which this Token 
was received. 

Payload 1 

Unused  Payload 63 

Table D-22 : Format of a REJECT Token 
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D.3.5.4.4 COMMIT Token 

Field Purpose Location Size (bits) 

Inbound Interface Inbound interface for the node that received the Token. Implied 2 

Signal Type 0x88 Payload 8 

Source Address Source of Token (virtual bus DN). Payload 6 

Destination Address Destination of Token (virtual bus SN). Payload 6 

Unused  Payload 12 

Type The data Type of the virtual bus. Payload 16 

Bus ID The “unique” ID of the virtual bus. Payload 8 

Unused  Payload 8 

Slots Bitmap of timeslots to be committed. Payload 64 

Table D-23 : Format of a COMMIT Token 

D.3.5.4.5 TRIM Token 

Field Purpose Location Size (bits) 

Signal Type 0x90 Payload 8 

Source Address Source of virtual bus (SN). Payload 6 

Destination Address Destination of virtual bus (DN). Payload 6 

Unused  Payload 12 

Type The data Type of the virtual bus being trimmed. Payload 16 

Bus ID The “unique” ID of the virtual bus being trimmed. Payload 8 

Unused  Payload 72 

Table D-24 : Format of a TRIM Token 

D.3.5.4.6 TRIMMED Token 

Field Purpose Location Size (bits) 

Signal Type 0x91 Payload 8 

Source Address Source of virtual bus (SN). Payload 6 

Destination Address Destination of virtual bus (DN). Payload 6 

Unused  Payload 12 

Type The data Type of the virtual bus that was trimmed. Payload 16 

Bus ID The “unique” ID of the virtual bus that was trimmed. Payload 8 

Unused  Payload 72 

Table D-25 : Format of a TRIMMED Token 
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D.3.5.4.7 RELEASE Token 

Field Purpose Location Size (bits) 

Signal Type 0x92 Payload 8 

Source Address Source of virtual bus (SN). Payload 6 

Unused  Payload 18 

Type The data Type of the virtual bus to be released. Payload 16 

Bus ID The “unique” ID of the virtual bus to be released. Payload 8 

Unused  Payload 8 

Report Flag indicating that DN's that the Token passes through should respond 
with a TRIMMED Message. 

Payload 1 

Unused  Payload 63 

Table D-26 : Format of a RELEASE Token 

D.3.5.4.8 BREAK Token 

Field Purpose Location Size (bits) 

Signal Type 0x98 Payload 8 

Source Address AN or DN that detected a downstream break. Payload 6 

Destination Address Source of virtual bus (SN). Payload 6 

Unused  Payload 12 

Type The data Type of the virtual bus that has been broken. Payload 16 

Bus ID The “unique” ID of the virtual bus that has been broken. Payload 8 

Unused  Payload 8 

Do Not Trim Flag indicating to any AN's that have a Committed Switch for this 
virtual bus that they should not trim the interface on which this Token 
was received. 

Payload 1 

Unused  Payload 63 

Table D-27 : Format of a BREAK Token 

D.3.5.4.9 REFRESH Token 

Field Purpose Location Size (bits) 

Signal Type 0xA0 Payload 8 

Source Address Source of virtual bus (SN). Payload 6 

Unused  Payload 18 

Type The data Type of the virtual bus to be refreshed. Payload 16 

Bus ID The “unique” ID of the virtual bus to be refreshed. Payload 8 

Unused  Payload 72 

Table D-28 : Format of a REFRESH Token 
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D.3.5.4.10 REFRESHED Token 

Field Purpose Location Size (bits) 

Signal Type 0xA1 Payload 8 

Source Address Source of virtual bus (SN). Payload 6 

Destination Address Destination of virtual bus (DN). Payload 6 

Unused  Payload 12 

Type The data Type of the virtual bus to be refreshed. Payload 16 

Bus ID The “unique” ID of the virtual bus to be refreshed. Payload 8 

Unused  Payload 72 

Table D-29 : Format of a REFRESHED Token 

D.3.5.4.11 TRACE Token 

Field Purpose Location Size (bits) 

Signal Type 0x91 Payload 8 

Source Address Source of virtual bus (SN). Payload 6 

Unused  Payload 18 

Type The data Type of the virtual bus to be traced. Payload 16 

Bus ID The “unique” ID of the virtual bus to be traced. Payload 8 

Unused  Payload 72 

Table D-30 : Format of a TRACE Token 

D.3.5.4.12 TRIM Message 

Field Purpose Location Size (bits) 

Source Address Source of message (virtual bus SN). Header 6 

Destination Address Destination of message (virtual bus DN). Header 6 

Signal Type 0x40 Payload 8 

Unused  Payload 24 

Type The data Type of the virtual bus to be trimmed. Payload 16 

Bus ID The “unique” ID of this particular instance of virtual bus to be trimmed. Payload 8 

Unused  Payload 72 

Table D-31 : Format of a TRIM Message 
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D.3.5.4.13 TRIMMED Message 

Field Purpose Location Size (bits) 

Source Address Source of message (virtual bus DN). Header 6 

Destination Address Destination of message (virtual bus SN). Header 6 

Signal Type 0x41 Payload 8 

Unused  Payload 24 

Type The data Type of the virtual bus that was trimmed. Payload 16 

Bus ID The “unique” ID of the virtual bus that was trimmed. Payload 8 

Unused  Payload 72 

Table D-32 : Format of a TRIMMED Message 

D.3.5.4.14 QUERY Message 

Field Purpose Location Size (bits) 

Source Address Source of query (virtual bus SN). Header 6 

Destination Address Destination of message (virtual bus AN or DN). Header 6 

Signal Type 0x61 Payload 8 

Unused  Payload 12 

Allocation Type 0 (no allocation found); 1 (Switch); 2 (Terminus); or 3 (both Switch and 
Terminus). 

Payload 2 

Unused  Payload 10 

Type The data Type of the virtual bus being queried.  ‘0’ indicates all Types. Payload 16 

Bus ID The “unique” ID of the virtual bus being queried.  ‘0’ indicates all virtual 
bus of the indicated Type (which can be all Types). 

Payload 8 

Unused  Payload 72 

Table D-33 : Format of a QUERY Message 
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D.3.5.4.15 ALLOC Message 

Field Purpose Location Size (bits) 

Source Address Source of message (virtual bus AN or DN). Header 6 

Destination Address Destination of message (virtual bus SN). Header 6 

Signal Type 0x62 Payload 8 

Unused  Payload 6 

InIF The inbound interface for the resource allocation (-1..3), where -1 
indicates no inbound IF. 

Payload 3 

OutIF The outbound interface for the resource allocation (-1..3), where -1 
indicates no outbound IF. 

Payload 3 

Allocation Type 0 (no allocation found); 1 (Switch); or 2 (Terminus); 3 is invalid. Payload 2 

Allocation State As per Switch.State or Terminus.State, as appropriate. 

0 if no allocation found. 

Payload 3 

Unused  Payload 7 

Type The data Type of the resource allocation being reported, or 0 if no 
allocation exists 

Payload 16 

Bus ID The “unique” ID of the resource allocation being reported, or 0 if no 
allocation exists 

Payload 8 

Unused  Payload 8 

Slots The timeslots of the resource allocation being reported, or 0 if no 
allocation exists 

Payload 64 

Table D-34 : Format of an ALLOC Message 

D.3.5.5 Token Handler Processes 

D.3.5.5.1 RESERVE Tokens 

D.3.5.5.1.1 Source Node 

This should not be possible.  Respond with a REDIRECT Token. 

D.3.5.5.1.2 Agent Node 

There will be one of two responses: 

1. Forward the RESERVE Token. 

2. Respond with a REDIRECT Token. 

The RESERVE Token will be forwarded if the AN can see a potential path in the resource allocation 

space that may lead to the Token's destination; if there is no potential path then the AN will respond 

with a REDIRECT Token. 

If a partially matching Switch (UBI) exists, but the Switch's InIF does not match the RESERVE 

Token 

 Respond with a REDIRECT Token 

Else if no suitable outbound Interface was identified 

 Respond with a REDIRECT Token 

Else (implies a suitable outbound Interface was identified) 

 If a matching Switch (UBI, InIF) exists 

  Update the Switch to include the outbound Interface 

 Else (implies no matching Switch exists) 

  Create a new Switch using the outbound Interface 

 Forward the RESERVE Token via the outbound Interface 
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D.3.5.5.1.3 Destination Node 

There will be one of three responses: 

1. Respond with a REJECT Token 

2. Respond with a REDIRECT Token 

3. Respond with a COMMIT Token 

A REJECT Token will be generated if the DN cannot accept the RESERVE under any circumstances, e.g. 

because it has no matching free Terminus.  A REDIRECT Token will generated if the DN cannot accept 

the RESERVE because there is a mismatch, e.g. the bus specified in the Token has already connected 

a different inbound Interface.  A COMMIT Token will be generated if the DN can and does accept the 

RESERVE, e.g. there is already a matching Terminus or a matching Terminus is successfully created. 

If there is a closed Terminus that matches the Token (SN, Type, Width) 

 Allocate the Terminus to the Token's bus 

 Respond with a COMMIT Token 

If there is an open Terminus that perfectly matches the Token (SN, Type, UBI, Width, InIF) 

 Respond with a COMMIT Token 

If there is an open Terminus that partially matches the Token (SN, Type, UBI, Width, but NOT 

InIF) 

 Respond with a REDIRECT Token 

If there is no Terminus that matches the Token 

 If there is a Switch that matches the Token (UBI, InIF) 

  Respond with a REJECT Token with DNT set 

 Else (implied: there is no matching Switch) 

  Respond with a REJECT Token with DNT clear 

D.3.5.5.2 REDIRECT Tokens 

D.3.5.5.2.1 Source Node 

There will be one of two responses: 

1. Discard the Token. 

2. Try to restart the Bus building process using a different outbound interface. 

If a matching (DN, Type, BusID, OutIF) Origin exists 

 Mask the Token inbound interface on the Origin 

 Select a new outbound interface for reservation 

 If a suitable outbound interface is identified 

  Send a new RESERVE Token via the new outbound Interface 

If no RESERVE Token was sent 

 Discard the Token 

D.3.5.5.2.2 Agent Node 

There will be one of three responses: 

1. Discard the Token. 

2. Forward a RESERVE Token via another Interface. 

3. Forward the REDIRECT Token via the Bus's inbound Interface. 

If a matching Switch exists (UBI, OutIF) 

 Mask the Token inbound interface on the Switch 

 Select a new outbound interface for Reservation 

 If a suitable outbound Interface is identified 

  Update the Switch to use the new outbound Interface 

  Convert the REDIRECT Token to a RESERVE Token and forward via the selected 

Interface 

 If no RESERVE Token was sent 

  Forward the REDIRECT Token via the Switch inbound Interface 

 If the REDIRECT Token DNT flag was clear 

  Trim the REDIRECT Token inbound Interface from the Switch 

Else (implied: no matching Switch exists) 

 Discard the Token 
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D.3.5.5.2.3 Destination Node 

This should not be possible.  Discard the REDIRECT Token. 

D.3.5.5.3 REJECT Tokens 

D.3.5.5.3.1 Source Node 

There will be one of two responses: 

1. Discard the Token. 

2. Terminate the virtual bus construction process. 

If no matching (DN, Type, BusID, OutIF) BusClient exists 

 Discard the Token 

Else 

 Terminate the virtual bus construction process 

D.3.5.5.3.2 Agent Node 

There will be one of two responses: 

1. Discard the Token. 

2. Forward the REJECT Token via the virtual bus's inbound Interface. 

If a matching Switch exists (UBI, OutIF) 

 If any Interface on the Switch is Committed 

  Forward the REJECT Token via the Switch inbound interface with DNT set 

 Else if a matching Terminus exists (UBI) 

  Forward the REJECT Token via the Terminus's inbound interface with DNT set 

 Else (implied: no Switch interface is Committed and there is no Terminus) 

  Forward the REJECT Token via the Switch inbound interface 

 If the original Token DNT flag was clear 

  Trim the Token receive interface from the Switch 

Else (implied: no matching Switch exists) 

 Discard the Token 

D.3.5.5.3.3 Destination Node 

This should not be possible.  Discard the REJECT Token. 

D.3.5.5.4 COMMIT Tokens 

D.3.5.5.4.1 Source Node 

There will be one of two responses: 

1. Send a TRIM Message to the DN. 

2. Complete the virtual bus construction process. 

If no matching (DN, Type, BusID, OutIF) BusClient exists 

 Send a TRIM Message to the DN 

Else 

 Complete the virtual bus construction process 

D.3.5.5.4.2 Agent Node 

There will be one of two responses: 

1. Discard the Token. 

2. Forward the Token via the virtual bus's inbound interface. 

If a matching Switch exists (UBI, OutIF) 

 Update the Switch's OutIF state to Committed 

 Forward the Token via the Switch's InIF 
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Else (implied: no matching Switch exists) 

 Discard the Token 

D.3.5.5.4.3 Destination Node 

This should not be possible.  Discard the COMMIT Token. 

D.3.5.5.5 TRIM Tokens 

D.3.5.5.5.1 Source Node 

This is not obvious, so should be stated clearly to avoid confusion: a TRIM Token will only be delivered 

to an SN if there is one, and only one, DN connected to a virtual bus via a particular outbound interface 

of that bus's SN.  If there is more than one DN connected, then there must be a physical or logical 

branch point between the SN and every DN, and TRIM Tokens do not traverse branch points; they are 

reflected by them (as a TRIMMED Token). 

An SN will always reply to a TRIM Token with a TRIMMED Token.  If the SN has a matching Origin then 

it will also release the network resources committed on the receiving interface to the virtual bus 

specified in the TRIM Token. 

If a matching Origin exists (UBI, OutIF) 

 Clear the Origin's matching OutIF 

Send a TRIMMED Token to the DN. 

D.3.5.5.5.2 Agent Node 

There will be one of two responses: 

1. Forward the Token via the Bus's inbound Interface. 

2. Send a TRIMMED Token via the Bus's outbound Interface. 

The general rule is, that if an AN has any resources other than a simple single-output Switch, or if the 

AN does not recognise the virtual bus reference in the TRIM Token, then a TRIM operation is 

terminated.  When a TRIM operation ends, the terminating AN (or SN) must respond by reflecting a 

TRIMMED Token back towards the DN. 

If a matching Switch (UBI, OutIF) exists 

 If the Switch has only one outbound Interface 

  If no matching Terminus (UBI) exists 

   Forward the TRIM Token via the Switch inbound Interface 

If the TRIM Token was not forwarded 

 Transform the TRIM Token into a TRIMMED Token and send it via the receive Interface 

 If the matching Switch exists 

  Trim the receive Interface from the Switch 

D.3.5.5.5.3 Destination Node 

This should not be possible.  Discard the TRIM Token. 

D.3.5.5.6 TRIMMED Tokens 

D.3.5.5.6.1 Source Node 

This should not be possible.  Discard the TRIMMED Token. 

D.3.5.5.6.2 Agent Node 

There will be one of two responses: 

1. Discard the Token. 
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2. Forward the Token via the virtual bus's outbound Interface. 

If a matching Switch exists (UBI, InIF) 

 If the Switch has only one outbound Interface 

  Forward the TRIMMED Token via the Switch outbound Interface 

  Destroy the Switch 

(implied) If the Token was not forwarded 

 Discard the Token 

D.3.5.5.6.3 Destination Node 

A DN will always respond to a TRIMMED Token with a TRIMMED Message to the SN. 

D.3.5.5.7 RELEASE Tokens 

D.3.5.5.7.1 Source Node 

This should not be possible.  Discard the RELEASE Token. 

D.3.5.5.7.2 Agent Node 

There will be one of two responses: 

1. Discard the Token. 

2. Forward the Token via all of the virtual bus's outbound Interfaces. 

An AN will always respond to a RELEASE Token that it recognises by forwarding it via any outbound 

Switch Interfaces, then releasing all resources (a Switch and/or a Terminus) allocated to that virtual 

bus.  Additionally, if the AN hosts a Terminus for the bus, i.e. is an AN+DN, it will release the network 

resources associated with that Terminus. 

If a matching Switch (UBI, InIF) exists 

 Forward the RELEASE Token via each of the Switch outbound Interfaces 

 Destroy the Switch 

If a matching Terminus (UBI, InIF) exists 

 If the Token's Report flag is set, send a TRIMMED Message to the bus SN. 

 Release the Terminus 

(implied) If the Token was not forwarded 

 Discard the Token 

D.3.5.5.7.3 Destination Node 

RELEASE Tokens do not have a Destination Address. 

D.3.5.5.8 BREAK Tokens 

D.3.5.5.8.1 Source Node 

There will be one of three responses: 

1. Discard the Token. 

2. Take no action. 

3. Release the receive interface from the virtual bus. 

If a matching Origin (UBI) exists 

 If the Token's DNT flag is set 

  Release the receive IF from the Origin 

Else 

 Discard the Token 

D.3.5.5.8.2 Agent Node 

There will be one of two responses: 
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1. Discard the Token. 

2. Forward the Token upstream via the virtual bus's inbound Interface. 

An AN will always respond to a BREAK Token that it recognises by forwarding it upstream via the 

inbound Switch Interface.  If the DNT flag is clear, it will also release the interface on which it received 

the Token.  If the AN was a branch point (hosting a Switch with more than one outbound interface, or 

a Switch and a Terminus) then the DNT flag will be set before the Token is forwarded upstream. 

If a matching Switch (UBI) exists 

 If the Token's DNT flag is set 

  Forward the Token via the Switch's inbound IF 

 Else (implied: the Token's DNT flag is clear) 

  Release the Token's receive IF from the Switch 

  If the Switch has outbound IF's left or if a matching Terminus (UBI) exists 

   Set the Token's DNT flag 

  Else 

   Release the Switch 

  Forward the Token via the Switch's inbound IF 

Else 

 Discard the Token 

    

D.3.5.5.8.3 Destination Node 

If a node is an AN+DN, execute the AN response above.  It should not be possible for a DN (only) to 

receive a BREAK Token.  If it does, an error has occurred; discard the Token. 

D.3.5.5.9 REFRESH Tokens 

D.3.5.5.9.1 Source Node 

This should not be possible.  Discard the REFRESH Token. 

D.3.5.5.9.2 Agent Node 

There will be one of two responses: 

1. Discard the Token. 

2. Forward the Token via all of the virtual bus's outbound Interfaces. 

An AN will always respond to a REFRESH Token that it recognises by forwarding it via all outbound 

Switch Interfaces for the virtual bus.  Additionally, if the AN hosts a Terminus for the bus, i.e. is an 

AN+DN, it will reply to the REFRESH Token with a REFRESHED Token. 

If a matching Switch (UBI, InIF) exists 

 Forward the REFRESH Token via each of the Switch outbound Interfaces 

 Reset the refresh timeout of the Switch 

If a matching Terminus (UBI, InIF) exists 

 Send a REFRESHED Token to the SN 

 Reset the refresh timeout of the Terminus 

 (implied) If the Token was not forwarded 

 Discard the Token 

D.3.5.5.9.3 Destination Node 

REFRESH Tokens do not have a Destination Address. 

D.3.5.5.10 REFRESHED Tokens 

D.3.5.5.10.1 Source Node 

Reset the refresh timeout of the virtual bus's corresponding outbound Interface. 
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D.3.5.5.10.2 Agent Node 

Forward the Token via the Bus's inbound Interface. 

If a matching Switch (UBI, InIF) exists 

 Forward the REFRESHED Token via the Switch's inbound Interface 

(implied) If the Token was not forwarded 

 Discard the Token 

D.3.5.5.10.3 Destination Node 

REFRESHED Tokens do not have a Destination Address. 

D.3.5.6 Network Fault Handling 

When a node that has a role in a virtual bus detects that a network resource, i.e a link to another node, 

on which that bus relies has become faulty, the node must attempt to report the fault to affected 

nodes.  Fault reporting is either upstream towards the SN using BREAK Tokens, or downstream 

towards the DN’s using a RELEASE Token.  As a rule, signalling will perforce be unidirectional – a fault 

that invalidates an inbound interface will trigger a RELEASE Token, whereas a fault that invalidates an 

outbound interface will trigger a BREAK Token. 

D.3.5.6.1 Source Node 

It is not possible for an SN to suffer an upstream link failure, as it is the origin of the virtual bus. 

If an SN detects a failed downstream link, it reports the failure of the virtual bus segment upwards 

using the Origin.Failed() event, and releases the network resources associated with the Origin object's 

failed interface. 

D.3.5.6.2 Agent Node 

If a node is engaged in both AN and DN roles, section D.3.5.6.3 below also applies. 

If an AN detects a failed upstream network link, it emits RELEASE Tokens (with the Report flag set) via 

all of the Switch's outbound network interfaces. 

If an AN detects a failed downstream network link, it emits a BREAK Token via the Switch's inbound 

network interface and releases the network resources associated with the failed interface.  If it is left 

with no valid outbound interfaces, the Switch object is destroyed entirely.  If the AN is a branch point, 

i.e. it is either an AN+DN or the Switch has more than one outbound interface, the BREAK Token's 

DoNotTrim (DNT) flag will be set. 

D.3.5.6.3 Destination Node 

If a node is engaged in both AN and DN roles, section D.3.5.6.2 above also applies. 

If an DN detects a failed upstream network link, it reports the failure of the virtual bus connection 

upwards using the Terminus.Failed() event, and releases the network resources associated with the 

affected bus's Terminus object. 

It is not possible for a DN to experience a failed downstream network interface; however, if the node 

is an AN+DN, see also section D.3.5.6.2 above. 
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D.3.5.6.4 Handling Multiple Concurrent Breaks 

If a virtual bus is broken at two (or more) points, as shown in the examples of Figure D-12 and Figure 

D-13, below, then the bus is split into several independent segments. 

 

Figure D-12 : Simple Sequential Network Fault Handling Example 

The network response that commences on either side of each fault is always consistent with sections 

D.3.5.6.1 through D.3.5.6.3 above; the nodes either side of the fault emit BREAK and/or RELEASE 

Tokens that propagate away from the fault.  If the progress of a BREAK or RELEASE Token is obstructed 

by another network fault, e.g. as in Figure D-12 above, then the receiving node will drop the Token. 

 

 

Figure D-13 : Simple Parallel Network Fault Handling Example 

The principle of superposition can be used to analyse how a system of any size will respond to any 

number of faults by applying the behavioural and signalling rules discussed above. 

D.3.5.7 Object Model 

Each node role – SN, AN and DN – is a specialization of the more general Node class that works with 

the object type that relates to that role: SN's work with Origins, AN's work with Switches and DN's 

work with Terminuses.  Origin and Switch instances consume, and hence must compete for, a limited 

supply of network resources: the TDM timeslots (T-plane) that are owned by each outbound network 

interface (S-plane). 

It may at first glance appear that DN's also consume network resources, but this is not correct.  As 

discussed in Chapter 2, S-plane resources are an abstraction only of outbound interfaces, not inbound 

interfaces.  The inbound resource allocation is implied through the linkage between a transmitter and 

receiver, but the resources are allocated at the transmitter, not at the receiver. 
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D.3.5.7.1 Source Node 

The DARP virtual bus transmission endpoint hosted by a SN is represented by the Origin class.  DARP 

is responsible for managing a collection of zero or more Origin objects.  Each Origin is uniquely 

identified within an SN by its' data type and bus ID; a DARP instance can sustain up to 254 Origins for 

any given data type.  Origins are stateful, but their state is transitory; it is relevant only whilst the 

Origin is actively engaged in connecting or disconnecting a DN to its virtual bus. 

 

Figure D-14 : Simplified DARP Object Model 

The DARP SN role: 

• Provides an interface through which another process local to this node can request the 

construction or destruction of an Origin instance. 

o Allocates local network resources as required. 

• Provides an interface through which another process local to this node can request that a local 

Origin instance connect to, or disconnect from, a remote Terminus instance, i.e. the 

construction, extension or trimming of a virtual bus through a distributed network resource 

allocation mechanism. 

• Monitors and maintains existing distributed network resource allocations. 

o If an existing network resource allocation is no longer viable, attempts to release 

unneeded network resources gracefully. 

• Reports the success or failure of any requested actions to the owning local process. 

o e.g. connection of a virtual bus to, or disconnection of virtual bus from, a Terminus. 
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• Reports any unexpected events that affect a virtual bus instance to the owning local process 

o e.g. if a network fault causes partial or complete disconnection of a virtual bus. 

 

Figure D-15 : DARP Source Node Object Model 

D.3.5.7.2 Agent Node 

The DARP virtual bus throughpoint hosted by an AN is represented by the Switch class.  DARP is 

responsible for managing a collection of zero or more Switch instances.  Each Switch object is uniquely 

identified within an AN by its' UBI (source address, data type, and bus ID).  Switches are stateful, 

recording a state for each outbound network interface. 

The DARP AN role: 

• Actions incoming DARP signalling that results in network resource allocation or deallocation. 

o Responds to DARP signalling directed at it. 

o Attempts to reserve, commit or release network resources as requested by SN's and 

DN's. 

o Passes DARP Tokens upstream or downstream as appropriate. 

 

Figure D-16 : DARP Agent Node Object Model 
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• Monitors existing resource allocations. 

o If an existing network resource allocation is no longer viable, releases the resources 

and attempts to report to the SN. 

o If a network resource allocation timeout occurs, releases the resources. 

• Loads its TDM switching configuration into the TDM digests. 

D.3.5.7.3 Destination Node 

The DARP virtual bus receive endpoint hosted by a DN is represented by the Terminus class.  DARP is 

responsible for managing a collection of zero or more Terminus objects.  Each Terminus is uniquely 

identified within a DN by its UBI (source address, data type, and bus ID).  Terminuses are stateful, with 

the state recording the connection status of the Terminus's virtual bus connection to its corresponding 

Origin. 

 

Figure D-17 : DARP Destination Node Object Model 
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o Responds to DARP signalling directed at it. 

o Attempts to reserve, commit or release network resources as requested by SN's. 

• Monitors inbound network resource allocations. 

o If an existing network resource allocation is no longer viable, releases the resources 
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o If a network resource allocation timeout occurs, releases the resources and attempts 
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D.3.5.8 Behavioural Model 
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hosting AN.  Reservations may also be released automatically by any unexpected network behaviour 

that invalidates them, e.g. if a Switch object is reserving a set of timeslots between two of an AN's 

interfaces and either of the links that the reservation refers to becomes unsynchronized, then the 

Switch object may release the reservation. 

In order to commit a resource, it must first be reserved.  Commitment implies more permanence than 

reservation, but will still eventually timeout and expire if it is not refreshed.  In a similar fashion to 

reservations, commitments will be released if a network fault invalidates them. 

When a resource is being released gracefully, e.g. as a result of a decision by a higher protocol layer 

to trim a DN from a virtual bus, a third type or state of resource allocation may occur: 

3. Trimming 

In terms of expiration timeout if not otherwise actioned, the trimming state is similar to the reserved 

state. 

D.3.5.8.2 Managing Risks during Construction and Deconstruction 

If a node attempts to construct two or more virtual buses with different UBI's simultaneously, the 

resource allocation processes may have to contend with one another for the limited network 

resources that are available to any one node.  Contention is at its worst during the reservation process 

because reservation consumes all free timeslots on the network interfaces that it uses: sending a 

RESERVE Token out of an interface effectively locks that interface for all other reservations until the 

first reservation attempt is resolved.  The interface is thus temporarily unavailable for use by other 

virtual bus construction processes. 

If a node attempts to construct a single virtual bus to two or more destinations simultaneously then a 

number of problems may arise.  The most critical of these is that a bus must use the same timeslots 

to all of its destinations.  However, parallel bus construction processes cannot be guaranteed to 

allocate the same set of timeslots for each process.  The only way to guarantee that no internal 

resource allocation conflicts can arise when constructing a virtual bus with multiple destinations is to 

work with each destination separately and sequentially. 

In order to manage these risks, DARP explicitly requires that no node may concurrently construct more 

than one virtual bus connection.  There is an exception to this rule: once the timeslots for a virtual bus 

have been assigned due to the bus having been committed to at least one destination, the risk of 

resourcing conflicts is resolved.  That is, a node can extend or branch multiple buses simultaneously, 

but it can only construct or reserve one bus at any time. 

D.3.5.8.3 State Diagrams 

States captioned without italics are persistent states.  Persistent states appear in the enumeration of 

possible object states in the object models in section D.3.5.7.  Consider that objects are cyclically 

evaluated, e.g. to check for timeouts; persistent states may persist for multiple evaluation cycles.  

Evaluation cycles are atomic; asynchronous triggers for state changes are checked between cycles, not 

within cycles. 

States captioned with italics are transitional states.  Transitional states do not appear in the 

enumeration of possible states in the object models.  Their purpose is to link a synchronous stimulus 
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to the object's response.  An object may traverse any number of transitional states within an 

evaluation cycle. 

D.3.5.8.3.1 Source Node 

With reference to Figure D-18 below, an Origin is moved to the Busy state when it receives a 

"management" command: ConnectTerminus() or DisconnectTerminus().  Management commands 

cause the Origin to actively modify the condition of its virtual bus by trying to connect to, or disconnect 

from, a remote Terminus object.  When the Origin is in the Busy state, it executes the Origin 

Management state machine presented in Figure D-19 below.  When the Management state machine 

returns to the Idle state, the main state machine exits the Busy state. 

As discussed in section D.3.5.8.2 above, a virtual bus can only be manipulated with respect to one DN 

at any one time.  If a management command is received whilst the Origin is in the Busy state, it will 

be ignored. 
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Figure D-18 : Origin State Diagram 
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Figure D-19 : Origin Management State Diagram 
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Figure D-20 : Switch State Diagram 
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Figure D-21 : Switch Interface State Diagram 
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D.3.5.8.3.3 Destination Node 

 

Figure D-22 : Terminus State Diagram  
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D.3.6 RDM 

The Redundant Dataflow Model (RDM) module implements the VB architecture's transport layer, as 

described in Chapter 7. 

Internally, and absent considerations of the objects that it manages, RDM is reasonably 

straightforward: a default priority service thread monitors a message queue and the collection of RDM 

objects.  The use of a message queue and a separate thread allows much of RDM's behaviour to be 

asynchronous to the rest of the stack. 

The IMsg queue is used for internal messages, i.e. messages sent to the RDM module by the other 

components and layers of the local VB protocol stack.  Calling the majority of RDM's interface API 

functions (the exception being ServiceTDM(), see below) sends a message to the IMsg queue. 

The RDM service thread retrieves and processes messages from the IMsg queue, and processes RDM's 

object collection: executing state machines and checking for timeouts, broken links, etc. and 

responding appropriately. 

There is one unfortunate but necessary exception to RDM's asynchronicity: RDM curates the node's 

TDM transmission and reception endpoint configuration and data sources and sinks.  That 

configuration and data must be accessible to the protocol stack on demand, and as rapidly as possible.  

The ServiceTDM() function exposed by RDM's API bypasses the asynchronous access mechanisms and 

directly accesses the switching configuration.  A mutex is used to lock the TDM endpoint configuration 

to prevent modifications during ServiceTDM() calls. 

Messages are pushed into the IMsg queue by calls to the RDM API.  The queue cannot overflow; if an 

API call fails to push a message into the queue for any reason, the function will return false.  Given 

the rate at which API calls could be made, it is conceivable that IMsg queue will from time to time 

reject API calls.  The depth of the IMsg queue could be increased if message loss proved to be 

problematic. 
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D.3.6.1 Diagrams 

 

Figure D-23 : RDM Module Implementation Diagram 
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Figure D-24 : RDM Service Thread Task Flowchart 

D.3.6.2 Interface Description 

RDM's interfaces are exposed to the higher layers and provide a means by which those layers can 

interact with RDM in order to trigger certain behaviours via commands, and to report events. 

Command Name Command Description 

Init Initializes the RDM module, including creating the message queue and the mutex used to lock 
records around ServiceTDM() calls, and creating the RDM service thread. 

DeInit Gracefully shuts down the RDM module.  Destroys all objects (including fired their Destroyed 
events, if any), destroys the message queue, destroys the mutex, and terminates the RDM 
service thread. 
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CloseClient Request that an existing RDM connection to a remote Collator object be closed. 

CreateCollator Request creation of a new local Collator object. 

DestroyCollator Request the graceful destruction of an existing local Collator object. 

Table D-35 : RDM Module Commands 

Event Name Event Description 

Distributor.Created A new local Distributor instance was successfully created. 

Distributor.CreateFailed An attempt to create a new local Distributor instance failed. 

Distributor.Destroyed An existing local Distributor instance was successfully destroyed. 

Distributor.Opened A connection from a local Distributor instance to a remote Collator instance was opened. 

Distributor.Closed A connection from a local Distributor instance to a remote Collator instance was gracefully 
closed. 

Service IMsg queue

Service Distributors
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Event Name Event Description 

Distributor.Failed A connection from a local Distributor instance to a remote Collator instance closed 
unexpectedly. 

Collator.Created A new local Collator instance was successfully created. 

Collator.CreateFailed An attempt to create a new local Collator instance failed. 

Collator.Destroyed An existing local Collator instance was successfully destroyed. 

Collator.Opened A connection from a remote Distributor instance to a local Collator instance was opened. 

Collator.Closed A connection from a remote Distributor instance to a local Collator instance was gracefully 
closed. 

Collator.Failed A connection from a remote Distributor instance to a local Collator instance closed 
unexpectedly 

Table D-36 : RDM Module Events 

D.3.6.3 Interface Prototypes 

Prototype 

typedef struct _RDM_DistributorEvents { 

 bool (*Created)(uint16_t type, BUFF *b); 

 bool (*CreateFailed)(uint16_t type); 

 bool (*Destroyed)(uint16_t type); 

 bool (*Opened)(int8_t dest, uint16_t type); 

 bool (*Closed)(int8_t dest, uint16_t type); 

 bool (*Failed)(int8_t dest, uint16_t type); 

 } RDM_DistributorEvents; 

typedef struct _RDM_CollatorEvents { 

 bool (*Created)(int8_t src, uint16_t type, BUFF *b); 

 bool (*CreateFailed)(int8_t src, uint16_t type); 

 bool (*Destroyed)(int8_t src, uint16_t type); 

 bool (*Opened)(int8_t src, uint16_t type); 

 bool (*Closed)(int8_t src, uint16_t type); 

 bool (*Failed)(int8_t src, uint16_t type); 

 } RDM_CollatorEvents; 

Table D-37 : RDM Module Public Data Prototypes 

Returns Name Argument List 

void RDM_Init BUFF *rpt 

void RDM_DeInit void 

void RDM_ServiceTDM uint32_t t 

bool RDM_CreateDistributor uint16_t type, 

uint8_t width, 

BUFF *txb, 

RDM_DistributorEvents *events, 

void (*cb)(void*), 

void *cbarg 

bool RDM_DestroyDistributor uint16_t type, 

void (*cb)(void*), 

void *cbarg 

bool RDM_OpenClient int8_t addr,  

uint16_t type,  

uint8_t rcnt,  

void (*cb)(void*), void *cbarg 

bool RDM_CloseClient int8_t addr, 

uint16_t type, 

void (*cb)(void*), 

void *cbarg 

bool RDM_CreateCollator int8_t addr, 

uint16_t type, 

uint8_t width, 

uint8_t rcnt, 

BUFF *rxb, 

RDM_CollatorEvents *events, 

void (*cb)(void*), 

void *cbarg 
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Returns Name Argument List 

bool RDM_DestroyCollator int8_t addr, 

uint16_t type, 

bool alert, 

void (*cb)(void*), 

void *cbarg 

Table D-38 : RDM Module Public Function Prototypes 

D.3.6.4 Object Model 

Each node role – RDM.SN and RDM.DN – is a specialization of the more general RDM.Node class that 

works with the object type that relates to that role: SN's work with Distributors and DN's work with 

Collators.  Both Distributors and Collators may also instantiate their own collections of dependent 

child objects. 

Refer to section D.3.6.2 for a description of the operating interfaces that are presented to higher 

network layers to enable them to interact with, and make use of the services provided by, RDM. 

D.3.6.4.1 Source Node 

The RDM transmission endpoint at a SN is represented by the Distributor class, so named because it 

distributes its data to a set of DN's.  RDM is responsible for managing a collection of zero or more 

Distributor objects.  Each Distributor is uniquely identified within an SN by its' data type (carried 

upwards from DARP); an RDM instance can sustain only one Distributor for each data type.  A 

Distributor is associated with a set of zero or more Client objects that represent partner DN's, i.e. DN's 

that it has agreed to deliver its data flow to.  DARP is used to manage the creation of the TxBus objects 

for Clients.  There is a many-to-many relationship between Clients and TxBuses: each TxBus is able to 

deliver a replica of the distributor's data flow to an arbitrary number of Clients, and a Client may be 

associated with an arbitrary number of TxBuses (at the cost of resource utilization).  The many-to-

many relationships between Clients and TxBuses are represented by instances of the BusClient class. 

 

Figure D-25 : Simplified RDM Object Model 
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Note that there is a 1-to-1 relationship between each RDM TxBus object and a corresponding DARP 

Origin object.  Origin objects report events (creation, connection, disconnection, etc.) upwards to their 

partner TxBus object through its owning Distributor by executing a method from the Distributor's child 

OriginEvents object. 

The RDM.SN role: 

• Provides an interface through which another process local to this node can request the 

construction or destruction of a Distributor instance. 

• Provides an interface through which another process local to this node can request the 

construction or deconstruction of a Client instance. 

• Uses DARP's services to establish and maintain redundant transport layer (RDM) connections 

to partner Collators. 

o Creates TxBus objects as necessary and links them to Client objects using BusClient 

objects. 

o Reuses TxBus objects where possible. 

o Destroys TxBus objects when they are no longer required. 

o Monitors the status of its child DARP virtual buses by listening for DARP OriginEvents. 

• Reports the success or failure of any requested actions to the owning local process 

o E.g. Opening or closing an RDM connection to a remote collator. 

• Reports any unexpected events that affect an RDM connection to the owning local process. 

o E.g. If a network fault causes partial or complete failure of an RDM connection. 
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Figure D-26 : RDM Source Node Object Model 
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each Collator is uniquely identified by the network address of the partner SN and the data type that it 

collates, i.e. a Collator represents a single (possibly redundant) data flow from one and only one 

Distributor.  A Collator incorporates an array of one or more RxBus objects, each of which may in turn 

become one of the receive endpoints for a virtual bus produced by a partner TxBus object hosted by 

the bus's SN. 

 

Figure D-27 : RDM Destination Node Object Model 
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o Monitors the status of its child DARP virtual buses by listening for DARP 

TerminusEvents. 

• Reports the success or failure of any requested actions to the owning local process 

o E.g. The opening or closing of an RDM connection from a remote Distributor. 

• Reports any unexpected events that affect an RDM connection to the owning local process. 

o E.g. If a network fault causes the failure of an RDM connection. 

D.3.6.5 Behavioural Model 

RDM is responsible for: 

• Using the services of DARP to construct the set of redundant virtual buses, and associated 

DARP objects, required to sustain each transport layer connection.  This is an example of self-

forming network behaviour. 

• Using the services of DARP to monitor the condition of virtual bus connections to and from 

Collators. 

• If a virtual bus connection fails unexpectedly, using the services of DARP to try to re-establish 

the connection.  This is an example of self-healing network behaviour. 

• Prior to each traffic phase, preparing data pulses to be multicast from Distributors to all of 

their connected Collators during the next traffic phase. 

• Post each traffic phase, reconstructing the original data pulses from the redundant fragments 

delivered to Collators during the previous traffic phase. 

• Using the services of DARP to organise the destruction of virtual buses and associated DARP 

objects that are no longer required to support a transport layer connection or prospective 

connection. 

The following sections make use of the transport layer interfaces described in section D.3.6.2, and the 

DARP interfaces described in section D.3.5.2. 

D.3.6.5.1 Distributor 

Distributors are the active partners under RDM.  They are responsible for initiating and maintaining 

connections to Collators. 

D.3.6.5.1.1 Creation 

Creation of a Distributor is triggered by an RDM.CreateDistributor() call.  If creation succeeds, the new 

Distributor is added to RDM's collection of Distributors.  RDM will report the success or failure of the 

creation process by firing the Distributor.Created() or Distributor.CreateFailed() events, respectively. 

D.3.6.5.1.2 Connection Establishment 

Connection to a Collator is triggered by an RDM.OpenClient() call.  Arguments to OpenClient() include 

the DN address and the required level of redundancy, 𝑅𝑐 (or Rcnt).  The Distributor will first attempt 

to branch any existing virtual buses to the new Client, up to 𝑅𝑐, using DARP.ConnectTerminus() calls.  

If 𝑅𝑐 cannot be reached using existing buses, either because there are not enough existing buses or 

because some of the existing buses could not be connected to the Client, DARP.CreateOrigin() calls 

will be used to create sufficient additional virtual buses to bring the redundant bus count for the Client 

up to 𝑅𝑐.  In the event that it is not possible to connect 𝑅𝑐 buses to the Client at this time due to a lack 
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of network resources, RDM will periodically try to connect existing and/or create new virtual buses up 

to a total of 𝑅𝑐.  This is an example of self-forming network behaviour. 

D.3.6.5.1.3 Connection Establishment Success 

A transport layer connection has been established or opened when the first virtual bus to the Client is 

opened by DARP, because one bus is sufficient to begin delivering data.  Note that, as indicated above, 

RDM will continue to try to increase the redundancy of the connection up to a limit of 𝑅𝑐.  RDM will 

report successful connection establishment by firing the Distributor.Opened() event. 

D.3.6.5.1.4 Connection Establishment Failure 

Connection establishment fails if DARP is unable to open a single virtual bus to the Client.  Reasons 

that this might occur include a lack of network resources, or a network fault that arises in the time 

between a higher layer requesting the transport layer connection and RDM's attempt to establish the 

connection.  RDM will report connection establishment failure by firing the Distributor.Failed event. 

D.3.6.5.1.5 Connection Termination 

Connection termination is a controlled shutdown of a transport layer connection that is triggered by 

a RDM.CloseClient() call.  RDM disconnects the Client from all of its virtual buses using 

DARP.DisconnectTerminus() calls.  When the count of buses to the Client falls to zero, the transport 

layer connection has been terminated.  RDM reports connection termination by firing the 

Distributor.Closed() event. 

D.3.6.5.1.6 Virtual Bus Failure 

Virtual bus failure occurs when one or more buses between a Distributor and Collator fail 

unexpectedly, e.g. due to one or more network faults.  A bus failure does not necessarily equate to 

connection closure or failure; as long as at least one virtual bus is still connected, the RDM connection 

is open.  If every virtual bus that supports an RDM connection fails, this is an instance of connection 

failure, not bus failure; refer to section D.3.6.5.1.8 below. 

D.3.6.5.1.7 Virtual Bus Re-Establishment 

In the event that one or more virtual buses supporting a transport layer connection to a Client are 

themselves unexpectedly disconnected from that Client, the normal operation of RDM's self-healing 

processes will attempt to re-establish the Client's required level of redundancy using 

DARP.ConnectTerminus() and DARP.CreateOrigin() calls, as necessary.  If the transport layer 

connection is re-established as a result, i.e. the number of connected buses is increased from zero to 

one, RDM will report connection re-establishment by firing the Distributor.Opened() event. 

D.3.6.5.1.8 Connection Failure 

Connection failure is an unexpected and/or uncontrolled shutdown of a transport layer connection 

caused by the unrecoverable closure of all virtual buses connected to the Client.  Likely causes include 

failure of the DN, or the isolation of the DN from the SN due to one or more network faults.  RDM will 

report connection failure by firing the Distributor.Failed() event. 
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D.3.6.5.1.9 Destruction 

Distributor destruction is triggered with an RDM.DestroyDistributor() call.  The destruction process 

begins with a controlled shutdown of all of the Distributor's open transport layer connections.  As each 

Client is disconnected, RDM fires a Distributor.Closed() event then destroys the corresponding child 

Client object.  When all Clients have been destroyed, the Distributor itself is destroyed and RDM fires 

a Distributor.Destroyed() event. 

D.3.6.5.2 Collator 

Collators are passive partners under RDM.  They respond to an incoming RDM connection from a 

partner Distributor; they do not initiate such connections themselves.  The one exception is that 

Collators are able to disconnect themselves from an RDM connection. 

The Collator object state diagram is shown at Figure D-30 on page 517 below. 

D.3.6.5.2.1 Creation 

Creation of a Collator is triggered by an RDM.CreateCollator() call.  Creation of a Collator includes the 

creation of 𝑅𝑐 child RxBus objects, and their corresponding DARP Terminus objects using a 

DARP.CreateTerminuses() call.  If creation succeeds, the new Collator is added to RDM's collection of 

Collators.  RDM will report the success or failure of the creation process by firing the Collator.Created() 

or Collator.CreateFailed() events, respectively.  Note that if DARP is unable to create the correct 

number of Terminuses, e.g. due to a lack of memory, creation of the Collator will fail. 

D.3.6.5.2.2 Connection Establishment 

A transport layer connection has been established or opened when the first incoming virtual bus is 

connected to a Terminus by DARP, because one bus is sufficient for delivery of a data flow to 

commence.  As discussed in D.3.6.5.1.2 above, the transport layer will attempt to open a total of 𝑅𝑐 

virtual buses to the Collator in order to provide the required level of flow redundancy.  RDM reports 

connection establishment by firing the Collator.Opened() event.  Note that because Collators are 

passive, they have no concept of connection establishment failure.  Collators wait indefinitely for 

incoming RDM connections (and reconnections) until destroyed by a higher protocol layer. 

D.3.6.5.2.3 Connection Termination 

A transport layer connection to a Collator has been terminated, or closed, when the last incoming 

virtual bus has been disconnected from the Collator.  Disconnection might be initiated by the SN (see 

section D.3.6.5.1.5 above); by the DN in response to an RDM.DestroyCollator() call (see section 

D.3.6.5.2.7 below); or as a result of a network fault.  Regardless of the reason for the closure, RDM 

will report connection closure by firing the Collator.Closed() event. 

D.3.6.5.2.4 Virtual Bus Failure 

Virtual bus failure occurs when one or more buses between a Distributor and Collator fail 

unexpectedly, e.g. due to one or more network faults.  A bus failure does not necessarily equate to 

connection closure or failure; as long as at least one virtual bus is connected, the transport layer 

connection is open.  If every virtual bus that supports a transport layer connection fails, this is an 

instance of connection failure, not bus failure; refer to section D.3.6.5.2.6 below. 
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D.3.6.5.2.5 Virtual Bus Re-Establishment 

In the event that one or more virtual buses supporting a transport layer connection from a Distributor 

are unexpectedly disconnected, the normal operation of RDM's layer's self-healing processes will 

cause the Distributor to attempt to re-establish the buses.  If even one bus is restored to the Collator, 

RDM will report it by firing a Collator.Opened() event. 

D.3.6.5.2.6 Connection Failure 

Connection failure is an unexpected and/or uncontrolled shutdown of a transport layer connection 

caused by the unrecoverable closure of all virtual buses connected to a Collator.  Likely causes include 

failure of the SN, or the isolation of the DN from the SN due to one or more network faults.  RDM will 

report connection failure by firing the Collator.Closed() event. 

D.3.6.5.2.7 Destruction 

Collator destruction is normally triggered with an RDM.DestroyCollator() call.  The destruction process 

begins with controlled disconnection of all of the Collator's open virtual buses using a 

DARP.DestroyTerminuses() call.  When all of the buses are closed, and have been reported as 

destroyed with individual Terminus.Destroyed() events, the Collator itself is destroyed.  A Collator's 

destruction is reported by RDM firing a Collator.Destroyed() event. 

Note that if any of a Collator's Terminus objects are destroyed (destroyed, not closed), this will also 

trigger the destruction of the Collator. 

D.3.6.5.3 State Diagrams 

D.3.6.5.3.1 Source Node 

Both Distributors and TxBus objects are stateless, so no state diagrams are presented here for either 

type of object.  Client and BusClient objects are stateful. 

TxBus objects are RDM.SN's mechanism for managing virtual buses; a TxBus object corresponds to 

and has a one-to-one relationship with a DARP Origin object.  RDM only records sufficient information 

about the virtual bus to control the bus using DARP's API. 

BusClient objects are RDM.SN's mechanism for managing a virtual bus's connection to a particular DN, 

or Client.  DARP temporarily stores connection state information for a virtual bus whilst an Origin 

object is executing its management state machine (refer Figure D-19); only the information about the 

particular DN being manipulated is stored.  In contrast, RDM uses BusClient objects to persistently 

record all of the relationships between a virtual bus and the DN's that the bus is connected to. 
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Figure D-28 : RDM Client State Diagram 
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Figure D-29 : RDM BusClient State Diagram 

WaitToReserve

WaitToTrim

Committed

entry / send TxBus.Connected() event
exit / send TxBus.Disconnected() event

Creating

entry / initialize fields

Failed

entry / send TxBus.CreateFailed() event
exit / self-destruct

Trimming

entry / Execute DARP.DisconnectTerminus()
exit / self-destruct

TxBus / Origin does not exist

Tx
B

u
s 

/ 
O

ri
gi

n
 e

xi
st

s

Origin.Created() event received

RDM is NOT busy

Resourcing

entry / Execute DARP.CreateOrigin() Origin.CreateFailed() event received

Reserving

do / Execute DARP.ConnectTerminus()

RDM is busy

O
ri

gi
n

.C
o

n
ne

ct
Fa

ile
d

()
 e

ve
n

t 
re

ce
iv

ed

O
ri

gi
n

.D
es

tr
o

ye
d

()
 e

ve
n

t 
re

ce
iv

ed

Origin.Connected() event received

O
ri

gi
n

.F
ai

le
d

()
 e

ve
nt

 r
ec

ei
ve

d
 O

R
 r

ef
re

sh
 t

im
e

ou
t

O
ri

gi
n

.D
es

tr
o

ye
d

()
 e

ve
n

t 
re

ce
iv

ed

CloseClient() command received

RDM is NOT busy

R
D

M
 is

 b
u

sy



Page 517 

 

D.3.6.5.3.2 Destination Node 

 

Figure D-30 : RDM Collator State Diagram 
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D.3.7 PCP 

The Producer-Consumer Protocol (PCP) module implements the VB architecture's session layer, as 

described in Chapter 8. 

Internally, and absent considerations of the objects that it manages, PCP is reasonably 

straightforward: a default priority service thread monitors two message queues and the collection of 

PCP objects.  The use of message queues and a separate thread allows much of PCP's behaviour to be 

asynchronous to the rest of the stack. 

The IMsg queue is used for internal messages, i.e. messages sent to the PCP module by the other 

components and layers of the local VB protocol stack.  Calling any of PCP's interface API functions 

sends a message to the IMsg queue. 

The XMsg queue is used for external messages, i.e. messages sent to the local PCP module by PCP 

modules in other nodes.  The XMsg queue is written to by the cell type handler function that PCP 

registers with SAF. 

The PCP service thread retrieves and processes messages from both message queues, and processes 

PCP's object collection: executing state machines and checking for timeouts, broken links, etc. and 

responding appropriately. 

PCP's message queues each present a set of risks that needed to be managed carefully. 

Messages are pushed into the IMsg queue by calls to the PCP API.  The queue cannot overflow; if an 

API call fails to push a message into the queue for any reason, the function will return false.  Given 

the rate at which API calls could be made, it is conceivable that IMsg queue will from time to time 

reject API calls.  The depth of the IMsg queue could be increased if message loss proved to be 

problematic. 

Messages are pushed into the XMsg queue by the SAF module as it receives PCP network messages.  

Each PCP network message becomes an XMsg.  The queue cannot overflow; if SAF is unable to push a 

message into the queue, the message is discarded.  The PCP module is designed to deal with lost or 

discarded network messages by retrying periodically.  In any case, as discussed in section D.3.5 above, 

the likelihood of network messages being discarded due to a full XMsg queue is very low, not least 

because the PCP module uses a trivial amount of network capacity: in the absence of message loss, 

just three PCP messages are required to establish a relationship, and PCP does not use keepalive 

signalling so there is no ongoing utilization. 
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D.3.7.1 Diagrams 

 

Figure D-31 : PCP Module Implementation Diagram 

 

Figure D-32 : PCP Service Thread Task Flowchart 
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D.3.7.2 Interface Description 

PCP's interfaces are exposed to the higher layers and provide a means by which those layers can 

interact with PCP in order to trigger certain behaviours via commands, and to report events. 

Command Name Command Description 

Init Initializes the PCP module, including creating the message queues, and creating the PCP service 
thread. 

DeInit Gracefully shuts down the PCP module.  Destroys all objects (including fired their Destroyed 
events, if any), destroys the message queues, and terminates the PCP service thread. 

CreateProducer Request creation of a new local Producer object. 

DestroyProducer Request the graceful destruction of an existing local Producer object. 

DestroyProdReln Request the graceful destruction of an existing local ProdReln object. 

CreateConsumer Request creation of a new local Consumer object. 

DestroyConsumer Request the graceful destruction of an existing local Consumer object. 

DestroyConsReln Request the graceful destruction of an existing local ConsReln object. 

Table D-39 : PCP Module Commands 

Event Name Event Description 

Producer.Created A new local Producer instance was successfully created. 

Producer.CreateFailed An attempt to create a new local Producer instance failed. 

Producer.Destroyed An existing local Producer instance was successfully destroyed. 

Producer.Opened A relationship between a local Producer instance and a remote Consumer instance was 
opened. 

Producer.Closed A relationship between a local Producer instance and a remote Consumer instance was 
gracefully closed. 

Producer.Failed A relationship between a local Producer instance and a remote Consumer instance closed 
unexpectedly. 

Consumer.Created A new local Consumer instance was successfully created. 

Consumer.CreateFailed An attempt to create a new local Consumer instance failed. 

Consumer.Destroyed An existing local Consumer instance was successfully destroyed. 

Consumer.Opened A relationship between remote Producer instance and a local Consumer instance was opened. 

Consumer.Closed A relationship between a remote Producer instance and a local Consumer instance was 
gracefully closed. 

Consumer.Failed A relationship between a remote Producer instance and a local Consumer instance closed 
unexpectedly 

Table D-40 : PCP Module Events 
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D.3.7.3 Interface Prototypes 

Prototype 

typedef struct _PCP_ProducerEvents { 

 bool (*Created)(uint16_t type, BUFF *txb); 

 bool (*CreateFailed)(uint16_t type); 

 bool (*Destroyed)(uint16_t type); 

 bool (*Opened)(int8_t caddr, uint16_t type); 

 bool (*Closed)(int8_t caddr, uint16_t type); 

 bool (*Failed)(int8_t caddr, uint16_t type); 

 } PCP_ProducerEvents; 

typedef struct _PCP_ConsumerEvents { 

 bool (*Created)(uint16_t type); 

 bool (*CreateFailed)(uint16_t type); 

 bool (*Destroyed)(uint16_t type); 

 bool (*Opened)(int8_t paddr, uint16_t type, BUFF *rxb); 

 bool (*Closed)(int8_t paddr, uint16_t type); 

 bool (*Failed)(int8_t paddr, uint16_t type); 

 } PCP_ConsumerEvents; 

Table D-41 : PCP Module Public Data Prototypes 

Returns Name Argument List 

bool PCP_CreateProducer uint16_t type, 

int8_t width, 

BUFF *txb, 

PCP_ProducerEvents *events, 

void (*cb)(void*), 

void *cbarg 

bool PCP_DestroyProducer uint16_t type, 

void (*cb)(void*), 

void *cbarg 
bool PCP_DestroyProdReln int8_t caddr, 

uint16_t type, 

void (*cb)(void*), 

void *cbarg 
bool PCP_CreateConsumer uint16_t type, 

int8_t width, 

int8_t pcnt, 

int8_t rcnt, 

PCP_ConsumerEvents *events, 

void (*cb)(void*), 

void *cbarg 
bool PCP_DestroyConsumer uint16_t type, 

void (*cb)(void*), 

void *cbarg 
bool PCP_DestroyConsReln int8_t paddr, 

uint16_t type, 

void (*cb)(void*), 

void *cbarg 

Table D-42 : PCP Module Public Function Prototypes 

D.3.7.4 Signal Format & Structure 

PCP uses the management network sub-layer to exchange signals between Producers and Consumers.  

Signals may be broadcast or point-to-point.  Point-to-point signals are transported across a number of 

network hops to a specific destination as Store-and-Forward (SAF) messages.  All PCP signals are 

encapsulated in a single SAF ad-hoc message, as described in Table D-12 above. 

A SAF message is treated as a PCP signal if the message header's Cell Type field is set to 0x8C, or 

CellType_PCP.  The SAF message handler directs qualifying messages to the local PCP implementation. 

Each instance of a Producer or Consumer tracks a separate sequence number that it increments each 

time it transmits a message.  This sequence number is transported in the SAF message header's 

sequence number field, principally to allow constrained broadcasting of Consumer ADVERT signals, as 

discussed in section D.3.7.6.2. 
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The fields that make up a PCP signal, and their locations in a SAF message, are detailed in Table D-43 

below. 

Field Purpose Location Size (bits) 

Destination Address Signal destination node. Header 6 

Source Address Signal source node. Header 6 

Cell Type 0x8C (CellType_PCP) Header 8 

Sequence Number Instance-specific ordering index of signal. Header 8 

PCP Operation Requested PCP operation.  Refer to Table D-44 below. Payload 8 

Data Type Type of data produced or consumed. Payload 16 

Width Bandwidth required for the data flow, measured in units of an ad-hoc 
cell payload, or 16-octet blocks. 

Payload 8 

Redundancy Count Replica data flow redundancy level to be organised by RDM. Payload 8 

Unused  Payload 88 

Table D-43 : Format of a PCP Signal 

The least significant octet of the SAF message payload contains the Operation Type of the PCP signal.  

It specifies the PCP operation that the receiver is being asked to execute. 

Role Operation Value Description 

Consumer ADVERT 0x41 Broadcast.  Requests that matching Producers respond with an ADVERT signal. 

ACCEPT 0x42 Unicast.  Requests that the destination Producer attempts to establish a 
relationship and resource it by opening a transport layer connection. 

KILL 0x44 Unicast.  Requests that the destination Producer gracefully close the transport 
layer connection that it is using to sustain an existing relationship, then 
terminates the relationship. 

DEAD 0x48 Unicast.  Advises the destination Producer that there is no existing relationship. 

Producer ADVERT 0x81 Unicast.  Offers a relationship to the destination Consumer. 

ACCEPT 0x82 Unicast.  Advises the destination Consumer that the Producer is (still) trying to 
resource a relationship by opening a transport layer connection. 

KILL 0x84 Unicast.  Advises the destination Consumer that the Producer is (still) gracefully 
closing the transport layer connection used to sustain a previous relationship. 

DEAD 0x88 Unicast.  Advises the destination Consumer there is no existing relationship. 

Table D-44 : Enumeration of PCP Operation Types 

D.3.7.5 Object Model 

Each node role – PCP.SN and PCP.DN – is a specialization of the more general PCP.Node class that 

works with the object type that relates to that role: SN's work with Producers and DN's work with 

Consumers.  Both Producers and Consumers may also instantiate their own collections of dependent 

child objects – the relationships that they have formed with remote partners. 
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Figure D-33 : Simplified PCP Object Model 
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Figure D-34 : PCP Source Node Object Model 
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Figure D-35 : PCP Destination Node Object Model 
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A partial mesh network topology, as used by the VB architecture, is not a particularly efficient 

broadcast space.  In the absence of a means of constraining the propagation of a broadcast message, 

it is likely that a node will receive a large number of replicas of the original message.  PCP constrains 

message broadcasts using a mechanism identical to that of the Network Mapping Service (NMS) 

discussed in section 3.4. 

Each ADVERT signal broadcast by a Consumer is tagged with a sequence number.  This sequence 

number is incremented after each signal a Consumer transmits, including ADVERT broadcasts. 

Every PCP instance records the last time that it received an ADVERT signal from a particular Consumer.  

Such records include the Consumer's network address and data type, the sequence number of the 

ADVERT signal, and the network time that the signal was received.  When a Consumer ADVERT signal 

is received, it is compared to the existing record.  If the signal's sequence number, an 8-bit unsigned 

integer, is no more than 127 in advance of the recorded sequence number, the record is updated and 

the signal is re-broadcast.  Otherwise, the record is updated but the signal is discarded. 

The signal receive time, and an implementation-specific "time to live" value, are used to discard 

Consumer ADVERT records that are no longer required, for example, if a Consumer ceases to emit 

ADVERT signals or can no longer communicate with the receiving node due to a network fault. 

D.3.7.6.3 Producer 

Producers are the passive partners under PCP.  They do not initiate relationships with Consumers.  

However, a Producer may terminate a relationship with a Consumer at any time. 

State diagrams for the Producer and Producer Relationship objects are located at Figure D-36 on page 

530 and Figure D-37 on page 531.  Use-cases and sequence diagrams that reflect the following 

behavioural descriptions are presented in section 4.4.4. 

D.3.7.6.3.1 Initialization 

Initialization of a Producer is triggered by the execution of PCP.CreateProducer() by a higher network 

layer.  Each Producer must have a one-to-one relationship with a corresponding Distributor; the 

Distributor is the transmit endpoint for the data flow that the Producer will provide to its Consumers.  

In order to create the Distributor, the Producer issues an RDM.CreateProducer() call.  RDM reports 

successful creation of the Distributor by firing the Distributor.Created() event, or a failure to create by 

firing the Distributor.CreateFailed() event.  If creation of the Distributor fails then Producer 

initialization has failed; the orphan Producer object is destroyed and the Producer.CreateFailed() 

event is fired.  If however creation of the Distributor is successful then the new Producer is added to 

PCP's collection and the Producer.Created() event is fired. 

D.3.7.6.3.2 Respond to Advertisement 

When a Producer receives an advertisement from a matching (i.e. of the same data type and width) 

Consumer, it responds with an offer to form a relationship – a "session", as discussed in section 4.4.2. 

D.3.7.6.3.3 Acceptance of Relationship Offers 

When a Producer receives a notification of acceptance of a relationship offer from a corresponding 

Consumer, in the form of a Consumer ACCEPT signal, it creates a corresponding ProdReln object, and 
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executes RDM.OpenClient() in order to resource the relationship by opening an RDM connection to 

the Consumer. 

D.3.7.6.3.4 Relationship Connection Success 

A successful attempt by RDM to resource a connection from a Producer to a Consumer will be reported 

by firing the Producer.Connected() event.  The Consumer is alerted that the relationship has been 

resourced when it's local RDM instance fires a Collator.Opened() event; no additional signalling is 

required by the Producer to advise the Consumer that the relationship has been resourced. 

D.3.7.6.3.5 Relationship Connection Failure 

An unsuccessful attempt by RDM to resolve a connection from a Producer to a Consumer will be 

reported by firing the Producer.Failed() event.  The Producer will also attempt to advise the Consumer 

that the relationship has failed by sending a KILL signal.  The ProdReln object that represents the 

relationship with that Consumer will be destroyed. 

D.3.7.6.3.6 Relationship Termination 

Graceful termination of a Producer's relationship with a Consumer may be initiated by either the 

Producer or Consumer.  Relationship termination is generally triggered from the Producer by a higher 

layer executing PCP.DestroyProdReln().  The Producer responds by executing RDM.CloseClient() in 

order to disconnect the RDM connection to the Consumer.  When RDM reports that the Client has 

been disconnected by firing a Distributor.Closed() event, the corresponding ProdReln object is 

destroyed.  Relationship termination will be reported by firing the Producer.Closed() event. 

Relationships will also be terminated gracefully if a Producer is destroyed; see section D.3.7.6.3.9 

below. 

D.3.7.6.3.7 Relationship Degradation 

If a network fault (or cluster of faults) breaks some, but not all, of the underlying DARP virtual buses 

that sustain an RDM connection between a Producer and Consumer then the relationship has 

degraded.  PCP does not learn about or report RDM connection degradation, or its reversal.  RDM will 

attempt to build additional DARP virtual buses to restore the desired level of redundancy. 

D.3.7.6.3.8 Relationship Failure 

If a network fault (or cluster of faults) breaks all of the underlying DARP virtual buses that sustain an 

RDM connection between a Producer and Consumer then the relationship has failed.  RDM reports 

this by firing a Distributor.Failed() event, to which the Producer responds by destroying the 

relationship as gracefully as possible.  It then fires the Producer.Failed() event. 

D.3.7.6.3.9 De-Initialization 

De-initialization, or destruction, of a Producer is triggered by executing PCP.DestroyProducer().  The 

destruction of the associated Distributor object, and all of its Clients, is triggered by executing 

RDM.DestroyDistributor().  As RDM reports each Client's disconnection by firing Distributor.Closed() 

events, the corresponding ProdReln objects are destroyed.  When the destruction of the Distributor 

is reported by RDM firing the Distributor.Destroyed() event, the Producer itself is destroyed.  

Completion of de-initialization is reported by firing the Producer.Destroyed() event. 
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D.3.7.6.4 Consumer 

Consumers are the active partners under PCP.  They periodically advertise their presence to Producers 

in order to try to attract potential relationship partners.  When a Consumer has negotiated 

relationships with 𝑃𝑐 Producers, it ceases to advertise. 

State diagrams for the Consumer and Consumer Relationship objects are located at Figure D-38 on 

page 532 and Figure D-39 on page 533.  Use-cases and sequence diagrams that reflect the following 

behavioural descriptions are presented in section 4.4.4. 

D.3.7.6.4.1 Initialization 

Initialization of a Consumer is triggered by a higher network layer executing RDM.CreateConsumer().  

PCP reports the success or failure of the initialization process by firing the Consumer.Created() or 

Consumer.CreateFailed() events respectively. 

D.3.7.6.4.2 Advertising for Relationships 

Consumers are created with the desire to form relationships with a specified number of Producers, 

𝑃𝑐.  In order to attract potential relationship partners, Consumers periodically publish advertisements 

using constrained network broadcasts, as discussed in section D.3.7.6.2 above.  When a Consumer has 

negotiated (or, is negotiating) the desired number of relationships, it ceases advertising.  If the current 

number of relationships falls below 𝑃𝑐, the Consumer will begin advertising again. 

D.3.7.6.4.3 Acceptance of Relationship Offers 

Upon receipt of an acceptable offer from a suitable Producer, the Consumer attempts to create a 

Consumer Relationship object.  Each ConsReln object must have a one-to-one relationship with a 

corresponding RDM Collator; the Collator is the receive endpoint for the data flow from the partner 

Producer's Distributor.  In order to create the Collator, the Consumer executes RDM.CreateCollator(). 

If RDM reports successful creation of the Collator by firing the Collator.Created() event, the Consumer 

advises the Producer that its offer has been accepted.  Note that the relationship is not yet ready for 

operation; it still needs to be resourced by having the partner Producer's corresponding Distributor 

open an RDM connection to the new Collator.  If RDM reports that creation of the Collator was 

unsuccessful by firing the Collator.CreateFailed() event, the ConsReln object is destroyed. 

D.3.7.6.4.4 Relationship Connection Success 

When it learns that a matching Consumer has accepted its relationship offer, the new partner 

Producer will try to resource the proposed relationship as discussed in sections D.3.7.6.3.3 and 

D.3.7.6.3.4 above.  The Consumer learns that the relationship has been resourced when its local RDM 

instance fires a Collator.Opened() event.  PCP will in turn report the successful resourcing of a 

relationship by firing the Consumer.Opened() event. 

D.3.7.6.4.5 Relationship Connection Failure 

If the Producer's local RDM instance determines that it is unable to resolve a connection from its 

Distributor to the ConsReln's Collator, the relationship has failed during resourcing.  RDM is unable to 

alert a Collator that a connection could not be made to it, so the Producer will report the failure to 

the Consumer by sending it a Producer KILL signal.  The Consumer responds to the KILL signal by 

executing RDM.DestroyCollator() in order to trigger the destruction of the Collator.  When RDM 
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reports that the Collator has been destroyed by firing the Collator.Destroyed() event, the Consumer 

destroys the failed ConsReln object. 

D.3.7.6.4.6 Relationship Termination 

Graceful termination of a Consumer's relationship with a Producer may be initiated by either the 

Producer or Consumer. Relationship termination is triggered at the Consumer by executing 

PCP.DestroyConsReln().  The Consumer begins by sending a Consumer KILL signal to the Producer, 

asking it to close the underlying RDM connection.  When RDM fires Collator.Closed() to report that 

the connection has been closed, the Consumer executes RDM.DestroyCollator(), and when RDM fires 

Collator.Destroyed(), the corresponding ConsReln object is also destroyed.  Completion of the 

relationship termination process will be reported by firing the Consumer.Closed() event. 

D.3.7.6.4.7 Relationship Degradation 

If a network fault (or cluster of faults) breaks some, but not all, of the underlying DARP virtual buses 

that sustain an RDM connection that resources a PCP relationship, the relationship has degraded.  PCP 

does not learn about or report RDM connection degradation, or its reversal.  RDM will attempt to build 

additional DARP virtual buses to restore the desired level of redundancy. 

D.3.7.6.4.8 Relationship Failure 

If a network fault (or cluster of faults) breaks all of the underlying DARP virtual buses that sustain an 

RDM connection that resources a PCP relationship, the relationship has failed.  RDM reports this by 

firing a Collator.Failed() event, to which the Consumer responds by destroying the relationship as 

gracefully as possible.  It then fires the Consumer.Failed() event. 

D.3.7.6.4.9 De-Initialization 

De-initialization, or destruction, of a Consumer is triggered by a PCP.DestroyConsumer() call.  After all 

ConsReln's have been gracefully terminated, as described in section D.3.7.6.4.6 above, the Consumer 

itself is destroyed.  Completion of the de-initialization process is reported by firing the 

Consumer.Destroyed() event. 
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D.3.7.6.5 State Diagrams 

 

 

Figure D-36 : Producer State Diagram 
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Figure D-37 : Producer Relationship State Diagram 
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Figure D-38 : Consumer State Diagram 
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Figure D-39 : Consumer Relationship State Diagram 
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D.4 Other Considerations 

D.4.1 Implementation Tips 

In the course of developing the VB stack, I have of necessity written a test harness.  The test harness 

represents a useful starting point for implementation of the protocol stack. 

When I conceived of the stack, I also considered how I might employ it myself.  The PCP module is the 

top layer of the stack, and I see it as the primary point of interaction for an application using the VB 

stack.  Amongst its other functions, the test harness is designed to establish PCP relationships and use 

them to send simple point-to-multipoint text messages.  It could be readily used as an implementation 

template. 

To establish a node as a Producer of a particular data type, a thread calls PCP_CreateProducer() and 

waits for PCP to send back the Producer.Created() event.  One of the event's arguments is a reference 

to the stream buffer that is the PCP transmit endpoint.  Data that is written to this buffer will be 

transported to all of the Consumers that form relationships with the Producer. 

To establish a node as a Consumer of a particular data type, a thread calls PCP_CreateConsumer(), then 

waits for PCP to send back Consumer.Opened() events as the Consumer forms relationships with 

Producers.  One of the event's arguments is a reference to the stream buffer that is the relationship's 

PCP receive endpoint.  Data that is written to the corresponding Producer's transmit endpoint will be 

transported to this receive endpoint.  There is no need to poll for received data; the stream buffer 

implementation can be configured to send its own event when data is written to it. 

When the Producer is destroyed, it sends a Producer.Destroyed() event to signal that the transmit 

endpoint is no longer available.  Similarly, if the Consumer's relationship with a Producer is terminated 

for any reason, including its own impending destruction, it will send one or more of the 

Consumer.Destroyed(), Consumer.Closed() and Consumer.Failed() events, any of which signals that the 

receive endpoint is no longer available. 

Note that the test harness is able to access the RDM and DARP API's for verification and debugging, 

but for most practical purposes the PCP API is the preferred access point for implementation. 

D.4.2 Limitations 

The MAC logic design running in the FPGA signals an interrupt every 5ms to the MAC firmware, as the 

network toggles between the Traffic and Management phases.  Occasionally, the firmware misses 

these interrupts, causing the TDM service thread to time out.  These timeouts have no effect on the 

stack, other than the potential for the loss of an interval's data; the firmware detects them and 

recovers gracefully.  I estimate the average rate of occurrence as being approximately one per 140,000 

intervals, or two to three per hour. 

There are a number of possible explanations for this behaviour, so I haven't been able to narrow it 

down to one particular cause. 

1. A problem in the MAC logic design, e.g. a missed timing constraint.  I regard this as possible, and 

worthy of further exploration. 

2. A problem in the physical or electrical connection that signals interrupts from the FPGA to the 

MCU.  I regard this as highly unlikely, but I can't completely discount it. 
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3. A problem with FreeRTOS's interrupt handling.  I have found a small number of references to 

FreeRTOS on Cortex-M MCU's occasionally missing interrupts.  I regard this as the most likely 

explanation, not least because there appears to be some correlation between the error rate and 

CPU load. 

D.5 Conclusions 

This appendix has presented an overview of the design and operation of firmware that implements 

my proof of concept for the operation of the virtual bus network architecture. 

The firmware executes on an ARM Cortex-M4 microcontroller and is built on the foundations provided 

by FreeRTOS.  The layers of the virtual bus stack are constructed from independent C modules, and 

hosted by one or more FreeRTOS threads.  Inter-module communication is primarily but not 

exclusively reliant upon asynchronous message-passing.  Some hard real-time timing requirements 

are met using hardware interrupts and direct-to-thread signalling. 

A simple wrapper for the session layer and a command-line interface to drive that wrapper are 

included for testing and demonstration purposes. 

There is at least one bug that I have been unable to resolve and that I strongly suspect is tied to a 

hardware limitation of the Cortex-M4. 
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