1,830 research outputs found

    Eccentric connectivity index

    Full text link
    The eccentric connectivity index ξc\xi^c is a novel distance--based molecular structure descriptor that was recently used for mathematical modeling of biological activities of diverse nature. It is defined as ξc(G)=vV(G)deg(v)ϵ(v)\xi^c (G) = \sum_{v \in V (G)} deg (v) \cdot \epsilon (v)\,, where deg(v)deg (v) and ϵ(v)\epsilon (v) denote the vertex degree and eccentricity of vv\,, respectively. We survey some mathematical properties of this index and furthermore support the use of eccentric connectivity index as topological structure descriptor. We present the extremal trees and unicyclic graphs with maximum and minimum eccentric connectivity index subject to the certain graph constraints. Sharp lower and asymptotic upper bound for all graphs are given and various connections with other important graph invariants are established. In addition, we present explicit formulae for the values of eccentric connectivity index for several families of composite graphs and designed a linear algorithm for calculating the eccentric connectivity index of trees. Some open problems and related indices for further study are also listed.Comment: 25 pages, 5 figure

    The exact minimum number of triangles in graphs of given order and size

    Get PDF
    What is the minimum number of triangles in a graph of given order and size? Motivated by earlier results of Mantel and Tur\'an, Rademacher solved the first non-trivial case of this problem in 1941. The problem was revived by Erd\H{o}s in 1955; it is now known as the Erd\H{o}s-Rademacher problem. After attracting much attention, it was solved asymptotically in a major breakthrough by Razborov in 2008. In this paper, we provide an exact solution for all large graphs whose edge density is bounded away from~11, which in this range confirms a conjecture of Lov\'asz and Simonovits from 1975. Furthermore, we give a description of the extremal graphs.Comment: Published in Forum of Mathematics, Pi, Volume 8, e8 (2020

    Graph homomorphisms between trees

    Get PDF
    In this paper we study several problems concerning the number of homomorphisms of trees. We give an algorithm for the number of homomorphisms from a tree to any graph by the Transfer-matrix method. By using this algorithm and some transformations on trees, we study various extremal problems about the number of homomorphisms of trees. These applications include a far reaching generalization of Bollob\'as and Tyomkyn's result concerning the number of walks in trees. Some other highlights of the paper are the following. Denote by hom(H,G)\hom(H,G) the number of homomorphisms from a graph HH to a graph GG. For any tree TmT_m on mm vertices we give a general lower bound for hom(Tm,G)\hom(T_m,G) by certain entropies of Markov chains defined on the graph GG. As a particular case, we show that for any graph GG, exp(Hλ(G))λm1hom(Tm,G),\exp(H_{\lambda}(G))\lambda^{m-1}\leq\hom(T_m,G), where λ\lambda is the largest eigenvalue of the adjacency matrix of GG and Hλ(G)H_{\lambda}(G) is a certain constant depending only on GG which we call the spectral entropy of GG. In the particular case when GG is the path PnP_n on nn vertices, we prove that hom(Pm,Pn)hom(Tm,Pn)hom(Sm,Pn),\hom(P_m,P_n)\leq \hom(T_m,P_n)\leq \hom(S_m,P_n), where TmT_m is any tree on mm vertices, and PmP_m and SmS_m denote the path and star on mm vertices, respectively. We also show that if TmT_m is any fixed tree and hom(Tm,Pn)>hom(Tm,Tn),\hom(T_m,P_n)>\hom(T_m,T_n), for some tree TnT_n on nn vertices, then TnT_n must be the tree obtained from a path Pn1P_{n-1} by attaching a pendant vertex to the second vertex of Pn1P_{n-1}. All the results together enable us to show that |\End(P_m)|\leq|\End(T_m)|\leq|\End(S_m)|, where \End(T_m) is the set of all endomorphisms of TmT_m (homomorphisms from TmT_m to itself).Comment: 47 pages, 15 figure

    Linear algebra and bootstrap percolation

    Get PDF
    In \HH-bootstrap percolation, a set A \subset V(\HH) of initially 'infected' vertices spreads by infecting vertices which are the only uninfected vertex in an edge of the hypergraph \HH. A particular case of this is the HH-bootstrap process, in which \HH encodes copies of HH in a graph GG. We find the minimum size of a set AA that leads to complete infection when GG and HH are powers of complete graphs and \HH encodes induced copies of HH in GG. The proof uses linear algebra, a technique that is new in bootstrap percolation, although standard in the study of weakly saturated graphs, which are equivalent to (edge) HH-bootstrap percolation on a complete graph.Comment: 10 page

    Triangle areas in line arrangements

    Get PDF
    A widely investigated subject in combinatorial geometry, originated from Erd\H{o}s, is the following. Given a point set PP of cardinality nn in the plane, how can we describe the distribution of the determined distances? This has been generalized in many directions. In this paper we propose the following variants. Consider planar arrangements of nn lines. Determine the maximum number of triangles of unit area, maximum area or minimum area, determined by these lines. Determine the minimum size of a subset of these nn lines so that all triples determine distinct area triangles. We prove that the order of magnitude for the maximum occurrence of unit areas lies between Ω(n2)\Omega(n^2) and O(n9/4)O(n^{9/4}). This result is strongly connected to both additive combinatorial results and Szemer\'edi--Trotter type incidence theorems. Next we show a tight bound for the maximum number of minimum area triangles. Finally we present lower and upper bounds for the maximum area and distinct area problems by combining algebraic, geometric and combinatorial techniques.Comment: Title is shortened. Some typos and small errors were correcte
    corecore