9 research outputs found

    High Performance Embedded Computing

    Get PDF
    Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platforms Programming models Mapping and scheduling of parallel computations Timing and schedulability analysis Runtimes and operating systemsThe work reflected in this book was done in the scope of the European project P SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things

    High-Performance and Time-Predictable Embedded Computing

    Get PDF
    Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platforms Programming models Mapping and scheduling of parallel computations Timing and schedulability analysis Runtimes and operating systems The work reflected in this book was done in the scope of the European project P SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things.info:eu-repo/semantics/publishedVersio

    Analyses and optimizations of timing-constrained embedded systems considering resource synchronization and machine learning approaches

    Get PDF
    Nowadays, embedded systems have become ubiquitous, powering a vast array of applications from consumer electronics to industrial automation. Concurrently, statistical and machine learning algorithms are being increasingly adopted across various application domains, such as medical diagnosis, autonomous driving, and environmental analysis, offering sophisticated data analysis and decision-making capabilities. As the demand for intelligent and time-sensitive applications continues to surge, accompanied by growing concerns regarding data privacy, the deployment of machine learning models on embedded devices has emerged as an indispensable requirement. However, this integration introduces both significant opportunities for performance enhancement and complex challenges in deployment optimization. On the one hand, deploying machine learning models on embedded systems with limited computational capacity, power budgets, and stringent timing requirements necessitates additional adjustments to ensure optimal performance and meet the imposed timing constraints. On the other hand, the inherent capabilities of machine learning, such as self-adaptation during runtime, prove invaluable in addressing challenges encountered in embedded systems, aiding in optimization and decision-making processes. This dissertation introduces two primary modifications for the analyses and optimizations of timing-constrained embedded systems. For one thing, it addresses the relatively long access times required for shared resources of machine learning tasks. For another, it considers the limited communication resources and data privacy concerns in distributed embedded systems when deploying machine learning models. Additionally, this work provides a use case that employs a machine learning method to tackle challenges specific to embedded systems. By addressing these key aspects, this dissertation contributes to the analysis and optimization of timing-constrained embedded systems, considering resource synchronization and machine learning models to enable improved performance and efficiency in real-time applications with stringent constraints

    Actes de l'Ecole d'Eté Temps Réel 2005 - ETR'2005

    Get PDF
    Pdf des actes disponible à l'URL http://etr05.loria.fr/Le programme de l'Ecole d'été Temps Réel 2005 est construit autour d'exposés de synthèse donnés par des spécialistes du monde industriel et universitaire qui permettront aux participants de l'ETR, et notamment aux doctorants, de se forger une culture scientifique dans le domaine. Cette quatrième édition est centrée autour des grands thèmes d'importance dans la conception des systèmes temps réel : Langages et techniques de description d'architectures, Validation, test et preuve par des approches déterministes et stochastiques, Ordonnancement et systèmes d'exploitation temps réel, Répartition, réseaux temps réel et qualité de service

    An Algebraic Approach for Fixed-Priority Scheduling of Hard Real-time Systems with Exact Preemption Cost

    Get PDF
    In this paper we study hard real-time systems composed of independent periodic preemptive tasks in the monoprocessor case. For such systems it is mandatory to satisfy all the constraints for all tasks. Although preemptive scheduling algorithms are able to successfully schedule some systems that cannot be scheduled by any non preemptive scheduling algorithm, the cost of preemption may not be negligible. Therefore, we propose to consider explicitly its exact cost in the schedulability conditions in order to avoid wasting resources and provide safety in terms of guaranteeing the right behavior of the system at run-time. Five main contributions are presented in this paper. First, we introduce a new model to describe and analyse hard real-time systems, which unifies in one framework different models such as Liu \& Layland's and Mok's models. Second, we show the impact of considering the exact cost of preemption for each task on the schedulability analysis. Third, by using our model based on an algebraic approach we provide new schedulability conditions which take into account the exact cost due to the occurrence of each preemption. Fourth, in this case we propose an optimal algorithm in the sense of feasibility for choosing the fixed-priority of each task. Finally, we address the problem of reducing the number of preemptions.Dans ce papier nous étudions les systèmes temps réel durs composés de tâches préemptives indépendantes dans le cas mono-processeur. Pour de tels systèmes il est obligatoire de respecter toutes les contraintes auxquelles sont soumises toutes les tâches. Bien que des algorithmes d'ordonnancement préemptifs soient capables d'ordonnancer certains systèmes qui ne peuvent être ordonnancés avec aucun algorithme d'ordonnancement non préemptif, la préemption peut avoir un coût non négligeable. Nous proposons donc de considérer explicitement le coût exact de la préemption dans les analyses d'ordonnançabilité afin d'une part d'éviter du gaspillage de ressources et d'autre part de garantir un comportement correct lors de l'exécution en temps réel conforme aux analyses d'ordonnançabilité. Nous présentons dans ce papier cinq contributions. Premièrement nous introduisons un nouveau model pour décrire et analyser les systèmes temps réel durs qui unifie plusieurs modèles comme celui de Liu et Layland ou celui de Mok. Deuxièmement nous montrons l'impact de la prise en compte du coût exact de la préemption pour chaque tâche lors de l'analyse d'ordonnançabilité. Troisièmement en utilisant notre modèle fondé sur une approche algébrique nous proposons de nouvelles conditions d'ordonnançabilité qui prennent en compte le coût exact dû à l'occurence de chaque préemption. Quatrièmement, dans le cas ou l'on considère ce coût exact de la préemption, nous proposons un algorithme d'ordonnancement optimal, au sens de la faisabilité, pour choisir la priorité fixe de chaque tâche. Finalement nous étudions le problème consistant à réduire le nombre de préemptions

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Complex scheduling models and analyses for property-based real-time embedded systems

    Get PDF
    Modern multi core architectures and parallel applications pose a significant challenge to the worst-case centric real-time system verification and design efforts. The involved model and parameter uncertainty contest the fidelity of formal real-time analyses, which are mostly based on exact model assumptions. In this dissertation, various approaches that can accept parameter and model uncertainty are presented. In an attempt to improve predictability in worst-case centric analyses, the exploration of timing predictable protocols are examined for parallel task scheduling on multiprocessors and network-on-chip arbitration. A novel scheduling algorithm, called stationary rigid gang scheduling, for gang tasks on multiprocessors is proposed. In regard to fixed-priority wormhole-switched network-on-chips, a more restrictive family of transmission protocols called simultaneous progression switching protocols is proposed with predictability enhancing properties. Moreover, hierarchical scheduling for parallel DAG tasks under parameter uncertainty is studied to achieve temporal- and spatial isolation. Fault-tolerance as a supplementary reliability aspect of real-time systems is examined, in spite of dynamic external causes of fault. Using various job variants, which trade off increased execution time demand with increased error protection, a state-based policy selection strategy is proposed, which provably assures an acceptable quality-of-service (QoS). Lastly, the temporal misalignment of sensor data in sensor fusion applications in cyber-physical systems is examined. A modular analysis based on minimal properties to obtain an upper-bound for the maximal sensor data time-stamp difference is proposed

    Systèmes véhiculaires à domaines de sécurité et de criticité multiples : une passerelle systronique temps réel

    Get PDF
    Nowadays, vehicular systems are composed of more and more interconnected systems. Those systems manage a lot of complex functions and must comply with various safety-critical requirements (such as real-time) but also more and more with security requirements. With the new connected vehicles, it is necessary to make these various systems communicate, in order to manage locally or remotely the overall vetronic system. Make these systems communicate, moreover in military vehicles, implies to support various constraints. Theses constraints need to be supported by specific elements, used as gateways between each vehicle system needing external communication. This gateway has to protect each system in term of safety and security, but also has to guarantee an efficient upper-bounded transfer between them. In this thesis, we have proposed a software architecture for these gateways, compliant with the various vehicular security and safety requirements. The solution is proposed as a framework, supporting a modular configuration and able to aggregate various modules on a partitioned software architecture. Such an aggregation is then able to respond to the various vehicular specific needs such as security and real-timeDe nos jours, les véhicules intègrent de plus en plus de systèmes interconnectés. Ces systèmes ont des fonctions aussi nombreuses que complexes et sont soumis à des contraintes de sureté de fonctionnement (dont le temps réel) mais également de plus en plus de sécurité. Avec l'apparition des véhicules connectés, il devient nécessaire de faire communiquer ces différents systèmes, tant pour les gérer au niveau véhiculaire que potentiellement à distance. Faire communiquer ces différents réseaux, a fortiori dans les véhicules militaires, implique la prise en compte de diverses contraintes. Ces contraintes nécessitent d'être traitées par des éléments en coupure entre les différents systèmes. Un tel élément est alors en charge de protéger ces derniers en termes de sûreté de fonctionnement et de sécurité mais doit également assurer un transfert efficace et borné de l'information. Dans cette thèse, nous avons proposé une architecture logicielle de passerelle permettant de répondre à ces différentes contraintes et d'assurer ainsi l'interconnexion de tous ces systèmes. La solution se présente comme un framework permettant d'intégrer divers modules sur une architecture partitionnée et sûre, afin de pouvoir répondre à divers besoins spécifiques aux systèmes véhiculaire
    corecore