84 research outputs found

    Elementary approaches to microbial growth rate maximisation

    Get PDF
    This thesis, called Elementary approaches to microbial growth rate maximisation, reports on a theoretical search for principles underlying single cell growth, in particular for microbial species that are selected for fast growth rates. First, the optimally growing cell is characterised in terms of its elementary modes. We prove an extremum principle: a cell that maximises a metabolic rate uses few Elementary Flux Modes (EFMs, the minimal pathways that support steady-state metabolism). The number of active EFMs is bounded by the number of growth-limiting constraints. Later, this extremum principle is extended in a theory that explicitly accounts for self-fabrication. For this, we had to define the elementary modes that underlie balanced self-fabrication: minimal self-supporting sets of expressed enzymes that we call Elementary Growth Modes (EGMs). It turns out that many of the results for EFMs can be extended to their more general self-fabrication analogue. Where the above extremum principles tell us that few elementary modes are used by a rate-maximising cell, it does not tell us how the cell can find them. Therefore, we also search for an elementary adaptation method. It turns out that stochastic phenotype switching with growth rate dependent switching rates provides an adaptation mechanism that is often competitive with more conventional regulatory-circuitry based mechanisms. The derived theory is applied in two ways. First, the extremum principles are used to review the mathematical fundaments of all optimisation-based explanations of overflow metabolism. Second, a computational tool is presented that enumerates Elementary Conversion Modes. These elementary modes can be computed for larger networks than EFMs and EGMs, and still provide an overview of the metabolic capabilities of an organism

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    Deep generative models for biology: represent, predict, design

    Get PDF
    Deep generative models have revolutionized the field of artificial intelligence, fundamentally changing how we generate novel objects that imitate or extrapolate from training data, and transforming how we access and consume various types of information such as texts, images, speech, and computer programs. They have the potential to radically transform other scientific disciplines, ranging from mathematical problem solving, to supporting fast and accurate simulations in high-energy physics or enabling rapid weather forecasting. In computational biology, generative models hold immense promise for improving our understanding of complex biological processes, designing new drugs and therapies, and forecasting viral evolution during pandemics, among many other applications. Biological objects pose however unique challenges due to their inherent complexity, encompassing massive spaces, multiple complementary data modalities, and a unique interplay between highly structured and relatively unstructured components. In this thesis, we develop several deep generative modeling frameworks that are motivated by key questions in computational biology. Given the interdisciplinary nature of this endeavor, we first provide a comprehensive background in generative modeling, uncertainty quantification, sequential decision making, as well as important concepts in biology and chemistry to facilitate a thorough understanding of our work. We then deep dive into the core of our contributions, which are structured around three chapters. The first chapter introduces methods for learning representations of biological sequences, laying the foundation for subsequent analyses. The second chapter illustrates how these representations can be leveraged to predict complex properties of biomolecules, focusing on three specific applications: protein fitness prediction, the effects of genetic variations on human disease risk and viral immune escape. Finally, the third chapter is dedicated to methods for designing novel biomolecules, including drug target identification, de novo molecular optimization, and protein engineering. This thesis also makes several methodological contributions to broader machine learning challenges, such as uncertainty quantification in high-dimensional spaces or efficient transformer architectures, which hold potential value in other application domains. We conclude by summarizing our key findings, highlighting shortcomings of current approaches, proposing potential avenues for future research, and discussing emerging trends within the field

    Dynamics of Macrosystems; Proceedings of a Workshop, September 3-7, 1984

    Get PDF
    There is an increasing awareness of the important and persuasive role that instability and random, chaotic motion play in the dynamics of macrosystems. Further research in the field should aim at providing useful tools, and therefore the motivation should come from important questions arising in specific macrosystems. Such systems include biochemical networks, genetic mechanisms, biological communities, neutral networks, cognitive processes and economic structures. This list may seem heterogeneous, but there are similarities between evolution in the different fields. It is not surprising that mathematical methods devised in one field can also be used to describe the dynamics of another. IIASA is attempting to make progress in this direction. With this aim in view this workshop was held at Laxenburg over the period 3-7 September 1984. These Proceedings cover a broad canvas, ranging from specific biological and economic problems to general aspects of dynamical systems and evolutionary theory

    The role of rare codons in protein expression

    Get PDF
    That the flow of information from gene sequence to protein sequence depends on the translation of a code that could literally be described as digital is a truly incredible feat of nature. However, the process of translation is a noisy, stochastic, kinetic process that depends on many factors. The redundancy in the genetic code allows the transmission of additional, analogue information by varying some of these factors. How organisms use the redundancy is termed codon usage, and rare codons are those that are typically shunned in favour of other synonymous options. Synonymous variations to the codon usage pattern of a gene have been linked to disease, and can have huge effects on the functionality and quantity of protein produced from a gene, but the nature of these variations is complex and poorly understood. In some cases, rare codons appear to have a beneficial influence on expression. This thesis investigates the phenomenon of rare codons and attempts to elucidate their evolutionary role in optimal gene expression. It begins with the design of a novel statistical algorithm, which is used to generate a dataset of interesting genetic locations. The dataset is the subject of a hypothesis-driven investigation to discover meaningful biological correlates, and this is complemented by experimental work, to attempt to provide conclusive validation of the approach

    Creation and Application of Various Tools for the Reconstruction, Curation, and Analysis of Genome-Scale Models of Metabolism

    Get PDF
    Systems biology uses mathematics tools, modeling, and analysis for holistic understanding and design of biological systems, allowing the investigation of metabolism and the generation of actionable hypotheses based on model analyses. Detailed here are several systems biology tools for model reconstruction, curation, analysis, and application through synthetic biology. The first, OptFill, is a holistic (whole model) and conservative (minimizing change) tool to aid in genome-scale model (GSM) reconstructions by filling metabolic gaps caused by lack of system knowledge. This is accomplished through Mixed Integer Linear Programming (MILP), one step of which may also be independently used as an additional curation tool. OptFill is applied to a GSM reconstruction of the melanized fungus Exophiala dermatitidis, which underwent various analyses investigating pigmentogenesis and similarity to human melanogenesis. Analysis suggest that carotenoids serve a currently unknown function in E. dermatitidis and that E. dermatitidis could serve as a model of human melanocytes for biomedical applications. Next, a new approach to dynamic Flux Balance Analysis (dFBA) is detailed, the Optimization- and Runge-Kutta- based Approach (ORKA). The ORKA is applied to the model plant Arabidopsis thaliana to show its ability to recreate in vivo observations. The analyzed model is more detailed than previous models, encompassing a larger time scale, modeling more tissues, and with higher accuracy. Finally, a pair of tools, the Eukaryotic Genetic Circuit Design (EuGeneCiD) and Modeling (EuGeneCiM) tools, is introduced which can aid in the design and modeling of synthetic biology applications hypothesized using systems biology. These tools bring a computational approach to synthetic biology, and are applied to Arabidopsis thaliana to design thousands of potential two-input genetic circuits which satisfy 27 different input and logic gate combinations. EuGeneCiM is further used to model a repressilator circuit. Efforts are ongoing to disseminate these tools to maximize their impact on the field of systems biology. Future research will include further investigation of E. dermatitidis through modeling and expanding my expertise to kinetic models of metabolism. Advisor: Rajib Sah

    Towards the implementation of distributed systems in synthetic biology

    Get PDF
    The design and construction of engineered biological systems has made great strides over the last few decades and a growing part of this is the application of mathematical and computational techniques to problems in synthetic biology. The use of distributed systems, in which an overall function is divided across multiple populations of cells, has the potential to increase the complexity of the systems we can build and overcome metabolic limitations. However, constructing biological distributed systems comes with its own set of challenges. In this thesis I present new tools for the design and control of distributed systems in synthetic biology. The first part of this thesis focuses on biological computers. I develop novel design algorithms for distributed digital and analogue computers composed of spatial patterns of communicating bacterial colonies. I prove mathematically that we can program arbitrary digital functions and develop an algorithm for the automated design of optimal spatial circuits. Furthermore, I show that bacterial neural networks can be built using our system and develop efficient design tools to do so. I verify these results using computational simulations. This work shows that we can build distributed biological computers using communicating bacterial colonies and different design tools can be used to program digital and analogue functions. The second part of this thesis utilises a technique from artificial intelligence, reinforcement learning, in first the control and then the understanding of biological systems. First, I show the potential utility of reinforcement learning to control and optimise interacting communities of microbes that produce a biomolecule. Second, I apply reinforcement learning to the design of optimal characterisation experiments within synthetic biology. This work shows that methods utilising reinforcement learning show promise for complex distributed bioprocessing in industry and the design of optimal experiments throughout biology

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 138

    Get PDF
    This special bibliography lists 343 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1975
    corecore