358 research outputs found

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    A multi-hierarchical symbolic model of the environment for improving mobile robot operation

    Get PDF
    El trabajo desarrollado en esta tesis se centra en el estudio y aplicación de estructuras multijerárquicas, que representan el entorno de un robot móvil, con el objetivo de mejorar su capacidad de realizar tareas complejas en escenarios humanos. Un robot móvil debe poseer una representación simbólica de su entorno para poder llevar a cabo operaciones deliberativas, por ejemplo planificar tareas. Sin embargo a la hora de representar simbólicamente entornos reales, dado su complejidad, es imprescindible contar con mecanismos capaces de organizar y facilitar el acceso a la ingente cantidad de información que de ellos se deriva. Aparte del inconveniente de tratar con grandes cantidades de información, existen otros problemas subyacentes de la representación simbólica de entornos reales, los cuales aún no han sido resueltos por completo en la literatura científica. Uno de ellos consiste en el mantenimiento de la representación simbólica optimizada con respecto a las tareas que el robot debe realizar, y coherente con el entorno en el que se desenvuelve. Otro problema, relacionado con el anterior es la creación/modificación de la información simbólica a partir de información meramente sensorial (este problema es conocido como symbol-grounding). Esta tesis estudia estos problemas y aporta soluciones mediante estructuras multijerárquicas. Estas estructuras simbólicas, basadas en el concepto de abstracción, imitan la forma en la que los humanos organizamos la información espacial y permite a un robot móvil mejorar sus habilidades en entornos complejos. Las principales contribuciones de este trabajo son: - Se ha formalizado matemáticamente un modelo simbólico basado en múltiples abstracciones (multijerarquías) mediante Teoría de Categorías. Se ha desarrollado un planificador de tareas eficiente que es capaz de aprovechar la organización jerárquica del modelo simbólico del entorno. Nuestro método ha sido validado matemáticamente y se han implementado y comparado dos variantes del mismo (HPWA-1 y HPWA-2). - Una instancia particular del modelo multijerárquico ha sido estudiada e implementada para organizar información simbólica con el objetivo de mejorar simultáneamente diferentes tareas a realizar por un robot móvil. - Se ha desarrollado un procedimiento que (1) construye un modelo jerárquico del entorno de un robot, (2) lo mantiene coherente y actualizado y (3) lo optimiza con el fin de mejorar las tareas realizadas por un robot móvil. - Finalmente, se ha implementado una arquitectura robótica que engloba todas las cuestiones anteriormente citadas. Se han realizado pruebas reales con una silla de ruedas robotizada que ponen de manifiesto la utilidad del uso de estructuras multijerárquicas en robótica móvil

    Autonomous Execution of Cinematographic Shots with Multiple Drones

    Full text link
    This paper presents a system for the execution of autonomous cinematography missions with a team of drones. The system allows media directors to design missions involving different types of shots with one or multiple cameras, running sequentially or concurrently. We introduce the complete architecture, which includes components for mission design, planning and execution. Then, we focus on the components related to autonomous mission execution. First, we propose a novel parametric description for shots, considering different types of camera motion and tracked targets; and we use it to implement a set of canonical shots. Second, for multi-drone shot execution, we propose distributed schedulers that activate different shot controllers on board the drones. Moreover, an event-based mechanism is used to synchronize shot execution among the drones and to account for inaccuracies during shot planning. Finally, we showcase the system with field experiments filming sport activities, including a real regatta event. We report on system integration and lessons learnt during our experimental campaigns

    A generalized laser simulator algorithm for optimal path planning in constraints environment

    Get PDF
    Path planning plays a vital role in autonomous mobile robot navigation, and it has thus become one of the most studied areas in robotics. Path planning refers to a robot's search for a collision-free and optimal path from a start point to a predefined goal position in a given environment. This research focuses on developing a novel path planning algorithm, called Generalized Laser Simulator (GLS), to solve the path planning problem of mobile robots in a constrained environment. This approach allows finding the path for a mobile robot while avoiding obstacles, searching for a goal, considering some constraints and finding an optimal path during the robot movement in both known and unknown environments. The feasible path is determined between the start and goal positions by generating a wave of points in all directions towards the goal point with adhering to constraints. A simulation study employing the proposed approach is applied to the grid map settings to determine a collision-free path from the start to goal positions. First, the grid mapping of the robot's workspace environment is constructed, and then the borders of the workspace environment are detected based on the new proposed function. This function guides the robot to move toward the desired goal. Two concepts have been implemented to find the best candidate point to move next: minimum distance to goal and maximum index distance to the boundary, integrated by negative probability to sort out the most preferred point for the robot trajectory determination. In order to construct an optimal collision-free path, an optimization step was included to find out the minimum distance within the candidate points that have been determined by GLS while adhering to particular constraint's rules and avoiding obstacles. The proposed algorithm will switch its working pattern based on the goal minimum and boundary maximum index distances. For static obstacle avoidance, the boundaries of the obstacle(s) are considered borders of the environment. However, the algorithm detects obstacles as a new border in dynamic obstacles once it occurs in front of the GLS waves. The proposed method has been tested in several test environments with different degrees of complexity. Twenty different arbitrary environments are categorized into four: Simple, complex, narrow, and maze, with five test environments in each. The results demonstrated that the proposed method could generate an optimal collision-free path. Moreover, the proposed algorithm result are compared to some common algorithms such as the A* algorithm, Probabilistic Road Map, RRT, Bi-directional RRT, and Laser Simulator algorithm to demonstrate its effectiveness. The suggested algorithm outperforms the competition in terms of improving path cost, smoothness, and search time. A statistical test was used to demonstrate the efficiency of the proposed algorithm over the compared methods. The GLS is 7.8 and 5.5 times faster than A* and LS, respectively, generating a path 1.2 and 1.5 times shorter than A* and LS. The mean value of the path cost achieved by the proposed approach is 4% and 15% lower than PRM and RRT, respectively. The mean path cost generated by the LS algorithm, on the other hand, is 14% higher than that generated by the PRM. Finally, to verify the performance of the developed method for generating a collision-free path, experimental studies were carried out using an existing WMR platform in labs and roads. The experimental work investigates complete autonomous WMR path planning in the lab and road environments using live video streaming. The local maps were built using data from live video streaming s by real-time image processing to detect the segments of the lab and road environments. The image processing includes several operations to apply GLS on the prepared local map. The proposed algorithm generates the path within the prepared local map to find the path between start-to-goal positions to avoid obstacles and adhere to constraints. The experimental test shows that the proposed method can generate the shortest path and best smooth trajectory from start to goal points in comparison with the laser simulator

    Optimal Multi-UAV Trajectory Planning for Filming Applications

    Get PDF
    Teams of multiple Unmanned Aerial Vehicles (UAVs) can be used to record large-scale outdoor scenarios and complementary views of several action points as a promising system for cinematic video recording. Generating the trajectories of the UAVs plays a key role, as it should be ensured that they comply with requirements for system dynamics, smoothness, and safety. The rise of numerical methods for nonlinear optimization is finding a ourishing field in optimization-based approaches to multi- UAV trajectory planning. In particular, these methods are rather promising for video recording applications, as they enable multiple constraints and objectives to be formulated, such as trajectory smoothness, compliance with UAV and camera dynamics, avoidance of obstacles and inter-UAV con icts, and mutual UAV visibility. The main objective of this thesis is to plan online trajectories for multi-UAV teams in video applications, formulating novel optimization problems and solving them in real time. The thesis begins by presenting a framework for carrying out autonomous cinematography missions with a team of UAVs. This framework enables media directors to design missions involving different types of shots with one or multiple cameras, running sequentially or concurrently. Second, the thesis proposes a novel non-linear formulation for the challenging problem of computing optimal multi-UAV trajectories for cinematography, integrating UAV dynamics and collision avoidance constraints, together with cinematographic aspects such as smoothness, gimbal mechanical limits, and mutual camera visibility. Lastly, the thesis describes a method for autonomous aerial recording with distributed lighting by a team of UAVs. The multi-UAV trajectory optimization problem is decoupled into two steps in order to tackle non-linear cinematographic aspects and obstacle avoidance at separate stages. This allows the trajectory planner to perform in real time and to react online to changes in dynamic environments. It is important to note that all the methods in the thesis have been validated by means of extensive simulations and field experiments. Moreover, all the software components have been developed as open source.Los equipos de vehículos aéreos no tripulados (UAV) son sistemas prometedores para grabar eventos cinematográficos, en escenarios exteriores de grandes dimensiones difíciles de cubrir o para tomar vistas complementarias de diferentes puntos de acción. La generación de trayectorias para este tipo de vehículos desempeña un papel fundamental, ya que debe garantizarse que se cumplan requisitos dinámicos, de suavidad y de seguridad. Los enfoques basados en la optimización para la planificación de trayectorias de múltiples UAVs se pueden ver beneficiados por el auge de los métodos numéricos para la resolución de problemas de optimización no lineales. En particular, estos métodos son bastante prometedores para las aplicaciones de grabación de vídeo, ya que permiten formular múltiples restricciones y objetivos, como la suavidad de la trayectoria, el cumplimiento de la dinámica del UAV y de la cámara, la evitación de obstáculos y de conflictos entre UAVs, y la visibilidad mutua. El objetivo principal de esta tesis es planificar trayectorias para equipos multi-UAV en aplicaciones de vídeo, formulando novedosos problemas de optimización y resolviéndolos en tiempo real. La tesis comienza presentando un marco de trabajo para la realización de misiones cinematográficas autónomas con un equipo de UAVs. Este marco permite a los directores de medios de comunicación diseñar misiones que incluyan diferentes tipos de tomas con una o varias cámaras, ejecutadas de forma secuencial o concurrente. En segundo lugar, la tesis propone una novedosa formulación no lineal para el difícil problema de calcular las trayectorias óptimas de los vehículos aéreos no tripulados en cinematografía, integrando en el problema la dinámica de los UAVs y las restricciones para evitar colisiones, junto con aspectos cinematográficos como la suavidad, los límites mecánicos del cardán y la visibilidad mutua de las cámaras. Por último, la tesis describe un método de grabación aérea autónoma con iluminación distribuida por un equipo de UAVs. El problema de optimización de trayectorias se desacopla en dos pasos para abordar los aspectos cinematográficos no lineales y la evitación de obstáculos en etapas separadas. Esto permite al planificador de trayectorias actuar en tiempo real y reaccionar en línea a los cambios en los entornos dinámicos. Es importante señalar que todos los métodos de la tesis han sido validados mediante extensas simulaciones y experimentos de campo. Además, todos los componentes del software se han desarrollado como código abierto

    Human-friendly robotic manipulators: safety and performance issues in controller design

    Get PDF
    Recent advances in robotics have spurred its adoption into new application areas such as medical, rescue, transportation, logistics, personal care and entertainment. In the personal care domain, robots are expected to operate in human-present environments and provide non-critical assistance. Successful and flourishing deployment of such robots present different opportunities as well as challenges. Under a national research project, Bobbie, this dissertation analyzes challenges associated with these robots and proposes solutions for identified problems. The thesis begins by highlighting the important safety concern and presenting a comprehensive overview of safety issues in a typical domestic robot system. By using functional safety concept, the overall safety of the complex robotic system was analyzed through subsystem level safety issues. Safety regions in the world model of the perception subsystem, dependable understanding of the unstructured environment via fusion of sensory subsystems, lightweight and compliant design of mechanical components, passivity based control system and quantitative metrics used to assert safety are some important points discussed in the safety review. The main research focus of this work is on controller design of robotic manipulators against two conflicting requirements: motion performance and safety. Human-friendly manipulators used on domestic robots exhibit a lightweight design and demand a stable operation with a compliant behavior injected via a passivity based impedance controller. Effective motion based manipulation using such a controller requires a highly stiff behavior while important safety requirements are achieved with compliant behaviors. On the basis of this intuitive observation, this research identifies suitable metrics to identify the appropriate impedance for a given performance and safety requirement. This thesis also introduces a domestic robot design that adopts a modular design approach to minimize complexity, cost and development time. On the basis of functional modularity concept where each module has a unique functional contribution in the system, the robot “Bobbie-UT‿ is built as an interconnection of interchangeable mobile platform, torso, robotic arm and humanoid head components. Implementation of necessary functional and safety requirements, design of interfaces and development of suitable software architecture are also discussed with the design

    Micro/nanoscale magnetic robots for biomedical applications

    Get PDF
    Magnetic small-scale robots are devices of great potential for the biomedical field because of the several benefits of this method of actuation. Recent work on the development of these devices has seen tremendous innovation and refinement toward ​improved performance for potential clinical applications. This review briefly details recent advancements in small-scale robots used for biomedical applications, covering their design, fabrication, applications, and demonstration of ability, and identifies the gap in studies and the difficulties that have persisted in the optimization of the use of these devices. In addition, alternative biomedical applications are also suggested for some of the technologies that show potential for other functions. This study concludes that although the field of small-scale robot research is highly innovative ​there is need for more concerted efforts to improve functionality and reliability of these devices particularly in clinical applications. Finally, further suggestions are made toward ​the achievement of commercialization for these devices

    A ROS-based software architecture for a versatile collaborative dual-armed autonomous mobile robot for the manufacturing industry

    Get PDF
    The industrial context is changing rapidly due to advancements in technology fueled by the Internet and Information Technology. The fourth industrial revolution counts integration, flexibility, and optimization as its fundamental pillars, and, in this context, Human-Robot Collaboration has become a crucial factor for manufacturing sustainability in Europe. Collaborative robots are appealing to many companies due to their low installation and running costs and high degree of flexibility, making them ideal for reshoring production facilities with a short return on investment. The ROSSINI European project aims to implement a true Human-Robot Collaboration by designing, developing, and demonstrating a modular and scalable platform for integrating human-centred robotic technologies in industrial production environments. The project focuses on safety concerns related to introducing a cobot in a shared working area and aims to lay the groundwork for a new working paradigm at the industrial level. The need for a software architecture suitable to the robotic platform employed in one of three use cases selected to deploy and test the new technology was the main trigger of this Thesis. The chosen application consists of the automatic loading and unloading of raw-material reels to an automatic packaging machine through an Autonomous Mobile Robot composed of an Autonomous Guided Vehicle, two collaborative manipulators, and an eye-on-hand vision system for performing tasks in a partially unstructured environment. The results obtained during the ROSSINI use case development were later used in the SENECA project, which addresses the need for robot-driven automatic cleaning of pharmaceutical bins in a very specific industrial context. The inherent versatility of mobile collaborative robots is evident from their deployment in the two projects with few hardware and software adjustments. The positive impact of Human-Robot Collaboration on diverse production lines is a motivation for future investments in research on this increasingly popular field by the industry

    Conception d’une interface adaptative en réalité augmentée pour gérer des systèmes autonomes dans le déroulement de missions critiques

    Get PDF
    RÉSUMÉ : Dans une situation critique, de nombreux humains risquent leur vie pour en sauver d’autres. Les technologies innovantes pourraient grandement améliorer la conscience de la situation des acteurs de l’urgence, réduire le risque humain ainsi qu’augmenter la facilité de résolution des missions. Nous avons étudié cette idée en concevant une interface en réalité augmentée (RA) pour contrôler un essaim de drones durant une situation d’urgence.Durant ce travail, nous avons conçu cette interface pour gérer plusieurs drones et accroître la connaissance de la situation dans les situations critiques. L’essaim était composé de drones autonomes qui fournissaient un flux important d’informations. Le projet consistait à com-prendre les besoins humains dans les situations d’urgence et concevoir une application AR pour un visiocasque.Nous nous sommes concentrés sur la situation et les besoins du SIM (Service de sécurité incen-die de Montréal). Nous avons développé une solution qui conjointement avec un planificateur de mission dirige l’essaim fonctionnant sous l’infrastructure développée par le partenaire in-dustriel. Nous avons ensuite mis en place une simulation d’urgence avec un bâtiment de grande hauteur en feu où les participants devaient comprendre la situation en utilisant le visiocasque AR.Pour tester notre technologie et valider nos hypothèses, nous avons conçu une une simula-tion stressante et diÿcile pour être testée avec des gens de Polytechnique Montréal. Nous comparons l’eÿcacité d’un ordinateur basique et d’un visiocasque de réalité augmentée afin d’établir une comparaison et de mesurer l’eÿcacité de la RA. Nous terminons en expliquant que le casque de RA était moins eÿcace qu’un ordinateur dû notamment à la toute première utilisation de cet outil. Cependant, le visiocasque montre des résultats proches de l’ordina-teur et la technologie a été appréciée par tous les participants.----------ABSTRACT : In critical situations, many humans risk their lives to save others. Innovative technologies could greatly improve the situational awareness of emergency responders, reduce human risk and increase the resolution’s mission. We investigated this idea by designing an augmented reality (AR) interface to control a swarm of drones during an emergency situation.During this work, we designed an interface to manage multiple unmanned aerial vehicles (UAVs) and increase situational awareness in critical situations. The swarm was composed of autonomous UAVs that provided a significant flow of information. The project consisted of understanding human needs in emergency situations and designing an AR application for a headset.We focused on the situation and the needs of the SIM (Montreal Fire Safety Service). We developed a solution that, simultaneously with a mission planner, manages drones in the field operating with the infrastructure developed by the industrial partner. We then set up an emergency simulation with a high-rise building on fire where participants had to understand the situation using AR headset.To test our technology and validate our hypotheses, we tested our solution with people from Polytechnique Montreal during a stressful and diÿcult simulation. We compare the e˙ectiveness of a basic computer and an augmented reality headset to compare and measure the e˙ectiveness of AR. We concluded by explaining that the AR headset was less e˙ective than a computer, due in part to the very first use of this tool. However, the headset shows results close to the basic computer, and the technology was appreciated by all participants. We saw an improvement with the headset almost similar to the computer. Our results showed that augmented reality could, with more training and practice, improve conditions in emergency situations

    Robotique collective et auto-assemblage:une étude mécatronique

    Get PDF
    We present a study of collective robotics by including a mechatronics point of view. In the field it is usually claimed that collective robots are simple and relatively cheap because they are produced in large quantities. Instead in our study we show that collective robots are not simple because they need sensors and actuators for additional work. Our experience in designing robots and producing them allows us to analyze the manufacturing costs of different collective robots . We present in this work four robots developed prior and during to this thesis. Chapter 2 concerns the e-puck robot. This is a robot designed for education, however, it is used in research to experiment collective behaviors. The s-bot robot is presented in Chapter 3. This is a robot that has the collective ability to self-assemble to form larger structures and increase its performance. In Chapter 4 we present the marXbot robot. It is a modular robot developed in the laboratory to meet the needs of different research hubs. One of its modules allows it to self-assemble with its teammates and with the robot handbot presented in Chapter 5. The handbot is a robot that can climb and handle objects. It can climb for example a shelf to grasp a book. On the ground it is transported by marXbot. In Chapter 6 the performance of robots are presented. We expose a study of their performance gain when the robots are self-assembled. Finally we compare in Chapter 7 the four robots from the mechatronics point of view and in respect to their cost
    corecore