338 research outputs found

    Data-driven multivariate and multiscale methods for brain computer interface

    Get PDF
    This thesis focuses on the development of data-driven multivariate and multiscale methods for brain computer interface (BCI) systems. The electroencephalogram (EEG), the most convenient means to measure neurophysiological activity due to its noninvasive nature, is mainly considered. The nonlinearity and nonstationarity inherent in EEG and its multichannel recording nature require a new set of data-driven multivariate techniques to estimate more accurately features for enhanced BCI operation. Also, a long term goal is to enable an alternative EEG recording strategy for achieving long-term and portable monitoring. Empirical mode decomposition (EMD) and local mean decomposition (LMD), fully data-driven adaptive tools, are considered to decompose the nonlinear and nonstationary EEG signal into a set of components which are highly localised in time and frequency. It is shown that the complex and multivariate extensions of EMD, which can exploit common oscillatory modes within multivariate (multichannel) data, can be used to accurately estimate and compare the amplitude and phase information among multiple sources, a key for the feature extraction of BCI system. A complex extension of local mean decomposition is also introduced and its operation is illustrated on two channel neuronal spike streams. Common spatial pattern (CSP), a standard feature extraction technique for BCI application, is also extended to complex domain using the augmented complex statistics. Depending on the circularity/noncircularity of a complex signal, one of the complex CSP algorithms can be chosen to produce the best classification performance between two different EEG classes. Using these complex and multivariate algorithms, two cognitive brain studies are investigated for more natural and intuitive design of advanced BCI systems. Firstly, a Yarbus-style auditory selective attention experiment is introduced to measure the user attention to a sound source among a mixture of sound stimuli, which is aimed at improving the usefulness of hearing instruments such as hearing aid. Secondly, emotion experiments elicited by taste and taste recall are examined to determine the pleasure and displeasure of a food for the implementation of affective computing. The separation between two emotional responses is examined using real and complex-valued common spatial pattern methods. Finally, we introduce a novel approach to brain monitoring based on EEG recordings from within the ear canal, embedded on a custom made hearing aid earplug. The new platform promises the possibility of both short- and long-term continuous use for standard brain monitoring and interfacing applications

    Piecewise smooth chebfuns

    Get PDF
    Algorithms are described that make it possible to manipulate piecewise-smooth functions on real intervals numerically with close to machine precision. Breakpoints are introduced in some such calculations at points determined by numerical rootfinding, and in others by recursive subdivision or automatic edge detection. Functions are represented on each smooth subinterval by Chebyshev series or interpolants. The algorithms are implemented in object-oriented MATLAB in an extension of the chebfun system, which was previously limited to smooth functions on [-1, 1]

    Data-driven time-frequency analysis of multivariate data

    No full text
    Empirical Mode Decomposition (EMD) is a data-driven method for the decomposition and time-frequency analysis of real world nonstationary signals. Its main advantages over other time-frequency methods are its locality, data-driven nature, multiresolution-based decomposition, higher time-frequency resolution and its ability to capture oscillation of any type (nonharmonic signals). These properties have made EMD a viable tool for real world nonstationary data analysis. Recent advances in sensor and data acquisition technologies have brought to light new classes of signals containing typically several data channels. Currently, such signals are almost invariably processed channel-wise, which is suboptimal. It is, therefore, imperative to design multivariate extensions of the existing nonlinear and nonstationary analysis algorithms as they are expected to give more insight into the dynamics and the interdependence between multiple channels of such signals. To this end, this thesis presents multivariate extensions of the empirical mode de- composition algorithm and illustrates their advantages with regards to multivariate non- stationary data analysis. Some important properties of such extensions are also explored, including their ability to exhibit wavelet-like dyadic filter bank structures for white Gaussian noise (WGN), and their capacity to align similar oscillatory modes from multiple data channels. Owing to the generality of the proposed methods, an improved multi- variate EMD-based algorithm is introduced which solves some inherent problems in the original EMD algorithm. Finally, to demonstrate the potential of the proposed methods, simulations on the fusion of multiple real world signals (wind, images and inertial body motion data) support the analysis

    An Inquiry: Effectiveness of the Complex Empirical Mode Decomposition Method, the Hilbert-Huang Transform, and the Fast-Fourier Transform for Analysis of Dynamic Objects

    Get PDF
    A review of current signal analysis tools show that new techniques are required for an enhanced fidelity or data integrity. Recently, the Hilbert-Huang transform (HHT) and its inherent property, the Empirical Mode Decomposition (EMD) technique, have been formerly investigated. The technique of Complex EMD (CEMD) was also explored. The scope of this work was to assess the CEMD technique as an innovative analysis tool. Subsequent to this, comparisons between applications of the Hilbert transform (HT) and the Fast-Fourier transform (FFT) were analyzed. MATLAB was implemented to model signal decomposition and the execution of mathematical transforms for generating results. The CEMD technique successfully decomposed the data into its oscillatory modes. After comparative graphical analysis of the HT and FFT, application of the HT provided marginal enhancements of the data modeled previously by the FFT. Altogether, the HHT could not be determined as a helpful analysis tool. Nevertheless, the CEMD technique, an inherent component of the HHT, exhibited a possible improvement as an analysis tool for signal processing data. Further evaluation of the CEMD technique and the HHT is needed for ultimate determination of their usefulness as an analysis tool

    Turning Tangent Empirical Mode Decomposition: A Framework for Mono- and Multivariate Signals.

    No full text
    International audienceA novel Empirical Mode Decomposition (EMD) algorithm, called 2T-EMD, for both mono- and multivariate signals is proposed in this paper. It differs from the other approaches by its computational lightness and its algorithmic simplicity. The method is essentially based on a redefinition of the signal mean envelope, computed thanks to new characteristic points, which offers the possibility to decompose multivariate signals without any projection. The scope of application of the novel algorithm is specified, and a comparison of the 2T-EMD technique with classical methods is performed on various simulated mono- and multivariate signals. The monovariate behaviour of the proposed method on noisy signals is then validated by decomposing a fractional Gaussian noise and an application to real life EEG data is finally presented

    FPGA based real-time implementation of Bivariate Empirical Mode Decomposition

    Get PDF
    A field programmable gate array (FPGA)-based parallel architecture for the real-time and online implementation of the bivariate extension of the empirical mode decomposition (EMD) algorithm is presented. Multivariate extensions of EMD have attracted significant attention in recent years owing to their scope in applications involving multichannel and multidimensional data processing, e.g. biomedical engineering, condition monitoring, image fusion. However, these algorithms are computationally expensive due to the empirical and data-driven nature of these methods. That has hindered the utilisation of EMD, and particularly its bivariate and multivariate extensions, in real-time applications. The proposed parallel architecture is aimed at bridging this gap through real-time computation of the bivariate EMD algorithm. The crux of the architecture is the simultaneous computation of multiple signal projections, locating their local extrema and finally the calculation of their associated complex-valued envelopes for the estimation of local mean. The architecture is implemented on a Xilinx Kintex 7 FPGA and offers significant computational improvements over the existing software-based sequential implementations of bivariate EMD

    Assessing extrema of empirical principal component functions

    Full text link
    The difficulties of estimating and representing the distributions of functional data mean that principal component methods play a substantially greater role in functional data analysis than in more conventional finite-dimensional settings. Local maxima and minima in principal component functions are of direct importance; they indicate places in the domain of a random function where influence on the function value tends to be relatively strong but of opposite sign. We explore statistical properties of the relationship between extrema of empirical principal component functions, and their counterparts for the true principal component functions. It is shown that empirical principal component funcions have relatively little trouble capturing conventional extrema, but can experience difficulty distinguishing a ``shoulder'' in a curve from a small bump. For example, when the true principal component function has a shoulder, the probability that the empirical principal component function has instead a bump is approximately equal to 1/2. We suggest and describe the performance of bootstrap methods for assessing the strength of extrema. It is shown that the subsample bootstrap is more effective than the standard bootstrap in this regard. A ``bootstrap likelihood'' is proposed for measuring extremum strength. Exploratory numerical methods are suggested.Comment: Published at http://dx.doi.org/10.1214/009053606000000371 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore