17 research outputs found

    Collapsibility of CAT(0) spaces

    Full text link
    Collapsibility is a combinatorial strengthening of contractibility. We relate this property to metric geometry by proving the collapsibility of any complex that is CAT(0) with a metric for which all vertex stars are convex. This strengthens and generalizes a result by Crowley. Further consequences of our work are: (1) All CAT(0) cube complexes are collapsible. (2) Any triangulated manifold admits a CAT(0) metric if and only if it admits collapsible triangulations. (3) All contractible d-manifolds (d≠4d \ne 4) admit collapsible CAT(0) triangulations. This discretizes a classical result by Ancel--Guilbault.Comment: 27 pages, 3 figures. The part on collapsibility of convex complexes has been removed and forms a new paper, called "Barycentric subdivisions of convexes complex are collapsible" (arXiv:1709.07930). The part on enumeration of manifolds has also been removed and forms now a third paper, called "A Cheeger-type exponential bound for the number of triangulated manifolds" (arXiv:1710.00130

    Triangulations

    Get PDF
    The earliest work in topology was often based on explicit combinatorial models – usually triangulations – for the spaces being studied. Although algebraic methods in topology gradually replaced combinatorial ones in the mid-1900s, the emergence of computers later revitalized the study of triangulations. By now there are several distinct mathematical communities actively doing work on different aspects of triangulations. The goal of this workshop was to bring the researchers from these various communities together to stimulate interaction and to benefit from the exchange of ideas and methods

    Geometric, Algebraic, and Topological Combinatorics

    Get PDF
    The 2019 Oberwolfach meeting "Geometric, Algebraic and Topological Combinatorics" was organized by Gil Kalai (Jerusalem), Isabella Novik (Seattle), Francisco Santos (Santander), and Volkmar Welker (Marburg). It covered a wide variety of aspects of Discrete Geometry, Algebraic Combinatorics with geometric flavor, and Topological Combinatorics. Some of the highlights of the conference included (1) Karim Adiprasito presented his very recent proof of the gg-conjecture for spheres (as a talk and as a "Q\&A" evening session) (2) Federico Ardila gave an overview on "The geometry of matroids", including his recent extension with Denham and Huh of previous work of Adiprasito, Huh and Katz

    Topological analysis of discrete scalar data

    Get PDF
    This thesis presents a novel computational framework that allows for a robust extraction and quantification of the Morse-Smale complex of a scalar field given on a 2- or 3- dimensional manifold. The proposed framework is based on Forman\u27s discrete Morse theory, which guarantees the topological consistency of the computed complex. Using a graph theoretical formulation of this theory, we present an algorithmic library that computes the Morse-Smale complex combinatorially with an optimal complexity of O(n2)O(n^2) and efficiently creates a multi-level representation of it. We explore the discrete nature of this complex, and relate it to the smooth counterpart. It is often necessary to estimate the feature strength of the individual components of the Morse-Smale complex -- the critical points and separatrices. To do so, we propose a novel output-sensitive strategy to compute the persistence of the critical points. We also extend this wellfounded concept to separatrices by introducing a novel measure of feature strength called separatrix persistence. We evaluate the applicability of our methods in a wide variety of application areas ranging from computer graphics to planetary science to computer and electron tomography.In dieser Dissertation präsentieren wir ein neues System zur robusten Berechnung des Morse-Smale Komplexes auf 2- oder 3-dimensionalen Mannigfaltigkeiten. Das vorgestellte System basiert auf Forman’s diskreter Morsetheorie und garantiert damit die topologische Konsistenz des berechneten Komplexes. Basierend auf einer graphentheoretischer Formulierung präesentieren wir eine Bibliothek von Algorithmen, die es erlaubt, den Morse-Smale Komplex mit einer optimalen Kompliztät von O(n2)O(n^2) kombinatorisch zu berechnen und effizient eine mehrskalige Repräsentation davon erstellt. Wir untersuchen die diskrete Natur dieses Komplexes und vergleichen ihn zu seinem kontinuierlichen Gegenstück. Es ist häufig notwendig, die Merkmalsstärke einzelner Bestandteile des Komplexes -- der kritischen Punkte und Separatrizen -- abzuschätzen. Hierfür stellen wir eine neue outputsensitive Strategie vor, um die Persistenz von kritischen Punkten zu berechen. Wir erweitern dieses fundierte Konzept auf Separatrizen durch die Einführung des Wichtigkeitsmaßes Separatrixpersistenz. Wir evaluieren die Anwendbarkeit unserer Methoden anhand vielfältiger Anwendungen aus den Gebieten der Computergrafik, Planetologie, Computer- und Elektronentomographie

    Some problems in combinatorial topology of flag complexes

    Get PDF
    In this work we study simplicial complexes associated to graphs and their homotopical and combinatorial properties. The main focus is on the family of flag complexes, which can be viewed as independence complexes and clique complexes of graphs. In the first part we study independence complexes of graphs using two cofibre sequences corresponding to vertex and edge removals. We give applications to the connectivity of independence complexes of chordal graphs and to extremal problems in topology and we answer open questions about the homotopy types of those spaces for particular families of graphs. We also study the independence complex as a space of configurations of particles in the so-called hard-core models on various lattices. We define, and investigate from an algorithmic perspective, a special family of combinatorially defined homology classes in independence complexes. This enables us to give algorithms as well as NP-hardness results for topological properties of some spaces. As a corollary we prove hardness of computing homology of simplicial complexes in general. We also view flag complexes as clique complexes of graphs. That leads to the study of various properties of Vietoris-Rips complexes of graphs. The last result is inspired by a problem in face enumeration. Using methods of extremal graph theory we classify flag triangulations of 3-manifolds with many edges. As a corollary we complete the classification of face vectors of flag simplicial homology 3-spheres
    corecore