631 research outputs found

    An extension of Tur\'an's Theorem, uniqueness and stability

    Get PDF
    We determine the maximum number of edges of an nn-vertex graph GG with the property that none of its rr-cliques intersects a fixed set MV(G)M\subset V(G). For (r1)Mn(r-1)|M|\ge n, the (r1)(r-1)-partite Turan graph turns out to be the unique extremal graph. For (r1)M<n(r-1)|M|<n, there is a whole family of extremal graphs, which we describe explicitly. In addition we provide corresponding stability results.Comment: 12 pages, 1 figure; outline of the proof added and other referee's comments incorporate

    Large joints in graphs

    Full text link
    We show that if G is a graph of sufficiently large order n containing as many r-cliques as the r-partite Turan graph of order n; then for some C>0 G has more than Cn^(r-1) (r+1)-cliques sharing a common edge unless G is isomorphic to the the r-partite Turan graph of order n. This structural result generalizes a previous result that has been useful in extremal graph theory.Comment: 9 page

    The Erd\H{o}s-Rothschild problem on edge-colourings with forbidden monochromatic cliques

    Get PDF
    Let k:=(k1,,ks)\mathbf{k} := (k_1,\dots,k_s) be a sequence of natural numbers. For a graph GG, let F(G;k)F(G;\mathbf{k}) denote the number of colourings of the edges of GG with colours 1,,s1,\dots,s such that, for every c{1,,s}c \in \{1,\dots,s\}, the edges of colour cc contain no clique of order kck_c. Write F(n;k)F(n;\mathbf{k}) to denote the maximum of F(G;k)F(G;\mathbf{k}) over all graphs GG on nn vertices. This problem was first considered by Erd\H{o}s and Rothschild in 1974, but it has been solved only for a very small number of non-trivial cases. We prove that, for every k\mathbf{k} and nn, there is a complete multipartite graph GG on nn vertices with F(G;k)=F(n;k)F(G;\mathbf{k}) = F(n;\mathbf{k}). Also, for every k\mathbf{k} we construct a finite optimisation problem whose maximum is equal to the limit of log2F(n;k)/(n2)\log_2 F(n;\mathbf{k})/{n\choose 2} as nn tends to infinity. Our final result is a stability theorem for complete multipartite graphs GG, describing the asymptotic structure of such GG with F(G;k)=F(n;k)2o(n2)F(G;\mathbf{k}) = F(n;\mathbf{k}) \cdot 2^{o(n^2)} in terms of solutions to the optimisation problem.Comment: 16 pages, to appear in Math. Proc. Cambridge Phil. So

    Problems in extremal graph theory

    Get PDF
    We consider a variety of problems in extremal graph and set theory. The {\em chromatic number} of GG, χ(G)\chi(G), is the smallest integer kk such that GG is kk-colorable. The {\it square} of GG, written G2G^2, is the supergraph of GG in which also vertices within distance 2 of each other in GG are adjacent. A graph HH is a {\it minor} of GG if HH can be obtained from a subgraph of GG by contracting edges. We show that the upper bound for χ(G2)\chi(G^2) conjectured by Wegner (1977) for planar graphs holds when GG is a K4K_4-minor-free graph. We also show that χ(G2)\chi(G^2) is equal to the bound only when G2G^2 contains a complete graph of that order. One of the central problems of extremal hypergraph theory is finding the maximum number of edges in a hypergraph that does not contain a specific forbidden structure. We consider as a forbidden structure a fixed number of members that have empty common intersection as well as small union. We obtain a sharp upper bound on the size of uniform hypergraphs that do not contain this structure, when the number of vertices is sufficiently large. Our result is strong enough to imply the same sharp upper bound for several other interesting forbidden structures such as the so-called strong simplices and clusters. The {\em nn-dimensional hypercube}, QnQ_n, is the graph whose vertex set is {0,1}n\{0,1\}^n and whose edge set consists of the vertex pairs differing in exactly one coordinate. The generalized Tur\'an problem asks for the maximum number of edges in a subgraph of a graph GG that does not contain a forbidden subgraph HH. We consider the Tur\'an problem where GG is QnQ_n and HH is a cycle of length 4k+24k+2 with k3k\geq 3. Confirming a conjecture of Erd{\H o}s (1984), we show that the ratio of the size of such a subgraph of QnQ_n over the number of edges of QnQ_n is o(1)o(1), i.e. in the limit this ratio approaches 0 as nn approaches infinity

    Tur\'annical hypergraphs

    Full text link
    This paper is motivated by the question of how global and dense restriction sets in results from extremal combinatorics can be replaced by less global and sparser ones. The result we consider here as an example is Turan's theorem, which deals with graphs G=([n],E) such that no member of the restriction set consisting of all r-tuples on [n] induces a copy of K_r. Firstly, we examine what happens when this restriction set is replaced just by all r-tuples touching a given m-element set. That is, we determine the maximal number of edges in an n-vertex such that no K_r hits a given vertex set. Secondly, we consider sparse random restriction sets. An r-uniform hypergraph R on vertex set [n] is called Turannical (respectively epsilon-Turannical), if for any graph G on [n] with more edges than the Turan number ex(n,K_r) (respectively (1+\eps)ex(n,K_r), no hyperedge of R induces a copy of K_r in G. We determine the thresholds for random r-uniform hypergraphs to be Turannical and to epsilon-Turannical. Thirdly, we transfer this result to sparse random graphs, using techniques recently developed by Schacht [Extremal results for random discrete structures] to prove the Kohayakawa-Luczak-Rodl Conjecture on Turan's theorem in random graphs.Comment: 33 pages, minor improvements thanks to two referee
    corecore