Parallel Improved Schnorr-Euchner Enumeration SE++ on
Shared and Distributed Memory Systems, With and Without
Extreme Pruning

Féabio Correial* Artur Mariano!, Alberto Proengaz, Christian Bischof!, and Erik Agrell3
! Darmstadt University of Technology, Darmstadt, Germany
fabio.lei.67 @ gmail.com, artur.mariano @sc.tu-darmstadt.de, christian.bischof @tu-darmstadt.de
2University of Minho, Braga, Portugal
aproenca@di.uminho.pt
3Chalmers University of Technology, Gothenburg, Sweden
agrell@chalmers.se

Abstract

The security of lattice-based cryptography relies on the hardness of problems based on lattices, such
as the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP). This paper presents
two parallel implementations for the SE++ with and without extreme pruning. The SE++ is an
enumeration-based CVP-solver, which can be easily adapted to solve the SVP. We improved the
SVP version of the SE++ with an optimization that avoids symmetric branches, improving its per-
formance by a factor of ~50%, and applied the extreme pruning technique to this improved version.
The extreme pruning technique is the fastest way to compute the SVP with enumeration known to
date. It solves the SVP for lattices in much higher dimensions in less time than implementations
without extreme pruning. Our parallel implementation of the SE++ with extreme pruning targets dis-
tributed memory multi-core CPU systems, while our SE++ without extreme pruning is designed for
shared memory multi-core CPU systems. These implementations address load balancing problems
for optimal performance, with a master-slave mechanism on the distributed memory implementation,
and specific bounds for task creation on the shared memory implementation.

The parallel implementation for the SE++ without extreme pruning scales linearly for up to 8
threads and almost linearly for 16 threads. In addition, it also achieves super-linear speedups on
some instances, as the workload may be shortened, since some threads may find shorter vectors at
earlier points in time, compared to the sequential implementation. Tests with our Improved SE++
implementation showed that it outperforms the state of the art implementation by a factor of between
35% and 60%, while maintaining a scalability similar to the SE++ implementation. Our parallel
implementation of the SE++ with extreme pruning achieves linear speedups for up to 8 (working)
processes and speedups of up to 13x for 16 (working) processes.

Keywords: Enumeration, Parallel, Shared Memory, Distributed Memory, OpenMP, MPI

1 Introduction

Lattices are discrete subgroups of the m-dimensional Euclidean space R™, with a strong periodicity
property. A lattice .’ generated by a basis B € R™*", a set of linearly independent row vectors by,...,b,

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, volume: 7, number: 4 (December),

pp. 1{1§]
*Corresponding author: Institute for Scientific Computing, Darmstadt University of Technology, Mornewegstrae 30, 64283

Darmstadt, Germany, Tel: +49 6151 16-27278 (Part of this work was performed while this author was a student at University
of Minho)

Par. Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

in R™, is denoted by

n
ZB)={xeR":x=) ub,uecZ, (1)
i=1

where n is the rank of the lattice. When n = m, the lattice is said to be of full rank. Lattices have a
wide range of applications. These span from mathematics (e.g. geometry of numbers [9]]) to computer
science (e.g. integer programming [21] and lattice-based cryptography [[19, [26]]). The use of lattices in
cryptography started in the beginning of the 80’s, when the Lenstra—Lenstra—Lovasz (LLL) algorithm
[24] was used to break knapsack cryptosystems, and became prominent in cryptography in the mid-90’s,
when the first lattice-based encryption schemes were proposed (e.g. [3]).

Today, lattice-based cryptography is especially attractive because, among other reasons, it is believed
to be resistant against attacks operated with quantum computers. Lattice-based cryptosystems can only
be broken when specific lattice problems can be solved in a timely manner. In this context, two lattice
problems are especially relevant: the Shortest Vector Problem (SVP) and the Closest Vector Problem
(CVP). The SVP consists in finding the shortest nonzero vector of the lattice, whose norm is denoted by
M1(Z), or, in other words, to find u € Z"\0 that minimizes the Euclidean norm ||B-u||. The CVP consists
in finding the closest vector of the lattice to a given target vector t € R™, i.e. to find u € Z" minimizing
|B-u—t||. Algorithms that solve these problems are usually referred to as SVP- and CVP-solvers. There
is a natural connection between the SVP and CVP: the closest vector to the origin, excluding the origin
itself, is the vector with norm A;(.%). From a computational perspective, the decisional variant of the
CVP is known to be NP-hard [8]], whereas the decisional variant of SVP is known to be NP-hard under
randomized reductions [2} [16].

Both CVP- and SVP-solvers work faster on reduced lattice bases, i.e., lattices whose bases have
short, nearly orthogonal vectors. The main algorithms used in practice to reduce lattices are the Lenstra-
Lenstra-Lovasz (LLL) and the Block Korkine-Zolotarev (BKZ) algorithms. The latter can generate bases
of better or worse quality depending on an input parameter, the block-size. For higher block-sizes the
quality of the output basis is better, but it also takes longer to compute it. There is a close relation
between lattice reduction algorithms and SVP-solvers. BKZ, for instance, uses SVP-solvers as part of its
logic, as a way to improve the quality of their output.

There are two main families of SVP- and CVP-solvers. The first is the family of sieving algorithms,
i.e., probabilistic, randomized algorithms that repeatedly sieve a list of vectors, until a given stop criterion
is met [4} [23]]. Enumeration algorithms, on the other hand, enumerate all the possible vectors within a
given search radius around the origin, and select the shortest among those [27} 20} 23]].

The SVP has received much more attention than the CVP in the past decades [[16]. In particular, the
computational practicability of the CVP was not very well investigated so far. While several SVP-solvers
have been implemented on various computer architectures [12, 18], few open implementations of CVP-
solvers are available. In particular, several CVP-solvers were proposed, as described in Section[3.1] but
very few practical implementations of these solvers are available and even fewer parallel versions are
known. One of the reasons why the CVP has attracted less attention than the SVP might be the lack of a
public repository for the assessment of CVP-solvers, such as the SVP—ChallengeE], which only covers the
SVP.

On the other hand, the SVP has been continuously studied during the past decades [16]. Even though
the first enumeration algorithm dates back to 1981, only recently a breakthrough technique, called ex-
treme pruning, was proposed by Gama et al. This technique transforms enumeration into a heuristic,
i.e., it is not guaranteed to find the shortest vector of the lattice, and is the fastest way to solve the SVP
with enumeration known to date. Extreme pruning significantly reduces the probability of finding the

Thttp://www.latticechallenge.org/svp-challenge/

Par. Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

shortest vector of the lattice, but the execution time of enumeration decreases in a much higher pace.
One can considerably increase the probability of success by computing the extreme pruned enumeration
on different bases of the same lattice. In addition, as mentioned before, some lattice basis reduction al-
gorithms use SVP-solvers as part of their logic. An algorithm that uses the extreme pruned enumeration
was proposed in [10], the BKZ 2.0. This algorithm offers the best tradeoff between quality of the output
basis and execution time, thus being considered the best lattice basis reduction algorithm known to date.
Therefore, better implementations of the extreme pruned enumeration is of major relevance.

Our contribution: This paper is an extension of the paper [11]]. In [11], we studied the practicabil-
ity of the CVP, to which end we implement and assess the performance of an enhanced version of the
Schnorr-Euchner enumeration routine, described in [15)], a CVP-solver that can easily be modified to
solve the SVP, from here on referred to as SE++. In particular, we proposed a parallel version of this
algorithm for shared-memory CPU systems, implemented with OpenMP, and we analyzed its perfor-
mance on a 16-core CPU system. In addition, we improved the SVP version of the SE++ by avoiding the
computation of symmetric branches of the enumeration tree, which generate vectors with identical norms
and are, therefore, irrelevant in the context of the SVP. We analyzed the performance of this improved
version of the SE++ against the parallel SVP-solver proposed in [12].

In this extended version of the paper, we propose the parallelization of a variant of the improved
version of the SE++, and we look at the parallelization of SE++ more holistically, this time including
results with extreme pruning. In this implementation, we applied the extreme pruning technique to the
SE++. This technique solves the SVP only and decreases the execution time of the SE++ considerably.
Our implementation targets distributed memory multi-core CPU systems and was implemented with
MPI. We also analyze the performance and scalability of this implementation.

Results: Our results show that enumeration-based CVP-solvers, whose scalability was never studied,
can be parallelized at least as efficiently as enumeration-based SVP-solvers, based on a comparison of the
CVP and SVP versions of our algorithm and the state of the art SVP implementation described in [12]. In
particular, our parallel version of this algorithm achieves super-linear speedups in some instances on up to
8 cores and a speedup factor of 14.8x for 16 cores when solving the CVP on a 50-dimensional lattice, on
a dual-socket machine with 16 physical cores. On the SVP variant of the SE++ algorithm, we improved
the algorithm in such a way that it outperforms that of [[12] by a factor of 35%-60%, depending on the
lattice dimension, thus becoming the fastest full enumeration-based SVP-solver to date. The improved
version of the SE++ decreased its execution time by ~ 50%, while maintaining a similar scalability.

In addition, we developed a scalable parallel implementation of the improved version of the SE++
with extreme pruning, for distributed memory systems. This implementation outperforms the Improved
SE++ by a large margin since it avoids a huge chunk of computation by discarding branches of the enu-
meration that have a low probability of containing the shortest vector of the lattice. This implementation
scales linearly for up to 8 processes and achieves almost linear speedups of up to 13x for 16 working
processes. Since it uses only minimal synchronization between the master process and the working
processes, our implementation does not incur in a significant overhead.

Roadmap: The rest of this paper is organized as follows. Section [2]introduces the notation used and
definitions. Section [3|overviews CVP/SVP-solvers and available implementations. Section 4{ overviews
the SE++ algorithm in detail, the optimization that avoids symmetric branches, its parallel implementa-
tion, and its mechanism that balances the workload among threads. Section [5]describes the enumeration
with extreme pruning technique and the respective parallel implementation. Section [6] shows the results
of the performance and scalability of our SE++ implementation, for both the CVP and the SVP, as well as
in comparison to the implementation of the SVP-solver described in [[12]]. It also shows the results of the
performance and scalability of the Improved SE++ with extreme pruning. Finally, Section [/| concludes
the paper.

Par. Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

2 Notation

The Euclidean norm of a vector v € R”, denoted by ||v

, 1s the distance spanned from the origin of the

lattice to the point given by the vector v, i.e. ||v|| = y/Y, v, where v; is the i’ coordinate of v. Vectors
and matrices are written in bold face, vectors are written in lower-case, and matrices in upper-case, as in
vector v and matrix M, and their scalar elements are denoted by v; and M; ;, respectively. The absolute
value of a is given by |a|. The lattice £ generated by a basis B is denoted .Z(B).

3 Related Work

This section overviews the development of the enumeration algorithms for the SVP and CVP, in Section
[3.1] and the corresponding sequential and parallel implementations, in Section [3.2] Lattice-reduction al-
gorithms, and algorithms for the approximate SVP fall out of the scope of this paper, and are not, there-
fore, overviewed in this section. Algorithms for the approximate CVP are briefly recapped in Section

B.1

3.1 Algorithms
3.1.1 Exact CVP- and SVP-solvers

P. van Emde Boas showed, in 1981, that the general closest vector problem as a function of the dimension
n is NP-hard [8]. The breakthrough papers in the SVP and the CVP date back to 1981, when Pohst
presented an approach that examines lattice vectors that lie inside a hypersphere [27], and to 1983,
when Kannan showed a different approach using a rectangular parallelepiped [20]. Extensions of these
two approaches were published later on, by Fincke and Pohst, in 1985 [[13]], and by Kannan (following
Helfrich’s work [[17]), in 1987 [21]. In 1994, Schnorr and Euchner proposed a significant improvement
of Pohst’s method [30], that was later on found to be substantially faster than Pohst’s and Kannan’s
approaches [1l]. The improvement proposed by Schnorr and Euchner was influenced by the Nearest Plane
algorithm by Babai, a polynomial-time method to find vectors that are close to a given target vector [[6]. In
order to decrease the execution time of Schnorr and Euchner’s algorithm, Schnorr and Horner suggested
a modification to enumeration in 1995 [29]], called pruning. In 2010, Gama et al., based on the work of
Schnorr and Horner, proposed the enumeration with extreme pruning [[14], which prunes a much higher
number of nodes the enumeration tree, thus significantly reducing the execution time of the algorithm.
Recently, Ghasemmehdi and Agrell showed that there are some redundant operations in the algorithm,
which can be eliminated, thereby accelerating it substantially [[15]].

3.1.2 Approximate CVP-solvers

There are essentially two different approximate CVP-solvers: the Nearest Plane algorithm, developed by
Babai in 1986 [6], and specific sieving algorithms. The first algorithm uses LLL to solve the approximate
CVP in polynomial time, with an approximation ratio of 2(%)”, where 7 is the rank of the lattice. A
distilled, yet precise, description of the algorithm can be found in [23]].

The root of sieving algorithms dates back to 2001, when Ajtai et al. proposed a randomized algorithm
that solves the exact version SVP, with very high probability [4]. This algorithm became known as AKS
and it was later on extended to solve the approximate CVP [3]]. It is still unclear (1) how practical this
algorithm can be for the CVP and (2) if and how other sieving algorithms, such as GaussSieve [25]], can
be modified to solve the problem. Further improvements on the AKS were proposed by Blomer et al.

[I7].

Par. Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

Blémer
and Naewe
Y

Ajtai et al. ———>
[4

Schnorr Gama et al.

B?G?al \ fﬁnd Sgrner 113]
Fincke Schnorr Ghasemmehdi
P[DZE]St and Pohst and Euchner Agre[l1llet al and Agrell
2] [28] [14]
Kannan Helfrich Kannan
)] 116] [20]

1981 1983 1985 1986 1987 1994 995 2002 2009 2010 2011

Figure 1: Timeline of the most relevant publications regarding CVP-solvers, enumeration SVP-solvers,
approximate CVP-solvers, and their connections.

Figure 1| shows a time-line and the connections between the most relevant of these publications.

3.2 Implementations

GPU and CPU parallel implementations of the Schnorr-Euchner enumeration, otherwise known as ENUM,
were proposed in 2009 [[18]], and 2010 [[12], respectively. The latter achieves almost linear speedups on a
16-core machine, for the SVP. In Section 6| we show a comparison between our implementation and that
described in [12].

The fplll library includes an implementation of the Kannan—Fincke—Pohst algorithm for the SVP
[28]). It is still unclear what performance levels a modified version of this algorithm can attain on CVP,
since it is neither included in the fplll library nor other available implementations are known. Another
implementation of an enumeration process can be found in Magmfﬂ However, it requires users to
contribute to distribution costs (licenses start at 1000€).

The NTL library includes an implementation of the Nearest Plane algorithm for the approximate
CVP (fplll includes a non-supported implementation). Comparisons with these implementations fall out
of the scope of our paper, since we are only interested in performance comparisons for the SVP and CVP.

In summary, there are neither sequential nor parallel publicly available CVP-solvers, to the best of
our knowledge. However, implementations of this kind are very relevant, because they permit to assess
the security of lattice-based cryptosystems whose hardness is proportional to the hardness of the CVP.

An implementation of the enumeration with extreme pruning that joins the power of CPUs and GPUs
was proposed in [22].

4 The SE++ Algorithm

This section provides a brief description of the closest point search algorithm, dubbed SE++, proposed
by Ghasemmehdi and Agrell [[15)]. This algorithm is an improved version of the SE algorithm described
by Agrell et al. [[1]], which is in turn based on ENUM, proposed by Schnorr and Euchner [30].

SE++ is a CVP-solver that can be modified to solve the SVP. The SE++ algorithm consists of two
different phases: the basis pre-processing and the sphere decoding. In the pre-processing phase, the
matrix that contains the basis vectors, denoted by B, is reduced (e.g., with either the BKZ or LLL algo-
rithms). The resulting matrix D, is transformed into a lower-triangular matrix, which we refer to as G.
This process can either be accomplished with a QR decomposition or a Cholesky decomposition (see [[1]]

Zhttp://magma.maths.usyd.edu.au/magma/

Par. Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

for further details). This transformation can be seen as a change of the coordinate system. The decom-
position of D also generates an orthonormal matrix Q. The target vector r, i.e., the reference vector for
the closest vector (if the SVP is being solved, r is the origin of the lattice), is also transformed into the
coordinate system of G, i.e., ¥ = rQ’. Finally, the sphere decoding is initialized with the dimension of
the lattice n, the transformed target vector r’ and the inverse of G, i.e., H = G !, which is itself a lower
triangular matrix.

There are two different ways of thinking about the sphere decoding process. On one hand, it is
the process of enumerating lattice points inside a hypersphere (cf. [15] for a detailed mathematical
description). On the other hand, it can be described as a tree traversal, which also makes it easier to
explain our parallelization approach. This traversal is a depth-first traversal on a weighted tree, which
formed by all vectors of projections of .Z orthogonal to the basis vectors. We will refer to the process of
visiting a child node (decrementing i, where i denotes the depth of the node that is being analyzed at any
given moment) as moving down and the process of visiting a parent node (incrementing i) as moving up.
In the following, we describe how the tree traversal is performed and how it is impacted by the variables
used throughout.

The algorithm starts at the root and stops when it reaches the root again. Each node at depth (i — 1)
that is being visited is determined by u;, which is an array that contains the position of each node in the
tree, having the hypersphere in dimension (i — 1) as the reference. w; is updated whenever a new tree
node is updated, and depends on A;, which is itself updated automatically. A; contains the step that has
to be taken, when at a given node, to visit its next sibling. Note that A; only contains one value at each
given instant, although there is a A; for each depth level. Based on the Schnorr-Eucher refinement [30]],
the siblings of each node are visited in a zigzag pattern, and so A; contains a sequence of different and
symmetric values, e.g., 0, 1, -1, 2, -2, etc. The squared distance from the target vector r (note that if the
SVP is being solved, then r is the zero-vector) to the node that is being analyzed is denoted by A;, while
C is the squared distance of r to the closest vector to r found so far. C is initialized to infinity. If A; < C,
the algorithm will move down, otherwise it will move up again. Whenever a leaf is reached, the values
of the vector u are saved in #i, which represents the closest vector to r found so far, and C is updated,
which reduces the number of nodes that still have to be visited. Although the algorithm behaves as a tree
traversal, there is no physical tree (i.e. a data structure) implemented.

Although in this paper we only work with SE++, we note again that this is an improved version
of another algorithm, called SE [1]. There is one fundamental difference between these algorithms;
as proposed by Ghasemmehdi and Agrell [15)], a vector d is used to store the starting points of the
computation of the projections. The value d; = k determines that, in order to compute E;; (see [15]] for
further details about matrix E, which contains the projections of the orthogonally displaced target vector
r to the basis vectors), we should start the pojection from th kth layer where, k > i, and only calculate
the values of E;; for j =k—1,k—2,...,i, thereby avoiding redundant calculations.

4.1 Implementation
4.1.1 Avoiding symmetric branches

Both the SE algorithm and its enhanced version SE++, respectively presented in [[1] and [15]], compute
the whole enumeration tree, thereby computing several vectors that are symmetric of one another. When
solving the SVP, the purpose of the algorithm is to find the shortest vector v of norm A;, and so it is not
relevant whether v or —v is found, since both have the exact the same norm. Therefore, the computation
of one of these two vectors can be avoided, thus reducing the number of vectors that are ultimately
computed. In fact, given that ENUM only solves the SVP, it already discards symmetric branches in the
tree. We have incorporated this optimization in SE++, an implementation we refer to Improved SE++,

Par. Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

& o0 e 00 o
/ \ ‘ / \ ‘) Computed Nodes
© 000 © .~

Figure 2: Representation of the symmetric subtrees whose computation can be avoided.

from here on.

The idea is, similarly to ENUM, to use a variable called last_nonzero, which stores the largest depth
i of the vector u for which u; # 0. To avoid symmetric branches, u; is updated differently, depending on
whether the nodes contain symmetric subtrees; on trees that contain symmetric subtrees, the value of u;
is incremented, searching only in one direction. It should be noted that there are only subtrees whose
computation can be avoided on the leftmost nodes of each level, as shown in Figure E], Each time the
algorithm moves up on the tree and i > last_nonzero, the variable is updated, indicating the new lowest
level that contains symmetric subtrees. At the beginning of the execution, last_nonzero is initialized to 1,
the index of the leaves. In Section we show that this improved version of SE++ is about 50% faster
than SE++, and faster than the parallel ENUM implementation proposed by Dagdelen et al. in [12], for
1-32 threads.

4.1.2 Parallelization

As previously mentioned, the workflow of the algorithm can be naturally mapped onto a tree traversal,
where different branches can be computed in parallel. Figure |3| shows a partition of these branches into
several tasks that can be computed in parallel, by different threads. (Very fine grained) synchronization
is only used to update the best vector found at any given instant (the closest to the target vector, at a
given moment), as explained below. The proposed implementation was written in C, and creates these
tasks with OpenMP. Once tasks are created, they are added to a queue of tasks, and scheduled by the
OpenMP run-time system among the running threads. This system also defines the order of execution of
the created tasks, in run-time.

Our implementation combines a depth-first traversal with a breadth-first traversal. The work is dis-
tributed among threads in a breadth-first manner (across one or more levels), while each thread computes
the work that it was assigned in a depth-first manner. First, a team of threads, whose size is set by
the user, is created. Then, a number of tree nodes, based on two parameters, MAX_BREADTH and
MAX_DEPTH, are computed sequentially. These two parameters also define the number and size of the
tasks that are created. Once the MAX_DEPTH level is reached, a task for each of the nodes (and their
descendants) in that level is created, as also shown in Figure [3| However, when creating the task for a
given node whose |A;] = MAX_BREADTH, it entails not only that node but also all its siblings (unless
they already belong to other tasks) and their descendants, as exemplified by Task 5, in Figure [3] Note
that, although in Figure [3] there is only one task verifying this, this can happen for any level of the tree.
Once tasks are created, they are (either promptly or after some time) assigned to one of the threads within
the team, by the OpenMP run-time system. There is an implicit barrier at the end of the single region,

Par. Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

™ I
/\J (,, (,,/ _/ W/
]
:
]
! MAX_DEPTH
,,,,,,,,,,,,,,,,,,,,,,,,, o oo oo
=\ a) - = == ‘)
O 2R A O B O U/

Sequential
Task 1

Task 2

)

Task 3

|

|
\
[

|

|

|

|

|

I

|

:
)—————
|

|

:

z
> |
“““IX“\
(O
m |
> |
D |
_' |
I |
|

|

|

|

|

|

|

|

|

1,

}

|

|

|

|

|

|

|

|

|

|
—,
ook

)
~

AN AN
~ (

Task 4

§

O
~7

Task 5

Figure 3: Map of the algorithm workflow on a tree, partitioned into tasks, according to the parameters
MAX_BREADTH and MAX_DEPTH.

which means that all the created tasks will be, at that point, already processed.

The MAX_BREADTH and MAX_DEPTH parameters were created so that all threads execute a sim-
ilar amount of work, given that the tree is considerably imbalanced. We created the MAX_BREADTH
parameter based on the fact that the rightmost subtrees in the tree contain fewer descendants and are,
therefore, lighter. We identify the workload associated to each subtree with the value of |A;], as it always
holds that a bigger |A;| translates into a lighter subtree (due to the zigzag pattern, |A;| can be negative,
and thus the use of its absolute value). Note, however, that the value of |A;| can only be used to compare
the weight of different nodes of the same subtree and at the same depth. Therefore, we can assume
that, after a given |A;| (which we compare against MAX_BREADTH), all the subtrees should be grouped
together. If MAX_BREADTH is high, then more (and finer-grain) tasks are created. The optimal values
of both parameters have to be chosen empirically (later we show experiments with different values for
MAX_BREADTH). The maximum depth is chosen based on the number of threads in the system, so that
the enumeration tree is more split, i.e. the number of tasks is larger, for higher thread counts. Thus, we
define MAX_DEPTH = n — log, (#T hreads), which determines the lowest depth that is reached to split
subtrees. Similarly to MAX_BREADTH, the value for this parameter was also chosen based on empirical
tests.

When a thread processes a task, it computes all the nodes on the branch spanned from the root of
the enumeration tree up to the root of the subtree in the task, then computing the subtree entailed by the
task. This is because in order to compute a given node (or sub-tree), one must know information from
the parent nodes in the tree, such as the previous positions in E and A. Storing all this information for all
tasks multiplies memory usage and becomes infeasible. The level of the subtree that was assigned and
the nodes that have to be recomputed, given by the vector u_Aux, are passed as arguments to each task.
Additionally, the value of |A;| is also sent to the task, in order to differentiate subtrees that were grouped
together from single subtrees. In particular, |A;| is compared to MAX_BREADTH. If |A;| is smaller than
MAX_BREADTH, then only the root node of the task and its descendants are to be computed; if not,
then both the root, its siblings (whose |A;| > MAX_BREADTH) and their descendants are computed.

As said before, in this version we recompute the parent nodes in the tree, otherwise memory usage
would rise to impractical levels; to avoid this, one would have to store the data for all the tasks upfront.
Therefore, instead of allocating each vector and matrix for each task, it is only necessary to allocate a

Par. Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

much smaller vector u_Aux that contains the coefficients of the nodes that have to be recomputed. To
do so, each thread concurrently allocates its own (private) block of memory (a struct) for matrix E and
vectors u, y, A, A and d (for details about these these structures see [[15]) and re-uses the same memory
for the execution of all the tasks that are assigned to it. Empirical tests showed that performance can be
improved by a factor of as much as 20%.

The value of C is stored in a global variable, accessible by every thread. Threads check the value
of C, which dictates the rest of the nodes that are visited by each thread. C is initialized with 1/H; i,
instead of infinity, to prevent the creation of unnecessary tasks. For the same reason, 1 is initialized with
i = (1,0,...,0). Although these variables are shared among all the threads, only one thread updates
them at a time. An OpenMP critical zone is used to manage this synchronization. Every time a thread
executes the critical zone, it checks A; < C again, since other threads might update those values in the
meantime.

S Enumeration with Extreme Pruning

In 2010, Gama et al. [14] proposed a novel technique that transforms ENUM into an heuristic, which
considerably reduces the number of nodes that the enumeration routine has to compute, thus significantly
decreasing the execution time. However, the probability to find the shortest vector of the lattice is much
lower as well, even though at a much smaller pace. This technique is called extreme pruning and can be
applied to other enumeration algorithms as well, such as our Improved SE++. From here on, we refer to
our Improved SE++ with extreme pruning as extreme pruned SE++.

The nodes of the tree that we have to compute are determined by a polinomial function, from
here on called bounding function, based on the gaussian heuristic. The gaussian heuristic provides
a good estimate of the length of the shortest vector of a lattice .. It is calculated by FM(.Z) =

%ﬁrl)l/nxdet(.ﬁf)l/ " where I'(x) is the gamma function, denoted by I'(x) = (x — 1)!, and det(A)
is the determinant of the lattice. One can increase the probability of finding a short vector, not necessar-
ily the shortest, by multiplying the gaussian heuristic by a factor of 1.05, as described in [22]. From here
on, we will denote the probability of finding a short vector as success probability. The bounding function
uses this value to estimate the maximum distance between a given node and the root of the tree, for each
depth of the tree. We used the same bounding function as [22]], which is optimal for dimension 110, and
also scale for other dimensions.

One call to the extreme pruned enumeration routine has only a tiny success probability of 10%,
according to empirical tests presented in [22]]. However, one can increase the probability of finding
a short vector by performing extreme pruned enumeration calls on different bases of the same lattice.
Therefore, two additional steps have to be performed before each call: (1) randomization of the basis
and (2) pre-processing of the randomized basis. The pre-processing of the basis consists of reducing the
randomized basis (stronger basis reductions lead to higher success probabilities) and either the QR or
Cholesky decomposition.

Kuo et al. [22] also showed that 44 calls to the enumeration with extreme pruning routine guarantee
a success probability over 99%. Therefore, we will use this value for the results presented in Section[6.2]

In [14]], Gama et al. showed how to transform the ENUM algorithm into the enumeration with
extreme pruning. One can apply the same changes to SE++ in the correspondent steps.

5.1 Parallelization

Such as the SE++, the SE++ with extreme pruning was implemented in C, as well. In addition, it
distributes work among different processes with MPL. In this implementation, we also use NTL to BKZ-

Par. Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

Request work
P1 q Request work P2
—_—
Randomization of the Basis Send Work Master Process Send Work Randomization of the Basis
BKZ Reduction BKZ Reduction
= b e e > s '
xtreme Pruned Enumeration Cal Send Best Vector Send Best Vector Extreme Pruned Enumeration Call

Figure 4: Communication between the master process and working processes of our extreme pruned
SE++ implementation.

T T §
60 | oooiieeepo [o Dim 60] i 16 Threads
: : : 10000? 8 Threads
45 |- N o 4 Threads
2 I I i 9 r ‘
o : : 3
e R R] === 3
| = . . [S) E
0.8 N e °
o GJ
=] 0.6 B a
I+ 0.4 1 1 | § I : :
0 : ‘ ‘ 2 100
0.012 | eee o :
0.010 I ‘ f 10 I i |
4 5 6 7 8 4 5 6 7 8
MAX_BREADTH MAX_BREADTH
(a) Execution Time (b) Number of Tasks

Figure 5: Execution time of our SE++ implementation with 16 threads solving the CVP on random
lattices in dimensions 40, 50 and 60, in (a), and number of tasks created for 4, 8, and 16 threads for a
lattice in dimension 50, in (b). BKZ-reduced bases with block-size 20.

reduce the lattice bases.

As aforementioned, it is necessary to perform multiple calls to the extreme pruned enumeration
routine (in this case an extreme pruned version of the SE++) to guarantee a high success probability.
Before each call, we have to randomize the basis and pre-process the randomized basis. All of these
iterations (randomization, pre-processing and extreme pruned enumeration call) are independent and can
be computed simultaneously without any synchronization.

Since the execution time of each iteration depends on the quality of the randomized basis, different
iterations might have different execution times. Therefore, we use an additional process (master process)
to distribute iterations among working processes and to gather the best vectors found by each working
process when all iterations are computed. This guarantees a more balanced work distribution, since
working processes can request more iterations as soon as the previous is computed. As soon as the
master process receives a request from a working process, it only sends back the number of the iteration
that has to be computed, which is used as random seed in the randomization of the basis. Figure 4] shows
the communication between the master process and the working processes.

6 Results

The tests were performed on a dual-socket machine with 2 Sandy Bridge Intel Xeon E5-2670 processors,
each with 8 cores, and simultaneous multi-threading (SMT) technology. The machine has a total of 128
GB of RAM. The codes were written in C and compiled with the GNU g++ 4.6.1 compiler, with the -O2

10

Par. Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

optimization flag (-O3 was slightly slower than -O2). Additionally, the NTLEI (for LLL and BKZ basis
reduction) and Eige (for the QR decomposition, inverse and transpose matrix computations) libraries
were also used. Although the code was written in C, the g++ compiler was required for these libraries.
We have used Goldstein-Mayer bases for random lattices, available from the SVP Challengeﬂ all of
which were generated with seed 0. Although the execution times of the programs were fairly stable,
each program was executed three times and the best sample was selected. The basis pre-processing, as
described in Section [} was not included in the time measurements for the SE++, but was included in the
time measurements for the SE++ with extreme pruning.

6.1 SE++ and Improved SE++

As aforementioned, in the parallel SE++ and Improved SE++, two parameters are used to prevent the
creation of too many fine-grained tasks and to break down the biggest tasks into smaller tasks. The
value for each of these parameters was set based on empirical tests. Several tests were performed in
order to find the optimal value of MAX_BREADTH for different lattices and number of threads, for both
solvers. For simplicity, Figures[5(a)]and [5(b)]show the results of only some of them. Different values for
MAX_BREADTH were tested for both solvers in order to find its optimal value. Figure shows the
execution time for different values of MAX_BREADTH for BKZ-reduced lattices (with block-size 20)
when running with 16 threads (for other number of threads the results were very similar), when solving
the CVP. Figure [5(b)| shows the number of tasks that are created in our parallel implementation, for 4,
8 and 16 threads, when solving the CVP. For the SVP and the Improved SE++, the number of tasks as
a function of the MAX_BREADTH is similar. The higher the value of MAX_BREADTH the higher the
number of tasks that are created. We set MAX_BREADTH = 6, since it was the result that revealed to be
slightly better than the others, despite of creating many more tasks than MAX_BREADTH =5. Since the
difference between the number of created tasks is much higher than the difference between the execution
time, it is possible to conclude that OpenMP’s implementation of the task queue is very optimized. To
choose the best values for MAX_DEPTH, the level at which tasks are created was set manually. For each
level, the execution time of the tasks was registered and compared to the total execution time. To ensure
linear and super-linear speedups, the execution time of the heaviest task has to be lower than m.
To avoid creating more tasks than it is necessary to guarantee a good load balancing, MAX_DEPTH is
set dynamically as n — log, (#T hreads). With the parameters set with these values, an ideal trade-off
between load balancing and granularity of the tasks is guaranteed.

We tested the SE++ and the Improved SE++ with LLL- and BKZ-reduced bases (BKZ ran with
block-size 20). For LLL-reduced bases, they were tested with lattices in dimensions 40, 45 and 50. For
BKZ-reduced bases, they were tested with lattices in dimensions 40, 50 and 60, since they run much
faster in BKZ-reduced bases. Figure [6(a)] shows the execution time of SE++, for the CVP, running
with 1-32 threadﬂ with LLL-reduced bases, and Figure shows the same tests for BKZ-reduced
bases. Figures and show the execution time, on the same conditions, for the SVP, of SE++
and the Improved SE++ (which includes the optimization of avoid symmetric branches), on LLL- and
BKZ-reduced bases, respectively.

Several conclusions can be drawn from these execution times. In first place, SE++ scales linearly
for up to 8 threads and almost linearly for 16 threads, for both the CVP and SVP. The implementation
can also benefit from the SMT technology, since the dependencies between the instructions prevent the

3http://www.shoup.net/ntl/

“http://eigen.tuxfamily.org/

Shttp://www.latticechallenge.org/svp-challenge/

5We used the parallel version running with a single thread as a single-core baseline, which is 5% slower than the pure-sequential
version.

11

Par. Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

a0 T I T T T T
. . . Dim 40 | | Dim 40

Dim 45 200 Bl Dim 50 | |

— Dim 50 [] — L Dim 60 |4

L R S—) 3

[} [} F 3

£ £ 20 |

F F L

c c
o ks
= 1+ — =1

> =1 1+ —
o o
17 17
X X
w w

005 o] L L LTI} LTI TR OV- NYpppap

1 1 1 1 1 1 1 I
1 2 4 8 16 32 1 2 4 8 16 32
Number of threads Number of threads
(a) LLL-reduced bases (b) BKZ-reduced bases

Figure 6: Execution time of SE++ solving the CVP on random lattices in dimensions 40, 45 and 50 for
LLL-reduced bases, in (a), and 40, 50 and 60, for BKZ-reduced bases, in (b), for 1-32 threads.

T T T T I A | L I
‘ ‘ SE++ Dim 40 B4et07 ‘ ‘ SE++ Dim 40
8000 Lo SE++ Dim 45 L 3.20406 fme e SE++ Dim 50 H
— L SE++ Dim 50 i — SE++ Dim 60
v ,] @ 160000 |- , H
° i ; ¢ | —»— Imp SE++ Dim 40 |] ° ' || —v— Imp SE++ Dim 40
£ 400 f=cooceociieeoeoooool —a Imp SE++ Dim 45 H £ 8000 [=-------ci------ i —A— Imp SE++ Dim 50 4
’; - —e— Imp SE++ Dim 50 |7 Z | —e— Imp SE++ Dim 60
S S 400 —
E E :
9 9 20
3 X [p— . .
|] 1 A A —— 4 _
: : At
0,05 Y che e]
0.0025 I\T\Y
1 2 4 8 16 32 1 2 4 8 16 32
Number of threads Number of threads
(a) LLL-reduced bases (b) BKZ-reduced bases

Figure 7: Execution time of our SE++ implementation solving the SVP on random lattices in dimensions

40, 45 and 50 for LLL-reduced bases, in (a), and 40, 50 and 60, for BKZ-reduced bases, in (b), for 1-32
threads.

full use of the functional units within each core. In second place, BKZ-reduced bases are much faster
to compute, both for the CVP and SVP, than LLL-reduced bases. Last but not least, our implementation
solves the CVP much faster than the SVP, but the results are dependent on the target vector and on the
tested lattice. In our experiments, we used a vector t = sB, where s; =0 fori = 1,...,n/2 and 0.75 for
i=n/2+1,...,n, and B is the basis of the lattice. This vector was chosen due to not being too close to
the basis vectors, but also not too far away.

A few points need to be addressed regarding the scalability of our implementation. In the first place,
and as in [12], the implementation might possibly have a smaller workload than the sequential execution
would have. This might occur because some threads might find, at a given point, a vector that is strictly
shorter than the distance from the input vector r’ to the (i — 1)-dimensional layers that would be analyzed
in a sequential execution. This justifies the super-linear speedups that are achieved for some cases, such
as on the CVP, with a BKZ-reduced 50-dimensional lattice, using four threads.

For the remaining cases, efficiency levels of >90% are attained for the majority of the instances of
up to 8 threads, except for lattices in dimension 40, where the workload is too small to compensate for
the creation and management of more than 4 threads. With 16 threads, the scalability is lower than for
up to 8 threads, presumably because of the use of two CPU sockets, which is naturally slower than the
use of a single socket, due to the Non-Uniform Memory Access (NUMA) organization of the RAM. In

12

Par. Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

3.2e+06 [F T =

l[12] Dim ;o
160000 |- - - [12] Dim 45 H
F [12] Dim 40]
'| —e— Imp SE++ Dim 50 []

[—A— Imp SE++ Dim 45 |]
400 - - H

. —w— Imp SE++ Dim 40 |
20 ;\’\ﬁ-\’__'_.:
4
1‘?'\7 i — - - _-u
0.05 - -1 B a7

0.0025 L L L L 1
1 2 4 8 16 32

8000 [~

Execution Time (s)

Number of threads

Figure 8: Execution time of the Improved SE++ and the implementation in [12]], for the SVP on LLL-
reduced lattices.

400

—a— BKZ + SE++
—e— BKZ i

300 H —=— SE++ - R . A

350 H

Execution Time (s)

14 16 18 20 22 24

BKZ Block Size

Figure 9: Execution time of the extreme pruned SE++ for different block-sizes and the corresponding
time spent in the BKZ reduction and the extreme pruned SE++ call, on a lattice in dimension 80.

addition, Figures and show that the Improved SE++ outperforms SE++ for the SVP by a factor
of ~50% with similar scalability.

Figure |8| shows a comparison between the Improved SE++ and the implementation in [12], for the
SVP on two random lattices. It is possible to see that, in the general case, our implementation scales
better. For the lattice in dimension 45 our approach has higher workload savings than the implementation
in [12]. Both implementations are influenced by the NUMA organization of the RAM, as we can see in
the case of the lattice in dimension 50. In general, with 1 thread, SE++ seems to be slower than [12],
by a factor of 10% to 25%, even though it was 25% faster for the lattice in dimension 40. However, the
Improved SE++ outperforms [[12] by a factor of 35% to 60%, thus becoming the fastest deterministic
enumeration-based solver to date.

6.2 SE++ with extreme pruning

In this subsection, we analyze the performance of our implementation of the SE++ with extreme pruning.
For this implementation in particular, we also included the execution time of the pre-processing of the
basis in the presented results, since it takes a considerable amount of the total time to compute. We
tested our implementation on lattices in dimensions 70, 75 and 80, for 1-32 working processes and
one additional master process, which only sends more work to the other processes and gathers the best
vectors at the end. Since the execution time of the latter is negligible, we omitted its execution time
in the presented results (i.e., the mentioned number of processes only refer to the number of working
processes).

13

Par. Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

Execution Time (s)

1 2 4 8 16 32

Number of Processes

Figure 10: Execution time of our parallel extreme pruned SE++ implementation, for lattices in dimension
70, 75 and 80.

Since the basis reduction takes a significant amount of time and it also influences the execution time
of the extreme pruned SE++ call, we performed tests to find out the optimal value for the block-size of
BKZ, used for the basis reduction. In particular, we evaluated the lattice in dimension 80, since it is the
lattice in the highest dimension that was tested. Figure [9] shows that the execution time of BKZ with
the block-size, but the execution time of the extreme pruned SE++ call decreases. The curve of the total
execution time is a parabola with the minimum on block-size 20. Therefore, from here on, we will use
block-size 20 for the remaining tests.

The first conclusion to be made is that the extreme pruning significantly decreases the execution time
of the Improved SE++, as shown in Figure [[0] The implementation of the SE++ with extreme pruning
solves a lattice in dimension 80 in slightly more than 200s, while the Improved SE++ without extreme
pruning solves a lattice in dimension 60 in almost 600 seconds, both reduced by BKZ with block-size
20.

Figure [10] also shows that our implementation scales linearly for up to 4 processes. For 8 and 16
processes, the scalability decreases due to load imbalance. This happens because the BKZ reduction and
the extreme pruned SE++ call are algorithms that strongly depend on the quality of the basis. Even though
the lattice is the same, we have different randomized bases on each iteration. Therefore, the execution
time of BKZ and of the extreme pruned enumeration differ according to the new basis. Figure [T0]also
shows that the implementation benefits from SMT, since dependencies between instructions might hinder
the total usage of the functional units of each core.

Our extreme pruned SE++ implementation achieves efficiency levels over 90% for up to 4 working
processes and close to 90% for 8 processes. For a higher number of processes, efficiency levels decrease
due to load imbalance.

7 Conclusions

This paper presents parallel implementations for the SE++ with and without extreme pruning. For the
SE++ with extreme pruning, we propose an approach that targets distributed memory multi-core CPU
systems, while our implementation of the SE++ without extreme pruning was developed for shared
memory multi-core CPU systems.

The main characteristic of our parallel implementation for the SE++ without extreme pruning is the
usage of two parameters, MAX_BREADTH and MAX_DEPTH, that ensure a good load balancing, by
(1) preventing the creation of too many fine grained tasks and (2) break down the larger tasks into smaller,
yet not too small, tasks. Our approach has scales well for both the CVP and the SVP. It scales linearly for

14

Par. Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

up to 8 threads and almost linearly for 16 threads, achieving speedups of up to 14.8x for 16 threads. In
some instances it was possible to achieve super-linear speedups due to work load savings of the parallel
implementation when running with multiple threads in comparison to running with just one thread. It
takes advantage of SMT, since some dependencies between instructions impede the full usage of the
functional units of the CPU. In addition, the optimization that avoids symmetric branches speeds up our
implementation by a factor of ~50%, which allows to outperform the state of the art implementation,
presented in [12]], by a factor of between 35% and 60%.

Extreme pruning is a key technique to be included in enumeration algorithms, since it significantly
reduces their execution time. We showed that the extreme pruned enumeration technique can also be
applied to other enumeration-based SVP-solvers, such as the Improved SE++. As shown in the results,
this technique solves the SVP for lattices in much higher dimensions in less time than the implementation
without extreme pruning. For instance, the non-pruned enumeration solved the SVP of BKZ-reduced
basis with block-size 20 of a lattice in dimension 60 in almost 600 seconds, while the extreme pruned
SE++ took slightly more than 200 seconds for a lattice in dimension 80, with the same basis reduction.
We also developed a parallel approach for this technique that can easily be applied to other extreme
pruned enumeration algorithms on distributed memory systems. Our implementation scales linearly for
up to 4 working processes with efficiency levels of over 90%. For 8 processes, it attains efficiency levels
close to 90% and speedup factors of up to 7.1x. For 16 processes, scalability is impaired because of load
imbalance, attaining speedup factors of up to 13x. The reason for this load imbalance lies in the fact
that the number of iterations is fixed at 44 iterations and that it is not possible to foresee the execution
time of each iteration. However, for 32 working processes, the implementation keeps scaling, since
dependencies between instructions hinder the full usage of the functional units of the cores.

It is possible to conclude that it is important to study the practicability and scalability of this kind
of algorithms, since they solve the most relevant problems in lattice basis cryptography, the CVP, which
can be solved by the SE++ without extreme pruning only, and the SVP, which can be solved by both,
the SE++ with and without extreme pruning. In addition, this kind of algorithms can also be used as a
building block for other algorithms, such as the SE++, for the CVP, for Voronoi cell-based algorithms,
the SE++, for the SVP, for the BKZ, and the extreme pruned SE++ for the BKZ 2.0. Therefore, by
achieving high performance implementations of these algorithms they can also be used to improve the
performance of the mentioned algorithms that use them as building blocks.

Acknowledgments

We thank Ozgiir Dagdelen and Michael Schneider, the authors of [[12]], for providing us with their imple-
mentation.

References

[1] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest Point Search in Lattices. IEEE Transactions on
Information Theory, 48(8):2201-2214, September 2002.

[2] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In Proc. of the 28th Annual ACM
Symposium on Theory of Computing (STOC’96), Philadelphia, Pennsylvania, USA, pages 99-108. ACM,
May 1996.

[3] M. Ajtai and C. Dwork. A Public-Key Cryptosystem with Worst-Case/Average-Case Equivalence. Electronic
Colloquium on Computational Complexity, 3(65), December 1996.

[4] M. Ajtai, R. Kumar, and D. Sivakumar. A Sieve Algorithm for the Shortest Lattice Vector Problem. In Proc.
of the 33rd Annual ACM Symposium on Theory of computing (STOC’01), Heraklion, Crete, Greece, pages
601-610. ACM, July 2001.

15

Par.

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

M. Ajtai, R. Kumar, and D. Sivakumar. Sampling Short Lattice Vectors and the Closest Lattice Vector
Problem. In Proc. of the 17th Annual IEEE Conference on Computational Complexity (CCC’02), Montréal,
Québec, Canada, pages 53-57, May 2002.

L. Babai. On Lovasz’ lattice reduction and the nearest lattice point problem. Combinatorica, 6(1):1-13,
March 1986.

J. Blomer and S. Naewe. Sampling Methods for Shortest Vectors, Closest Vectors and Successive Minima.
Theoretical Computer Science, 410(18):1648-1665, April 2009.

P. v. E. Boas. Another NP-complete partition problem and the complexity of computing short vectors in a
lattice. Technical Report 81-04, Mathematische Instituut, University of Amsterdam, 1981.

J. W. Cassels. An Introduction to the Geometry of Numbers (Reprint). Classics in mathematics. Springer-
Verlag, 1997.

Y. Chen and P. Q. Nguyen. BKZ 2.0: Better Lattice Security Estimates. In Proc. of the 17th International
Conference on the Theory and Application of Cryptology and Information Security (Advances in Cryptology
- ASIACRYPT 2011), Seoul, South Korea, volume 7073 of Lecture Notes in Computer Science, pages 1-20.
Springer-Verlag, December 2011.

F. Correia, A. Mariano, A. Proenca, C. H. Bischof, and E. Agrell. Parallel Improved Schnorr-Euchner Enu-
meration SE++ for the CVP and SVP. In Proc. of the 24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP 2016), Heraklion, Crete, Greece, pages 596—-603. IEEE,
February 2016.

O. Dagdelen and M. Schneider. Parallel Enumeration of Shortest Lattice Vectors. In Proc. of the 16th
International Euro-Par Conference (Euro-Par 2010 - Parallel Processing), Ischia, Italy, volume 6272 of
Lecture Notes in Computer Science, pages 211-222. Springer-Verlag, August-September 2010.

U. Fincke and M. Pohst. Improved Methods for Calculating Vectors of Short Length in a Lattice, Including
a Complexity Analysis. Mathematics of Computation, 44(170):463—471, April 1985.

N. Gama, P. Q. Nguyen, and O. Regev. Lattice Enumeration Using Extreme Pruning. In Proc. of the 29th
Annual International Conference on the Theory and Applications of Cryptographic Techniques (Advances
in Cryptology - EUROCRYPT 2010), French Riviera, France, volume 6110 of Lecture Notes in Computer
Science, pages 257-278. Springer-Verlag, May-June 2010.

A. Ghasemmehdi and E. Agrell. Faster Recursions in Sphere Decoding. IEEE Transactions on Information
Theory, 57(6):3530-3536, June 2011.

G. Hanrot, X. Pujol, and D. Stehlé. Algorithms for the Shortest and Closest Lattice Vector Problems. In Proc.
of the 3rd International Workshop - Coding and Cryptology (IWCC 2011), Qingdao, China, volume 6639 of
Lecture Notes in Computer Science, pages 159-190. Springer-Verlag, May-June 2011.

B. Helfrich. Algorithms to Construct Minkowski Reduced an Hermite Reduced Lattice Bases. Theoretical
Computer Science, 41(2-3):125-139, December 1985.

J. Hermans, M. Schneider, J. Buchmann, F. Vercauteren, and B. Preneel. Parallel Shortest Lattice Vector
Enumeration on Graphics Cards. In Proc. of the 3rd International Conference on Cryptology in Africa
(Progress in Cryptology — AFRICACRYPT 2010), Stellenbosch, South Africa, volume 6055 of Lecture Notes
in Computer Science, pages 52—68. Springer-Verlag, May 2010.

A. Joux and J. Stern. Lattice Reduction: A Toolbox for the Cryptanalyst. Journal of Cryptology, 11(3):161—
185, June 1998.

R. Kannan. Improved Algorithms for Integer Programming and Related Lattice Problems. In Proc. of the
15th Annual ACM Symposium on Theory of Computing (STOC’83), pages 193-206. ACM, 1983.

R. Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of Operations Re-
search, 12(3):415-440, August 1987.

P. Kuo, M. Schneider, O. Dagdelen, J. Reichelt, J. A. Buchmann, C. Cheng, and B. Yang. Extreme Enu-
meration on GPU and in Clouds - How Many Dollars You Need to Break SVP Challenges -. In Proc. of the
13th International Workshop - Cryptographic Hardware and Embedded Systems (CHES 2011), Nara, Japan,
volume 6917 of Lecture Notes in Computer Science, pages 176—191. Springer-Verlag, September-October
2011.

T. Laarhoven, J. van de Pol, and B. de Weger. Solving Hard Lattice Problems and the Security of Lattice-

16

Par.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

Based Cryptosystems. IACR Cryptology ePrint Archive, 2012:533, September 2012.

A. Lenstra, H. Lenstra, and L. Lovasz. Factoring polynomials with rational coefficients. Mathematische
Annalen, 261(4):515-534, 1982.

D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest vector problem. Electronic
Colloquium on Computational Complexity, 16:65, August 2009.

A. M. Odlyzko. The Rise and Fall of Knapsack Cryptosystems. In Proc. of Symposia in Applied Mathematics
(Cryptology and Computational Number Theory), Boulder, Colorado, USA, pages 75-88. A.M.S, August
1990.

M. Pohst. On the Computation of Lattice Vectors of Minimal Length, Successive Minima and Reduced Bases
with Applications. ACM SIGSAM Bulletin, 15(1):37—44, February 1981.

X. Pujol and D. Stehlé. Rigorous and efficient short lattice vectors enumeration. In Proc. of the 14th In-
ternational Conference on the Theory and Application of Cryptology and Information Security (Advances in
Cryptology - ASIACRYPT 2008), Melbourne, Australia, volume 5350 of Lecture Notes in Computer Science,
pages 390—405. Springer-Verlag, 2008.

C. Schnorr and H. H. Horner. Attacking the Chor-Rivest Cryptosystem by Improved Lattice Reduction. In
Advances in Cryptology - EUROCRYPT 95, International Conference on the Theory and Application of
Cryptographic Techniques, Saint-Malo, France, May 21-25, 1995, Proceeding, pages 1-12, 1995.

C.-P. Schnorr and M. Euchner. Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset
Sum Problems. Mathematical Programming, 66(1):181-199, August 1994.

Author Biography

Fabio Correia received the B.S. and M.S. degrees in Informatics Engineering from
the University of Minho in 2012 and 2014, respectively. After completing his M.S.,
he started working at the Institute for Scientific Computing, Darmstadt University of
Technology, as a Research Assistant. His work focussed on developing efficient and
parallel implementations of various algorithms that are used in lattice-based crypt-
analysis. His research interests include high performance computing, parallel pro-
gramming and lattice-based cryptanalysis.

Artur Mariano is a Post-doc at the Institute for Scientific Computing, Darmstadt
University of Technology. He holds a PhD awarded in 2016 by the same university.
Artur Mariano works on lattice-based cryptanalysis, with particular focus on under-
standing the efficiency of attacks on modern, high-end computer architectures. He is
currently involved with multi-disciplinary national and international projects aiming
at understanding and improving the practicability of lattice-based cryptanalysis, and
establishing his own research group.

17

Par. Imp. SE++ on Shared and Dist. Mem. Systems. Correia, Mariano, Proenca, Bischof, and Agrell

Alberto José Proenca is a Professor in Computing Engineering at University of
| Minho, where he has been lecturing since late 1970s. His main interests since the
Ph.D. at UMIST (UK) have been on efficiency issues in parallel and scalar comput-
@ ing, with a later focus on heterogeneous environments with accelerator processing
units, exploring advanced computing features in science case studies, namely scien-
tific data analyses. He headed the University Computer Centre for 15 years and now
the HPC facilities for the University. He is also in the Direction Board of the Ad-
vanced Computlng focus area in the National Cooperation Program between Portugal and the University
of Texas at Austin. He chaired the organisation of several international conferences in recent years.

Christian Bischof is professor for scientific computing and head of the university
computing center at Technical University (TU) Darmstadt. He studied Mathematics
at the University of Wiirzburg, then continued his studies at Cornell University under a
Fulbright fellowship, and completed a Ph.D. in computer science in 1988. Thereafter,
he joined the Mathematics and Computer Science Division at Argonne National Lab-
oratory as the first Wilkinson Fellow in Computational Mathematics, and continued
as staff member until 1998. Then he was professor for high-performance computing
and head of the Center for Computing and Communication at RWTH Aachen University until 2011. His
research interests include high performance computing, parallel programming, automatic differentiation
and semantic transformations, scientific workflows, and scientific IT service architectures.

Erik Agrell received the Ph.D. degree in information theory in 1997 from Chalmers

University of Technology, Sweden. From 1997 to 1999, he was a Postdoctoral Re-

searcher with the University of California, San Diego and the University of Illinois at

Urbana-Champaign. In 1999, he joined the faculty of Chalmers University of Tech-

nology, where he is a Professor in Communication Systems since 2009. In 2010, he
- cofounded the Fiber-Optic Communications Research Center (FORCE) at Chalmers,
: - where he leads the signals and systems research area. He is a Visiting Professor at
University College London since 2014. His research interests belong to the fields of information theory,
coding theory, and digital communications, and his favorite applications are found in optical communi-
cations.

Prof. Agrell served as Publications Editor for the IEEE Transactions on Information Theory from
1999 to 2002 and as Associate Editor for the IEEE Transactions on Communications from 2012 to
2015. He is a recipient of the 1990 John Ericsson Medal, the 2009 ITW Best Poster Award, the 2011
GlobeCom Best Paper Award, the 2013 CTW Best Poster Award, and the 2013 Chalmers Supervisor of
the Year Award.

18

	Introduction
	Notation
	Related Work
	 Algorithms
	Exact CVP- and SVP-solvers
	Approximate CVP-solvers

	 Implementations

	The SE++ Algorithm
	Implementation
	Avoiding symmetric branches
	Parallelization

	Enumeration with Extreme Pruning
	Parallelization

	Results
	SE++ and Improved SE++
	SE++ with extreme pruning

	Conclusions

