1,767 research outputs found

    Estimation of glottal closure instants in voiced speech using the DYPSA algorithm

    Get PDF
    Published versio

    Generalized Perceptual Linear Prediction (gPLP) Features for Animal Vocalization Analysis

    Get PDF
    A new feature extraction model, generalized perceptual linear prediction (gPLP), is developed to calculate a set of perceptually relevant features for digital signal analysis of animalvocalizations. The gPLP model is a generalized adaptation of the perceptual linear prediction model, popular in human speech processing, which incorporates perceptual information such as frequency warping and equal loudness normalization into the feature extraction process. Since such perceptual information is available for a number of animal species, this new approach integrates that information into a generalized model to extract perceptually relevant features for a particular species. To illustrate, qualitative and quantitative comparisons are made between the species-specific model, generalized perceptual linear prediction (gPLP), and the original PLP model using a set of vocalizations collected from captive African elephants (Loxodonta africana) and wild beluga whales (Delphinapterus leucas). The models that incorporate perceptional information outperform the original human-based models in both visualization and classification tasks

    Speech Synthesis Based on Hidden Markov Models

    Get PDF

    Limited Data Speaker Verification: Fusion of Features

    Get PDF
    The present work demonstrates experimental evaluation of speaker verification for different speech feature extraction techniques with the constraints of limited data (less than 15 seconds). The state-of-the-art speaker verification techniques provide good performance for sufficient data (greater than 1 minutes). It is a challenging task to develop techniques which perform well for speaker verification under limited data condition. In this work different features like Mel Frequency Cepstral Coefficients (MFCC), Linear Prediction Cepstral Coefficients (LPCC), Delta (4), Delta-Delta (44), Linear Prediction Residual (LPR) and Linear Prediction Residual Phase (LPRP) are considered. The performance of individual features is studied and for better verification performance, combination of these features is attempted. A comparative study is made between Gaussian mixture model (GMM) and GMM-universal background model (GMM-UBM) through experimental evaluation. The experiments are conducted using NIST-2003 database. The experimental results show that, the combination of features provides better performance compared to the individual features. Further GMM-UBM modeling gives reduced equal error rate (EER) as compared to GMM

    GLOTTAL EXCITATION EXTRACTION OF VOICED SPEECH - JOINTLY PARAMETRIC AND NONPARAMETRIC APPROACHES

    Get PDF
    The goal of this dissertation is to develop methods to recover glottal flow pulses, which contain biometrical information about the speaker. The excitation information estimated from an observed speech utterance is modeled as the source of an inverse problem. Windowed linear prediction analysis and inverse filtering are first used to deconvolve the speech signal to obtain a rough estimate of glottal flow pulses. Linear prediction and its inverse filtering can largely eliminate the vocal-tract response which is usually modeled as infinite impulse response filter. Some remaining vocal-tract components that reside in the estimate after inverse filtering are next removed by maximum-phase and minimum-phase decomposition which is implemented by applying the complex cepstrum to the initial estimate of the glottal pulses. The additive and residual errors from inverse filtering can be suppressed by higher-order statistics which is the method used to calculate cepstrum representations. Some features directly provided by the glottal source\u27s cepstrum representation as well as fitting parameters for estimated pulses are used to form feature patterns that were applied to a minimum-distance classifier to realize a speaker identification system with very limited subjects
    corecore