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Generalized perceptual linear prediction features for animal
vocalization analysis

Patrick J. Cleminsa� and Michael T. Johnson
Speech and Signal Processing Laboratory, Marquette University, P.O. Box 1881,
Milwaukee, Wisconsin 53233-1881

�Received 30 June 2005; revised 31 March 2006; accepted 18 April 2006�

A new feature extraction model, generalized perceptual linear prediction �gPLP�, is developed to
calculate a set of perceptually relevant features for digital signal analysis of animal vocalizations.
The gPLP model is a generalized adaptation of the perceptual linear prediction model, popular in
human speech processing, which incorporates perceptual information such as frequency warping
and equal loudness normalization into the feature extraction process. Since such perceptual
information is available for a number of animal species, this new approach integrates that
information into a generalized model to extract perceptually relevant features for a particular
species. To illustrate, qualitative and quantitative comparisons are made between the
species-specific model, generalized perceptual linear prediction �gPLP�, and the original PLP model
using a set of vocalizations collected from captive African elephants �Loxodonta africana� and wild
beluga whales �Delphinapterus leucas�. The models that incorporate perceptional information
outperform the original human-based models in both visualization and classification tasks. © 2006
Acoustical Society of America. �DOI: 10.1121/1.2203596�

PACS number�s�: 43.80.Lb, 43.66.Gf �WWA� Pages: 527–534

I. INTRODUCTION

One of the primary tasks when analyzing animal vocal-
izations is determining and measuring acoustically relevant
features. Currently, many features used in bioacoustic analy-
sis are based on the entire vocalization, often extracted by
hand from spectrogram plots �Fristrup and Watkins, 1992;
Leong et al., 2002; Owren et al., 1997; Riede and Zuber-
bühler, 2003; Sjare and Smith, 1986�. Some of the features
commonly used for analysis include duration, fundamental
frequency measures, amplitude information, and spectral in-
formation such as Fourier transform coefficients. These tra-
ditional features are unable to capture temporally fine details
of vocalizations because each feature has only one value for
the entire vocalization. In addition, these features are often
susceptible to researcher bias because the features are deter-
mined interactively. An alternative to this feature extraction
paradigm is to divide signals into frames and extract features
automatically on a frame basis. This generates a feature ma-
trix for each vocalization that captures information about
how the vocalization changes over time. Another limitation
of traditional features, either global or frame based, is that
they typically do not use information about the perceptual
abilities of the species under study explicitly in the feature
extraction process.

The generalized perceptual linear prediction �gPLP�
model introduced here is a frame-based feature extraction
model that uses perceptual information about the species un-
der study to calculate features that are relevant to that spe-
cies. The gPLP model is applicable to different species by
incorporating experimental data from available perceptual
tests. Furthermore, the gPLP model can significantly de-

crease the time spent analyzing vocalizations and generates
features with finer temporal resolution that are largely uncor-
related and not subject to researcher bias.

The gPLP feature extraction model generates features
based on the source filter model of speech production. Al-
though this model was originally developed for human
speech processing, it has been shown to be applicable to the
vocalizations of terrestrial mammals for the purposes of de-
scribing vocal production mechanisms �Fitch, 2003�. The
source excitation, modeled as a pulse train for voiced sound
or white noise for unvoiced sound, is produced by physiol-
ogy such as the glottis in land mammals, the tympaniform
membrane in birds, or air sacs in marine animals. This exci-
tation then propagates through a filter consisting of the vocal
tract and nasal cavity in terrestrial animals or the body cavity
and melon in marine animals.

The gPLP model presented here is designed to suppress
excitation information and quantify the vocal tract filter char-
acteristics of the vocalizations. Excitation information in-
cludes the fundamental frequency contour, while vocal tract
characteristics are represented by formant information. Vocal
tract features carry the majority of the information in human
speech, but there are a number of languages in which the
fundamental frequency contour discriminates between units
of speech with similar vocal tract characteristics. There is
reason to believe that excitation information is also impor-
tant to the discrimination of animal vocalizations. In fact,
many studies have used fundamental frequency measures in
order to classify vocalizations �Buck and Tyack, 1993;
Darden et al., 2003�. Excitation information such as funda-
mental frequency measures can be added to the gPLP feature
vector to include excitation information.a�Electronic-mail: patrick.clemins@marquette.edu
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The gPLP feature extraction model generates features in
the discrete cepstral domain. The discrete cepstral domain is
defined as

c�n� = F−1�log�F�s�n���� , �1�

where F is the discrete Fourier transform and s�n� is the
original sampled time domain signal. This domain is pre-
ferred for speech processing systems because the general
shape of the spectrum is accurately described by the first few
cepstral coefficients, yielding an efficient signal representa-
tion. The cepstral domain is particularly appropriate for
source filter model analysis because the logarithm operation
effectively separates the excitation from the vocal tract filter
�Deller et al., 1993, p. 355�. Finally, because cepstral values
tend to be relatively uncorrelated with each other because of
their orthonormal set of basis functions �Deller et al., 1993,
p. 377�, the coefficients are good for statistical analysis
methods.

The following section of this paper will describe the
gPLP model in detail. Examples of the use of the gPLP
model in vocalization analysis follow. Visualization, vocal-
ization classification, and statistical testing tasks will be pre-
sented.

II. METHODS

A. Generalized perceptual linear prediction „gPLP…

The gPLP model is based on the perceptual linear pre-
diction �PLP� model developed by Hermansky �1990�. The
goal of the original PLP model is to describe the psycho-
physics of human hearing more accurately in the feature ex-
traction process. The gPLP model incorporates frequency
warping to account for nonlinear frequency perception along
the basilar membrane, critical bandwidth analysis to model
frequency masking, equal-loudness normalization using au-
diogram information, and intensity-loudness power normal-
ization. A block diagram of the gPLP method is shown in
Fig. 1. The gPLP model includes the same components as the
PLP, but incorporates experimentally acquired perceptual in-
formation as shown in Fig. 1 to tailor the feature extraction
process to the species under study. The components desig-
nated by dotted boxes indicate where species-specific per-
ceptual information is incorporated into the model. The vari-
ous components of the model are discussed in detail in the
following sections.

1. Preprocessing

The vocalization is first filtered using a preemphasis fil-
ter of the form

s��n� = s�n� − ks�n − 1� , �2�

where k is typically chosen to be between 0.95 and 0.99.
This preemphasis filter gives greater weight to higher fre-
quencies to emphasize the higher frequency formants and
reduce spectral tilt �Deller et al., 1993, p. 330�. It also re-
duces the dynamic range of the spectrum so that the spec-
trum is more easily approximated by the autoregressive mod-
eling component.

The vocalization is then broken into frames and win-
dowed using the Hamming window function �Oppenheim et
al. 1999, p. 465�. The frame size is usually chosen to include
several fundamental frequency peaks, which is typically
about 30 ms for human speech but may vary for other spe-
cies’ vocalizations. The vocalization is broken into frames so
that the spectral estimation can be performed on quasista-
tionary segments of the signal to ensure the precision of the
spectral estimation. More information about the effects of
windowing can be found in Oppenheim et al. �1999, p. 465�.

2. Power spectral estimation

Once the signal is divided into windowed frames, the
power spectrum is estimated. The discrete fast Fourier trans-
form is used to estimate the power spectrum in this work, but
other spectral estimation methods could also be used �Stoica
and Moses, 1997�. The discrete-time power spectrum P�f� is
estimated using

FIG. 1. PLP feature extraction block diagram. This original wave form is
filtered and windowed in the preprocessing component. The power spectrum
is then estimated for each frame of the vocalization. The power spectrum is
convolved with a number of filters to generate filterbank energies which
effectively smoothes and down samples the power spectrum. The filterbank
energies are multiplied by the equal-loudness curve and cube-root com-
pressed to account for the physiology of the ear. The down-sampled, nor-
malized power spectrum is modeled by a set of autoregressive coefficients
which are then converted to cepstral coefficients to take advantage of the
cepstral domain.
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P�f� � abs�F�sw�n���2, �3�

where F is the discrete Fourier transform and sw�n� is the wth
windowed frame of the signal.

3. Filter bank analysis

The next few components of the gPLP model transform
the power spectrum to take into account various psychoa-
coustic phenomena. The filter bank analysis component ac-
counts for two such phenomena, frequency masking and the
nonlinear mapping between cochlear position and frequency
sensitivity. Greenwood �1961� found that the cochlear-
frequency map could be described logarithmically in many
animal species with the equation

f = A�10ax − k� , �4�

where f is frequency in Hz, x is the position on the basilar
membrane that perceives that frequency, and A ,a, and k are
species-specific constants. Functions to convert between real
frequency f and perceived frequency fp can be created by
replacing the basilar membrane position variable with per-
ceived linear frequency as follows:

Fp�f� = �1/a�log10�f/A + k�, and �5�

Fp
−1�fp� = A�10afp − k� , �6�

where Fp�f� converts from real frequency to perceived fre-
quency and Fp

−1�fp� converts from perceived frequency to
real frequency. The Mel-frequency scale, commonly used in
speech processing, is a specific implementation of this warp-
ing function, using constant values of A=700,a=1/2595
=3.85�10−4, and k=1. Values of A, a, and k can be de-
termined for various species by fitting Eq. �6� to
frequency-position data �Greenwood, 1990�.

In cases where frequency-position data is not available,
there are two other ways to acquire values for the constants.
The first and most accurate method is to use equal-
rectangular bandwidth �ERB� data �Zwicker and Terhardt,
1980�. If the ERB data is fit by an equation of the form

ERB = ���f + �� , �7�

then the appropriate values of A ,a, and k can be determined
using the equations

A =
1

�
,

a = �� log�e�, and

k = � . �8�

where e is Euler’s constant, the natural logarithm base. These
equations are derived by taking the integral of the reciprocal
of Eq. �7�. The derivation of these equations is in the Appen-
dix.

An alternative method for determining appropriate val-
ues for the constants requires an estimate of the hearing
range of the species �fmin and fmax�. LePage �2003� noted that
most mammals have a value of k near 0.88 and showed that
this value is an optimal value when the tradeoffs between

high frequency resolution, loss of low frequency resolution,
minimization of map nonuniformity, and map smoothness
are considered �LePage did not include non-mammalian spe-
cies in the analysis, therefore using 0.88 as the value for k for
those species may not be appropriate�. Using the assumption
that k=0.88, values for A and a can be determined using the
equations

A =
fmin

1 − k

a = log10� fmax

A
+ k	 . �9�

If this method is used, the lower bound of the filter bank
must be greater than fmin, otherwise negative values of fp

result.
The second psychoacoustic phenomenon the filter bank

takes into account is frequency masking. The original PLP
model �Hermansky, 1990� constructed the filter bank using
filters, �i, shaped like the critical band masking filters de-
scribed by Fletcher �1940�. These exponential-shaped mask-
ing filters are based on human sound perception and are
computationally complex. Because of this complexity, the
gPLP model implemented in this work uses triangular-
shaped filters to approximate the critical band masking
curve. Triangular-shaped filters can be described by the
equation

�i�f� = 1 − 
� 2

fH − fL
	 f − � fH + fL

fH − fL
	
 , �10�

where fL and fH are the low and high cutoff frequencies of
each filter. This approximation is common in human speech
processing feature extraction models �Davis and Mermel-
stein, 1980�. Another reason for using a simple filter shape is
that there is little data on the auditory filter shapes of animals
other than humans, so more complex filter shapes are not
necessarily more accurate.

The number of filters contained in the filter bank should
be determined so that the bandwidth of each filter approxi-
mates the critical bandwidth of each species. However, be-
cause of the limitations on the resolution of the Fourier spec-
tral estimate, this is not always possible. The lower
frequency filters in the filter bank can become very narrow
due to the Greenwood frequency warping. If too many filters
are specified for the filter bank, the low frequency filters
become narrow enough that they do not contain any points,
or frequency bins, of the spectral estimate. The maximum
number of filters the filter bank can contain before some
filters contain no spectral points is a function of window size
and the range of the filter bank �Clemins et al., 2005�.

As an example of the incorporation of perceptual infor-
mation into filter bank design, the filter bank for the Indian
elephant, is shown in Fig. 2. Perceptual data from Heffner
and Heffner �1982� is used to determine the Greenwood
equation constants. The equal loudness curve, discussed be-
low, is applied to the filter bank in the figure which results in
the variable height of the individual filters. Using the filter
bank, filter energies ��i� are calculated with
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��i� = �
f=fL

fH

P�f��i�f� , �11�

where P�f� is the power spectrum, and fL and fH are the low
and high cutoff frequencies of each filter �i�f�.

4. Equal loudness normalization

Once the filter bank energies are calculated, an equal-
loudness curve is used to normalize the filter bank energies.
Hermansky �1990� originally used a filter transfer function
based on human sensitivity at about the 40-dB level adopted
from Makhoul and Cosell �1976�. For other species, an
equal-loudness curve E�f� can be approximated from the au-
diogram A�f� of a species, which is much more widely avail-
able, using

E�f� = T − A�f� , �12�

where T is 60 dB for species which acquire sound through
the air, and 120 dB for species that acquire sound in water.
The different values are a result of the different propaga-
tion properties of sound waves and different reference dB
pressures in the different mediums �Ketten, 1998�. A poly-
nomial curve is then fitted to E�log�f�� in order to inter-
polate for the frequency values sampled in ��i�. A fourth-
order curve has been found to adequately model most
equal-loudness curves when log�f� is used. The constraint
that E�f� is always positive is maintained by setting all
negative values of E�f� to zero. The equal loudness curve
is applied by multiplying the filter bank energies by the
fitted curve using the equation

��i� = ��i�E�f i� , �13�

where ��i� are the equal loudness normalized filter bank
energies and f i is the center frequency of the ith filter. The
multiplication of the filter bank energies, in linear units, by
the equal loudness curve, in decibel units, results in filter
bank energies in arbitrary units. The resulting energy scale is
relative to the perceptual abilities of the species at that fre-
quency.

5. Intensity-loudness power law

The last psychoacoustic related operation is the applica-
tion of the intensity-loudness power law

��i� = ��i�1/3, �14�

where ��i� are the power law and equal loudness normalized
filter bank energies. Stevens �1957� found this cube root re-
lationship between the intensity of sound and its perceived
loudness in humans. Although this exact relationship may
not hold for other species, it is likely that the structural simi-
larities between species yield a comparable correspondence
between power and loudness. This relationship may also be
different for marine species because of the differences in the
propagation of sound through air and water. Regardless of
the appropriate power coefficient, this operation is beneficial
from a mathematical modeling sense because it reduces the
spectrum’s dynamic range to make the normalized filter
bank energies ��i� more easily modeled by a low-order au-
toregressive all-pole model.

6. Autoregressive modeling

The last two components of the gPLP model transform
the filter bank energies into more mathematically robust fea-
tures. First, ��i� is approximated by an all-pole model using
the autocorrelation method and the Yule-Walker equations as
specified in Makhoul �1975�. A fifth-order model has been
shown to be adequate to model the first two formants of
human speech and suppress interspeaker details of the audi-
tory spectrum �Hermansky, 1990�. The appropriate order of
the LP analysis for other species is dependent on the number
of harmonics present in the vocalization, the relative com-
plexity of the power spectrum, and the task being performed.

7. Cepstral domain transform

The autoregressive coefficients an from the LP analysis
can be transformed directly into equivalent cepstral coeffi-
cients cn using a recursive formula �Deller et al., 1993, p.
376�. The primary reason to transform autoregressive coeffi-
cients into the cepstral domain is that Euclidean distance is
perceptually meaningful in the cepstral domain �Deller et al.,
1993, p. 377�, whereas a more complex distortion measure
such as Itakura distance must be used for autoregressive co-
efficients to maintain consistency �Itakura, 1975�. Cepstral
coefficients are generally less correlated with each other than
autoregressive coefficients because they are based on an or-
thonormal set of functions �Deller et al., 1993, p. 377�.

B. Greenwood frequency cepstral coefficients
„GFCCs…

As an alternative to gPLP it is possible to apply similar
techniques to the Mel frequency cepstral coefficients
�MFCC� feature extraction model. The MFCC feature extrac-
tion model was made popular by Davis and Mermelstein
�1980� and has been the most commonly used feature extrac-
tion method in human speech processing for many years.
While the MFCC model is still widely used because of its
computational efficiency, PLP is sometimes preferred be-
cause of its robustness and more accurate modeling of the

FIG. 2. Perceptual filterbank for an Indian elephant. The filters are logarith-
mically spaced according to the Greenwood cochlear map function. The
constants A, a, and k are computed assuming the optimal k=0.88 for mam-
mals as calculated by LePage �2003� and the approximate range of hearing
for an Indian elephant �10–10 000 Hz�. The equal loudness curve has been
applied to the filter bank magnitudes to show its effect. Perceptual data is
from Heffner and Heffner �1982�.
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human auditory system �Milner, 2002�. The application of
the Greenwood warping function to the MFCC model results
in Greenwood Frequency Cepstral Coefficients �GFCCs�
�Clemins et al., 2006, p. 162�. Although the GFCC model
does not contain all of the psychophysical components of the
gPLP model, the same filter bank design details presented
here for gPLP are used to design the filter bank in the GFCC
model. The main difference between the gPLP model and the
GFCC model is the method used for calculating the cepstral
coefficients. gPLP uses linear predictive coding �LPC�-
derived cepstral coefficients, while GFCC calculates the cep-
stral coefficients directly from the filter bank energies using a
discrete cosine transform. For more details on the GFCC
feature extraction model, see Clemins et al. �2006�.

III. EXAMPLES

The features generated by the gPLP model outlined
above can be used to perform many types of analyses on
animal vocalizations. Three typical types of analysis are de-
scribed below utilizing gPLP features.

A. Visualization with perceptual spectrograms

Spectrograms have become an important analysis and
visualization tool in the field of bioacoustics. They are useful
for many different species and help researchers determine the
differences between vocalizations. However, spectrograms
do not incorporate any information about the perceptual
abilities of the animal and are sometimes dominated by fun-
damental frequency content rather than spectral shaping.
gPLP features can be used to generate perceptual spectro-
grams, incorporating information about the animal’s percep-
tual abilities into the spectrogram. Because of the incorpora-
tion of perceptual data, perceptual spectrograms more
closely represent the sound as the animal would hear it.

Figure 3 shows perceptual spectrograms of an African

elephant’s noisy rumble and a beluga whale’s down whistle
along with traditional FFT-based spectrograms. These two
species were chosen to show that the gPLP model can be
used to analyze vocalizations which include formants �el-
ephant rumble� as well as vocalizations with harmonics �bel-
uga down whistle�. The perceptual spectrograms are plots of
the linear prediction spectrum of each frame of the signal
generated directly from LPC coefficients instead of trans-
forming the coefficients into the cepstral domain �Deller et
al., 1993, p. 336�.

For the perceptual spectrograms, a frame size of 300 ms
with 100 ms step size was used to calculate 18 autoregres-
sive coefficients from a filter bank of 50 filters. The percep-
tual data for the African elephant was taken from Heffner
and Heffner �1982�, while the data for the beluga whale was
acquired from Ketten �1998� and Scheifele �2003�. All of the
plots, spectrograms, and perceptual spectrograms, are nor-
malized so that pure white represents the absence of spectral
energy and pure black represents the peak spectral energy of
the vocalization.

In the two examples, notice the frequency warping that
occurs in each perceptual spectrogram. The logarithmic
warping as dictated by the Greenwood cochlear map func-
tion causes the lower frequencies to make up a larger portion
of the perceptual spectrogram’s horizontal axis. This warping
makes small changes in the low frequency components of the
vocalization more visible in the perceptual spectrogram. This
effect can be seen in the whistle vocalization by examining
the dynamics of the first �lowest� harmonic.

In a spectrogram, the excitation signal, which consists of
the fundamental frequency and its harmonics, typically
masks the response of the vocal tract filter in the spectrum. In
contrast to this, the gPLP method enhances the spectral en-
velope’s peaks and valleys and smoothes out the harmonics
of the fundamental frequency. This can be seen best in the
rumble vocalization’s perceptual spectrogram in Fig. 3�a�

FIG. 3. Perceptual spectrograms. The top plots are tra-
ditional FFT-based spectrograms, while the bottom
plots are perceptual spectrograms created using gPLP
features. The left plots are of an African elephant’s
noisy rumple, and the right plots are of a beluga whale’s
whistle. Notice how the perceptual spectrogram en-
hances the peaks and valleys of the spectrum and warps
the frequency axis according to the Greenwood co-
chlear map function.
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where the fundamental frequency harmonics are no longer
present. These harmonics, the dark horizontal lines spaced
about 20 Hz apart in the fast Fourier transform �FFT�-based
spectrogram, distract from the formants �at 40, 100, and
220 Hz� which are much easier to see in the perceptual spec-
trogram along with their relative magnitudes.

The whistle example in Fig. 3�b� shows how the gPLP
extraction model can track signals with quickly changing
spectral characteristics. Although the whistle’s harmonics
move throughout the vocalization, the perceptual spectro-
gram tracks these changes as well as the FFT-based spectro-
gram. As with FFT-based spectrogram analysis, smaller win-
dow sizes can be used to better track faster moving spectral
dynamics.

The gPLP spectrograms improve the contrast between
the vocalization energy and the background noise in the
spectrogram, making the vocalization easier to visualize.
Both vocalizations have a much lighter background in the
gPLP spectrogram when compared to the FFT-based spectro-
gram. However, the darkness of the vocalization energy stays
the same, enhancing the contrast between the background
noise and the vocalization energy. The gPLP spectrograms
also enhance the visualization of narrow-band noise as seen
in the beluga whale whistle in two places near 0.05 percep-
tual Hz and 0.14 perceptual Hz. On the other hand, the noise
sources are not as dark as the vocalization energy because of
the equal loudness curve applied to the filter bank energies.

B. Classification

Features obtained from gPLP analysis can also be effec-
tively used in various machine learning classification sys-
tems. Since gPLP coefficients are perceptually relevant and
largely uncorrelated they are a good choice for these tasks.
To demonstrate the effectiveness of features generated from
the gPLP model in a classification system, an example
speaker identification task is performed on a set of vocaliza-
tions. This task is appropriate since the spectral characteris-
tics of the rumble continuously change during the vocaliza-
tion. The data set consists of 143 rumbles from five different
African elephants, one male and four females. For more in-
formation on the data collection procedure, see Leong et al.
�2002�.

The classification model used for this experiment is a
hidden Markov model �HMM�. A HMM is a statistical clas-
sification model that can represent both the temporal and
spectral characteristics of a signal. For more information
about the HMM, refer to Clemins et al. �2005� and Rabiner
�1989�. Three state HMMs were used to model the rumble of
each elephant and an additional three state HMM was used to
model the silence before and after each rumble.

Table I shows the speaker identification accuracies for
both MFCC and PLP features as various psychophysical sig-
nal processing methods are applied to the feature extraction
process. Eighteen coefficients were extracted from 50 filter
bank energies using an 18th-order autoregressive model for
all trials. The total energy in each frame was also included in
the feature vector. The vocalizations were framed using a

window size of 300 ms and a window step size of 100 ms.
These parameters choices were chosen empirically based on
the perceptual information about the species.

Two different filter bank ranges are used: 10–3000 Hz
and 10–500 Hz, to show the effect of limiting the filter bank
range for each set of parameters. It is expected that since the
range of most of the vocal energy of an elephant rumble is
contained in the 10–500 Hz range, the use of that range for
the filter bank should result in higher accuracies because it
filters out noise in the other frequencies. This hypothesis is
verified by the experimental results.

The rows of Table I represent various trials of the ex-
periment with different feature extraction parameters. The
first two rows show the change in accuracy when the cepstral
coefficients are derived using autoregressive coefficients
�gPLP� as opposed to a direct discrete cosine transform
�GFCC� of the filter bank energies. Although the use of au-
toregressive coefficients results in slightly higher accuracies,
the significance of the improvement is marginal.

The third row shows the accuracies when the human
equal loudness curve is replaced by the derived African el-
ephant equal loudness curve using audiogram data from Hef-
fner and Heffner �1982�. In this trial, the Mel-frequency
scale was used to place the filters in the filter bank. The
incorporation of the elephant equal loudness curve, when
used with the Mel-frequency scale, does little to improve
accuracy and in one case, decreases classification accuracy.

The fourth row shows the effect of using the Greenwood
warping function instead of the Mel-frequency scale. The
Greenwood constants were calculated using the optimal k
=0.88 as suggested by LePage �2003� and the approximate
hearing range for the African elephant, 10–10 000 Hz. The
human equal loudness curve is used in this trial. While the
use of the Greenwood warping function greatly improves
accuracy for the larger filter bank range, it does little to im-
prove accuracies for the smaller filter bank range. This sug-
gests that the Greenwood warp helps to focus the analysis on
the perceptually important parts of the vocalization when too
large of a filter bank range is chosen.

The bottom row combines both the African elephant
equal loudness curve and the Greenwood warping function
as derived for the African elephant hearing range. When all
available species-specific data is incorporated in to the fea-
ture extraction process, the classification accuracies improve
significantly over the trials in which parameters based on
human perception are used. While the Greenwood warping

TABLE I. Speaker identification accuracies. This table shows the effect of
the various psychophysical signal processing components of the gPLP
model on the classification accuracy of a speaker identification task.

Filter bank range
10–3000 Hz

�%�
10–500 Hz

�%�

MFCC 46.9 72.7
PLP with Mel warp, human EQL 49.0 76.2
PLP with Mel warp, elephant EQL 49.0 75.5
PLP with Greenwood warp, human EQL 63.6 74.1
PLP with Greenwood warp, elephant EQL 68.5 81.8

532 J. Acoust. Soc. Am., Vol. 120, No. 1, July 2006 Clemins and Johnson: Generalized perceptual linear prediction �gPLP� features

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  134.48.159.28 On: Thu, 12 Dec 2013 16:37:21



function had the most effect when the larger filter bank range
was used, the biggest increase in accuracy for the smaller
filter bank range occurred when the African elephant equal
loudness curve was incorporated into the feature extraction
process. It is interesting to note that when used with the
Mel-frequency warping scale, the species-specific equal
loudness curve decreased the accuracy. However, when the
appropriate warping function for that species is used, the
species-specific equal loudness curve improved the classifi-
cation accuracy.

C. Statistical tests

Features generated by the gPLP model can also be used
as dependent variables in various statistical tests such as
multivariate analysis of variance �MANOVA� or the multi-
variate t test. Since the cepstral coefficients generated by the
gPLP model are orthogonal and relatively uncorrelated with
each other, techniques such as principle components analysis
�PCA� and linear discriminant analysis �LDA� are not neces-
sary as preprocessing steps. To demonstrate the effectiveness
of gPLP features in a statistical analysis scenario, a speaker
identification experiment using MANOVA is presented.

The main issue with using frame-based features, such as
those derived using the gPLP feature extraction model, with
statistical tests is that frame-based features generate a feature
matrix for each data example instead of a feature vector.
Although repeated measures statistical tests might at first
seem like an appropriate solution for handling the multiple
feature vectors for each vocalization, the vocalizations are
the result of a time-varying vocal production system. There-
fore, the assumption that the system is unchanging, required
for repeated measures tests, is invalidated. Three different
methods for overcoming this issue are presented. Each meth-
od’s advantages and disadvantages are also discussed. Other
approaches are discussed in Clemins �2005�.

The MANOVA analysis is performed on the same Afri-
can elephant speaker identification data set used for the clas-
sification example. As in the classification example, 18 gPLP
coefficients were extracted from each frame of the vocaliza-
tions using 50 filters spaced between 10 and 500 Hz along
with the energy in each frame.

The first MANOVA analysis uses all of the frames of
data from each vocalization in the analysis. The second
analysis uses only the feature vector from the middle frame
for each vocalization. Finally, the third analysis uses the av-
erage feature values across the entire vocalization.

Table II shows the results for the three different trials of
the MANOVA analysis. The trial using all of the frames of
data had the highest F value. The two trials that use one
frame of data for each vocalization had substantially lower F

values. It is interesting to note that using the average value of
each feature of all frames in each vocalization resulted in a
slightly higher F value as compared to using the features
from the middle frame of each vocalization. This suggests
that there is additional information in other parts of the vo-
calization besides the middle that could help separate the
vocalizations by speaker.

Each of these methods for determining the variables to
use has its own advantages and disadvantages. In the first
method, the number of observations is much larger than the
actual number of vocalizations because each vocalization
generates a number of data points, one for each frame of the
vocalization. However, because the spectral characteristics of
the vocalizations vary over time, this first method more com-
pletely quantifies each vocalization. The last two methods
have the advantage that they give more reasonable �i.e.,
lower� F values in the analysis because there is only one
observation for each vocalization. On the other hand, it is
difficult to determine which frame of the vocalization should
be used to quantify the vocalization because the spectral
characteristics of the vocalization can change dramatically.
Therefore, for highly dynamic vocalizations, it might be bet-
ter to use all of the observed frames instead of picking one
frame for analysis as long as the higher F values are noted.

IV. CONCLUSIONS

The gPLP model generates perceptually meaningful fea-
tures for animal vocalizations by incorporating psychophysi-
cal information about each species’ sound perception. Physi-
cally, gPLP coefficients represent the shape of the vocal tract
filter during vocalization production. gPLP coefficients are
relatively uncorrelated and perceptually meaningful in a Eu-
clidean space. They are also efficient in that a small number
of coefficients can model a vocalization frame accurately.
These features can be utilized for various types of animal
vocalization analyses including visualization, classification,
and statistical tests.

gPLP spectrograms are shown to enhance the spectral
peaks and suppress broadband background noise. For the
speaker identification task, the perceptual information in-
cluded in the gPLP feature extraction model improves clas-
sification accuracy. Finally, the MANOVA analysis shows
that the elephants produce significantly different vocaliza-
tions, which is consistent with the speaker identification task.

The features generated by the gPLP model can augment
or replace traditional frequency-based features. gPLP coeffi-
cients can be added to a feature vector of traditional features
before a statistical analysis and because they are relatively
uncorrelated with each other, they can be added before or
after principal component analysis �PCA� or a related tech-
nique. Finally, gPLP coefficients have no interpretive bias
and decrease analysis time because they can be automatically
extracted from the vocalization. Because of its efficiency and
adaptability to various species’ perceptual abilities, the gPLP
model for feature extraction is an innovative and valuable
addition to current tools available for bioacoustic signal
analysis.

TABLE II. Results of MANOVA analysis. MANOVA results Wilk’s 	 sta-
tistic. Each row represents a different experimental setup.

MANOVA results

All frames F95,13426=142.8, P
0.001
Middle frame F95,143=5.81, P
0.001
Average of all frames F95,143=7.09, P
0.001
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APPENDIX

The constant values A ,a, and k for the frequency warp-
ing function, Eq. �5�, can be derived from an ERB function
of the form in Eq. �7� by taking the integral of the inverse as
follows �Zwicker and Terhardt, 1980�.

fp =� 1

���f + 1�
, �A1�

fp =
1

�
� 1

�f + 1
, �A2�

fp =
1

��
ln��f + 1� + C . �A3�

The integration constant C is then set to 0 in order to meet
the constraint that fp=0 when f =0. The base of the loga-
rithm is then changed to 10 in order to match the base in Eq.
�9�.

fp =
1

�� log�e�
log��f + 1� . �A4�

The equation is in the same form as Eq. �5� and the constant
values can be read directly as

A =
1

�
,

a = �� log�e� ,

k = 1. �A5�
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