11 research outputs found

    Parallel improved Schnorr-Euchner enumeration SE++ on shared and distributed memory systems, with and without extreme pruning

    Get PDF
    The security of lattice-based cryptography relies on the hardness of problems based on lattices, such as the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP). This paper presents two parallel implementations for the SE++ with and without extreme pruning. The SE++ is an enumeration-based CVP-solver, which can be easily adapted to solve the SVP. We improved the SVP version of the SE++ with an optimization that avoids symmetric branches, improving its performance by a factor of ≈ 50%, and applied the extreme pruning technique to this improved version. The extreme pruning technique is the fastest way to compute the SVP with enumeration known to date. It solves the SVP for lattices in much higher dimensions in less time than implementations without extreme pruning. Our parallel implementation of the SE++ with extreme pruning targets distributed memory multi-core CPU systems, while our SE++ without extreme pruning is designed for shared memory multi-core CPU systems. These implementations address load balancing problems for optimal performance, with a master-slave mechanism on the distributed memory implementation, and specific bounds for task creation on the shared memory implementation. The parallel implementation for the SE++ without extreme pruning scales linearly for up to 8 threads and almost linearly for 16 threads. In addition, it also achieves super-linear speedups on some instances, as the workload may be shortened, since some threads may find shorter vectors at earlier points in time, compared to the sequential implementation. Tests with our Improved SE++ implementation showed that it outperforms the state of the art implementation by a factor of between 35% and 60%, while maintaining a scalability similar to the SE++ implementation. Our parallel implementation of the SE++ with extreme pruning achieves linear speedups for up to 8 (working) processes and speedups of up to 13x for 16 (working) processes(undefined)info:eu-repo/semantics/publishedVersio

    Fast Lattice Basis Reduction Suitable for Massive Parallelization and Its Application to the Shortest Vector Problem

    Get PDF
    The hardness of the shortest vector problem for lattices is a fundamental assumption underpinning the security of many lattice-based cryptosystems, and therefore, it is important to evaluate its difficulty. Here, recent advances in studying the hardness of problems in large-scale lattice computing have pointed to need to study the design and methodology for exploiting the performance of massive parallel computing environments. In this paper, we propose a lattice basis reduction algorithm suitable for massive parallelization. Our parallelization strategy is an extension of the Fukase-Kashiwabara algorithm~(J. Information Processing, Vol. 23, No. 1, 2015). In our algorithm, given a lattice basis as input, variants of the lattice basis are generated, and then each process reduces its lattice basis; at this time, the processes cooperate and share auxiliary information with each other to accelerate lattice basis reduction. In addition, we propose a new strategy based on our evaluation function of a lattice basis in order to decrease the sum of squared lengths of orthogonal basis vectors. We applied our algorithm to problem instances from the SVP Challenge. We solved a 150-dimension problem instance in about 394 days by using large clusters, and we also solved problem instances of dimensions 134, 138, 140, 142, 144, 146, and 148. Since the previous world record is the problem of dimension 132, these results demonstrate the effectiveness of our proposal

    Another Look at the Cost of Cryptographic Attacks

    Get PDF
    This paper makes the case for considering the cost of cryptographic attacks as the main measure of their efficiency, instead of their time complexity. This allows, in our opinion, a more realistic assessment of the "risk" these attacks represent. This is half-and-half a position and a technical paper. Cryptographic attacks described in the literature are rarely implemented. Most exist only "on paper", and their main characteristic is that their estimated time complexity is small enough to break a given security property. However, when a cryptanalyst actually considers implementing an attack, she soon realizes that there is more to the story than time complexity. For instance, Wiener has shown that breaking the double-DES costs 2 6n/5 , asymptotically more than exhaustive search on n bits. We put forward the asymptotic cost of cryptographic attacks as a measure of their practicality. We discuss the shortcomings of the usual computational model and propose a simple abstract cryptographic machine on which it is easy to estimate the cost. We then study the asymptotic cost of several relevant algorithm: collision search, the three-list birthday problem (3XOR) and solving multivariate quadratic polynomial equations. We find that some smart algorithms cost much more than what their time complexity suggest, while naive and simple algorithms may cost less. Some algorithms can be tuned to reduce their cost (this increases their time complexity). Foreword A celebrated High Performance Computing paper entitled "Hitting the Memory Wall: Implications of the Obvious" [47] opens with these words: This brief note points out something obvious-something the authors "knew" without really understanding. With apologies to those who did understand, we offer it to those others who, like us, missed the point. We would like to do the same-but this note is not so short

    The Cryptographic Security of the German Electronic Identity Card

    Get PDF
    In November 2010, the German government started to issue the new electronic identity card (eID) to its citizens. Besides its original utilization as a ’visual’ identification document, the eID card can be used by the cardholder to prove one’s identity at border control and to enhance security of authentication processes over the Internet, with the eID card serving as a token to reliably transmit personal data to service providers or terminals, respectively. To this end, the German Federal Office for Information Security (BSI) proposed several cryptographic protocols now deployed on the eID card. The Password Authenticated Connection Establishment (PACE) protocol secures the wireless communication between the eID card and the user’s local card reader, based on a cryptographically weak password like the PIN chosen by the card owner. Subsequently, the Extended Access Control (EAC) protocol is executed by the chip and the service provider to mutually authenticate and agree on a shared secret session key. This key is then used in the secure channel protocol, called Secure Messaging (SM). Finally, an optional protocol, called Restricted Identification (RI), provides a method to use pseudonyms such that they can be linked by individual service providers, but not across different service providers (even not by malicious ones). This thesis consists of two parts. First, we present the above protocols and provide a rigorous analysis on their security from a cryptographic point of view. We show that the Germen eID card provides reasonable security for authentication and exchange of sensitive information allaying concerns regarding its usage. In the second part of this thesis, we introduce two possible modifications to enhance the security of these protocols even further. Namely, we show how to (a) add to PACE an additional efficient chip authentication step, and (b) augment RI to allow also for signatures under pseudonyms

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore