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Abstract 

A review of current signal analysis tools show that new techniques are required 

for an enhanced fidelity or data integrity.  Recently, the Hilbert-Huang transform (HHT) 

and its inherent property, the Empirical Mode Decomposition (EMD) technique, have 

been formerly investigated.  The technique of Complex EMD (CEMD) was also 

explored.  The scope of this work was to assess the CEMD technique as an innovative 

analysis tool.  Subsequent to this, comparisons between applications of the Hilbert 

transform (HT) and the Fast-Fourier transform (FFT) were analyzed.  MATLAB® was 

implemented to model signal decomposition and the execution of mathematical 

transforms for generating results.  The CEMD technique successfully decomposed the 

data into its oscillatory modes.  After comparative graphical analysis of the HT and FFT, 

application of the HT provided marginal enhancements of the data modeled previously by 

the FFT.  Altogether, the HHT could not be determined as a helpful analysis tool.  

Nevertheless, the CEMD technique, an inherent component of the HHT, exhibited a 

possible improvement as an analysis tool for signal processing data.  Further evaluation 

of the CEMD technique and the HHT is needed for ultimate determination of their 

usefulness as an analysis tool. 
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AN INQUIRY: EFFECTIVENESS OF THE COMPLEX EMPIRICAL MODE 

DECOMPOSITION METHOD, THE HILBERT-HUANG TRANSFORM, AND THE 

FAST-FOURIER TRANSFORM FOR ANALYSIS OF DYNAMIC OBJECTS 

I.  Problem Statement 

1.1.  Background 

The effectiveness of the Hilbert-Huang transform (HHT), and more specifically 

the complex extension of the Empirical Mode Decomposition (EMD) technique within 

the HHT, as analysis tools for complex radar-cross section (RCS) data collected from 

dynamic objects were being investigated.  In addition to assessing the use of the HHT for 

complex RCS data, both the Fast-Fourier transform (FFT) and Hilbert transform were 

applied to the data that has been analyzed using the Complex Empirical Mode 

Decomposition (CEMD) algorithm.  Once results have been generated for both 

transforms based on the decomposed complex data, the outputs from the two transforms 

were compared to determine whether the HHT can provide information or better fidelity 

not previously provided by the FFT of the decomposed complex data. 

In addition to assessing the EMD technique of the HHT, the EMD technique was 

extended into the realm of complex-valued signals and complex-valued data to provide a 

more accurate output of the data being processed by the FFT and the Hilbert transform of 

the decomposed complex data.  While the original EMD method analyzes only the real-

valued or magnitude portion of the data, the use of an algorithm that allows the analysis 

of complex data was implemented as part of assessing and examining the usefulness of 

the HHT. 
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1.1.1.  Benefits of Investigating the EMD Technique 

The benefits of the findings were weighed prior to beginning the research, 

especially when determining their validity and usefulness as a possible tool.  This 

particular problem does not require the use of expensive equipment or many undeveloped 

concepts, but there is a cost concerning manpower and time devoted to researching 

existing topics and determining how the new topic will be approached.   

For the task of assessing the CEMD technique and HHT as analysis tools, as well 

as determining the usefulness compared with the FFT, the benefits will outweigh the time 

spent in the research and development towards the problem.  Due to the previous research 

done in the field of knowledge and development of the EMD technique, there is a good 

foundation for the development of the CEMD coding that will be necessary for 

assessment of the CEMD method and the use of the HHT.  The largest benefit of 

assessing the use of the CEMD method and the HHT presently is determining its 

potential for future. 

1.1.2.  History of the Hilbert-Huang Transform 

Historically, analysis of data collected from dynamic objects has been done using 

the Fourier spectral analysis, consisting of the Discrete Fourier transform (DFT) and the 

Fourier transform.  In the mid-1960s, after the development of the FFT, analysis in 

computationally intense fields was revolutionized.  Even though the Fourier transform 

had been used in data analysis for years prior to the introduction of the FFT, 

implementation of the FFT algorithm allowed those working with the Fourier spectral 

analysis for data processing experienced an expedited form of signal processing.  For the 

past 50 years, the FFT has been the primary analysis tool for signal processing.  Even 
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though the FFT has provided an acceptable analysis procedure for linear and stationary 

(or periodic) data sets, Fourier analysis has some constraints and drawbacks inherent to 

the method.   

The primary drawback inherent to Fourier analysis, and by extension the FFT 

algorithm, is a limitation founded upon the analysis of linear and stationary data.  The 

property of analysis of linear and stationary data is due to the FFT employing a known 

and predefined set of basis functions that maps the inputted data from the time domain to 

the frequency domain.  Consequently, analysis of nonlinear (such as shockwave data or 

turbulence data) and non-stationary data is nearly impossible with the FFT.    

As a result of the constraint on the FFT method, other mathematical tools are 

receiving consideration from analysts in the intelligence community.  In recent years, an 

innovative technique for analyzing dynamic objects has been investigated in other fields 

of study.  The specific mathematical tool that was analyzed, scrutinized, and assessed 

throughout this thesis is the HHT, a more recent analysis tool that contains the EMD 

technique and the Hilbert transform. 

Dr. Huang [1] claimed that the HHT is more suitable to analyze nonlinear and 

non-stationary objects, resulting in an interest of investigating the capabilities and 

possibilities of using the HHT as an analysis tool.  The HHT performs the decomposition 

of the signal into its oscillatory modes using the EMD technique and applies the Hilbert 

transform to these modes, which results in the Hilbert spectrum representation of the 

signal. 
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1.1.3.  Explanation of the Empirical Mode Decomposition Technique 

The EMD algorithm is an adaptive technique, in which a given signal is 

decomposed into a set of oscillating basis functions through use of the sifting process.  

These oscillatory components of the decomposed signal are called the Intrinsic Mode 

Functions (IMFs) and are representations of the oscillating nature embedded in the data 

[1].  The Fourier transform has a predefined set of basis functions, yet the IMFs that are 

decomposed from the data are considered the basis functions for the given signal.   

More precisely, the EMD performs the following decomposition through various 

steps: 

1
( ) ( ) ( )

N

ii
x k c k r k


    (1) 

where ( ), 1,...,ic k i N  denote the IMFs and ( )r k  denotes the residual.  The IMF is 

characterized by two properties: (1) the upper and lower envelopes are symmetric; and 

(2) the number of zero-crossings and the number of extrema are exactly equal [2].   

To extract the IMFs from a given signal, the following sifting algorithm is 

employed, as detailed in Table 1 [1].   

Table 1:  The EMD Algorithm 

1.  Find the locations of all the extrema of the given signal, '( )x k  

2.  Interpolate (using the cubic spline interpolation) between all the minima and 

respective maxima to obtain the signal envelope passing through the minima 

min ( )e k and respective maxima max ( )e k  

3.  Compute the local mean  min max( ) ( ) ( ) / 2m k e k e k   

4.  Subtract the local mean from the signal to obtain the “oscillating” signal 

( ) '( ) ( )s k x k m k   

5.  If the resulting signal obeys the stopping criterion, ( ) ( )d k s k  becomes an IMF; 

otherwise, set '( ) ( )x k s k  and repeat the process from Step 1 
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The stopping criterion for the final step is the normalized squared difference between two 

successive iterates, ( )ns k  and 
1( )ns k

, or as follows: 

2

1

2
0 1

( ) ( )

( )

N
i i

i i

s k s k
SD

s k



 


 ,

 (2) 

where N represents the total number of samples in the original signal ( )x k , and the 

standard deviation (SD) is set within the range of (0.2-0.3) [1]. 

Once the sifting algorithm is implemented, the Hilbert transform is applied to 

each individual IMF.  The resulting equation upon application of the Hilbert transform, is 

given by, representing the Hilbert spectrum is as follows: 

( )

1
( ) ( ) i

N j t

ii
X t a t e




 ,

 (3) 

where ( )ia t  is the time-dependent amplitude and ( )i t  is the phase function.  The 

instantaneous radial frequency can be defined by 

( )
( ) i

i

d t
t

dt


   (4) 

and can be plotted against the amplitude, in which the resulting plot is the Time-

Frequency Amplitude, representing the Hilbert spectrum.  The combination of the 

instantaneous frequency concept, detailed in (4), and the EMD technique, detailed in (1), 

makes the HHT a powerful tool in both signal decomposition and signal analysis [2]. 

1.1.4.  Primary Focus of the Hilbert-Huang Transform 

The HHT consists of the EMD technique and Hilbert transform, in which the 

primary focus of assessing the use of the HHT to analyze RCS data is the EMD technique 



 

6 

portion. The Hilbert spectrum results from the Hilbert transform application and is used 

in comparing the generated graphical results.  The EMD technique has been investigated 

extensively by numerous researchers [3]-[8]; therefore, for purposes of data analysis in 

this evaluation, the EMD extension into the complex domain will be explored as applied 

to complex RCS data.  The CEMD method has become more relevant in fields where the 

data collected contains a phase component (such as signal processing). 

1.1.5.  Complex Extensions of the Empirical Mode Decomposition Technique 

Several complex extensions of the EMD technique have been developed recently.  

Such complex methods include CEMD [9], RICEMD [10], and BEMD [11].  Throughout 

literature, the term CEMD is ambiguous, referring to the method described in [9] or in 

reference to the process of extending the EMD technique to the complex domain.   

The first extension introduced for extending the EMD technique in the complex 

domain was termed CEMD by Tanaka and Mandic [9].  The authors used the relationship 

that exists between the positive and negative frequency components of the complex 

signal.  Rather than viewing the result as one signal consisting of these two frequency 

components, Tanaka and Mandic view the IMFs extracted as independent of each other.  

Then, by applying the EMD technique to the negative and positive frequency 

components, the two sets of IMFs were created, which corresponded to the negative and 

positive frequency components.  This method works well for the low-dimensional (such a 

single dimensional) case, but when applied to a higher-dimensional case, the analysis 

degrades due to the rigorous mathematical nature of the algorithm and the non-intuitive 

extension from the original EMD algorithm. [9] 
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A second complex EMD extension proposed by Umair Bin Altaf et al. is 

RICEMD [10].  This method differs from the CEMD method developed by Tanaka and 

Mandic [9], where the RICEMD method operates completely in the complex domain.  As 

a result, the steps to accomplish the EMD method are performed in the complex domain 

rather than the real domain.  The only difference between the original EMD method and 

this proposed complex extension exists in determining the extrema and the envelope of 

the signal.  Other than these two steps of the EMD algorithm being changed, the 

RICEMD and the original EMD methods are accomplished in the same manner. 

One final method proposed for the realization of the complex EMD analysis is 

called BEMD [11] developed by Rilling et al.  This method is based on the idea of 

“bivariate signal = fast rotations + slow rotations.” In order to discriminate between the 

“fast” and “slow” rotations, the idea is to define the “slow” component as the mean of the 

defined “envelope.”  The envelope for the bivariate signal is now three dimensional 

rather than two dimensional, as in the univariate signal case.  After the data points for 

analysis of the signal are selected, the issue of defining the mean arises.  The preferred 

definition for the mean is the intersection of two straight lines, where the lines 

intersecting correspond to the two horizontal tangents and the two vertical tangents [11].   

The desired goal for defining the mean was the same as the original EMD 

method: a smooth curve with as few oscillations as possible.  The interpolation scheme 

employed by the BEMD technique is a cubic spline.  The cubic spline was employed due 

to its minimum curvature property and fits the purpose of the EMD algorithm best.   

The BEMD method was employed to extract the complex IMFs because the idea 

of projecting the signal into specific directions to extract the extrema, as well as 
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connecting the points to create the desired envelope is intuitive and similar to the original 

EMD method.  The bivariate time series in the algorithms is treated as a complex-valued 

time series.  Given an angle direction, the bivariate extensions are defined by the EMD 

algorithm, only with new sifting elementary operators defined by 1BS   and 2BS ,which 

correspond to the two algorithms [11]. 

For the purposes of this thesis, the BEMD method proposed by Rilling et al. was 

employed to analyze the complex RCS data provided by the sponsor, as well as the 

simulated data collected at the RCS range.  

1.2.  Statement of Problem 

The problem addressed in this research effort consisted of two parts.  The first 

part was assessing the use of the CEMD technique of the HHT as an analysis tool on 

complex RCS data created by dynamic objects.  Next, the decomposed signal after 

implementation of the CEMD method was analyzed after the applications of the FFT and 

Hilbert transform to determine whether the HHT provided enhanced analysis of the signal 

as compared with analysis provided previously from the FFT.  

1.3.  Justification for Research 

Traditional data analysis tools, such as the Fourier transform and wavelet 

analysis, depend on the mapping of a pre-existing and known signal being transformed 

from the time domain to the frequency domain or from the scale domain to the dilation 

domain, respectively.  Such tools are limited to the analysis of linear and stationary 

signals, leading to problems when a need to analyze nonlinear and non-stationary data 

arises.  Most data collected fall within this category of nonlinear and non-stationary data, 
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for the sake of simplicity, there is a standing assumption that the data are linear and 

stationary.  Recently, there has been interest in analyzing the data collected from dynamic 

objects using the CEMD technique and the HHT.  Because the data are nonlinear and 

non-stationary, applying this recent adaptive data-driven analysis tool may provide novel 

insights about the data.  The assessment of implementing the CEMD method as an 

analysis tool will be investigated through use of both real-world and simulated data.    

Then, in comparing the plotted IMFs resulting from employment of the CEMD method 

both before and after the application of the Hilbert transform using various mathematical 

transforms, the final decision will be made about the use of the CEMD method and the 

HHT as analysis tools. 

1.4.  Approach/Methodology 

The methodology that will be used to complete the research will be described in 

greater detail in the methodology chapter, but a brief overview is provided in the 

following paragraphs. 

1.4.1.  Data Collection 

The first data set evaluated was the real-world data set provided by the sponsor.  

In addition to this data set, four sets of simulated data collected at AFIT’s RCS range 

were used in comparing with the decomposed real-world data set after the CEMD method 

is employed.  These four sets of simulated data included: a cylinder with two end caps; a 

cylinder with one end cap and one open end (or cavity cylinder); an ogive; and a dihedral 

corner reflector.  Once all data was collected, it will be calibrated using the MATLAB® 

graphical user interface (GUI) called ALPINE© [18].  Then, it will be converted into a 
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MAT-file that can be read into MATLAB®.  At this point, the algorithm introduced in 

the following paragraph will be employed. 

1.4.2.  Explanation of Chosen Algorithm 

Research has been done concerning methods that presently exist in the realm of 

analyzing complex-valued data sets that extend the EMD technique.  Of the three 

methods that are most recognized by the academic community, the method that was 

employed in the data analysis for this work was the BEMD method developed by Rilling 

and Flandrin [11].  The BEMD method was used as a model, but there were some 

modifications to use the method on the dynamic object data set provided.  Once the 

BEMD algorithm was created, the analysis of the data was accomplished.   

After the BEMD algorithm was refined and tested on code provided, the real-

world and simulated data were analyzed by the BEMD code developed for this research 

effort.  After the data was analyzed by the BEMD technique code, three different 

transforms were applied to the resulting IMFs.  First, the Hilbert transform was applied to 

the decomposed data.  Second, the FFT was applied to the decomposed data both before 

and after the Hilbert transform application.  Finally, the windowed FFT was applied to 

the decomposed data both before and after the Hilbert transform, represented as a 

Doppler-Time-Intensity (DTI) plot.  For all three applied transforms, the IMFs of the 

complex RCS data were plotted and recorded, being used in the data analysis portion of 

the research.   

1.4.3.  Qualitative Data to be Analyzed 

The analyzed data was qualitative data, in the form of graphs created in 

MATLAB®.  The plotted IMFs resulting from the application of the Hilbert transform, 
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the FFT, and the Windowed FFT were the graphs compared for data analysis.  These 

plotted IMFs were compared and distinct features, to include differences, similarities, and 

unique points, were documented.  The sets of plotted IMFs from the three mathematical 

transformed mentioned earlier in this paragraph were the data analyzed. 

1.5.  Overview of Chapters 

The remaining chapters of the thesis include the following components: the 

literature review section; the methodology section; the data analysis and results section; 

and the conclusions section.  The literature review will contain analysis of work already 

done on the topic of the EMD technique and the HHT, including articles relevant to the 

research for the problem being investigated.  The methodology section details the 

approach to complete the research and method employed to create the qualitative data to 

be analyzed in the data analysis section.  The main idea of the methodology is to 

qualitatively represent the problem as graphs, as well as provide a way to assess the use 

of the CEMD method and the HHT as analysis tools.  After the methodology is 

explained, the plotted data sets will be discussed and analyzed in the data analysis 

section.  The resulting plotted IMFs created by the data will be analyzed and compared in 

order to determine whether the CEMD algorithm and the HHT provide enhanced fidelity 

than the FFT.  The thesis will continue with a discussion of the data created by the 

CEMD coding.  Concluding thoughts will be made in the final section as to the 

assessment of the CEMD algorithm and the HHT as possible analysis tools, as well as 

how the Hilbert transform compares with the FFT analysis of dynamic object data sets.  
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II.  Literature Review  

2.1.  Introduction 

Traditionally, the use of “Fourier spectral analysis” [1] through application of the 

Fourier transform, as well as the faster algorithm of the FFT, has been used to quantify 

various sets of data in the signal analysis department.  The restrictive nature of the 

Fourier transform primary need for a linear system and strictly periodic or stationary data 

[1], other transforms have been researched as possible supplemental or replacement 

analysis tools in the fields where nonlinear and non-stationary data exist.   

More recently, investigation into a newer mathematical transforms have been 

conducted.  One transform called the HHT was introduced by Dr. Huang et al. [1] and 

has since been used in numerous fields of science and engineering, ranging from seismic 

analysis to heartbeat patterns [3], [4], [6], and [14].  The HHT consists of two 

components: (1) the Empirical Mode Decomposition (EMD) method and (2) the Hilbert 

transform.   

The EMD method is an adaptive technique in which a given signal is decomposed 

into a set of oscillating components through use of the sifting process.  The oscillatory 

components are called the IMFs of the given signal and are representations of the 

oscillating nature embedded in the data.  The FFT has a defined set of basis functions; 

however, the IMFs that are decomposed from the data are considered the basis functions 

for the signal.  The EMD technique and application of the Hilbert transform to create the 

Hilbert spectrum comprise the HHT. 

The EMD accepts only real-valued signals and could lead to the loss of some 

information provided by the signal.  Therefore, research has been performed in the past 
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five years to create a way to extend the EMD technique to analyze complex-valued 

signals, consisting of the real-valued and imaginary-valued data.  Several researchers 

[9,10,11] have also developed methods that fall under the topic of the CEMD; they have 

extended the EMD technique to incorporate complex-valued data sets rather than only the 

real-valued components of the data. 

2.2.  Literature Review Structure 

The work accomplished by Dr. Huang et al. [1] is analyzed by the various ways 

the HHT and EMD technique have been adapted into a number of fields of study [3]-[4], 

[6], [14] and will conclude with the more recent developments for the CEMD technique 

[9]-[11], [15]-[17], as well as multivariate signals [12].  Over the course of approximately 

15 years of research, many breakthroughs and discoveries concerning the use of the HHT 

have occurred, more specifically concerning the EMD technique inherent to the HHT.  

Upon completing this literature review, a greater understanding of the HHT and EMD 

technique is expected. 

2.3.  The Hilbert-Huang Transform 

Where the details of the HHT are concerned, Dr. N. E. Huang is a leading 

authority in the field.  Huang et al. wrote introduced “[t]he empirical mode 

decomposition and the Hilbert spectrum for nonlinear and non-stationary time series 

analysis” [1] in 1998 and introduced a new method for analyzing nonlinear and non-

stationary data, known as the HHT.  There are two components of the HHT, as stated 

above, but the key part of the HHT is the EMD technique.  Huang et al. claimed that, 

through the application of the EMD technique, “any complicated data set can be 
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decomposed into a finite and…small number of ‘intrinsic mode functions’ that admit 

well-behaved Hilbert transforms” [1].  Much interest has been shown for use of the EMD 

technique due to its adaptive nature and the claim that it is also “highly-efficient” [1] due 

to that adaptiveness.  Another important trait the EMD technique possesses is its ability 

to be applied to a localized region.  In order to apply the EMD to nonlinear and non-

stationary time series, the necessary conditions of the data are that of (1) locality and (2) 

adaptivity.   

2.3.1.  Pre-Existing Non-Stationary Methods 

In preparing for the explanation of the development of the EMD technique and 

Hilbert spectrum, Huang et al. present various pre-existing non-stationary data processing 

methods [1].  The following methods work for non-stationary (or non-periodic) data, but 

depend heavily on Fourier analysis, leading the applications of these methods to be 

limited to linear data.   

The first method discussed is the most basic method called the spectrogram.  

Huang et al. claim that the spectrogram “is nothing but a limited time window-width 

Fourier spectral analysis” [1].  Because it depends on Fourier analysis, it is not used for 

the analysis of nonlinear and non-stationary data.   

The next approach is the wavelet analysis, an adjustable window Fourier analysis, 

defined by the following equation: 

1/2 *( , ; , ) ( )
t b

W a b X a X t dt
a

 




 
  

 
  

(5) 

where *( )  is the wavelet function, a  is the dilation factor and b  is the translation of 

the origin.  The physical explanation of (5) is that ( , ; , )W a b X   is the “energy” of X of 
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scale a  at t b [1].  The continuous wavelet analysis is of an analytic form, in which the 

problem employing it occurs with the Morlet wavelet as an example, making the 

“quantitative definition of the energy-frequency-time distribution difficult” [1].  Even 

though the wavelet analysis contains difficulties, Huang et al. use the wavelet analysis in 

the validation of the Hilbert spectrum.   

A third method, called the Wigner-Ville distribution, is also sometimes referred to 

as the Heisenberg wavelet. By definition, the Wigner-Ville distribution is the Fourier 

transform of the central covariance function, defined by the following equation: 

( , ) ( , ) i

cV t C t e d  





  ,

 (6) 

where 

*1 1
( , )

2 2
cC t X t X t  

   
     

    .

 (7) 

The problem with the Wigner-Ville distribution occurs with the cross terms that 

result from the negative energy components, thus resulting in a windowed Fourier 

analysis [1].  The Fourier analysis limitations are forced upon the Wigner-Ville 

distribution analysis, primarily the linearity condition. 

Another method is the evolutionary spectrum, where the classical Fourier analysis 

is extended to a more generalized basis.  Thus, a method is sought to define the basis,

 ( , )t  , without defining it prior to the application of the method.   

The final method introduced by Huang et al. prior to the EMD technique and 

Hilbert spectrum was the empirical orthogonal function (EOF) expansion.  EOF 
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expansion states, for any real signal, ( , )z x t , the application of the EOF will reduce the 

signal to: 

1
( , ) ( ) ( )

n

k kk
z x t a t f x


 .

 (8) 

The expansion basis for EOF is derived from the data, showing it as adaptive.  

Notwithstanding, its main problem is the uncertainty of its true meaning where non-

stationarity and nonlinearity are concerned, alluding to the conclusion.  EOF is not an 

effective improvement from those methods dependent upon Fourier analysis.   

2.3.2.  Method Developed by Huang et al. 

The method introduced by Huang et al. is a general method that consists of two 

steps.  The first is the decomposition of the data through the EMD technique, where the 

data are decomposed into a number of IMFs.  The next step is to apply the Hilbert 

transform to those IMFs, resulting in the Hilbert spectrum.  Contained within the Hilbert 

spectrum are the instantaneous (or local) frequency and instantaneous energy, and are 

used for analysis rather than the global frequency and energy as defined by Fourier 

analysis [1].   

2.3.3.  Intrinsic Mode Functions 

Huang et al. proposed a “class of functions designated as intrinsic mode 

functions,” [1] where the formal definition is as follows: 

“An intrinsic mode function (IMF) is a function that satisfies two conditions: (1) 

in the whole data set, the number of extrema and the number of zero crossing 

must either equal or differ at most by one; and (2) at any point, the mean value of 

the envelope defined by the local maxima and the envelope defined by the local 

minima is zero” [1]. 
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The first condition, as stated above, is similar to the narrowband requirements for 

a stationary process.  The second condition presented takes the global requirement from a 

stationary data set and adapts it to the local level for non-stationary data sets.  The ideal 

requirement is for the local mean of the given data set to be zero.  The IMFs represent the 

oscillatory modes that are embedded in the data and can be in the form of either 

amplitude-modulated signals or frequency-modulated signals.   

2.3.4.  The Empirical Mode Decomposition Method 

The EMD method is also commonly referred to as the sifting process.  This new 

method is used with both nonlinear and non-stationary data.  In order to help with the 

analysis of nonlinear and non-stationary signals, the EMD method has successfully been 

used in applications of various disciplines due to its versatile data-driven signal analysis 

ability.  The EMD method is a new technique, pioneered specifically for the purposes of 

adaptively representing nonlinear and non-stationary signals as sums of zero-mean 

amplitude- and frequency-modulated components.  The one new feature of this method, 

when compared to previously existing methods, is that the EMD technique is “intuitive, 

direct, a posteriori and adaptive, with the basis of the decomposition based on…the 

[given] data” [1].   

The main idea of the EMD technique is to decompose the signal into its 

oscillatory modes.  As long as the two conditions stated in the IMF definition in section 

2.2.3 are satisfied, the EMD method can use the envelopes defined by the maxima and 

minima separately.  After the extrema are identified, the local maxima are connected with 

a cubic spline as the upper envelope.  The same process is performed for the lower 
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envelope.  Sifting is a similar process, in which the finest local mode is separated from 

the rest of the data [1].   

The EMD method is designed to “reduce non-stationary, multicomponent signals 

to a series of amplitude- and frequency-modulated contributions” [6] and can be used to 

gain significant information inherent to the signal.  Although other methods exist for non-

stationary analysis, the EMD method differs from wavelet decomposition in which the 

“filters of the filter band do not correspond to sub-band filtering but instead to signal-

dependent, time-variant filters” [6].     

The EMD technique operates in the time-domain and adaptively decomposes a 

signal into a set of basis functions called the IMFs, and data can be considered to be 

mapped onto a space spanned by the IMFs [10].  By applying the Hilbert transform to the 

IMFs, the “instantaneous frequency” is introduced.   

To apply the technique of EMD, the given signal must be considered at the local 

oscillation level.  The algorithm that Flandrin et al. employs is the algorithm described in 

Table 2 [8].   

Table 2:  Flandrin et al. EMD Algorithm 

Given a signal ( )x t : 

1. Identify all extrema of ( )x t  

2. Interpolate between minima and respective maxima, ending up with some 

envelope min ( )e t  and its respective 
max ( )e t .  

3. Compute the mean:  min max

1
( ) ( ) ( )

2
m t e t e t    

4. Extract the detail: ( ) ( ) ( )d t x t m t   

5. Iterate on the residual: ( )m t  
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In the above algorithm, the detail, denoted by ( )d t , corresponds to the oscillation 

terminating at the two minima and passing through the maximum value of the oscillating 

wave, existing between the two extrema.  The local trend, denoted by ( )m t , corresponds 

to the low-frequency part.  The sifting process is employed on the signal, where an IMF 

and residual are extracted and the iterative algorithm is performed on the residual portion.  

The sifting process is applied to ( )d t  until ( )d t  can be considered as zero-mean, 

according to the stopping criterion [8].   

The method of EMD considers a signal at the scale of its local oscillations and 

attempts to formalize the idea that “signal = fast oscillations superimposed on slow 

oscillations” [11].  The EMD technique is designed to define local “low frequency” 

components as the local trend, 
1[ ]( )m x t , where this local trend then supports a local “high 

frequency” component as a zero-mean oscillation, or local detail, 
1[ ]( )d x t .   

The signal is represented by the following expression: 

1 1( ) [ ]( ) [ ]( )x t m x t d x t 
,
 (9) 

where 1[ ]( )d x t  corresponds to an IMF.  The sifting process is performed on (9) and the 

signal expression becomes: 

1
( ) [ ]( ) [ ]( )

K

k kk
x t m x t d x t


  .

 (10) 

Once the convergence criterion has been met, the local detail and local trend are 

represented as, 1[ ]( ) [ ]( )nd x t S x t  and 1 1[ ]( ) ( ) [ ]( )m x t x t d x t  , respectively [11].   
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2.3.5.  The Sifting Process 

Huang et al. suggested a data-adapted method in which an oscillating wave is 

extracted from a given signal [13].  Each oscillating wave is defined as an IMF that 

satisfies the two conditions outlined by Huang et al. [1].  The sifting process is an 

iterative process, meaning that if the two conditions outlined by Huang et al. are not met, 

then the sifting procedure will be repeated until the two conditions are satisfied [13].  A 

“stopping rule” [13] is applied when all that remains of the original input signal is the 

residual after the IMFs have been extracted from the given signal.   

2.3.6.  The Hilbert Transform 

For a real signal, ( )x t , the analytic signal is defined as 

( ) ( ) ( )z t x t jy t  . (11) 

In (11), ( )y t  represents the Hilbert transform of the real signal, where 

1 ( )
( )

x s
y t P ds

t s







,
  (12) 

and P is the Cauchy principal value.  To describe the instantaneous frequency in its 

correct form, the analytic signal must be defined by polar coordinates, leading to the 

analytic signal being defined as: 

( ) ( )exp( ( ))z t a t j t . (13) 

In (13), ( )a t  is the amplitude and defined as follows: 

2 2( ) ( ( )) ( ( ))z t x t y t    (14) 
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and ( )t  represents the phase, defined by 

1 ( )
( ) tan

( )

y t
t

x t
   

  
  .

 (15) 

Finally, the instantaneous frequency as time-varying phase is defined as, 

( )d t

dt


 

.
  (16) 

2.3.7.  The Hilbert Spectrum 

When given a non-stationary signal with variable frequency and amplitude change 

over a period of time, there is a need to have a more adaptive and flexible notion of 

frequency.  The concept of the Hilbert spectrum and instantaneous frequency were 

detailed by Huang et al. [1] through the application of the Hilbert transform.   

Once the IMFs have been decomposed from the original signal, the Hilbert 

transform can be applied to each of the IMFs individually, resulting in the components of 

the Hilbert spectrum.  After applying the Hilbert transform and computing the 

instantaneous frequency using (16), the data set can now be expressed as: 

 1
( ) ( )exp ( )

n

k kk
X t a t j t dt


  ,

  (17) 

where 
ka  represents the amplitude of each component as a function of time and k  

represents the instantaneous frequency of each component as a function of time.  
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In comparison, the Fourier representation would be expressed as: 

1
( ) k

n j t

kk
X t a e




 ,

  (18) 

where the amplitude 
ka  and frequency 

k  are both constants, rather than variable with 

time.   

By using the IMF expansion rather than the Fourier expansion, the restrictions of 

expansion on a linear and stationary data set disappears and the function can now handle 

variable amplitude- and frequency-modulation, leading to an easier analysis of the 

nonlinear and non-stationary data sets. 

Once the instantaneous frequency is calculated, the Hilbert spectrum can be 

represented by the triplet of  , ( ), ( )i it t A t (or time-frequency-amplitude) in the time-

frequency plane, where ( )iA t  is the amplitude of the analytic signal, corresponding to the 

instantaneous frequency ( )i t .   

The original EMD performs the mapping expressed below: 

1
[ ] [ ] [ ]

K

kk
x n d n r n


  ,

 (19) 

From this expression, the IMFs, denoted by [ ]kd n , represent a unique time-

frequency analyzer allowing for analysis of the instantaneous frequency.  The 

combination of the concept of instantaneous frequency and the EMD technique makes the 

EMD framework so powerful for time-frequency signal analysis [9].  
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2.4.  Algorithm Variations  

In the article “On Empirical Mode Decomposition and its Algorithms,” [5] by 

Rilling et al., a new data-driven technique of EMD is presented and issues related to its 

effective implementation are discussed.  The technique of EMD is faced with the 

difficulty of not having an analytic form, being defined only by an algorithm, making 

theoretical analysis and performance evaluation nearly impossible [5].  In addition to 

presenting the problems inherent in the EMD technique, Rilling et al. also propose some 

variations on the EMD algorithm.  Results were obtained from numerical simulations in 

order to support an interpretation of the method in terms of adaptive constant-Q filter 

banks [5].   

2.4.1.  Algorithmic Variations 

The aim of Rilling et al. in presenting these algorithmic variations [5] was to 

make the choices made by the user more precise and to recommend specific rationales 

behind the decisions that the user makes prior to implementing the EMD algorithm.  

There are two variations that Rilling et al. present in this paper.  The first is the Local 

EMD and the second is the On-line EMD.   

The Local EMD algorithmic variation includes a variation made concerning the 

initial EMD algorithm formulation.  The authors introduce an intermediate step in the 

sifting process, where the large error zeros exist.  The sifting process eliminates the 

problem of over-iterating the entire signal by targeting the zeros that cause the largest 

error [5].   In the algorithm, the extra iterations performed are denoted by a weighting 

function,  ( ).   
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This weighting function is introduced in Step 4 of the original EMD algorithm 

detailed in Table 2, such that the new definition of the detail is now:  

( ) ( ) ( ) ( )d t x t w t m t  .  (20) 

The second variation, referred to as the On-line EMD, is based on the fact that the 

sifting step relies on the interpolation between the local extrema.  Rilling et al. claim that 

because the interpolation of the extrema requires only a finite number of interpolations, 

“that the extraction of a mode could therefore be possible blockwise, without the 

necessary knowledge of the whole signal (or previous residual)” [5].  In order to realize 

this algorithmic variation, a sliding window was implemented on the original EMD 

algorithm, as described in Table 4. 

2.4.2.  Performance Elements 

In addition to introducing the previous two algorithmic variations on the EMD 

algorithm, Rilling et al. also identify some performance elements causing problems when 

implementing the EMD algorithm.  Because the EMD technique is defined by an 

algorithm, performance evaluation is difficult and requires simulation experiments [5].  

The first problem they address is the idea of tones and sampling.  The EMD is expected 

to be the identity operator with only one tone and no residual; however, in actuality, this 

is not a true statement.  The issue arises from the fact that tone estimation depends 

heavily on the tone frequency, the application of the EMD technique results in a number 

of IMFs, as well as a residual component.   
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2.5.  Empirical Mode Decomposition as a Filter Bank 

Flandrin et al. presented [8], in which they reported on experiments involving 

fractional Gaussian noise to better understand how the EMD technique behaves in 

situations involving broadband noise.  They conclude that the technique of EMD acts as a 

dyadic filter bank, resembling filters existing in wavelet decomposition [8].   

2.5.1.  Fractional Gaussian Noise 

The final form of the EMD results in the representation as follows: 

1
( ) ( ) ( )

N

ii
x t c t r t


  ,

 (21) 

where ( )r t  stands for the residual trend of the entire signal and ( )ic t  represents the IMFs 

throughout the decomposition [8]. 

Less attention has been given to realistic situations involving noise, where most 

studies have been performed based on simulations, resulting in less understanding of the 

decomposition that EMD can achieve when applied to a stochastic (or intrinsically non-

deterministic) process.  In order to help explain applying the EMD technique to such 

processes that involve noise, Flandrin et al. performed extensive realistic simulations in 

order to show that the EMD technique performs like a dyadic filter when applied to noise 

processes [8].   

2.5.2.  Flandrin et al. Conclusions 

As a result of their research efforts, Flandrin et al. were able to report on the “first 

numerical experiments aimed at supporting the claim:  “…the built-in adaptivity of EMD 

makes it behaves spontaneously as a ‘wavelet-like’ filter bank” [8].  The technique of 
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EMD naturally copes when there are superimposed IMFs and the benefits of the EMD 

method are similar to those of wavelet-based methods [8].   

2.6.  EMD Applications 

The applications described in the following section employ only real-valued data, 

rather than complex-valued data.   

2.6.1.  Seismic Application 

Magrin-Chagnolleau and Baraniuk [7] propose a new technique called the EMD 

is described and applied to the investigation of a seismic trace, where the IMFs and 

instantaneous frequency were studied.  They also applied the EMD technique to a seismic 

section, resulting in new time-frequency attributes.   

The topic in which Magrin-Chagnolleau and Baraniuk applied the EMD technique 

was that of seismic signals.  Much like many real-world signals, seismic signals have the 

property that they are non-stationary [7].  Due to the inability of Fourier analysis to 

analyze non-stationary and nonlinear signals, Fourier analysis provides unsatisfying 

results due to the frequency changes that occur with respect over time of the seismic 

signal.  Because the EMD method is an adaptive decomposition technique that 

decomposes the signal into its oscillating components, this new technique has potential in 

analyzing seismic signals when compared with Fourier-based analysis tools.   

In their paper, Magrin-Chagnolleau and Baraniuk proposed a new way of 

decomposing a seismic trace into its IMFs and extracting the instantaneous frequency of 

each IMF.  The next step in their research would be to extract other time-frequency 
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attributes based on different calculations in the time-frequency plane represented by the 

triplet,  , ( ), ( )i it t A t .   

2.6.2.  Heart Rate Variability Application 

Balocchi et al., in “Deriving the respiratory sinus arrhythmia from the heartbeat 

time series using Empirical Mode Decomposition,” explored an application of the EMD 

technique [3].  Heart-rate variability (HRV) is a well-known phenomenon and is of great 

clinical relevance in pathophysiologic investigations.  However, analyzing HRV is 

difficult because it is the result of many nonlinear interacting processes.  Any linear 

analysis tool that is applied to the HRV has the potential of underestimating or missing 

information.  Therefore, researchers have applied EMD analysis to decompose the 

heartbeat interval series into their IMFs in order to identify the modes associated with 

breathing [3].  For comparison purposes, Balocchi et al. recorded the respiratory signal 

simultaneously with the tachogram (or EKG) signal.    

As previously stated, the EMD method allows the analysis of nonlinear and non-

stationary time series through the analysis of their IMFs.  In this application performed 

by Balocchi et al., the authors were able to demonstrate the association of the first IMF 

extracted from a tachogram with the simultaneously recorded respiratory signal [3].   

2.6.3.  Seismic Reflection Application 

The article “Application of the Empirical Mode Decomposition and Hilbert-

Huang Transform to seismic reflection data,” written by Battista et al., applied the 

technique of EMD to the study of seismic reflection data [6].  There have been 

advancements in the field of signal processing providing possibly improved imaging and 

analysis of “complex geologic targets found in seismic reflection data” [6].  The EMD 
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technique has yet to be recognized as a standard analysis tool by the seismic community.  

Therefore, the reasoning behind this experiment is to demonstrate the ability of the EMD 

technique and HHT to improve seismic reflection data quality.   

The HHT allows for signals that are described as stochastic (or intrinsically non-

deterministic) processes to be analyzed by using instantaneous attributes, such as 

frequency or displacement, in the time-frequency domain.  Two reasons the authors 

applied the HHT to the data were: (1) to assess the ability of the EMD and HHT to 

quantify geologic information in the time and time-frequency domain and (2) to develop 

superior filters by using the instantaneous attributes.  The main objective of the 

experiment was to determine whether HHT allows for filter design using its empirically-

derived attributes [6].   

For this application, the HHT was first used to compare the filtering in time-

frequency domain against that of the frequency domain using Fourier transform.  Then, 

the instantaneous attributes of the HHT were compared to those produced by the Hilbert 

transform, where the EMD technique was not performed with the Hilbert transform.  By 

performing these two comparisons with well-known transforms, the authors were able to 

demonstrate the strength of using the time-frequency domain filtering and the necessity 

of using EMD with the Hilbert transform [6].   

EMD and HHT were not presented as a replacement for existing methods, but the 

objectives of the study were met.  The HHT is an impressive analysis tool due to its 

ability to preserve phase and amplitude while empirically separating the signal from 

noise.  Battista et al. determine that future goals include integrating HHT with 

“amplitude-versus offset processing of gas hydrates” [6].   
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2.6.4.  Cycle and Trend Mode Application 

Ehlers and Way discussed the usefulness of an objective scientific approach for 

the identification of cycle or trend modes in the market [14].  While a number of tools are 

already available to provide distinction between the two modes, in this paper a unique 

new approach will be used to help determine the market mode called Empirical Mode 

Decomposition.   

Ehlers and Way determined that cycle mode components of market activity can be 

identified using a band pass filter.  An uptrend, which represents a cycle market mode, 

can be identified as the positive average of the filtered data over cycle periods and in a 

similar manner, a downtrend, representing a trend market mode, is identified by the 

negative average of the filtered data over cycle periods [14].  Finally, the delineation 

between cycle and trend modes can be made by the trend line deriving using the 

Empirical Mode Decomposition.   

2.6.5.  Petrophysical Model Application 

Huang and Milkereit explore another use for the EMD method because of the 

importance of spectral analysis for seismic data processing and interpretation [4].  Due to 

the fact that the frequency contents of seismic data vary with time, the medium is a non-

stationary one.  The advantage of the HHT and EMD is they do not require presumed set 

of functions as previous methods, allowing the projection of non-stationary and nonlinear 

signals onto a time-frequency plane using the Intrinsic Mode Functions.  Huang and 

Milkereit compare the findings of applying EMD method with those of applying the 

wavelet transform and the S-transform.  In previous papers in the seismic community, 

spectral decomposition in seismic exploration produced a continuous time-frequency 
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expression of a seismic trace [4].  The EMD method generates necessary adaptive bases 

from data.   

Huang and Milkereit present two applications for the EMD technique in their 

paper.  The first application presented is the synthetic time series, where they applied the 

EMD method to three time series similar to applications used in three pre-existing papers 

[4].  After the first application, they concluded, the EMD method provides superior 

results to complex wavelet transform and S-transform in terms of temporal and spectral 

resolution.   

The authors also applied the EMD method to decompose well-log data.  The 

instantaneous power spectrum density function provided the “depth varying stochastic 

properties which can be used to simulate a time series of heterogeneous medium at every 

depth” [4].  Finally, the authors determined that a combination of two-dimensional slices 

yields a heterogeneous three-dimensional earth model adaptive to non-stationary along 

the borehole.  In conclusion, Huang and Milkereit decided that the EMD method is a 

helpful tool when analyzing the seismic data used.   

2.7.  Extending EMD into the Complex Domain 

Applications in the previous sub-section employ only real-valued data, as opposed 

to complex-valued data.  In the following section, complex-valued data was used. 
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2.7.1.  Complex Traces and Instantaneous Frequency 

Given a real signal  ( ), the corresponding analytic signal (or complex trace) is 

expressed as: 

( ) ( ) { ( )}X t x t jH x t  ,  (22) 

where { ( )}H x t  denotes the signal corresponding to ( )x t  and was obtained using the 

Hilbert transform, where P is the Cauchy principle value of the integral [7], and is 

expressed as follows: 

1 ( )
{ ( )}

x
H x t P d

t




 







.
  (23) 

Another way that the analytic signal can be obtained is detailed below in Table 3 [7]. 

Table 3:  Analytic Expression of Given Signal 

Given the real signal ( )x t : 

1. Take the Fourier transform of ( )x t  

2. Zero the amplitude for the negative frequencies and double the amplitude for the 

positive frequencies 

3. Take the inverse Fourier transform of the resulting signal 

 

In polar coordinates, the analytic signal can be expressed as: 

( )( ) ( ) j tX t A t e  , (24) 

where, ( )A t  is the instantaneous amplitude and ( )t  is the instantaneous phase.   
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To determine the instantaneous radial frequency, the following equation is 

implemented: 

( )
( )

d t
t

dt


  .

 
(25) 

2.8.  Methods for Empirical Mode Decomposition in Complex Domain 

2.8.1.  Complex Empirical Mode Decomposition 

Tanaka and Mandic were the first to propose a method for extending the EMD 

method into the complex domain [9].  They proposed to achieve the complex extension 

for the EMD using a filter bank interpretation of the EMD mapping and by use of the 

positive and negative frequency components of the Fourier spectrum.  This method yield 

complex-valued IMFs, facilitating the extension of the standard EMD to the complex 

domain.   

The authors claim that the EMD method is a “novel signal analysis tool, whereby 

the underlying notion of instantaneous frequency provides an insight into the time-

frequency signal features” [9].  Through the research accomplished by Huang et al. [1], 

the EMD technique is an established tool for analyzing non-stationary and nonlinear data.  

Yet, the EMD method was developed only for real-valued data, leading to difficulties in 

analysis where complex-valued data structures exist.   

While Tanaka and Mandic claim a “simple way” to extend EMD to the complex 

domain would be to apply the EMD technique separately to the real and imaginary parts 

of a complex-valued signal; however, the mutual information from a complex quantity is 

lost when the signal is split into two quantities (real and imaginary).  Instead, the authors 

introduce as their proposed CEMD the concept of complex IMFs that act as a dyadic 
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filter and operate directly in the complex domain, where the signal is divided into the 

positive and negative frequencies [9].  The only requirement for this method is that the 

CEMD preserves the filter on the average value.   

To derive the CEMD, the complex-valued data set must first be decomposed into 

its positive and negative frequency components.  In preparing for the explanation of the 

method Tanaka and Mandic proposed, let { [ ]}x n  represent a complex-valued time 

sequence and ( )jX e   represent the discrete-time Fourier transform of [ ]x n  .  There 

are two possibilities for obtaining the desired real time sequence form [ ]x n , where [ ]x n  

is generally not analytic, making one of the above mentioned possibilities unusable.   

The other possibility, where [ ]x n  is not assumed to be analytic, is the method 

used for extending the original EMD method into the complex domain.  To extract the 

positive and negative frequency component from [ ]x n , an ideal bandpass filter, denoted 

by ( )jBP e  , is applied to the original signal.   

The ideal bandpass filter used for this analysis is expressed as 

1,0
( )

0, 0

jBP e 
 

 

  
  

   
 (26) 

By applying the bandpass filter, two analytic signals are generated: 

*

( ) ( ) ( )

( ) ( ) ( )

j j j

j j j

X e BP e X e

X e BP e X e

  

  







 ,

 (27, 28) 

where *( )jX e   represents the complex conjugate of the signal.   
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Once the bandpass filter has been applied, the inverse Fourier transform is employed: 

 

 

1

1

[ ] Re ( )

[ ] Re ( )

j

j

x n F X e

x n F X e







 



 

   

    ,

 (29, 30) 

where   denotes the real-part of the signal and  1F   represents the inverse Fourier 

transform of the signal.  The IMFs can be obtained using the following summations of 

(27) and (28): 

1

1

[ ] [ ] [ ]

[ ] [ ] [ ]

N

ii

ii N

x n x n r n

x n x n r n


 



 

 

 




,

 (31, 32) 

The reconstruction of the decomposed complex signal is as follows: 

     
*

[ ] [ ] [ ] [ ] [ ]x n x n jH x n x n jH x n      
,
 (33) 

where  H  represents the Hilbert transform of the signal.  To obtain the i th complex 

IMF of the complex process [ ]x n , the following equation is employed: 

 

  
*

[ ] [ ] , 1,...,
[ ]

[ ] [ ] , ,..., 1

i i

i

i i

x n jH x n i N
y n

x n jH x n i N





   
  

      .

 (34) 

Therefore, the final algorithm representation of the proposed Complex EMD method is: 

, 0
[ ] [ ] [ ]

N

ii N i
x n c n r n



 
  .

  (35) 

Tanaka and Mandic concluded that the CEMD method can be achieved based on 

some inherent properties of the complex signals.  In addition, the authors have been able 
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to apply the standard EMD to corresponding analytic components of complex-valued 

data used in their paper [9].   

2.8.2.  Rotation Invariant Complex Empirical Mode Decomposition 

Umair Bin Altaf et al. propose a new method for extending the EMD technique 

into the complex domain is proposed.  In contrast to a previous method proposed by 

Tanaka and Mandic [9], this method is achieved in a generic way so that the 

mathematical development mirrors that of the original EMD method [10].  Through this 

method, the IMFs are complex by design and shown to provide consistent framework for 

handling real and imaginary data.   

Traditional time-frequency analysis methods are based on “a priori” mapping 

from time to frequency domains, where that mapping is defined by “basis functions” 

[10].  However, this “a priori” mapping poses problems for nonlinear and non-stationary 

signals that have time varying statistical characteristics, and a single basis function fails 

due to its limited accountability for the variations.  In addition, this “a priori” mapping 

also compromises the physical significance of the signal analysis of nonlinear and non-

stationary signals [10].   

The authors proposed a new way to decompose a complex signal using the 

method of EMD and was achieved by making use of the complex spline.  Using the 

complex spline makes it possible to carry out the arithmetic and algebraic operations of 

the algorithm in the complex domain, leading to a single set of IMFs contained in the 

complex domain [10].   

Before describing their proposed method, the authors describe the method that 

Tanaka and Mandic proposed CEMD [9].  Concerning their method, Umair Bin Altaf et 
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al. claim this method is a “natural and generic way to extend EMD to the complex 

domain would be to operate in the complex domain” [10].  The same steps for the 

original EMD method are followed, but are carried out in the complex domain with 

various modifications.   

The issue that arises is the definition of an extrema in the complex domain and a 

method for determining it.  After describing a number of definitions, the definition of an 

extrema that is used for the method is: “a locus where the angle of the first derivative 

(first-order differential vector) changes its sign” [10].  The authors have assumed that 

each local maximum is followed by a local minimum and vice versa, and in order to 

prove this assumption true, the average of the envelopes is used.  Envelopes for the 

complex signal can be estimated as spline interpolations of the local maxima, and 

minima, where the average can be computed.  This complex spline is obtained by 

computing the real and imaginary parts separately [10].   

The final steps of the complex algorithm are performed like the original EMD 

algorithm.  The claimed advantage of the proposed CEMD method is that it does not split 

the signal into two parts and has the potential to be extended into higher-dimensional 

cases easily [10], unlike the method proposed by Tanaka and Mandic [9]. 

Umair Bin Altaf et al. conclude that the analysis of real-world complex-valued 

data shows that the proposed method provides new insights into time-frequency analysis 

of nonlinear and non-stationary signals, which was not possible before [10].   

2.8.3.  Bivariate Empirical Mode Decomposition 

Rilling et al. present a new method for extension of the original EMD method to 

the complex domain in their paper [11].  Initially, the method of EMD was limited to the 
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analysis of real-valued time series; therefore, an extension to analysis of complex-value 

time series is proposed that is designed to extract zero-mean rotating components from 

the signal, where the original EMD extracts zero-mean oscillating components [11].  

The basic idea underlying the proposed BEMD is that a “bivariate signal = fast 

rotations superimposed on slower rotations” [11].  The slowly rotating component has to 

be defined as the mean of some “envelope,” where the envelope is represented by a three-

dimensional tube tightly enclosing the signal.  Given a set of points on the tube, there are 

at least two ways to define the mean of the envelope: (1) define the mean as the 

barycenter of four points, each having unit mass and (2) define the mean as the 

intersection of two lines, one being halfway between the two horizontal tangents and the 

other being halfway between the two vertical tangents [11].  Due to the second definition 

being less prone to errors, it is a more preferred method.  The goal for the bivariate 

interpolation is the same as with the original EMD: smooth interpolation with as few 

“bumps” as possible, calling for the use of a cubic spline.   

Given an angle direction that performs uniform sampling around the unit circle, 

the bivariate extensions are defined by the EMD algorithm, only with new sifting 

elementary operators defined by 1BS   and 2BS ,which correspond to the algorithms in 

Tables 4 and 5 [11]. 
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Table 4:  Algorithm 1 for EMD Bivariate Extension 

1. Given an angle direction: 
2

k

k

N


   for 1 k N    complete steps 2 through 4 

2. Project the complex-valued signal ( )x t on direction : Re ( )][ k
k

j
k e x t


    

3. Extract the locations { }k
it  (time corresponding to the angle direction and IMF) 

of the maxima of 
k

  

4. Interpolate the set { , ( )}k k
i it x t  to obtain the envelope curve in direction 

: ( )
kk e t  

5. Compute the mean of all envelope curves: 1
( ) ( )

kk
m t e t

N
   

6. Subtract the mean to obtain 1 ( ) ( ) ( )BS x t x t m t   

 

Table 5:  Algorithm 2 for EMD Bivariate Extension 

1. Given an angle direction: 
2

k

k

N


   for 1 k N    complete steps 2 through 4 

2. Project the complex-valued signal ( )x t on direction 
( )

: Re ][ k
k

j x t
k e


    

3. Extract the locations { , }k k
i it   of the maxima of 

k
  

4. Interpolate the set { , }kjk k
i it e


  to obtain the partial ( or partial differential 

equation of the) envelope curve in direction : ' ( )
kk e t  

5. Compute the mean of all tangents: 2
( ) ' ( )

kk
m t e t

N
   

6. Subtract the mean to obtain 2 ( ) ( ) ( )BS x t x t m t   

 

The BEMD was designed so that the signals rotating around zero are the outputs, 

where the two algorithms for BEMD generally accept two types of solutions: (1) rotating 

signals, as intended, and (2) where the method fails to extract the rotating components 

and the output signals are ones that wander around zero in a more complicated manner 

[11].   
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Rilling et al. conclude, from extensive simulations, that the outputs of the two 

algorithms for BEMD are very similar when the data clearly contains rotating 

components, but may differ when they fail to extract the rotating components [11]. 

2.9.  Comparison of EMD and Complex EMD Extensions 

Yunchao et al. present the fact that CEMD is a powerful tool [15].  The HHT is 

the method developed by Huang et al. [1] for analyzing nonlinear and non-stationary 

data, due to the EMD technique not imposing any prior assumptions to the data [15].  

2.9.1.  Realization of Complex EMD 

As developed by Huang et al. [1], the original EMD method is based on a 

characteristic time scale defined by the local extrema.  Yet, the original EMD method is 

applicable only for real-valued time series and it is necessary to extend the application of 

EMD into the complex domain.  There have been three different methods proposed for 

the realization of CEMD and while all three have their merits, the algorithm proposed by 

Rilling et al. [11] is used by Yunchao et al. due to the claim that it is more intuitive [15].     

2.9.2.  Characteristics of Complex EMD 

From the simulations performed, the authors study of the IMFs characteristics, 

following a method proposed by Zhaohua et al.  A couple conclusions that Yunchao et al. 

make from these simulations were that: (1) CEMD is an effective dyadic filter just like 

the original EMD method, (2) the power spectrum of the resulting complex-valued IMFs 

are subject to a normal distribution, and (3) the frequency features are the same for the 

real and imaginary part of the same IMF [15].   
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2.9.3.  Numerical Experiments 

In addition to simulations on white noise, the authors performed numerical 

experiments on a two-dimensional (or velocity and pressure) vector sensor.  From these 

numerical experiments, Yunchao et al. claim that the decomposed results from the 

CEMD are better than the original EMD method [15].  There are three main differences 

from the original EMD to the CEMD.  First, the number of IMFs is identical for the real 

and imaginary parts with the CEMD, where the original EMD method can have 

superimposed IMFs, resulting in an incorrect number of IMFs.  The second difference is 

that, for the CEMD, the frequency characteristic is the same between the same order 

IMFs of the imaginary and real parts while the original EMD method does not possess 

this characteristic.  This distinction between the CEMD and the original EMD methods is 

due to the CEMD observing the changes in the two variables of the signal.  Finally, it is 

obvious from the experiments that the characteristics of the IMFs from the analytic (or 

complex) signal are better resolved in the frequency domain than the real signal [15].  

From the numerical experiments performed by Yunchao et al., it can be concluded 

that, if the signal is long enough and the intricacy can be ignored, the analytic signal is a 

good choice for the application of the CEMD method; however, if the signal is short or 

the system is a real-time system, it is better to choose the less intricate complex signal 

[15]. 

Yunchao et al. conclude that CEMD is consistent for the frequency characteristics 

of the IMFs for the real and imaginary parts.  Additionally, the results decomposed by the 

CEMD method are more legible than those decomposed by the EMD method, and the 

estimations done by the CEMD are more accurate.  A final conclusion the authors make 
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is that one can choose the analytic signal or less intricate complex signal for application 

of the CEMD method in different conditions [15]. 

2.10.  Applications for Complex EMD 

2.10.1.  Multichannel Information Fusion 

Mandic et al. wrote about information “fusion” via signal “fission” in the 

framework of EMD [2].  The fission part occurs first where the signal is decomposed into 

its oscillatory components, then the fusion occurs when the IMFs are combined in an ad-

hoc fashion to provide knowledge about the process [2].  Mandic et al. claims that 

extension of EMD into the complex domain is especially important for phase-dependent 

processes; however, extending EMD into the complex domain is not straightforward and 

depends heavily on the criterion for finding the local extrema of the signal.   

Complex representation of a signal can be both intuitive and useful because the 

amplitude and phase can be modeled simultaneously [2].  There are many fields of study 

that use only real-valued data structures, but several important signal processing areas use 

complex-valued data structures.  EMD is a data driven time-frequency analysis technique 

that is useful in the analysis of nonlinear and non-stationary signals.   

One well-established information fusion model is the waterfall model.  The 

method of EMD also performs both signal conditioning and feature extraction, key 

components of the waterfall model.  EMD provides the framework for unifying 

information fission and fusion; therefore, the aim of the paper is to provide justification 

for the use of EMD, both real and complex, in knowledge extraction and information 

fusion [2].   
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The most intuitive way to extend EMD into the complex domain would be to 

apply EMD to the real and imaginary parts separately; however, in performing this, any 

mutual information, such as phase, that existed between the original components is 

ignored and lost.  Therefore, this paper examines the effectiveness of two of the three 

introduced CEMD algorithms: (1) CEMD [9] based on the direct use of the Hilbert 

transform properties and (2) RICEMD [10] a generic expression of the real EMD. 

Mandic et al. applied the CEMD method to data and came up with certain 

advantages and disadvantages for this method.  The primary advantages that were found 

for this method were that it has a straightforward and intuitive math derivation, acting as 

a dyadic filter bank.  However, with this method, the disadvantages seem to outweigh the 

advantages.  Not only does this method fail to reveal any synchronized events between 

the data streams, but the IMFs are deprived of their physical connection with the original 

data set.  An ambiguity exists at the zero frequency due to the way the math derivation is 

formed and, finally, this method cannot be extended to higher dimensions due to the 

limitation of representing a signal by its positive and negative frequencies [2]. 

In addition to applying the CEMD method, Mandic et al. also analyzes the 

RICEMD method and explain the advantages and disadvantages inherent in the method.  

The method operates fully in the complex domain and uses complex cubic splines for 

analysis of the signal in the complex domain.  Unlike the CEMD method, the RICEMD 

method creates an equal number of IMFs for the real and imaginary parts and retains the 

physical interpretation of the signal.  One disadvantage is the choice of criterion for 

finding the extrema of the complex signal is not unique, the extracted complex IMFs do 

possess physical interpretation [2].   
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2.10.2.  Single Vector Sensor Application 

Yunchao et al. introduced CEMD to improve processing from a single vector 

sensor of complex sound data using HHT [16].  Yunchao et al. claim that CEMD is a 

powerful tool for analyzing complex data and the results yielded in this paper show that 

CEMD is better in using the information between the correlative signals.  In addition, the 

analytic signal is beneficial to direction estimation with different targets.   

Vector sensors are sensors that can measure the pressure P and orthogonal 

components of the particle velocity, 
xV  and yV , simultaneously, and vector sensors can 

also improve target detection capability. The HHT has been utilized to identify the multi-

targets using the signals from the single vector sensor based on the frequency feature of 

the HHT.  This use of the HHT has led to the development of the Vector HHT (VHHT) 

and the application of the VHHT was analyzed in this paper, as well as the improvement 

CEMD performs on the VHHT [16].   

In two-dimensional circumstances, the vector sensor can simultaneously measure 

the pressure and orthogonal components of the velocity, 
xV  and yV .  From this process, 

the target’s direction can be obtained as follows: 

*

*
arctan

y

x

PV

PV


 
   

 
,
 (36) 

where the P  represents the pressure component of the vector sensor, and 
xV  and yV  

represent the orthogonal components of the velocity along the x-axis and y-axis. 
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By using the EMD to decompose the pressure and velocity components into their 

respective IMFs, the real-valued and imaginary-valued IMFs are obtained.  The analytic 

signals of the resulting IMFs are represented below: 

 ( ) ( )exp ( )Pj Pj PjZ t A t j t
,
 (37) 

 ( ) ( )exp ( )
x x xV j V j V jZ t A t j t

,
 (38) 

and 

 ( ) ( )exp ( )
y y yV j V j V jZ t A t j t

.
 (39) 

The instantaneous sound energy flows corresponding to the x-axis and y-axis are 

represented by the multiplication of the complex conjugate of the velocity components 

analytic signal and the pressure analytic signal, 

  *( ) ( ) ( )
x xPV j Pj V jS t Z t Z t

,
 (40) 

and 

  *( ) ( ) ( )
y yPV j Pj V jS t Z t Z t

.
 (41) 
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Finally, the instantaneous azimuth of the acoustic signal is represented by the following 

equation: 

 
 

Re ( )
( ) arctan

Re ( )

y

x

PV j

j

PV j

S t
t

S t


 
 
 
 

.
 (42) 

CEMD is an extension of EMD in the complex plane.  The method employed in 

this paper was the method proposed by Rilling et al. [11].  In this article, a number of 

characteristics of the CEMD method are discovered.  Just a few of those characteristics 

include: (1) that CEMD is shown to act as a dyadic filter, (2) that the period of the IMF 

increases when the order increases and the center frequency decreases, (3) the frequency 

feature of the real and imaginary parts of the same IMF are the same, and (4) that the 

CEMD algorithm is adaptive like the original EMD algorithm [16]. 

Through the experiments performed, Yunchao et al. concluded that CEMD takes 

full advantage of the information between the relevant signals in the acoustic vector 

sensors.  There are three separate aspects of the findings that show how well the CEMD 

works in the field of vector sensors.  First, the order and frequency feature of the real and 

imaginary parts of the IMFs are identical.  Second, the CEMD is better than EMD in 

noise suppression and reducing the mode-mixing.  And last, that the analytic signal is 

more suitable for high signal-to-noise (SNR) and the simple complex signal is better in 

low SNR [16].   

2.10.3.  Multiscale Image Fusion Application 

Looney and Mandic propose a solution to the problem of uniqueness when 

performing fusion of data from multiple and heterogeneous sources [17].  The proposed 
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solution relies heavily on using complex extensions of the data-driven technique of EMD, 

a new analysis technique proposed by Huang et al. [1].   

In the data and information fusion community, there is a significant challenge 

when different focal points are observed [17].   The technique of EMD has been proposed 

for data fusion, where only the “relevant” IMFs are recombined into a restored signal.  

Due to its adaptivity, it is natural to consider the use of the EMD method for the problem 

of heterogeneous image fusion; however, there is still a problem of uniqueness when 

using the EMD method.  Therefore, extensions into the complex domain of the EMD 

method have been proposed to help with the uniqueness of the resulting IMFs [17].  

While there have been three complex extension of EMD recently proposed, the method 

employed in this paper BEMD [11].   

The local and data-driven nature of EMD leads to two problems.  First, that the 

uniqueness of decomposition-signals gives different IMFs, and second, that mode-mixing 

of the IMFs occurs [17].  The problem of uniqueness can be addressed by stopping the 

decomposition once a specific number of IMFs has been obtained.  If the number of IMFs 

from each source is equal in number, then the problem of mode-mixing is also fixed.  So, 

in order to fix both problems, Looney and Mandic propose to apply the BEMD method to 

decompose heterogeneous complex data simultaneously, rather than decomposing one 

part of the signal at a time [17].   

To show the effectiveness of using EMD, and specifically BEMD, simulations 

were performed by Looney and Mandic on generated complex data and real-world fusion 

data.  An automatic fusion algorithm is also proposed that is based on the BEMD 

algorithm [17].  The robustness of the analysis of the generated data guarantees a 
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meaningful comparison between the scales and forms the basis for the proposed image 

fusion algorithm and will be used for the real-world data analysis.  By applying the 

BEMD algorithm to real-world image fusion data, it is illustrated that the problems of 

mode-mixing and uniqueness can be easily overcome [17].  

Looney and Mandic conclude that the potential for BEMD for information fusion 

is verified, as well as a set of common frequency scales can be determined by 

simultaneously decomposing sources using the BEMD method [17].  In addition, the 

application of BEMD enables the proposed approach to overcome the uniqueness and 

mode-mixing problems.  For future work, Looney and Mandic propose that higher 

dimensional extensions should be developed in order to enable the fusion of more than 

two images [17]. 

2.11.  Multivariate EMD Application 

Mutlu and Aviyente present the importance of quantifying the phase synchrony 

between signals is stated for different applications [12].  However, current techniques 

used to measure and quantify the phase synchrony suffer from constraints inherent to the 

wavelet transform and Hilbert transform.  Therefore, in order to address such constraints 

on the analysis of the signals, a recently introduced multivariate empirical mode 

decomposition (MEMD) in order to assist in the quantification of multivariate phase 

synchrony.   

Mutlu and Aviyente propose to use MEMD for quantifying the phase synchrony 

between multiple time series [12].  The original EMD method acts as a dyadic filter, thus 

a “pre-filtering tool” for the Hilbert transform-based phase synchrony analysis.  The goal 
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of Mutlu and Aviyente’s research is to extend the measures of correlation for multiple 

variables from statistics for quantifying multivariate synchronization.  Mutlu and 

Aviyente claim: (1) the MEMD might be used to define pairwise synchrony between 

multiple time series across the same frequency, and (2) MEMD can extend the notion of 

bivariate synchrony to multivariate synchronization [12]. 

From their research, a new approach for quantifying multivariate phase 

synchronization within a group of oscillators.  The new approach is based on the 

application of MEMD for extracting time and frequency dependent phase information 

[12].  MEMD method results in two improvements discovered from their research.  First, 

MEMD is data-driven and eliminates the need for chosen bandpass filters and second, the 

MEMD extends the current state of the art-phase synchrony analysis from quantified 

bivariate relationships to the multivariate case [12].  Mutlu and Aviyente propose for 

future work that focuses on the extension of the methods proposed using different 

multivariate analysis technique.   

2.12.  Conclusions 

Rilling et al. conclude that the EMD technique is a promising tool but it needs to 

be better understood.  They call for further studies devoted to a theoretical approach and 

closed-form solution, due to the EMD definition by an algorithm rather than a closed-

form solution.  Additionally, Kim and Oh conclude that the IMFs that are decomposed 

from the EMD technique “provide a multi-resolution tool and spectral analysis given 

local information with time-varying amplitude and phase” [13].   
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The CEMD method takes full advantage of the information between the relevant 

signals in the acoustic vector sensors [16].  In addition, the results decomposed by the 

CEMD method are more legible than those decomposed by the EMD method, and the 

estimations done by the CEMD are always more accurate [15].   

Concerning the three CEMD methods, conclusions have been made about the 

possibilities inherent to each one and the disadvantages for each method.  The first 

complex method, ambiguously called CEMD, presented conclusions that the CEMD 

method can be achieved based on some inherent properties of the complex signals [9].  

For the RICEMD method, Umair Bin Altaf et al. conclude that the analysis of real-world 

complex-valued data shows that the proposed method provides new insights into time-

frequency analysis of nonlinear and non-stationary signals, which was not possible before 

[10].  The authors of the BEMD method conclude that the outputs of the two algorithms 

for BEMD are very similar when the data clearly contains rotating components, but may 

differ when they fail to extract the rotating components [11]. 

Through all the papers written for the EMD technique, each application of the 

method shows that the method proves worthwhile when applied to the data sets.  There 

are some restraints still inherent to the original EMD method; various authors then extend 

the method into the complex domain, which helps with some of the issues found in the 

real domain.  Overall, the investigation into the HHT developed by Huang et al. [1], and 

more specifically the EMD technique, displays information not accessible by the FFT and 

that new information can help in the analysis of many natural phenomena that are 

nonlinear and non-stationary in nature. 
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III.  Algorithm Design and Implementation 

3.1.  Overview 

This chapter presents the methodology used in achieving the objective of the 

research.  The objective of this research was two-fold.  First, the assessment of using the 

CEMD technique inherent to the HHT as a signal processing analysis tool was 

investigated.  Secondly, the results from the application of the Hilbert transform and the 

FFT on the decomposed data sets using the CEMD technique were compared.  The 

comparisons of the resulting graphs from the application of the two separate 

mathematical transforms were sought to deliver insight into determining which of the 

transforms provided enhanced fidelity of the real-world data set.  Additionally, the 

analysis of the HHT was compared with the analysis provided from the FFT to determine 

how the application of the HHT affects a RCS data set. 

The approach used to satisfy the two requirements stated above concerning the 

problem statement, was conducted primarily using the MATLAB® computer program, 

where the Signal Processing and Spline Toolboxes were employed.  In addition to using 

MATLAB® and the two above mentioned toolboxes, code that was written by Dr. 

Flandrin and available on his website was implemented, as detailed in BEMD [11].   

The method for collection of the data will be discussed, as well as the components 

of the designed algorithm will be presented and explained.  Finally, a detailed 

explanation of the implementation of the algorithm used will be discussed, with detailed 

explanations of the various components used in completion of the methodology. 
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3.2.  Data Collection 

There were two separate data collections employed for the completion of this 

evaluation.  The first data set was provided by the sponsor, also referred to as the “real-

world data set” during the methodology portion of this thesis.    This set of data was 

obtained through determining the complex RCS data from a rotating object.  

Measurement of a target's RCS is performed at a radar reflectivity range or scattering 

range. One type of RCS range is an outdoor range, where the target is positioned on a 

specially shaped low RCS pylon some distance down-range from the transmitters. Such a 

range eliminates the need for placing radar absorbers behind the target; however, multi-

path interactions with the ground must be mitigated.  There are instances, as with the 

real-world data set, in which an object exists in the atmosphere and pulses are sent from 

the radar to the object, recording the radar return from the object.  The real-world data set 

collected consisted of at least two revolutions of the object, while the second set of data 

consisted of only one extremely-finely sampled revolution of the object.  For the real-

world object, the approximate shape was a cylinder with one end enclosed, with the other 

end open, or a “cavity” cylinder. 

The second data collected consisted of using the RCS range owned by AFIT 

called an anechoic chamber.  In such a room, the target is placed on a rotating pillar in the 

center, and the entire background is covered with radar absorbing material. These 

absorbers prevent corruption of the measurement due to reflections. A compact range is 

an anechoic chamber with a reflector to simulate far-field conditions.  There were a 

variety of shapes used over the course of the data collection, but upon further analysis of 

the real-world object, four specific sets of data were chosen for comparison with the 

http://en.wikipedia.org/wiki/Reflectivity_range
http://en.wikipedia.org/w/index.php?title=Scattering_range&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Scattering_range&action=edit&redlink=1
http://en.wikipedia.org/wiki/Anechoic_chamber
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decomposed real-world data set.  These four data sets were: (1) a cylinder with two end 

caps, refer to Figure 1; (2) a cylinder with one end cap and one open “cavity”, refer to 

Figure 2; (3) a cone-sphere, or an object with a roundly tapered end, refer to Figure 3; and 

(4) a dihedral corner reflector configuration, refer to Figure 4. 

 

Figure 1:  Cylinder with two end caps, on Styrofoam pylon 

 

 

Figure 2:  Cylinder with one end cap and one open end, “cavity”, on Styrofoam pylon  

 

 

Figure 3:  Cone-Sphere, on Styrofoam pylon 

 



 

53 

 

Figure 4:  Dihedral Spherical Corner Reflector, on Styrofoam pylon 

 

The four data sets detailed above were considered the simulated (or theoretical) 

data to help assess whether the CEMD technique worked properly for a signal composed 

of various canonical objects, such as the dynamic object represented by the real-world 

data set.  To assess the usefulness and workability of the CEMD algorithm, the real-world 

data set was decomposed and compared with the RCS values of the simulated objects to 

determine whether those components were possibly detected in the decomposed real-

world signal.   

To work with a complex-valued data set in the same manner as the real-world 

data set, the simulated data collected in the anechoic chamber had to be calibrated.  This 

calibration was accomplished using a MATLAB® GUI called ALPINE©, version 3.1.1, 

designed by AFIT professor Dr. Peter Collins [18].  Through the use of two specific 

modules of the ALPINE© GUI, the calibrateRCS and the plotGlobalRCS modules, the 

data input and calibration was user-friendly and accomplished quickly.  Access to this 

GUI saved hours of individual code creation and analysis. The calibration results were 

stored in a MATLAB® MAT-file, enabling the flexibility to load the data into any 

desired program.   



 

54 

Once the data was calibrated and placed in a useable format, the data was able to 

be analyzed using the CEMD algorithm developed by Dr. Flandrin [11], followed by the 

application of both the FFT and the Hilbert transform to the IMFs decomposed using the 

CEMD algorithm. 

3.3.  Algorithm Design and Components 

Traditionally, signal processing data, such as the RCS data collected for this 

thesis, was analyzed using Fourier spectrum analysis [1].  However, the technique of the 

EMD method and use of the complete HHT have been receiving more attention for use in 

the analysis of signal processing data.  More specifically, the CEMD algorithm was 

employed for the decomposition of the signals analyzed in this thesis.  In this section, the 

original EMD algorithm was explored, as well as the complex extension of the EMD 

algorithm.  Once these two items have been discussed, explanation of the components in 

the algorithm employed for the thesis will be detailed. 

3.3.1.  The Empirical Mode Decomposition   

EMD is defined as an exploratory analysis technique. EMD is an adaptive 

technique used to decompose a given signal into its oscillatory modes [2].  This 

decomposition is accomplished through a process referred to as the sifting algorithm.  

The sifting algorithm, which defines the EMD process, was detailed previously in Table 

1 [1].  

Once the sifting algorithm was applied to the given signal, the resulting 

oscillatory components are called IMFs [2].  These IMFs represent the oscillatory nature 

embedded in the data.  In addition, these IMFs also represent the basis functions of the 
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signal and are derived from the data, rather than a pre-defined set of basis functions that 

exist in such transforms as Fourier and wavelets [1]. 

The algorithm detailed previously in Table 1 was utilized to perform the EMD 

decomposition as follows: 

1
( ) ( ) ( )

N

ii
x k c k r k


  ,

  (43) 

in which the IMFs are denoted by ( )ic k  and the residue is represented by ( )r k .   

Once the sifting algorithm was applied to the given signal, the IMFs are in a form 

that can be linearly transformed.  More specifically, the FFT and Hilbert transform were 

applied to the IMFs of the decomposed data.  Through application of the Hilbert 

transform, the given real-valued signal was transformed into a complex-valued signal, 

where the analytic representation of (43) is given by: 

( )

1
( ) ( ) i

N j t

ii
X t a t e




 .

 (44) 

In (44), the residue ( )r t  was omitted due to its lack of oscillatory behavior [2].  

The analytic signal was created using the IMF to represent the real part and employing 

the Hilbert transform to represent the imaginary part, such that ( )x j x   becomes the 

new representation of the signal [2].  The aim for creating this analytic, time-dependent 

signal was to extract the time-dependent amplitude ( )ia t  and the phase function, ( )i t , 

components more easily [2].  Finally, the instantaneous frequency, denoted by, 

( )
( )

d t
t

dt


 

,
  (45) 

can also be extracted, used to create a Time-Frequency-Amplitude representation of the 

signal called the Hilbert spectrum [2]. 
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3.3.2.  Complex Extension of Empirical Mode Decomposition 

The original formulation of the EMD algorithm by Huang et al. [1] restricts its 

application to real-valued signals.  However, many fields of study use complex-valued 

data sets, whereby ignoring the imaginary components can cause important information 

to be lost, as well as the analysis of the signal incompletely presented.  Since introduction 

of the EMD algorithm by Huang et al. in 1998, there have been three complex extensions 

proposed [9,10,11].  In Chapter II section 2.7, more detailed descriptions of the CEMD 

[9] and the RICEMD [10] methods are located.  The third complex extension, BEMD 

[11], was revisited due to its involvement in the research and the decomposition of given 

complex RCS data sets. 

3.3.2.1  Bivariate Empirical Mode Decomposition 

The method proposed by Rilling et al. [11] was followed to study the 

characteristics of the IMFs of the given data sets.  The other two complex extensions 

discussed in Chapter II employed the original EMD algorithm and decomposed complex-

valued signals similar to real-valued signals; however, the BEMD algorithm “adapts the 

rational underlying the EMD to the bivariate [or complex-valued] framework” [11].  Dr. 

Flandrin’s BEMD paper provided free MATLAB® code [11] for implementation of the 

CEMD algorithm, Hilbert transform, and Fast-Fourier transform.  

The original EMD algorithm is based on the natural oscillation related to the 

signal extrema.  Nevertheless, for a complex-valued signal, defining extrema in the same 

manner as a real-valued signal is more confusing and unclear.  Therefore, Rilling et al. 

proposed the notion of “rotation” and is considered a three-dimensional interpretation of 

the real-valued notion of oscillation [11].  The underlying idea of the complex extension 
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to EMD proposed by Rilling et al. is that the “bivariate signal = fast rotations 

superimposed on slower rotation” [11], whereas the original EMD algorithm is based 

upon the idea that the “signal = fast oscillations superimposed on slower oscillations” 

[11].  As with the original EMD algorithm, the BEMD algorithm uses the idea of an 

“envelope,” where the envelope of the BEMD algorithm is now a three-dimensional tube 

enclosing the signal [11] (refer to Figure 5). 

 

Figure 5:  The signal enclosed in its 3D envelope.  The black thick lines stand for the envelope curves 

that are used to derive the mean. 

 

Using this idea of how the envelope is created, the slowest rotating component is 

defined as the center of the tube.  There are two ways of defining the mean value of the 

tube: (1) define the mean as the barycenter (or center of mass) of the four points 

considering each to have unit mass (refer to Figure 6), or (2) define the mean as the 

intersection of two straight lines, one being halfway between the two horizontal tangents 

and the other one halfway between the two vertical tangents (refer to Figure 7) [11].   
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Figure 6:  Illustration of the first definition of the mean of the complex-valued signal. 

 

 

Figure 7:  Illustration of the second definition of the mean of the complex-valued signal. 

 

Due to its natural robustness to sampling errors, scheme two for defining the 

mean value of the tube is preferred in practice.  These sampling errors should be taken 

seriously since the original EMD is sensitive to sampling, leading to the idea that the 

BEMD algorithm will also be sampling sensitive [11].   

The desired interpolation is defined as: “a smooth interpolation, with as few 

‘spurious bumps’ as possible” [10].  To satisfy this definition, a cubic spline was 

employed.  The interpolation of the BEMD algorithm is performed in a similar manner to 

the EMD algorithm.  Wolfram-MathWorld defines a cubic spline as: 
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“A spline constructed of piecewise third-order polynomials which pass through a 

set of m control points.  The second derivative of each polynomial is commonly 

set to zero at the endpoints, since this provides a boundary condition that 

completes the system of 2m  equations. This produces a so-called ‘natural’ 

cubic spline and leads to a simple tri-diagonal system which can be solved easily 

to give the coefficients of the polynomials” [19]. 

 

The proposed complex extension of the BEMD algorithm led to the complex 

EMD algorithm detailed previously in Tables 4 and 5.  The proposed algorithms used the 

same algorithm as the EMD, where the only difference was the new sifting operators, 

1BS and 
2BS , representing the fast and slow oscillations. 

The reformulation of the second complex algorithm allowed the sifting operator 

to be represented as a univariate (or real-valued) EMD sifting operator, shown below in 

Table 6.  This reformulation allowed the behavior of the algorithm to be studied in a 

similar method as the original EMD algorithm [11]. 

Table 6:  Algorithm 2 Reformulation for EMD Bivariate Extension 

1. Given an angular direction: 
2

k

k

N


   for 1 k N   complete steps 2 through 3 

2. Project the complex-valued signal ( )x t on direction : Re ( )][ k
k

j
k e x t


    

3. Compute the partial estimate in direction k : [ ]( )k

k k

j
s e t



 


    

4. Subtract the mean to obtain 2 2
( ) ( )

k

B

k
S t s t

N
   

 

3.3.2.2.  Bivariate Intrinsic Mode Functions (IMFs) 

The BEMD algorithm proposed by Rilling et al. was designed so “that signals 

rotating around zero are admissible outputs” [11].  Rilling et al. clarified this vague 

notion of “rotating around zero” by asking: “what signals the algorithms actually consider 

http://mathworld.wolfram.com/Spline.html
http://mathworld.wolfram.com/Polynomial.html
http://mathworld.wolfram.com/Derivative.html
http://mathworld.wolfram.com/Polynomial.html
http://mathworld.wolfram.com/TridiagonalMatrix.html
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admissible outputs” [11].  In other words, ( )x t  is considered a “fixed point of the sifting 

operator” [11], or  

1

2

( ) ( )

( ) ( )

B

B

S x t x t

S x t x t



 .
 (46, 47) 

To explain the outputs that resulted from the BEMD algorithm, Rilling et al. 

explained various simulations.  Both algorithms presented by Rilling et al. state two types 

of solutions are generally accepted.  The first solution corresponded to the rotating 

signals, as expected, and the second occurred in cases where the method fails to extract 

the rotating components.  In the latter case, the outputs “wander around zero” was more 

complicated than the first case [11].  The second types of solutions were encountered 

when the signal was not a clearly rotating signal, whereas solutions of the first type were 

signals with unchanging local rotation [11].   

Rotating “around zero,” as stated by Rilling et al., was clarified by considering the 

simple case where the signal performs one rotation around zero per period, or  

( ) ( ) 2t T t     , (48) 

where T is the period of the signal.  The clarification allows the understanding that only 

one maximum value exists per period.  Thus, all of the envelope curves are constants 

with respect to time, allowing the mean to be derived analytically.  Consequently, the 

envelope curve associated with the angular direction, 2
k

k
N

  , is equal to the 

maximum signal value in that specific direction, where the phase of the derivative is 

equal to the definition in (48).   
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For the two separate algorithms existing in the BEMD method, Rilling et al. 

showed the means are equivalent to each other [11].  The mean for the first algorithm 

presented in Table 4 is defined as: 

1 11 2
( )

2

B

k

k
m t x

N N

 
   

   
  

 ,  (49) 

with the limit of the algorithm resulting in: 

  
2

1 1

0 0

1 1
( ) ( ) ,

2 2

T
B d

m t x d x t dt
dt

 
  

 

     (50) 

representing the mean of the signal over a period with a weight function of 0
d

dt


 .  The 

weighting conveys that the sampling is denser where the curvature is larger.   

In a similar manner, the mean for the second algorithm or limit notation, omitting 

the summation notation, is: 

2 ( ) ( )

0

1
( ) { ( )}

T
B j t j t d

m t e e x t dt
dt

  



 
 

              

1 ( ) *

0

1
( ) ( )

2

T
B ej t d

m t e x t dt
dt

 


    

 (51) 

This equation leads to 2 1( ) ( )B Bm t m t  due to: 

*
( ) * 2 ( ) * 2 ( )

00 0
( ) ( )

2

T TT
ej t j t j td j dx

e x t dt e x t e dt
dt dt

    
     
 

 
 

                        

( )

0 0
( ) 0

2 2

T T
j tj j dx

r t e dt dt
dt

    . 

 (52) 

The mean is equivalent for both BEMD algorithms and is also a fixed point of 

both sifting operators if and only if the integral in (50) is close to zero.  More generally, 
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the outputs of the two complex algorithms are similar when there are rotating 

components inherent to the complex data, but may differ when the algorithms fail to 

extract the rotations.   

3.3.3.  The Hilbert Transform 

A real function, ( )f t , and its Hilbert transform, ˆ ( )f t , are related where, together, 

they create an analytic signal.  This analytic signal can be represented as amplitude and 

phase, with the derivative of the phase called the instantaneous frequency [20].  By taking 

the Fourier transform of a strong analytic signal as described above, the “negative” 

frequencies are discarded and the spectrum becomes one-sided in the frequency domain.   

The Hilbert transform in the time domain is a convolution between the Hilbert 

transformer, 1
t
, and the function, ( )f t .  The Hilbert transform, [ ( )]H f t , of ( )f t  

defined as: 

1 1 ( ) 1 ( )
[ ( )] ( )

f f t
H f t f t d d

t t

 
 

    

 

 


   

  .  (53) 

This convolution represents the response to ( )f t  of a linear time invariant filter 

having the impulse response, 1
t
 [21].  The Hilbert transform was expressed as: 

1 ( )ˆ[ ( )] ( )
f

H f t f t P d
t




 




 

 . (54) 

The integral in the Hilbert transform description in (54) is, by definition, 

improper.  The integrand contains a singularity, but has infinite limits of integration [21].  

The P  in front of the integral represents the Cauchy principal value, defined by the 

following equation: 
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1

10

1 ( ) ( )
[ ( )] lim

t t

t t

f f
H f t d d

t t




 

 
 

  

 

 

 
  

  
  . (55) 

The Cauchy principal value was obtained by considering a finite range of 

integrate, symmetric about the singularity, if and when it exists [21]. 

3.3.3.1  Mathematical Motivations 

The signal 1
t
 
has a Fourier transform of: 

, 0

sgn( ) 0, 0

, 0

j if

j if

j if



 



  
 

   
  

.  (56) 

If the signal ( )f t  has the Fourier transform of ( )F  , then the Hilbert transform, ˆ ( )f t , 

has the Fourier transform of [21] 

( ) sgn( ) ( )F j F    .  (57) 

The Hilbert transform is more easily understood in the frequency domain.  The 

magnitude of ( )F   does not change; however, the phase of ( )F   does change.  The 

positive frequencies of the Fourier transform values are multiplied by j  (or a phase 

change of 
2

 ), while the negative frequencies of the Fourier transform values are 

multiplied by j  (or a phase change of 
2

  ).  Therefore, given the signal spectrum 

( )F a jb   , the Hilbert transform is ˆ ( )F b ja    for 0   and ˆ ( )F b ja     for 

0  .  The Hilbert transform exchanges the real and imaginary parts of the signal 

( )F a jb   , while changing one of the signs in the signal [21]. 
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A table of common Hilbert transform pairs is detailed below in Table 7 [21]. 

Table 7:  Hilbert Transform Pairs 

Signal,  ( ) Hilbert transform,  ̂( ) 

1 1 2 2 1 2( ) ( ); ,a g t a g t a a 
 1 1 2 2

ˆ ˆ( ) ( )a g t a g t
 

0( )h t t
 0

ˆ( )h t t
 

( ); 0h at a   ˆsgn( ) ( )a h at  

( )
d

h t
dt

 ˆ( )
d

h t
dt

 

( )t  
1

t
 

jte  
jtje  

jte
 

jtje  

cos( )t  sin( )t  

( )rect t  
1 2 1

ln
2 1

t

t




 

sin ( )c t  
2sin ( ) sin sin

2 2 2

t t t
c t c

    
    

   
 

2

1

1 t
 

21

t

t
 

 

The Fourier transform is important for signal processing.  When given a real 

function ( )f t , only the positive frequency axis is of interest because spectrum is 

symmetric about zero.  The negative frequency axis is not needed and the Hilbert 

transform is employed to remove the negative frequency axis [20]. 

The Hilbert transform of a strong analytic signal is: 

ˆ ˆ[ ( )] [ ( ) ( )] ( ) ( ) ( )H f t H f t jf t f t jf t jz t      . (58) 

The Hilbert transform can be used to create an analytic signal from a real signal 

[20].   
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Therefore, it is possible to study the signal as a rotating vector with an 

instantaneous phase ( )t  and instantaneous amplitude ( )A t  in the time domain: 

( )ˆ( ) ( ) ( ) ( ) j tz t f t jf t A t e    .  (59) 

The final portion of (59) represents the signal in polar notation, where 

2 2ˆ( ) ( ) ( )A t f t f t  .  (60) 

and 

ˆ ( )
( ) arctan

( )

f t
t

f t


 
   

 

.  (61) 

Finally, the notion of instantaneous frequency is introduced as: 

( )
( )

d t
t

dt


  .  (62) 

3.3.3.2  MATLAB® Hilbert Transform Function 

MATLAB® has a function that will perform the Hilbert transform as defined in 

this section.  Under the help section for the hilbert() function in MATLAB®, the 

explanation of the input values and the outputs are described in great detail.  The 

hilbert() function returns a complex sequence, or the analytic signal, from a real-

valued sequence.  The real-valued part of the signal contains the original signal of the 

input data and the imaginary-valued part of the signal contains the Hilbert transform of 

the input data [22].  The imaginary-valued portion represents a 90 degree phase shift of 

the original real-valued data sequence.  In addition, “the Hilbert transformed series has 

the same amplitude and frequency content as the original real data and includes phase 

information that depends on the phase of the original data” [22]. 
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MATLAB® details the algorithm inherent to the MATLAB® hilbert() 

function, as the following:  

“The analytic signal for a sequence x has a one-sided Fourier transform, that is, 

negative frequencies are 0. To approximate the analytic signal, hilbert 

calculates the FFT of the input sequence, replaces those FFT coefficients that 

correspond to negative frequencies with zeros, and calculates the inverse FFT of 

the result” [22]. 

 

In greater detail, the hilbert() function employs the following four-step 

algorithm in Table 8: 

Table 8:  MATLAB® Hilbert Algorithm [22] 

1. It calculates the FFT of the input sequence, storing the result in a vector x.  

2. It creates a vector h whose elements h(k) have the values, where n represents 

the number of elements: 

 1 for k = 1, (n/2)+1 

 2 for k = 2, 3, ... , (n/2) 

 0 for k = (n/2)+2, ... , n 

3. It calculates the element-wise product of x and h. 

4. It calculates the inverse FFT of the sequence obtained in step 3 and returns the 

first n elements of the result. 

 

Furthermore, MATLAB® also explains the uses of the Hilbert transform for 

calculations.  The Hilbert transform can be used in calculating two important 

instantaneous attributes of a signal:  the amplitude and frequency.  The instantaneous 

amplitude is the amplitude of the complex-valued Hilbert transform, whereas the 

instantaneous frequency is the rate of change of the instantaneous phase angle with 

respect to time [22]. 

3.3.4.  The Fourier Transform 

The Fourier transform is important in many fields of study, such as mathematics, 

engineering, and physical sciences.  Fourier transforms are key components in data 
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processing and instruments, as well as the cornerstone of interferometry and aperture 

synthesis [23].  The Discrete Fourier transform (DFT), and more specifically the FFT, has 

revolutionized the data processing and digital electronics industry. 

3.4.4.1.  Fourier Transform  Basics 

The Fourier transform is a reversible and linear transform with a number of 

important properties, such as time shifting and scaling.  For any time-domain function 

( )f t  (either real- or complex-valued), the Fourier transform in the frequency domain is 

denoted by  ( ) [23].   

The forward transform of the Fourier transform is defined as: 

( ) ( ) j tF f t e dt





    (63) 

and the inverse transform of the Fourier transform is represented as: 

1
( ) ( )

2

j tf t F e d 





  .  (64) 

The complex exponential plays a key role in the Fourier transform.   

A complex exponential is defined as a complex number consisting of sinusoids.  

Euler’s formula embodies the relationship: 

cos( ) sin( )je j    .  (65) 

Because of the fact that complex exponentials are complete and orthogonal, the 

Fourier transform can represent any piecewise continuous function and to minimize the 

error between the function and its transform representation [23]. 
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3.4.4.2  The Discrete Fourier Transform 

While the continuous Fourier transform converts a time-domain signal of a 

continuous spectrum of an infinite number of sinusoids, the DFT is composed of a finite 

number of sinusoids.  The DFT is extremely important in the area of frequency analysis, 

primarily due to how it approaches a discrete signal in the time-domain and transforms 

the signal into its frequency domain representation [24].  The DFT of a signal of sampled 

data points, 
nx , is defined by: 

1 2 /

0

N j nk N

k nn
X x e  


 .  (66) 

and its inverse by: 

1 2 /

0

1 N j nk N

n kk
x X e

N




  . (67) 

A DFT of N -point time series results in an N -point frequency spectrum.  When 

the input signal is real-valued, the DFT contains an even real-part and an odd imaginary-

part of the spectrum.  Therefore, the “negative” Fourier transform frequencies provide no 

new information, leading to the conclusion that no information is created nor destroyed 

by the DFT [23]. 

3.4.4.3.  The Fast-Fourier Transform 

The FFT is a faster version of the DFT.  While the FFT performs the same task as 

the DFT, it utilizes algorithms to accomplish the objectives in less time.  The discrete 

property and speed of the FFT allows the use of MATLAB® to analyze signals [24].  

MATLAB®’s fft() function is effective for computing the DFT of the input signal. 

The FFT functions in MATLAB® are based on the MATLAB® library, Fastest 

Fourier Transform in the West (FFTW), is used to increase the Fourier transform speed. 
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To compute the DFT of a signal, the FFTW library decomposes the problem using the 

Cooley-Tukey algorithm [22], resulting in the values for the DFT of the given signal.  

The fft(X) outputs the DFT of the input data in the form of a vector.  The output vector 

is computed using the FFT algorithm, through selection using the FFTW library [22].  To 

further understand the FFT, the steps of the MATLAB® function fft() can be helpful.  

The function Y= fft(X) implements the transform for a vector of length N  as detailed 

in below: 

( 1)( 1)

1
[ ] [ ]

N m k

Nm
X k x m   


 ,  (68) 

with 

( 2 )/j N

N e   , (69) 

representing the N th root of unity [22]. 

3.5.  Implementation of the Algorithms 

In the previous section, the components and algorithms employed were explained.  

After an understanding of the components was gained, solutions for satisfying the 

objectives of this research were implemented as code in MATLAB®.  Before the final 

code was implemented and used to generate the results, there were failed coding attempts 

explored.  These attempts were detailed in the following sub-section, followed by the 

final BEMD coding written for the final results generated, and finishing the section with 

a detailed explanation of the implemented BEMD code.   
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3.5.1.  Unsuccessful Coding Attempts 

There were two unsuccessful coding attempts to create the graphs to compare in 

the data analysis and results section.  The first attempt was to compare the FFT with the 

HHT directly.  Yet, upon further research, it was discovered that the FFT exists in the 

frequency domain, whereas the HHT exists in the time domain.  Therefore, the direct 

comparison attempt led to a dead end due to the inability to compare the graphs to each 

other since they existed in different domains. 

The next attempt was to change the FFT into the time domain using the inverse 

FFT to compare directly with the HHT in the same domain.  The inverse FFT graphs 

presented an incorrect interpretation of the FFT signal when transformed into the time 

domain.  So, again, this second attempt was unsuccessful in generating the graphs and 

comparisons needed to successfully create the graphs for data analysis.   

3.5.2.  Bivariate Empirical Mode Decomposition Explanation 

The first component implemented in the code was the complex extension of the 

EMD algorithm BEMD [11], described in section 3.3.2, to calculate the complex IMFs.  

Dr. Patrick Flandrin, one of the primary authors, worked to create his own code for 

implementing the method proposed by Rilling et al.  Through reading the BEMD paper 

and proceeding to the website listed in the paper (http://perso.ens-

lyon.fr/patrick.flandrin), coding for the BEMD algorithm was available in the emd.zip 

file.  Dr. Flandrin’s original BEMD example was detailed in Appendix A. 

3.5.3.  Final CEMD Algorithm Implementation 

Even though code was written for the BEMD method, a couple changes were 

made to satisfy the objectives for this research.  One of the first changes was to plot the 

http://perso.ens-lyon.fr/patrick.flandrin
http://perso.ens-lyon.fr/patrick.flandrin
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magnitude and phase of the signal, rather than the real and imaginary components.  The 

input complex RCS data set required a change of domain to produce useful phase and 

magnitude data for graphical comparison.  Another modification was made to present two 

subplots on each figure, meaning that the magnitude and phase of the decomposed signal 

were plotted as their independent figure.  This modification allowed the computer to run 

without using much memory with respect to the computer used to run the code, as well as 

allowed for a quicker side-by-side comparison of the magnitude and phase plots of both 

before and after the application of the Hilbert transform.  A final change was the labeling 

of the title and axes, since they need to fit the real-world signal rather than the example 

provided by Dr. Flandrin.  The modification of the code written by Dr. Flandrin is 

presented in Appendix B.   

3.5.3.1.  Loading the Data and Calculation of the IMFs 

Section B.1, of Appendix B, represented the loading and the remodeling of 

BEMD code to run the data.  Once the data was loaded, the BEMD algorithm was applied 

to the remodeled data.  The specific cemdc2() function was presented in Appendix C, 

where the definition of the function was described in detail, such as the inputs and the 

outputs of the function.  After the cemdc2() function was employed, the function 

outputted two separate values.  The first, called imf, was a matrix where the IMFs were 

stored for each radar return measurement of the real-world data set. The second, called 

NB_ITERATIONS, represented the effective number of sifting iterations for each IMF. 

3.5.3.2  Plots of IMFs: CEMD and HHT 

In section B.3 of Appendix B, the IMFs that were calculated and stored in section 

B.2 were plotted.  First, the original signal was plotted with the magnitude on the top 



 

72 

portion of the subplot and the unwrapped phase on the lower portion of the subplot.  The 

magnitude was plotted using the abs() function, whereas the phase was plotted using the 

angle() function after the value for the angle was unwrapped.  The unwrap() function 

corrected the phase angles of the input signal to produce a smoother phase plot [22].  

MATLAB® defines the unwrap() function as a function that corrects the radian phase 

angles in a vector by adding multiples of     [22].  Once the original signal was plotted, 

the IMFs and residue of the decomposed signal were plotted.  The decomposed plots 

were displayed in the same layout as the original signal.  The x-axis of the magnitude plot 

represented the time scale, while the y-axis represented the RCS value in decibel per 

square meter (dBsm).  This measurement represents the decibel measure for the RCS of a 

target relative to one square meter.  The x-axis was represented on the phase plot as the 

time scale as well, and the y-axis represented the angle value of the signal in radians.    

In section B.4 of Appendix B, the Hilbert transform was applied to the real and 

imaginary components of the real-world data set.  Rather than plot the real and imaginary 

parts of the data set, the magnitude and phase after the application of the Hilbert 

transform were plotted.  The magnitude plot represented the RCS value in dBsm on the y-

axis, with the time scale represented on the x-axis.  Similarly, the phase plot represented 

time on the x-axis, while the y-axis represented the angle of the signal in radians.  After 

the Hilbert transform of the original signal was plotted, the Hilbert transform was applied 

to the IMFs and the residue decomposed from the original data set, in which the 

magnitude and phase of the Hilbert transform of the IMFs and the residue were plotted.  

Because the hilbert() function ignores the imaginary part of a signal, the phase plot 

represents the imaginary component and the magnitude plot analyzed the real component 
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of the signal.  Similar to the CEMD plots in section B.3, the axes of the Hilbert transform 

of the signal was RCS in dBsm with respect to time for the magnitude plot and was angle 

in radians with respect to time for the phase plot. 

3.5.3.3.  Plots of IMFs: FFT of CEMD and HHT 

The FFT of the decomposed signal before the application of the Hilbert transform 

was calculated and plotted in section B.5 of Appendix B.  In a similar manner to the 

previous two comparisons, the original and decomposed signals were plotted for the real-

world data set.  Prior to generating the plots, the fft() function was applied to the real-

world data set.  Then, the magnitude and phase were separately calculated.  Finally, the 

magnitude and unwrapped phase were plotted.  Since the FFT was applied to the data set, 

the magnitude graph represented frequency in GHz on the x-axis with the RCS value in 

dBsm plotted on the y-axis.  Additionally, the magnitude plot represented the absolute 

value of the FFT of the real-world data set, while using the fftshift() function applied 

to the real-world data set to shift the zero-frequency component of the data to the center 

of the spectrum.  By using the fftshift() function, interpretation of the generated plot 

was easier.  MATLAB® states that the fftshift() function “rearranged the outputs of 

the [FFT of the data] by moving the zero-frequency component to the center of the 

array…[and]…is useful for visualizing a Fourier transform with the zero-frequency 

component in the middle of the spectrum” [22].  The phase plot of the FFT of the real-

world data set was also represented by frequency along the x-axis and the angle value in 

radians on the y-axis.   

After the original signal was plotted, the plots of the IMFs and residue were 

generated through implementation of a for() loop.  The plots of the IMFs were created 



 

74 

similar to the original signal, with the only exception of input value.  Rather than the 

original data set, the input signals were the modes of the decomposed signal of the real-

world data set.  The magnitude plot represented the absolute value of the FFT of the 

decomposed signal, with the fftshift() applied to the resulting FFT of the IMFs and 

residue.  For the magnitude plot, the x-axis represented the frequency present in the 

modes of the decomposed signal and the y-axis represented the RCS value in dBsm.  

Additionally, the phase plot represented the angle of the FFT of the modes of the 

decomposed signal.  Frequency was represented along the x-axis and the angle in radians 

was represented along the y-axis.   

Section B.6 detailed the process of applying the FFT to the decomposed signal 

after the application of the Hilbert transform.  The first plots generated were the 

representations of: (1) the magnitude of the FFT after the Hilbert transform application 

and (2) the phase of the FFT after the Hilbert transform application.  All plots in this 

section represented the FFT after the application of the Hilbert transform of the input 

data.  To generate the magnitude graph, the fftshift() of the real-valued data of the 

FFT after the application of the Hilbert transform was plotted.  The x-axis represented the 

frequency component present in the signal in GHz, while the y-axis represented the 

amplitude of the RCS value in dBsm.  For the phase plot, the unwrapped angle of the 

imaginary-valued components FFT after the Hilbert transform application of the data was 

plotted.  The x-axis represented the amount of each frequency present in the signal in 

GHz and the y-axis represented the angle value of the signal in radians.   

After the original signal of the FFT after the application of the Hilbert transform 

was generated, the magnitude and phase plots for the decomposed signal modes of the 
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FFT after the Hilbert transform application were plotted.  The magnitude graph was 

generated using the fftshift() of the real-valued components of the FFT after the 

Hilbert transform application to the respective mode.  On the magnitude graph, the x-axis 

represented the frequency present in the signal and the y-axis represented the RCS value 

in dBsm.  Additionally, the phase plot was generated through use of the unwrap() and 

angle() functions from the FFT after the Hilbert transform application of the imaginary-

valued components of the respective mode.  For the phase plot, the x-axis represented the 

frequency present in the signal, while the y-axis represented the angle of the signal in 

radians.   

3.5.3.4.  Plots of IMFs: DTI of CEMD and HHT 

For the Doppler-Time-Intensity (DTI) plots, only the magnitude plot was of 

interest.  The DTI plots are represented on a pcolor(), or pseudocolor, plot.  A 

pseudocolor plot is a rectangular array of cells with colors determined by the input data 

[22].  The x-axis and y-axis limits were defined using the linspace() function and 

MATLAB® defines as a function used to “generate linearly spaced vectors” [22].  To 

graph a pcolor() plot, there are three dimensions.  The x-axis of the DTI was 

represented by the time value, the y-axis represented the frequency content in the signal 

in GHz, and the color axis represented the FFT intensity at each time and frequency value 

in the matrix spanning the x-y linear space.  The third dimension was represented through 

the intensity of the color of the absolute value of the windowed FFT both before and after 

the application of the Hilbert transform on a logarithmic scale.   

Section B.7 in Appendix B presented the application of the windowed FFT to the 

original signal, IMFs, and the residue to generate the DTI plots.  While a traditional FFT 
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would also provide similar analysis, the FFT employed in this section of the code was a 

windowed FFT implemented by the user, rather than a function embedded in the 

MATLAB® program.  The windowed FFT replaces the Fourier transform's sinusoidal 

wave by the product of a sinusoid and a window which is localized in time.  In addition, 

windowed Fourier Transforms are important in providing simultaneous insight in time 

and frequency behavior of the functions.  The first step was to define the step resolution 

and the amount of seconds for the resolution of the windowed FFT.  Next, the windowed 

FFT was applied and the DTI plot of the FFT of the original signal was generated.   

Subsequently, the windowed FFT of the decomposed signal modes were 

calculated and stored.  Then, the FFT of the decomposed signal modes were graphed on a 

pcolor() plot.  These two objectives were accomplished using an embedded for() loop.  

First, the windowed FFT value of the IMF was calculated and the magnitude of the FFT 

was graphed.  The fftshift() of the absolute value of the windowed FFT was graphed 

on the pcolor() plot using a logarithmic scale.  The DTI plot was represented with time 

on the x-axis, frequency on the y-axis, and the color axis representing the intensity of the 

FFT of the decomposed signal.   

Section B.8 of Appendix B represented the calculation of the windowed FFT of 

the original signal and the modes of the decomposed signal after the application of the 

Hilbert transform, as well as generated the DTI.  The first step was to define the step 

resolution and the amount of seconds for the resolution of the windowed FFT.  Next, the 

windowed FFT after the Hilbert transform application of the original signal was 

calculated and stored.  Once the windowed FFT was calculated and store, the windowed 

FFT was plotted.   
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The windowed FFT of each mode of the decomposed signal was calculated and 

stored.  Then, the FFT after the Hilbert transform application of the decomposed signal 

graphed on a pcolor() plot.  These two objectives were accomplished using an 

embedded for() loop.  First, the Hilbert transform of each component of the 

decomposed signal was calculated and the windowed FFT value after the Hilbert 

transform application was calculated.  Next, the magnitude of the FFT after the Hilbert 

transform application was plotted.  The fftshift() of the absolute value of the 

windowed FFT after the Hilbert transform application was graphed on the pcolor() plot 

using a logarithmic scale.  The DTI plot was represented with time on the x-axis, 

frequency on the y-axis, and the color axis representing the intensity of the FFT after the 

Hilbert transform application of the decomposed signal.  

3.6.  Chapter Summary 

An exploration of the various components necessary to implement the MATLAB® 

code and satisfy the objectives presented in Chapter I was performed.  The applied 

BEMD algorithm was explained and relevant data collection was detailed.  Four specific 

components were investigated for employing the algorithm presented by Rilling et al. 

[11]: (1) the EMD algorithm, (2) the CEMD algorithm, (3) the Hilbert transform (leading 

to the HHT representation), and (4) the FFT.  Finally, algorithm was implemented and 

discussed with detailed MATLAB® code as presented in Appendices A, B, and C.   
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IV.  Results and Data Analysis 

4.1.  Overview 

The results and analysis for the comparisons of the data generated in Chapter III, 

after applying the CEMD algorithm and the two mathematical transforms, the Hilbert 

transform and FFT, are presented and analyzed in detail.  The results are organized into 

four sections.  The first section compares the decomposed real-world data set with the 

RCS signal of various canonical shapes collected in the RCS range at AFIT, often 

encountered in real-world signals.  Next, the decomposed real-world signal is compared 

with its Hilbert transform of the decomposed real-world signal.  In addition, the 

application of the FFT to both the decomposed signal and the application of the Hilbert 

transform to the decomposed signal are compared.  Finally, the windowed FFT of the 

decomposed signal and the Hilbert transform application to the decomposed signal are 

compared.  In other words, the Doppler-Time-Intensity (DTI) representation of the 

signals were analyzed and compared, noting the differences and similarities in the 

generated graphical representation.   

4.2.  Evaluation of CEMD Method 

To assess how well the CEMD method performed, the decomposed signal of the 

real-world data set was compared with four common shapes inherent to dynamic objects 

similar to the one represented by the real-world data set.  First, the graph of the original 

signal of a closed-cap cylinder was compared to the various IMFs of the decomposed 

real-world signal.  After comparing the RCS of the closed-cap cylinder with the IMFs, 
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the most similar IMF to the original signal of the closed-cap cylinder was IMF #2, as 

displayed in Figures 8 and 9.    

 

Figure 8:  CEMD Magnitude of Closed-Cap Cylinder 

 

Figure 9:  CEMD Magnitude of Real-World Signal--IMF #2 

 

The peaks in the RCS values of the two plots occurred at analogous 

fixed points in the analysis of the complex time series.  However, the amplitude of the 

peak return values differ by a factor of 20 dB.  Even though this difference exists, the 

RCS value of the original signal of the closed-cap cylinder behaved most like IMF #2 of 

the decomposed real-world signal through comparing the plots. 

The second comparison occurred between the RCS of a cavity cylinder and the 

decomposed real-world signal.  The cavity cylinder results were similar to the closed-cap 

cylinder RCS return plot.  Additionally, the peaks of the cavity cylinder and IMF #2 
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occur at approximately the same instances in time on the graph, shown in Figures 10 and 

11. 

 

Figure 10:  CEMD Magnitude of Closed-Cap Cylinder 

 

Figure 11:  CEMD Magnitude of Real-World Signal--IMF #2 

 

The amplitude of the peaks was also different by a factor of 20 dB; although there 

was a difference, the cavity cylinder behaved most like IMF #2 of the decomposed real-

world signal. 

Third, the RCS plot of the cone-sphere was compared with the IMFs of the real 

world signal.  Yet, unlike the first two shape comparisons, there was no IMF of the 

decomposed real-world signal that behaved most like the RCS plot of the cone-sphere 

signal. 
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Figure 12:  CEMD Magnitude of Cone-Sphere 

 

Finally, the RCS plot of the original signal of the dihedral corner reflector was 

compared to the IMFs of the decomposed real-world signal.  Comparing these two plots 

side-by-side, the dihedral corner reflector behaved most like IMF #3, with a magnitude 

difference by a factor of seven.  One possible explanation for the difference in the 

magnitude factors is the amount of space between the dynamic object and the radar 

measuring the RCS value.  Finally, the peaks of each plot occurred at approximately the 

same proportional time interval, and the smaller radar returns also occurred at the 

approximate same time intervals. 
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Figure 13:  CEMD Magnitude of Dihedral Corner Reflector 

 

Figure 14:  CEMD Magnitude of Real-World Signal—IMF #3 

 

Overall, the comparisons discussed reinforced the fact that the CEMD method 

effectively decomposed the real-world data set provided for this evaluation into its IMFs.  

Therefore, the CEMD method could be a viable tool for analysis of RCS signals in the 

future. 

4.3.  Analysis of Decomposed Data Before and After the Hilbert Transform 

The second analysis was the comparison of the graphical results generated of the 

original signal and the Hilbert transform application to the original signal using the 

CEMD algorithm.  There was not any quantitative data to analyze; rather, the graphs 

were qualitatively compared and discussed.   
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4.3.1.  Original Signal Plot Analysis 

Firstly, the magnitude of the original signal and the Hilbert transform application 

to the original signal were displayed in Figures 15 and 16 and represented by the graph of 

RCS value in dBsm with respect to time. 

 

Figure 15:  CEMD Magnitude of Original Signal 

 

Figure 16:  HHT Magnitude of Original Signal 

 

The graphs both displayed five large returns, where the original signal had a 

slightly higher return at each spike than after the application of the Hilbert transform.  

Other than the differences in the peaks, there was no noticeable difference in the original 

signal when compared with the signal after the application of the Hilbert transform.   

However, the phase plots, shown in Figures 17 and 18, displayed a much larger 

difference.  Namely, the scale on the y-axis displayed a large difference in amplitude, as 

well as the smoothness of the curve.  The plots needed to be viewed on the same scale to 
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determine if there was a difference in the curve because the plots were on such different 

scales. 

 

Figure 17:  CEMD Phase of Original Signal 

 

Figure 18:  HHT Phase of Original Signal 

 

However, these differences and possible causes fell outside the scope of this 

evaluation and would require more research to determine whether the phase portion of 

the CEMD algorithm provided significant analysis. 

Comparatively to the magnitude plots of the original signal, there were not 

noticeable differences between the before and after the application of the Hilbert 

transform.  Consequently, more information and noticeable changes might occur after 

analysis of specific IMFs.   
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4.3.2.  IMF Plot Analysis 

The plots of IMF #1 showed only a small difference between the two plots both 

before and after the application of the Hilbert transform, in Figures 19 and 20.  Therefore, 

no helpful information could be determined by comparison of these two plots. 

 

Figure 19:  EMD Magnitude of IMF #1 

 

Figure 20:  HHT Magnitude of IMF #1 

 

By comparing the two IMF #2 plots in Figures 21 and 22, there was a slight 

difference in the intensity of each return value with respect to time.  On the graph of the 

IMF #2 signal before the application of the Hilbert transform, there was approximately 

double the intensity in time when compared with the signal after the application of the 

Hilbert transform.  Although there was a slight magnitude difference, the primary and 

most noticeable difference was the intensity at each time value before the application of 

the Hilbert transform signal.  After application of the Hilbert transform, the negative 
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frequency values were set to equal zero and could account for the less intense plot value 

after the Hilbert transform application.  For a more detailed representation of what the 

Hilbert transform does to an input signal, please refer to Chapter III, section 3.3.3.   

 

Figure 21:  CEMD Magnitude of IMF #2 

 

Figure 22:  HHT Magnitude of IMF #2 

 

Beginning with IMF #5, displayed in Figures 23 and 24, the curve after 

application of the Hilbert transform presented a more smooth representation than 

previous IMFs, as well as displayed a more precise value representation of the original 

signal.  IMF #5 provided a cleaner representation of the decomposed real-world signal, 

even though the amplitude scale was slightly different between two plots.   
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Figure 23:  CEMD Magnitude of IMF #5 

 

Figure 24:  HHT Magnitude of IMF #5 

 

From comparing the plots of IMF #6, in Figures 25 and 26, this IMF allowed for 

direct comparison and showed that, after application of the Hilbert transform, the plot 

was more fluid than before the application of the Hilbert transform. The same 

characteristics were present in both plots and, through application of the Hilbert 

transform, the plot of IMF #6 of the real-world signal was more focused and displayed a 

cleaner representation.  The “cleaned-up” version makes analysis of the time value 

representation in RCS value easier and may have provided more accurate analysis of the 

decomposed signal after the application of the Hilbert transform.    



 

88 

 

Figure 25:  CEMD Magnitude of IMF #6 

 

Figure 26:  HHT Magnitude of IMF #6 

 

IMFs #7 through #11 provided additional support for the conclusions and 

characteristics discussed about IMF #6.   

The decomposition displayed in Figures 27 through 36 showed the sinusoidal 

nature of the CEMD method; however, the sinusoid became more noticeable after 

application of the Hilbert transform.  Before the application of the Hilbert transform, the 

decomposition of the signal appeared noisier and possibly contained extraneous signal 

values of the decomposed signal representation.  Based on the aforementioned 

conclusions, it is hypothesized in later plot representations that the removal of negative 

frequencies might prove be either helpful or harmful, especially when used for analysis in 

the intelligence community.   
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Figure 27:  CEMD Magnitude of IMF #7 

 

Figure 28:  HHT Magnitude of IMF #7 

 

 

Figure 29:  CEMD Magnitude of IMF #8 

 

Figure 30:  HHT Magnitude of IMF #8 
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Figure 31:  CEMD Magnitude of IMF #9 

 

Figure 32:  HHT Magnitude of IMF #9 

 

 

Figure 33:  CEMD Magnitude of IMF #10 

 

Figure 34:  HHT Magnitude of IMF #10 

 



 

91 

 

Figure 35:  CEMD Magnitude of IMF #11 

 

Figure 36:  HHT Magnitude of IMF #11 

4.4. Analysis of the FFT Plots Before and After the Hilbert Transform Application 

Traditionally, the FFT has been the main signal analysis tool for analyzing RCS 

data.  The application of the FFT allowed the researcher to determine at what frequency 

values the signal was most dominant, as well as represented the signal for analysis in the 

frequency domain.  For each of the graphs generated to represent the magnitude of the 

FFT in the frequency domain, the frequencies represented by 7685 Hz and below were 

the negative frequencies, while the positive frequencies were between 7686 Hz and 

15370 Hz on the frequency axis.  In addition to the magnitude plot being generated, the 

phase of the signal was represented by angle in radians with respect to the frequency of 

the signal.   
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4.4.1.  Original Signal FFT Plot Comparisons 

The first plots compared the effect of the Hilbert transform applied to the real-

world signal.  The magnitude plots of the original signal before and after applying the 

Hilbert transform, prior to decomposition using the CEMD algorithm, are represented 

below in Figures 37 and 38.   

 

Figure 37:  FFT of CEMD Magnitude of Original Signal 

 

Figure 38:  FFT of HHT Magnitude of Original Signal 

 

First, the comparison of the magnitude plot of the FFT before and after the Hilbert 

transform application displayed a characteristic inherent to the Hilbert transform.  The 

characteristic inherent to the Hilbert transform resulted in the negative frequencies of the 

signal being removed, leading the negative frequency values to equal zero.  The FFT of 

the signal before the Hilbert transform application showed the plot contained both 

negative and positive frequencies, with the signal appearing approximately symmetric 

along the frequency axis with respect to its RCS value in dBsm.  The removal of the 

negative frequencies on the plot was not the only difference present in the generated 
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graph.  The RCS return values that were present in the positive frequencies after the 

application of the Hilbert transform and the graph had a larger magnitude value by a 

factor of approximately two as compared with the RCS return values before the 

application of the Hilbert transform.  The difference in amplitude of the RCS return value 

led to the possibility that the negative frequency returns were preserved in the graph and 

resulted in the larger magnitude present on the positive frequency portion of the plot.  

One possible explanation is based on the conservation of energy principle, which states 

that the amount of energy put into the signal must equal that exiting after application of 

the Hilbert transform.   

Additionally, the phase plots of the original signal of the FFT plot both before and 

after the Hilbert transform application did not appear to provide any new or possibly 

significant information due to them displaying approximately equal angle measurements, 

presented in Figures 39 and 40.   

 

Figure 39:  FFT of CEMD Phase of Original Signal 
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Figure 40:  FFT of HHT Phase of Original Signal 

 

4.4.2.  IMF FFT Plot Comparisons 

In a similar fashion to the plots of the original signal, comparisons between the 

IMFs of the FFT after application of the Hilbert transform of the decomposed signal yield 

different results and noted graphical differences.  The plots representing the IMFs of the 

FFT were detailed below in Figures 41 through 50.   

The main difference between the IMF plots of the FFT plot before and after the 

Hilbert transform was the disappearance of the negative frequencies after the application 

of the Hilbert transform, whereas before the application of the Hilbert transform, the full 

frequency spectrum displayed the radar return signal.  Removal of the negative 

frequencies of the signal after application of the Hilbert transform is a property of the 

FFT of the Hilbert transform and discussed in Section 3.3.3.  In addition to the difference 

along the frequency axis, the magnitude of the radar return varied between the graphs 

generated before and after the application of the Hilbert transform.   

 



 

95 

 

Figure 41:  FFT of CEMD Magnitude of IMF #1 

 

Figure 42:  FFT of HHT Magnitude of IMF #1 

 

 

Figure 43:  FFT of CEMD Magnitude of IMF #2 

 

Figure 44:  FFT of HHT Magnitude of IMF #2 
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Figure 45:   FFT of CEMD Magnitude of IMF #3 

 

Figure 46:  FFT of HHT Magnitude of IMF #3 

 

 

Figure 47:  FFT of CEMD Magnitude of IMF #4 

 

Figure 48:  FFT of HHT Magnitude of IMF #4 
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Figure 49:  FFT of CEMD Magnitude of IMF #5 

 

Figure 50:  FFT of HHT Magnitude of IMF #5 

 

Prior to the Hilbert transform application, IMF plots were consistent with a high-

end limit of the complex RCS return value between 40 dB and approximately 250 dB 

from IMF #1 to IMF #11.  Also, the magnitude plots after the Hilbert transform plots 

ranged with a high-end limit from 75 dB to 310 dB, with IMFs #6 through #11 are 

detailed in Figures 51 through 62.  The difference in magnitude was indicative of the 

conclusion that the HHT was not a useful analysis tool in comparison with the FFT for 

the real-world data set provided for this project.  A deeper understanding of exactly what 

the Hilbert transform application yields from a similar complex RCS data set is necessary 

for determining the usability of the HHT as a tool for complex RCS data used in the 

intelligence community, when analyzed in the frequency domain.   
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Figure 51:  FFT of CEMD Magnitude of IMF #6 

 

Figure 52:  FFT of HHT Magnitude of IMF #6 

 

 

Figure 53:  FFT of CEMD Magnitude of IMF #7 

 

Figure 54:  FFT of HHT Magnitude of IMF #7 
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Figure 55:  FFT of CEMD Magnitude of IMF #8 

 

Figure 56:  FFT of HHT Magnitude of IMF #8 

 

 

Figure 57:  FFT of CEMD Magnitude of IMF #9 

 

Figure 58:  FFT of HHT Magnitude of IMF #9 
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Figure 59:  FFT of CEMD Magnitude of IMF #10 

 

Figure 60: FFT of HHT Magnitude of IMF #10 

 

 

Figure 61: FFT of CEMD Magnitude of IMF #11 

 

Figure 62: FFT of HHT Magnitude of IMF #11 

 

The phase plots of the IMFs of the FFT plot of before and after the Hilbert 

transform application provided limited new or possibly significant data, although the 
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plots displayed a significant difference between the two mathematical transforms, with 

the IMFs represented in Figures 63 through 70.   

 

Figure 63:  FFT of CEMD Phase of IMF #1 

 

Figure 64:  FFT of HHT Phase of IMF #1 

 

 

Figure 65: FFT of CEMD Phase of IMF #5 

 

Figure 66: FFT of HHT Phase of IMF #5 
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Figure 67:  FFT of CEMD Phase of IMF #7 

 

Figure 68:  FFT of HHT Phase of IMF #7 

 

 

Figure 69:  FFT of CEMD Phase of IMF #11 

 

Figure 70:  FFT of HHT Phase of IMF #11 

 

A distinct difference between these phase plots both before and after the 

application of the Hilbert transform existed; however, the understanding needed to 

determine the significance or lack thereof of these plots is outside the scope of this 
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inquiry.  Further understanding of the phase plots and the interpretation of these plots is 

necessary to determine new or significant information.   

4.5.  Analysis of Doppler-Time-Intensity Plots Prior to and After the Hilbert 

Transform 

4.5.1.  Doppler-Time-Intensity (DTI) Plots 

For intelligence analysts, the DTI plot is of interest for understanding what 

occurred at each frequency and time interval, as well as displaying the amount of energy 

being transmitted at that moment.  This plot is created using a windowed Fourier 

transform and is an accepted tool in the analyst community.  More information 

concerning DTI plots are in Section 3.5.3.4. 

4.5.2.  Original Signal DTI Plot Comparison 

Immediately, a major difference was noticed in the plots between the original DTI 

plots of before and after the Hilbert transform application, in Figures 71 and 72.  Prior to 

the application of the Hilbert transform, the signal displayed a symmetric signal along the 

frequency axis, whereas the negative frequency values after the Hilbert transform 

application were no longer symmetric and did not allow for analysis capabilities in the 

known intelligence community.  Representation of the HHT as a DTI plot yielded reason 

to believe the application of the Hilbert transform did not allow for the proper analysis 

needed for RCS data.   
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Figure 71:  DTI Magnitude of Original Signal 

 

Figure 72:  DTI HHT Magnitude of Original Signal 

 

The time axis from 0 to 50 displayed a more intense return on the DTI plot after 

the Hilbert transform application, according to the color representation.  When compared 

with the DTI plot of before the application of the Hilbert transform signal, the plot 

representation after the application of the Hilbert transform provided a possibly incorrect 

interpretation of the signal.  Thus, the only useable portion of the DTI plot after the 
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Hilbert transform application of the pre-decomposed signal was the positive frequency 

between time 50 and time 100.  Nevertheless, before the decomposition of the signal 

using the CEMD algorithm, the application of the Hilbert transform did not provide a 

DTI plot that yielded useful results.   

4.5.3.  IMF DTI Plot Comparisons 

When comparing the two plots of IMF #1, represented in Figures 73 and 74, the 

same characteristics and differences present in the comparison of the original signal were 

also present in this specific IMF.  Again, after the application of the Hilbert transform, 

the negative frequencies were non-existent and little useful information was displayed on 

the plot of IMF #1.  The large returns, normally indicative of broadside flashes in RCS 

data, were shifted in the DTI plot after the Hilbert transform application and potentially 

resulted from the fftshift() or the fft() functions in MATLAB®. This shifting was 

not noticeable until IMF #1 and many techniques were employed to attempt to fix this 

shifting; however, the fftshift() and the ifftshift() functions were not helpful with 

shifting the time scale, where the problem appeared to occur.  The time shifting occurred 

after the application of the Hilbert transform presented another reason why the Hilbert 

transform application to the real-world signal did not produce a more enhanced fidelity or 

a better analysis tool for RCS data. 
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Figure 73:  DTI Magnitude of IMF #1 

 

Figure 74:  DTI HHT Magnitude of IMF #1 

 

From the DTI plots for IMF #2, in Figures 75 and 76, both before and after the 

Hilbert transform application, the plots displayed differences detectable between the 

before and after the application of the Hilbert transform plots.  The negative frequencies 

were unusable, even though the plot started looking more like a mirror image of the 

positive frequencies.  The characteristic of growing intensity on the negative frequency 
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portion of the graph may represent the higher, more intense mode being sifted out of the 

decomposed signal on the plot.  The time axis was still shifted after the application of the 

Hilbert transform.  The shifting might be caused by a function inherent to the Hilbert 

transform, which displayed another reason that the application of the Hilbert transform 

may not provide new or enhanced information than the application of the FFT.   

 

Figure 75:  DTI Magnitude of IMF #2 

 

Figure 76:  DTI HHT Magnitude of IMF #2 
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By comparing IMFs #5 through #8, the negative frequencies after the Hilbert 

transform application on the plots became less intense, represented by Figures 77 through 

84; however, the higher and more intense RCS values were being sifted out using the 

CEMD algorithm, and provided positive frequencies mirrored as negative frequencies.  

When comparing the DTI plots before the Hilbert transform and the signal after the 

application of the Hilbert transform characteristics present prior to the application of the 

Hilbert transform were not represented.  Therefore, if the Hilbert transform is applied to 

the data, data is lost, leading to the conclusion that the analysis would not represent the 

true signal.  By analyzing these six IMFs, the Hilbert transform application appeared to 

ineffectively represent the data decomposed using the CEMD algorithm.   
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Figure 77:  DTI Magnitude of IMF #5 

 

Figure 78:  DTI HHT Magnitude of IMF #5 
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Figure 79:  DTI Magnitude of IMF #6 

 

Figure 80:  DTI HHT Magnitude of IMF #6 
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Figure 81:  DTI Magnitude of IMF #7 

 

Figure 82:  DTI HHT Magnitude of IMF #7 
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Figure 83:  DTI Magnitude of IMF #8 

 

Figure 84:  DTI HHT Magnitude of IMF #8 

 

IMFs #9 through #11 display major differences in the DTI plots before and after 

the Hilbert transform application, shown in Figures 85 through 90.   
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First, the shift of the time axis was noticeable in IMF #9 due to the vertical line 

present at time equal to 50.  Secondly, the signal displayed before the Hilbert transform 

was more focused and displayed all data points, whereas the graph after the application of 

the Hilbert transform was smoother and overlooked the individual spikes from the signal 

decomposition.  Finally, it was concluded that the signal after the Hilbert transform 

application was not representative of the originally decomposed signal.   
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Figure 85:  DTI Magnitude of IMF #9 

 

Figure 86:  DTI HHT Magnitude of IMF #9 

 



 

115 

 

Figure 87:  DTI Magnitude of IMF #10 

 

Figure 88:   DTI HHT Magnitude of IMF #10 
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Figure 89:  DTI Magnitude of IMF #11 

 

Figure 90:  DTI HHT Magnitude of IMF #11 

 

4.5.4.  DTI Plot Comparison Conclusions 

By comparing the DTI plots both before and after the application of the Hilbert 

transform to the original signal and decomposed data, it was concluded the application of 
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the HHT did not provide new or significant enhancements to the analysis of the data.  

After the detailed comparison of each IMF, the Hilbert transform application seemed to 

delete approximately half of the original frequency data, as well as incorrectly 

represented the signal along the time scale axis.  It is hypothesized that the HHT might 

provide a more enhanced fidelity and new or useful information of the input RCS signal.  

However, this application of the Hilbert transform did not provide a more enhanced 

fidelity than the application of the FFT.  Additionally, the Hilbert transform removed 

important data and did not display the correct amount of fidelity compared to the 

application of the FFT.  It cannot be clearly determined whether the HHT was a useful 

signal analysis tool for RCS data.  Furthermore, it could not be determined that, when 

compared with the application of the FFT, the Hilbert transform was a better 

representation of the data and was more a hindrance than helpful tool for the analysis of 

the DTI plots.   

4.6.  Chapter Summary 

First, the magnitude of the decomposed signal was compared with various 

canonical RCS graphs to assess the CEMD algorithm in decomposing the real-world data 

set.  Next, the magnitude of the decomposed signal was compared both before and after 

the application of the Hilbert transform.  Similarly, the magnitude of the FFT of the 

decomposed signal was compared both before and after the application of the Hilbert 

transform.  Finally, the generated magnitude DTI plots of the decomposed signal before 

and after the application of the Hilbert transform were compared.  In addition, the phase 

plots for the decomposed signal and the FFT of the decompose signal were compared 
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with their respective graphs after the application of the Hilbert transform.  For all four 

graphical comparisons, the similarities and differences were discussed, as well as 

possible implications for application of signal processing.   
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V.  Conclusions and Future Work 

The activities of this research and the results obtained were detailed as follows.  

The comparisons and conclusions drawn from the graphs generated were highlighted.  

Also, overall concluding thoughts related to the objectives of this evaluation were 

detailed and discussed to determine the implications of the results.  The research 

conclusions were also the basis for future work concerning RCS data analysis and 

possible helpful future signal analysis tools, including the HHT.   

5.1.  Overall Summary 

Chapter I detailed the objectives of this research used to assess the effectiveness 

of using the CEMD method to analyze RCS data, as well as compared the application of 

the Hilbert transform and the FFT on the decomposed data sets after the CEMD 

technique.  To meet the research objectives, the CEMD algorithm code was found and 

modified.  The code was also used to apply the FFT, Hilbert transform, and windowed 

FFT to produce graphical results for comparison.  Comparative analysis of the four 

graphically generated results was performed.  In addition, the generated plots were 

analyzed to determine the algorithm’s ability to meet the objectives of this research 

effort. 

5.2.  Key Results 

Results and conclusions from the work performed in this thesis are presented as 

follows. 
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1. Results for the ability of the CEMD algorithm to decompose the RCS real-

world data set.  

Overall, the comparison discussed in this section displayed the functionality of the 

CEMD method for the decomposition of a real-world data set.  The CEMD method is a 

possible tool for decomposition of RCS signals, when compared in the time domain. 

2. Results from the comparison of the CEMD algorithm before and after the 

application of the Hilbert transform.   

From the original signal, few differences were noticed between the pre and post 

Hilbert transform application magnitude plots.  No new information could be determined 

by comparison of the plots represented by IMF #1.   

After comparing the two IMF #2 plots, a slight difference in the intensity of each 

return value was noticed with respect to time.  On the graph of the IMF #2 of the signal 

before the application of the Hilbert transform, there was approximately double the 

intensity in time as compared to the plot after the application of the Hilbert transform.  

There was a slight magnitude difference, with the primary and most noticeable difference 

exhibited by the intensity at each time value before the application of the Hilbert 

transform.   

Beginning with IMF #5, the curve after the application of the Hilbert transform 

showed a more fluid representation than previous IMFs, as well as displayed a more 

specific value representation of the real-world signal.  After comparing the plots of IMF 

#6, this plot showed that, after the application of the Hilbert transform, the plot was more 

fluid than before the application of the Hilbert transform. The same characteristics were 

present in both plots and, through application of the Hilbert transform, the plot of IMF #6 
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was more focused and displayed a cleaner representation of the real-world signal than 

previous IMF plots.   

The signal decomposition displayed in IMFs #7 through #11 showed the 

sinusoidal nature of the CEMD method; nevertheless, the sinusoid was more 

distinguishable after application of the Hilbert transform.  Prior to the application of the 

Hilbert transform, the decomposition of the signal demonstrated noisier and contained 

possible extraneous signal values of the decomposed signal interpretation.   

3. Results from the comparison of the FFT plots of the CEMD algorithm 

before and after the application of the Hilbert transform.   

The main difference between the FFT plot before and after the Hilbert transform 

was noted by the disappearance of the negative frequencies after the application of the 

Hilbert transform.  Yet, before the application of the Hilbert transform, the full frequency 

spectrum displayed the radar return signal.  It was found that the characteristics of the 

graphical results occurred due to an inherent property of the Hilbert transform.   

Another difference occurred with the magnitude and was indicative of the HHT 

not being a useful analysis tool in comparison with the FFT for the real-world data set 

provided for analysis.  A deeper understanding of exactly what the Hilbert transform 

application yields from an RCS data set is necessary to determine the usability of the 

HHT in continued RCS data or to determine whether the use of the HHT is or is not a 

valid tool for the type of data used in the intelligence community.   

 

 



 

122 

4. Results from the comparison of the DTI plots of the CEMD algorithm 

before and after the application of the Hilbert transform.   

Through the comparison of the DTI plots both before and after the application of 

the Hilbert transform to the original signal and decomposed data, it was concluded the 

application of the Hilbert transform did not provide new or significant analysis of the 

data.  After the detailed comparison of each IMF, the Hilbert transform application 

seemed to delete approximately half of the original frequency data, as well as incorrectly 

represented the signal along the time axis.   

5.3.  Concluding Thoughts 

Various generated graphical results were analyzed and evaluated throughout the 

course of this research effort.  The two principle objectives were investigated.  These two 

objectives were: (1) to assess the effectiveness of the CEMD method and HHT as signal 

analysis tools for complex RCS data and (2) to determine whether the HHT provided an 

enhanced fidelity and improved analysis of complex RCS data than through use of the 

FFT as the analysis tool.   Through the four comparative analyses, these objectives were 

met.  The four comparisons performed were: (1) the comparison of the decomposed data 

using the CEMD with various canonical shapes, (2) the comparison of the decomposed 

data using the CEMD with the decomposed data after the application of the Hilbert 

transform, (3) the comparison of the FFT of the decomposed data using the CEMD both 

before and after the Hilbert transform was applied, and (4) the comparison of the DTI 

plots of the decomposed data using the CEMD both before and after the application of 

the Hilbert transform.   
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The first graphical comparison displayed that the CEMD method inherent to the 

HHT effectively decomposed the RCS data and exhibited the IMFs of the real-world 

signal in a correct manner.  The second, third, and fourth comparisons were used to 

determine whether the hypothesis that the HHT might provide an enhanced fidelity and 

new or useful information of the input RCS signal was proven.  From the comparative 

analyses, the application of the Hilbert transform did not provide an enhanced fidelity 

than the application of the FFT.  The Hilbert transform even appeared to remove 

important data and incorrectly displayed the desired amount of fidelity the application of 

the FFT provided.  Nevertheless, it could not be determined whether the complete HHT 

was a useful signal analysis tool for RCS data; it was concluded that the CEMD method 

inherent to the HHT provided a useful analysis tool for RCS data.  Finally, compared 

with the application of the FFT, the Hilbert transform inadequately represented the data 

and was more of a hindrance to the analysis of the various plots generated of the real-

world data set.   

5.4.  Future Work 

A list of possible areas for future research concerning the usability of the CEMD 

and EMD algorithms, as well as the HHT and other mathematical transforms as possible 

analysis tools, are described as follows. 

 Investigation of blind studies of the CEMD algorithm should be performed.  It is 

essential to establish the validity of the CEMD for determining objects and the 

shape of those objects without prior knowledge. 
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 Investigations of comparing various rocket bodies should be conducted to 

distinguish between similar shapes through decomposing and analyzing the IMFs.  

It is important to know the minute details for expedited analysis of the rocket 

bodies. 

 Implementation of real-valued RCS data as opposed to complex-valued data 

should be used to determine if similar results occur as with the CEMD algorithm. 

 Investigation of the using time-frequency transforms as possible new signal 

analysis tools on decomposed signals should be examined compared to current 

results of use of the HHT and FFT. 



 

125 

Appendix A 

 Appendix A displays Dr. Flandrin’s original BEMD algorithm code, as applied to 

an example complex data set. 

%bivariate_EMD_illustration.m  
%illustration of the bivariate EMD extension on a real-world 

oceanographic signal 
%reproduces Fig. 3 in "Bivariate Empirical Mode Decomposition", G. 

Rilling, 
%P. Flandrin, P. Goncalves and J. M. Lilly, IEEE Signal Processing 

Letters 
% 
%G. Rilling 3/2007 email:  gabriel.rilling@ens-lyon.fr 

  
load('float_position_record.mat','x'); 

  
[imf,nb] = cemdc2_fix([],x,10,[],32); 

  
x = hilbert(x) 

  
n = size(imf,1); 

  
figtitle1 = 'Float position record'; 
figure('name',figtitle1) 
plot(x); 
xlabel('Displacement East (km) --- Real part') 
ylabel('Displacement North (km) --- Imaginary part') 
title(figtitle1) 
axis equal; 
set(gca,'Ylim',[-250,300]) 

  
figtitle2 = 'Bivariate Empirical Mode Decomposition of Float signal'; 
figure('name',figtitle2) 
subplot(n+1,1,1) 
plot(real(x)) 
hold on 
plot(imag(x),'k--') 
axis tight 
ylabel('signal') 
title(figtitle2) 
set(gca,'XTickLabel',{}) 
minmin = @(x)min(x(:)); 
maxmax = @(x)max(x(:)); 
m = minmin([real(imf(1:end-1,:));imag(imf(1:end-1,:))]); 
M = maxmax([real(imf(1:end-1,:));imag(imf(1:end-1,:))]); 
for k = 1:n 
  subplot(n+1,1,k+1) 
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  plot(real(imf(k,:))) 
  hold on 
  plot(imag(imf(k,:)),'k--') 
  axis([1,length(x),m,M]) 
  ylabel(['d_',int2str(k)]) 
  if k<n 
    set(gca,'XTickLabel',{}) 
  end 
end 
ylabel('res.') 
xlabel('Time (days)') 
axis tight 

Figure 91:  BEMD Algorithm by Dr. Flandrin 
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Appendix B 

Appendix B shows the detailed code used for producing the graphical results.   

 
%% Section B.1 
%% Load all the data and remake it to work for the algorithm 

  
load('data.mat'); 
dataR = nb_data.nb_rcs_r'; 
dataI = nb_data.nb_rcs_i'; 
prf=round(nb_data.nb_avg_prf); 
Ts = round(nb_data.nb_avg_prf); 
data = (dataR+i*dataI).'; 
lengthData=length(data); 

Figure 92:  Section B.1 Modified BEMD Algorithm  

 

%% Section B.2 
%% Apply the CEMD to the inputted signal 

  
[imf,nb] = cemdc2([],data,[],[]); 
n = size(imf,1); 

Figure 93:  Section B.2 Modified BEMD Algorithm 

 

 

%% Section B.3 
%% Plots the Complex Empirical Mode Decomposition of the signal 

  
figure (); 
subplot(2,1,1) 
plot(abs(data)) 
title('CEMD Magnitude of Real-World Signal--Original Signal'); 
xlabel('Time') 
ylabel('RCS (dBsm)') 
axis tight; 
subplot(2,1,2) 
plot(unwrap(angle(data))) 
title('CEMD Phase of Real-World Signal--Original Signal'); 
xlabel('Time') 
ylabel('Angle (radians)') 
axis tight; 

  
for k = 1:n-1 
  figure(); 
  subplot(2,1,1) 
  plot(abs(imf(k,:))) 
  title(['CEMD Magnitude of Real-World Signal--IMF # ',int2str(k)]); 
  xlabel('Time') 
  ylabel('RCS (dBsm)') 
  axis tight; 
  subplot(2,1,2) 
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  plot(unwrap(angle(imf(k,:)))) 
  title(['CEMD Phase of Real-World Signal--IMF # ',int2str(k)]); 
  xlabel('Time') 
  ylabel('Angle (radians)')  

  axis tight; 
end 

  
for k=n:n 
figure(); 
subplot(2,1,1) 
plot(abs(imf(k,:))) 
title('CEMD Magnitude of Real-World Signal--Residue'); 
xlabel('Time') 
ylabel('RCS (dBsm)') 
axis tight; 
subplot(2,1,2) 
plot(unwrap(angle(imf(k,:)))) 
title('CEMD Phase of Real-World Signal--Residue'); 
xlabel('Time') 
ylabel('Angle (radians)') 
axis tight; 
end 

Figure 94:  Section B.3 Modified BEMD Algorithm 

 

 

%% Section B.4 
%% Take the HT of the Decomposed data and plot the HT of the CEMD of 

the 
%% data 

  
figure (); 
hilbertOriginal=hilbert(data); 
hilbertMagOriginal=abs(hilbert(real(data))); 
hilbertPhaseOriginal=unwrap(angle(hilbert(imag(data)))); 
subplot(2,1,1) 
plot(hilbertMagOriginal) 
title('Hilbert-Huang Transform Magnitude of Real-World Signal--Original 

Signal'); 
xlabel('Time') 
ylabel('RCS (dBsm)') 
axis tight; 
subplot(2,1,2) 
plot(hilbertPhaseOriginal) 
title('Hilbert-Huang Transform Phase of Real-World Signal--Original 

Signal'); 
xlabel('Time') 
ylabel('Angle (radians)') 
axis tight; 

  
for k = 1:n-1 
   hilbertMag(k,:)=abs(hilbert(real(imf(k,:)))); 
   hilbertPhase(k,:)=unwrap(angle(hilbert(imag(imf(k,:))))); 
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      figure () 
   subplot(2,1,1) 
   plot(hilbertMag(k,:)) 
   title(['Hilbert-Huang Transform Magnitude of Real-World Signal--IMF 

# ', int2str(k)]) 
   ylabel('RCS (dBsm)') 
   xlabel('Time')axis tight; 
   subplot(2,1,2) 
   plot(hilbertPhase(k,:)) 
   title(['Hilbert-Huang Transform Phase of Real-World Signal--IMF # ', 

int2str(k)]) 
   ylabel('Angle (radians)') 
   xlabel('Time') 
   axis tight; 
end 

  
for k = n:n 
   hilbertMag(k,:)=abs(hilbert(real(imf(k,:)))); 
   hilbertPhase(k,:)=unwrap(angle(hilbert(imag(imf(k,:))))); 
   figure () 
   subplot(2,1,1) 
   plot(hilbertMag(k,:)) 
   title('Hilbert-Huang Transform Magnitude of Real-World Signal--

Residue') 
   ylabel('RCS (dBsm)') 
   xlabel('Time') 
   axis tight; 
   subplot(2,1,2) 
   plot(hilbertPhase(k,:)) 
   title('Hilbert-Huang Transform Phase of Real-World Signal--Residue') 
   ylabel('Angle (radians)') 
   xlabel('Time') 
   axis tight; 
end 

Figure 95:  Section B.4 Modified BEMD Algorithm 

 

 

%% Section B.5 
%% Take the FFT of the decomposed signal before HT and plot the graphs 

  
figure (); 
fftOriginal=(1/n).*fft(data); 
fftMagOriginal=abs(fftOriginal); 
fftPhaseOriginal=unwrap(angle(fftOriginal)); 
subplot(2,1,1) 
plot(fftshift(fftMagOriginal)) 
title('FFT Magnitude of Real-World Signal--Original Signal'); 
xlabel('Frequency') 
ylabel('RCS (dBsm)') 
axis tight; 
subplot(2,1,2) 
plot(fftPhaseOriginal) 
title('FFT Phase of Real-World Signal--Original Signal'); 
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xlabel('Frequency') 
ylabel('Angle (radians)') 
axis tight; 

  
for k = 1:n-1 
  figure(); 
  fftCEMD(k,:)=(1/n).*fft(imf(k,:)); 
  fftMagCEMD(k,:)=abs(fftCEMD(k,:)); 

  fftPhaseCEMD(k,:)=unwrap(angle(imf(k,:))); 
  subplot(2,1,1) 
  plot(fftshift(fftMagCEMD(k,:))) 
  title(['FFT Magnitude of Real-World Signal--IMF # ',int2str(k)]); 
  xlabel('Frequency') 
  ylabel('RCS (dBsm)') 
  axis tight; 
  subplot(2,1,2) 
  plot(fftPhaseCEMD(k,:)) 
  title(['FFT Phase of Real-World Signal--IMF # ',int2str(k)]); 
  xlabel('Frequency') 
  ylabel('Angle (radians)') 
  axis tight; 
end 

  
for k=n:n 
  figure(); 
  fftCEMD(k,:)=(1/n)*fft(imf(k,:)); 
  fftMagCEMD(k,:)=abs(fftCEMD(k,:)); 
  fftPhaseCEMD(k,:)=unwrap(angle(imf(k,:))); 
  subplot(2,1,1) 
  plot(fftshift(fftMagCEMD(k,:))) 
  title('FFT Magnitude of Real-World Signal--Residue'); 
  xlabel('Frequency') 
  ylabel('RCS (dBsm)') 
  axis tight; 
  subplot(2,1,2) 
  plot(fftPhaseCEMD(k,:)) 
  title('FFT Phase of Real-World Signal--Residue'); 
  xlabel('Frequency') 
  ylabel('Angle (radians)') 
  axis tight; 
end 

Figure 96:  Section B.5 Modified BEMD Algorithm 

 

 

%% Section B.6 
%% Take the FFT of the decomposed signal after HT and plot the graphs 

  
figure (); 
fftOriginalHilbert=fft(hilbert(data)); 
fftMagOriginalHilbert=abs((1/n).*fft(hilbert(real(data)))); 
fftPhaseOriginalHilbert=unwrap(angle((hilbert(imag(data))))); 
subplot(2,1,1) 
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plot((fftshift(fftMagOriginalHilbert))) 
title('HHT of FFT Magnitude of Real-World Signal--Original Signal'); 
xlabel('Frequency') 
ylabel('RCS (dBsm)') 
axis tight; 
subplot(2,1,2) 
plot(fftPhaseOriginalHilbert) 
title('HHT of FFT Phase of Real-World Signal--Original Signal'); 
xlabel('Frequency') 
ylabel('Angle (radians)') 
axis tight; 

 
for k = 1:n-1 
  figure(); 
  fftMagHilbert(k,:)=abs((1/n).*fft(hilbert(real(imf(k,:))))); 
  fftPhaseHilbert(k,:)=unwrap(angle(fft(hilbert(imag(imf(k,:)))))); 
  subplot(2,1,1) 
  plot(fftshift(fftMagHilbert(k,:))) 
  title(['HHT of FFT Magnitude of Real-World Signal--IMF # 

',int2str(k)]); 
  xlabel('Frequency') 
  ylabel('RCS (dBsm)') 
  axis tight; 
  subplot(2,1,2) 
  plot(fftPhaseHilbert(k,:)) 
  title(['HHT of FFT Phase of Real-World Signal--IMF # ',int2str(k)]); 
  xlabel('Frequency') 
  ylabel('Angle (radians)') 
  axis tight; 
end 

  
for k=n:n 
  figure(); 
  fftMagHilbert(k,:)=abs((1/n).*fft(hilbert(real(imf(k,:))))); 
  fftPhaseHilbert(k,:)=unwrap(angle(fft(hilbert(imag(imf(k,:)))))); 
  subplot(2,1,1) 
  plot(fftshift(fftMagHilbert(k,:))) 
  title('HHT of FFT Magnitude of Real-World Signal--Residue'); 
  xlabel('Frequency') 
  ylabel('RCS (dBsm)') 
  axis tight; 
  subplot(2,1,2) 
  plot(fftPhaseHilbert(k,:)) 
  title('HHT of FFT Phase of Real-World Signal--Residue'); 
  xlabel('Frequency') 
  ylabel('Angle (radians)') 
  axis tight; 
end 

Figure 97:  Section B.6 Modified BEMD Algorithm 
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%% Section B.7 
%% Take the windowed FFT of the decomposed signal before HT to generate 

the  
%% DTI plots 

  
%Define resolution for the windowed FFT   
step_res=50; 
sec=96; 

  
%Calculate and store the windowed FFT value of the original signal 
counter=0; 
for b=1:prf*(sec-1)/step_res+1 
  

original(b,:)=fft([data(counter*step_res+1:counter*step_res+1+prf),... 
        zeros(1,1024-prf)]);     

  counter=counter+1; 
end 

  
%Graph the windowed FFT of the original signal 
y=linspace(-50,50, 1025); 
x=linspace(0, 100, prf*(sec-1)/step_res+1);  
figure() 
pcolor(x, y, fftshift(20*log(abs(original)'), 1)); 
shading interp 
title('DTI Plot--CEMD Magnitude of the FFT of Real-World Signal--

Original Signal') 
xlabel('Time') 
ylabel('Frequency (GHz)') 
axis tight; 
caxis([-40 40]); 
colorbar; 

  
%Get the windowed FFT of each of the IMFs and plot the windowed FFT of 

each 
%IMF  
 for a = 1:n-1 
    sig=imf(a,:); 
    counter=0; 
    for b=1:prf*(sec-1)/step_res+1 

         
    ff(b,:) = fft([sig(counter*step_res+1:counter*step_res+1+prf),... 
        zeros(1,1024-prf)]); 
    counter=counter+1; 
    end 
 figure() 
 pcolor(x,y, fftshift(20*log(abs(ff)'),1));  
 shading interp; 
 title(['DTI Plot--CEMD Magnitude of the FFT of Real-World Signal--IMF 

# '... 
     , int2str(a)]) 
 xlabel('Time') 
 ylabel('Frequency (GHz)') 
 axis tight; 
 caxis([-40 40]); 
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colorbar; 
 end 

  
 %Windowed FFT of the residue of the signal 
 for a = n:n 
    sig=imf(a,:); 
    counter=0; 
    for b=1:prf*(sec-1)/step_res+1 

         
    ff(b,:) = fft([sig(counter*step_res+1:counter*step_res+1+prf),... 
        zeros(1,1024-prf)]); 
    counter=counter+1; 
    end 
 figure() 

pcolor(x,y, fftshift(20*log(abs(ff)'),1));  
 shading interp; 
 title('DTI Plot--CEMD Magnitude of the FFT of Real-World Signal--

Residue ') 
 xlabel('Time') 
 ylabel('Frequency (GHz)') 
 axis tight; 
  caxis([-40 40]); 
  colorbar; 
 end 

Figure 98:  Section B.7 Modified BEMD Algorithm 

 

%% Section B.8 
 %% Take the windowed FFT of the decomposed signal after HT to generate 

the DTI plots 

  
%Define resolution for the fft   
step_res=50; 
sec=96; 

  
%Calculate and store the windowed FFT value of the original signal 
counter=0; 
for b=1:prf*(sec-1)/step_res+1 
    originalH(b,:)=fft([hilbert(data(counter*step_res+1:... 
        counter*step_res+1+prf)),zeros(1,1024-prf)]); 
    counter=counter+1; 
end 

  
%Graph the windowed FFT of the original signal 
fftMagOriginalHilbert=fftshift(20*log(abs(originalH'))); 
y=linspace(-50,50, 1025); 
x=linspace(0, 100, prf*(sec-1)/step_res+1);  
figure() 
pcolor(x,y,fftMagOriginalHilbert) 
shading interp 
title('DTI Plot--HHT Magnitude of the FFT Real-World Signal--Original 

Signal') 
xlabel('Time') 
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ylabel('Frequency (GHz)') 
axis tight; 
caxis([-40 40]); 
colorbar; 

  
%Get the windowed FFT of each of the IMFs after the HT has been applied 

to the signal and plot the windowed FFT of each IMF  
 for a = 1:n-1 
    sigH=hilbert(imf(a,:)); 
    counter=0; 
    for b=1:prf*(sec-1)/step_res+1 

         
    ffH(b,:) = fft([sigH(counter*step_res+1:counter*step_res+1+prf),... 
        zeros(1,1024-prf)]); 

    counter=counter+1; 
 end 
 figure() 
 fftDTIMagHilbert=fftshift(20*log(abs(ffH'))); 
 pcolor(x,y, fftDTIMagHilbert);  
 shading interp; 
 title(['DTI Plot--HHT Magnitude of the FFT Real-World Signal--IMF # 

'... 
     , int2str(a)]) 
 xlabel('Time') 
 ylabel('Frequency (GHz)') 
 axis tight; 
 caxis([-40 40]); 
 colorbar; 
 end 

  
%Windowed FFT of the residue of the signal 
 for a = n:n 
    sigH=hilbert(imf(a,:)); 
    counter=0; 
    for b=1:prf*(sec-1)/step_res+1 

         
    ffH(b,:) = fft([sigH(counter*step_res+1:counter*step_res+1+prf),... 
        zeros(1,1024-prf)]); 
    counter=counter+1; 
    end 
 figure() 
 fftDTIMagHilbert=fftshift(20*log(abs(ffH'))); 
 pcolor(x,y, fftDTIMagHilbert);  
 shading interp; 
 title('DTI Plot--HHT Magnitude of the FFT Real-World Signal--Residue') 
 xlabel('Time') 
 ylabel('Frequency (GHz)') 
 axis tight; 
 caxis([-40 40]); 
 colorbar; 
 end 

Figure 99:  Section B.7 Modified BEMD Algorithm 
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Appendix C 

Appendix C explains the inputs and outputs of cemdc_fix() and explains what 

task each part of the function performs. 

%CEMDC_FIX  bivariate Empirical Mode Decomposition, first algorithm 
% 
% 
%   Syntax 
% 
% 
% [IMF,NB_ITERATIONS]=CEMDC_FIX(T,X,NB_ITERATIONS,MAX_IMFS,NDIRS); 
% 
% 
%   Description 
% 
% 
% computes bivariate EMD, first algorithm [1] with NB_ITERATONS sifting 
% iterations for each IMF 
% 
%   mean of boolean array {(mean_amplitude)/(envelope_amplitude) > 

THRESHOLD} < TOLERANCE 
% 
% inputs:    
%       - T: sampling times. If T=[], the signal is assumed uniformly 

sampled. 
%       - X: analyzed signal 
%       - NB_ITERATIONS: number of sifting iterations to be performed 

to 
%         extract each IMF. If NB_ITERATIONS is empty or unspecified, 

10 iterations  
%         are performed by default. 
%         Note: The effective number of sifting iterations might be 

less  
%         than NB_ITERATIONS for the last modes if the sifting process 

has  
%         to be stopped because of a lack of extrema. 
%       - MAX_IMFS: maximum number of IMFs to be extracted. If MAX_IMFS 

is 
%         zero, empty or unspecified, the default behavior is to 

extract as 
%         many IMFs as possible. 
%       - NDIRS: number of directions used to compute the local mean. 
%         If unspecified, the default value is 4. 
%         rem: the actual number of directions (according to [1]) is 

2*NDIRS 
%          
% outputs:  
%       - IMF: intrinsic mode functions (IMFs) (last line = residual) 
%       - NB_ITERATIONS: effective number of sifting iterations for 

each mode 
% 
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% 
%   Examples: 
% 
% 
% workspace %  T: 1xN time instants 
%  X: 1xN signal data  
% 
%>>IMF = CEMDC_FIX(T,X); 
%>>[IMF,NB_IT] = CEMDC_FIX([],X); 
%>>IMF = CEMDC_FIX(T,X,20); 
%>>[IMF,NB_IT] = CEMDC_FIX([],X,[],4); 
% 
% 
%   References 
% 
% 
% [1] G. Rilling, P. Flandrin, P. Gonçalves and J. M. Lilly., 
% "Bivariate Empirical Mode Decomposition", 
% Signal Processing Letters (submitted) 
% 
% 
% See also 
%  (c)emd_visu (visualization), 
%  emd (slow but has many options), 
%  cemdc, cemdc2, cemdc2_fix (other fast implementations of bivariate 

EMD) 
% 
% 
% G. Rilling, last modification: 3.2007 
% gabriel.rilling@ens-lyon.fr 
% 
% code based on a student project by T. Boustane and G. Quellec, 

11.03.2004 
% supervised by P. Chainais (ISIMA - LIMOS - Universite Blaise Pascal - 

Clermont II 
% email : pchainai@isima.fr). 

Figure 100:  CEMD_FIX function 
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Appendix D 

 The IMF #3 and #4 plots of DTI before and after the Hilbert transform 

application. 

 

Figure 101:  DTI Magnitude of IMF #3 

 

Figure 102:  DTI HHT Magnitude of IMF #3 
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Figure 103:  DTI Magnitude of IMF #4 

 

Figure 104:  DTI HHT Magnitude of IMF #4 
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