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Abstract

A widely investigated subject in combinatorial geometry, originated from
Erdős, is the following. Given a point set P of cardinality n in the plane, how
can we describe the distribution of the determined distances? This has been
generalized in many directions.

In this paper we propose the following variants. What is the maximum
number of triangles of unit area, maximum area or minimum area, that can
be determined by an arrangement of n lines in the plane?

We prove that the order of magnitude for the maximum occurrence of
unit areas lies between Ω(n2) and O(n9/4+ε), for every ε > 0. This result is
strongly connected to additive combinatorial results and Szemerédi–Trotter
type incidence theorems. Next we show an almost tight bound for the maxi-
mum number of minimum area triangles. Finally, we present lower and upper
bounds for the maximum area and distinct area problems by combining alge-
braic, geometric and combinatorial techniques.

1 Introduction

There are number of interesting question originating from Erdős, concerning dis-
tances in planar point sets [8]. He asked to determine the maximum number of equal
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distances that n planar points can form, the minimum number of distinct distances
they can form and the maximum number of appearances of the largest/smallest
distance. He also considered how large subset is guaranteed to exists in a point set
such that the distances within that subset are distinct.

Erdős and Purdy also studied the related problem of the maximum number of oc-
currences of the same area among the triangles determined by n points in the plane
[11]. Since then, several variants has been established and the former results of
Erdős and Purdy have been settled for some cases, see e.g. [5, 11, 22].

In this paper we consider the following variants of the original problem, which can
be considered as the dual setting. We are given n lines on the Euclidean plane and
we are seeking for conditions on the distribution of the areas of triangles formed by
the triples of lines. More precisely, we investigate the following four main problems
and compare the results to the corresponding problems concerning triples of points.

Problem 1.1. Determine the largest possible number f(n) of triangles of unit area
formed by n lines in the Euclidean plane.

Problem 1.2. Determine the largest possible number m(n) of triangles having min-
imum area formed by n lines in the Euclidean plane.

Problem 1.3. Determine the largest possible number M(n) of triangles with maxi-
mum area formed by n lines in the Euclidean plane.

Problem 1.4. Determine the largest possible number D(n) such that in any ar-
rangement of n lines (satisfying some generality conditions) there are D(n) lines
that form triangles of distinct areas.

Concerning these problems, we achieved the following results.

Theorem 1.5. For the maximum number of triangles of unit area, we have

f(n) = O
(
n

9
4
+ε
)

for every fixed ε > 0, while f(n) = Ω(n2).

Theorem 1.6. ⌊
n2 − n

6

⌋
≤ m(n) ≤

⌊
n2 − 2n

3

⌋
holds for the occurrences of the minimum area, if n ≥ 6.

Theorem 1.7. For the maximum number of triangles of maximum area, we have

7

5
n−O(1) < M(n) <

2

3
n(n− 2).
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Theorem 1.8. For the largest subset of lines forming triangles of distinct areas, we
have

n
1
5 < D(n),

provided that there are no six lines that are tangent to a common conic.

If one wishes to find a large subset of lines defining triangles that have distinct areas,
it is necessary to make some additional assumptions about the set of lines we are
considering. The most natural one is to assume that there are no parallel lines in
the set, and no three of them through a common point. However, we were not able
to obtain non-trivial bounds under these assumptions. Since 5 lines always have
a common tangent conic (see e.g. in [1, p. 66]), another natural general position
assumption is to require that no 6 of them do, as in the hypothesis of Theorem 1.8.

To put these results into perspective, let us recall a related problem, first asked
by Oppenheim in 1967, which reads as follows: What is the maximum number of
triangles of unit area that can be determined by n points in the plane? The first
breakthrough after the investigation of Erdős and Purdy [11] was due to Pach and
Sharir [19], who obtained an upper bound O(n2+1/3) via a Szemerédi-Trotter type
argument. This bound was improved in [2, 7] and recently by Raz and Sharir to
O(n2+2/9) in [22]. Here the lower bound is a simple lattice construction from [11],
yielding Ω(n2 log log n). Our Theorem 1.5 also indicates that the straightforward
application of some Szemerédi-Trotter type result can be improved. However, in the
next Section we will point out that in some relaxation, it would provide the right
order of magnitude.

As in the case of counting equal distances, the minimum and maximum area prob-
lems determined by point sets turned out to be easier, and they were asymptotically
settled by Brass, Rote and Swanepoel [5]. The result on the minimum area problem
was later refined in [7]. Concerning the occurrences of the maximum area, the upper
bound happens to be exactly n. This is a rather common phenomenon in this field,
we could mention the well-known theorem of Hopf and Pannwitz and similar results,
see [4]. Surprisingly, Theorem 1.7 shows that this is not the case in our problem.

The problem of the largest subset of points with distinct pairwise distances was orig-
inally posed by Erdős [9] and generalised recently to distinct k-dimensional volumes
in Rd by Conlon et al. [6]. For a point of comparison, they note that in the case
d = 2, Ω(n1/5) points can be chosen from a set of n points in general position so
that the triples in this subset determine triangles of distinct areas. The best upper
bound so far is attained by choosing Ω(n) points in general position on the n × n
grid. From Pick’s Theorem [21] it is clear that twice the area of a lattice triangle is
an integer. Therefore, lattice triangles on this grid define at most O(n2) areas, so
the upper bound for the problem is O(n2/3).

The paper is built up as follows. In Section 2 we discuss Problem 1.1 and prove
Theorem 1.5. In order to do this, we consider first the maximum number of unit
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area triangles lying on a fixed line, and prove tight results up to a constant factor.
Next we will apply a deep result of Pach and Zahl to complete the proof of our main
theorem.
Section 3 is devoted to Problems 1.2 and 1.3, and we prove Theorem 1.6 and 1.7.
Section 4 concerns Problem 1.4 and contains the proof of Theorem 1.8. Finally, we
discuss some related problems and open questions in Section 5.

2 The number of unit area triangles

2.1 Unit area triangles supported by a single line

A natural way to give an upper bound on f(n) is to consider how many of the unit
area triangles can be supported by a fixed line. Then f(n) is at most n/3 times
larger.

Problem 2.1. Let ` be a line and L be a set of n lines and consider the triangles
formed by ` and two elements of L. Determine the largest possible number g(n) of
triangles of unit area among these.

We determine the order of magnitude of g(n) by turning the problem into an inci-
dence problem for points and lines.

Theorem 2.2. For the maximum number of triangles of unit area having a common
supporting line `, g(n) = Θ(n4/3) holds.

We may assume that ` is horizontal, and the lines in L = {`1, . . . , `n} are not
horizontal lines. Let xi denote the x-coordinate of the intersection of ` and `i and
let yi = cotαi where αi denotes the (directed) angle determined by ` and `i. Let
Tij denote the triangle formed by `, `i and `j. Notice that the parameters (xi, yi)
i = 1, . . . , n provide an exact description of any line not parallel to `, while a parallel
line `′ ‖ ` would not contribute to the number of unit area triangles supported by
`. Let us denote by e(x, y) the line described by parameters (x, y).

Lemma 2.3. Assume that xi 6= xj and yi 6= yj. The area of triangle Tij is

Area(Tij) =
(xj − xi)2

2|(yi − yj)|
.

Proof. The equations of the lines e(xi, yi) and e(xj, yj) are y = x−xi

yi
and y =

x−xj

yj

respectively. Therefore, their intersection point is (x, y) =
(

xjyi−xiyj
yi−yj ,

xj−xi

yi−yj

)
.

Area(Tij) =
1

2
|xj − xi|

∣∣∣∣xj − xiyi − yj

∣∣∣∣ =
(xj − xi)2

2|(yi − yj)|
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Proof of Theorem 2.2. We apply the lemma above. Supposing that yi > yj, Tij is
of unit area if and only if 2yi−x2i = −2xixj +x2j + 2yj. In other words Tij is of unit
area if and only if the point (xi, 2yi − x2i ) lies on the line y = −2xjx+ 2yj + x2j .

By the Szemerédi–Trotter theorem, n lines and n points have O(n4/3) incidences.
Applying this to the lines y = −2xjx+ 2yj + x2j and the points (xi, 2yi− x2i ) we get

g(n) = O(n4/3).

On the other hand there exists n/2 lines and n/2 points that have Ω(n4/3) incidences.
We can write these points in the form (xi, 2yi−x2i ) for some (x1, y1), . . . , (xn/2, yn/2).
Similarly we can write the lines in the form y = −2xjx + 2yj + x2j for some
(xn/2+1, yn/2+1), . . . , (xn, yn). The n lines given by the assignment (xi, yi)→ e(xi, yi)
determine Ω(n4/3) unit area triangles. Therefore, g(n) = Θ(n4/3).

Let us mention that the same upper bound is also implied by the powerful theorem
of Pach and Sharir [20].

Theorem 2.4 ([20]). Let P be a set of m points and let Γ be a set of n distinct
irreducible algebraic curves of degree at most k, both in R2. If the incidence graph
of P × Γ contains no copy of Ks,t, then the number of incidences is

O(m
s

2s−1n
2s−2
2s−1 +m+ n).

Indeed, the lines were described by their parameters (x1, y1), . . . , (xn, yn), and con-
sider the unit parabolas 2y = x2− 2xxj + x2j − 2yj (j = 1, . . . , n). The ith point lies
on the jth parabola if and only if the triangle Tij has unit area. A unit parabola
is determined by two of its points, so the incidence graph does not contain K2,2

and Theorem 2.4 can be applied for s = t = 2. Since we have n points and
n curves, the number of unit area triangles having a common supporting line is
O(n2/3n2/3) = O(n4/3).

Corollary 2.5. The bound above yields f(n) = O(n7/3) for the maximum number
of unit area triangles.

2.2 Upper bound on the maximum number of unit area tri-
angles

2.2.1 Reformulation in additive combinatorics

For any arrangement of n lines, an y-axis can be chosen such that the parameters
of these lines as introduced above in Lemma 2.3, satisfy x1 ≤ x2 ≤ · · · ≤ xn and
y1 ≥ y2 ≥ · · · ≥ yn. Let H = {(xi, yi) | 1 ≤ i ≤ n} ⊆ R2.
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Proposition 2.6. The number of unit-area triangles in the arrangement equals the
number of solutions in H×H×H to the (rational) equation

(xj − xi)2

yi − yj
+

(xk − xj)2

yj − yk
+

(xi − xk)2

yk − yi
= 2. (1)

Proof. We may assume by rotation that none of the n lines are horizontal, and
consider a horizontal line ` located under all the intersections of the n lines. Taking
` as the x axis of a coordinate system, we let xi to be the coordinate of the i-
th intersection of ` with another line (which we denote by `i). Let αi denote the
(directed) angle appearing between ` and `i, see Figure 1. Let yi = cotαi. Since
there are no intersections under or on `, we have α1 ≤ α2 ≤ · · · ≤ αn and therefore
y1 ≥ y2 ≥ · · · ≥ yn.

Figure 1: The calculation of the triangle area, formed by the lines `i, `j and `k

Since yi ≥ yj, the area of the triangle Tij determined by `, `i and `j is
(xj−xi)

2

|2(yi−yj)| =
(xj−xi)

2

2(yi−yj) . (If yi = yj, then `i and `j are parallel, and they form no triangle.) The

area of the triangle determined by the lines `i, `j and `k can be calculated as

Area(Tij) + Area(Tjk)− Area(Tik) =
(xj − xi)2

2(yi − yj)
+

(xk − xj)2

2(yj − yk)
− (xk − xi)2

2(yi − yk)
=

(xj − xi)2

2(yi − yj)
+

(xk − xj)2

2(yj − yk)
+

(xi − xk)2

2(yk − yi)
.

Therefore, the problem of finding an arrangement of lines determining f(n) triangles
of unit area is equivalent to finding some reals x1 < x2 < · · · < xn and y1 ≥ y2 ≥
· · · ≥ yn such that (1) is satisfied for the maximal number of index triples.
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2.2.2 Improved upper bound for f(n)

We improve here the bound achieved by Corollary 2.5. To do this, we recall a recent
result of Sharir and Zahl [23], which is a strengthening of Theorem 2.4.

Theorem 2.7 (Incidences between points and algebraic curves, [23]). Let P be a
set of m points in the plane. Let C be a set of c algebraic plane curves of degree at
most D, no two of which share a common irreducible component. Assume that we
can parameterize these curves using s parameters. Then for any ε > 0, the number
I(P, C) of incidences between the points of P and the curves of C satisfies

I(P, C) = O
(
m

2s
5s−4 c

5s−6
5s−4

+ε +m2/3c2/3 +m+ c
)
.

Now we are ready to prove our main result.

Theorem 2.8. For every fixed ε > 0, the maximum number of triangles of unit area
satisfies

f(n) = O(n
9
4
+ε).

Proof. Consider the additive combinatorial equivalent form of the problem in Equa-
tion 1, take the solution set with maximum number of solutions and denote it by
H. For every ordered pair (xi, yi), (xj, yj) where xi < xj, the solutions of Equation
(1) are points (xk, yk) of a bounded degree rational curve defined by (1), with the
condition that xj < xk must hold. Hence we obtain m = n points on at most c =

(
n
2

)
plane curves belonging to an s = 4-dimensional family, as the family depends on
the real values {xi, yi, xj, yj}. One can verify also rather easily that no two of these
curves share a common irreducible component. This can be done either directly, by
deducing from Equation (1) an equivalent reformulation, a degree 2 polynomial in
variables xk, yk where the coefficients are (polynomial) functions of xi, yi, xj, yj, or
by referring to Lemma 4.1 which provides a description of the locus of the points
(xk, yk) satisfying (1) in terms of {xi, yi, xj, yj}. Hence, applying the result of Sharir
and Zahl (Theorem 2.7), we get the desired bound.

The lower bound for f(n) follows from the results in the next section, by scaling the
triangles of minimum area to have area 1, which have a quadratic cardinality in n.

3 Number of maximum and minimum area trian-

gles, bounds on m(n) and M(n)

3.1 Minimum area triangles

In this subsection we prove Theorem 1.6 by determining the maximal possible num-
ber of triangles of minimal area constituted by n lines, up to a factor of 2. This will
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follow from the results on the lower and upper bound below.

Proposition 3.1. m(n) ≤ bn(n− 2)/3c for every n and m(n) ≤ bn(n− 2)/3c − 1
if n ≡ 0, 2 (mod 6).

Proof. Observe that if a triangle is of minimal area, then none of the lines can
intersect its sides. Hence the maximal number of triangles of minimal area is at most
the number of triangular faces K(n) in an arrangement of n lines. The latter problem
became famous as the so-called Tokyo puzzle or the problem of Kobon triangles. The
best bound is by Bader and Clément [3], who showed that K(n) ≤ bn(n− 2)/3c for
every n and K(n) ≤ bn(n− 2)/3c − 1 if n ≡ 0, 2 (mod 6).

The bound on K(n) is almost sharp since Füredi and Palásti constructed a general
arrangement to prove K(n) ≥ bn(n− 3)/3c [14]. See also the construction of Forge
and Ramı́rez-Alfonśın [13].

Proposition 3.2. Assume that n ≥ 3. Then

m(n) ≥

{
6l2 if n = 6l,

6l2 + 2jl + j − 2 if n = 6l + j, 1 ≤ j ≤ 5.

Proof. Take the grid depicted in Figure 2. Choose n lines such that they are as
close to the center of a hexagonal face as possible. If there are 2, 3 or 4 lines in the
outermost layer, pick these to be in consecutive clockwise position.

Assume that n = 6l. Add the lines to the diagram layer by layer, starting from the
center. Adding the six lines of the i-th layer will create 6(2i−1) new triangular faces
(6i outside the hexagon formed by those lines and 6(i− 1) inside it). Therefore, the
total number of triangular faces is

∑l
i=1 6(2i − 1) = 6l2. If n = 6l + j the result

follows similarly with elementary counting on the outermost layer.

Figure 2: A hexagonal grid formed by 12 lines
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Conjecture 3.3. The lower bound of Proposition 3.2 is sharp if n is large enough.

Note that these lower bounds are not met if n is small. C. T. Zamfirescu [24]
recently proved that even the number of facial congruent triangles exceeds this
bound if n ≤ 12, see Table 1. On the other hand, the construction described in
Proposition 3.2 provides a general lower bound as well for the number of facial
congruent triangles in terms of the number of lines, which exceeds the bound of
C.T. Zamfirescu if n is large.

# of lines, n 3 4 5 6 7 8 9 10 11 12
# of congruent facial
triangles, lower bound 1 2 5 6 ≥ 9 ≥ 12 ≥ 15 ≥ 20 ≥ 23 ≥ 26
# of congruent triangles,
lower bound via Prop. 3.2 1 2 3 6 7 10 13 16 19 24
# of congruent triangles,
lower bound via Prop. 3.4 0 1 2 4 6 8 12 14 18 22

Table 1: Comparison of the constructions for the number of congruent or minimal
area triangles in small cases

We can obtain the same order of magnitude in an essentially different way as well.

Proposition 3.4. Assume that n ≥ 3. Then

m(n) ≥

{
6l2 + 2jl − 2 if n = 6l + j, j ∈ {0,±1,±2},
6l2 + 6l if n = 6l + 3.

Proof. Take a triangular grid. If n ≡ 3 (mod 6), choose those n lines of the grid,
which are the closest to a fixed point on the grid. If n 6≡ 3 (mod 6), choose those
n lines of the grid, which are the closest to a fixed point, which is the center of a
triangle in the grid. A simple inductive argument similar to the one in Proposition
3.2 shows that the number of constructed facial triangles equals the desired quantity,
see Figure 3.

The above constructions differ in several aspects. Firstly, the former one does not
contain concurrent triples of lines. Secondly, note that in the upper bound on K(n)
of Bader and Clément [3] a key observation was that every line segment between
consecutive intersections on a line belongs to at most one triangular region. This
property appears only in the former construction. Thus if Conjecture 3.3 holds,
it would imply that the arrangements that almost attain the extremum may have
significantly different structure.
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Figure 3: A triangular grid formed by 12 lines

3.2 Maximum area triangles

We start with a construction to prove the lower bound of Theorem 1.7 on the number
of maximum area triangles. The main idea is the following. Suppose you have a
construction with some number of maximal area triangles. Then we can add a new
line that does not create large triangles, i.e. the maximal area does not increase.
We can slide this line until it creates an extra triangle of maximal area. This way
we can create a new maximal area triangle per line. To improve this we will show
that we can add five lines together to get seven new maximal area triangles. Five
of the new maximal triangles will appear between these five new lines and then by
sliding the five lines together we will get two extra ones.

The precise construction requires a couple of lemmas first.

Proposition 3.5. Let ABC be one of the maximal area triangles in the arrangement
and let ` be one of the lines of the arrangement. Then either ` intersects the interior
of ABC or it is parallel to one of the sides of ABC.

Proof. If ` is not parallel to one of the three sides, then it intersects each of the
three lines. Suppose ` avoids the interior of the triangle. By symmetry we may
assume that ` runs as in Figure 4a. Hence A′BC ′ is a triangle of larger area which
contradicts the maximality of ABC.

Proposition 3.6. Assume that there are no parallel lines in the arrangement and
that the triangle ∆, formed by lines (`1, `2, `3), is a maximal area triangle. Then all
the maximal area triangles that are supported by `1 lie on the same side of `1.

Proof. Suppose that a triangle ∆′, formed by the lines (`1, `4, `5), is also a maximal
area triangle and it lies on the opposite side of `1. Let P = `4 ∩ `5 and consider the
possible positions of P . We will denote the three regions by R1, R2 and R3 as seen
in Figure 4b.
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(a) A line avoiding a maximal triangle (b) Regions around a triangle

Figure 4: Line positions with respect to a maximum area triangle

Suppose that P lies in the interior of R1 ∪R3. By Proposition 3.5 we know that `4
and `5 must intersect the interior of the triangle ABC, therefore they intersect `1
on the interior of the

−−→
BC ray. But then the line `2 avoids the maximal triangle ∆′,

contradicting Proposition 3.5. Similarly P cannot lie in the interior of R2 ∪R3.

Proposition 3.7. If there are no parallel lines in an arrangement, then we can add
a new line ` to the arrangement such that it supports no maximal area triangle in
the new arrangement.

Proof. Pick an arbitrary direction that is not parallel to any of the lines of the
arrangement. Choose ` to be the line that has the chosen direction and for which
the largest new triangle area created is the smallest possible. Suppose this area is
q. Then ` must support two triangles on opposite sides that have area q. Otherwise
we could translate ` slightly in one direction to decrease all the new areas below q.
By Proposition 3.6 this implies that the q cannot be the maximal area in the whole
arrangement.

Proposition 3.8. If there are no parallel lines in an arrangement, then we can find
a rectangle ABCD such that if we add any line to the arrangement that intersects
both AB and CD we create no new maximal area triangles.

Proof. By Proposition 3.2 we can find a line ` that creates no new maximal area
triangles. Let `′ be a line parallel to ` which also does not create a new maximal
triangle and lies so close to ` that no two line of the arrangement intersects each
other between ` and `′. Then any line f that intersects all lines of the arrangement
between ` and `′ does not create a new maximal area triangle. This follows from
the fact that if f supports a triangle, then either ` or `′ avoids that triangle, so by
Proposition 3.5 the triangle cannot be maximal. Next we can choose points A,D
on ` and B,C on `′ appropriately, see Figure 5a.

11



(a) No new maximal triangles. (b) Combining two constructions (c) Pentagon

Figure 5: Ingredients for the recursive construction

For an arrangement L let T (L) denote the number of maximal area triangles. For
example T (L) = 5 if L consists of five lines forming a regular pentagon. For an
affine transformation ϕ let ϕ(L) denote the image of L.

Proposition 3.9. If L and K are arrangements of lines that contain no parallel
lines, then there exist affine transformations ϕ and ψ such that T (ϕ(L) ∪ ψ(K)) ≥
T (L) + T (K) + 2.

Proof. We may assume that the maximal area triangles have the same area in L
and K. Using Proposition 3.8 we can define rectangle ABCD for L and rectangle
EFGH for K. Then, applying an area preserving affine transformation, we can
place the two construction such that the two rectangles cross each other (see Figure
5b). Now every line of ϕ(L) crosses EF and GH and every line of ψ(K) crosses AB
and CD. By Proposition 3.8 this means that in the new construction the maximal
area triangles are the same as they are in K and L. So we have exactly T (L)+T (K)
maximal triangles.
Finally, we increase this number by two in two steps. Translate first the lines of
ϕ(L) together in an arbitrary direction until a new maximal area triangle appears,
formed by lines both from the translates of ϕ(L) and ψ(K). We may assume that
only one such triangle ∆∗ is formed, and it has exactly one supporting line `∗ in
ψ(K). Now if we translate again the lines of ϕ(L), this time along the line `∗, then
obviously neither the area of triangles formed by the lines from ϕ(L) or ψ(K), nor
the area of ∆∗ will change. However, some translated lines of ϕ(L) will eventually
form yet another triangle of maximal area together with some lines from ψ(K).

It is easy to see that the lower bound of Theorem 1.7 follows. We start with five
lines forming a regular star pentagon (see Figure 5c). Then we use Proposition 3.9
repeatedly, always using the previous construction as L and five lines forming a
regular pentagon as K.

Theorem 3.10. M(n) ≤ 2
3
n(n− 2).
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Proof. We will show that in an arrangement of n lines, any fixed line ` supports at
most 2(n− 2) triangles of maximal area. This immediately implies the statement of
the theorem.

Let ` be a fixed line in the arrangement. We may assume that all other lines intersect
it as otherwise they would not form any triangle together. Consider ` as the x axis
of a coordinate system, and let xi denote the x coordinate of the intersection of `
and `i for all i = 1, 2, . . . , n− 1. We also use the notation yi for the cotangent of the
(directed) angle determined by ` and `i. By Lemma 2.3, the area of the triangle Tij

determined by the lines `, `i and `j is Area(Ti,j) =
(xi−xj)

2

2|yi−yj | . (If xi = xj or yi = yj,

then there is no triangle to speak of.) If the sign of xi − xj and yi − yj is the same,
then the triangle is located under `, otherwise it is located over it.

Without loss of generality, we may assume that the maximal triangle area is 1/2.
Then (xi − xj)

2 ≤ |yi − yj| applies to all pairs (i, j), with equality if and only if
Area(Ti,j) is maximal.

Let us define the graph G+
` , and resp. G−` on the vertex set {v1, v2, . . . , vn−1} and

connect vi to vj if (xi−xj)2 = |yi−yj| and the sign of xi−xj and yi−yj is the same
or respectively, the opposite. We will show that there is no cycle in G+

` , therefore
|E(G+

` )| ≤ n − 2 holds for the cardinality of the edge set. The same argument
applies to G−` as well, yielding |E(G−` )| ≤ n − 2. Therefore, the total number of
edges, which is equal to the number of triangles of maximal area supported by `, is
at most 2(n− 2).

Suppose that there is a cycle vi1vi2 . . . vik in G+
` . We will get a contradiction using

two simple propositions. In the following two statements we consider the indexing
of the vertices modulo k.

Proposition 3.11. The signs of xit − xit+1 and xit+1 − xit+2 are the opposite.

Proof. Suppose that the signs are the same. Then

|yit+2−yit | = |yit+2−yit+1|+|yit+1−yit| = (xit+1−xit+2)
2+(xit−xit+1)

2 < (xit−xit+2)
2

would hold, a contradiction.

Proposition 3.12. There are no four vertices va, vb, vc and vd in G+
` such that

xa < xb < xc < xd and vavc, vbvc, vbvd ∈ E(G+
` ).

Proof. Suppose that there are four such vertices. Then

(xd−xa)2 ≤ yd−ya = (yd−yb)+(yc−ya)−(yc−yb) = (xd−xb)2+(xc−xa)2−(xc−xb)2

After rearranging, we get

xaxc + xbxd ≤ xaxd + xbxc,

which can be written as (xa − xb)(xc − xd) ≤ 0, a contradiction.
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Returning to the cycle vi1vi2 . . . vik , Proposition 3.11 implies that k is even. We may
assume that |xi1 − xi2| > |xi2 − xi3| after shifting the indexing of the vertices if
necessary. This means that xi3 is between xi1 and xi2 .

Proposition 3.11 tells us that xi4 must be in the same direction from xi3 as xi2 .
However Proposition 3.12 implies that it cannot be past xi2 . Note that xi2 = xi4 is
also impossible since this would imply yi2 = yi4 and `i2 = `i4 . Therefore, xi4 must
be between xi2 and xi3 .

Following this argument, we find that xit+2 must be between xit and xit+1 for all
t = 1, 2, . . . , k − 2. Then the vertices v1, vk−1, vk, vk−2 violate Proposition 3.12, a
contradiction.

Remark 3.13. Theorem 3.10 can be even strengthened, as M(n) ≤ 1
3
n(n − 1)

also holds. Indeed, one can verify that Proposition 3.6 is true in a more general
form, namely if there are parallel lines in the line arrangement, then there may exist
maximal area triangles on both sides of a fixed line `, but on one of the sides there
is no more than one maximal area triangle. This result yields |E(G−` )|+ |E(G+

` )| ≤
n − 1 in the proof above, implying our stated improvement. The details are left to
the interested reader.

4 Lines defining triangles with distinct areas

In this section we assume that the lines in the original arrangement are in general
position. More specifically, we will require that no six of them are tangent to a
common quadratic curve in the plane.

To prove Theorem 1.8, we begin with the following result.

Lemma 4.1. Let r1 and r2 be two rays from a point O and λ ∈ R+ fixed. Then
those lines that form a triangle with r1 and r2 of area λ are all tangent to a fixed
hyperbola. The two rays belong to the asymptotes of this hyperbola.

Proof. Affine transformations preserve lines, conics and ratios of areas. Therefore,
we may assume that r1 and r2 are perpendicular and correspond to the positive
parts of the x and y axis, respectively.

Now, for a positive real number c consider the hyperbola xy = c and any point
(x1, y1) on it. The tangent t at (x1, y1) is given by the equation xy1 + yx1 = 2c. Let
P1 = (2c/y1, 0) and P2 = (0, 2c/y2) be the intersections of t and the x and y axis,
respectively. Then the area of the triangle OP1P2 is 4c2

2x1y1
= 2c.

Any line that intersects the positive parts of the x and y axis must be tangent to
exactly one of these hyperbolas, and as seen above the area of the triangle it defines
depends completely and injectively on c. Therefore, triangles with the same area
must all be tangent to a fixed one of these hyperbolas.
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From here, we deduce the following result.

Corollary 4.2. Let `1 and `2 be two intersecting lines. Then for any fixed value
λ ≥ 0, there can be at most 20 lines in general position such that each of them forms
a triangle with `1 and `2 of area λ.

Proof. Note that `1 and `2 define four quadrants. If λ > 0, each line defines a
triangle of positive area with `1 and `2, so it intersects both rays of one of the
quadrants. By Lemma 4.1, we can have at most 5 lines per quadrant, so we obtain
at most 20 lines.

If λ = 0, then each line has to go through the point of intersection of `1 and `2.
There can be at most 5 of these lines, as otherwise the intersection point would be
a common degenerate conic tangent to 6 lines.

The second ingredient that we use is a rainbow Ramsey result. We apply the fol-
lowing particular version of a result proven by Conlon et al. [6] and independently
by Mart́ınez-Sandoval, Raggi and Roldán-Pensado [18]. It has been used before
to obtain similar results in combinatorial geometry in which a large structure with
distinct substructures is desired.

Theorem 4.3. Let H be an m-uniform hypergraph and k a positive integer. Assume
that the hyperedges of H are coloured in such a way that no two vertices lie in k
edges of the same color.

Then there exists a set of
Ωk(n1/(2m−1))

vertices for which all the hyperedges have distinct colors.

We are ready to prove the main result of this section.

Proof of Theorem 1.8. Note that there cannot be six or more lines with the same
slope, as otherwise a seventh line would be a degenerate conic tangent to all of them
at infinity. Therefore, the lines define at least n

5
distinct slopes, and taking at most

one for each slope we may extract a subset L′ of size at least n
5

so that no two lines
of L′ are parallel.

Consider the complete 3-uniform hypergraph H whose vertex set is L′. Since no two
lines of L′ are parallel, we may provide a colouring of the 3-edges of H by assigning
to each triple the area of the triangle it defines. By Corollary 4.2, no pair of vertices
belongs to 21 or more triples of the same colour. Therefore, by Theorem 4.3 we
obtain a set of Ω((n/5)1/5) = Ω(n1/5) lines such that the triangles that they define
have all distinct areas.
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5 Discussion and open problems

One could also raise here an analogue question to the well known problem due to
Erdős, Purdy and Strauss, which is formulated as

Problem 5.1 (Erdős, Purdy, Straus, [12]). Let S be a set of n points in Rd not all in
one hyperplane. What is the minimal number of distinct volumes of non-degenerate
simplices with vertices in S?

Concerning the case d = 2, we refer to e.g. [7] and its reference list. Note that to
obtain reasonable results on the cardinality of distinct areas, one has to prescribe
certain restrictions to avoid huge classes of parallel lines hence obtaining only few
triangles. However, having assumed e.g. that no pair of parallel lines appear, the
distribution of the areas can change significantly. We conjecture that the number of
unit area triangles drops to O(n2) in that case, and in fact we could not even find
evidence of that the order of magnitude is Ω(n2).

The proof of the upper bound on the number of maximum area triangles was rely-
ing on an argument about maximum area triangles sharing a common line ` that
provides a linear upper bound. Although it is easy to see that a linear lower bound
is realisable by a set of n − 2 tangent and two asymptotes of a hyperbole branch
(see Figure 6), we conjecture that this will not provide the right (quadratic) order
of magnitude for M(n). Note that this phenomenon appeared concerning the unit
area triangles as well when we compared g(n) and f(n), see Section 2.

Figure 6: Maximum area triangles lying on `, formed by `, `′, and a third line from
the tangent line set.

In fact, we believe that the following holds.
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Conjecture 5.2. The order of magnitude of M(n), largest possible number of tri-
angles with maximum area in arrangements of n lines in the plane is O(n1+ε) for
every ε > 0.

In general we have seen that in these types of combinatorial geometry problems,
small (or minimum) distances (or areas) may occur much more frequently than
large (or maximum) distances (areas).

Supposing that this assertion holds, it raises yet another interesting inverse research
problem from a statistical point of view.

Problem 5.3. Suppose that for each n, a set of n lines is given in the Euclidean
plane. Assume that the number of triangles having unit area, determined by triples
of lines, is φ(n), where φ(n)/n → ∞. Prove a lower bound (in terms of φ(n)) on
the number of triangles having area greater than 1.

The analogue of Problem 5.3 for the original Erdős-Purdy problem on distances in
a planar point set seems also widely open. Some results were obtained by Erdős,
Lovász and Vesztergombi [10].

We also note that the problem may be investigated in a finite field setting as well,
similarly to [16].

In Theorem 1.8, we assume that no six lines are tangent to a common conic. This
implies, in particular, that no six lines are pairwise parallel. A more natural condi-
tion would be to simply require that no two lines are parallel. We were not able to
obtain any non-trivial bounds under this hypothesis.

Problem 5.4. What is the maximum number D′(n) such that in any arrangement
of n lines on the plane, no two of them parallel or three through a common point,
there are D′(n) lines that form triangles of distinct areas?

The bound in Theorem 1.8 can be improved by a logarithmic factor, as mentioned
in [6]. The problem could also be generalized to higher dimensions as follows.

Problem 5.5. A set of n hyperplanes in general position are given in Rd. What
is the maximum number Dd(n) such that we can always find a subset of these hy-
perplanes of this size for which all the simplices that they define have distinct d-
dimensional volumes?

We finish by mentioning that there are very few geometric problems with this com-
binatorial flavour in which the bounds are asymptotically tight. A related question
concerning circumradii is discussed in [17].

Acknowledgement We are grateful to the anonymous referee whose remarks helped
us to improve the presentation of the paper and Nóra Frankl for the fruitful discus-
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